WorldWideScience

Sample records for ni clusters grown

  1. Transformation dynamics of Ni clusters into NiO rings under electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Knez, Daniel, E-mail: daniel.knez@felmi-zfe.at [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Thaler, Philipp; Volk, Alexander [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Kothleitner, Gerald [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Ernst, Wolfgang E. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Hofer, Ferdinand [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria)

    2017-05-15

    We report the transformation of nickel clusters into NiO rings by an electron beam induced nanoscale Kirkendall effect. High-purity nickel clusters consisting of a few thousand atoms have been used as precursors and were synthesized with the superfluid helium droplet technique. Aberration-corrected, analytical scanning transmission electron microscopy was applied to oxidise and simultaneously analyse the nanostructures. The transient dynamics of the oxidation could be documented by time lapse series using high-angle annular dark-field imaging and electron energy-loss spectroscopy. A two-step Cabrera-Mott oxidation mechanism was identified. It was found that water adsorbed adjacent to the clusters acts as oxygen source for the electron beam induced oxidation. The size-dependent oxidation rate was estimated by quantitative EELS measurements combined with molecular dynamics simulations. Our findings could serve to better control sample changes during examination in an electron microscope, and might provide a methodology to generate other metal oxide nanostructures. - Highlights: • Beam induced conversion of Ni clusters into crystalline NiO rings has been observed. • Ni clusters were grown with the superfluid He-droplet technique. • oxidizeSTEM was utilized to investigate and simultaneously oxidize these clusters. • Oxidation dynamics was captured in real-time. • Cluster sizes and the oxidation rate were estimated via EELS and molecular dynamics.

  2. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Lavoie, Christian; Jordan-Sweet, Jean [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Alptekin, Emre; Zhu, Frank [IBM Semiconductor Research and Development Center, 2070 Route 52, Hopewell Junction, New York 12533 (United States); Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M. [TEL Epion Inc., 900 Middlesex Turnpike, Bldg. 6, Billerica, Massachusetts 01821 (United States)

    2016-04-21

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  3. One dimensional motion of interstitial clusters and void growth in Ni and Ni alloys

    Science.gov (United States)

    Yoshiie, T.; Ishizaki, T.; Xu, Q.; Satoh, Y.; Kiritani, M.

    2002-12-01

    One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. In this paper, the effect of 2 at.% alloying with elements Si (volume size factor to Ni: -5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) in Ni on 1-D motion of interstitial clusters and void growth was studied. In neutron irradiated pure Ni, Ni-Cu and Ni-Ge, well developed dislocation networks and voids in the matrix, and no defects near grain boundaries were observed at 573 K to a dose of 0.4 dpa by transmission electron microscopy. No voids were formed and only interstitial type dislocation loops were observed near grain boundaries in Ni-Si and Ni-Sn. The reaction kinetics analysis which included the point defect flow into planar sink revealed the existence of 1-D motion of interstitial clusters in Ni, Ni-Cu and Ni-Ge, and lack of such motion in Ni-Si and Ni-Sn. In Ni-Sn and Ni-Si, the alloying elements will trap interstitial clusters and thereby reduce the cluster mobility, which lead to the reduction in void growth.

  4. Electronic structure of Ni-- and Ni2--ethylene cluster complexes

    International Nuclear Information System (INIS)

    Basch, H.; Newton, M.D.; Moskowitz, J.W.

    1978-01-01

    The electronic structure of metal cluster--ethylene complexes has been investigated by carrying out ab initio bonding pair-correlated, self-consistent field, and configuration interaction (CI) calculations on the NiC 2 H 4 and Ni 2 C 2 H 4 species. The π-NiC 2 H 4 and π-Ni 2 C 2 H 4 cluster complexes are found to be bound, the former only with CI, while disigma-Ni 2 C 2 H 4 has only a repulsive Ni 2 --C 2 H 4 ground state potential curve. The bonding in the π-type cluster complexes can be described as follows: The metal atom configuration is 3d 9 4s 1 with the 4s hybridized (by the metal 4p) away from the ethylene molecule, thereby allowing the π orbital to form a dative sigma bond with the metal atom. The bonding interaction is promoted by the presence of a second nickel atom behind the first one, leading to a 4s orbital electron deficiency of the bonded nickel atom and thus making this nickel atom a better electron acceptor. Back donation from the occupied metal 3d into the ethylene π* molecular orbital also takes place to some extent, and thus both features of the classical Dewar--Chatt--Duncanson model are observed. The π-Ni 2 C 2 H 4 species is analyzed in terms of the addition of a bare nickel atom to a π-NiC 2 H 4 cluster complex, with concomitant stabilization of the orbitals of the bonded nickel atom. A study of the excited electronic states of π-NiC 2 H 4 shows that low-lying 4s→π* and 3d→π* (M→L) charge transfer transitions are predicted. The former is not observed experimentally, probably due to the diffuse nature of the 4s orbital. The relationship between small cluster--ethylene complex systems and ethylene chemisorption on a nickel metal surface is discussed

  5. Exchange bias in finite sized NiO nanoparticles with Ni clusters

    International Nuclear Information System (INIS)

    Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace

    2017-01-01

    Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.

  6. Exchange bias in finite sized NiO nanoparticles with Ni clusters

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace, E-mail: jglin@ntu.edu.tw

    2017-02-15

    Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.

  7. Structure, reactivity and electronic properties of Mn doped Ni13 clusters

    International Nuclear Information System (INIS)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit

    2013-01-01

    In this work we have studied the structural and magnetic properties of Ni 13 cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H 2 molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni 12 Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni 12 MnH 2 . Our analysis of the stability and HOMO–LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H 2 absorption in the doped Ni 13−m Mn m alloy clusters. This has been reported earlier for smaller Ni n clusters [1

  8. Structure, reactivity and electronic properties of Mn doped Ni13 clusters

    Science.gov (United States)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit

    2013-06-01

    In this work we have studied the structural and magnetic properties of Ni13 cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H2 molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni12Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni12MnH2. Our analysis of the stability and HOMO-LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H2 absorption in the doped NiMnm alloy clusters. This has been reported earlier for smaller Nin clusters [1].

  9. Structures, energetics and magnetic properties of (NiSn) n clusters ...

    Indian Academy of Sciences (India)

    The preference for tetrahedron unit of Ni3 Sn is seen in the lowest-energy configuration of these clusters. The multi-centre bonding between Ni atoms play an important role in stabilizing the stoichiometric Ni–Sn clusters. Doping of Sn atoms enhances the binding energy and reduces the ionization potential of nickel clusters.

  10. Structure, reactivity and electronic properties of Mn doped Ni{sub 13} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit, E-mail: abhijit.mookerjee61@gmail.com

    2013-06-15

    In this work we have studied the structural and magnetic properties of Ni{sub 13} cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H{sub 2} molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni{sub 12}Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni{sub 12}MnH{sub 2}. Our analysis of the stability and HOMO–LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H{sub 2} absorption in the doped Ni{sub 13−m}Mn{sub m} alloy clusters. This has been reported earlier for smaller Ni{sub n} clusters [1].

  11. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Takahiro; Takao, Kyosuke; Yoshida, Takashi [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Wada, Kei [Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692 (Japan); Daifuku, Takashi; Yoneda, Yasuko [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Fukuyama, Keiichi [Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Sako, Yoshihiko, E-mail: sako@kais.kyoto-u.ac.jp [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan)

    2013-11-08

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys{sup 295} and His{sup 261}. •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His{sup 261}, which coordinates one of the Fe atoms with Cys{sup 295}, is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys{sup 295}, we constructed CODH-II variants. Ala substitution for the Cys{sup 295} substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys{sup 295} indirectly and His{sup 261} together affect Ni-coordination in the C-cluster.

  12. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    International Nuclear Information System (INIS)

    Inoue, Takahiro; Takao, Kyosuke; Yoshida, Takashi; Wada, Kei; Daifuku, Takashi; Yoneda, Yasuko; Fukuyama, Keiichi; Sako, Yoshihiko

    2013-01-01

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys 295 and His 261 . •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His 261 , which coordinates one of the Fe atoms with Cys 295 , is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys 295 , we constructed CODH-II variants. Ala substitution for the Cys 295 substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys 295 indirectly and His 261 together affect Ni-coordination in the C-cluster

  13. High-quality single crystalline NiO with twin phases grown on sapphire substrate by metalorganic vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    Kazuo Uchida

    2012-12-01

    Full Text Available High-quality single crystalline twin phase NiO grown on sapphire substrates by metalorganic vapor phase epitaxy is reported. X-ray rocking curve analysis of NiO films grown at different temperatures indicates a minimum full width at half maximum of the cubic (111 diffraction peak of 0.107° for NiO film grown at as low as 550 °C. Detailed microstructural analysis by Φ scan X-ray diffraction and transmission electron microscopy reveal that the NiO film consists of large single crystalline domains with two different crystallographic orientations which are rotated relative to each other along the [111] axis by 60°. These single crystal domains are divided by the twin phase boundaries.

  14. Ni3Si2 nanowires grown in situ on Ni foam for high-performance supercapacitors

    Science.gov (United States)

    Jiang, Yizhe; Li, Zhihui; Li, Beibei; Zhang, Jinying; Niu, Chunming

    2016-07-01

    Ni3Si2 nanowires and nanoawls have grown in situ on the surface of Ni foams by a controlled low pressure chemical vapor deposition process. Structural characterization shows that the individual Ni3Si2 nanowire is single crystal covered with a thin layer (1-2 nm) of SiO2 with a diameter of ∼20-30 nm and length of ten's micrometers. Individual nanoawl with a circular cone shape is polycrystalline. Both Ni3Si2 nanowire and nanoawl samples are evaluated as potential electrode materials for supercapacitors. The nanowire electrode delivers a very high specific capacitance and excellent rate capability. A specific capacitance of 760 F g-1 is measured at current density of 0.5 A g-1, which decreases to 518 F g-1 when the current density increases to 10 A g-1. The capacitance is dominated by pseudocapacitance with a mechanism similar to that of NiO or Ni(OH)2 widely studied in the literature. An asymmetric supercapacitor fabricated by pairing Ni3Si2 nanowire electrode with an activated carbon electrode exhibits energy densities of 17.5 Wh kg-1 and 8.8 Wh kg-1 at power densites of 301 W kg-1 and 3000 W kg-1.

  15. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores anodically grown on biomedical NiTi alloy.

    Science.gov (United States)

    Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin

    2018-08-01

    In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys

    Science.gov (United States)

    Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi

    2011-10-01

    The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.

  17. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    International Nuclear Information System (INIS)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q.

    2007-01-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10 -5 -1x10 -2 dpa at KUR, and 8x10 -3 -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High concentration of alloying

  18. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q. [Kyoto Univ., Research Reactor Institute, Osaka (Japan)

    2007-07-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10{sup -5}-1x10{sup -2} dpa at KUR, and 8x10{sup -3} -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High

  19. Hybrid Composite Ni(OH)(2)@NiCo2O4 Grown on Carbon Fiber Paper for High-Performance Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L; Chen, DC; Ding, Y; Wang, ZL; Zeng, ZZ; Liu, ML

    2013-11-13

    We have successfully fabricated and tested the electrochemical performance of supercapacitor electrodes consisting of Ni(OH)(2) nanosheets coated on NiCo2O4 nanosheets grown on carbon fiber paper (CFP) current collectors. When the NiCo2O4 nanosheets are replaced by Co3O4 nanosheets, however, the energy and power density as well as the rate capability of the electrodes are significantly reduced, most likely due to the lower conductivity of Co3O4 than that of NiCo2O4. The 3D hybrid composite Ni(OH)(2)/ NiCo2O4/CFP electrodes demonstrate a high areal capacitance of 5.2 F/cm(2) at a cycling current density of 2 rnA/cm(2), with a capacitance retention of 79% as the cycling current density was increased from 2 to 50 mA/cm(2). The remarkable performance of these hybrid composite electrodes implies that supercapacitors based on them have potential for many practical applications.

  20. Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors.

    Science.gov (United States)

    Huang, Liang; Chen, Dongchang; Ding, Yong; Wang, Zhong Lin; Zeng, Zhengzhi; Liu, Meilin

    2013-11-13

    We have successfully fabricated and tested the electrochemical performance of supercapacitor electrodes consisting of Ni(OH)2 nanosheets coated on NiCo2O4 nanosheets grown on carbon fiber paper (CFP) current collectors. When the NiCo2O4 nanosheets are replaced by Co3O4 nanosheets, however, the energy and power density as well as the rate capability of the electrodes are significantly reduced, most likely due to the lower conductivity of Co3O4 than that of NiCo2O4. The 3D hybrid composite Ni(OH)2/NiCo2O4/CFP electrodes demonstrate a high areal capacitance of 5.2 F/cm(2) at a cycling current density of 2 mA/cm(2), with a capacitance retention of 79% as the cycling current density was increased from 2 to 50 mA/cm(2). The remarkable performance of these hybrid composite electrodes implies that supercapacitors based on them have potential for many practical applications.

  1. Irradiation-Induced Solute Clustering in a Low Nickel FeMnNi Ferritic Alloy

    International Nuclear Information System (INIS)

    Meslin, E.; Barbu, A.; Radiguet, B.; Pareige, P.; Toffolon, C.

    2011-01-01

    Understanding the radiation embrittlement of reactor pressure vessel (RPV) steels is required to be able to operate safely a nuclear power plant or to extend its lifetime. The mechanical properties degradation is partly due to the clustering of solute under irradiation. To gain knowledge about the clustering process, a Fe-1.1 Mn-0.7 Ni (at.%) alloy was irradiated in a test reactor at two fluxes of 0.15 and 9 *10 17 n E≥1MeV . m -2 .s -1 and at increasing doses from 0.18 to 1.3 *10 24 n E≥1MeV ) . m -2 at 300 degrees C. Atom probe tomography (APT) experiments revealed that the irradiation promotes the formation in the α iron matrix of Mn/Mn and/or Ni/Ni pair correlations at low dose and Mn-Ni enriched clusters at high dose. These clusters dissolve partially after a thermal treatment at 400 degrees C. Based on a comparison with thermodynamic calculations, we show that the solute clustering under irradiation can just result from an induced mechanism. (authors)

  2. Equilibrium geometries, electronic and magnetic properties of small AunNi- (n = 1-9) clusters

    Science.gov (United States)

    Tang, Cui-Ming; Chen, Xiao-Xu; Yang, Xiang-Dong

    2014-05-01

    Geometrical, electronic and magnetic properties of small AunNi- (n = 1-9) clusters have been investigated based on density functional theory (DFT) at PW91P86 level. An extensive structural search shows that the relative stable structures of AunNi- (n = 1-9) clusters adopt 2D structure for n = 1-5, 7 and 3D structure for n = 6, 8-9. And the substitution of a Ni atom for an Au atom in the Au-n+1 cluster obviously changes the structure of the host cluster. Moreover, an odd-even alternation phenomenon has been found for HOMO-LUMO energy gaps, indicating that the relative stable structures of the AunNi- clusters with odd-numbered gold atoms have a higher relative stability. Finally, the natural population analysis (NPA) and the vertical detachment energies (VDE) are studied, respectively. The theoretical values of VDE are reported for the first time to our best knowledge.

  3. Mode selectivity in cluster-molecule interactions: Ni13 + D2

    International Nuclear Information System (INIS)

    Jellinek, J.; Guevenc, Z.B.

    1991-01-01

    Results of a detailed quasiclassical simulation study of the Ni 13 + D 2 collision system are presented. The dissociative adsorption of the molecule as well as its scattering from the cluster are analyzed as functions of the initial rovibrational molecular state, collision energy and structure of the cluster. Mode-specific features of the reactive and nonreactive channels of the cluster-molecule interaction are displayed and discussed. Evidence for resonances and for a strong cluster structure-reactivity correlation is presented. 13 refs., 6 figs

  4. Molecules based on M(v) (M=Mo, W) and Ni(II) ions: a new class of trigonal bipyramidal cluster and confirmation of SMM behavior for the pentadecanuclear molecule {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}.

    Science.gov (United States)

    Hilfiger, Matthew G; Zhao, Hanhua; Prosvirin, Andrey; Wernsdorfer, Wolfgang; Dunbar, Kim R

    2009-07-14

    The preparation, single crystal X-ray crystallography, and magnetic properties are reported for four new clusters based on [M'V(CN)8]3- octacyanometallates (M'=Mo, W). Reactions of [M'V(CN)8]3- with mononuclear NiII ions in the presence of the tmphen blocking ligand (tmphen=3,4,7,8-tetramethyl-1,10-phenanthroline) in a 2:3:6 ratio, respectively, lead to the formation of the trigonal bipyramidal clusters [NiII(tmphen)2]3[M'V(CN)8]2. Analogous reactions with the same starting materials performed in a 2:3:2 ratio, respectively, produce pentadecanuclear clusters of the type {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}. The W2Ni3 (1) and Mo2Ni3(2) pentanuclear clusters and the W6Ni9 (3) and Mo6Ni9 (4) pentadecanuclear molecules are isostructural to each other and crystallize in the space groups P2(1)/c and R3 respectively. Magnetic measurements indicate that the ground states for the trigonal bipyamidal clusters are S=4 as a consequence of ferromagnetic coupling with JW-Ni=9.5 cm(-1), JMo-Ni=10 cm(-1). The pentadecanuclear clusters exhibit ferromagnetic coupling as well, which leads to S=12 ground states (JW-Ni=12 cm(-1), JMo-Ni=12.2 cm(-1)). Reduced magnetization studies on the W-Ni analogues support the conclusion that they exhibit a negative axial anisotropy term; the fits give D values of -0.24 cm(-1) for the W2Ni3 cluster and D=-0.04 cm(-1)for the W6Ni9 cluster. AC susceptibility measurements indicate the beginning of an out-of-phase signal for the W2Ni3 and the W6Ni9 compounds, but detailed low temperature studies on small crystals by the microSQUID technique indicate that only the pentadecanuclear cluster exhibits hysteresis in accord with SMM behavior. Neither Mo cluster reveals any evidence for slow paramagnetic relaxation at low temperatures.

  5. Modeling the pinning of Au and Ni clusters on graphite

    NARCIS (Netherlands)

    Smith, R.; Nock, C.; Kenny, S.D.; Belbruno, J.J.; Di Vece, M.; Paloma, S.; Palmer, R.E.

    2006-01-01

    The pinning of size-selected AuN and NiN clusters on graphite, for N=7–100, is investigated by means of molecular dynamics simulations and the results are compared to experiment and previous work with Ag clusters. Ab initio calculations of the binding of the metal adatom and dimers on a graphite

  6. NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors

    Science.gov (United States)

    Wang, Tao; Guo, Ying; Zhao, Bo; Yu, Shuhui; Yang, Hai-Peng; Lu, Daniel; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-07-01

    Three dimensional interconnected hierarchical porous Ni films are easily fabricated as effective current collectors through hydrogen bubble template electrochemical deposition. The binder-free integrated electrodes of spinel NiCo2O4 nanosheets directly coated the three dimensional porous Ni films are facilely obtained through successively electrochemical co-deposition of Ni/Co alloy layer then followed by subsequent annealing at 350 °C in air. Compared with NiCo2O4 nanosheets on smooth Ni foil or porous NiO/Ni film electrodes, the porous NiCo2O4/Ni integrated film electrodes for supercapacitors demonstrate remarkably higher area specific capacitance. The porous NiCo2O4/Ni film electrodes also exhibit excellent rate capability and cycling stability. The super electrochemical capacitive performances are attributed to the unique integrated architecture of NiCo2O4 nanosheets in-situ grown on three dimensional continuous hierarchical porous Ni collector collectors, which could provide large electrode-electrolyte interface area, high active sites, low contact resistance between current collector and active materials, fast electron conduction and ion/electrolyte diffusion.

  7. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

    Science.gov (United States)

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-08-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm-2 at 2 mA cm-2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm-2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.

  8. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    International Nuclear Information System (INIS)

    Chen, Wanghua; Roca i Cabarrocas, Pere; Pareige, Philippe; Castro, Celia; Xu, Tao; Grandidier, Bruno; Stiévenard, Didier

    2015-01-01

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process

  9. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanghua; Roca i Cabarrocas, Pere [Laboratoire de Physique des Interfaces et Couches Minces (LPICM), UMR 7647, CNRS, Ecole Polytechnique, 91128 Palaiseau (France); Pareige, Philippe; Castro, Celia [Groupe de Physique des Matériaux (GPM), Université et INSA de Rouen, UMR 6634, CNRS, Av. de l' Université, BP 12, 76801 Saint Etienne du Rouvray (France); Xu, Tao; Grandidier, Bruno; Stiévenard, Didier [Institut d' Electronique et de Microélectronique et de Nanotechnologies (IEMN), UMR 8520, CNRS, Département ISEN, 41 bd Vauban, 59046 Lille Cedex (France)

    2015-09-14

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process.

  10. {Ni4O4} Cluster Complex to Enhance the Reductive Photocurrent Response on Silicon Nanowire Photocathodes

    Directory of Open Access Journals (Sweden)

    Yatin J. Mange

    2017-02-01

    Full Text Available Metal organic {Ni4O4} clusters, known oxidation catalysts, have been shown to provide a valuable route in increasing the photocurrent response on silicon nanowire (SiNW photocathodes. {Ni4O4} clusters have been paired with SiNWs to form a new photocathode composite for water splitting. Under AM1.5 conditions, the combination of {Ni4O4} clusters with SiNWs gave a current density of −16 mA/cm2, which corresponds to an increase in current density of 60% when compared to bare SiNWs. The composite electrode was fully characterised and shown to be an efficient and stable photocathode for water splitting.

  11. Synthesis and characterization of β-Ni(OH)2 up grown nanoflakes by SILAR method

    International Nuclear Information System (INIS)

    Kulkarni, S.B.; Jamadade, V.S.; Dhawale, D.S.; Lokhande, C.D.

    2009-01-01

    In this paper we report a 'bottom up' approach to synthesize β-Ni(OH) 2 nanoflakes using novel successive ionic layer adsorption and reaction (SILAR) method. Ni(OH) 2 thin films have been deposited on glass substrate using aqueous alkaline nickel chloride as nickel ion source and double distilled water maintained at 353 K temperature as hydroxyl ion source. The structural, surface morphological, optical and electrical properties of films are examined. The nanocrystallinity and β-phase of Ni(OH) 2 are confirmed by X-ray diffraction and FT-IR studies. Scanning electron microscope study revealed microporous and random distribution of well up grown interlocked nanoflakes. Optical absorption studies show wide optical band gap of 3.26 eV for β-Ni(OH) 2 . The electrical properties revealed that β-Ni(OH) 2 has negative temperature coefficient of resistance with p-type semiconducting behaviour. The electrochemical property studied by cyclic voltametry in 2 M KOH electrolyte solution revealed pseudo capacitive behaviour, when β-Ni(OH) 2 thin film employed as working electrode in three electrode electrochemical cell with platinum as counter electrode and saturated calomel as reference electrode. The specific capacitance of 350 F g -1 is obtained with nanoflake like morphology.

  12. Characterisation of the early stages of solute clustering in 1Ni-1.3Mn welds containing Cu

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, J.M., E-mail: jonathan.hyde@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); National Nuclear Laboratory Ltd, B168 Harwell, Didcot, Oxon OX11 0QJ (United Kingdom); Burke, M.G. [Bechtel Bettis Inc., 814 Pittsburgh-McKeesport Blvd, West Mifflin, Pittsburgh 15122-0079 (United States); Boothby, R.M.; English, C.A. [National Nuclear Laboratory Ltd, B168 Harwell, Didcot, Oxon OX11 0QJ (United Kingdom)

    2009-04-15

    Microstructural characterisation of neutron irradiated low alloy steels is important for developing mechanistic understanding of irradiation embrittlement. This work is focused on the early stages of irradiation-induced clustering in a low Cu (0.03 wt%), high Ni ({approx}1 wt%) weld. The weld was irradiated at a very high dose rate and then examined by atom probe (energy-compensated position-sensitive atom probe (ECOPoSAP) and local electrode atom probe (LEAP)) with supporting microstructural information obtained by small angle neutron scattering (SANS) and positron annihilation (PALA). It was demonstrated that extreme care must be taken optimising parameters used to characterise the extent of clustering. This is particularly important during the early stages of irradiation-damage when the clusters are poorly defined and significant compositional variations are present in what is traditionally described as matrix. Analysis of the irradiated materials showed increasing clustering of Cu, Mn, Ni and Si with dose. In the low Cu steel the results showed that initially the irradiation damage results in clustering of Mn, Ni and Si, but at very high doses, at very high dose rates, redistribution of Si is significantly more advanced than that for Mn and Ni.

  13. Puzzle of magnetic moments of Ni clusters revisited using quantum Monte Carlo method.

    Science.gov (United States)

    Lee, Hung-Wen; Chang, Chun-Ming; Hsing, Cheng-Rong

    2017-02-28

    The puzzle of the magnetic moments of small nickel clusters arises from the discrepancy between values predicted using density functional theory (DFT) and experimental measurements. Traditional DFT approaches underestimate the magnetic moments of nickel clusters. Two fundamental problems are associated with this puzzle, namely, calculating the exchange-correlation interaction accurately and determining the global minimum structures of the clusters. Theoretically, the two problems can be solved using quantum Monte Carlo (QMC) calculations and the ab initio random structure searching (AIRSS) method correspondingly. Therefore, we combined the fixed-moment AIRSS and QMC methods to investigate the magnetic properties of Ni n (n = 5-9) clusters. The spin moments of the diffusion Monte Carlo (DMC) ground states are higher than those of the Perdew-Burke-Ernzerhof ground states and, in the case of Ni 8-9 , two new ground-state structures have been discovered using the DMC calculations. The predicted results are closer to the experimental findings, unlike the results predicted in previous standard DFT studies.

  14. A diffuse neutron scattering study of clustering kinetics in Cu-Ni alloys

    International Nuclear Information System (INIS)

    Vrijen, J.; Radelaar, S.; Schwahn, D.

    1977-01-01

    Diffuse scattering of thermal neutrons was used to investigate the kinetics of clustering in Cu-Ni alloys. In order to optimize the experimental conditions the isotopes 65 Cu and 62 Ni were alloyed. The time evolution of the diffuse scattered intensity at 400 0 C has been measured for eight Cu-Ni alloys, varying in composition between 30 and 80 at. pour cent Ni. The relaxation of the so called null matrix, containing 56.5 at. pour cent Ni has also been investigated at 320, 340, 425 and 450 0 C. Using Cook's model from all these measurements information has been deduced about diffusion at low temperatures and about thermodynamic properties of the Cu-Ni system. It turns out that Cook's model is not sufficiently detailed for an accurate description of the initial stages of these relaxations

  15. Hierarchical Ni0.54Co0.46O2 nanowire and nanosheet arrays grown on carbon fiber cloth for high-performance supercapacitors

    Science.gov (United States)

    Jiang, Yuanzhi; Zhang, Lijuan; Zhang, Hang; Zhang, Cui; Liu, Shuangxi

    2016-10-01

    Hierarchical Ni0.54Co0.46O2 architectures composed by nanowires or nanosheets were successfully grown on bio-mass carbon fiber cloth (CFC) by hydrothermal method. The morphology of Ni0.54Co0.46O2 can be effectively controlled by using different precipitators. The structural effects of the two kinds of morphologies were researched. the results suggest that the Ni0.54Co0.46O2 nanosheet arrays grown on CFC (NCO-NSs/CFC) shows a higher Faradaic areal capacity of 438 μAh cm-2 (238.1 mAh g-1) at a current density of 1 mA cm-2 and still about 90.3% initial capacity retention even at the high current density of 50 mA cm-2. Moreover, an all-solid-state flexible symmetric supercapacitor device has been successfully assembled. The optimized device delivers superior electrochemical performance with an outstanding energy density of 92.4 Wh kg-1 at a power density of 207.2 W kg-1. Such hierarchical nanostructure composed by well-aligned uniform Ni0.54Co0.46O2 nanosheet arrays grown on bio-mass carbon fiber cloth might hold great promise as battery-type electrode material for high-performance supercapacitor.

  16. A first-principles study of Pt–Ni bimetallic cluster adsorption on the anatase TiO{sub 2} (1 0 1) surface: Probing electron effect of Ni in TiO{sub 2} (1 0 1)-bimetallic cluster (Pt–Ni) on the adsorption and dissociation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Feila, E-mail: liufeila@u.washington.edu [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States); Xiao, Peng, E-mail: xiaopeng@cqu.edu.cn [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Uchaker, Evan, E-mail: uchaker@u.washington.edu [Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States); He, Huichao, E-mail: hehuichao985@gmail.com [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Zhou, Ming, E-mail: Zhoumingcqu2007@163.com [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Zhou, Xin, E-mail: zhoux@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Institute of Theoretical and Simulation Chemistry, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China); Zhang, Yunhuai, E-mail: xp2031@163.com [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2014-10-01

    Graphical abstract: - Highlights: • Condensed Fukui function is used to predict the regioselectivity of clusters. • Pt–Ni alloy and TiO{sub 2} can effectively oxidize methanol compared with pure Pt. • The methanol dehydrogenation over Pt{sub 3}Ni/TiO{sub 2} is an optimal reaction pathway. • The alloying of Ni can effectively alleviate CO poisoning. - Abstract: A density functional theory (DFT) based method in conjunction with the projector augmented wave and pseudopotential methods have been applied to investigate the adsorption of Pt{sub 4} and Pt{sub 3}Ni on the anatase TiO{sub 2} (1 0 1) surface. Two stable Pt{sub 3}Ni adsorptions with considerable adsorption energies on the anatase TiO{sub 2} (1 0 1) surface were identified. Analysis of the partial density (PDOS) of states and Bader charge suggest that the electronic structure of Pt is modified by Ni due to the electron transfer from Ni to Pt atoms in the Pt{sub 3}Ni clusters. The 2cO (3cO)-PtNi-5cTi conformation of the adsorbed Pt{sub 3}Ni on the anatase TiO{sub 2} (1 0 1) surface provides a more feasible model for electron injection through the Pt{sub 3}Ni/TiO{sub 2} interface. The reactivity of Pt{sub 3}Ni/TiO{sub 2} is superior to Pt{sub 4}/TiO{sub 2} and effectively manifests itself in the eased decomposition of O-H bonds derived by methanol and alleviative CO adsorption.

  17. The Effect of Ar/O2 Ratio on Electrochromic Response Time of Ni Oxides Grown Using an RF Sputtering System

    Science.gov (United States)

    Ahn, Kwang-Soon; Nah, Yoon-Chae; Yum, Jun-Ho; Sung, Yung-Eun

    2002-02-01

    The effect of Ar:O2 ratio on the electrochromic properties and the response time of NiO grown by RF sputtering were investigated by in situ transmittance measurements with continuous potential cycling and pulse potential cycling. The transmittance difference, coloration efficiency, memory effect, and cycling stability were all found to be independent of the Ar:O2 ratio. However, the transmittance of the as-deposited NiO as well as the response time were significantly affected. This may be attributed to the excess of oxygen occupied interstitial sites in the sputtered NiO that could result in the generation of Ni3+ ions and interference with proton intercalation/deintercalation.

  18. Chemical probes of metal cluster structure--Fe, Co, Ni, and Cu

    International Nuclear Information System (INIS)

    Parks, E.K.; Zhu, L.; Ho, J.; Riley, S.J.

    1992-01-01

    Chemical reactivity is one of the few methods currently available for investigating the geometrical structure of isolated transition metal clusters. In this paper we summarize what is currently known about the structures of clusters of four transition metals, Fe, Co, Ni, and Cu, in the size range from 13 to 180 atoms. Chemical probes used to determine structural information include reactions with H 2 (D 2 ), H 2 0, NH 3 and N 2 . Measurements at both low coverage and at saturation are discussed

  19. As-free pnictide LaNi{sub 1-x}Sb{sub 2} thin films grown by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Retzlaff, Reiner; Buckow, Alexander; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany)

    2012-07-01

    We use reactive molecular beam epitaxy (RMBE) as synthesis technique for the search of arsenic free pnictide superconductors. Epitaxial thin films of LaNi{sub 1-x}Sb{sub 2} were grown on (100)MgO substrates from elemental sources by simultaneous evaporation of high purity La, Ni and Sb metals by e-gun. The LaNi{sub 1-x}Sb{sub 2} thin films grow epitaxially and are (00l) oriented with high crystalline quality, as evident from RHEED and X-Ray diffraction studies. The Ni deficient LaNi{sub 1-x}Sb{sub 2} thin films show metallic behavior with a room temperature resistivity of 110 {mu}{Omega} cm, while the stoichiometric compound is a semiconductor/insulator. The isostructural compound with Bi as pnictide shows a superconducting transition with a T{sub C}(0) of 3.1 K.

  20. Optical properties of Ni-doped MgGa2O4 single crystals grown by floating zone method

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Hughes, Mark; Ohishi, Yasutake

    2010-01-01

    The single crystal growth conditions and spectroscopic characterization of Ni-doped MgGa 2 O 4 with inverse-spinel structure crystal family are described. Single crystals of this material have been grown by floating zone method. Ni-doped MgGa 2 O 4 single crystals have broadband fluorescence in the 1100-1600 nm wavelength range, 1.6 ms room temperature lifetime, 56% quantum efficiency and 1.05x10 -21 cm 2 stimulated emission cross section at the emission peak. This new material is very promising for tunable laser applications covering the important optical communication and eye safe wavelength region.

  1. Photoluminescence and photoluminescence excitation studies in 80 MeV Ni ion irradiated MOCVD grown GaN

    Energy Technology Data Exchange (ETDEWEB)

    Devaraju, G. [School of Physics, University of Hyderabad, Central University P.O., Hyderabad 500 046 (India); Pathak, A.P., E-mail: appsp@uohyd.ernet.in [School of Physics, University of Hyderabad, Central University P.O., Hyderabad 500 046 (India); Srinivasa Rao, N.; Saikiran, V. [School of Physics, University of Hyderabad, Central University P.O., Hyderabad 500 046 (India); Enrichi, Francesco [Coordinamento Interuniversitario Veneto per le Nanotecnologie (CIVEN), via delle Industrie 5, Marghera, I-30175Venice (Italy); Trave, Enrico [Dipartimento di Chimica Fisica, Universita Ca' Foscari Venezia, Dorsoduro 2137, I-30123 Venice (Italy)

    2011-09-01

    Highlights: {yields} MOCVD grown GaN samples are irradiated with 80 MeV Ni ions at room temperature. {yields} PL and PLE studies have been carried out for band to band, BL and YL emissions. {yields} Ni ions irradiated GaN shows BL band at 450 nm besides YL band. {yields} Radiation annealed Ga vacancies have quenching effect on YL intensity. {yields} We speculated that BL and YL are associated with N and Ga vacancies, respectively. - Abstract: We report damage creation and annihilation under energetic ion bombardment at a fixed fluence. MOCVD grown GaN thin films were irradiated with 80 MeV Ni ions at a fluence of 1 x 10{sup 13} ions/cm{sup 2}. Irradiated GaN thin films were subjected to rapid thermal annealing for 60 s in nitrogen atmosphere to anneal out the defects. The effects of defects on luminescence were explored with photoluminescence measurements. Room temperature photoluminescence spectra from pristine sample revealed presence of band to band transition besides unwanted yellow luminescence. Irradiated GaN does not show any band to band transition but there is a strong peak at 450 nm which is attributed to ion induced defect blue luminescence. However, irradiated and subsequently annealed samples show improved band to band transitions and a significant decrease in yellow luminescence intensity due to annihilation of defects which were created during irradiation. Irradiation induced effects on yellow and blue emissions are discussed.

  2. Surface defects on the Gd{sub 2}Zr{sub 2}O{sub 7} oxide films grown on textured NiW technical substrates by chemical solution method

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y., E-mail: yuezhao@sjtu.edu.cn [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240 Shanghai (China); Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark); Opata, Yuri A. [Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark); Wu, W. [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240 Shanghai (China); Grivel, J.C. [Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark)

    2017-02-15

    Epitaxial growth of oxide thin films has attracted much interest because of their broad applications in various fields. In this study, we investigated the microstructure of textured Gd{sub 2}Zr{sub 2}O{sub 7} films grown on (001)〈100〉 orientated NiW alloy substrates by a chemical solution deposition (CSD) method. The aging effect of precursor solution on defect formation was thoroughly investigated. A slight difference was observed between the as-obtained and aged precursor solutions with respect to the phase purity and global texture of films prepared using these solutions. However, the surface morphologies are different, i.e., some regular-shaped regions (mainly hexagonal or dodecagonal) were observed on the film prepared using the as-obtained precursor, whereas the film prepared using the aged precursor exhibits a homogeneous structure. Electron backscatter diffraction and scanning electron microscopy analyses showed that the Gd{sub 2}Zr{sub 2}O{sub 7} grains present within the regular-shaped regions are polycrystalline, whereas those present in the surrounding are epitaxial. Some polycrystalline regions ranging from several micrometers to several tens of micrometers grew across the NiW grain boundaries underneath. To understand this phenomenon, the properties of the precursors and corresponding xerogel were studied by Fourier transform infrared spectroscopy and coupled thermogravimetry/differential thermal analysis. The results showed that both the solutions mainly contain small Gd−Zr−O clusters obtained by the reaction of zirconium acetylacetonate with propionic acid during the precursor synthesis. The regular-shaped regions were probably formed by large Gd−Zr−O frameworks with a metastable structure in the solution with limited aging time. This study demonstrates the importance of the precise control of chemical reaction path to enhance the stability and homogeneity of the precursors of the CSD route. - Highlights: •We investigate microstructure

  3. Density functional calculations on 13-atom Pd12M (M = Sc—Ni) bimetallic clusters

    International Nuclear Information System (INIS)

    Tang Chun-Mei; Chen Sheng-Wei; Zhu Wei-Hua; Tao Cheng-Jun; Zhang Ai-Mei; Gong Jiang-Feng; Zou Hua; Liu Ming-Yi; Zhu Feng

    2012-01-01

    The geometric structures, electronic and magnetic properties of the 3d transition metal doped clusters Pd 12 M (M = Sc—Ni) are studied using the semi-core pseudopots density functional theory. The groundstate geometric structure of the Pd 12 M cluster is probably of pseudoicosahedron. The I h -Pd 12 M cluster has the most thermodynamic stability in five different symmetric isomers. The energy gap shows that Pd 12 M cluster is partly metallic. Both the absolutely predominant metal bond and very weak covalent bond might exist in the Pd 12 M cluster. The magnetic moment of Pd 12 M varies from 0 to 5 μ B , implying that it has a potential application in new nanomaterials with tunable magnetic properties

  4. Ni3S2 nanowires grown on nickel foam as an efficient bifunctional electrocatalyst for water splitting with greatly practical prospects

    Science.gov (United States)

    Zhang, Dawei; Li, Jingwei; Luo, Jiaxian; Xu, Peiman; Wei, Licheng; Zhou, Dan; Xu, Weiming; Yuan, Dingsheng

    2018-06-01

    It is essential to synthesize low-cost, earth-abundant bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) for water electrolysis. Herein, we present a one-step sulfurization method to fabricate Ni3S2 nanowires directly grown on Ni foam (Ni3S2 NWs/Ni) as such an electrocatalyst. This synthetic strategy has several advantages including facile preparation, low cost and can even be expanded to large-scale preparation for practical applications. The as-synthesized Ni3S2 NWs/Ni exhibits a low overpotential of 81 and 317 mV to render a current density of 10 mA cm‑2 for the HER and OER, respectively, in 1.0 mol l‑1 KOH solution. The Ni3S2 NWs/Ni was integrated to be the cathode and the anode in the alkaline electrolyzer for overall water splitting with a current density of 10 mA cm‑2 afforded at a cell voltage of 1.63 V. More importantly, this electrolyzer maintained its electrocatalytic activity even after continual water splitting for 30 h. Owing to its simple synthesis process, the earth-abundant electrocatalyst and high performance, this versatile Ni3S2 NWs/Ni electrode will become a promising electrocatalyst for water splitting.

  5. Assessment of Pb, Zn, Cu, Ni and Cr in vegetables grown around Zanjan

    Directory of Open Access Journals (Sweden)

    A. Afshari

    2017-05-01

    Full Text Available This study was conducted aimed to assess the potential risk of heavy metals on human health resulting from consumption of vegetables. To this end, the vegetables grown around town and industrial center of Zanjan were sampled randomly. Plant samples were digested using hydrochloric acid (HCL 2 M and concentration of elements (Pb, Zn, Cu, Ni and Cr were recorded by atomic absorption. Obtained means of heavy metals in all vegetables (N= 32 for Zn, Pb, Cu, Ni and Cr is 98.8, 31.9, 19.3, 4.4 and 2.3 mg/kg, respectively. The highest amount of metal pollution index (MPI in the basil and the lowest was observed in the garden cress (respectively 16.46 and 4.88. Daily intake (EDI for zinc, copper and chromium in all age groups was lower than the provisional tolerable daily intake (PTDI. This amount for nickel was 2, 1.6 and 1.3 %, and for Pb 28.1, 22 and 19 % higher than PTDI in children, adults and seniors, respectively. The potential risk (THQ was calculated in all age groups as Pb>>Cu>Zn>Ni>Cr. The potential risks (THQ of chromium, nickel and zinc were calculated lower than 1, for copper a bit more of 1 and for lead much higher than 1. Health index (HI for children, adults and the elderly was estimated 31.331, 24.58 and 21.14, respectively, with the largest contribution of the lead (89.7%.

  6. Characterization of magnetic Ni clusters on graphene scaffold after high vacuum annealing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhenjun, E-mail: zzhang1@albany.edu; Matsubayashi, Akitomo, E-mail: norwegianwood.1984@gmail.com; Grisafe, Benjamin, E-mail: bgrisafe@albany.edu; Lee, Ji Ung, E-mail: jlee1@albany.edu; Lloyd, James R., E-mail: JLloyd@sunycnse.com

    2016-02-15

    Magnetic Ni nanoclusters were synthesized by electron beam deposition utilizing CVD graphene as a scaffold. The subsequent clusters were subjected to high vacuum (5−8 x10{sup −7} torr) annealing between 300 and 600 °C. The chemical stability, optical and morphological changes were characterized by X-ray photoemission microscopy, Raman spectroscopy, atomic force microscopy and magnetic measurement. Under ambient exposure, nickel nanoparticles were observed to be oxidized quickly, forming antiferromagnetic nickel oxide. Here, we report that the majority of the oxidized nickel is in non-stoichiometric form and can be reduced under high vacuum at temperature as low as 300 °C. Importantly, the resulting annealed clusters were relatively stable and no further oxidation was detectable after three weeks of air exposure at room temperature. - Highlights: • Random oriented nickel clusters were assembled on monolayer graphene scaffold. • Nickel oxide shell was effectively reduced at moderate temperature. • Coercivity of nickel clusters are greatly improved after high vacuum annealing.

  7. FeNi{sub 3} alloy nanocrystals grown on graphene: Controllable synthesis, in-depth characterization and enhanced electromagnetic performance

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Teng; Yuan, Mengwei [Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875 (China); Islam, Saiful M. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Li, Huifeng [Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875 (China); Ma, Shulan, E-mail: mashulan@bnu.edu.cn [Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875 (China); Sun, Genban, E-mail: gbsun@bnu.edu.cn [Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875 (China); Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Yang, Xiaojing [Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2016-09-05

    FeNi{sub 3} nanocrystals as an ideal candidate for EM-wave-absorption material have a great advantage due to their excellent magnetic properties. However, its large permittivity and poor chemical stability confine its application. A strategy to improve electromagnetic performance of FeNi{sub 3}via phase-controlled synthesis of FeNi{sub 3} nanostructures grown on graphene networks has been employed in this work. The phases, structures, sizes and morphologies of FeNi{sub 3} nanocomposites were in-depth characterized by using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), and Raman spectroscopy. The results of electromagnetic performance tests for the as-synthesized FeNi{sub 3} nanocomposites showed excellent microwave absorbability in comparison with the corresponding FeNi{sub 3} nanocrystals, especially in the low (2–6 GHz) and middle (6–12 GHz) frequencies. The one-pot method we utilized is simple and effective, and because of its versatility, it may be extended to prepare some magnetic metal or alloy materials via this route. - Highlights: • Monodispersed FeNi{sub 3} alloy nanocrystals have been successfully assembled on 2D graphene via a one-pot strategy. • The process ensures different crystal phase and controlled morphology and size in the monodispersed particles. • The nanocomposites exhibit excellent microwave absorbability, which is stronger than the corresponding alloy monomer.

  8. Density functional theory study of small X-doped Mg(n) (X = Fe, Co, Ni, n = 1-9) bimetallic clusters: equilibrium structures, stabilities, electronic and magnetic properties.

    Science.gov (United States)

    Kong, Fanjie; Hu, Yanfei

    2014-03-01

    The geometries, stabilities, and electronic and magnetic properties of Mg(n) X (X = Fe, Co, Ni, n = 1-9) clusters were investigated systematically within the framework of the gradient-corrected density functional theory. The results show that the Mg(n)Fe, Mg(n)Co, and Mg(n)Ni clusters have similar geometric structures and that the X atom in Mg(n)X clusters prefers to be endohedrally doped. The average atomic binding energies, fragmentation energies, second-order differences in energy, and HOMO-LUMO gaps show that Mg₄X (X = Fe, Co, Ni) clusters possess relatively high stability. Natural population analysis was performed and the results showed that the 3s and 4s electrons always transfer to the 3d and 4p orbitals in the bonding atoms, and that electrons also transfer from the Mg atoms to the doped atoms (Fe, Co, Ni). In addition, the spin magnetic moments were analyzed and compared. Several clusters, such as Mg₁,₂,₃,₄,₅,₆,₈,₉Fe, Mg₁,₂,₄,₅,₆,₈,₉Co, and Mg₁,₂,₅,₆,₇,₉Ni, present high magnetic moments (4 μ(B), 3 μ(B), and 2 μ(B), respectively).

  9. Density functional theory study on the structures, electronic and magnetic properties of the MFe3n‑1O4n (n = 1–3) (M=Mn, Co and Ni) clusters

    Science.gov (United States)

    Li, Zhi; Zhao, Zhen; Wang, Qi; Yin, Xi-tao

    2018-04-01

    The structures, electronic and magnetic properties of the MFe3n‑1O4n (n = 1–3) (M=Mn, Co and Ni) clusters are obtained by using the GGA-PBE functional. The results found that the CoFe3n‑1O4n (n = 1–3) clusters are more stable than the corresponding NiFe3n‑1O4n and MnFe3n‑1O4n clusters. The NiFe2O4, MnFe5O8 and CoFe5O8 clusters have higher kinetic stability than their neighbors. The average magnetic moments of MFe3n‑1O4n (n = 1–3) (M=Mn, Co and Ni) clusters are successively: NiFe3n‑1O4n > CoFe3n‑1O4n > MnFe3n‑1O4n. For NiFe3n‑1O4n and CoFe3n‑1O4n clusters, the average magnetic moments are decreased with the cluster size increasing while for MnFe3n‑1O4n, the opposite situation is occur. The difference of 3d orbital electrons of M (M=Mn, Co and Ni) atoms influence the magnetic properties of MFe3n‑1O4n clusters.

  10. Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation

    International Nuclear Information System (INIS)

    Yu, Mei; Chen, Jianpeng; Liu, Jianhua; Li, Songmei; Ma, Yuxiao; Zhang, Jingdan; An, Junwei

    2015-01-01

    Mesoporous NiCo 2 O 4 nanoneedles were directly grown on three dimensional (3D) graphene-nickel foam which was prepared by chemical vapor deposition, labeled as NCO/GNF. The structure and morphology of NCO/GNF were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, element mapping and Raman spectroscopy. The NCO/GNF was employed as electrodes for supercapacitor and methanol electro-oxidation. When used for supercapacitor, the NiCo 2 O 4 nanoneedles exhibit hi exhibit high specific capacitance (1588 F g −1 at 1 A g −1 ), high power density and energy density (33.88 Wh kg −1 at 5 kW kg −1 ) as well as long cycling stability. In methanol electro-oxidation, the NiCo 2 O 4 nanoneedles deliver high electro-oxidation activity (93.3 A g −1 at 0.65 V) and electro-oxidation stability. The good electrochemical performance of NiCo 2 O 4 nanoneedles is attributed to the 3D structure with large specific area, high conductivity and fast ions/electrons transport

  11. Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors

    Science.gov (United States)

    Deng, Cuifen; Yang, Lishan; Yang, Chunming; Shen, Ping; Zhao, Liping; Wang, Zhiyu; Wang, Chunhui; Li, Junhua; Qian, Dong

    2018-01-01

    Spinel FeCo2S4 nanoflower arrays grown on Ni foam (FeCo2S4@Ni) have been successfully fabricated via a facile hydrothermal sulfurization of the corresponding FeCo2O4 precursor. The results of X-ray diffraction and X-ray photoelectron spectroscopy characterizations affirm that partial Co2+/Co3+ ions in Co3S4 have been substituted by Fe2+/Fe3+ ions to form FeCo2S4. The obtained FeCo2S4@Ni exhibits an ultrahigh specific capacitance (1644.07 mF cm-2 at 50 mA cm-2) and a supreme cycling stability (∼100% after 10,000 cycles at 50 mA cm-2) as binder-free electrodes for supercapacitors. The cycling stability of the fabricated product is the highest among the documented ternary metallic sulfides so far. The excellent supercapacitive performance of FeCo2S4@Ni emanates from the unique architectures of Fe2Co2S4 nanoflower arrays constituted by ultrathin nanoflakes, three-dimensional porous and conductive Ni foam, and solid skeleton of Ni foam for robust connections to the Fe2Co2S4.

  12. Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors

    International Nuclear Information System (INIS)

    Liu, Sainan; Wu, Jun; Zhou, Jiang; Fang, Guozhao; Liang, Shuquan

    2015-01-01

    Graphical abstract: Mesoporous NiCo 2 O 4 nanoneedles grown on three dimensional graphene networks have been successfully prepared by a facile solvothermal reaction with subsequent annealing treatment. Significantly, as a binder-free electrode for high-performance lithium-ion batteries and supercapacitors, the hybrid exhibits high specific capacity/capacitance and excellent cycling stability over long-term cycling. - Highlights: • Mesoporous NiCo 2 O 4 nanoneedles grown on 3D graphene networks are successfully prepared. • The NiCo 2 O 4 /3DGN hybrid is directly used as binder-free electrode for LIBs and SCs. • The hybrid exhibits superior long-term cycling stability up to 2000 cycles for LIBs application. • The hybrid delivers a high specific capacitance of 970 F g −1 at 20 A g −1 . • The hybrid demonstrates excellent capacitance retention of ∼96.5% after 3000 cycles for SCs application. - Abstract: Mesoporous nickel cobaltite (NiCo 2 O 4 ) nanoneedles grown on three dimensional graphene networks have been successfully prepared by a facile solvothermal reaction with subsequent annealing treatment. The NiCo 2 O 4 /3DGN hybrid is then used as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. The three dimensional graphene based binder-free electrode is considered more desirable than powder nanostructures in terms of shorter Li + ion diffusion and electron transportation paths, good strain accommodation, better interfacial/chemical distributions and high electrical conductivity. As a result, when used as an anode material for lithium-ion batteries (LIBs), it exhibits high specific discharge capacity as well as superior cycling stability up to 2000 cycles. When it is used for supercapacitor application, this hybrid delivers a high specific capacitance of 970 F g −1 at a high current density of 20 A g −1 with excellent capacitance retention of ∼96.5% after 3000 cycles. Moreover, this synthesis strategy is simple

  13. The effect of sputtering gas pressure on the structure and optical properties of MgNiO films grown by radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wuze; Jiao, Shujie, E-mail: shujiejiao@gmail.com; Wang, Dongbo; Gao, Shiyong; Wang, Jinzhong; Yu, Qingjiang; Li, Hongtao

    2017-05-31

    Highlights: • MgNiO thin films were fabricated by radio frequency magnetron sputtering. • The structure and optical properties of MgNiO films were studied. • The mechanism of phase separation was discussed in detail. • The effect of different sputtering pressure also was discussed. - Abstract: In this study, MgNiO thin films were grown on quartz substrates by radio frequency (RF) magnetron sputtering. The influence of different sputtering pressures on the crystalline and optical properties of MgNiO thin films has been studied. X-ray diffraction measurement indicates that the MgNiO films are cubic structure with (200) preferred orientation. UV–vis transmission spectra show that all the MgNiO thin films show more than 75% transmission at visible region, and the absorption edges of all thin films locate at solar-blind region (220 nm–280 nm). The lattice constant and Mg content of MgNiO samples were calculated using X-ray diffraction and transmission spectra data. The phase separation is observed both in the X-ray diffraction patterns and transmission spectra, and the phase separation is studied in detail based on the crystal growth theory and sputtering process.

  14. Effect of Ni and Urea on Growth, Nitrate and Nutrients Concentration in Lettuce (Lactuca sativa Grown in Hydroponics

    Directory of Open Access Journals (Sweden)

    Hosein Nazari Mamaqani

    2017-02-01

    Full Text Available Introduction: The N source used in commercial hydroponic culture of vegetables is mainly NO3-N. The rate of NO3- uptake is usually high, particularly in leafy vegetables and it can be markedly increased when the NO3- supply in the environment is high. An abundant N supply leads to a high NO3-N absorption and accumulation in plants. When NO3- rich vegetables are consumed, various harmful effects on human health may occur such as met-hemoglobinemia (Blue Baby Syndrome and cancer. Keeping levels of NO3- below limits of FAO seems to be impossible without changing conventional fertilizer application techniques. The suitability of urea for the cultivation of field crops has been well documented. Urea is used as the main source of N fertilizer for crops grown in soil. Its use as N source for crops grown under the hydroponic system has yet to be evaluated. To hydrolyze urea, the enzyme urease requires Ni as a component. Substitution of urea for commonly used N03-N fertilizers in hydroponic culture of vegetables would not only enable to avoid excessive accumulation of N03- in plants but would also reduce the cost of production. Leafy vegetable crops, such as lettuce and spinach, contain large amounts of N03-N. Therefore, it is important to reduce N03- concentrations in hydroponically grown with lowest negative effects on yield. Materials and Methods: The experiments were carried outin greenhouse hydroponicsResearchFaculty of Agriculture, University of Tabriz in randomized complete block designwithtwo factors ureaatfivelevels of 0,25, 50, 75and100milligrams perliter(U0, U25,U50, U75, U100andnickelattwo levels of0and2mg per liter (Ni0, Ni2ofnickelsulfate(NiSO4in4replicatesusinglettuce(Lactuca sativa cv. Siyahoo. Plants fed with the modifiedHoagland solutionorhalf theconcentration. Treatments added to nutrient solution when plants were in four leaf stage. Plants were harvested 50 days after treatment. Different organs (leaves, stems and roots were separated

  15. Heterometallic clusters arising from cubic Ni3M'O4 (M'=K and Na) entity: Solvothermal synthesis with/without the assistance of microwave

    International Nuclear Information System (INIS)

    Zhang Shuhua; Zhou Yanling; Sun Xiaojun; Wei, Lian-Qiang; Zeng Minghua; Liang Hong

    2009-01-01

    Solvothermal reaction assisted with microwave leads to the formation of two unique heterometallic cubic clusters [Ni 3 M'(L) 3 (OH)(CH 3 CN) 3 ] 2 .CH 3 CN (M'=K for 1 and M'=Na for 2, where L is an anion of 2-[(2-hydroxy-3-methoxy-benzylidene)-amino]-ethanesulfonate) with higher efficiency, yields and purity than those without it. The 6-metallacrown-3 [Ni 3 (OH)(L) 3 ] - groups exhibit interesting ion trapping and self-assembly of size-different Na + and K + through form recognition and coordination activity in 1 and 2. The magnetic studies for 1 and 2 suggest that the {Ni 3 M'O 4 } (M'=K and Na) cores both display dominant ferromagnetic interactions from the nature of the binding modes of μ 3 -O (oxidophenyl) and μ 3 -OH. - Graphical abstract: Solvothermal reaction assisted with microwave leads to two heterometallic cubic clusters with 6-metallacrown-3 structure [Ni 3 O 3 (OH)] - acting as a host for a K + or Na + ion. The {Ni 3 M'O 4 } (M'=K, Na) cores display dominant ferromagnetic interactions.

  16. Quasi-Unit-Cell Model for an Al-Ni-Co Ideal Quasicrystal based on Clusters with Broken Tenfold Symmetry

    International Nuclear Information System (INIS)

    Abe, Eiji; Saitoh, Koh; Takakura, H.; Tsai, A. P.; Steinhardt, P. J.; Jeong, H.-C.

    2000-01-01

    We present new evidence supporting the quasi-unit-cell description of the Al 72 Ni 20 Co 8 decagonal quasicrystal which shows that the solid is composed of repeating, overlapping decagonal cluster columns with broken tenfold symmetry. We propose an atomic model which gives a significantly improved fit to electron microscopy experiments compared to a previous proposal by us and to alternative proposals with tenfold symmetric clusters. (c) 2000 The American Physical Society

  17. Morphology and magnetism of Fe monolayers and small Fen clusters (n 2-19) supported on the Ni(111) surface

    International Nuclear Information System (INIS)

    Longo, R C; MartInez, E; Dieguez, O; Vega, A; Gallego, L J

    2007-01-01

    Using the modified embedded atom model in conjunction with a self-consistent tight-binding method, we investigated the lowest-energy structures of Fe monolayers and isolated Fe n clusters (n = 2-19) supported on the Ni(111) surface. In keeping with experimental findings, our calculations predict that the atoms of the monolayer occupy face-centred cubic (fcc) rather than hexagonal close-packed (hcp) sites. Likewise in agreement with experiment we found that Fe layers stack with a pseudomorphic fcc structure up to two monolayers, beyond which they stack as bcc(110). The structures of supported Fe clusters are predicted to be two-dimensional islands maximizing the number of nearest-neighbour bonds among the adsorbed Fe atoms, and their average magnetic moments per atom decrease towards that of the supported Fe monolayer almost monotonically as n increases. Finally, a pair of Fe 3 clusters on Ni(111) were found to exhibit virtually no interaction with each other even when separated by only one atomic row, i.e. so long as they do not coalesce they retain their individual magnetic properties

  18. Spin polarized tunnelling investigation of nanometre Co clusters by means of a Ni bulk tip

    International Nuclear Information System (INIS)

    Rastei, M V; Bucher, J P

    2006-01-01

    A massive Ni tip is used in spin polarized scanning tunnelling microscopy (SP STM) to explore the magnetization state of nanometre Co clusters, self-organized on the Au(111) surface. Constant current STM images taken at 4.6 K show a bimodal distribution of the cluster heights, accounting for the spin polarization of the STM junction. The spin polarization of the tunnel junction as a function of the bias voltage is found to depend on the local density of states of the sample examined. Changing the vacuum barrier parameters by bringing the tip closer to the surface leads to a reduction in the tunnelling magnetoresistance that may be attributed to spin flip effects. (letter to the editor)

  19. Characterization of nanostructured photosensitive (NiS)x(CdS)(1-x) composite thin films grown by successive ionic layer adsorption and reaction (SILAR) route

    International Nuclear Information System (INIS)

    Ubale, A.U.; Bargal, A.N.

    2011-01-01

    Highlights: → Thin films of (NiS) x (CdS) (1-x) with variable composition (x = 1 to 0) were deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. → The structural, surface morphological and electrical characterizations of the as deposited and annealed films were studied. → The bandgap and activation energy of annealed (NiS) x (CdS) (1-x) film decrease with improvement in photosensitive nature. -- Abstract: Recently ternary semiconductor nanostructured composite materials have attracted the interest of researchers because of their photovoltaic applications. Thin films of (NiS) x (CdS) (1-x) with variable composition (x = 1-0) had been deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. As grown and annealed films were characterised by X-ray diffraction, scanning electron microscopy and EDAX to investigate structural and morphological properties. The (NiS) x (CdS) (1-x) films were polycrystalline in nature having mixed phase of rhombohedral and hexagonal crystal structure due to NiS and CdS respectively. The optical and electrical properties of (NiS) x (CdS) (1-x) thin films were studied to determine compsition dependent bandgap, activation energy and photconductivity. The bandgap and activation energy of annealed (NiS) x (CdS) (1-x) film decrease with improvement in photosensitive nature.

  20. Hierarchical NiCo2 O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors.

    Science.gov (United States)

    Gao, Guoxin; Wu, Hao Bin; Ding, Shujiang; Liu, Li-Min; Lou, Xiong Wen David

    2015-02-18

    A high-performance electrode for supercapacitors is designed and synthesized by growing electroactive NiCo2 O4 nanosheets on conductive Ni nanofoam. Because of the structural advantages, the as-prepared Ni@NiCo2 O4 hybrid nanostructure exhibits significantly improved electrochemical performance with high capacitance, excellent rate capability, and good cycling stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, L.; Mandal, A.R. [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India); Mandal, S.K., E-mail: sk_mandal@hotmail.co [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India)

    2010-04-15

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni{sup 2+} clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni{sup 2+} clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  2. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Science.gov (United States)

    Kabir, L.; Mandal, A. R.; Mandal, S. K.

    2010-04-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  3. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    International Nuclear Information System (INIS)

    Kabir, L.; Mandal, A.R.; Mandal, S.K.

    2010-01-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  4. Effects of incident cluster size, substrate temperature, and incident energy on bombardment of Ni clusters onto Cu (0 0 1) surface studied using molecular dynamics simulation

    International Nuclear Information System (INIS)

    Lin, Shiang-Jiun; Wu, Cheng-Da; Fang, Te-Hua; Chen, Guan-Hung

    2012-01-01

    The bombardment process of a Ni cluster onto a Cu (0 0 1) surface is studied using molecular dynamics (MD) simulations based on the tight-binding second-moment approximation (TB-SMA) many-body potential. The effects of incident cluster size, substrate temperature, and incident energy are evaluated in terms of molecular trajectories, kinetic energy, stress, self-diffusion coefficient, and sputtering yield. The simulation results clearly show that the penetration depth and Cu surface damage increase with increasing incident cluster size for a given incident energy per atom. The self-diffusion coefficient and the penetration depth of a cluster significantly increase with increasing substrate temperature. An incident cluster can be scattered into molecules or atoms that become embedded in the surface after incidence. When the incident energy is increased, the number of volcano-like defects and the penetration depth increase. A high sputtering yield can be obtained by increasing the incident energy at high temperature. The sputtering yield significantly increases with cluster size when the incident energy is above 5 eV/atom.

  5. Probing topological electronic effects in catalysis: thiophene adsorption on NiMoS and CoMoS clusters

    Energy Technology Data Exchange (ETDEWEB)

    Borges Junior, Itamar; Silva, Alexander M., E-mail: itamar@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro-RJ (Brazil). Programa de Pos-Graduacao em Engenharia de Defesa

    2012-10-15

    A general two-step theoretical approach to study electronic redistributions in catalytic processes is presented. In the first step, density functional theory (DFT) is used to fully optimize two geometries: the cluster representing the catalyst and the cluster plus adsorbed molecule system. In the second step, the converged electron density is divided into multipoles centered on atomic sites according to a distributed multipole analysis which provides detailed topological information on the charge redistribution of catalyst and molecule before and after adsorption. This approach is applied to thiophene adsorption on the 10{sup -}10 metal edge of Ni(Co)MoS catalysts and compared to the same reaction on bare MoS{sub 2}. Calculated adsorption energies, geometries and multipole analysis indicate weak thiophene chemisorption on both cases. A Coulombic bond model showed that surface metal-sulfur bond strengths in Ni(Co)MoS promoted catalysts are considerably smaller than in bare MoS{sub 2}, thus confirming the origin of the enhancement of hydrodesulfurization (HDS) activity in these catalysts. (author)

  6. Atom probe characterization of precipitation in an aged Cu-Ni-P alloy

    International Nuclear Information System (INIS)

    Aruga, Yasuhiro; Saxey, David W.; Marquis, Emmanuelle A.; Cerezo, Alfred; Smith, George D.W.

    2011-01-01

    A temporal evolution of clusters associated with age hardening behavior in a Cu-Ni-P alloy during ageing at 250 o C for up to 100 ks after solution treatment has been carried out. A three-dimensional atom probe (3DAP) analysis has showed that Ni-P clusters are present in the as-quenched condition, and that the cluster density increases as the ageing time increases. The clusters have a wide range of Ni/P ratios when they are relatively small, whereas larger clusters exhibit a narrow distribution of the Ni/P ratio, approaching a ratio of approximately two. These results would indicate that the clusters with various Ni/P ratios form at the early stage of precipitation and the ratio approaches a value identical to that of the equilibrium phase at 250 o C as the clusters enlarge during ageing. -- Research highlights: → We characterize the clustering behavior in a Cu-Ni-P alloy during ageing at 250 o C. → The clusters have a wide range of Ni/P ratios when they are relatively small. → Larger clusters exhibit a narrow distribution of the ratio. → Hardness increases almost linearly with the logarithm of ageing time beyond 100s. → We believe increasing density and size of the clusters leads to the age hardening.

  7. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    Science.gov (United States)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in 1 bar of CO at 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  8. Ni-based nanoalloys: Towards thermally stable highly magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Palagin, Dennis, E-mail: dennis.palagin@chem.ox.ac.uk; Doye, Jonathan P. K. [Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom)

    2014-12-07

    Molecular dynamics simulations and density functional theory calculations have been used to demonstrate the possibility of preserving high spin states of the magnetic cores within Ni-based core-shell bimetallic nanoalloys over a wide range of temperatures. We show that, unlike the case of Ni–Al clusters, Ni–Ag clusters preserve high spin states (up to 8 μ{sub B} in case of Ni{sub 13}Ag{sub 32} cluster) due to small hybridization between the electronic levels of two species. Intriguingly, such clusters are also able to maintain geometrical and electronic integrity of their cores at temperatures up to 1000 K (e.g., for Ni{sub 7}Ag{sub 27} cluster). Furthermore, we also show the possibility of creating ordered arrays of such magnetic clusters on a suitable support by soft-landing pre-formed clusters on the surface, without introducing much disturbance in geometrical and electronic structure of the cluster. We illustrate this approach with the example of Ni{sub 13}Ag{sub 38} clusters adsorbed on the Si(111)–(7×7) surface, which, having two distinctive halves to the unit cell, acts as a selective template for cluster deposition.

  9. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: health hazard.

    Science.gov (United States)

    Rahman, M Azizur; Rahman, Mohammad Mahmudur; Reichman, Suzie M; Lim, Richard P; Naidu, Ravi

    2014-02-01

    Dietary exposure to heavy metals is a matter of concern for human health risk through the consumption of rice, vegetables and other major foodstuffs. In the present study, we investigated concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) in Australian grown and imported rice and vegetables on sale in Australia. The mean concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in Australian grown rice were 7.5 µg kg(-1), 21 µg kg(-1), 144 µg kg(-1), 2.9 mg kg(-1), 24.4 mg kg(-1), 166 µg kg(-1), 375 µg kg(-1), and 17.1 mg kg(-1) dry weight (d. wt.), respectively. Except Cd, heavy metal concentrations in Australian grown rice were higher than Bangladeshi rice on sale in Australia. However, the concentrations of Cd, Cr, Cu, and Ni in Indian rice on sale in Australia were higher than Australian grown rice. The concentrations of Cu and Ni in Vietnamese rice, and that of Cd, Cr, Cu, Ni, and Pb in Thai rice on sale in Australia were also higher than Australian grown rice. Heavy metal concentrations in Pakistani rice on sale in Australia were substantially lower than that in Australian grown rice. In Australian grown rice varieties, the concentrations of heavy metals were considerably higher in brown rice varieties than white rice varieties, indicating Australian brown rice as a potential source of dietary heavy metals for Australian consumers. The mean concentrations of heavy metals in Australian grown and Bangladeshi vegetables on sale in Australia were also determined. Some of the Australian grown and Bangladeshi vegetables contained heavy metals higher than Australian standard maximum limits indicating them as potential sources of dietary heavy metals for Australian consumers. Further investigation is required to estimate health risks of heavy metals from rice and vegetables consumption for Australian consumers. © 2013 Published by Elsevier Inc.

  10. Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode.

    Science.gov (United States)

    Tang, Chun-hua; Yin, Xuesong; Gong, Hao

    2013-11-13

    Pseudocapacitors based on fast surface Faradaic reactions can achieve high energy densities together with high power densities. Usually, researchers develop a thin layer of active materials to increase the energy density by enhancing the surface area; meanwhile, this sacrifices the mass loading. In this work, we developed a novel 3D core-shell Co3O4@Ni(OH)2 electrode that can provide high energy density with very high mass loading. Core-shell porous nanowires (Co3O4@Ni(OH)2) were directly grown on a Ni current collector as an integrated electrode/collector for the supercapacitor anode. This Co3O4@Ni(OH)2 core-shell nanoarchitectured electrode exhibits an ultrahigh areal capacitance of 15.83 F cm(-2). The asymmetric supercapacitor prototypes, assembled using Co3O4@Ni(OH)2 as the anode, reduced graphene oxide (RGO) or active carbon (AC) as the cathode, and 6 M aqueous KOH as the electrolyte, exhibit very high energy densities falling into the energy-density range of Li-ion batteries. Because of the large mass loading and high energy density, the prototypes can drive a minifan or light a bulb even though the size is very small. These results indicate that our asymmetric supercapacitors have outstanding potential in commercial applications. Systematic study and scientific understanding were carried out.

  11. Graphene synthesis from graphite/Ni composite films grown by sputtering

    International Nuclear Information System (INIS)

    Shin, Dong Hee; Yang, Seung Bum; Shin, Dong Yeol; Kim, Chang Oh; Kim, Sung; Choi, Suk Ho; Paek, Sang Hyon

    2012-01-01

    Graphite/Ni composite films have been deposited on SiO 2 /Si (100) wafers by varying their graphite concentration (n G ) and thickness (t) from 2 to 12 wt% and 40 to 400 nm, respectively, in a RF sputtering system, subsequently annealed at 900 .deg. C for 4 min, and then slowly cooled to room temperature to form graphene layers on Ni surfaces. Several structural-analysis techniques reveal the optimum nG (∼8 wt%) and t (∼160 nm) of the composite films for the synthesis of fewest-layer, defect-minimized graphene. At the annealing temperature, carbon atoms diffuse out from the composite film, followed by their precipitation as graphene on the Ni layer as the carbon solubility limit in Ni is reached during the cooling period. Based on this mechanism, the optimum conditions are explained. Our approach provides an advantage in that the number of layers can be simply tuned by varying n G and t of the composite films.

  12. Observations of copper clustering in a 25Cr-7Ni super duplex stainless steel during low-temperature aging under load

    Science.gov (United States)

    Thuvander, M.; Zhou, J.; Odqvist, J.; Hertzman, S.; Hedström, P.

    2012-07-01

    Atom-probe tomography was used to investigate phase separation and copper (Cu) clustering in the ferrite phase of a 25Cr-7Ni super duplex stainless steel. The steel was subjected to a tensile load during aging at 325°C for 5800 h. The degree of phase separation into α (Fe-rich) and α‧ (Cr-rich) was small, but still, it was the highest in the steel subjected to the highest load. Cu was found to cluster, and the number density of clusters increased with increasing load. In the material subjected to the highest load, Cu was enriched in regions that were neither Fe-rich nor Cr-rich. These regions also had the highest number density of Cu clusters.

  13. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach

    Directory of Open Access Journals (Sweden)

    Dongmei Li

    2017-08-01

    Full Text Available Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M = (Cr, Fe, Mo, Zr was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula [(Ni,Si,M-Cu12]Cu3 (molar proportion was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni2Si precipitates, the atomic ratio of (Ni,M/Si was set as 2/1. Thus the designed alloy series of Cu93.75(Ni/Zr3.75Si2.08(Cr/Fe/Mo0.42 (at% were arc-melted into ingots under argon atmosphere, and solid-solutioned at 950 °C for 1 h plus water quenching and then aged at 450 °C for different hours. The experimental results showed that these designed alloys exhibit high hardness (HV > 1.7 GPa and good electrical conductivities (≥ 35% IACS. Specifically, the quinary Cu93.75Ni3.54Si2.08(Cr/Fe0.42Zr0.21 alloys (Cu-3.32Ni-0.93Si-0.37(Cr/Fe−0.30Zr wt% possess both a high hardness with HV = 2.5–2.7 GPa, comparable to the high-strength KLFA85 alloy (Cu-3.2Ni-0.7Si-1.1Zn wt%, HV = 2.548 GPa, and a good electrical conductivity (35–36% IACS.

  14. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

    Science.gov (United States)

    Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.

    2018-02-01

    NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

  15. Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition

    Science.gov (United States)

    Datta, R.; Loukya, B.; Li, N.; Gupta, A.

    2012-04-01

    NiFe2O4 (NFO) thin films are grown on four different substrates, i.e., Lead Zinc Niobate-Lead Titanate (PZN-PT), Lead Magnesium Niobate-Lead Titanate (PMN-PT), MgAl2O4 (MAO) and SrTiO3 (STO), by a direct liquid injection chemical vapor deposition technique (DLI-CVD) under optimum growth conditions where relatively high growth rate (˜20 nm/min), smooth surface morphology and high saturation magnetization values in the range of 260-290 emu/ cm3 are obtained. The NFO films with correct stoichiometry (Ni:Fe=1:2) grow epitaxially on all four substrates, as confirmed by energy dispersive X-ray spectroscopy, transmission electron microscopy and x-ray diffraction. While the films on PMN-PT and PZN-PT substrates are partially strained, essentially complete strain relaxation occurs for films grown on MAO and STO. The formations of threading dislocations along with dark diffused contrast areas related to antiphase domains having a different cation ordering are observed on all four substrates. These crystal defects are correlated with lattice mismatch between the film and substrate and result in changes in magnetic properties of the films. Atomic resolution HAADF imaging and EDX line profiles show formation of a sharp interface between the film and the substrate with no inter-diffusion of Pb or other elements across the interface. Antiphase domains are observed to originate at the film-substrate interface.

  16. Nanoscale structural heterogeneity in Ni-rich half-Heusler TiNiSn

    International Nuclear Information System (INIS)

    Douglas, Jason E.; Pollock, Tresa M.; Chater, Philip A.; Brown, Craig M.; Seshadri, Ram

    2014-01-01

    The structural implications of excess Ni in the TiNiSn half-Heusler compound are examined through a combination of synchrotron x-ray and neutron scattering studies, in conjunction with first principles density functional theory calculations on supercells. Despite the phase diagram suggesting that TiNiSn is a line compound with no solid solution, for small x in TiNi 1+x Sn there is indeed an appearance—from careful analysis of the scattering—of some solubility, with the excess Ni occupying the interstitial tetrahedral site in the half-Heusler structure. The analysis performed here would point to the excess Ni not being statistically distributed, but rather occurring as coherent nanoclusters. First principles calculations of energetics, carried out using supercells, support a scenario of Ni interstitials clustering, rather than a statistical distribution.

  17. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    Energy Technology Data Exchange (ETDEWEB)

    Farberovich, Oleg V. [School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Voronezh State University, Voronezh 394000 (Russian Federation); Mazalova, Victoria L., E-mail: mazalova@sfedu.ru [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Soldatov, Alexander V. [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation)

    2015-11-15

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals J{sub ij} of the nanosystem Ni{sub 7}–Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni{sub 7}-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy

  18. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    International Nuclear Information System (INIS)

    Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.

    2015-01-01

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals J ij of the nanosystem Ni 7 –Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni 7 -cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with

  19. Characterization of nanostructured photosensitive (NiS){sub x}(CdS){sub (1-x)} composite thin films grown by successive ionic layer adsorption and reaction (SILAR) route

    Energy Technology Data Exchange (ETDEWEB)

    Ubale, A.U., E-mail: ashokuu@yahoo.com [Nanostructured Thin Film Materials Laboratory, Department of Physics, Govt. Vidarbha Institute of Science and Humanities, Amravati 444604, Maharashtra (India); Bargal, A.N. [Nanostructured Thin Film Materials Laboratory, Department of Physics, Govt. Vidarbha Institute of Science and Humanities, Amravati 444604, Maharashtra (India)

    2011-07-15

    Highlights: {yields} Thin films of (NiS){sub x}(CdS){sub (1-x)} with variable composition (x = 1 to 0) were deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. {yields} The structural, surface morphological and electrical characterizations of the as deposited and annealed films were studied. {yields} The bandgap and activation energy of annealed (NiS){sub x}(CdS){sub (1-x)} film decrease with improvement in photosensitive nature. -- Abstract: Recently ternary semiconductor nanostructured composite materials have attracted the interest of researchers because of their photovoltaic applications. Thin films of (NiS){sub x}(CdS){sub (1-x)} with variable composition (x = 1-0) had been deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. As grown and annealed films were characterised by X-ray diffraction, scanning electron microscopy and EDAX to investigate structural and morphological properties. The (NiS){sub x}(CdS){sub (1-x)} films were polycrystalline in nature having mixed phase of rhombohedral and hexagonal crystal structure due to NiS and CdS respectively. The optical and electrical properties of (NiS){sub x}(CdS){sub (1-x)} thin films were studied to determine compsition dependent bandgap, activation energy and photconductivity. The bandgap and activation energy of annealed (NiS){sub x}(CdS){sub (1-x)} film decrease with improvement in photosensitive nature.

  20. Construct hierarchical electrode with NixCo3-xS4 nanosheet coated on NiCo2O4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Cao, Liujun; Tang, Gang; Mei, Jun; Liu, Hao

    2017-08-01

    In order to boost the energy density of supercapacitors, the strategy of using advanced pseudo-capacitive electrode and asymmetric device architecture is feasible and effective. Herein, we report a significant advance in the design and synthesis of a new hierarchically nanostructures with a series of controllable Ni/Co molar ratios of NixCo3-xS4 (i.e., NiCo2S4 and Ni2CoS4) nanosheets coatings have in situ grown on NiCo2O4 nanowires arrays on a flexible carbon fiber paper (CFP). Remarkably, the hybrid Ni2CoS4@NiCo2O4 composite electrode delivers the highest discharge gravimetric capacitance of 1501 F g-1, and areal capacitance of 1.86 F cm-2 at 1 mA cm-2. Furthermore, coupled with nitrogen-doped carbon xerogels anode, we have fabricated a 1.6 V asymmetric supercapacitor (Ni2CoS4@NiCo2O4//nitrogen-doped carbon xerogels), such device delivers a maximum energy and power densities of 32.2 Wh kg-1 and 2.5 kW kg-1 in 1.0 M KOH electrolyte, respectively, and an excellent cycling stability (∼87.6% retention after 10,000 cycles).

  1. PRAMANA Cluster radioactivity in xenon isotopes

    Indian Academy of Sciences (India)

    exotic decay or cluster radioactivity was first predicted by sandulescu et al [1] in. 1980 on the basis of ... separator by 58Ni(58Ni, 2n) reaction and carbon clusters were searched for by means of solid state nuclear ..... Lett. 55, 582 (1985). [22] D N Poenaru, W Greiner, K Depta, M Ivascu, D Mazilu and A Sandulescu, At. Data.

  2. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    Science.gov (United States)

    Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.

    2015-11-01

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the

  3. Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings

    International Nuclear Information System (INIS)

    Daroonparvar, M.; Yajid, M.A.M.; Yusof, N.M.; Hussain, M.S.

    2013-01-01

    Oxidation has been considered as one of the principal disruptive factors in thermal barrier coating systems during service. So, oxidation behavior of thermal barrier coating (TBC) systems with nano structured and micro structured YSZ coatings was investigated at 1000 degree c for 24 h, 48 h, and 120 h. Air plasma sprayed nano-YSZ coating exhibited a tri modal structure. Microstructural characterization also demonstrated an improved thermally grown oxide scale containing lower spinels in nano-TBC system after 120 h of oxidation. This phenomenon is mainly related to the unique structure of the nano-YSZ coating, which acted as a strong barrier for oxygen diffusion into the TBC system at elevated temperatures. Nearly continues but thinner Al 2 O 3 layer formation at the NiCrAlY/nano-YSZ interface was seen, due to lower oxygen infiltration into the system. Under this condition, spinels formation and growth on the Al 2 O 3 oxide scale were diminished in nano-TBC system compared to normal TBC system.

  4. Study on purification of carbon nano tubes grown on Fe/Ni bimetallic catalyst supported on Mg O by thermal chemical vapor deposition

    International Nuclear Information System (INIS)

    Mirershadi, S.; Mortazavi, Z.; Reyhani, A.; Norouzian, Sh.; Moniri, N.; Novinrooz, A. J.

    2007-01-01

    Carbon nano tubes grown on Fe/Ni bimetallic catalysts supported on Mg O by thermal chemical vapor deposition. Then purification of carbon nano tubes by oxidation under air at atmospheric pressure and acid treatment with HCl, have been studied. The Scanning electron microscopy observation showed impurities with carbon nano tubes. Scanning electron microscopy, XRD, Raman spectroscopy and Thermogravimetric analysis/Differential Scanning Calorimetry techniques have been used to investigate the effect of purification of carbon nano tubes on morphology and structural quality of them. The weight ratio of carbon nano tubes in purified sample re saved to 85/8 %.

  5. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors

    Science.gov (United States)

    Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre

    2018-03-01

    NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.

  6. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu-Cr7Ni molecular rings as detected by μsR

    OpenAIRE

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P.V.; Timco, G.; Winpenny, R. E.P.; Blundell, S. J.; Lascialfari, A.

    2017-01-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni-Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J, while Cr7Ni-Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J ≪ J. The longitudinal muon relaxation rate λ collected at low magnetic fields...

  7. Ni Foam-Ni3 S2 @Ni(OH)2 -Graphene Sandwich Structure Electrode Materials: Facile Synthesis and High Supercapacitor Performance.

    Science.gov (United States)

    Wang, Xiaobing; Hu, Jiangjiang; Su, Yichang; Hao, Jin; Liu, Fanggang; Han, Shuang; An, Jian; Lian, Jianshe

    2017-03-23

    A novel Ni foam-Ni 3 S 2 @Ni(OH) 2 -graphene sandwich-structured electrode (NF-NN-G) with high areal mass loading (8.33 mg cm -2 ) has been developed by sulfidation and hydrolysis reactions. The conductivity of Ni 3 S 2 and Ni(OH) 2 were both improved. The upper layer of Ni(OH) 2 , covered with a thin graphene film, is formed in situ from the surface of the lower layer of Ni 3 S 2 , whereas the Ni 3 S 2 grown on Ni foam substrate mainly acts as a rough support bridging the Ni(OH) 2 and Ni foam. The graphene stabilized the Ni(OH) 2 and the electrochemical properties were effectively enhanced. The as-synthesized NF-NN-G-5mg electrode shows a high specific capacitance (2258 F g -1 at 1 A g -1 or 18.81 F cm -2 at 8.33 mA cm -2 ) and an outstanding rate property (1010 F g -1 at 20 Ag -1 or 8.413 F cm -2 at 166.6 mA cm -2 ). This result is around double the capacitance achieved in previous research on Ni 3 S 2 @Ni(OH) 2 /3DGN composites (3DGN=three-dimensional graphene network). In addition, the as-fabricated NF-NN-G-5mg composite electrode has an excellent cycle life with no capacitance loss after 3000 cycles, indicating a potential application as an efficient electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrochemical behavior of Ni-Mo electro catalyst for water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez V, S. M.; Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Cabanas M, G. [IPN, Centro de Nanociencias y Micro y Nanotecnologias, A. P. 75-874, 07300 Mexico D. F. (Mexico); Solorza F, O., E-mail: suilma.fernandez@inin.gob.m [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Quimica, A. P. 14-740, 07000 Mexico D. F. (Mexico)

    2010-07-01

    Nickel-molybdenum based electrocatalysts were synthesized in organic media for the hydrogen evolution reaction and oxygen evolution reaction in alkaline media. The structure, morphology and chemical composition of the catalysts were evaluated by X-ray diffraction, scanning electron microscopy and Aas. Results revealed nanocrystalline powder materials with Ni{sub 0.006}Mo, Ni{sub 0.1}Mo and Ni Mo compositions. The best performance for hydrogen evolution reaction, was obtained on Ni{sub 0.1}Mo electrode, whereas Ni Mo was for the oxygen evolution reaction. Results suggest that the material with 1:1 stoichiometric ratio could be considered as a promising electro catalyst for oxygen evolution reaction. This nanocrystalline powder is formed by Ni{sub 2}Mo{sub 3}O{sub 8} and a crystalline structure attributed to the possible formation of a Ni Mo cluster, becomes NiMoO{sub 4} after thermal treatment at 1073 K in air. The Ni Mo 1:1 cluster catalyst presented electrochemical stability during the oxygen evolution reaction. (Author)

  9. Electrochemical behavior of Ni-Mo electro catalyst for water electrolysis

    International Nuclear Information System (INIS)

    Fernandez V, S. M.; Ordonez R, E.; Cabanas M, G.; Solorza F, O.

    2010-01-01

    Nickel-molybdenum based electrocatalysts were synthesized in organic media for the hydrogen evolution reaction and oxygen evolution reaction in alkaline media. The structure, morphology and chemical composition of the catalysts were evaluated by X-ray diffraction, scanning electron microscopy and Aas. Results revealed nanocrystalline powder materials with Ni 0.006 Mo, Ni 0.1 Mo and Ni Mo compositions. The best performance for hydrogen evolution reaction, was obtained on Ni 0.1 Mo electrode, whereas Ni Mo was for the oxygen evolution reaction. Results suggest that the material with 1:1 stoichiometric ratio could be considered as a promising electro catalyst for oxygen evolution reaction. This nanocrystalline powder is formed by Ni 2 Mo 3 O 8 and a crystalline structure attributed to the possible formation of a Ni Mo cluster, becomes NiMoO 4 after thermal treatment at 1073 K in air. The Ni Mo 1:1 cluster catalyst presented electrochemical stability during the oxygen evolution reaction. (Author)

  10. Investigation of oxidation resistance of Ni-Ti film used as oxygen diffusion barrier layer

    International Nuclear Information System (INIS)

    Liu, B.T.; Yan, X.B.; Zhang, X.; Zhou, Y.; Guo, Y.N.; Bian, F.; Zhang, X.Y.

    2009-01-01

    Ni-Ti films prepared at 10 W and 70 W by rf magnetron sputtering are investigated as the oxygen diffusion barrier layer, it is found that crystallinity of Ni-Ti film does not greatly depend on the deposition power. X-ray photoelectron spectroscopy indicates that Ni is still in the form of metallic state from the binding energies of both Ni 2p 3/2 and Ni 2p 1/2 spectra for the sample with 10 W prepared Ni-Ti, however, Ni is oxidized for 70 W prepared Ni-Ti film. Moreover, the (La 0.5 Sr 0.5 )CoO 3 /Pb(Zr 0.40 Ti 0.60 )O 3 /(La 0.5 Sr 0.5 )CoO 3 capacitor grown on high power prepared Ni-Ti film is leaky, however, the capacitor on low power prepared Ni-Ti film possesses very promising physical properties (i.e. remnant polarization of ∼27 μC/cm 2 at 5 V and maximum dielectric constant of 940). Leakage current density of the capacitor grown on low power prepared Ni-Ti film is further investigated, it meets ohmic behavior ( 1.0 V).

  11. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Samuel A., E-mail: sabriggs2@wisc.edu [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Barr, Christopher M. [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pakarinen, Janne [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); SKC-CEN Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Mamivand, Mahmood [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Hattar, Khalid [Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185 (United States); Morgan, Dane D. [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Taheri, Mitra [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Sridharan, Kumar [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States)

    2016-10-15

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni{sup 4+} ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy. - Highlights: • Binary Ni-Cr alloys were irradiated with protons or Ni ions at 400 and 500 °C. • Higher irradiation temperatures yield increased size, decreased density of defects. • Hypothesize that varying Cr content affects interstitial binding energy. • Fitting CD models for loop nucleation to data supports this hypothesis.

  12. Assessment Cu, Ni and Zn Pollution in the Surface Sediments in the Southern Peninsular Malaysia using Cluster Analysis, Ratios of Geochemical Nonresistant to Resistant Fractions, and Geochemical Indices

    Directory of Open Access Journals (Sweden)

    Yap. C. K.

    2011-01-01

    Full Text Available The intertidal sediment samples collected in May 2007 from 12 sampling sites in the southern part of Peninsular Malaysia, were determined for the total concentrations of Cu, Ni and Zn and their four geochemical fractions. The total concentrations (μg/g dry weight of Cu, Ni and Zn ranged from 9.48 to 115.82, 12.95 to 36.18 and 45.35 to 136.56, respectively. The ratios of nonresistant to resistant fractions based on geochemical analysis revealed that the Pantai Lido and Senibong had > 1.0, indicating > 50% of the total concentrations of Cu, Ni and Cu were contributed by anthropogenic sources. This is well complemented by the cluster analysis in which Pantai Lido and Senibong are clustered together based on the three metals clustering pattern. By using Fe as a normalizing element, Cu found at Pantai Lido and Senibong showed > 1.5 for the enrichment factor (EF, which indicated that the Cu was delivered from non-crustal materials or anthropogenic origins while all sampling sites showed Ni and Zn may be entirely from crustal materials. Based on the geoaccumulation index (Igeo (Müller, 1981, similar pattern was also found for Pantai Lido and Senibong in which again only Cu concentrations ranged from 1-2, indicating 'moderate pollution' (Igeo 1 < 2; Class 2.while other sites can be considered as 'unpolluted' (Igeo < 0; Class 0 by Cu, Ni and Zn. Ratios of NR/R exhibited better in the assessment of polluted sites while EF and Igeo should be revised according to Malaysian sedimentary characteristics. This study should prompt more biochemical and molecular studies on the intertidal molluscs from the Straits of Johore since the identified two sites are located in the Straits of Johore, especially the commercial mussel, Perna viridis.

  13. Ni@Ru and NiCo@Ru Core-Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell.

    Science.gov (United States)

    Hwang, Hyeyoun; Kwon, Taehyun; Kim, Ho Young; Park, Jongsik; Oh, Aram; Kim, Byeongyoon; Baik, Hionsuck; Joo, Sang Hoon; Lee, Kwangyeol

    2018-01-01

    The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni 3 Co x @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO 2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru 4+ ) species, which can be modulated by the core compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Precipitation kinetics in binary Fe–Cu and ternary Fe–Cu–Ni alloys via kMC method

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-08-01

    Full Text Available The precipitation kinetics of coherent Cu rich precipitates (CRPs in binary Fe–Cu and ternary Fe–Cu–Ni alloys during thermal aging was modelled by the kinetic Monte Carlo method (kMC. A good agreement of the precipitation kinetics of Fe–Cu was found between the simulation and experimental results, as observed by means of advancement factor and cluster number density. This agreement was obtained owing to the correct description of the fast cluster mobility. The simulation results indicate that the effects of Ni are two-fold: Ni promotes the nucleation of Cu clusters; while the precipitation kinetics appears to be delayed by Ni addition during the coarsening stage. The apparent delayed precipitation kinetics is revealed to be related with the cluster mobility, which are reduced by Ni addition. The reduction effect of the cluster mobility weakens when the CRPs sizes increase. The results provide a view angle on the effects of solute elements upon Cu precipitation kinetics through the consideration of the non-conventional cluster growth mechanism, and kMC is verified to be a powerful approach on that.

  15. Layering and temperature-dependent magnetization and anisotropy of naturally produced Ni/NiO multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, S. D.; Trachylis, D.; Velgakis, M. J. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Kapaklis, V.; Joensson, P. E.; Papaioannou, E. Th. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Delimitis, A. [Chemical Process Engineering Research Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001 Thermi, Thessaloniki (Greece); Poulopoulos, P. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Materials Science Department, University of Patras, 26504 Patras (Greece); Fumagalli, P. [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Politis, C. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2012-09-01

    Ni/NiO multilayers were grown by magnetron sputtering at room temperature, with the aid of the natural oxidation procedure. That is, at the end of the deposition of each single Ni layer, air is let to flow into the vacuum chamber through a leak valve. Then, a very thin NiO layer ({approx}1.2 nm) is formed. Simulated x-ray reflectivity patterns reveal that layering is excellent for individual Ni-layer thickness larger than 2.5 nm, which is attributed to the intercalation of amorphous NiO between the polycrystalline Ni layers. The magnetization of the films, measured at temperatures 5-300 K, has almost bulk-like value, whereas the films exhibit a trend to perpendicular magnetic anisotropy (PMA) with an unusual significant positive interface anisotropy contribution, which presents a weak temperature dependence. The power-law behavior of the multilayers indicates a non-negligible contribution of higher order anisotropies in the uniaxial anisotropy. Bloch-law fittings for the temperature dependence of the magnetization in the spin-wave regime show that the magnetization in the multilayers decreases faster as a function of temperature than the one of bulk Ni. Finally, when the individual Ni-layer thickness decreases below 2 nm, the multilayer stacking vanishes, resulting in a dramatic decrease of the interface magnetic anisotropy and consequently in a decrease of the perpendicular magnetic anisotropy.

  16. A diffuse neutron scattering study of clustering in copper-nickel alloys

    International Nuclear Information System (INIS)

    Vrijen, J.

    1977-01-01

    The amount of clustering in Cu-Ni alloys in thermal equilibrium at several temperatures between 400degC and 700degC and ranging in composition between 20 and 80 atomic percent Ni has been determined by means of diffuse neutron scattering. A rough calculation of the excess elastic energy due to alloying Cu with Ni shows that the contribution of size effects to the configurational energy is asymmetric in the composition with its maximum located between 60 and 70 atomic percent Ni. This asymmetry is caused by different elastic constants for Cu and Ni and it might explain part of the asymmetry of clustering in Cu-Ni and its temperature dependence. With the help of the measured cluster parameters, the magnetic diffuse neutron scattering cross-sections of several differently clustered compositions in Cu-Ni could be interpreted, both well inside the ferromagnetic phase and in the transition region between ferromagnetism and superparamagnetism. Giants moments have been observed. Non-equilibrium distributions and their changes during relaxing towards equilibrium have been investigated by measuring the time-evolution of the diffuse scattering. The relaxation of the null matrix (composition without Bragg reflections for neutron scattering) has been measured at five temperatures between 320degC and 450degC. The results of these relaxations were compared with a few available kinetic models

  17. Size and composition dependence of the frozen structures in Co-based bimetallic clusters

    International Nuclear Information System (INIS)

    Li, Guojian; Wang, Qiang; Cao, Yongze; Du, Jiaojiao; He, Jicheng

    2012-01-01

    This Letter studies the size-dependent freezing of Co, Co–Ni, and Co–Cu clusters by using molecular dynamics with embedded atom method. Size effect occurs in these three types of clusters. The clusters with large sizes always freeze to form their bulk-like structures. However, the frozen structures for small sizes are generally related to their compositions. The icosahedral clusters are formed for Co clusters (for ⩽3.2 nm diameter) and also for Co–Ni clusters but at a larger size range (for ⩽4.08 nm). Upon the Co–Cu clusters, decahedral structure is obtained for small size (for 2.47 nm). The released energy induced the structural transformation plays a key role in the frozen structures. These results indicate that the preformed clusters with special structures can be tuned by controlling their compositions and sizes. -- Highlights: ► The size effect occurs in the Co, Co–Ni, and Co–Cu clusters. ► The clusters with large sizes always freeze to form their bulk-like structures. ► The frozen structures for small sizes are generally related to their compositions. ► Icosahedron is formed for Co and also for Co–Ni but at a larger size range. ► Upon the Co–Cu clusters, decahedral structure is obtained for small size.

  18. Characterization of the isolated [Co3Ni (EtOH )] + cluster by IR spectroscopy and spin-dynamics calculations

    Science.gov (United States)

    Dutta, D.; Becherer, M.; Bellaire, D.; Dietrich, F.; Gerhards, M.; Lefkidis, G.; Hübner, W.

    2018-06-01

    We experimentally and theoretically study the geometry, as well as the electronic and vibrational properties, of the heterotetranuclear magnetic cluster [Co3Ni (EtOH )] +, which is prepared in the gas phase with molecular beam expansion. We characterize the cluster and identify possible isomers through the comparison of experimentally observed infrared spectra with state-of-the-art quantum chemistry calculations, more specifically by focusing on the OH stretching frequency. Furthermore, we suggest ultrafast, laser-induced, local spin-flip scenarios on every Co atom, and report a cooperative effect, in which the spin density is localized on one Co atom, gets transiently transferred to another, and then bounces back pointing in the opposite direction. Finally, we predict a tolerance of the suggested scenarios with respect to the laser detuning of about 20 meV, which lies within an experimentally applicable range. Our joint investigation is an additional step toward the implementation of laser-controlled nanospintronic devices.

  19. Structural and magnetic properties of nickel nanowires grown in porous anodic aluminium oxide template by electrochemical deposition technique

    Science.gov (United States)

    Nugraha Pratama, Sendi; Kurniawan, Yudhi; Muhammady, Shibghatullah; Takase, Kouichi; Darma, Yudi

    2018-03-01

    We study the formation of nickel nanowires (Ni NWs) grown in porous anodic aluminium oxide (AAO) template by the electrochemical deposition technique. Here, the initial AAO template was grown by anodization of aluminium substrate in sulphuric acid solution. The cross-section, crystal structure, and magnetic properties of Ni NWs system were characterized by field-emission SEM, XRD, and SQUID. As a result, the highly-ordered Ni NWs are observed with the uniform diameter of 27 nm and the length from 31 to 163 nm. Based on XRD spectra analysis, Ni NWs have the face-centered cubic structure with the lattice parameter of 0.35 nm and average crystallite size of 17.19 nm. From SQUID measurement at room temperature, by maintaining the magnetic field perpendicular to Ni NWs axis, the magnetic hysteresis of Ni NWs system show the strong ferromagnetism with the coercivity and remanence ratio of ∼148 Oe and ∼0.23, respectively. The magnetic properties are also calculated by means of generalized gradient approximation methods. From the calculation result, we show that the ferromagnetism behavior comes from Ni NWs without any contribution from AAO template or the substrate. This study opens the potential application of Ni NWs system for novel functional magnetic devices.

  20. The Many Faces of Graphene as Protection Barrier. Performance under Microbial Corrosion and Ni Allergy Conditions

    Science.gov (United States)

    Gentil, Dana; del Campo, Valeria; Henrique Rodrigues da Cunha, Thiago; Henríquez, Ricardo; Garín, Carolina; Ramírez, Cristian; Flores, Marcos; Seeger, Michael

    2017-01-01

    In this work we present a study on the performance of CVD (chemical vapor deposition) graphene coatings grown and transferred on Ni as protection barriers under two scenarios that lead to unwanted metal ion release, microbial corrosion and allergy test conditions. These phenomena have a strong impact in different fields considering nickel (or its alloys) is one of the most widely used metals in industrial and consumer products. Microbial corrosion costs represent fractions of national gross product in different developed countries, whereas Ni allergy is one of the most prevalent allergic conditions in the western world, affecting around 10% of the population. We found that grown graphene coatings act as a protective membrane in biological environments that decreases microbial corrosion of Ni and reduces release of Ni2+ ions (source of Ni allergic contact hypersensitivity) when in contact with sweat. This performance seems not to be connected to the strong orbital hybridization that Ni and graphene interface present, indicating electron transfer might not be playing a main role in the robust response of this nanostructured system. The observed protection from biological environment can be understood in terms of graphene impermeability to transfer Ni2+ ions, which is enhanced for few layers of graphene grown on Ni. We expect our work will provide a new route for application of graphene as a protection coating for metals in biological environments, where current strategies have shown short-term efficiency and have raised health concerns. PMID:29292763

  1. The Many Faces of Graphene as Protection Barrier. Performance under Microbial Corrosion and Ni Allergy Conditions

    Directory of Open Access Journals (Sweden)

    Carolina Parra

    2017-12-01

    Full Text Available In this work we present a study on the performance of CVD (chemical vapor deposition graphene coatings grown and transferred on Ni as protection barriers under two scenarios that lead to unwanted metal ion release, microbial corrosion and allergy test conditions. These phenomena have a strong impact in different fields considering nickel (or its alloys is one of the most widely used metals in industrial and consumer products. Microbial corrosion costs represent fractions of national gross product in different developed countries, whereas Ni allergy is one of the most prevalent allergic conditions in the western world, affecting around 10% of the population. We found that grown graphene coatings act as a protective membrane in biological environments that decreases microbial corrosion of Ni and reduces release of Ni2+ ions (source of Ni allergic contact hypersensitivity when in contact with sweat. This performance seems not to be connected to the strong orbital hybridization that Ni and graphene interface present, indicating electron transfer might not be playing a main role in the robust response of this nanostructured system. The observed protection from biological environment can be understood in terms of graphene impermeability to transfer Ni2+ ions, which is enhanced for few layers of graphene grown on Ni. We expect our work will provide a new route for application of graphene as a protection coating for metals in biological environments, where current strategies have shown short-term efficiency and have raised health concerns.

  2. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu -Cr 7Ni molecular rings as detected by μ SR

    Science.gov (United States)

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P. V.; Timco, G.; Winpenny, R. E. P.; Blundell, S. J.; Lascialfari, A.

    2017-11-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni -Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J , while Cr7Ni -Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J'≪J . The longitudinal muon relaxation rate λ collected at low magnetic fields μ0H BPP)-like heuristic fitting model that takes into account of a distribution of electronic spin characteristic times for T >5 K, while the shoulder presented by Cr7Ni can be reproduced by a BPP function that incorporates a single electronic characteristic time theoretically predicted to dominate for T <5 K. The flattening of λ (T ) in Cr7Ni -Cu-Cr7Ni occurring at very low temperature can be tentatively attributed to field-dependent quantum effects and/or to an inelastic term in the spectral density of the electronic spin fluctuations.

  3. In situ growth of well-ordered NiFe-MOF-74 on Ni foam by Fe2+ induction as an efficient and stable electrocatalyst for water oxidation.

    Science.gov (United States)

    Xing, Jiale; Guo, Kailu; Zou, Zehua; Cai, Minmin; Du, Jing; Xu, Cailing

    2018-06-06

    Well-ordered NiFe-MOF-74 is in situ grown on Ni foam by the induction of Fe2+ and directly used as an OER electrocatalyst. Benefited from the intrinsic open porous structure of MOF-74, the in situ formed MOF arrays and the synergistic effect of Ni and Fe, outstanding water oxidation activity is obtained in alkaline electrolytes with an overpotential of 223 mV at 10 mA cm-2.

  4. Long term simulation of point defect cluster size distributions from atomic displacement cascades in Fe70Cr20Ni10

    International Nuclear Information System (INIS)

    Souidi, A.; Hou, M.; Becquart, C.S.; Domain, C.; De Backer, A.

    2015-01-01

    We have used an Object Kinetic Monte Carlo (OKMC) model to simulate the long term evolution of the primary damage in Fe 70 Cr 20 Ni 10 alloys. The mean number of Frenkel pairs created by different Primary Knocked on Atoms (PKA) was estimated by Molecular Dynamics using a ternary EAM potential developed in the framework of the PERFORM-60 European project. This number was then used to obtain the vacancy–interstitial recombination distance required in the calculation of displacement cascades in the Binary Collision Approximation (BCA) with code MARLOWE (Robinson, 1989). The BCA cascades have been generated in the 10–100 keV range with the MARLOWE code and two different screened Coulomb potentials, namely, the Molière approximation to the Thomas–Fermi potential and the so-called “Universal” potential by Ziegler, Biersack and Littmark (ZBL). These cascades have been used as input to the OKMC code LAKIMOCA (Domain et al., 2004), with a set of parameters for describing the mobility of point defect clusters based on ab initio calculations and experimental data. The cluster size distributions have been estimated for irradiation doses of 0.1 and 1 dpa, and a dose rate of 10 −7 dpa/s at 600 K. We demonstrate that, like in the case of BCC iron, cluster size distributions in the long term are independent of the cascade energy and that the recursive cascade model suggested for BCC iron in Souidi et al. (2011) also applies to FCC Fe 70 Cr 20 Ni 10. The results also show that the influence of the BCA potential is sizeable but the qualitative correspondence in the predicted long term evolution is excellent

  5. Hierarchical nanosheet-based Ni3S2 microspheres grown on Ni foam for high-performance all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Li, Gaofeng; Cong, Yuan; Zhang, Chuanxiang; Tao, Haijun; Sun, Yueming; Wang, Yuqiao

    2017-10-01

    The hierarchical nanosheet-based Ni3S2 microspheres directly grew on Ni foam using a two-step hydrothermal method. The microsphere with a diameter of ˜1 microns and a rough surface was well connected to each other without any binders to provide a larger specific surface area, shorter ion/electron diffusion paths, richer electroactive sites as a supercapacitor electrode. As a three-electrode supercapacitor, it delivers a high specific capacity of 981.8 F g-1 at 2 A g-1, an excellent rate capability of 436.4 F g-1 at 12 A g-1, and a good cycling stability of 950.9 F g-1 with 96.9% retention after 1000 cycles at 2 A g-1. Furthermore, an asymmetric supercapacitor based on Ni3S2-microsphere as a positive electrode and active carbon as a negative electrode shows a high energy density of 29.4 Wh kg-1 at 324.5 W kg-1 and a high power density of 3197.6 W kg-1 at 15.1 Wh kg-1. This work demonstrates that nanosheet-based Ni3S2 microspheres coated Ni foam can be an effective electrode for a real supercapacitor.

  6. Interplay between out-of-plane anisotropic L1{sub 1}-type CoPt and in-plane anisotropic NiFe layers in CoPt/NiFe exchange springs

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, P. [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw; Tsai, C. L. [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Tsai, C. Y.; Lin, Y. H. [Graduate Institute of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China); Kuo, C. Y.; Wu, J.-C. [Department of Physics, National Chang Hua University of Education, Chang Hua 50000, Taiwan (China); Lee, C.-M. [Graduate School of Materials Science, National Yunlin University of Science and Technology, Douliou 64002, Taiwan (China)

    2014-06-28

    Films of L1{sub 1}-type CoPt/NiFe exchange springs were grown with different NiFe (Permalloy) layer thickness (t{sub NiFe} = 0–10 nm). X-ray diffraction analysis reveals that the characteristic peak position of NiFe(111) is not affected by the CoPt-layer—confirming the absence of any inter-diffusion between the CoPt and NiFe layers. Magnetic studies indicate that the magnetization orientation of NiFe layer can be tuned through varying t{sub NiFe} and the perpendicular magnetic anisotropy of L1{sub 1}-type CoPt/NiFe films cannot sustain for t{sub NiFe} larger than 3.0 nm due to the existence of exchange interaction at the interface of L1{sub 1}-CoPt and NiFe layers. Magnetic force microscopy analysis on the as-grown samples shows the changes in morphology from maze-like domains with good contrast to hazy domains when t{sub NiFe} ≥ 3.0 nm. The three-dimensional micro-magnetic simulation results demonstrate that the magnetization orientation in NiFe layer is not uniform, which continuously increases from the interface to the top of NiFe layer. Furthermore, the tilt angle of the topmost NiFe layers can be changed over a very wide range from a small number to about 75° by varying t{sub NiFe} from 1 to 10 nm. It is worth noting that there is an abrupt change in the magnetization direction at the interface, for all the t{sub NiFe} investigated. The results of present study demonstrate that the tunable tilted exchange springs can be realized with L1{sub 1}-type CoPt/NiFe bilayers for future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy.

  7. A possible highly active supported Ni dimer catalyst for O{sub 2} dissociation: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shan [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Zhang, Yanxing, E-mail: 2016025@htu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Zhang, Xilin; Mao, Jianjun [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China)

    2017-04-30

    Graphical abstract: The minimum energy paths (MEPs) for the dissociation process of O{sub 2} on the surfaces of bare YSZ (111) and Ni{sub n}/YSZ (111) (n = 1, 2 and 3). - Highlights: • The catalytic activity of supported metal catalysts is closely related to the size of metal particles. • The dissociation of O{sub 2} on the YSZ (111) surface is largely enhanced by the supported Ni cluster. • The supported Ni dimer is predicted to be the smallest Ni cluster needed for efficient O{sub 2} dissociation. • The results would provide an important reference to improve the activity and efficiency of the Ni/YSZ(111) nanocomposite catalysts in cost-effective materials. - Abstract: The adsorption and dissociation of O{sub 2} on the supported small nickel clusters with one-, two-, three-Ni atoms on yttria-stabilized zirconia (YSZ) (111) surfaces, as well as those on the bare YSZ(111) and Ni(111) surfaces are comparatively studied using ab initio density functional theory calculations. It is found that the dissociation of O{sub 2} on the YSZ(111) surface is largely enhanced by the supported Ni dimer, which is predicted to be the smallest Ni cluster needed for efficient O{sub 2} dissociation. The results would provide an important reference to improve the activity and efficiency of the Ni/YSZ(111) nanocomposite catalysts in cost-effective materials.

  8. Radiation hardening revisited: Role of intracascade clustering

    DEFF Research Database (Denmark)

    Singh, B.N.; Foreman, A.J.E.; Trinkaus, H.

    1997-01-01

    be explained in terms of conventional dispersed-barrier hardening because (a) the grown-in dislocations are not free, and (b) irradiation-induced defect clusters are not rigid indestructible Orowan obstacles. A new model called 'cascade-induced source hardening' is presented where glissile loops produced...... directly in cascades are envisaged to decorate the grown-in dislocations so that they cannot act as dislocation sources. The upper yield stress is related to the breakaway stress which is necessary to pull the dislocation away from the clusters/loops decorating it. The magnitude of the breakaway stress has...

  9. Fast diffusion and nucleation of the amorphous phase in Ni--Zr films

    International Nuclear Information System (INIS)

    Ehrhart, P.; Averback, R.S.; Hahn, H.; Yadavalli, S.; Flynn, C.P.

    1988-01-01

    The nucleation of the amorphous phase by solid-state reactions has been investigated on single-crystal Zr films grown by molecular beam epitaxy and covered in situ with either polycrystalline Ni, amorphous (a-) NiZr, or single-crystalline Zr 99 N 01 films. Interfacial reactions were investigated by backscattering analysis or secondary ion mass spectroscopy. The amorphizing reaction occurred only in the specimen with the a-NiZr overlayer, although fast Ni diffusion through the single-crystalline Zr layer was observed in all three specimens. The nucleation behavior of a-NiZr is attributed to the combination of high-Ni and low-Zr mobility in crystalline Zr

  10. Molecular Nickel Phosphide Carbonyl Nanoclusters: Synthesis, Structure, and Electrochemistry of [Ni11P(CO)18]3- and [H6-nNi31P4(CO)39]n- (n = 4 and 5).

    Science.gov (United States)

    Capacci, Chiara; Ciabatti, Iacopo; Femoni, Cristina; Iapalucci, Maria Carmela; Funaioli, Tiziana; Zacchini, Stefano; Zanotti, Valerio

    2018-02-05

    The reaction of [NEt 4 ] 2 [Ni 6 (CO) 12 ] in thf with 0.5 equiv of PCl 3 affords the monophosphide [Ni 11 P(CO) 18 ] 3- that in turn further reacts with PCl 3 resulting in the tetra-phosphide carbonyl cluster [HNi 31 P 4 (CO) 39 ] 5- . Alternatively, the latter can be obtained from the reaction of [NEt 4 ] 2 [Ni 6 (CO) 12 ] in thf with 0.8-0.9 equiv of PCl 3 . The [HNi 31 P 4 (CO) 39 ] 5- penta-anion is reversibly protonated by strong acids leading to the [H 2 Ni 31 P 4 (CO) 39 ] 4- tetra-anion, whereas deprotonation affords the [Ni 31 P 4 (CO) 39 ] 6- hexa-anion. The latter is reduced with Na/naphthalene yielding the [Ni 31 P 4 (CO) 39 ] 7- hepta-anion. In order to shed light on the polyhydride nature and redox behavior of these clusters, electrochemical and spectroelectrochemical studies were carried out on [Ni 11 P(CO) 18 ] 3- , [HNi 31 P 4 (CO) 39 ] 5- , and [H 2 Ni 31 P 4 (CO) 39 ] 4- . The reversible formation of the stable [Ni 11 P(CO) 18 ] 4- tetra-anion is demonstrated through the spectroelectrochemical investigation of [Ni 11 P(CO) 18 ] 3- . The redox changes of [HNi 31 P 4 (CO) 39 ] 5- show features of chemical reversibility and the vibrational spectra in the ν CO region of the nine redox states of the cluster [HNi 31 P 4 (CO) 39 ] n- (n = 3-11) are reported. The spectroelectrochemical investigation of [H 2 Ni 31 P 4 (CO) 39 ] 4- revealed the presence of three chemically reversible reduction processes, and the IR spectra of [H 2 Ni 31 P 4 (CO) 39 ] n- (n = 4-7) have been recorded. The different spectroelectrochemical behavior of [HNi 31 P 4 (CO) 39 ] 5- and [H 2 Ni 31 P 4 (CO) 39 ] 4- support their formulations as polyhydrides. Unfortunately, all the attempts to directly confirm their poly hydrido nature by 1 H NMR spectroscopy failed, as previously found for related large metal carbonyl clusters. Thus, the presence and number of hydride ligands have been based on the observed protonation/deprotonation reactions and the spectroelectrochemical

  11. Ferromagnetism in CVT grown tungsten diselenide single crystals with nickel doping

    Science.gov (United States)

    Habib, Muhammad; Muhammad, Zahir; Khan, Rashid; Wu, Chuanqiang; Rehman, Zia ur; Zhou, Yu; Liu, Hengjie; Song, Li

    2018-03-01

    Two dimensional (2D) single crystal layered transition materials have had extensive consideration owing to their interesting magnetic properties, originating from their lattices and strong spin-orbit coupling, which make them of vital importance for spintronic applications. Herein, we present synthesis of a highly crystalline tungsten diselenide layered single crystal grown by chemical vapor transport technique and doped with nickel (Ni) to tailor its magnetic properties. The pristine WSe2 single crystal and Ni-doped crystal were characterized and analyzed for magnetic properties using both experimental and computational aspects. It was found that the magnetic behavior of the 2D layered WSe2 crystal changed from diamagnetic to ferromagnetic after Ni-doping at all tested temperatures. Moreover, first principle density functional theory (DFT) calculations further confirmed the origin of room temperature ferromagnetism of Ni-doped WSe2, where the d-orbitals of the doped Ni atom promoted the spin moment and thus largely contributed to the magnetism change in the 2D layered material.

  12. Hierarchical Core/Shell NiCo2O4@NiCo2O4 Nanocactus Arrays with Dual-functionalities for High Performance Supercapacitors and Li-ion Batteries

    Science.gov (United States)

    Cheng, Jinbing; Lu, Yang; Qiu, Kangwen; Yan, Hailong; Xu, Jinyou; Han, Lei; Liu, Xianming; Luo, Jingshan; Kim, Jang-Kyo; Luo, Yongsong

    2015-07-01

    We report the synthesis of three dimensional (3D) NiCo2O4@NiCo2O4 nanocactus arrays grown directly on a Ni current collector using a facile solution method followed by electrodeposition. They possess a unique 3D hierarchical core-shell structure with large surface area and dual-functionalities that can serve as electrodes for both supercapacitors (SCs) and lithium-ion batteries (LIBs). As the SC electrode, they deliver a remarkable specific capacitance of 1264 F g-1 at a current density of 2 A g-1 and ~93.4% of capacitance retention after 5000 cycles at 2 A g-1. When used as the anode for LIBs, a high reversible capacity of 925 mA h g-1 is achieved at a rate of 120 mA g-1 with excellent cyclic stability and rate capability. The ameliorating features of the NiCo2O4 core/shell structure grown directly on highly conductive Ni foam, such as hierarchical mesopores, numerous hairy needles and a large surface area, are responsible for the fast electron/ion transfer and large active sites which commonly contribute to the excellent electrochemical performance of both the SC and LIB electrodes.

  13. Interconnected Ni_2P nanorods grown on nickel foam for binder free lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Qin; Ma, Jingjing; Wang, Huijun; Yang, Xia; Yuan, Ruo; Chai, Yaqin

    2016-01-01

    Herein, we report a moderate and simple approach to synthesize nickel phosphide nanorods on nickel foam (Ni_2P/NF), which was employed as anode material for lithium ion batteries (LIBs). In this paper, interconnected Ni_2P nanorods were fabricated through hydrothermal treatment of NF and subsequently by high temperature phosphating. NF is not only regarded as nickel source and metal current collector, but also as a support to grow electro-active material (Ni_2P). Therefore, Ni_2P/NF could act as a self-supported working electrode for LIBs without any extra addition of cohesive binders. Moreover, benefiting from the conductive capacity of Ni_2P/NF, the active compound behaved superior lithium storage performance and cycling reversibility during electrochemical cycling process. The Ni_2P/NF delivered excellent reversibility of 507 mAh g"−"1 at the current density of 50 mA g"−"1 after 100 cycles. This work may provide a potential method for preparation of metal phosphides as promising materials for LIBs, hydrogen evolution reaction (HER) or other fields.

  14. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects

    International Nuclear Information System (INIS)

    Meslin-Chiffon, E.

    2007-11-01

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  15. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Xiaoju Liu

    2016-02-01

    Full Text Available The formation of thermally grown oxide (TGO during high temperature is a key factor to the degradation of thermal barrier coatings (TBCs applied on hot section components. In the present study both the CoNiCrAlY bond coat and ZrO2-8 wt.% Y2O3 (8YSZ ceramic coat of TBCs were prepared by air plasma spraying (APS. The composition and microstructure of TGO in TBCs were investigated using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD analysis. The growth rate of TGO for TBC and pure BC were gained after isothermal oxidation at 1100 °C for various times. The results showed that as-sprayed bond coat consisted of β and γ/γ′phases, β phase reducesd as the oxidation time increased. The TGO comprised α-Al2O3 formed in the first 2 h. CoO, NiO, Cr2O3 and spinel oxides appeared after 20 h of oxidation. Contents of CoO and NiO reduced while that of Cr2O3 and spinel oxides increased in the later oxidation stage. The TGO eventually consisted of a sub-Al2O3 layer with columnar microstructure and the upper porous CS clusters. The TGO growth kinetics for two kinds of samples followed parabolic laws, with oxidation rate constant of 0.344 μm/h0.5 for TBCs and 0.354 μm/h0.5 for pure BCs.

  16. First-principles studies on graphene-supported transition metal clusters

    International Nuclear Information System (INIS)

    Sahoo, Sanjubala; Khanna, Shiv N.; Gruner, Markus E.; Entel, Peter

    2014-01-01

    Theoretical studies on the structure, stability, and magnetic properties of icosahedral TM 13 (TM = Fe, Co, Ni) clusters, deposited on pristine (defect free) and defective graphene sheet as well as graphene flakes, have been carried out within a gradient corrected density functional framework. The defects considered in our study include a carbon vacancy for the graphene sheet and a five-membered and a seven-membered ring structures for graphene flakes (finite graphene chunks). It is observed that the presence of defect in the substrate has a profound influence on the electronic structure and magnetic properties of graphene-transition metal complexes, thereby increasing the binding strength of the TM cluster on to the graphene substrate. Among TM 13 clusters, Co 13 is absorbed relatively more strongly on pristine and defective graphene as compared to Fe 13 and Ni 13 clusters. The adsorbed clusters show reduced magnetic moment compared to the free clusters

  17. High-performance cobalt carbonate hydroxide nano-dot/NiCo(CO3)(OH)2 electrode for asymmetric supercapacitors

    Science.gov (United States)

    Lee, Damin; Xia, Qi Xun; Yun, Je Moon; Kim, Kwang Ho

    2018-03-01

    Binder-free mesoporous NiCo(CO3)(OH)2 nanowire arrays were grown using a facile hydrothermal technique. The Co2(CO3)(OH)2 in NiCo(CO3)(OH)2 nanowire arrays was well-decorated as nano-dot scale (a few nanometer). In addition, increasing cobalt content in nickel compound matrix, NiCo(CO3)(OH)2 nanowire arrays were separately uniformly grown without agglomeration on Ni foam, providing a high specific surface area to help electrolyte access and ion transfer. The enticing composition and morphology of the NiCo(CO3)(OH)2 nanowire exhibit a superior specific capacity of 1288.2 mAh g-1 at a current density of 3 A g-1 and excellent cycling stability with the capacity retention of 80.7% after 10,000 cycles. Furthermore, an asymmetric supercapacitor composed of the NiCo(CO3)(OH)2 composite as a positive electrode and the graphene as a negative electrode presented a high energy density of 35.5 W h kg-1 at a power density of 2555.6 W kg-1 and satisfactory cycling stability with 71.3% capacity retention after 10,000 cycles. The great combination of the active nano-dot Co2(CO3)(OH)2 and the individually grown NiCo(CO3)(OH)2 nanowires made it a promising electrode material for asymmetric supercapacitors. A well-developed nanoarchitecture of the nano-dot Co2(CO3)(OH)2 decorated NiCo(CO3)(OH)2 composite could pave the way for an excellent electrode design for high-performance supercapacitors.

  18. The Most Distant Mature Galaxy Cluster - Young, but surprisingly grown-up

    Science.gov (United States)

    2011-03-01

    Astronomers have used an armada of telescopes on the ground and in space, including the Very Large Telescope at ESO's Paranal Observatory in Chile to discover and measure the distance to the most remote mature cluster of galaxies yet found. Although this cluster is seen when the Universe was less than one quarter of its current age it looks surprisingly similar to galaxy clusters in the current Universe. "We have measured the distance to the most distant mature cluster of galaxies ever found", says the lead author of the study in which the observations from ESO's VLT have been used, Raphael Gobat (CEA, Paris). "The surprising thing is that when we look closely at this galaxy cluster it doesn't look young - many of the galaxies have settled down and don't resemble the usual star-forming galaxies seen in the early Universe." Clusters of galaxies are the largest structures in the Universe that are held together by gravity. Astronomers expect these clusters to grow through time and hence that massive clusters would be rare in the early Universe. Although even more distant clusters have been seen, they appear to be young clusters in the process of formation and are not settled mature systems. The international team of astronomers used the powerful VIMOS and FORS2 instruments on ESO's Very Large Telescope (VLT) to measure the distances to some of the blobs in a curious patch of very faint red objects first observed with the Spitzer space telescope. This grouping, named CL J1449+0856 [1], had all the hallmarks of being a very remote cluster of galaxies [2]. The results showed that we are indeed seeing a galaxy cluster as it was when the Universe was about three billion years old - less than one quarter of its current age [3]. Once the team knew the distance to this very rare object they looked carefully at the component galaxies using both the NASA/ESA Hubble Space Telescope and ground-based telescopes, including the VLT. They found evidence suggesting that most of the

  19. Hierarchical Heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) as an Electrode Material for High-Performance Supercapacitors.

    Science.gov (United States)

    Hu, Jiyu; Qian, Feng; Song, Guosheng; Wang, Linlin

    2016-12-01

    Hierarchical heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) were developed as an electrode material for supercapacitor with improved pseudocapacitive performance. Within these hierarchical heterostructures, the mesoporous NiCo2O4 nanosheet arrays directly grown on the Ni foam can not only act as an excellent pseudocapacitive material but also serve as a hierarchical scaffold for growing NiMoO4 or CoMoO4 electroactive materials (nanosheets). The electrode made of NiCo2O4@NiMoO4 presented a highest areal capacitance of 3.74 F/cm(2) at 2 mA/cm(2), which was much higher than the electrodes made of NiCo2O4@CoMoO4 (2.452 F/cm(2)) and NiCo2O4 (0.456 F/cm(2)), respectively. Meanwhile, the NiCo2O4@NiMoO4 electrode exhibited good rate capability. It suggested the potential of the hierarchical heterostructures of NiCo2O4@CoMoO4 as an electrode material in supercapacitors.

  20. Composition design of superhigh strength maraging stainless steels using a cluster model

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2014-02-01

    Full Text Available The composition characteristics of maraging stainless steels were studied in the present work investigation using a cluster-plus-glue-atom model. The least solubility limit of high-temperature austenite to form martensite in basic Fe–Ni–Cr corresponds to the cluster formula [NiFe12]Cr3, where NiFe12 is a cuboctahedron centered by Ni and surrounded by 12 Fe atoms in FCC structure and Cr serves as glue atoms. A cluster formula [NiFe12](Cr2Ni with surplus Ni was then determined to ensure the second phase (Ni3M precipitation, based on which new multi-component alloys [(Ni,Cu16Fe192](Cr32(Ni,Mo,Ti,Nb,Al,V16 were designed. These alloys were prepared by copper mould suction casting method, then solid-solution treated at 1273 K for 1 h followed by water-quenching, and finally aged at 783 K for 3 h. The experimental results showed that the multi-element alloying results in Ni3M precipitation on the martensite, which enhances the strengths of alloys sharply after ageing treatment. Among them, the aged [(Cu4Ni12Fe192](Cr32(Ni8.5Mo2Ti2Nb0.5Al1V1 alloy (Fe74.91Ni8.82Cr11.62Mo1.34Ti0.67Nb0.32Al0.19V0.36Cu1.78 wt% has higher tensile strengths with YS=1456 MPa and UTS=1494 MPa. It also exhibits good corrosion-resistance in 3.5 wt% NaCl solution.

  1. The characteristics of carbon nanotubes grown at low temperature for electronic device application

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Seob [Department of Photoelectronics Information, Chosun College of Science and Technology, Gwangju (Korea, Republic of); Yi, Junsin [School of Information and Communications Engineering, Sungkyunkwan University, Suwon, 440–746 (Korea, Republic of); Lee, Jaehyeong, E-mail: jaehyeong@skku.edu [School of Information and Communications Engineering, Sungkyunkwan University, Suwon, 440–746 (Korea, Republic of)

    2013-11-01

    For the application of carbon nanotubes (CNTs) in flexible electronic devices, the CNTs were grown on Corning 1737 glass substrate by microwave plasma enhanced chemical vapor deposition (MPECVD) method. To deposit the catalyst layer, TiN buffer layer of 200 nm thickness and Ni catalyst layer of 60 nm were first deposited on the glass by r.f. magnetron sputtering method. The CH{sub 4} and H{sub 2} gases are used as the synthesis gas of CNTs and the working pressure was about 2.13 kPa, and the substrate bias was about − 200 V. The growth time was from 2 min to 5 min and the microwave power was about 800 W. The substrate temperature as the main parameter was changed from 400 °C to 550 °C. The structural properties of CNTs synthesized with the substrate temperature were investigated using Raman, field emission scanning electron microscopy, and transmission electron microscopy methods. The surface and electrical properties of CNTs grown by MPECVD method were studied by scanning probe microscopy and four-point probe methods. We obtained the multi-walled CNTs (MW-CNTs). Multi-walled CNTs were vertically grown on Ni/TiN/glass substrates below 500 °C without any glass deformations. As the substrate temperature was increased, the crystallinity of CNTs was improved. Ni catalyst was found at the tip of CNT by the TEM observation and the grown CNTs were found to have a multi-walled with bamboo like structure. - Highlights: • Synthesis of vertically aligned carbon nanotubes. • Effects of substrate temperature on carbon nanotubes properties. • Improvement of the crystallinity with increasing substrate temperature. • Reduction of sheet resistance with increasing substrate temperature.

  2. Contents of several elements in trees grown on the serpentine soil

    International Nuclear Information System (INIS)

    Tomita, Michio; Katayama, Yukio; Takada, Jitsuya; Nishimura, Kazuo.

    1990-01-01

    Determination of Mg-, Ca-, Cr-, Mn-, Fe- and Ni-content in akamatsu (P. densiflora), konara (Q. serrata) and ryoubu (C. barbinervis) which were grown on the serpentine soil, as well as in soil, were performed by the neutron activation method or the atomic absorption spectrophotometry. It turned out that contents of these elements was higher in leaves than wood. It was also found that Ni content in the leaves of konara as well as of ryoubu reflected the concentration of the acid extractable Ni in the serpentine soil. The elemental contents in akamatsu leaves were heavily affected by the characteristic contents of the serpentine soil. It is suggested that these trees are available for the indicator of soil-environment. (author)

  3. Self-assembled metal clusters on an alumina nanomesh

    International Nuclear Information System (INIS)

    Buchsbaum, A.

    2012-01-01

    either bcc[110] or bcc[100] orientation, depending on the substrate temperature, and for Co we found random stacking of close-packed planes [fcc (111) and hcp (0001), respectively] on top of the clusters. Pd clusters grow with fcc[111] orientation. The contact angle of the clusters was derived from the measurements; at a deposition temperature of 470 K the contact angle of Co clusters is approx. 75° and for Fe clusters approx. 80° . With increasing deposition temperature the contact angle increases, i.e., the clusters are not in thermodynamic equilibrium. The size of the clusters grown on top of an ideal defect-free oxide is limited to approx. 1000 atoms/cluster. For larger clusters coalescence happens and a continuous film forms. The magnetic properties of the clusters and the Ni3Al(111) substrate have been studied by means of x-ray magnetic circular dichroism (XMCD) and surface magneto-optic Kerr effect (SMOKE). SMOKE measurements show that the Curie temperature of the substrate surface highly depends on the stoichiometry and thereby on the preparation history of the sample. By fitting calculated magnetization curves to the data measured by XMCD the magnetic properties of the clusters could be determined. The anisotropy of Co clusters is less than for hcp bulk Co. This is probably a consequence of random stacking of close-packed Co planes. The anisotropy of Fe clusters is enhanced compared to bulk bcc Fe, as expected for nanoparticles. The easy axis of the clusters is perpendicular to the surface. In order to describe the experimental data by the model two types of clusters with different coupling to the substrate have to be taken into account: clusters with strong AF coupling and predominantly FM coupled clusters which also show a considerable biquadratic contribution to the coupling energy. Basic considerations show that the atoms inside the corner holes mediate FM coupling of the clusters to the substrate. Most probably the coupling energy depends on the atoms

  4. Improvement of in-plane alignment for surface oxidized NiO layer on textured Ni substrate by two-step heat-treatment

    International Nuclear Information System (INIS)

    Hasegawa, Katsuya; Izumi, Toru; Izumi, Teruo; Shiohara, Yuh; Maeda, Toshihiko

    2004-01-01

    Epitaxial growth of NiO on a textured Ni substrate as a template for an REBa 2 Cu 3 O y coated conductor was investigated. Highly in-plane aligned NiO layers were successfully fabricated using a new process of a two-step heat-treatment for oxidation. In the first-step, a highly in-plane aligned thin NiO layer was formed on a textured Ni substrate under a low driving force of oxidation. Then, in the second-step, a thick NiO layer was grown at a higher rate with maintaining its high in-plane grain alignment, as if the first NiO layer acts as a seed crystal layer. Further, growth rates and microstructures of the NiO layers were studied comparatively in the cases with and without the first layer. It was found that the oxidation rate in the case with the first layer was lower than that without the first layer. The microstructure observation revealed that the NiO without the first layer was poly-crystalline with many grain-boundaries. On the other hand, in the case with the first layer, grain-boundaries of the NiO were hardly observed. Hence, the reason for this difference of the growth rate and the microstructure of the NiO layers were discussed in view of a diffusivity path

  5. Ni-doping effect of Mg(0 0 0 1) surface to use it as a hydrogen storage material

    International Nuclear Information System (INIS)

    Kuklin, Artem V.; Kuzubov, Alexander A.; Krasnov, Pavel O.; Lykhin, Aleksandr O.; Tikhonova, Lyudmila V.

    2014-01-01

    Highlights: • Magnesium surface interaction with nickel at different it location was investigated. • A possibility of nickel migration on magnesium surface was examined. • A possibility of the nickel atoms to aggregate, producing the cluster was investigated. • A step by step diagram of the cluster formation was calculated and constructed. • The final step was the investigation of a hydrogenation process on the Ni cluster. - Abstract: A detailed study of Ni-doped Mg(0 0 0 1) surface performed by PAW method and the gradient corrected density functional GGA-PBE within the framework of generalized Kohn–Sham density functional theory (DFT) is presented in this work. Structural and electronic properties of magnesium surface interaction with nickel for the purpose of such compounds use for creation of hydrogen storage matrixes were investigated here. Choice of the PBE functional was caused by the good accordance of its prediction of the cell parameters with experimental results. It was shown that Ni atoms prefer to substitute for Mg atoms. Using NEB method, the diffusion barrier was calculated, and the most probable reaction path was established. In particular, when the Ni atom dopes the magnesium surface, it can migrate to the bulk and substitute for Mg in subsurface layers. Also a possibility of nickel cluster formation on clean surface of magnesium was examined. The kinetic factors hinder the movement of the nickel atoms to each other and make problematic the formation of clusters. The studies presented here showed that the diffusion barriers of the nickel atom migration from the cluster on the surface to the bulk of magnesium are 1.179 eV and 1.211 eV for the forward and reverse reactions, respectively. Therefore an improvement of the hydrogenation properties of Ni-doped magnesium surface depends on deposition not of the individual atoms, but their clusters. Hydrogenation of Ni cluster doping the magnesium surface was investigated. Initially Kubas

  6. Magneto-structural properties and magnetic anisotropy of small transition-metal clusters: a first-principles study

    International Nuclear Information System (INIS)

    Blonski, Piotr; Hafner, Juergen

    2011-01-01

    Ab initio density-functional calculations including spin-orbit coupling (SOC) have been performed for Ni and Pd clusters with three to six atoms and for 13-atom clusters of Ni, Pd, and Pt, extending earlier calculations for Pt clusters with up to six atoms (2011 J. Chem. Phys. 134 034107). The geometric and magnetic structures have been optimized for different orientations of the magnetization with respect to the crystallographic axes of the cluster. The magnetic anisotropy energies (MAE) and the anisotropies of spin and orbital moments have been determined. Particular attention has been paid to the correlation between the geometric and magnetic structures. The magnetic point group symmetry of the clusters varies with the direction of the magnetization. Even for a 3d metal such as Ni, the change in the magnetic symmetry leads to small geometric distortions of the cluster structure, which are even more pronounced for the 4d metal Pd. For a 5d metal the SOC is strong enough to change the energetic ordering of the structural isomers. SOC leads to a mixing of the spin states corresponding to the low-energy spin isomers identified in the scalar-relativistic calculations. Spin moments are isotropic only for Ni clusters, but anisotropic for Pd and Pt clusters, orbital moments are anisotropic for the clusters of all three elements. The magnetic anisotropy energies have been calculated. The comparison between MAE and orbital anisotropy invalidates a perturbation analysis of magnetic anisotropy for these small clusters.

  7. A novel ECL biosensor for the detection of concanavalin A based on glucose functionalized NiCo2S4 nanoparticles-grown on carboxylic graphene as quenching probe.

    Science.gov (United States)

    Li, Xiaojian; Wang, Yaoguang; Shi, Li; Ma, Hongmin; Zhang, Yong; Du, Bin; Wu, Dan; Wei, Qin

    2017-10-15

    An electrochemiluminescence (ECL) biosensor was developed for detection of Concanavalin A (Con A). Chitosan/Ru(bpy) 3 2+ /silica/Fe 3 O 4 nanomaterials (CRuSi-Fe 3 O 4 ) were synthesized through W/O microemulsion route. The added Fe 3 O 4 nanoparticles can simplify the prepared process and enhance the conductivity of nanomaterials which can increase the ECL intensity of luminophor CRuSi-Fe 3 O 4 . In addition, the layered structure of CRuSi-Fe 3 O 4 can immobilize lots of Con A using glutaraldehyde as the coupling agent which can improve the sensitivity of the biosensor. Then the quenching probe glucose functionalized NiCo 2 S 4 nanoparticles-grown on carboxylic graphene (NiCo 2 S 4 -COOH-rGO@Glu) was anchored on the modified-electrode via the specific carbohydrate-Con A interaction. Here, NiCo 2 S 4 was used to quench the ECL of CRuSi-Fe 3 O 4 , graphene was used to grow NiCo 2 S 4 nanoparticles as carrier materials and glucose was served as the recognition element for bounding Con A. Therefore, a desirable quenching ECL signal was measured with S 2 O 8 2- as the coreactant of CRuSi-Fe 3 O 4 . Under the optimization of determination conditions, a linear response range for Con A from 0.5pgmL -1 to 100ngmL -1 was obtained, and the detection limit was calculated to be 0.18pgmL -1 (S/N=3). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors

    Science.gov (United States)

    Hu, Jing; Li, Minchan; Lv, Fucong; Yang, Mingyang; Tao, Pengpeng; Tang, Yougen; Liu, Hongtao; Lu, Zhouguang

    2015-10-01

    A novel heterogeneous NiCo2O4@PPy core/sheath nanowire arrays are directly grown on Ni foam involving three facile steps, hydrothermal synthesis and calcination of NiCo2O4 nanowire arrays and subsequent in-situ oxidative polymerization of polypyrrole (PPy). When investigated as binder- and conductive additive-free electrodes for supercapacitors (SCs) in 6 M KOH, the NiCo2O4@PPy core/sheath nanowire arrays exhibit high areal capacitance of 3.49 F cm-2 at a discharge current density of 5 mA cm-2, which is almost 1.5 times as much as the pristine NiCo2O4 (2.30 F cm-2). More importantly, it can remain 3.31 F cm-2 (94.8% retention) after 5000 cycles. The as-obtained electrode also displays excellent rate capability, whose areal capacitance can still remain 2.79 F cm-2 while the discharge current density is increased to 50 mA cm-2. The remarkable electrochemical performance is mainly attributed to the unique heterogeneous core/sheath nanowire-array architectures.

  9. (Electronic structure and reactivities of transition metal clusters)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  10. Effect Of Low-Temperature Annealing On The Properties Of Ni-P Amorphous Alloys Deposited Via Electroless Plating

    Directory of Open Access Journals (Sweden)

    Zhao Guanlin

    2015-06-01

    Full Text Available Amorphous Ni-P alloys were prepared via electroless plating and annealing at 200°C at different times to obtain different microstructures. The effects of low-temperature annealing on the properties of amorphous Ni-P alloys were studied. The local atomic structure of the annealed amorphous Ni-P alloys was analyzed by calculating the atomic pair distribution function from their X-ray diffraction patterns. The results indicate that the properties of the annealed amorphous Ni-P alloys are closely related to the order atomic cluster size. However, these annealed Ni-P alloys maintained their amorphous structure at different annealing times. The variation in microhardness is in agreement with the change in cluster size. By contrast, the corrosion resistance of the annealed alloys in 3.5 wt% NaCl solution increases with the decrease in order cluster size.

  11. Usability value and heavy metals accumulation in forage grasses grown on power station ash deposit

    Directory of Open Access Journals (Sweden)

    Simić Aleksandar S.

    2015-01-01

    Full Text Available The study of five forage grasses (Lolium multiflorum, Festuca rubra, Festuca arundinacea, Arrhenatherum elatius and Dactylis glomerata was conducted on an uncontaminated cultivated land, of leached chernozem type, and on “Nikola Tesla A” (TENT A thermal power station ash deposit. The concentrations of: As, Pb, Cd, Zn, Ni, Fe i Cu in grasses grown on two media were compared. Grass samples have been collected in tillering stage, when they were in full development. During the vegetative period three replications cut was conducted at about 3-5 cm height, imitating mowing and grazing. The concentrations of As and Ni were elevated in media samples collected from TENT A ash deposit, while the level of all studied elements in soil samples collected from cultivated land were within allowed limits. The variance of certain elements amounts in plant material collected from TENT A ash deposit was less homogeneous; the concentrations of As, Fe and Ni were higher in grasses collected from ash deposit, but Pb and Cu concentrations were higher in grasses grown on cultivated land. The concentrations of Zn were approximately the same in plants collected from the sites, whereas Cd concentrations were slightly increased in grasses grown on ash deposit. In general, it can be concluded from the results of this study that the concentrations of heavy metals in plants collected from both sites do not exceed maximal tolerant levels for fodder. The use of grasses grown on ash deposit for forage production should be taken with reserve. [Projekat Ministarstva nauke Republike Srbije, br. TR 31016: Unapređenje tehnologije gajenja krmnih biljaka na oranicama i travnjacima

  12. Surface morphology and electronic structure of Ni/Ag(100)

    International Nuclear Information System (INIS)

    Hite, D. A.; Kizilkaya, O.; Sprunger, P. T.; Howard, M. M.; Ventrice, C. A. Jr.; Geisler, H.; Zehner, D. M.

    2000-01-01

    The growth morphology and electronic structure of Ni on Ag(100) has been studied with scanning tunneling microscopy (STM) and synchrotron based angle resolved photoemission spectroscopy. At deposition temperatures at or below 300 K, STM reveals Ni cluster growth on the surface along with some subsurface growth. Upon annealing to 420 K, virtually all Ni segregates into the subsurface region forming embedded nanoclusters. The electronic structure of Ni d bands in the unannealed surface shows dispersion only perpendicular to the surface whereas the annealed surface has Ni d bands that exhibit a three-dimensional-like structure. This is a result of the increased Ni d-Ag sp hybridization bonding and increased coordination of the embedded Ni nanoclusters. (c) 2000 American Vacuum Society

  13. Neutron rich clusters and the dynamics of fission and fusion

    International Nuclear Information System (INIS)

    Armbruster, P.

    1988-07-01

    In this lecture I want to discuss experimental evidence for the appearance of cluster aspects in the dynamics of large rearrangement processes, as fusion and fission. Clusters in the sense as used in my lecture are the strongly bound doubly magic nuclei as 20 Ca 28 48 , 28 Ni 50 78 , 132 50 Sn 82 , and 208 82 Pb 126 and the superheavy nucleus 298 114 184 . Two of these nuclei, 78 Ni and 298 114 have not yet been identified. I discuss first the experimental findings from heavy element production. Then I cover the stability of cluster aspects to intrinsic excitation energy in fusion and fission. (orig./HSI)

  14. Growth and solid/solid transformation in a Ni-Si eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, A.T. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil); Ferrandini, P.L. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil); Costa, C.A.R. [Institute of Chemistry, State University of Campinas, P.O. Box 6154, Campinas 13083-970, SP (Brazil); Goncalves, M.C. [Institute of Chemistry, State University of Campinas, P.O. Box 6154, Campinas 13083-970, SP (Brazil); Caram, R. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil)]. E-mail: rcaram@fem.unicamp.br

    2005-08-16

    High temperature structural components demand materials that maintain satisfactory mechanical and chemical characteristics. These needs may be met by applying some eutectic alloys, including Ni-Ni{sub 3}Si. This paper deals with the directional solidification of Ni-Ni{sub 3}Si grown under several growth rates. The analysis of the eutectic microstructure was carried out using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The results obtained provided a precise analysis of the Ni{sub 3}Si phase. It could be noticed that the solid/solid transformations by which Ni{sub 3}Si phase goes through, deeply affects its morphology. In addition, quantitative information on the eutectic structure was obtained. It was confirmed that the growth rate variation deeply affects the final microstructure as it influences the efficiency of atomic diffusion along the solid/liquid interface.

  15. Growth and solid/solid transformation in a Ni-Si eutectic alloy

    International Nuclear Information System (INIS)

    Dutra, A.T.; Ferrandini, P.L.; Costa, C.A.R.; Goncalves, M.C.; Caram, R.

    2005-01-01

    High temperature structural components demand materials that maintain satisfactory mechanical and chemical characteristics. These needs may be met by applying some eutectic alloys, including Ni-Ni 3 Si. This paper deals with the directional solidification of Ni-Ni 3 Si grown under several growth rates. The analysis of the eutectic microstructure was carried out using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The results obtained provided a precise analysis of the Ni 3 Si phase. It could be noticed that the solid/solid transformations by which Ni 3 Si phase goes through, deeply affects its morphology. In addition, quantitative information on the eutectic structure was obtained. It was confirmed that the growth rate variation deeply affects the final microstructure as it influences the efficiency of atomic diffusion along the solid/liquid interface

  16. Molecular Dynamics Simulation of Solidification of Pd-Ni Clusters with Different Nickel Content

    Directory of Open Access Journals (Sweden)

    Chen Gang

    2014-01-01

    Full Text Available Molecular dynamics simulation has been performed for investigating the glass transition of Pd-Ni alloy nanoparticles in the solidification process. The results showed that the Pd-Ni nanoparticles with composition far from pure metal should form amorphous structure more easily, which is in accordance with the results of the thermodynamic calculation. There are some regular and distorted fivefold symmetry in the amorphous Pd-Ni alloy nanoparticles. The nanoclusters with bigger difference value between formation enthalpies of solutions and glasses will transform to glass more easily than the other Pd-Ni alloy nanoclusters.

  17. Structural characterization of half-metallic Heusler compound NiMnSb

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, L. E-mail: lech.nowicki@fuw.edu.pl; Abdul-Kader, A.M.; Bach, P.; Schmidt, G.; Molenkamp, L.W.; Turos, A.; Karczewski, G

    2004-06-01

    High resolution X-ray diffraction (HRXRD) and Rutherford backscattering/channeling (RBS/c) techniques were used to characterize layers of NiMnSb grown by molecular beam epitaxy (MBE) on InP with a In{sub x}Ga{sub 1-x}As buffer. Angular scans in the channeling mode reveal that the crystal structure of NiMnSb is tetragonally deformed with c/a=1.010{+-}0.002, in agreement with HRXRD data. Although HRXRD demonstrates the good quality of the pseudomorphic NiMnSb layers the channeling studies show that about 20% of atoms in the layers do not occupy lattice sites in the [0 0 1] rows of NiMnSb. The possible mechanisms responsible for the observed disorder are discussed.

  18. Magnetism and superconductivity in CeFe2-xTxAs2 (T = Co and Ni) single crystals

    International Nuclear Information System (INIS)

    Thamizhavel, A.

    2010-01-01

    Single crystals of pure and transition metal doped CaFe 2- x T x As 2 (T = Co and Ni) have been grown by flux method using molten Sn as solvent. The magnetic and superconducting properties of the grown crystals were studied by measuring the electrical resistivity, magnetic susceptibility and neutron diffraction measurements. A spin density wave (SDW)/structural transition is observed at 170 K for the pure CaFe 2 As 2 single crystal and it gets suppressed with T (Co and Ni) doping. For an optimum dopant concentration of x = 0.06, the sample becomes superconducting. From the detailed studies on CaFe 2- x Ni x As 2 single crystals we have constructed a magnetic phase diagram. (author)

  19. Effect of charge state and stoichiometry on the structure and reactivity of nickel oxide clusters with CO

    Science.gov (United States)

    Johnson, Grant E.; Reilly, Nelly M.; Castleman, A. W., Jr.

    2009-02-01

    The collision induced fragmentation and reactivity of cationic and anionic nickel oxide clusters with carbon monoxide were studied experimentally using guided-ion-beam mass spectrometry. Anionic clusters with a stoichiometry containing one more oxygen atom than nickel atom (NiO2-, Ni2O3-, Ni3O4- and Ni4O5-) were found to exhibit dominant products resulting from the transfer of a single oxygen atom to CO, suggesting the formation of CO2. Of these four species, Ni2O3- and Ni4O5- were observed to be the most reactive having oxygen transfer products accounting for approximately 5% and 10% of the total ion intensity at a maximum pressure of 15 mTorr of CO. Our findings, therefore, indicate that anionic nickel oxide clusters containing an even number of nickel atoms and an odd number of oxygen atoms are more reactive than those with an odd number of nickel atoms and an even number of oxygen atoms. The majority of cationic nickel oxides, in contrast to anionic species, reacted preferentially through the adsorption of CO onto the cluster accompanied by the loss of either molecular O2 or nickel oxide units. The adsorption of CO onto positively charged nickel oxides, therefore, is exothermic enough to break apart the gas-phase clusters. Collision induced dissociation experiments, employing inert xenon gas, were also conducted to gain insight into the structural properties of nickel oxide clusters. The fragmentation products were found to vary considerably with size and stoichiometry as well as ionic charge state. In general, cationic clusters favored the collisional loss of molecular O2 while anionic clusters fragmented through the loss of both atomic oxygen and nickel oxide units. Our results provide insight into the effect of ionic charge state on the structure of nickel oxide clusters. Furthermore, we establish how the size and stoichiometry of nickel oxide clusters influences their ability to oxidize CO, an important reaction for environmental pollution abatement.

  20. Ni(OH){sub 2} nanoflakes electrodeposited on Ni foam-supported vertically oriented graphene nanosheets for application in asymmetric supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Liu, Jiyue; Wang, Yayu; Zhao, Cuimei; Zheng, Weitao, E-mail: wtzheng@jlu.edu.cn

    2014-04-01

    Highlights: • Ni(OH){sub 2}/vertically oriented graphene nanosheets (V-GNs) was prepared. • Ni(OH){sub 2}/V-GNs had enhanced specific capacitance, cycling reversibility and stability. • Performance of Ni(OH){sub 2}/GNs/NF-AC asymmetric supercapacitor was studied. - Abstract: Binderless Ni(OH){sub 2} nanoflakes grown on Ni foam (NF)-supported vertically oriented graphene nanosheets (V-GNs) has been fabricated as a positive electrode material for asymmetric supercapacitor (ASC), coupled with activated carbon (AC) as a counter electrode material. The introduction of V-GNs leads to dense growth of nanocrystalline β-Ni(OH){sub 2} that is confirmed by X-ray diffraction, transmission electron microscopic and scanning electron microscopic analyses. The electrochemical performances of the Ni(OH){sub 2}/GNs/NF electrode are characterized by cyclic voltammetry and charge–discharge tests, which exhibit high specific capacitance of 2215 F g{sup −1} at a scan current density of 2.3 A g{sup −1}, enhanced cycling stability and high rate capability. The Ni(OH){sub 2}/GNs/NF-AC-based ASC can achieve a cell voltage of 1.4 V and a specific energy density of 11.11 Wh kg{sup −1} at 0.5 mA cm{sup −2} with a nearly 100% coulombic efficiency at room temperature.

  1. Magnetic properties of Fe/NiO/Fe(001) trilayers

    International Nuclear Information System (INIS)

    Biagioni, P.; Brambilla, A.; Portalupi, M.; Rougemaille, N.; Schmid, A.K.; Lanzara, A.; Vavassori, P.; Zani, M.; Finazzi, M.; Duo, L.; Ciccacci, F.

    2005-01-01

    We have investigated the magnetic properties of epitaxially grown Fe/NiO/Fe(001) trilayers, for different thicknesses of the NiO spacer. Magneto Optical Kerr Effect has been exploited to study the in-plane magnetization reversal processes in the iron layers. We found that the NiO thickness t AFM has a critical value t C for the magnetic coupling between the Fe layers: for t AFM C the magnetization directions align perpendicularly, with zero applied field, while the alignment is collinear for thicker spacers. A phenomenological model has been developed to reproduce and discuss the results. Complementary information has been obtained by means of spin polarized low energy electron microscopy

  2. Magnetic properties of Fe/NiO/Fe(001) trilayers

    Energy Technology Data Exchange (ETDEWEB)

    Biagioni, P [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Brambilla, A [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Portalupi, M [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rougemaille, N [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Schmid, A K [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lanzara, A [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, University of California at Berkeley, Berkeley, CA 94720 (United States); Vavassori, P [INFM - Dipartimento di Fisica, Universita di Ferrara, Via Paradiso 12, 44100 Ferrara (Italy); Zani, M [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Finazzi, M [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Duo, L [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Ciccacci, F [INFM - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)

    2005-04-15

    We have investigated the magnetic properties of epitaxially grown Fe/NiO/Fe(001) trilayers, for different thicknesses of the NiO spacer. Magneto Optical Kerr Effect has been exploited to study the in-plane magnetization reversal processes in the iron layers. We found that the NiO thickness t{sub AFM} has a critical value t{sub C} for the magnetic coupling between the Fe layers: for t{sub AFM}

  3. Facile synthesis of Co3O4 nanowires grown on hollow NiO microspheres with superior electrochemical performance

    International Nuclear Information System (INIS)

    Fan, Meiqing; Ren, Bo; Yu, Lei; Song, Dalei; Liu, Qi; Liu, Jingyuan; Wang, Jun; Jing, Xiaoyan; Liu, Lianhe

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • The NiO hollow spheres were decorated by Co 3 O 4 nanowires. • The NiO hollow spheres were comprised of many NiO particles. • The Co 3 O 4 nanowires were composed of nanoparticles. • The NiO/Co 3 O 4 core/shell nanocomposites have good electrochemical properties. - Abstract: The NiO/Co 3 O 4 core/shell composites as a promising supercapacitor material have been fabricated by facile hydrothermal process. The structure and morphology of the NiO/Co 3 O 4 core/shell composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicated that the NiO hollow spheres were decorated by Co 3 O 4 nanowires, and the nanowires were composed of nanoparticles. Electrochemical properties were characterized by cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy. The results suggested that the NiO/Co 3 O 4 core/shell composites had good electrochemical reversibility and displayed superior capacitive performance with large capacitance (510 F g −1 ). Moreover, NiO/Co 3 O 4 core/shell composites showed excellent cyclic performanceafter 1000 cycles

  4. Crystalline, Optical and Electrical Properties of NiZnO Thin Films Fabricated by MOCVD

    International Nuclear Information System (INIS)

    Wang Jin; Wang Hui; Zhao Wang; Ma Yan; Li Wan-Cheng; Shi Zhi-Feng; Zhao Long; Zhang Bao-Lin; Dong Xin; Du Guo-Tong; Xia Xiao-Chuan

    2011-01-01

    NiZnO thin films are grown on c-plane sapphire substrates by using a photo-assisted metal organic chemical vapor deposition (MOCVD) system. The effect of the Ni content on the crystalline, optical and electrical properties of the films are researched in detail. The NiZnO films could retain a basic wurtzite structure when the Ni content is less than 0.18. As Ni content increases, crystal quality degradation could be observed in the x-ray diffraction patterns and a clear red shift of the absorption edge can be observed in the transmittance spectrum. Furthermore, the donor defects in the NiZnO film can be compensated for effectively by increasing the Ni content. The change of Ni content has an important effect on the properties of NiZnO films. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications

    Science.gov (United States)

    Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar

    2015-10-01

    Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.

  6. Size dependent magnetism of mass selected deposited transition metal clusters

    International Nuclear Information System (INIS)

    Lau, T.

    2002-05-01

    The size dependent magnetic properties of small iron clusters deposited on ultrathin Ni/Cu(100) films have been studied with circularly polarised synchrotron radiation. For X-ray magnetic circular dichroism studies, the magnetic moments of size selected clusters were aligned perpendicular to the sample surface. Exchange coupling of the clusters to the ultrathin Ni/Cu(100) film determines the orientation of their magnetic moments. All clusters are coupled ferromagnetically to the underlayer. With the use of sum rules, orbital and spin magnetic moments as well as their ratios have been extracted from X-ray magnetic circular dichroism spectra. The ratio of orbital to spin magnetic moments varies considerably as a function of cluster size, reflecting the dependence of magnetic properties on cluster size and geometry. These variations can be explained in terms of a strongly size dependent orbital moment. Both orbital and spin magnetic moments are significantly enhanced in small clusters as compared to bulk iron, although this effect is more pronounced for the spin moment. Magnetic properties of deposited clusters are governed by the interplay of cluster specific properties on the one hand and cluster-substrate interactions on the other hand. Size dependent variations of magnetic moments are modified upon contact with the substrate. (orig.)

  7. Energy variable monoenergetic positron beam study of oxygen atoms in Czochralski grown Si

    International Nuclear Information System (INIS)

    Tanigawa, S.; Wei, L.; Tabuki, Y.; Nagai, R.; Takeda, E.

    1992-01-01

    A monoenergetic positron beam has been used to investigate the state of interstitial oxygen in Czochralski-grown Si with the coverage of SiO 2 (100 nm) and poly-Si (200 nm)/SiO 2 (100 nm), respectively. It was found that (i) the growth of SiO 2 gives rise to a strong Doppler broadening of positron annihilation radiations in the bulk of Si, (ii) such a broadening can be recovered to the original level by annealing at 450degC, by the removal of overlayers using chemical etching and long-term aging at room temperature, (iii) the film stress over the CZ-grown Si is responsible for the rearrangement of oxygen atoms in S and (iv) only tensile stress gives rise to the clustering of oxygen atoms. The observed broadening was assigned to arise from the positron trapping by oxygen interstitial clusters. It was concluded that film stress is responsible for the rearrangement of oxygen atoms in CZ-grown Si. (author)

  8. Concomitant formation of different nature clusters and hardening in reactor pressure vessel steels irradiated by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K., E-mail: fujiik@inss.co.jp [Institute of Nuclear Safety System, Inc., Mihama 919-1205 (Japan); Fukuya, K. [Institute of Nuclear Safety System, Inc., Mihama 919-1205 (Japan); Hojo, T. [Japan Nuclear Energy Safety Organization, Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

    2013-11-15

    Specimens of A533B steels containing 0.04, 0.09 and 0.21 wt%Cu were irradiated at 290 °C to 3 dpa with 3 MeV Fe ions and subjected to atom probe analyses, transmission electron microscopy observations and hardness measurements. The atom probe analysis results showed that two types of solute clusters were formed: Cu-enriched clusters containing Mn, Ni and Si atoms as irradiation-enhanced solute atom clusters and Mn/Ni/Si-enriched clusters as irradiation-induced solute atom clusters. Both cluster types occurred in the highest Cu-content steel and the ratio of Mn/Ni/Si-enriched clusters to Cu-enriched clusters increased with irradiation doses. It was confirmed that the cluster formation was a key factor in the microstructure evolution until the high dose irradiation was reached even in the low Cu content steels though the dislocation loops with much lower density than that of the clusters were observed as matrix damage. The difference in the hardening efficiency due to the difference in the nature of the clusters was small. The irradiation-induced clustering of undersized Si atoms suggested that a clustering driving force other than vacancy-driven diffusion, probably an interstitial mechanism, may become important at higher dose rates.

  9. Concomitant formation of different nature clusters and hardening in reactor pressure vessel steels irradiated by heavy ions

    International Nuclear Information System (INIS)

    Fujii, K.; Fukuya, K.; Hojo, T.

    2013-01-01

    Specimens of A533B steels containing 0.04, 0.09 and 0.21 wt%Cu were irradiated at 290 °C to 3 dpa with 3 MeV Fe ions and subjected to atom probe analyses, transmission electron microscopy observations and hardness measurements. The atom probe analysis results showed that two types of solute clusters were formed: Cu-enriched clusters containing Mn, Ni and Si atoms as irradiation-enhanced solute atom clusters and Mn/Ni/Si-enriched clusters as irradiation-induced solute atom clusters. Both cluster types occurred in the highest Cu-content steel and the ratio of Mn/Ni/Si-enriched clusters to Cu-enriched clusters increased with irradiation doses. It was confirmed that the cluster formation was a key factor in the microstructure evolution until the high dose irradiation was reached even in the low Cu content steels though the dislocation loops with much lower density than that of the clusters were observed as matrix damage. The difference in the hardening efficiency due to the difference in the nature of the clusters was small. The irradiation-induced clustering of undersized Si atoms suggested that a clustering driving force other than vacancy-driven diffusion, probably an interstitial mechanism, may become important at higher dose rates

  10. Synthesis and characterization of n-type NiO:Al thin films for fabrication of p-n NiO homojunctions

    Science.gov (United States)

    Sun, Hui; Liao, Ming-Han; Chen, Sheng-Chi; Li, Zhi-Yue; Lin, Po-Chun; Song, Shu-Mei

    2018-03-01

    n-type NiO:Al thin films were deposited by RF magnetron sputtering. Their optoelectronic properties versus Al target power was investigated. The results show that with increasing Al target power, the conduction type of NiO films changes from p-type to n-type. The variation of the film’s electrical and optical properties depends on Al amount in the film. When Al target power is relatively low, Al3+ cations tend to enter nickel vacancy sites, which makes the lattice structure of NiO more complete. This improves the carrier mobility and film’s transmittance. However, when Al target power exceeds 40 W, Al atoms begin to enter into interstitial sites and form an Al cluster in the NiO film. This behavior is beneficial for improving the film’s n-type conductivity but degrades the film’s transmittance. Finally, Al/(p-type NiO)/(n-type NiO:Al)/ITO homojunctions were fabricated. Their performance was compared with Al/(p-type NiO)/ITO heterojunctions without an n-type NiO layer. Thanks to the better interface quality between the two NiO layers, the homojunctions present better performance.

  11. Structure cristalline du composé intermétallique Ni18Ge12

    Directory of Open Access Journals (Sweden)

    Mohammed Kars

    2015-03-01

    Full Text Available Single crystals of octadecanickel dodecagermanide were grown by chemical transport reaction. The intermetallic compound crystallizes in a superstructure of the hexagonal NiAs type (B8 type. All atoms in the asymmetric unit lie on special positions except one Ni atom (two Ni atoms have site symmetry -6.. and another one has site symmetry .2. while the Ge atoms have site symmetries 32., m.. and 3... In the structure, the Ni atoms are arranged in 11- or 13-vertex polyhedra (CN = 11–13. The coordination polyhedra of the Ge atoms are bicapped square antiprisms (CN = 10 or 11-vertex polyhedra (CN = 11. The structure exhibits strong Ge...Ni interactions, but no close Ge...Ge contacts are observed. The Ni atoms with CN = 13 form infinite chains along [001] with an Ni—Ni distance of 2.491 (2 Å.

  12. STM observations of ferromagnetic clusters

    International Nuclear Information System (INIS)

    Wawro, A.; Kasuya, A.

    1998-01-01

    Co, Fe and Ni clusters of nanometer size, deposited on silicon and graphite (highly oriented pyrolytic graphite), were observed by a scanning tunneling microscope. Deposition as well as the scanning tunneling microscope measurements were carried out in an ultrahigh vacuum system at room temperature. Detailed analysis of Co cluster height was done with the scanning tunneling microscope equipped with a ferromagnetic tip in a magnetic field up to 70 Oe. It is found that bigger clusters (few nanometers in height) exhibit a dependence of their apparent height on applied magnetic field. We propose that such behaviour originates from the ferromagnetic ordering of cluster and associate this effect to spin polarized tunneling. (author)

  13. Quantitative analysis of reflection electron energy loss spectra to determine electronic and optical properties of Fe–Ni alloy thin films

    International Nuclear Information System (INIS)

    Tahir, Dahlang; Oh, Sukh Kun; Kang, Hee Jae; Tougaard, Sven

    2016-01-01

    Highlights: • Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). • The energy loss functions (ELF) are dominated by a plasmon peak at 23.6 eV for Fe and moves gradually to lower energies in Fe-Ni alloys towards the bulk plasmon energy of Ni at 20.5 eV. • Fe has a strong effect on the dielectric and optical properties of Fe-Ni alloy thin films even for an alloy with 72% Ni. Electronic and optical properties of Fe-Ni alloy thin films grown on Si (1 0 0) were studied via quantitative analyses of reflection electron energy loss spectra (REELS). - Abstract: Electronic and optical properties of Fe–Ni alloy thin films grown on Si (1 0 0) by ion beam sputter deposition were studied via quantitative analyses of reflection electron energy loss spectra (REELS). The analysis was carried out by using the QUASES-XS-REELS and QUEELS-ε(k,ω)-REELS softwares to determine the energy loss function (ELF) and the dielectric functions and optical properties by analyzing the experimental spectra. For Ni, the ELF shows peaks around 3.6, 7.5, 11.7, 20.5, 27.5, 67 and 78 eV. The peak positions of the ELF for Fe_2_8Ni_7_2 are similar to those of Fe_5_1Ni_4_9, even though there is a small peak shift from 18.5 eV for Fe_5_1Ni_4_9 to 18.7 eV for Fe_2_8Ni_7_2. A plot of n, k, ε_1, and ε_2 shows that the QUEELS-ε(k,ω)-REELS software for analysis of REELS spectra is useful for the study of optical properties of transition metal alloys. For Fe–Ni alloy with high Ni concentration (Fe_2_8Ni_7_2), ε_1, and ε_2 have strong similarities with those of Fe. This indicates that the presence of Fe in the Fe–Ni alloy thin films has a strong effect.

  14. Crystal growth, electronic structure, and properties of Ni-substituted FeGa{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Likhanov, Maxim S. [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Verchenko, Valeriy Yu. [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); National Institute of Chemical Physics and Biophysics, 12618 Tallinn (Estonia); Bykov, Mikhail A. [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Tsirlin, Alexander A. [National Institute of Chemical Physics and Biophysics, 12618 Tallinn (Estonia); Experimental Physics VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Gippius, Andrei A. [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Shubnikov Institute of Crystallography, Russian Academy of Science, 119333, Moscow (Russian Federation); Berthebaud, David; Maignan, Antoine [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN, F-14050 CAEN Cedex 4 (France); Shevelkov, Andrei V., E-mail: shev@inorg.chem.msu.ru [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-04-15

    Crystals of the Fe{sub 1−x}Ni{sub x}Ga{sub 3} limited solid solution (x<0.045) have been grown from gallium flux. We have explored the electronic structure as well as magnetic and thermoelectric properties of Fe{sub 0.975}Ni{sub 0.025}Ga{sub 3} in comparison with Fe{sub 0.95}Co{sub 0.05}Ga{sub 3}, following the rigid band approach and assuming that one Ni atom donates twice the number of electrons as one Co atom. However, important differences between the Co- and Ni-doped compounds are found below 620 K, which is the temperature of the metal-to-insulator transition for both compounds. We have found that Fe{sub 0.975}Ni{sub 0.025}Ga{sub 3} displays lower degree of spatial inhomogeneity on the local level and exhibits diamagnetic behavior with a broad shallow minimum in the magnetic susceptibility near 35 K, in sharp contrast with the Curie–Weiss paramagnetism of Fe{sub 0.95}Co{sub 0.05}Ga{sub 3}. Transport measurements have shown the maximum of the thermoelectric figure-of-merit ZT of 0.09 and 0.14 at 620 K for Fe{sub 0.975}Ni{sub 0.025}Ga{sub 3} and Fe{sub 0.95}Co{sub 0.05}Ga{sub 3}, respectively. - Graphical abstract: Crystals of Ni-substituted FeGa{sub 3} up to 8 mm long were grown from gallium flux (see Figure for the temperature profile and crystal shape) that allowed studying magnetic and thermoelectric properties of the title solid solution.

  15. Effect of interface intermixing on giant magnetoresistance in NiFe/Cu and Co/NiFe/Co/Cu multilayers

    International Nuclear Information System (INIS)

    Nagamine, L.C.C.M.; Biondo, A.; Pereira, L.G.; Mello, A.; Schmidt, J.E.; Chimendes, T.W.; Cunha, J.B.M.; Saitovitch, E.B.

    2003-01-01

    This article reports on the important influence of the spontaneously built-in paramagnetic interfacial layers on the magnetic and magnetoresistive properties of NiFe/Cu and Co/NiFe/Co/Cu multilayers grown by magnetron sputtering. A computational simulation, based on a semiclassical model, has been used to reproduce the variations of the resistivity and of the magnetoresistance (MR) amplitude with the thickness of the NiFe, Cu, and Co layers. We showed that the compositionally intermixed layers at NiFe/Cu interfaces, which are paramagnetic, reduce the flow of polarized electrons and produce a masking on the estimated mean-free path of both types of electrons due to the reduction of their effective values, mainly for small NiFe thickness. Moreover, the transmission coefficients for the electrons decrease when Fe buffer layers are replaced by NiFe ones. This result is interpreted in terms of the variations of the interfacial intermixing and roughness at the interfaces, leading to an increase of the paramagnetic interfacial layer thickness. The effect provoked by Co deposition at the NiFe 16 A/Cu interfaces has also been investigated. The maximum of the MR amplitudes was found at 5 A of Co, resulting in the quadruplication of the MR amplitude. This result is partially attributed to the interfacial spin-dependent scattering due to the increase of the magnetic order at interfaces. Another effect observed here was the increase of the spin-dependent scattering events in the bulk NiFe due to a larger effective NiFe thickness, since the paramagnetic interfacial layer thickness is decreased

  16. Effect of the Cu and Ni content on the crystallization temperature and crystallization mechanism of La–Al–Cu(Ni metallic glasses

    Directory of Open Access Journals (Sweden)

    Peiyou Li

    2016-02-01

    Full Text Available The effect of the Cu and Ni content on the crystallization mechanism and the crystallization temperatures of La–Al–Cu(Ni metallic glasses (MGs was studied by differential scanning calorimetry (DSC. The experimental results have shown that the DSC curves obtained for the La–Al–Cu and La–Al–Ni MGs exhibit two and three crystallization temperatures, respectively. The crystallization temperatures of the La–Al–Cu and La–Al–Ni MGs result from the merging and splitting of thermal events related to the corresponding eutectic atomic pairs in the La72Cu28 and La81.6Al18.4 MGs, and La72Ni28 and La81.6Al18.4 MGs, respectively. In addition, Al- and Ni-containing clusters with weak or strong atomic interaction in the Al–Ni atomic pairs strongly affect the crystallization mechanism and thus the crystallization temperature of La–Al–Ni MGs. This study provides a novel understanding of the relation between the crystallization temperature and the underlying crystallization mechanisms in La–Al–Cu(Ni MGs.

  17. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

    International Nuclear Information System (INIS)

    Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia; Ye, Jingyun; Gallington, Leighanne C.

    2017-01-01

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and difference envelope density analysis, with electron microscopy imag-ing and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiO x H y clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield hetero-bimetallic metal-oxo nanowires. Finally, this bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering-resistance of these clusters during the hydrogenation of light olefins.

  18. Proofs of cluster formation and transitions in liquid metals and alloys

    International Nuclear Information System (INIS)

    Filippov, E.S.

    1985-01-01

    Calculational and experimental proofs are presented indicating to existence of clusters in liquid metals and alloys. Systems of liquid alloys both on the base of ferrous metals and non-ferrous metals (Fe-C, Ni-C, Co-C, Fe-Ni, Ni-Mo, Co-Cr, Co-V as well as In-Sn, Bi-Sn, Si-Ge and others) are studied experimentally. It is shown that the general feature of the systems studied is sensitivity of a volume to change in structure, to replacement fcc structure on bcc or to initiation-dissociation of intermetallic compounds AxBy. It is shown that both in pure liquid metals and in their.alloys there are clusters as ordered aggregate of atoms

  19. Electronic structure and magnetic properties of Ni-doped SnO2 thin films

    Science.gov (United States)

    Sharma, Mayuri; Kumar, Shalendra; Alvi, P. A.

    2018-05-01

    This paper reports the electronic structure and magnetic properties of Ni-doped SnO2 thin film which were grown on Si (100) substrate by PLD (pulse laser deposition) technique under oxygen partial pressure (PO2). For getting electronic structure and magnetic behavior, the films were characterized using near edge X-ray absorption fine structure spectroscopy (NEXAFS) and DC magnetization measurements. The NEXAFS study at Ni L3,2 edge has been done to understand the local environment of Ni and Sn ions within SnO2 lattice. DC magnetization measurement shows that the saturation magnetization increases with the increase in substitution of Ni2+ ions in the system.

  20. Highly Uniform Atomic Layer-Deposited MoS2@3D-Ni-Foam: A Novel Approach To Prepare an Electrode for Supercapacitors.

    Science.gov (United States)

    Nandi, Dip K; Sahoo, Sumanta; Sinha, Soumyadeep; Yeo, Seungmin; Kim, Hyungjun; Bulakhe, Ravindra N; Heo, Jaeyeong; Shim, Jae-Jin; Kim, Soo-Hyun

    2017-11-22

    This article takes an effort to establish the potential of atomic layer deposition (ALD) technique toward the field of supercapacitors by preparing molybdenum disulfide (MoS 2 ) as its electrode. While molybdenum hexacarbonyl [Mo(CO) 6 ] serves as a novel precursor toward the low-temperature synthesis of ALD-grown MoS 2 , H 2 S plasma helps to deposit its polycrystalline phase at 200 °C. Several ex situ characterizations such as X-ray diffractometry (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and so forth are performed in detail to study the as-grown MoS 2 film on a Si/SiO 2 substrate. While stoichiometric MoS 2 with very negligible amount of C and O impurities was evident from XPS, the XRD and high-resolution transmission electron microscopy analyses confirmed the (002)-oriented polycrystalline h-MoS 2 phase of the as-grown film. A comparative study of ALD-grown MoS 2 as a supercapacitor electrode on 2-dimensional stainless steel and on 3-dimensional (3D) Ni-foam substrates clearly reflects the advantage and the potential of ALD for growing a uniform and conformal electrode material on a 3D-scaffold layer. Cyclic voltammetry measurements showed both double-layer capacitance and capacitance contributed by the faradic reaction at the MoS 2 electrode surface. The optimum number of ALD cycles was also found out for achieving maximum capacitance for such a MoS 2 @3D-Ni-foam electrode. A record high areal capacitance of 3400 mF/cm 2 was achieved for MoS 2 @3D-Ni-foam grown by 400 ALD cycles at a current density of 3 mA/cm 2 . Moreover, the ALD-grown MoS 2 @3D-Ni-foam composite also retains high areal capacitance, even up to a high current density of 50 mA/cm 2 . Finally, this directly grown MoS 2 electrode on 3D-Ni-foam by ALD shows high cyclic stability (>80%) over 4500 charge-discharge cycles which must invoke the research community to further explore the potential of ALD for such applications.

  1. A Kondo cluster-glass model for spin glass Cerium alloys

    International Nuclear Information System (INIS)

    Zimmer, F M; Magalhaes, S G; Coqblin, B

    2011-01-01

    There are clear indications that the presence of disorder in Ce alloys, such as Ce(Ni,Cu) or Ce(Pd,Rh), is responsible for the existence of a cluster spin glass state which changes continuously into inhomogeneous ferromagnetism at low temperatures. We present a study of the competition between magnetism and Kondo effect in a cluster-glass model composed by a random inter-cluster interaction term and an intra-cluster one, which contains an intra-site Kondo interaction J k and an inter-site ferromagnetic one J 0 . The random interaction is given by the van Hemmen type of randomness which allows to solve the problem without the use of the replica method. The inter-cluster term is solved within the cluster mean-field theory and the remaining intra-cluster interactions can be treated by exact diagonalization. Results show the behavior of the cluster glass order parameter and the Kondo correlation function for several sizes of the clusters, J k , J 0 and values of the ferromagnetic inter-cluster average interaction I 0 . Particularly, for small J k , the magnetic solution is strongly dependent on I 0 and J 0 and a Kondo cluster-glass or a mixed phase can be obtained, while, for large J k , the Kondo effect is still dominant, both in good agreement with experiment in Ce(Ni,Cu) or Ce(Pd,Rh) alloys.

  2. Seaurchin-like hierarchical NiCo2O4@NiMoO4 core-shell nanomaterials for high performance supercapacitors.

    Science.gov (United States)

    Zhang, Qiang; Deng, Yanghua; Hu, Zhonghua; Liu, Yafei; Yao, Mingming; Liu, Peipei

    2014-11-14

    A novel electrode material of the three-dimensional (3D) multicomponent oxide NiCo2O4@NiMoO4 core-shell was synthesized via a facile two-step hydrothermal method using a post-annealing procedure. The uniform NiMoO4 nanosheets were grown on the seaurchin-like NiCo2O4 backbone to form a NiCo2O4@NiMoO4 core-shell material constructed by interconnected ultrathin nanosheets, so as to produce hierarchical mesopores with a large specific surface area of 100.3 m(2) g(-1). The porous feature and core-shell structure can facilitate the penetration of electrolytic ions and increases the number of electroactive sites. Hence, the NiCo2O4@NiMoO4 material exhibited a high specific capacitance of 2474 F g(-1) and 2080 F g(-1) at current densities of 1 A g(-1) and 20 A g(-1) respectively, suggesting that it has not only a very large specific capacitance, but also a good rate performance. In addition, the capacitance loss was only 5.0% after 1000 cycles of charge and discharge tests at the current density of 10 A g(-1), indicating high stability. The excellent electrochemical performance is mainly attributed to its 3D core-shell and hierarchical mesoporous structures which can provide unobstructed pathways for the fast diffusion and transportation of ions and electrons, a large number of active sites and good strain accommodation.

  3. Thermal dynamics of silver clusters grown on rippled silica surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, Mukul, E-mail: mkbh10@gmail.com [FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat (India); Nirma University, Ahmedabad, Gujarat (India); Ranjan, Mukesh [FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat (India); Nirma University, Ahmedabad, Gujarat (India); Jolley, Kenny; Lloyd, Adam; Smith, Roger [Dept. of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Mukherjee, Subroto [FCIPT, Institute for Plasma Research, Gandhinagar, Gujarat (India); Nirma University, Ahmedabad, Gujarat (India)

    2017-02-15

    Highlights: • Low energy oblique angle ion bombardment forms ripple pattern on silicon surface. • The ripple patterns have wavelengths between 20 and 45 nm and correspondingly low height. • Silver nanoparticles have been deposited at an angle of 70° on patterned silicon templates. • The as-deposited np are annealed in vacuo at temperature of 573 K for a time duration of 1 h. • MD simulation is used to model the process and compare the results to the experiment. • Results show that silver clusters grow preferentially along parallel to the rippled surface. • Mobility of silver atoms depends on the site to which they are bonded on this amorphous surface. • MD simulations show contour ordered coalescence which is dependent on ripple periodicity. - Abstract: Silver nanoparticles have been deposited on silicon rippled patterned templates at an angle of incidence of 70° to the surface normal. The templates are produced by oblique incidence argon ion bombardment and as the fluence increases, the periods and heights of the structures increase. Structures with periods of 20 nm, 35 nm and 45 nm have been produced. Moderate temperature vacuum annealing shows the phenomenon of cluster coalescence following the contour of the more exposed faces of the ripple for the case of 35 nm and 45 nm but not at 20 nm where the silver aggregates into larger randomly distributed clusters. In order to understand this effect, the morphological changes of silver nanoparticles deposited on an asymmetric rippled silica surface are investigated through the use of molecular dynamics simulations for different deposition angles of incidence between 0° and 70° and annealing temperatures between 500 K and 900 K. Near to normal incidence, clusters are observed to migrate over the entire surface but for deposition at 70°, a similar patterning is observed as in the experiment. The random distribution of clusters for the periodicity ≈ of 20 nm is linked to the geometry of the silica

  4. Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells

    DEFF Research Database (Denmark)

    Bro, Christoffer; Regenberg, Birgitte; Lagniel, G.

    2003-01-01

    Lithium is highly toxic to yeast when grown in galactose medium mainly because phosphoglucomutase, a key enzyme of galactose metabolism, is inhibited. We studied the global protein and gene expression profiles of Saccharomyces cerevisiae grown in galactose in different time intervals after addition...... of lithium. These results were related to physiological studies where both secreted and intracellular metabolites were determined. Microarray analysis showed that 664 open reading frames were down-regulated and 725 up-regulated in response to addition of lithium. Genes involved in transcription, translation......-regulated proteins were also identified as being changed on the mRNA level. Functional clusters obtained from proteome data were coincident with transcriptional clusters. Physiological studies showed that acetate, glycerol, and glycogen accumulate in response to lithium, as reflected in expression data, whereas...

  5. Electrografting and morphological studies of chemical vapour deposition grown graphene sheets modified by electroreduction of aryldiazonium salts

    International Nuclear Information System (INIS)

    Mooste, Marek; Kibena, Elo; Kozlova, Jekaterina; Marandi, Margus; Matisen, Leonard; Niilisk, Ahti; Sammelselg, Väino; Tammeveski, Kaido

    2015-01-01

    Highlights: • CVD-grown graphene sheets were electrografted with various aryldiazonium salts • Redox grafting was applied to form thick nitrophenyl films • The reduction of the released radicals was in evidence during the redox grafting • Multilayer formation on CVD graphene was confirmed by XPS and AFM measurements • Thickness of different aryl layers on CVD graphene varied from few to 30 nm - Abstract: This work focuses on investigating the electrografting of chemical vapour deposition (CVD) graphene electrodes grown onto Ni foil (Ni/Gra) with different diazonium salts (including azobenzene diazonium tetrafluoroborate, Fast Garnet GBC sulphate salt, Fast Black K salt, 4-bromobenzene diazonium tetrafluoroborate and 4-nitrobenzenediazonium tetrafluoroborate). Various grafting conditions (e.g. “normal” electrografting in the narrow potential range and redox grafting in the wider potential range) were used. The electrochemical grafting behaviour was similar for all diazonium compounds used, except for the 4-nitrobenzenediazonium tetrafluoroborate when redox grafting was applied. The X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Raman spectroscopy results confirmed the presence of the corresponding aryl layers on Ni/Gra surfaces. The formation of multilayers on Ni/Gra substrates was in evidence since the thickness of different aryl layers varied from few to 30 nm depending on the modification procedures as well as the diazonium compounds used and the XPS analysis revealed a peak at about 400 eV for all aryl-modified Ni/Gra samples suggesting the multilayer formation also through azo linkages

  6. Preparation and characterization of LaNiO3 films grown by metal ...

    Indian Academy of Sciences (India)

    Administrator

    Keywords. Conductive films; LaNiO3; metal–organic deposition; texture. 1. Introduction ... films on Si (111) and quartz substrates were first prepared with the 2-ethyl hexanotes of ..... Li A, Ge C, Lü P and Ming N 1996a Appl. Phys. Lett. 68. 1347.

  7. Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD

    Science.gov (United States)

    Hei, Li-fu; Zhao, Yun; Wei, Jun-jun; Liu, Jin-long; Li, Cheng-ming; Lü, Fan-xiu

    2017-12-01

    Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition (CVD) were examined using a low-temperature photoluminescence (PL) technique. The results show that most of the nitrogen-vacancy (NV) complexes are present as NV- centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N2 incorporation and the high mobility of vacancies under growth temperatures of 950-1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy (Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition (MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV- centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.

  8. Influences of doping Cr/Fe/Ta on the performance of Ni/CeO{sub 2} catalyst under microwave irradiation in dry reforming of CH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Odedairo, Taiwo [School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane (Australia); Ma, Jun [School of Engineering, University of South Australia, Mawson Lakes, SA (Australia); Chen, Jiuling, E-mail: cjlchen@yahoo.com [School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane (Australia); Wang, Shaobin [Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Zhu, Zhonghua, E-mail: z.zhu@uq.edu.au [School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane (Australia)

    2016-01-15

    The structure of Ni/CeO{sub 2} catalyst with doping of Cr, Fe and Ta was investigated with XRD, N{sub 2} physisorption, XPS and HRTEM and the catalytic activity of the catalysts under microwave irradiation in dry reforming of methane was tested in a microwave reactor. The results show that the introduction of Cr and Ta to Ni/CeO{sub 2} can enhance the interaction between Ni and the support/promoter and inhibit the enlargement of NiO particles during the synthesis. The CH{sub 4} conversions in dry reforming on the catalysts follow the order: Ni/CeO{sub 2}<2Fe–Ni<2Ta–Ni<2Cr–Ni. The superior performance of 2Ta–Ni and 2Cr–Ni may be attributed to the locally-heated Ni particles caused by the strong microwave absorption of the in-situ grown graphene attached on them under microwave irradiation. - Highlights: • The influences of doping Cr, Fe and Ta on Ni/CeO{sub 2} were investigated. • The catalytic performances before and after doping were investigated. • The in-situ grown graphene can promote the conversion of reactants.

  9. Construction of Core-Shell NiMoO4@Ni-Co-S Nanorods as Advanced Electrodes for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Chen, Chao; Yan, Dan; Luo, Xin; Gao, Wenjia; Huang, Guanjie; Han, Ziwu; Zeng, Yan; Zhu, Zhihong

    2018-02-07

    In this work, hierarchical core-shell NiMoO 4 @Ni-Co-S nanorods were first successfully grown on nickel foam by a facile two-step method to fabricate a bind-free electrode. The well-aligned electrode wrapped by Ni-Co-S nanosheets displays excellent nanostructural properties and outstanding electrochemical performance, owing to the synergistic effects of both nickel molybdenum oxides and nickel cobalt sulfides. The prepared core-shell nanorods in a three-electrode cell yielded a high specific capacitance of 2.27 F cm -2 (1892 F g -1 ) at a current density of 5 mA cm -2 and retained 91.7% of the specific capacitance even after 6000 cycles. Their electrochemical performance was further investigated for their use as positive electrode for asymmetric supercapacitors. Notably, the energy density of the asymmetric supercapacitor device reached 2.45 mWh cm -3 at a power density of 0.131 W cm -3 , and still retained a remarkable 80.3% of the specific capacitance after 3500 cycles. There is great potential for the electrode composed of the core-shell NiMoO 4 @Ni-Co-S nanorods for use in an all-solid-state asymmetric supercapacitor device.

  10. Sm cluster superlattice on graphene/Ir(111)

    Science.gov (United States)

    Mousadakos, Dimitris; Pivetta, Marina; Brune, Harald; Rusponi, Stefano

    2017-12-01

    We report on the first example of a self-assembled rare earth cluster superlattice. As a template, we use the moiré pattern formed by graphene on Ir(111); its lattice constant of 2.52 nm defines the interparticle distance. The samarium cluster superlattice forms for substrate temperatures during deposition ranging from 80 to 110 K, and it is stable upon annealing to 140 K. By varying the samarium coverage, the mean cluster size can be increased up to 50 atoms, without affecting the long-range order. The spatial order and the width of the cluster size distribution match the best examples of metal cluster superlattices grown by atomic beam epitaxy on template surfaces.

  11. 2D water layer enclathrated between Mn(II)-Ni(CN)4 coordination frameworks

    International Nuclear Information System (INIS)

    Ray, Ambarish; Bhowmick, Indrani; Sheldrick, William S.; Jana, Atish Dipankar; Ali, Mahammed

    2009-01-01

    A [Ni(CN) 4 ] 2- based two-dimensional Mn(II) coordination polymer {Mn(H 2 O) 2 [NiCN] 4 .4H 2 O}, in which the coordination layers are stacked on top of each other sandwiching 2D water layer of boat-shaped hexagonal water clusters has been synthesized. The complex exhibits high thermal decomposition temperature and reversible water absorption, which were clearly demonstrated by thermal and PXRD studies on the parent and rehydrated complex after dehydration. - Abstract: A coordination polymer, {Mn(H 2 O) 2 [NiCN] 4 .4H 2 O} n , showed that the coordination layers are stacked on top of each other sandwiching 2D ice layer of boat-shaped hexagonal water clusters . Display Omitted

  12. A Density Functional Theory Investigation of Nin , Pdn , and Ptn Clusters (n=1-4) Adsorbed on Buckminsterfullerene.

    Science.gov (United States)

    Pham, Nguyet N T; Le, Hung M

    2017-05-19

    In this study, we examine the adsorptions of Ni, Pd, and Pt clusters on C 60 by using a computational approach. Our calculation results show that the base structure of C 60 can host Ni n /Pd n /Pt n (n=1-4) clusters with good adsorption stability and the complexes establish either two or no unpaired electrons. The binding energy of Pd and Pt clusters increases as the number of metal atoms increases, implying that the coverage of C 60 with Pd or Pt preferentially establishes a large-size metal cluster. A single metal atom favorably occupies the C-C bridge site. For dimer clusters, the three metals of interest share a similar binding fashion, in which two metal atoms establish direct interactions with the C-C bridge sites. For trimer adsorptions, the formation of linear and triangular structures is observed. Both Pt 3 and Ni 3 preferably constitute isosceles triangles on C 60 , whilst Pd 3 favorably establishes a linear shape. Finally, for each of the Ni 4 and Pd 4 adsorption cases, we observed three stable binding configurations: rhombus, tetrahedron, and Y-form. Whereas Ni 4 establishes a tetrahedral form, Pd 4 attains the most stable form with the Y-shape geometry on C 60 . Overall, we observe that the trend of Pd binding to C 60 tends to go beyond the fashion of Ni and Pt. In terms of magnetic alignment, the Pd n -C 60 systems seem to be non-magnetic in most cases, unlike the Ni and Pt cases, the structures of which possess magnetic moments of 2 μB in their most stable forms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application

    International Nuclear Information System (INIS)

    Zhu, Jianhui; Jiang, Jian; Liu, Jingping; Ding, Ruimin; Ding, Hao; Feng, Yamin; Wei, Guangming; Huang, Xintang

    2011-01-01

    Porous NiO nanowall arrays (NWAs) grown on flexible Fe-Co-Ni alloy have been successfully synthesized by using nullaginite (Ni 2 (OH) 2 CO 3 ) as precursor and investigated as supercapacitor electrodes. In details, we adopted a simple hydrothermal method to realize Ni 2 (OH) 2 CO 3 NWAs and examined their robust mechanical adhesion to substrate via a long-time ultrasonication test. Porous NiO NWAs were then obtained by a post-calcination towards precursors at 500 o C in nitrogen atmosphere. Electrochemical properties of as-synthesized NiO NWAs were evaluated by cyclic voltammetry and galvanostatic charge/discharge; porous NiO NWAs electrode delivered a specific capacitance of 270 F/g (0.67 A/g); even at high current densities, the electrode could still deliver a high capacitance up to 236 F/g (13.35 A/g). Meanwhile, it exhibited excellent cycle lifetime with ∼93% specific capacitance kept after 4000 cycles. These results suggest that as-made porous NiO NWAs electrode is a promising candidate for future thin-film supercapacitors and other microelectronic systems. -- Graphical abstract: Porous NiO nanowall arrays (NWAs) grown on alloy substrate have been made using nullaginite as precursor and studied as supercapacitor electrodes. Porous nanowalls interconnected with each other resulting in the formation of extended-network architectures and exhibited excellent capacitor properties. NiO NWAs electrode delivered a capacitance of 270 F/g (0.67 A/g); even at high current density, the electrode could still deliver a high capacitance up to 236 F/g (13.35 A/g). Besides, it exhibited excellent cycle lifetime with ∼93% capacitance kept after 4000 cycles. These remarkable results made it possible for mass production of NiO NWAs and future thin-film microelectronic applications. Display Omitted Research highlights: → Large-scale nullaginite (Ni 2 (OH) 2 CO 3 ) nanowall arrays (NWAs) have been synthesized on flexible alloy substrate by a facile hydrothermal method.

  14. Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films

    Science.gov (United States)

    Chen, G.; Zhu, J.; Quesada, A.; Li, J.; N'Diaye, A. T.; Huo, Y.; Ma, T. P.; Chen, Y.; Kwon, H. Y.; Won, C.; Qiu, Z. Q.; Schmid, A. K.; Wu, Y. Z.

    2013-04-01

    Using spin-polarized low energy electron microscopy, we discovered a new type of domain wall structure in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100). Specifically, we observed unexpected Néel-type walls with fixed chirality in the magnetic stripe phase. Furthermore, we find that the chirality of the domain walls is determined by the film growth order with the chirality being right handed in Fe/Ni bilayers and left handed in Ni/Fe bilayers, suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces. Our observations may open a new route to control chiral spin structures using interfacial engineering in transition metal heterostructures.

  15. High photocurrent gain in NiO thin film/M-doped ZnO nanorods (M=Ag, Cd and Ni) heterojunction based ultraviolet photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Echresh, Ahmad, E-mail: ahmadechresh@gmail.com [Department of Science and Technology, Physical Electronics and Nanotechnology Division, Campus Norrköping, Linköping University, SE-601 74 Norrköping (Sweden); Echresh, Mohammad [Department of Physics, Sanati Hoveizeh University, Ahvaz (Iran, Islamic Republic of); Khranovskyy, Volodymyr [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-5818358183 Linköping (Sweden); Nur, Omer; Willander, Magnus [Department of Science and Technology, Physical Electronics and Nanotechnology Division, Campus Norrköping, Linköping University, SE-601 74 Norrköping (Sweden)

    2016-10-15

    The thermal evaporation method has been used to deposit p-type NiO thin film, which was combined with hydrothermally grown n-type pure and M-doped ZnO nanorods (M=Ag, Cd and Ni) to fabricate a high performance p-n heterojunction ultraviolet photodiodes. The fabricated photodiodes show high rectification ratio and relatively low leakage current. The p-NiO/n-Zn{sub 0.94}Ag{sub 0.06}O heterojunction photodiode displays the highest photocurrent gain (~1.52×10{sup 4}), a photoresponsivity of ~4.48×10{sup 3} AW{sup −1} and a photosensitivity of ~13.56 compared with the other fabricated photodiodes. The predominated transport mechanisms of the p-n heterojunction ultraviolet photodiodes at low and high applied forward bias may be recombination-tunneling and space charge limited current, respectively.

  16. On the failure of NiAl bicrystals during laser-induced shock compression

    International Nuclear Information System (INIS)

    Loomis, Eric; Swift, Damian; Peralta, Pedro; McClellan, Ken

    2005-01-01

    Thin NiAl bicrystals 5 mm in diameter and 150-350 μm thick were tested under laser-induced shock compression to evaluate the material behavior and the effect of localized strain at the grain boundary on the failure of these specimens. Circular NiAl bicrystal samples with random misorientation were grown using a modified Czochralski technique and samples were prepared for shock compression at moderate pressures (<10 GPa). The observed crack patterns on the drive surface as well as the free surface were examined using optical microscopy. Transmission electron microscopy (TEM) of the drive surface as well as in the bulk of one grain was performed on recovered specimens following shock compression. This revealed that a nanocrystalline region with a grain size of 15-20 nm formed on a thin layer at the drive surface following the plasma expansion phase of the laser-induced shock. TEM in the bulk of one grain showed that plastic deformation occurred in a periodic fashion through propagation of dislocation clusters. Cracking on the free surface of the samples revealed a clear grain boundary affected zone (GBAZ) due to scattering of the shock wave and variations in wave speed across the inclined boundary. Damage tended to accumulate in the grain into which the elastic wave refracted. This damage accumulation corresponds well to the regions in which the transmitted waves impinged on the free surface as predicted by elastic scattering models

  17. The impact of substrate stimulated functional interface on magnetic and magneto-transport signature of martensitic transformation in NiMnIn shape memory alloy

    Science.gov (United States)

    Sabirianov, R.; Sokolov, A.; Kirianov, E.; Zlenko, A.; Quetz, A.; Aryal, A.; Pandey, S.; Dubenko, I.; Ali, N.; Stadler, S.; Al-Aqtash, N.

    We study the impact of the substrate on the martensite transformation of Ni-Mn-In thin films by Hall resistance measurements and discuss it using density functional theory calculations. Similarly to the bulk systems, thin films grown on MgO exhibit the martensitic transformation accompanied by large magnetoresistance and a sign reversal of the ordinary as well as anomalous Hall coefficient. Martensite transition temperature of films grown on (100) surface of MgO is near 170K, while the films grown on (111) surface of MgO show the change of Hall coefficient at 110K. The calculated total energy difference between FM austenite and FiM martensite states in Ni2Mn1.5In0.5 film on MgO (001) substrate (with Ni/MgO interface) is 0.20eV per NiMnIn f.u, compared to 0.24eV in the bulk at the same equilibrium lattice parameters, i.e. when film is ``unstrained''. When lattice parameters of Ni2Mn1.5In0.5/MgO are of those of MgO substrate, i.e. when the film experiences strong bi-axial tensile strain Δa / a = 2.4%, the energy difference is 0.08eV per NiMnIn f.u. These results clearly indicate strong interplay between lattice strain/stress and the relative stability martensite and austenite phase The work is supported by NSF.

  18. Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Arai, Yusuke; Ohishi, Yasutake

    2008-01-01

    A systematic method to evaluate potentials of Ni 2+ -doped transparent glass-ceramics as a new broadband optical gain media is presented. At first, near-infrared emission of various ceramics were investigated to explore the suitable crystalline phase to be grown in the glass-ceramics. The quantum efficiency of Ni 2+ near-infrared emission estimated by the Struck-Fonger analysis was higher than 95% for spinel-type structure gallate crystals MgGa 2 O 4 and LiGa 5 O 8 at room temperature. Transparent glass-ceramics containing Ni 2+ :LiGa 5 O 8 could be prepared and the quantum efficiency for the glass-ceramics was measured to be about 10%. This value shows a potential of Ni-doped transparent glass-ceramics as a broadband gain media

  19. Ab initio random structure search for 13-atom clusters of fcc elements

    International Nuclear Information System (INIS)

    Chou, J P; Hsing, C R; Wei, C M; Cheng, C; Chang, C M

    2013-01-01

    The 13-atom metal clusters of fcc elements (Al, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) were studied by density functional theory calculations. The global minima were searched for by the ab initio random structure searching method. In addition to some new lowest-energy structures for Pd 13 and Au 13 , we found that the effective coordination numbers of the lowest-energy clusters would increase with the ratio of the dimer-to-bulk bond length. This correlation, together with the electronic structures of the lowest-energy clusters, divides the 13-atom clusters of these fcc elements into two groups (except for Au 13 , which prefers a two-dimensional structure due to the relativistic effect). Compact-like clusters that are composed exclusively of triangular motifs are preferred for elements without d-electrons (Al) or with (nearly) filled d-band electrons (Ni, Pd, Cu, Ag). Non-compact clusters composed mainly of square motifs connected by some triangular motifs (Rh, Ir, Pt) are favored for elements with unfilled d-band electrons. (paper)

  20. Cyclic oxidation behaviour of different treated CoNiCrAlY coatings

    Energy Technology Data Exchange (ETDEWEB)

    Marginean, G. [University of Applied Sciences Gelsenkirchen, Neidenburger Str. 43, 45877 Gelsenkirchen (Germany); Utu, D., E-mail: dutu@eng.upt.ro [University ' Politehnica' Timisoara, Faculty of Mechanical Engineering, Blv. Mihai Viteazu 1, 300222 Timisoara (Romania)

    2012-08-01

    High velocity oxygen fuel (HVOF) spraying method was used in order to obtain very dense and good adhesive CoNiCrAlY-coatings deposited onto nickel-based alloy. The coatings were differently treated (preoxidized, vacuum treated or electron beam irradiated) before their exposure to cyclic oxidation tests in air at 1000 Degree-Sign C for periods up to 5 h. Changes of the coatings morphology and structure were analysed by scanning electron microscopy (SEM) and X-ray diffraction technique (XRD). The surface temperature of the samples was measured during cooling, between the oxidation cycles, and finally was associated with the thickness of the grown protective oxide scale on the CoNiCrAlY-surface. The experimental results demonstrated that depending on the thickness respectively on the different structures of the grown oxide scale, the cooling rate of the sample surface will be different as well.

  1. Preparation and Characterization of Ni Spines Grown on the Surface of Cubic Boron Nitride Grains by Electroplating Method

    Science.gov (United States)

    Gui, Yanghai; Zhao, Jianbo; Chen, Jingbo; Jiang, Yuanli

    2016-01-01

    Cubic boron nitride (cBN) is widely applied in cutting and grinding tools. cBN grains plated by pure Ni and Ni/SiC composite were produced under the same conditions from an additive-free nickel Watts type bath. The processed electroplating products were characterized by the techniques of scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermoanalysis (TG-DTA). Due to the presence of SiC particles, there are some additional nodules on the surface of Ni/SiC plated cBN compared with the pure Ni plated cBN. The unique morphology of Ni/SiC plated cBN should attain greater retention force in resin bond. Moreover, the coating weight of cBN grains could be controlled by regulating the plating time. cBN grains with 60% coating weight possess the optimum grinding performance due to their roughest and spiniest surface. In addition, Ni spines plated cBN grains show good thermal stability when temperature is lower than 464 °C. Therefore, the plated cBN grains are more stable and suitable for making resin bond abrasive tools below 225 °C. Finally, the formation mechanism of electroplating products is also discussed. PMID:28773283

  2. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J. [Department of Materials Science and Engineering, NC State University, EB-1, Raleigh, North Carolina 27695-7907 (United States)

    2013-06-21

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 Multiplication-Sign 10{sup -9} s) at lower energies. Microstructural studies, conducted by X-ray diffraction ({theta}-2{theta} and {phi} techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO<111 > Double-Vertical-Line Double-Vertical-Line c-YSZ<001> and in-plane NiO<110> Double-Vertical-Line Double-Vertical-Line c-YSZ<100>. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min{sup -1} for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies

  3. Nickel Nanowire@Porous NiCo2O4 Nanorods Arrays Grown on Nickel Foam as Efficient Pseudocapacitor Electrode

    Directory of Open Access Journals (Sweden)

    Houzhao Wan

    2017-12-01

    Full Text Available A three dimensional hierarchical nanostructure composed of nickel nanowires and porous NiCo2O4 nanorods arrays on the surface of nickel foam is successfully fabricated by a facile route. In this structure, the nickel nanowires are used as core materials to support high-pseudocapacitance NiCo2O4 nanorods and construct the well-defined NiCo2O4 nanorods shell/nickel nanowires core hierarchical structure on nickel foam. Benefiting from the participation of nickel nanowires, the nickel nanowire@NiCo2O4/Ni foam electrode shows a high areal specific capacitance (7.4 F cm−2 at 5 mA cm−2, excellent rate capability (88.04% retained at 100 mA cm−2, and good cycling stability (74.08% retained after 1,500 cycles. The superior electrochemical properties made it promising as electrode for supercapacitors.

  4. Adsorption properties of Mg-Al layered double hydroxides thin films grown by laser based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Matei, A., E-mail: andreeapurice@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania); Birjega, R.; Vlad, A.; Filipescu, M.; Nedelcea, A.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest, Magurele (Romania)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Laser techniques MAPLE and PLD can successfully be used to produce LDHs thin films. Black-Right-Pointing-Pointer Hydration treatments of the PLD and MAPLE deposited films lead to the LDH reconstruction effect. Black-Right-Pointing-Pointer The Ni retention from aqueous solution occurs in the films via a dissolution-reconstruction mechanism. Black-Right-Pointing-Pointer The films are suitable for applications in remediation of contaminated drinking water or waste waters. - Abstract: Powdered layered double hydroxides (LDHs) have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic and/or organic molecules. Assembling nano-sized LDHs onto flat solid substrates forming thin films is an expanding area of research due to the prospects of novel applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. Continuous and adherent thin films were grown by laser techniques (pulsed laser deposition - PLD and matrix assisted pulsed laser evaporation - MAPLE) starting from targets of Mg-Al LDHs. The capacity of the grown thin films to retain a metal (Ni) from contaminated water has been also explored. The thin films were immersed in an Ni(NO{sub 3}){sub 2} aqueous solutions with Ni concentrations of 10{sup -3}% (w/w) (1 g/L) and 10{sup -4}% (w/w) (0.1 g/L), respectively. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) were the techniques used to characterize the prepared materials.

  5. Flexible Hybrid Membranes with Ni(OH)2 Nanoplatelets Vertically Grown on Electrospun Carbon Nanofibers for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Longsheng; Ding, Qianwei; Huang, Yunpeng; Gu, Huahao; Miao, Yue-E; Liu, Tianxi

    2015-10-14

    The practical applications of transition metal oxides and hydroxides for supercapacitors are restricted by their intrinsic poor conductivity, large volumetric expansion, and rapid capacitance fading upon cycling, which can be solved by optimizing these materials to nanostructures and confining them within conductive carbonaceous frameworks. In this work, flexible hybrid membranes with ultrathin Ni(OH)2 nanoplatelets vertically and uniformly anchored on the electrospun carbon nanofibers (CNF) have been facilely prepared as electrode materials for supercapacitors. The Ni(OH)2/CNF hybrid membranes with three-dimensional macroporous architectures as well as hierarchical nanostructures can provide open and continuous channels for rapid diffusion of electrolyte to access the electrochemically active Ni(OH)2 nanoplatelets. Moreover, the carbon nanofiber can act both as a conductive core to provide efficient transport of electrons for fast Faradaic redox reactions of the Ni(OH)2 sheath, and as a buffering matrix to mitigate the local volumetric expansion/contraction upon long-term cycling. As a consequence, the optimized Ni(OH)2/CNF hybrid membrane exhibits a high specific capacitance of 2523 F g(-1) (based on the mass of Ni(OH)2, that is 701 F g(-1) based on the total mass) at a scan rate of 5 mV s(-1). The Ni(OH)2/CNF hybrid membranes with high mechanical flexibility, superior electrical conductivity, and remarkably improved electrochemical capacitance are condsidered as promising flexible electrode materials for high-performance supercapacitors.

  6. Controlling the alloy composition of PtNi nanocrystals using solid-state dewetting of bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Okkyun; Oh, Se An; Lee, Ji Yeon; Ha, Sung Soo; Kim, Jae Myung; Choi, Jung Won; Kim, Jin-Woo [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of); Kang, Hyon Chol [Department of Materials and Science Engineering, Chosun University, Gwangju 61542 (Korea, Republic of); Noh, Do Young, E-mail: dynoh@gist.ac.kr [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of)

    2016-05-15

    We demonstrate that solid-state dewetting of bilayer films is an effective way for obtaining bimetallic alloy nanocrystals of controlled composition. When a Pt–Ni bilayer film were annealed near 700 °C, Pt and Ni atoms inter-diffused to form a PtNi bimetallic alloy film. Upon annealing at higher temperatures, the bilayer films transformed into <111> oriented PtNi alloy nanocrystals in small-rhombicuboctahedron shape through solid-state dewetting process. The Pt content of the nanocrystals and the alloy films, estimated by applying the Vegard's law to the relaxed lattice constant, was closely related to the thickness of each layer in the as-grown bilayer films which can be readily controlled during bilayer deposition. - Highlights: • Composition control of PtNi nanoparticles using solid state dewetting is proposed. • PtNi alloy composition was controlled by thickness ratio of Pt–Ni bilayer films. • PtNi alloy nanocrystals were obtained in small-rhombicuboctahedron shape.

  7. Rapid synthesis of binary α-NiS–β-NiS by microwave autoclave for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Idris, Nurul Hayati; Rahman, Md Mokhlesur; Chou, Shu-Lei; Wang Jiazhao; Wexler, David; Liu, Hua-Kun

    2011-01-01

    Highlights: ► NiS has been synthesized by a rapid, one-pot, hydrothermal microwave autoclave method. ► The α-NiS–β-NiS sample synthesized at 160 °C yielded good electrochemical performance in terms of high reversible capacity (320 mAh g −1 at 0.1C up to 100 cycles). ► At high rates, the sample operated at a good fraction of its capacity. - Abstract: To reduce the reaction time, electrical energy consumption, and cost, binary α-NiS–β-NiS has been synthesized by a rapid, one-pot, hydrothermal autoclave microwave method within 15 min at temperatures of 160–180 °C. The microstructure and morphology of the α-NiS–β-NiS products were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). At 140 °C, pure hexagonal NiAs-type α-NiS phase was identified from the XRD patterns. With increasing reaction temperature (160–180 °C), the XRD evidence indicates that an increasing fraction of rhombohedral millerite-like β-NiS is formed as a secondary phase. The α-NiS–β-NiS sample synthesized at 160 °C yielded good electrochemical performance in term of high reversible capacity (320 mAh g −1 at 0.1C up to 100 cycles). Even at high rates, the sample operated at a good fraction of its capacity. The likely contributing factor to the superior electrochemical performance of the α-NiS–β-NiS sample could be related to the improved morphology. TEM imaging confirmed that needle-like protrusions connect the clusters of α-NiS particles, and the individual protrusions indicated a very high surface area including folded sheet morphology, which helps to dissipate the surface accumulation of Li + ions and facilitate rapid mobility. These factors help to enhance the amount of lithium intercalated within the material.

  8. In situ grown nano-architectures of Co₃O₄ on Ni-foam for charge ...

    Indian Academy of Sciences (India)

    Nanostructured Co₃O₄ on Ni-foam has been synthesized with diverse morphologies, high surface area and porosity by employing different surfactants under hydrothermal conditions and subsequent calcination. The surfactants strongly influence the physicochemical properties of cobalt oxide samples. The cobalt oxide ...

  9. Structures, energetics and magnetic properties of (NiSn)n clusters ...

    Indian Academy of Sciences (India)

    plications in the automobile industry and hydrocarbon reactions as catalysts [1,2]. ... The formation of surface alloys seem to be very important in the chemical ... The lowest-energy configuration of (NiSn)2 is a three-dimensional (3D) distorted.

  10. High temperature growth kinetics and texture of surface-oxidised NiO for coated superconductor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kursumovic, A; Tomov, R; Huehne, R; Glowacki, B A; Everts, J E; Tuissi, A; Villa, E; Holzapfel, B

    2003-03-15

    Thick NiO films were grown in air, on biaxially textured (0 0 1) Ni and as-rolled Ni tapes, at temperatures from 1050 to 1350 deg. C. Ni diffusion through the NiO film mainly contributes to the growth since is much faster than oxygen diffusion and occurs by a vacancy diffusion mechanism in the lattice at high temperatures. Parabolic growth kinetics were found for both NiO film thickness and grain growth, and compared with the literature data. Competitive growth of (1 1 1) and (0 0 1) oriented grains establishes the final NiO orientation at temperatures below 1250 deg. C, while at higher temperatures leakage diffusion at/towards grain boundaries, grain coarsening and (1 1 0) oriented grains disrupt the (1 0 0) texture. Hence, development of epitaxy of NiO on textured Ni tapes was found to be largely due to growth kinetics depending on both, time and temperature. We report here a systematic study of the microstructure and kinetics of formation of textured NiO substrate for application as a buffer layer in coated conductor technology.

  11. Sea urchin-likeNiCoO2@C nanocompositesforLi-ionbatteries and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jin; Xi, Kai; Tan, Guoqiang; Chen, Sheng; Zhao, Teng; Coxon, Paul R.; Kim, Hyun-Kyung; Ding, Shujiang; Yang, Yuan; Kumar, R. Vasant; Lu, Jun

    2016-09-01

    The rational construction of battery electrode architecture that offers both high energy and power densities on a gravimetric and volumetric basis is a critical concern but achieving this aim is beset by many fundamental and practical challenges. Here we report a new sea urchin-like NiCoO2@C composite electrode architecture composed of NiCoO2 nanosheets grown on hollow concave carbon disks. Such a unique structural design not only preserves all the advantages of hollow structures but also increases the packing density of the active materials. NiCoO2 nanosheets grown on carbon disks promote a high utilization of active materials in redox reactions by reducing the path length for Li+ ions and for electron transfer. Meanwhile, the hollow concave carbon not only reduces the volume change, but also improves the volumetric energy density of the entire composite electrode. As a result, the nanocomposites exhibit superior electrochemical performance measured in terms of high capacity/capacitance, stable cycling performance and good rate capability in both Li-ion battery and supercapacitor applications. Such nanostructured composite electrode may also have great potential for application in other electrochemical devices.

  12. Effect of low-oxygen-concentration layer on iron gettering capability of carbon-cluster ion-implanted Si wafer for CMOS image sensors

    Science.gov (United States)

    Onaka-Masada, Ayumi; Nakai, Toshiro; Okuyama, Ryosuke; Okuda, Hidehiko; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Kurita, Kazunari; Sueoka, Koji

    2018-02-01

    The effect of oxygen (O) concentration on the Fe gettering capability in a carbon-cluster (C3H5) ion-implanted region was investigated by comparing a Czochralski (CZ)-grown silicon substrate and an epitaxial growth layer. A high Fe gettering efficiency in a carbon-cluster ion-implanted epitaxial growth layer, which has a low oxygen region, was observed by deep-level transient spectroscopy (DLTS) and secondary ion mass spectroscopy (SIMS). It was demonstrated that the amount of gettered Fe in the epitaxial growth layer is approximately two times higher than that in the CZ-grown silicon substrate. Furthermore, by measuring the cathodeluminescence, the number of intrinsic point defects induced by carbon-cluster ion implantation was found to differ between the CZ-grown silicon substrate and the epitaxial growth layer. It is suggested that Fe gettering by carbon-cluster ion implantation comes through point defect clusters, and that O in the carbon-cluster ion-implanted region affects the formation of gettering sinks for Fe.

  13. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2017-01-10

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.

  14. On Ni/Au Alloyed Contacts to Mg-Doped GaN

    Science.gov (United States)

    Sarkar, Biplab; Reddy, Pramod; Klump, Andrew; Kaess, Felix; Rounds, Robert; Kirste, Ronny; Mita, Seiji; Kohn, Erhard; Collazo, Ramon; Sitar, Zlatko

    2018-01-01

    Ni/Au contacts to p-GaN were studied as a function of free hole concentration in GaN using planar transmission line measurement structures. All contacts showed a nonlinear behavior, which became stronger for lower doping concentrations. Electrical and structural analysis indicated that the current conduction between the contact and the p-GaN was through localized nano-sized clusters. Thus, the non-linear contact behavior can be well explained using the alloyed contact model. Two contributions to the contact resistance were identified: the spreading resistance in the semiconductor developed by the current crowding around the electrically active clusters, and diode-type behavior at the interface of the electrically active clusters with the semiconductor. Hence, the equivalent Ni/Au contact model consists of a diode and a resistor in series for each active cluster. The reduced barrier height observed in the measurements is thought to be generated by the extraction of Ga from the crystalline surface and localized formation of the Au:Ga phase. The alloyed contact analyses presented in this work are in good agreement with some of the commonly observed behavior of similar contacts described in the literature.

  15. Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys

    Science.gov (United States)

    Fukuhara, Mikio; Umemori, Yoshimasa

    2013-11-01

    The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.

  16. Ultra smooth NiO thin films on flexible plastic (PET) substrate at room temperature by RF magnetron sputtering and effect of oxygen partial pressure on their properties

    International Nuclear Information System (INIS)

    Nandy, S.; Goswami, S.; Chattopadhyay, K.K.

    2010-01-01

    Transparent p-type nickel oxide thin films were grown on polyethylene terephthalate (PET) and glass substrates by RF magnetron sputtering technique in argon + oxygen atmosphere with different oxygen partial pressures at room temperature. The morphology of the NiO thin films grown on PET and glass substrates was studied by atomic force microscope. The rms surface roughnesses of the films were in the range 0.63-0.65 nm. These ultra smooth nanocrystalline NiO thin films are useful for many applications. High resolution transmission electron microscopic studies revealed that the grains of NiO films on the highly flexible PET substrate were purely crystalline and spherical in shape with diameters 8-10 nm. XRD analysis also supported these results. NiO films grown on the PET substrates were found to have better crystalline quality with fewer defects than those on the glass substrates. The sheet resistances of the NiO films deposited on PET and glass substrates were not much different; having values 5.1 and 5.3 kΩ/□ and decreased to 3.05, 3.1 kΩ/□ respectively with increasing oxygen partial pressure. The thicknesses of the films on both substrates were ∼700 nm. It was also noted that further increase in oxygen partial pressure caused increase in resistivity due to formation of defects in NiO.

  17. Effects of heat treatment on optical absorption properties of Ni-P/AAO nano-array composite structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi-Fan; Wang, Feng-Hua; Guo, Dong-Lai; Huang, Sheng-You; Zou, Xian-Wu [Wuhan University, Department of Physics, Wuhan (China); Sang, Jian-Ping [Wuhan University, Department of Physics, Wuhan (China); Jianghan University, Department of Physics, Wuhan (China)

    2009-11-15

    Ni-P/AAO nano-array composite structure assemblies with Ni and P grown in the pores of anodic aluminum oxide (AAO) membranes were prepared by electroless deposition. The results of SEM, TEM and SAED show that as-deposited Ni-P nanowires have an amorphous structure and a few nanocrystallites form after annealing. The optical absorption spectra reveal that, as the annealing temperature increases, the absorption band edge of the Ni-P/AAO composite structure is obviously blue shifted, which is attributed to a decrease of the internal pressure after heat treatment. Meanwhile, the annealed Ni-P/AAO nano-array composite structure exhibits the absorption behavior of a direct band gap semiconductor. Details of this behavior are discussed together with the implications for potential device applications. (orig.)

  18. Mineral Analysis of Pine Nuts (Pinus spp.) Grown in New Zealand.

    Science.gov (United States)

    Vanhanen, Leo P; Savage, Geoffrey P

    2013-04-03

    Mineral analysis of seven Pinus species grown in different regions of New Zealand; Armand pine ( Pinus armandii Franch), Swiss stone pine ( Pinus cembra L.), Mexican pinyon ( Pinus cembroides Zucc. var. bicolor Little), Coulter pine ( Pinus coulteri D. Don), Johann's pine ( Pinus johannis M.F. Robert), Italian stone pine ( Pinus pinea L.) and Torrey pine ( Pinus torreyana Parry ex Carrière), was carried out using an inductively coupled plasma optical emission spectrophotometer (ICP-OES) analysis. Fourteen different minerals (Al, B, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S and Zn) were identified in all seven varieties, except that no Al or Na was found in Pinus coulteri D. Don. New Zealand grown pine nuts are a good source of Cu, Mg, Mn, P and Zn, meeting or exceeding the recommended RDI for these minerals (based on an intake of 50 g nuts/day) while they supplied between 39%-89% of the New Zealand RDI for Fe. Compared to other commonly eaten tree-nuts New Zealand grown pine nuts are an excellent source of essential minerals.

  19. Composição de bagas de 'Niágara Rosada' e 'Folha-de-Figo' relacionadas ao sistema de condução Fruit composition of 'Niágara Rosada' and 'Folha-de-Figo' grapevines under different training systems

    Directory of Open Access Journals (Sweden)

    Renata Vieira da Mota

    2010-12-01

    Full Text Available RESUMO Este trabalho teve como objetivo avaliar a influência do sistema de condução na qualidade de bagas de uvas 'Niágara Rosada' e 'Folha-de-Figo' cultivadas em Caldas-MG. Foram avaliados a produção por planta, o diâmetro, a massa, o teor de potássio e a temperatura das bagas, pH, teor de sólidos solúveis, açúcares redutores, acidez total e ácidos orgânicos do mosto, compostos fenólicos nas cascas e sementes, e antocianinas. As plantas foram conduzidas em espaldeira, lira, latada ou cordão simples, e os frutos, avaliados nas safras de 2006 e 2007. As videiras de 'Niágara Rosada' cultivadas em latada e 'Folha-de-Figo' em lira apresentaram produção significativamente superior aos demais sistemas de condução. Em todos os casos, as bagas apresentaram temperatura inferior à ambiente, indicando sombreamento completo ou parcial dos cachos. No sistema latada, houve menor acúmulo de sólidos solúveis e açúcares redutores nas duas cultivares. Estes resultados preliminares indicam que a composição das bagas foi pouco influenciada pelo sistema de condução.ABSTRACT This work aimed on evaluating the influence of training systems in berries composition of 'Niágara Rosada' and 'Folha-de-Figo' grapevines grown in Caldas, MG. Yield per plant; diameter, weight, temperature and potassium content of the berries; pH, soluble solids, reducing sugars, total acidity and organic acids of the must; anthocyanins and phenolic compounds of the skins and phenolic compounds of the seeds were evaluated in grapevines training in vertical shoot position, lyre trellis, pergola Veronese or simple string in 2006 and 2007 seasons. 'Niágara Rosada' and 'Folha-de-Figo' grapevines training in pergola Veronese and lyre trellis, respectively, showed higher yield than the other training systems under study. Berries grown under the four different training systems were cooler than ambient temperature, resulting from partial or deep shade clusters. Berries

  20. Zn-vacancy related defects in ZnO grown by pulsed laser deposition

    Science.gov (United States)

    Ling, F. C. C.; Luo, C. Q.; Wang, Z. L.; Anwand, W.; Wagner, A.

    2017-02-01

    Undoped and Ga-doped ZnO (002) films were grown c-sapphire using the pulsed laser deposition (PLD) method. Znvacancy related defects in the films were studied by different positron annihilation spectroscopy (PAS). These included Doppler broadening spectroscopy (DBS) employing a continuous monenergetic positron beam, and positron lifetime spectroscopy using a pulsed monoenergetic positron beam attached to an electron linear accelerator. Two kinds of Znvacancy related defects namely a monovacancy and a divacancy were identified in the films. In as-grown undoped samples grown with relatively low oxygen pressure P(O2)≤1.3 Pa, monovacancy is the dominant Zn-vacancy related defect. Annealing these samples at 900 oC induced Zn out-diffusion into the substrate and converted the monovacancy to divacancy. For the undoped samples grown with high P(O2)=5 Pa irrespective of the annealing temperature and the as-grown degenerate Ga-doped sample (n=1020 cm-3), divacancy is the dominant Zn-vacancy related defect. The clustering of vacancy will be discussed.

  1. Effects of pressure, temperature and atomic exchanges on phase separation dynamics in Au/Ni(111) surface alloy: Kinetic Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Zvejnieks, G. [Institute for Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Ibenskas, A., E-mail: ibenskas@pfi.lt [Center for Physical Sciences and Technology, Semiconductor Physics Institute, Gostauto 11, LT-01108 Vilnius (Lithuania); Tornau, E.E. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, Gostauto 11, LT-01108 Vilnius (Lithuania)

    2015-11-15

    Instability of the Au/Ni(111) surface alloy is studied in different CO gas pressure, p, and temperature limits using kinetic Monte Carlo simulations. We analyze the reaction front dynamics and formation of Au clusters using the model which takes into account surface adatom pair and three-body interactions, CO adsorption and desorption, catalytic carbonyl formation reaction, Au and Ni adatom diffusion and their concerted exchange. Variation of interaction parameters allows us to identify three possible reaction front propagation limits with different pressure dependencies: (i) slow channel-like flow in agreement with experimental data [1] (step flow rate, R, increases with p), (ii) intermediate regime (weak p–dependence), and (iii) fast homogeneous flow (R decreases with p). We find that only Au–Ni exchange, contrary to both Ni–CO and Au–CO exchanges, significantly reduces the number of screened Ni atoms inside the Au clusters and stimulates the occurrence of Ni-free Au clusters. The size of Au islands depends on both pressure and temperature. At a fixed temperature it decreases with pressure due to an increased step flow rate. In the high temperature limit, despite the step flow rate exponential increase with temperature, the cluster size increases due to an enhanced Au mobility. - Highlights: • Kinetic Monte Carlo study of Au–Ni surface alloy instability to CO pressure and temperature. • Three reaction front propagation regimes. • In channel-like regime, the step flow rate increases with CO pressure as in experiment. • Ni-free Au islands are obtained when Au-Ni adatom exchange mechanism is considered. • The size of Au islands decreases with pressure and increases with temperature.

  2. Effects of pressure, temperature and atomic exchanges on phase separation dynamics in Au/Ni(111) surface alloy: Kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Zvejnieks, G.; Ibenskas, A.; Tornau, E.E.

    2015-01-01

    Instability of the Au/Ni(111) surface alloy is studied in different CO gas pressure, p, and temperature limits using kinetic Monte Carlo simulations. We analyze the reaction front dynamics and formation of Au clusters using the model which takes into account surface adatom pair and three-body interactions, CO adsorption and desorption, catalytic carbonyl formation reaction, Au and Ni adatom diffusion and their concerted exchange. Variation of interaction parameters allows us to identify three possible reaction front propagation limits with different pressure dependencies: (i) slow channel-like flow in agreement with experimental data [1] (step flow rate, R, increases with p), (ii) intermediate regime (weak p–dependence), and (iii) fast homogeneous flow (R decreases with p). We find that only Au–Ni exchange, contrary to both Ni–CO and Au–CO exchanges, significantly reduces the number of screened Ni atoms inside the Au clusters and stimulates the occurrence of Ni-free Au clusters. The size of Au islands depends on both pressure and temperature. At a fixed temperature it decreases with pressure due to an increased step flow rate. In the high temperature limit, despite the step flow rate exponential increase with temperature, the cluster size increases due to an enhanced Au mobility. - Highlights: • Kinetic Monte Carlo study of Au–Ni surface alloy instability to CO pressure and temperature. • Three reaction front propagation regimes. • In channel-like regime, the step flow rate increases with CO pressure as in experiment. • Ni-free Au islands are obtained when Au-Ni adatom exchange mechanism is considered. • The size of Au islands decreases with pressure and increases with temperature

  3. Magnetic phase transition in 2 nm NixCu1-x (0 ≤ x ≤ 1) clusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-04-17

    NixCu1-x (0 ≤ x ≤ 1) clusters with a diameter of 2 nm (459 atoms) are modeled by a combination of basin hopping global sampling and reoptimization within spin-polarized density functional theory. The favorable structures for different Ni/Cu ratios are obtained by probing the energy landscape of face-centered cubic clusters. A sharp phase transition from nonmagnetic to ferromagnetic behavior is discovered above x = 0.4 and explained in terms of the distribution of the Ni atoms in the clusters. Small Cu magnetic moments are induced by proximity. © 2014 American Chemical Society.

  4. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, F., E-mail: f.bergner@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Gillemot, F. [Centre for Energy Research of the Hungarian Academy of Sciences, 29-33 Konkoly-Thege street, 1121 Budapest XII (Hungary); Hernández-Mayoral, M.; Serrano, M. [Division of Materials, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Török, G. [Wigner Research Center for Physics of the Hungarian Academy of Sciences, 29-33 Konkoly-Thege street, 1121 Budapest XII (Hungary); Ulbricht, A.; Altstadt, E. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany)

    2015-06-15

    Highlights: • TEM and SANS were applied to estimate mean size and number density of loops, nanovoids and Cu-rich clusters. • A three-feature dispersed-barrier hardening model was applied to estimate the yield stress increase. • The values and errors of the dimensionless obstacle strength were estimated in a consistent way. • Nanovoids are stronger obstacles for dislocation glide than dislocation loops, loops are stronger than Cu-rich clusters. • For reactor-relevant conditions, Cu-rich clusters contribute most to hardening due to their high number density. - Abstract: Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  5. Heavy metal contamination in vegetables grown in Rawalpindi, Pakistan

    International Nuclear Information System (INIS)

    Ahmed, W.; Ahmed, A.; Ahmad, A.; Randhawa, M.A.; Ahmad, R.; Khalid, N.

    2012-01-01

    Copper (Cu), cadmium (Cd), chromium (Cr) nickel (Ni), lead (Pb), Iron (Fe), Manganese (Mn) and zinc (Zn) contents of various vegetables (bitter melon, tomato, eggplant, lettuce, cucumber and bell pepper) produced in Rawalpindi, Pakistan was determined using Atomic absorption spectrophotometer (AAS). These plants are the basis of human nutrition in the study area. All vegetables grown at sewage water by farmers showed the highest contamination of heavy metals, followed by local market, Progressive farmers and hydroponic plant. The concentration ranges in mg/kg were (1.45 -2.55) for Cd, (3.10 to 4.92) Cr, (12.15- 20.50) Cu, (25.00-51.00) for Fe, (7.80 to 15.60) for Mn, (10.16 to 15.42) for Ni, (2.12 to 5.41) Pb and (16.58 to 24.08) for zinc. The contamination was above the Maximum Residue Limits (MRLs), set out by WHO. Irregular trends in concentration were also observed in vegetables obtained from local market, progressive farmers and hydroponic plant. (author)

  6. Controllable irregular melting induced by atomic segregation in bimetallic clusters with fabricating different initial configurations

    International Nuclear Information System (INIS)

    Li Guojian; Liu Tie; Wang Qiang; Lue Xiao; Wang Kai; He Jicheng

    2010-01-01

    The melting process of Co, Co-Cu and Co-Ni clusters with different initial configurations is studied in molecular dynamics by a general embedded atom method. An irregular melting, at which energy decreases as the temperature increase near the melting point, is found in the onion-like Co-Cu-Co clusters, but not in the mixed Co-Cu and onion-like Co-Ni-Co clusters. From the analysis of atomic distributions and energy variation, the results indicate the irregular melting is induced by Cu atomic segregation. Furthermore, this melting can be controlled by doping hetero atoms with different surface energies and controlling their distributions.

  7. Effects of post-irradiation annealing on the transformation behavior of Ti-Ni alloys

    International Nuclear Information System (INIS)

    Kimura, A.; Tsuruga, H.; Morimura, T.; Misawa, T.; Miyazaki, S.

    1993-01-01

    Recovery processes of martensitic transformation of neutron irradiated Ti-50.0, 50.5 and 51.0 at.%Ni alloys during post-irradiation annealing were investigated by means of differential scanning calorimetry (DSC), tensile tests and transmission electron microscope (TEM) observations. Neutron irradiation up to a fluence of 1.2x10 24 n/cm 2 at 333 K suppressed the martensitic transformation as well as the stress-induced martensitic transformation of these alloys above 150 K. The TEM observations revealed that the disordered zones containing small defect clusters in high density were formed in the neutron irradiated Ti-Ni alloys. The DSC measurements also showed that the post-irradiation annealing caused recovery of the transformation of which the progress depended on the annealing temperature and period. A significant retardation of the recovery was recognized in the Ti-51.0 at.%Ni alloy in comparison with the Ti-50.0 at.%Ni alloy. From the shifts in the transformation temperature upon isothermal annealing at various annealing temperatures, the activation energies of the recovery process of the transformation in the neutron irradiated Ti-50.0 and 51.0 at.%Ni alloys were evaluated by a cross-cut method to be 1.2 eV and 1.5 eV, respectively. The recovery of the transformation was ascribed to the re-ordering resulting from decomposition of vacancy clusters, and those obtained values of the activation energy were considered to be the sum of the migration energy of vacancy and the binding energy of vacancy-vacancy cluster. The retardation of the recovery in the Ti-51.0 at%Ni alloy was interpreted in terms of large binding energy in this alloy due to the off-stoichiometry. (author)

  8. Ab Initio Electronic Structure Calculation of [4Fe-3S] Cluster of Hydrogenase as Dihydrogen Dissociation/Production Catalyst

    Science.gov (United States)

    Kim, Jaehyun; Kang, Jiyoung; Nishigami, Hiroshi; Kino, Hiori; Tateno, Masaru

    2018-03-01

    Hydrogenases catalyze both the dissociation and production of dihydrogen (H2). Most hydrogenases are inactivated rapidly and reactivated slowly (in vitro), in the presence of dioxygen (O2) and H2, respectively. However, membrane-bound [NiFe] hydrogenases (MBHs) sustain their activity even together with O2, which is termed "O2 tolerance". In previous experimental analyses, an MBH was shown to include a hydroxyl ion (OH-) bound to an Fe of the super-oxidized [4Fe-3S]5+ cluster in the proximity of the [NiFe] catalytic cluster. In this study, the functional role of the OH- in the O2 tolerance was investigated by ab initio electronic structure calculation of the [4Fe-3S] proximal cluster. The analysis revealed that the OH- significantly altered the electronic structure, thereby inducing the delocalization of the lowest unoccupied molecular orbital (LUMO) toward the [NiFe] catalytic cluster, which may intermediate the electron transfer between the catalytic and proximal clusters. This can promote the O2-tolerant catalytic cycle in the hydrogenase reaction.

  9. Density functional study of hypophosphite adsorption on Ni (1 1 1) and Cu (1 1 1) surfaces

    International Nuclear Information System (INIS)

    Zeng Yue; Liu Shubin; Ou Lihui; Yi Jianlong; Yu Shanci; Wang Huixian; Xiao Xiaoming

    2006-01-01

    Surface structures and electronic properties of hypophosphite, H 2 PO 2 - , molecularly adsorbed on Ni(1 1 1) and Cu(1 1 1) surfaces are investigated in this work by density functional theory at B3LYP/6-31++g(d, p) level. We employ a four-metal-atom cluster as the simplified model for the surface and have fully optimized the geometry and orientation of H 2 PO 2 - on the metal cluster. Six stable orientations have been discovered on both Ni (1 1 1) and Cu (1 1 1) surfaces. The most stable orientation of H 2 PO 2 - was found to have its two oxygen atoms interact the surface with two P-O bonds pointing downward. Results of the Mulliken population analysis showed that the back donation from 3d orbitals of the transition metal substrate to the unfilled 3d orbital of the phosphorus atom in H 2 PO 2 - and 4s orbital's acceptance of electron donation from one lone pair of the oxygen atom in H 2 PO 2 - play very important roles in the H 2 PO 2 - adsorption on the transition metals. The averaged electron configuration of Ni in Ni 4 cluster is 4s 0.63 4p 0.02 3d 9.35 and that of Cu in Cu 4 cluster is 4s 1.00 4p 0.03 3d 9.97 . Because of this subtle difference of electron configuration, the adsorption energy is larger on the Ni surface than on the Cu surface. The amount of charge transfers due to above two donations is larger from H 2 PO 2 - to the Ni surface than to the Cu surface, leading to a more positively charged P atom in Ni n H 2 PO 2 - than in Cu n H 2 PO 2 - . These results indicate that the phosphorus atom in Ni n H 2 PO 2 - complex is easier to be attacked by a nucleophile such as OH - and subsequent oxidation of H 2 PO 2 - can take place more favorably on Ni substrate than on Cu substrate

  10. Magnetism of iron, cobalt and nickel clusters studied in molecular beams

    International Nuclear Information System (INIS)

    Billas, I.

    1995-01-01

    The magnetic properties of iron, cobalt and nickel clusters in a molecular beam have been studied in a magnetic Stern-Gerlach deflection experiment. The molecular beam apparatus consists of a laser vaporization cluster source with high intensity and stability and a high-resolution time-of-flight mass spectrometer for the deflection measurements. Several novel experimental features have been developed in this work, like a nozzle which can be heated up to 1000 K and a chopper to measure the dwell times of the clusters in the source and their corresponding velocities. These new developments have allowed the measurement and the control of the temperature of the free clusters. The Stern-Gerlach deflection experiments have been performed on Fe, Co and Ni clusters in the mass range from 20 to 700 atoms. All clusters show single-sided deflection toward increasing field. This observation indicates that a spin relaxation process occurs within the isolated clusters. The participation of both the cluster rotational and vibrational degrees of freedom to the spin relaxation has been experimentally demonstrated. The cluster magnetization has been determined as a function of applied magnetic field B and as a function of dwell times of the clusters in the source before the supersonic expansion into vacuum. Superparamagnetic behavior has been observed when the cluster rotational speed is much larger than the Larmor frequency of the cluster magnetic moment μ in the field B. In particular, for μB<< kT, the cluster magnetization depends on B/T. For lower rotational speeds, reduced values of the magnetization have been observed. The magnetic moments of the superparamagnetic Fe, Co and Ni clusters have been measured as a) a function of cluster size N at low temperature and b) as a function of cluster temperature T for various size ranges. (author) figs., tabs., refs

  11. Facile synthesis and electron transport properties of NiO nanostructures investigated by scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Govind Mallick

    2017-08-01

    Full Text Available Due to their unique chemical, thermal, electronic and photonic properties, low -dimensional transition metal oxides, especially NiO, have attracted great deal of attention for potential applications in a wide range of technologies, such as, sensors, electrochromic coatings and self-healing materials. However, their synthesis involves multi-step complex procedures that in addition to being expensive, further introduce impurities. Here we present a low cost facile approach to synthesize uniform size NiO nanoparticles (NPs from hydrothermally grown Ni(OH2. Detailed transmission electron microscopic analysis reveal the average size of NiO NPs to be around 29 nm. The dimension of NiO NP is also corroborated by the small area scanning tunneling microscope (STM measurements. Further, we investigate electron transport characteristics of newly synthesized Ni(OH2 and NiO nanoparticles on p-type Si substrate using scanning tunneling microscopy. The conductivity of Ni(OH2 and NiO are determined to be 1.46x10-3 S/cm and 2.37x10-5 S/cm, respectively. The NiO NPs exhibit a lower voltage window (∼0.7 V electron tunneling than the parent Ni(OH2.

  12. Carbon nanotubes growing on rapid thermal annealed Ni and their application to a triode-type field emission device

    International Nuclear Information System (INIS)

    Uh, Hyung Soo; Park, Sang Sik

    2006-01-01

    In this paper, we demonstrate a new triode-type field emitter arrays using carbon nanotubes (CNTs) as an electron emitter source. In the proposed structure, the gate electrode is located underneath the cathode electrode and the extractor electrode is surrounded by CNT emitters. CNTs were selectively grown on the patterned Ni catalyst layer by using plasma-enhanced chemical vapor deposition (PECVD). Vertically aligned CNTs were grown with gas mixture of acetylene and ammonia under external DC bias. Compared with a conventional under-gate structure, the proposed structure reduced the turn-on voltage by about 30%. In addition, with a view to controlling the density of CNTs, Ni catalyst thickness was varied and rapid thermal annealing (RTA) treatment was optionally adopted before CNT growth. With controlled Ni thickness and RTA condition, field emission efficiency was greatly improved by reducing the density of CNTs, which is due to the reduction of the electric field screening effect caused by dense CNTs

  13. Comparative study of local atomic structures in Zr{sub 2}Cu{sub x}Ni{sub 1−x} (x = 0, 0.5, 1) metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuxiang [Department of Physics, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Huang, Li, E-mail: huangl@sustc.edu.cn [Department of Physics, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Wang, C. Z.; Ho, K. M. [Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Department of Physics, Iowa State University, Ames, Iowa 50011 (United States); Kramer, M. J. [Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-11-21

    Extensive analysis has been performed to understand the key structural motifs accounting for the difference in glass forming ability in the Zr-Cu and Zr-Ni binary alloy systems. Here, the reliable atomic structure models of Zr{sub 2}Cu{sub x}Ni{sub 1−x} (x = 0, 0.5, 1) are constructed using the combination of X-ray diffraction experiments, ab initio molecular dynamics simulations and a constrained reverse Monte Carlo method. We observe a systematic variation of the interatomic distance of different atomic pairs with respect to the alloy composition. The ideal icosahedral content in all samples is limited, despite the high content of five-fold symmetry motifs. We also demonstrate that the population of Z-clusters in Zr{sub 2}Cu glass is much higher than that in the Zr{sub 2}Ni and Zr{sub 2}Cu{sub 0.5}Ni{sub 0.5} samples. And Z12 〈0, 0, 12, 0〉 Voronoi polyhedra clusters prefer to form around Cu atoms, while Ni-centered clusters are more like Z11 〈0, 2, 8, 1〉 clusters, which is less energetically stable compared to Z12 clusters. These two different structural properties may account for the higher glass forming ability of Zr{sub 2}Cu alloy than that of Zr{sub 2}Ni alloy.

  14. ERGO grown on Ni-Cu foam frameworks by constant potential method as high performance electrodes for supercapacitors

    Science.gov (United States)

    Mirzaee, Majid; Dehghanian, Changiz; Sabet Bokati, Kazem

    2018-04-01

    This study presents composite electrode materials based on Electrochemically Reduced graphene oxide (ERGO) and Ni-Cu Foam for supercapacitor applications. Constant potential (CP) method was used to form reduced graphene oxide on Ni-Cu foam and characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-Ray Photoelectron Spectra (XPS), Raman Spectroscopy and electrochemical measurements. ERGO improves the electrical conduction leading to decrease of the internal resistance of the heterostructure. The ERGO served as a conductive network to facilitate the collection and transportation of electrons during the cycling, improved the conductivity of Ni-Cu foam, and allowed for a larger specific surface area. The irregular porous structure allowed for the easy diffusion of the electrolyte into the inner region of the electrode. Moreover, the nanocomposite directly fabricated on Ni-Cu foam with a better adhesion and avoided the use of polymer binder. This method efficiently reduced ohmic polarization and enhanced the rate capability. As a result, the Ni-Cu foam/ERGO nanocomposite exhibited a specific capacitance of 1259.3 F g-1 at 2 A g-1and about 99.3% of the capacitance retained after 5000 cycles. The capacitance retention was about 3% when the current density increased from 2 A g-1 to 15 A g-1. This two-step process drop cast and GO reduction by potentiostatic method is nontoxic and scalable and holds promise for improved energy density from redox capacitance in comparison with the conventional double layer supercapacitors.

  15. 3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Lee, Kyubin; Lee, Jungkuk; Kwon, Kyoung Woo; Park, Min-Sik; Hwang, Jin-Ha; Kim, Ki Jae

    2017-07-12

    Electrodes composed of multilayered graphene grown on a metal foam (GMF) were prepared by directly growing multilayer graphene sheets on a three-dimensional (3D) Ni-foam substrate via a self-catalyzing chemical vapor deposition process. The multilayer graphene sheets are successfully grown on the Ni-foam substrate surface, maintaining the unique 3D macroporous structure of the Ni foam. The potential use of GMF electrodes in nonaqueous redox flow batteries (RFBs) is carefully examined using [Co(bpy) 3 ] +/2+ and [Fe(bpy) 3 ] 2+/3+ redox couples. The GMF electrodes display a much improved electrochemical activity and enhanced kinetics toward the [Co(bpy) 3 ] +/2+ (anolyte) and [Fe(bpy) 3 ] 2+/3+ (catholyte) redox couples, compared with the bare Ni metal foam electrodes, suggesting that the 2D graphene sheets having lots of interdomain defects provide sufficient reaction sites and secure electric-conduction pathways. Consequently, a nonaqueous RFB cell assembled with GMF electrodes exhibits high Coulombic and voltage efficiencies of 87.2 and 90.9%, respectively, at the first cycle. This performance can be maintained up to the 50th cycle without significant efficiency loss. Moreover, the importance of a rational electrode design for improving electrochemical performance is addressed.

  16. A Hull cell study of a NiW electrolyte and evaluation of its properties; Estudio en celula Hull de un bano electrolitico de NiW y evaluacion de sus propiedades

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Urrutia, I.; Diez, J. A.; Muller, C.; Calvillo, P.

    2009-07-01

    Interest in NiW coatings has grown in recent years due to its favourable properties such as hardness, and resistance to both wear and corrosion, making it one of the actual alternatives to hard chromium coatings. In this work, we have undertaken a Hull cell study, investigating the influence of the metal concentration, temperature, pH and current density on the composition of the alloy formed and its thickness. We have also studied the most important properties of the NiW deposits, including morphology, hardness, and resistance to abrasion and corrosion. (Author) 9 refs.

  17. Direct production of carbon nanofibers decorated with Cu2O by thermal chemical vapor deposition on Ni catalyst electroplated on a copper substrate

    Directory of Open Access Journals (Sweden)

    MA Vesaghi

    2012-12-01

    Full Text Available  Carbon nanofibers (CNFs decorated with Cu2O particles were grown on a Ni catalyst layer deposited on a Cu substrate by thermal. chemical vapor deposition from liquid petroleum gas. Ni catalyst nanoparticles with different sizes were produced in an electroplating system at 35˚C. These nanoparticles provide the nucleation sites for CNF growth, removing the need for a buffer layer. High temperature surface segregation of the Cu substrate into the Ni catalyst layer and its exposition to O2 at atmospheric environment, during the CNFs growth, lead to the production of CNFs decorated with Cu2O particles. The surface morphology of the Ni catalyst films and grown CNFs over it was studied by scanning electron microscopy. Transmission electron microscopy and Raman spectroscopy revealed the formation of CNFs. The selected area electron diffraction pattern and electron diffraction studies show that these CNFs were decorated with Cu2O nanoparticles.

  18. Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT–BCT single crystals

    Directory of Open Access Journals (Sweden)

    Haribabu Palneedi

    2017-03-01

    Full Text Available Aimed at developing lead-free magnetoelectric (ME composites with performances as good as lead (Pb-based ones, this study employed (001 and (011 oriented 82BaTiO3-10BaZrO3-8CaTiO3 (BZT–BCT piezoelectric single crystals, fabricated by the cost-effective solid-state single crystal growth (SSCG method, in combination with inexpensive, magnetostrictive base metal Nickel (Ni. The off-resonance, direct ME coupling in the prepared Ni/BZT–BCT/Ni laminate composites was found to be strongly dependent on the crystallographic orientation of the BZT–BCT single crystals, as well as the applied magnetic field direction. Larger and anisotropic ME voltage coefficients were observed for the composite made using the (011 oriented BZT–BCT single crystal. The optimized ME coupling of 1 V/cm Oe was obtained from the Ni/(011 BZT–BCT single crystal/Ni composite, in the d32 mode of the single crystal, when a magnetic field was applied along its [100] direction. This performance is similar to that reported for the Ni/Pb(Mg1/3Nb2/3O3-Pb(Zr,TiO3 (PMN–PZT single crystal/Ni, but larger than that obtained from the Ni/Pb(Zr,TiO3 ceramic/Ni composites. The results of this work demonstrate that the use of lead-free piezoelectric single crystals with special orientations permits the selection of desired anisotropic properties, enabling the realization of customized ME effects in composites.

  19. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Jumpei, E-mail: higuchi@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Sato, Yoichi [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    NiFe epitaxial films are prepared on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  20. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    International Nuclear Information System (INIS)

    Higuchi, Jumpei; Ohtake, Mitsuru; Sato, Yoichi; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    NiFe epitaxial films are prepared on Cr(211) bcc and Cr(100) bcc underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211) bcc and Cr(100) bcc underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  1. Theoretical study of the magnetic behavior of hexanuclear Cu(II) and Ni(II) polysiloxanolato complexes.

    Science.gov (United States)

    Ruiz, Eliseo; Cano, Joan; Alvarez, Santiago; Caneschi, Andrea; Gatteschi, Dante

    2003-06-04

    A theoretical density functional study of the exchange coupling in hexanuclear polysiloxanolato-bridged complexes of Cu(II) and Ni(II) is presented. By calculating the energies of three different spin configurations, we can obtain estimates of the first-, second-, and third-neighbor exchange coupling constants. The study has been carried out for the complete structures of the Cu pristine cluster and of the chloroenclathrated Ni complex as well as for the hypotethical pristine Ni compound and for magnetically dinuclear analogues M(2)Zn(4) (M = Cu, Ni).

  2. Enhanced electrochemical activity using vertically aligned carbon nanotube electrodes grown on carbon fiber

    Directory of Open Access Journals (Sweden)

    Evandro Augusto de Morais

    2011-09-01

    Full Text Available Vertically aligned carbon nanotubes were successfully grown on flexible carbon fibers by plasma enhanced chemical vapor deposition. The diameter of the CNT is controllable by adjusting the thickness of the catalyst Ni layer deposited on the fiber. Vertically aligned nanotubes were grown in a Plasma Enhanced Chemical Deposition system (PECVD at a temperature of 630 ºC, d.c. bias of -600 V and 160 and 68 sccm flow of ammonia and acetylene, respectively. Using cyclic voltammetry measurements, an increase of the surface area of our electrodes, up to 50 times higher, was observed in our samples with CNT. The combination of VACNTs with flexible carbon fibers can have a significant impact on applications ranging from sensors to electrodes for fuel cells.

  3. Combining Ru, Ni and Ni(OH){sub 2} active sites for improving catalytic performance in benzene hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lihua, E-mail: lihuazhu@stu.xmu.edu.cn [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Sun, Hanlei; Zheng, Jinbao [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zhang, Nuowei [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Shu, Qing [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Chen, Bing H., E-mail: chenbh@xmu.edu.cn [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2017-05-01

    In this study, the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts were successfully prepared by the simple methods of hydrazine-reduction and galvanic replacement, where 0.04/0.96 and T represented the Ru/Ni atomic ratio and reducing temperature of the catalyst in N{sub 2}+10%H{sub 2}, respectively. The nanostructures of the Ru{sub 0.04}Ni{sub 0.96} nanoparticles in the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts were controlled by modulating their annealing temperature in N{sub 2}+10%H{sub 2} and characterized by an array of techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy energy dispersive X-ray spectroscopy (STEM-EDS) mapping and high-sensitivity low-energy ion scattering (HS-LEIS). The Ru{sub 0.04}Ni{sub 0.96}/C(30) catalyst, which was composed of Ru clusters or single atoms supported on Ni/Ni(OH){sub 2} nanoparticles, exhibited much better catalytic performance for benzene hydrogenation than the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts reduced at above 30 °C, such as Ru{sub 0.04}Ni{sub 0.96}/C(160) with the nanostructure of partial Ru{sub 0.04}Ni{sub 0.9} alloy and Ru{sub 0.04}Ni{sub 0.96}/C(280) with the nanostructure of complete Ru{sub 0.04}Ni{sub 0.9} alloy. The reason was that the synergistic effect of multiple active sites – Ru, Ni and Ni(OH){sub 2} sites was present in the Ru{sub 0.04}Ni{sub 0.96}/C(30) catalyst, where hydrogen was preferentially activated at Ru sites, benzene was probably activated at Ni(OH){sub 2} surface and Ni acted as a “bridge” for transferring activated H{sup ∗} species to activated benzene by hydrogen spillover effect, hydrogenating and forming product – cyclohexane. This study also provided a typical example to illustrate that the synergy effect of multiple active sites can largely improve the catalytic hydrogenation performance. - Highlights: • The Ru

  4. Hydrogen-mediated Nitrogen Clustering in Dilute III-V Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Du, M.-H.; Limpijumnong, S.; Zhang, S. B

    2006-01-01

    First-principles calculation reveals multi-N clusters to be the ground states for hydrogenated N in dilute III-V nitrides. While hydrogenation of a single N, forming H*{sub 2}(N), can relax the large strain induced by the size-mismatched N, formation of the clusters will relax the strain even more effectively. This suppresses the formation of H*{sub 2}(N), the existence of which has recently been debated. More importantly, postgrowth dehydrogenation of the N-H clusters provides an explanation to the observed metastable bare N clusters in GaAsN grown by gas-source molecular beam epitaxy or metal-organic chemical vapor deposition.

  5. Hydrogen-Mediated Nitrogen Clustering in Dilute III-V Nitrides

    Science.gov (United States)

    Du, Mao-Hua; Limpijumnong, Sukit; Zhang, S. B.

    2006-08-01

    First-principles calculation reveals multi-N clusters to be the ground states for hydrogenated N in dilute III-V nitrides. While hydrogenation of a single N, forming H2*(N), can relax the large strain induced by the size-mismatched N, formation of the clusters will relax the strain even more effectively. This suppresses the formation of H2*(N), the existence of which has recently been debated. More importantly, postgrowth dehydrogenation of the N-H clusters provides an explanation to the observed metastable bare N clusters in GaAsN grown by gas-source molecular beam epitaxy or metal-organic chemical vapor deposition.

  6. Origin and orientation of electric field gradient in ordered FeNi

    International Nuclear Information System (INIS)

    Guenzburger, D.J.R.; Ellis, D.E.

    1987-01-01

    The electronic structure of tetrataenite, the ordered phase of Fe Ni, has been studied in the molecular cluster approximation using local density theory. Clusters containing 13 and 19 atoms were embedded in the fcc host lattice and spin-unrestricted potentials were iterated to self-consistency. Local moments, magnetic hyperfine fields and electric field gradients (EFG) at the iron sites were determined for comparison with experiment. (Author) [pt

  7. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm2O3 addition prepared by laser deposition

    International Nuclear Information System (INIS)

    Zhang Shihong; Li Mingxi; Yoon, Jae Hong; Cho, Tong Yul

    2008-01-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm 2 O 3 powders, which are prepared on Q235 steel plate by 2.0 kW CO 2 laser deposition. The results indicate that with rare earth oxide Sm 2 O 3 addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm 2 O 3 /Ni-base alloy coatings have similar microstructure showing the primary phase of γ-Ni dendrite and eutectic containing γ-Ni and Cr 23 C 6 phases. However, compared to micron-Sm 2 O 3 /Ni-base alloy, preferred orientation of γ-Ni dendrite of nano-Sm 2 O 3 /Ni-base alloy is weakened. Planar crystal of several-μm thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm 2 O 3 /Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm 2 O 3 /Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm 2 O 3 size from micron to nano. The improvement on tribological property of nano-Sm 2 O 3 /Ni-base alloy over micron-Sm 2 O 3 /Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO 3 solution, the corrosion resistance is greatly improved with nano-Sm 2 O 3 addition since the decrease of corrosion ratio along grain-boundary in nano-Sm 2 O 3 /Ni-base alloy coating contributes to harmonization of corrosion potential

  8. DC electrodeposition of NiGa alloy nanowires in AAO template

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, K. [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Sanjabi, S., E-mail: sanjabi@modares.ac.ir [Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Iran, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Alemipour, Z. [Department of Physics, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2015-12-01

    NiGa alloy nanowires were electrodeposited from an acidic sulfate bath into nanoporous anodized alumina oxide (AAO). This template was fabricated by two-step anodizing. The effects of bath composition and current density were explored on the Ga content of electrodeposited nanowires. The Ga content in the deposits was increased by increasing both Ga in the bath composition and electrodepositing current density. The NiGa alloy nanowires were synthesized for Ga content up to 2–4% without significant improving the magnetic properties. Above this threshold Ga clusters were formed and decreased the magnetic properties of the nanowires. For Ga content of the alloy above 30%, the wires were too short and incomplete. X-ray diffraction patterns reveal that the significant increase of Ga content in the nanowires, changes the FCC crystal structure of Ni to an amorphous phase. It also causes a sizeable increase in the Ga cluster size; these both lead to a significant reduction in the coercivity and the magnetization respectively. - Highlights: • NiGa alloy nanowires were electrodeposited from acidic sulphate baths into nanoporous anodized alumina oxide (AAO) template. • The Ga content was increased by increasing the Ga in the bath composition and electrodeposition current density. • The magnetic parameters such as coercivity and magnetization were not changed for the alloy nanowire with Ga content less than 4%.

  9. Mesoporous Nickel Oxide (NiO) Nanopetals for Ultrasensitive Glucose Sensing

    Science.gov (United States)

    Mishra, Suryakant; Yogi, Priyanka; Sagdeo, P. R.; Kumar, Rajesh

    2018-01-01

    Glucose sensing properties of mesoporous well-aligned, dense nickel oxide (NiO) nanostructures (NSs) in nanopetals (NPs) shape grown hydrothermally on the FTO-coated glass substrate has been demonstrated. The structural study based investigations of NiO-NPs has been carried out by X-ray diffraction (XRD), electron and atomic force microscopies, energy dispersive X-ray (EDX), and X-ray photospectroscopy (XPS). Brunauer-Emmett-Teller (BET) measurements, employed for surface analysis, suggest NiO's suitability for surface activity based glucose sensing applications. The glucose sensor, which immobilized glucose on NiO-NPs@FTO electrode, shows detection of wide range of glucose concentrations with good linearity and high sensitivity of 3.9 μA/μM/cm2 at 0.5 V operating potential. Detection limit of as low as 1 μΜ and a fast response time of less than 1 s was observed. The glucose sensor electrode possesses good anti-interference ability, stability, repeatability & reproducibility and shows inert behavior toward ascorbic acid (AA), uric acid (UA) and dopamine acid (DA) making it a perfect non-enzymatic glucose sensor.

  10. Studies on resistive switching times in NiO thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Misra, P; Sahu, V K; Ajimsha, R S; Das, A K; Singh, B

    2017-01-01

    The resistive switching dynamics of NiO thin films in Au/NiO/Pt device configuration have been investigated to measure the switching times of set and reset events and their dependence on compliance current and switching voltages. The set switching time was found to be ∼10 ns at the set voltage of ∼1.8 V, while reset switching time was much longer ∼150 µ s at reset voltage of 0.8 V. With increasing compliance current from 5 to 75 mA during set process, although the resistance contrast of two states improved due to the decrease in the resistance of the low resistance state, the reset switching time increased substantially up to ∼3 ms while set time remained nearly unchanged. The fast reset switching time of ∼27 ns, comparable to that of set switching time, was achieved by applying a higher reset voltage of ∼1.2 V. The observed dependence of reset time on compliance current and reset voltage in NiO thin films was explained in light of the conducting filamentary model in which reset process is of thermal nature and involves dissolution of conducting filaments as a consequence of Joule heating generated by the reset current. (paper)

  11. Schottky barrier height of Ni to β-(AlxGa1-x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.

    2017-03-01

    Coherent β-(AlxGa1-x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance-voltage measurements revealed a very low (current-voltage (I-V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1-x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I-V measurements could be similar for β-(AlxGa1-x)2O3 films with different compositions.

  12. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, F.O.; Willis, R.F. [Pennsylvania State Univ., University Park, PA (United States); Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  13. Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application

    Science.gov (United States)

    Gupta, Reema; Tomar, Monika; Kumar, Ashok; Gupta, Vinay

    2017-03-01

    Magnetoelectric (ME) coefficient of Lead Zirconium Titanate (PZT) thin films has been probed for possible energy harvesting applications. Single phase PZT thin films have been deposited on nickel substrate (PZT/Ni) using pulsed laser deposition (PLD) technique. The effect of PLD process parameters on the ME coupling coefficient in the prepared systems has been investigated. The as grown PZT films on Ni substrate were found to be polycrystalline with improved ferroelectric and ferromagnetic properties. The electrical switching behavior of the PZT thin films were verified using capacitance voltage measurements, where well defined butterfly loops were obtained. The ME coupling coefficient was estimated to be in the range of 94.5 V cm-1 Oe-1-130.5 V cm-1 Oe-1 for PZT/Ni system, which is large enough for harnessing electromagnetic energy for subsequent applications.

  14. Preparation and characterization of Eosin B- and Erythrosin J-sensitized nanostructured NiO thin film photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Vera, F. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Schrebler, R. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Munoz, E. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Suarez, C. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Cury, P. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Gomez, H. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Cordova, R. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Marotti, R.E. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay); Dalchiele, E.A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay)]. E-mail: dalchiel@fing.edu.uy

    2005-11-01

    Nickel oxide (NiO) thin films were prepared onto ITO/glass substrates by spin-coating, dipping and electrochemically. Studies of the morphological and structural properties of the films were done by atomic force microscopy (AFM). Photoelectrochemical and optical experiments were carried out in order to characterize the semiconductor properties of the nanostructured NiO thin films. The experiments were also done for Eosin B- and Erythrosin J-sensitized nanostructured NiO films, with the aim to visualize their potential application as photocatodes in tandem dye-sensitized solar cells (TDSSC). The NiO grown by dipping was the one presenting the best morphological properties. The photoelectrochemical results for all the bare NiO, NiO-Eosin B and NiO-Erythrosin J/electrolyte (I{sub 2}/I{sup -}) systems showed a p-type behavior. An enhancement in the photocurrent has been observed for the systems sensitized with the dyes. For the NiO/Erythrosin J system the enhancement of the current under illumination in comparison to the dark current was about 200%.

  15. Preparation and characterization of Eosin B- and Erythrosin J-sensitized nanostructured NiO thin film photocathodes

    International Nuclear Information System (INIS)

    Vera, F.; Schrebler, R.; Munoz, E.; Suarez, C.; Cury, P.; Gomez, H.; Cordova, R.; Marotti, R.E.; Dalchiele, E.A.

    2005-01-01

    Nickel oxide (NiO) thin films were prepared onto ITO/glass substrates by spin-coating, dipping and electrochemically. Studies of the morphological and structural properties of the films were done by atomic force microscopy (AFM). Photoelectrochemical and optical experiments were carried out in order to characterize the semiconductor properties of the nanostructured NiO thin films. The experiments were also done for Eosin B- and Erythrosin J-sensitized nanostructured NiO films, with the aim to visualize their potential application as photocatodes in tandem dye-sensitized solar cells (TDSSC). The NiO grown by dipping was the one presenting the best morphological properties. The photoelectrochemical results for all the bare NiO, NiO-Eosin B and NiO-Erythrosin J/electrolyte (I 2 /I - ) systems showed a p-type behavior. An enhancement in the photocurrent has been observed for the systems sensitized with the dyes. For the NiO/Erythrosin J system the enhancement of the current under illumination in comparison to the dark current was about 200%

  16. Charge transfer effects in electrocatalytic Ni-C revealed by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haslam, G. E.; Chin, X.-Y.; Burstein, G. T. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke St., Cambridge CB2 3QZ (United Kingdom); Sato, K.; Mizokawa, T. [Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8651 (Japan)

    2012-06-04

    Binary Ni-C thin-film alloys, which have been shown to be passive against corrosion in hot sulphuric acid solution whilst also being electrocatalytically active, were investigated by XPS to determine the oxidation state of the metal and carbon components. The Ni component produces a Ni 2p spectrum similar to that of metallic nickel (i.e., no oxidation occurs) but with a 0.3 eV shift to higher binding energy (BE) due to electron donation to the carbon matrix. The C 1s peak shows a shift to lower BE by accepting electrons from the Ni nanocrystals. A cluster-model analysis of the observed Ni 2p spectrum is consistent with the electron transfer from the nickel to the carbon.

  17. Facile one-pot synthesis of Ni2+-doped (NH4)2V3O8 nanoflakes@Ni foam with visible-light-driven photovoltaic behavior for supercapacitor application

    Science.gov (United States)

    Zhou, Qingfeng; Gong, Yun; Lin, Jianhua

    2018-05-01

    In the present work, Ni2+-doped (NH4)2V3O8 nanoflakes are in situ grown on Ni foam through a facile one-pot hydrothermal technique in a NH4VO3 aqueous solution. The Ni2+-doped (NH4)2V3O8@Ni foam composite material can be used as binder- and conductivity agent-free electrode in supercapacitor, it manifests a large specific capacitance of 465.5 F g-1 at a current density of 0.2 A g-1 and a superior rate capability of 317.5 F g-1 at 10 A g-1, which is beneficial from its three-dimensional porous architecture cross-linked by the ultrathin Ni2+-doped (NH4)2V3O8 nanoflakes on Ni foam. Meanwhile, the Ni2+-doped (NH4)2V3O8@Ni foam//Activated carbon asymmetric supercapacitor can deliver a maximum energy density of 20.1 W h kg-1 at a power density of 752.0 W kg-1. Significantly, the Ni2+-doped (NH4)2V3O8@Ni foam electrode possesses reversible electrochromic behavior, and it shows obvious visible light-driven photoresponse with much higher specific capacitance (645.3 F g-1 at 0.5 A g-1) under illumination (650 nm > λ > 350 nm, 100 mW cm-2), which is probably associated with the semiconducting characteristics of the spin-polarized (NH4)2V3O8 and the quantum confinement effect of the nanoflakes.

  18. A first-principles study of structure, orbital interactions and atomic oxygen and OH adsorption on Mo-, Sc- and Y-doped nickel bimetallic clusters

    International Nuclear Information System (INIS)

    Das, Nishith Kumar; Shoji, Tetsuo

    2013-01-01

    Highlights: •Mo-doped nickel clusters are energetically more stable than the Sc and Y-doped clusters (n ⩾ 10). •Mo atom exhibits center at the cluster rather than edge, while Sc and Y atom sit at the edge. •The metallic s, d orbitals are mainly dominated on the stability of nanoclusters. •The oxygen and OH adsorption energy of Mo-doped cluster are higher than those of other nanoclusters. •2p Orbitals are strongly bonds with Mo 4d, and a weakly interacts with Ni 3d, 4s and Mo 5s orbitals. -- Abstract: Density functional theory (DFT) has been used to study the stability, orbitals interactions and oxygen and hydroxyl chemisorption properties of Ni n M (1 ⩽ n ⩽ 12) clusters. A single atom doped-nickel clusters increase the stability, and icosahedral Ni 12 Mo cluster is the most stable structure. Molybdenum atom prefers to exhibit center at the cluster (n ⩾ 10) rather than edge, while Sc and Y atom remain at the edge. The Ni–Mo bond lengths are smaller than the Ni–Sc and Ni–Y. The pDOS results show that the d–d orbitals interactions are mainly dominating on the stability of clusters, while p orbitals have a small effect on the stability. The Mo-doped nanoclusters have the highest oxygen and OH chemisorption energy, and the most favorable adsorption site is on the top Mo site. The larger cluster distortion is found for the Sc- and Y-doped structures compared to other clusters. The oxygen 2p orbitals are strongly hybridizing with the Mo 4d orbitals (n < 9) and a little interaction between oxygen 2p and Ni 3d, 4s and Mo 5s orbitals. The Mo-doped clusters are significantly increased the chemisorption energies that might improve the passive film adherence of nanoalloys

  19. Microwave effects on NiMoS and CoMoS single-sheet catalysts.

    Science.gov (United States)

    Borges, I; Silva, Alexander M; Modesto-Costa, Lucas

    2018-05-04

    Single-sheet nanoclusters of MoS 2 , NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS 2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS 2 in the following order: CoMoS > NiMoS > MoS 2 . The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.

  20. Efficient Photocatalytic Degradation of Malachite Green in Seawater by the Hybrid of Zinc-Oxide Nanorods Grown on Three-Dimensional (3D Reduced Graphene Oxide(RGO/Ni Foam

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2018-06-01

    Full Text Available A hybrid of ZnO nanorods grown onto three-dimensional (3D reduced graphene oxide (RGO@Ni foam (ZnO/RGO@NF is synthesized by a facile hydrothermal method. The as-prepared hybrid material is physically characterized by SEM, XRD, Raman, and X-ray photoelectron spectroscopy (XPS. When the as-prepared 3D hybrid is investigated as a photocatalyst, it demonstrates significant high photocatalytic activity for the degradation of methylene blue (MB, rhodamine (RhB, and mixed MB/RhB as organic dye pollutants. In addition, the practical application and the durability of the as-prepared catalyst to degradation of malachite green (MG in seawater are firstly assessed in a continuous flow system. The catalyst shows a high degradation efficiency and stable photocatalytic activity for 5 h continuous operation, which should be a promising catalyst for the degradation of organic dyes in seawater.

  1. Defect analysis of NiMnSb epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, L. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland)]. E-mail: lech.nowicki@fuw.edu.pl; Turos, A. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Stonert, A. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Garrido, F. [Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, 91405 Orsay (France); Molenkamp, L.W. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Bach, P. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Schmidt, G. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Karczewski, G. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Muecklich, A. [Forschungszentrum Rossendorf, Institut fuer Ionenstrahlphysik und Materialforschung, POB 510119, 01314 Dresden (Germany)

    2005-10-15

    NiMnSb layers grown on InP substrates with InGaAs buffer were studied by the backscattering/channeling spectrometry (RBS/C) with He beams. The nature of predominant defects observed in the layers was studied by determination of incident-energy dependence of the relative channeling yield. The defects are described as a combination of large amount of interstitial atoms and of stacking faults or grain boundaries. The presence of grains was confirmed by transmission electron microscopy.

  2. Bonding of NH{sub 3}, CO, and NO to NiO and Ni-doped MgO: a problem for density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Pacchioni, Gianfranco [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca (Italy); Di Valentin, Cristiana [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca (Italy); Dominguez-Ariza, David [Departament de Quimica FIsica i Centre de Recerca en Quimica Teorica, Universitat de Barcelona i Parc Cientific de Barcelona, C/ Marti i Franques 1, E-08028 Barcelona (Spain); Illas, Francesc [Departament de QuImica FIsica i Centre de Recerca en Quimica Teorica, Universitat de Barcelona i Parc CientIfic de Barcelona, C/ Marti i Franques 1, E-08028 Barcelona (Spain); Bredow, Thomas [Theoretische Chemie, Universitaet Hannover, Am Kleinen Felde 30, 30167 Hannover (Germany); Kluener, Thorsten [Department Chemical Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Staemmler, Volker [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany)

    2004-07-07

    Recent experimental results (Hoeft et al 2001 Phys. Rev. Lett. 87 086101) have questioned the capability of current theoretical methods for describing the bonding of NH{sub 3}, CO, and NO with the NiO(100) surface. We show that these systems do indeed represent a challenge to theory. For different reasons, density functional theory (DFT) fails in describing the bonding of these molecules to the NiO surface. The gradient-corrected functionals which work better for the properties of NH{sub 3}/NiO and CO/NiO (energies, geometries, vibrations) provide wrong answers for NO/NiO and vice versa. This is not due to the well-known difficulty as regards DFT describing the insulating character of NiO. In fact, exactly the same problem is found for isolated Ni{sup 2+} impurities in MgO. A correct description of the bonding of both closed-shell (NH{sub 3} and CO) and open-shell (NO) molecules to Ni{sub x}Mg{sub 1-x}O is obtained only after inclusion of dynamical correlation and dispersion forces via wavefunction-based methods. However, even with correlated calculations some uncertainties exist regarding the predicted value of the energy of adsorption of NO on NiO. While CASPT2 calculations reach reasonable agreement with experiment, the results of approximate coupled-cluster calculations (the multi-configuration coupled-electron-pair approach) substantially underestimate the adsorption energy.

  3. Phase-field simulation of peritectic solidification closely coupled with directional solidification experiments in an Al-36 wt% Ni alloy

    International Nuclear Information System (INIS)

    Siquieri, R; Emmerich, H; Doernberg, E; Schmid-Fetzer, R

    2009-01-01

    In this work we present experimental and theoretical investigations of the directional solidification of Al-36 wt% Ni alloy. A phase-field approach (Folch and Plapp 2005 Phys. Rev. E 72 011602) is coupled with the CALPHAD (calculation of phase diagrams) method to be able to simulate directional solidification of Al-Ni alloy including the peritectic phase Al 3 Ni. The model approach is calibrated by systematic comparison to microstructures grown under controlled conditions in directional solidification experiments. To illustrate the efficiency of the model it is employed to investigate the effect of temperature gradient on the microstructure evolution of Al-36 wt% Ni during solidification.

  4. In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, D.; Hu, L.; Reddy, A.; Heuer, A.H. [Dept. of Materials Science and Engineering, Case Western Reserve Univ., Cleveland, OH (United States); Paulikas, A.P.; Veal, B.W. [Materials Science Div., Argonne National Lab., Argonne, IL (United States)

    2007-12-15

    Oxide growth stresses were measured in situ at 1100 C on commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys using synchrotron X-rays. Measurements were taken on samples that had no preoxidation, as well as on samples that had experienced 24 one-hour thermal exposures at 1150 C, a condition known to induce rumpling in the Pt-modified NiAl alloy, but not in the NiCoCrAlY alloy. The NiCoCrAlY alloy showed continuous stress relaxation under all conditions, whereas the Pt-modified NiAl alloys would typically stabilize at a fixed (often non-zero) stress suggesting a higher creep strength in the 'Thermally Grown Oxide' on the latter alloy, though the precise behavior was dependent on initial surface preparation. The formation of martensite in the Pt-modified NiAl alloys was also observed upon cooling and occurred at temperatures below 200 C for all of the samples observed. Based on existing models, this M{sub s} temperature is too low to account for the rumpling observed in these alloys. (orig.)

  5. NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure

    Energy Technology Data Exchange (ETDEWEB)

    Mlynczak, E. [Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow (Poland); Luches, P. [S3, Istituto Nanoscienze-CNR, Via G. Campi 213/a, I-41125 Modena (Italy); Valeri, S. [S3, Istituto Nanoscienze-CNR, Via G. Campi 213/a, I-41125 Modena (Italy); Dipartimento di Scienze Fisiche, Matematiche e Informatiche, Universita di Modena e Reggio Emilia, Via G. Campi 213/a, 41100 Modena (Italy); Korecki, J. [Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow (Poland); Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al.Mickiewicza 30, 30-059 Krakow (Poland)

    2013-06-21

    The magnetic and structural properties of NiO/Fe epitaxial bilayers grown on MgO(001) were studied using magnetooptic Kerr effect (MOKE) and conversion electron Moessbauer spectroscopy (CEMS). The bilayers were prepared under ultra high vacuum conditions using molecular beam epitaxy with oblique deposition. Two systems were compared: one showing the exchange bias (100ML-NiO/24ML-Fe), ML stands for a monolayer, and another where the exchange bias was not observed (50ML-NiO/50ML-Fe). For both, the magnetic anisotropy was found to be complex, yet dominated by the growth-induced uniaxial anisotropy. The training effect was observed for the 100ML-NiO/24ML-Fe system and quantitatively described using the spin glass model. The composition and magnetic state of the interfacial Fe layers were studied using {sup 57}Fe-CEMS. An iron oxide phase (Fe{sup 3+}{sub 4}Fe{sup 2+}{sub 1}O{sub 7}), as thick as 31 A, was identified at the NiO/Fe interface in the as-deposited samples. The ferrimagnetic nature of the interfacial iron oxide film explains the complex magnetic anisotropy observed in the samples.

  6. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys

    International Nuclear Information System (INIS)

    Lu, Chenyang; Yang, Taini; Jin, Ke; Gao, Ning; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Weber, William J.; Sun, Kai; Dong, Yan; Wang, Lumin

    2017-01-01

    A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni"2"+ ions at 773 K to a fluence of 5 × 10"1"6 ions/cm"2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasing compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, “disk” like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.

  7. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Kumar, Shalendra; Vats, Prashant; Gautam, S.; Gupta, V.P.; Verma, K.D.; Chae, K.H.; Hashim, Mohd; Choi, H.K.

    2014-01-01

    Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L 3,2 edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L 3,2 -edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L 3,2 -edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior

  8. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN- Ligands: Analogs of the Active Site of the [NiFe] Hydrogenases.

    Science.gov (United States)

    Perotto, Carlo U; Sodipo, Charlene L; Jones, Graham J; Tidey, Jeremiah P; Blake, Alexander J; Lewis, William; Davies, E Stephen; McMaster, Jonathan; Schröder, Martin

    2018-03-05

    The development of synthetic analogs of the active sites of [NiFe] hydrogenases remains challenging, and, in spite of the number of complexes featuring a [NiFe] center, those featuring CO and CN - ligands at the Fe center are under-represented. We report herein the synthesis of three bimetallic [NiFe] complexes [Ni( N 2 S 2 )Fe(CO) 2 (CN) 2 ], [Ni( S 4 )Fe(CO) 2 (CN) 2 ], and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] that each contain a Ni center that bridges through two thiolato S donors to a {Fe(CO) 2 (CN) 2 } unit. X-ray crystallographic studies on [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ], supported by DFT calculations, are consistent with a solid-state structure containing distinct molecules in the singlet ( S = 0) and triplet ( S = 1) states. Each cluster exhibits irreversible reduction processes between -1.45 and -1.67 V vs Fc + /Fc and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] possesses a reversible oxidation process at 0.17 V vs Fc + /Fc. Spectroelectrochemical infrared (IR) and electron paramagnetic resonance (EPR) studies, supported by density functional theory (DFT) calculations, are consistent with a Ni III Fe II formulation for [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + . The singly occupied molecular orbital (SOMO) in [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + is based on Ni 3d z 2 and 3p S with the S contributions deriving principally from the apical S-donor. The nature of the SOMO corresponds to that proposed for the Ni-C state of the [NiFe] hydrogenases for which a Ni III Fe II formulation has also been proposed. A comparison of the experimental structures, and the electrochemical and spectroscopic properties of [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] and its [Ni( N 2 S 3 )] precursor, together with calculations on the oxidized [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + and [Ni( N 2 S 3 )] + forms suggests that the binding of the {Fe(CO)(CN) 2 } unit to the {Ni(CysS) 4 } center at the active site of the [NiFe] hydrogenases suppresses thiolate-based oxidative chemistry involving the bridging thiolate S donors

  9. Stabilization of Reactive MgO Surfaces by Ni Doping

    Science.gov (United States)

    Mazheika, Aliaksei; Levchenko, Sergey V.

    Ni-MgO solid solutions are promising materials for catalytic reduction of CO2 and dry reforming of CH4. To explain the catalytic activity, an ab initio study of Ni-substitutional defects in MgO (NiMg) has been performed. At first, the validation of the theory level was done. We compared results of CCSD(T) embedded-cluster calculations of NiMg formation energies and adsorption energies of CO, CO2 and H2 on them to the HSE(α) hybrid DFT functional with the fraction of the exact exchange α varied between 0 and 1. HSE(0.3) was found to be the best compromise in this study. Our periodic HSE(0.3) calculations show that NiMg defects are most stable at corner sites, followed by steps, and are least stable at (001) terraces. Thus, Ni-doping stabilizes stepped MgO surfaces. The dissociative adsorption of H2 on the terrace is found to be endothermic (+ 1 . 1 eV), whereas on (110) surface with NiMg it is highly exothermic (- 1 . 6 eV). Adsorbed CO2 is also significantly stabilized (- 0 . 6 vs. - 2 . 2 eV). These findings explain recent microcalorimetry measurements of H2 and CO2 adsorption at doped Ni-MgO samples. partially supported by UniCat (Deutsche Forschungsgemeinschaft).

  10. Magnetic anomalies in Fe-doped NiO nanoparticle

    Science.gov (United States)

    Pradeep, R.; Gandhi, A. C.; Tejabhiram, Y.; Mathar Sahib, I. K. Md; Shimura, Y.; Karmakar, L.; Das, D.; Wu, Sheng Yun; Hayakawa, Y.

    2017-09-01

    Undoped and iron-doped NiO nanoparticle were synthesized by standard hydrothermal method. A detailed study is carried out on the effect of dopant concentration on morphology, structural, resonance and magnetic properties of NiO nanoparticle by varying the Fe concentration from 0.01 to 0.10 M. The synchrotron-x-ray diffraction confirmed that no secondary phase was observed other than NiO. The x-ray photoelectron spectroscopy studies revealed that, Fe was primarily in the trivalent state, replacing the Ni2+ ion inside the octahedral crystal site of NiO. The Electron paramagnetic studies revealed the ferromagnetic cluster formation at high doping concentration (5 and 10%). The ZFC-FC curves displayed an average blocking temperature around 180 K due to particle size distribution. The anomalous behaviour of spontaneous exchange bias (H SEB) and magnetic remanence (M r) for all Fe-doped samples observed at 5 K showed an increase (0.1316-0.1384 emu g-1) in the moment of frozen spin (M p) as the dopant concentration increased. The role of frozen spin moment in spontaneous exchange bias behaviour was discussed.

  11. Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte

    Science.gov (United States)

    Veerasubramani, Ganesh Kumar; Krishnamoorthy, Karthikeyan; Kim, Sang Jae

    2016-02-01

    Herein, we are successfully prepared cobalt molybdate (CoMoO4) grown on nickel foam as a binder free electrode by hydrothermal approach for supercapacitors and improved their electrochemical performances using potassium ferricyanide (K3Fe(CN)6) as redox additive. The formation of CoMoO4 on Ni foam with high crystallinity is confirmed using XRD, Raman, and XPS measurements. The nanoplate arrays (NPAs) of CoMoO4 are uniformly grown on Ni foam which is confirmed by FE-SEM analysis. The prepared binder-free CoMoO4 NPAs achieved maximum areal capacity of 227 μAh cm-2 with KOH electrolyte at 2.5 mA cm-2. This achieved areal capacity is further improved about three times using the addition of K3Fe(CN)6 as redox additive. The increased electrochemical performances of CoMoO4 NPAs on Ni foam electrode via redox additive are discussed in detail and the mechanism has been explored. Moreover, the assembled CoMoO4 NPAs on Ni foam//activated carbon asymmetric supercapacitor device with an extended operating voltage window of 1.5 V exhibits an excellent performances such as high energy density and cyclic stability. The overall performances of binder-free CoMoO4 NPAs on Ni foam with redox additives suggesting their potential use as positive electrode material for high performance supercapacitors.

  12. Covalent coupling via dehalogenation on Ni(111) supported boron nitride and graphene.

    Science.gov (United States)

    Morchutt, Claudius; Björk, Jonas; Krotzky, Sören; Gutzler, Rico; Kern, Klaus

    2015-02-11

    Polymerization of 1,3,5-tris(4-bromophenyl)benzene via dehalogenation on graphene and hexagonal boron nitride is investigated by scanning tunneling microscopy experiments and density functional theory calculations. This work reveals how the interactions between molecules and graphene or h-BN grown on Ni(111) govern the surface-confined synthesis of polymers through C-C coupling.

  13. Urchin-like NiCo2O4 nanoneedles grown on mesocarbon microbeads with synergistic electrochemical properties as electrodes for symmetric supercapacitors.

    Science.gov (United States)

    Zhang, Yu; Zhang, Yihe; Zhang, Deyang; Sun, Li

    2017-07-25

    Here, we report a facile method to fabricate NiCo 2 O 4 nanoneedles on mesocarbon microbeads (MCMB) and form a unique urchin-like core-shell structure. In this composite, the MCMB not only provided high conductivity to benefit effective electron transfer, but also offered abundant adsorption points to load the NiCo 2 O 4 nanoneedles. The aggregation of the NiCo 2 O 4 nanoneedles was therefore alleviated and each NiCo 2 O 4 grain was unfolded to gain easy access to the electrolyte for efficient ion transfer. When the NiCo 2 O 4 @MCMB composite was evaluated as an electrode material for supercapacitors, a synergistic effect was exerted with high specific capacitance (458 F g -1 at 1 A g -1 ) and large reversibility (116% capacitance retention after 3000 cycles), both of which were of great advantage over individual MCMB and NiCo 2 O 4 nanoneedles. The NiCo 2 O 4 @MCMB was also used to construct a symmetric supercapacitor, which showed enlarged voltage profiles and could light the LED device for a few minutes, further confirming its excellent electrochemical performance.

  14. Investigations on carbon cluster formation in heavy ion irradiated polymers

    International Nuclear Information System (INIS)

    Tripathy, S.P.; Mishra, R.; Mawar, A.K.; Dwivedi, K.K.; Khathing, D.T.; Srivastava, A.; Avasthi, D.K.; Ghosh, S.; Fink, D.

    2000-01-01

    In polymers, the carbonaceous clusters are supposed to be responsible for the electrical conductivity. So, the irradiation of organic polymers namely polypropylene (8μ) and polyimide (50μ) by energetic heavy ions 28 Si and 58 Ni produce significant changes in the size of these clusters leading to the corresponding change in the band gap and other electrical properties as revealed by the UV-VIS spectroscopic examinations. (author)

  15. Disclosure of key stereoelectronic factors for efficient H2 binding and cleavage in the active site of [NiFe]-hydrogenases.

    Science.gov (United States)

    Bruschi, Maurizio; Tiberti, Matteo; Guerra, Alessandro; De Gioia, Luca

    2014-02-05

    A comparative analysis of a series of DFT models of [NiFe]-hydrogenases, ranging from minimal NiFe clusters to very large systems including both the first and second coordination sphere of the bimetallic cofactor, was carried out with the aim of unraveling which stereoelectronic properties of the active site of [NiFe]-hydrogenases are crucial for efficient H2 binding and cleavage. H2 binding to the Ni-SIa redox state is energetically favored (by 4.0 kcal mol(-1)) only when H2 binds to Ni, the NiFe metal cluster is in a low spin state, and the Ni cysteine ligands have a peculiar seesaw coordination geometry, which in the enzyme is stabilized by the protein environment. The influence of the Ni coordination geometry on the H2 binding affinity was then quantitatively evaluated and rationalized analyzing frontier molecular orbitals and populations. Several plausible reaction pathways leading to H2 cleavage were also studied. It turned out that a two-step pathway, where H2 cleavage takes place on the Ni-SIa redox state of the enzyme, is characterized by very low reaction barriers and favorable reaction energies. More importantly, the seesaw coordination geometry of Ni was found to be a key feature for facile H2 cleavage. The discovery of the crucial influence of the Ni coordination geometry on H2 binding and activation in the active site of [NiFe]-hydrogenases could be exploited in the design of novel biomimetic synthetic catalysts.

  16. A comprehensive study of ferromagnetic resonance and structural properties of iron-rich nickel ferrite (Ni{sub x}Fe{sub 3−x}O{sub 4}, x≤1) films grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pachauri, Neha; Khodadadi, Behrouz [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Singh, Amit V. [Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Mohammadi, Jamileh Beik [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Martens, Richard L. [Central Analytical Facility (CAF), The University of Alabama, Tuscaloosa, Alabama 35487 (United States); LeClair, Patrick R.; Mewes, Claudia; Mewes, Tim [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Gupta, Arunava [Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, Alabama 35487 (United States)

    2016-11-01

    We report a detailed study of the structural and ferromagnetic resonance properties of spinel nickel ferrite (NFO) films, grown on (100)-oriented cubic MgAl{sub 2}O{sub 4} substrates by direct liquid injection chemical vapor deposition (DLI-CVD) technique. Three different compositions of NFO films (Ni{sub x}Fe{sub 3−x}O{sub 4} where x=1, 0.8, 0.6) deposited at optimized growth temperature of 600 °C are characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometry (VSM), and broadband ferromagnetic resonance (FMR) techniques. XRD confirms the growth of epitaxial, single crystalline Ni{sub x}Fe{sub 3−x}O{sub 4} films. The out-of-plane lattice constant (c) obtained for Ni{sub 0.8}Fe{sub 2.2}O{sub 4} film is slightly higher than the bulk value (0.833 nm), indicating only partial strain relaxation whereas for the other two compositions (x=1 and x=0.6) films exhibit complete relaxation. The in-plane and out-of-plane FMR linewidths measurements at 10 GHz give the lowest values of 458 Oe and 98 Oe, respectively, for Ni{sub 0.8}Fe{sub 2.2}O{sub 4} film as compared to the other two compositions. A comprehensive frequency (5–40 GHz) and temperature (10–300 K) dependent FMR study of the Ni{sub 0.8}Fe{sub 2.2}O{sub 4} sample for both in-lane and out-of-plane configurations reveals two magnon scattering (TMS) as the dominant in-plane relaxation mechanism. It is observed that the TMS contribution to the FMR linewidth scales with the saturation magnetization M{sub s}. In-plane angle-dependent FMR measurements performed on the same sample show that the ferromagnetic resonance field (H{sub res}) and the FMR linewidth (ΔH) have a four-fold symmetry that is consistent with the crystal symmetry of the spinel. SEM measurements show formation of pyramid-like microstructures at the surface of the Ni{sub 0.8}Fe{sub 2.2}O{sub 4} sample, which can explain the observed four-fold symmetry of the FMR linewidth.

  17. Nickel Nanowire@Porous NiCo{sub 2}O{sub 4} Nanorods Arrays Grown on Nickel Foam as Efficient Pseudocapacitor Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Houzhao; Li, Lang; Zhang, Jun; Liu, Xiang; Wang, Hanbin; Wang, Hao, E-mail: nanoguy@126.com [Faculty of Physics and Electronic Science, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan (China)

    2017-12-13

    A three dimensional hierarchical nanostructure composed of nickel nanowires and porous NiCo{sub 2}O{sub 4} nanorods arrays on the surface of nickel foam is successfully fabricated by a facile route. In this structure, the nickel nanowires are used as core materials to support high-pseudocapacitance NiCo{sub 2}O{sub 4} nanorods and construct the well-defined NiCo{sub 2}O{sub 4} nanorods shell/nickel nanowires core hierarchical structure on nickel foam. Benefiting from the participation of nickel nanowires, the nickel nanowire@NiCo{sub 2}O{sub 4}/Ni foam electrode shows a high areal specific capacitance (7.4 F cm{sup −2} at 5 mA cm{sup −2}), excellent rate capability (88.04% retained at 100 mA cm{sup −2}), and good cycling stability (74.08% retained after 1,500 cycles). The superior electrochemical properties made it promising as electrode for supercapacitors.

  18. In situ preparation of MgCo2O4 nanosheets on Ni-foam as a binder-free electrode for high performance hybrid supercapacitors.

    Science.gov (United States)

    Vijayakumar, Subbukalai; Nagamuthu, Sadayappan; Ryu, Kwang-Sun

    2018-05-15

    A binder-free, MgCo2O4 nanosheet-like architecture was prepared on Ni-foam using a hydrothermal method. MgCo2O4/Ni-foam was characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), and transmission electron microscopy techniques. The FESEM image revealed a nanosheet array-like architecture. The MgCo2O4 nanosheets grown on Ni-foam exhibited the maximum specific capacity of 947 C g-1 at a specific current of 2 A g-1. Approximately 96% of the specific capacity was retained from the maximum specific capacity after 5000 continuous charge-discharge cycles. This hybrid device exhibited a maximum specific capacity of 52 C g-1 at a specific current of 0.5 A g-1, and also exhibited a maximum specific energy of 12.99 W h kg-1 at a specific power of 448.7 W kg-1. These results confirmed that the binder-free MgCo2O4 nanosheets grown on Ni-foam are a suitable positive electrode material for hybrid supercapacitors.

  19. Synthesis of NiPS3 and CoPS and its hydrogen storage capacity

    International Nuclear Information System (INIS)

    Ismail, N.; Madian, M.; El-Meligi, A.A.

    2014-01-01

    Highlights: • Preparation of NiPS 3 and CoPS using solid state reaction. • Characterization of compounds using XRD, TEM, SEM and IR. • Measuring the compounds thermal stability. • Estimation of the hydrogen storage capacity. -- Abstract: Prepared CoPS and NiPS 3 are studied as new materials for hydrogen energy storage. Single phase of CoPS and NiPS 3 were grown separately in evacuated silicatube via solid state reaction at 650 °C with controlled heating rate 1 °C/min. X-ray diffraction patterns confirm the formation of the desired compounds. Both CoPS and NiPS 3 exhibited high thermal stability up to 700 °C and 630 °C, respectively. The morphology of the prepared samples was investigated using scanning electron microscopy and folded sheets appeared in the transmission electron microscopy. The samples were exposed to 20 bar applied hydrogen pressure at 80 K. Both compounds appear to have feasible hydrogen storage capacity. CoPS was capable to adsorb 1.7 wt% while NiPS 3 storage capacity reached 1.2 wt%

  20. A flexible, high-performance magnetoelectric heterostructure of (001) oriented Pb(Zr0.52Ti0.48)O3 film grown on Ni foil

    Science.gov (United States)

    Palneedi, Haribabu; Yeo, Hong Goo; Hwang, Geon-Tae; Annapureddy, Venkateswarlu; Kim, Jong-Woo; Choi, Jong-Jin; Trolier-McKinstry, Susan; Ryu, Jungho

    2017-09-01

    In this study, a flexible magnetoelectric (ME) heterostructure of PZT/Ni was fabricated by depositing a (001) oriented Pb(Zr0.52Ti0.48)O3 (PZT) film on a thin, flexible Ni foil buffered with LaNiO3/HfO2. Excellent ferroelectric properties and large ME voltage coefficient of 3.2 V/cmṡOe were realized from the PZT/Ni heterostructure. The PZT/Ni composite's high performance was attributed to strong texturing of the PZT film, coupled with the compressive stress in the piezoelectric film. Besides, reduced substrate clamping in the PZT film due to the film on the foil structure and strong interfacial bonding in the PZT/LaNiO3/HfO2/Ni heterostructure could also have contributed to the high ME performance of PZT/Ni.

  1. Structural characterization of metastable hcp-Ni thin films epitaxially grown on Au(100) single-crystal underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    Ni(1120) epitaxial thin films with hcp structure were prepared on Au(100) single-crystal underlayers at 100 deg. C by ultra high vacuum molecular beam epitaxy. The detailed film structure is studied by in situ reflection high energy electron diffraction, x-ray diffraction, and transmission electron microscopy. The hcp-Ni film consists of two types of variants whose c-axes are rotated around the film normal by 90 deg. each other. An atomically sharp boundary is recognized between the film and the underlayer, where misfit dislocations are introduced. Presence of such dislocations seems to relieve the strain caused by the lattice mismatch between the film and the underlayer.

  2. Characterization of as-grown and heavily irradiated GaN epitaxial structures by photoconductivity and photoluminescence

    International Nuclear Information System (INIS)

    Gaubas, E.; Jurs e-dot nas, S.; Tomasiunas, R.; Vaitkus, J.; Zukauskas, A.; Blue, A.; Rahman, M.; Smith, K.M.

    2005-01-01

    The influence of radiation defects on photoconductivity transients and photoluminescence (PL) spectra have been examined in semi-insulating GaN epitaxial layers grown on bulk n-GaN/sapphire substrates. Defects induced by 10-keV X-ray irradiation with a dose of 600Mrad and 100-keV neutrons with fluences of 5x10 14 and 10 16 cm -2 have been revealed through contact photoconductivity and microwave absorption transients. The amplitude of the initial photoconductivity decay is significantly reduced by the radiation defect density. A simultaneous decrease with radiation-induced defect density is also observed in the steady-state PL intensity of yellow, blue and ultraviolet bands peaked at 2.18, 2.85, and 3.42eV, respectively. The decrease of the PL intensity is accompanied by an increase of asymptotic decay lifetime, which is due to excess carrier multi-trapping. The decay can be described by the stretched exponential approximation exp[-(t/τ) α ] with different values of α in as-grown material (α∼0.7) and irradiated samples (α∼0.3). The value of the fracton dimension d s of the disordered structure, evaluated as d s =2α/(1-α), changes from 4.7 to 0.86 for as-grown and irradiated material, respectively, implying percolative carrier motion on an infinite cluster of dislocations net in the as-grown material and cluster fragmentation into finite fractons after irradiation

  3. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    International Nuclear Information System (INIS)

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A.; Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P.

    2015-01-01

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering

  4. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A., E-mail: rao28@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P., E-mail: michael.moody@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-02-16

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering.

  5. Pressure-induced positive electrical resistivity coefficient in Ni-Nb-Zr-H glassy alloy

    Science.gov (United States)

    Fukuhara, M.; Gangli, C.; Matsubayashi, K.; Uwatoko, Y.

    2012-06-01

    Measurements under hydrostatic pressure of the electrical resistivity of (Ni0.36Nb0.24Zr0.40)100-xHx (x = 9.8, 11.5, and 14) glassy alloys have been made in the range of 0-8 GPa and 0.5-300 K. The resistivity of the (Ni0.36Nb0.24Zr0.40)86H14 alloy changed its sign from negative to positive under application of 2-8 GPa in the temperature range of 300-22 K, coming from electron-phonon interaction in the cluster structure under pressure, accompanied by deformation of the clusters. In temperature region below 22 K, the resistivity showed negative thermal coefficient resistance by Debye-Waller factor contribution, and superconductivity was observed at 1.5 K.

  6. Magnetic and magneto-transport studies of substrate effect on the martensitic transformation in a NiMnIn shape memory alloy

    Directory of Open Access Journals (Sweden)

    Andrei Sokolov

    2016-05-01

    Full Text Available The effect of substrates on the magnetic and transport properties of Ni2Mn1.5In0.5 ultra-thin films were studied theoretically and experimentally. High quality 8-nm films were grown by laser-assisted molecular beam epitaxy deposition. Magneto-transport measurements revealed that the films undergo electronic structure transformation similar to those of bulk materials at the martensitic transformation. The temperature of the transformation depends strongly on lattice parameters of the substrate. To explain this behavior, we performed DFT calculations on the system and found that different substrates change the relative stability of the ferromagnetic (FM austenite and ferrimagnetic (FiM martensite states. We conclude that the energy difference between the FM austenite and FiM martensite states in Ni2Mn1.5In0.5 films grown on MgO (001 substrates is ΔE = 0.20 eV per NiMnIn f.u, somewhat lower compared to ΔE = 0.24 eV in the bulk material with the same lattice parameters. When the lattice parameters of Ni2Mn1.5In0.5 film have values close to those of the MgO substrate, the energy difference becomes ΔE = 0.08 eV per NiMnIn f.u. These results suggest the possibility to control the martensitic transition in thin films through substrate engineering.

  7. Tolerance of Portulaca grandiflora to individual and combined application of Ni, Pb and Zn.

    Science.gov (United States)

    Mihailovic, N; Andrejić, G; Dželetović, Ž

    2015-01-01

    In the present study, metal accumulation capacity and tolerance of Portulaca grandiflora were investigated. Plants were grown under greenhouse conditions in pots on soil amended with Ni, Pb and Zn to the final concentration of 2 mmol kg(-1) for each metal. Results show considerable accumulating capacity and translocation of Ni and Zn, as well as significant accumulation of Pb in roots. A slight decrease of biomass with Zn and of chlorophyll content with Zn and Ni were observed, as well as an increase of proline content with each of the metals. Combinations of metals revealed mutual interference affecting both the uptake and translocation of the metals and their impact on physiological parameters. Results suggest that Portulaca grandiflora, although not a hyperaccumulator, shows a good tolerance and accumulation capacity for Ni, Pb and Zn, but, for the purposes of remediation, interference of the metals must be taken into account.

  8. Bonding characteristics in NiAl intermetallics with O impurity: a first-principles computational tensile test

    International Nuclear Information System (INIS)

    Hu Xuelan; Zhang Ying; Lu Guanghong; Wang Tianmin

    2009-01-01

    We have performed a first-principles computational tensile test on NiAl intermetallics with O impurity along the [001] crystalline direction on the (110) plane to investigate the tensile strength and the bonding characteristics of the NiAl-O system. We show that the ideal tensile strength is largely reduced due to the presence of O impurity in comparison with pure NiAl. The investigations of the atomic configuration and bond-length evolution show that O prefers to bond with Al, forming an O-Al cluster finally with the break of O-Ni bonds. The O-Ni bonds are demonstrated to be weaker than the O-Al bonds, and the reduced tensile strength originates from such weaker O-Ni bonds. A void-like structure forms after the break of the O-Ni and some Ni-Al bonds. Such a void-like structure can act as the initial nucleation or the propagation path of the crack, and thus produce large effects on the mechanical properties of NiAl.

  9. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  10. Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures

    Science.gov (United States)

    Yamakawa, K.; Shimomura, Y.

    1999-01-01

    The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT dislocation lines and voids are discussed.

  11. Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, K.; Shimomura, Y. [Hiroshima Univ. (Japan). Faculty of Engineering

    1999-01-01

    The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT, dislocation lines and voids are discussed. (orig.) 8 refs.

  12. SFG investigation of adsorbed CO and NO on NiO(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, Athula; Dobashi, Shinsaku; Kubota, Jun; Onda, Ken; Wada, Akihide; Domen, Kazunari; Hirose, Chiaki [Tokyo Inst. of Tech., Yokohama (Japan). Research Lab. of Resources Utilization; Kano, S.S.

    1997-07-01

    Adsorption structures of CO and NO on the NiO(111) film grown on Ni(111) crystal have been investigated by sum frequency generation (SFG) spectroscopy and infrared reflection absorption spectroscopy (IRAS). The CO stretching band of adsorbed CO on NiO(111) was observed at 2144 cm{sup -1} on the SFG spectra for both p- and s-polarized visible light. However, adsorbed NO on NiO(111) was observed at 1805 cm{sup -1} on the SFG spectra only for the p-polarized visible light. The results suggest that the adsorbed CO molecule was tilted from the surface normal but the NO molecule was perpendicular to the surface. These orientations of CO and NO reflect the surface structure of NiO(111) which has (2 x 2)-reconstructed microfacets. Adsorption of CO on Ni(111) instead of NiO(111) was also examined by SFG and IRAS. Absorption bands due to linear and bridged CO were observed at 2076 and 1918 cm{sup -1}, respectively, by IRAS. On the other hand, the linear CO molecules on Ni(111) gave an SFG peak at 2076 cm{sup -1} only for the p-polarized visible light indicating the CO molecules are perpendicular to the surface, and bridged CO molecules did not give any SFG signal. The absence of the bridged CO signal is believed to be due to the smaller Raman tensor of bridged CO. (author)

  13. SFG investigation of adsorbed CO and NO on NiO(111) surface

    International Nuclear Information System (INIS)

    Bandara, Athula; Dobashi, Shinsaku; Kubota, Jun; Onda, Ken; Wada, Akihide; Domen, Kazunari; Hirose, Chiaki; Kano, S.S.

    1997-01-01

    Adsorption structures of CO and NO on the NiO(111) film grown on Ni(111) crystal have been investigated by sum frequency generation (SFG) spectroscopy and infrared reflection absorption spectroscopy (IRAS). The CO stretching band of adsorbed CO on NiO(111) was observed at 2144 cm -1 on the SFG spectra for both p- and s-polarized visible light. However, adsorbed NO on NiO(111) was observed at 1805 cm -1 on the SFG spectra only for the p-polarized visible light. The results suggest that the adsorbed CO molecule was tilted from the surface normal but the NO molecule was perpendicular to the surface. These orientations of CO and NO reflect the surface structure of NiO(111) which has (2 x 2)-reconstructed microfacets. Adsorption of CO on Ni(111) instead of NiO(111) was also examined by SFG and IRAS. Absorption bands due to linear and bridged CO were observed at 2076 and 1918 cm -1 , respectively, by IRAS. On the other hand, the linear CO molecules on Ni(111) gave an SFG peak at 2076 cm -1 only for the p-polarized visible light indicating the CO molecules are perpendicular to the surface, and bridged CO molecules did not give any SFG signal. The absence of the bridged CO signal is believed to be due to the smaller Raman tensor of bridged CO. (author)

  14. Metal uptake by corn grown on media treated with particle-size fractionated biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weiping [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Chang, Andrew C.; Wu, Laosheng [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Zhang, Yongsong [School of Environmental and Natural Resources Sciences, Zhejiang University, Hangzhou, Zhejiang, 31009 (China)

    2008-03-15

    Particle-size of biosolids may affect plant uptake of heavy metals when the biosolids are land applied. In this study, corn (Zea mays L.) was grown on sand media treated with biosolids to study how particle-size of biosolids affected the plant uptake of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). Two biosolids, the Nu-Earth biosolids and the Los Angeles biosolids, of dissimilar surface morphology were utilized. The former exhibited a porous and spongy structure and had considerably greater specific surface area than that of the latter, which was granular and blocky. The specific surface area of the Los Angeles biosolids was inversely proportional to its particle-size, while that of Nu-Earth biosolids did not change significantly with particle-size. For each biosolid, the metal concentrations were not affected by particle sizes. The biomass yields of plants grown on the treated media increased as the biosolid particle-size decreased, indicating that plant uptake of nutrients from biosolids was dependent on interactions at the root-biosolids interface. The effect of particle-size on a metal's availability to plants was element-specific. The uptake rate of Cd, Zn, Cu, and Ni was correlated with the surface area of the particles, i.e., smaller particles having higher specific area provided greater root-biosolids contact and resulted in enhanced uptake of Cd and Zn and slightly less increased uptake of Cu and Ni. The particle morphology of biosolids had limited influence on the plant tissue concentrations of Cr and Pb. For both types of biosolids, total metal uptake increased as biosolid particle-size decreased. Our research indicates that biosolid particle-size distribution plays a deciding role in plant uptake of heavy metals when they are land applied.

  15. Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition

    Directory of Open Access Journals (Sweden)

    Emanuele Cavaliere

    2017-12-01

    Full Text Available Nanocomposite systems and nanoparticle (NP films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs films and of Ag NPs/TiO2 porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO2 (Ag/Ti 50-50 nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE. We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO2 NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.

  16. Formation of fine aggregate structure by solid-state displacement reaction of Ti with CoO or NiO. CoO oyobi NiO to Ti kan no koso chikan hanno ni yoru bisai fukugo soshiki no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Taimatsu, H; Kaneko, H [Akita Univ., Akita (Japan). Mining College; Wada, K [Akita Univ., Akita (Japan). Graduate School

    1992-09-20

    As a result of search for systems which have aggregate structures, the displacement reaction products of Ti with CoO or NiO are found to have aggregate structures in which the produced oxides and metals are entangled with each other. The displacement reaction of Ti with CoO or NiO is investigated at the temperature of 1273K. In the reaction of either couple, aggregate products are produced, and reacted layer is observed in the TiO2 matrix wherein Co or Ni phases are three dimensionally entangled in finely dispersed state of micron order. 2 layers of cavitated and dense TiO2 layers are found in the reacted layer. The thicknesses of the reacted layer are not constant according to locations, but thick portions are grown obeying the parabolic rate law. As a result of the study on the possibility of fabricating cermet by the reaction between powders, finely mixed characteristic structures are found to be easily obtained using systems which can produce aggregate structures. 24 refs., 9 figs.

  17. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects; Mecanismes de fragilisation sous irradiation aux neutrons d'alliages modeles ferritiques et d'un acier de cuve: amas de defauts

    Energy Technology Data Exchange (ETDEWEB)

    Meslin-Chiffon, E

    2007-11-15

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  18. Fabrication and magnetic investigations of highly uniform CoNiGa alloy nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Jing; Khan, U.; Irfan, Muhammad [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Javed, K. [Department of Physics, Forman Christian College, Lahore 5400 (Pakistan); Liu, P. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Ban, S.L. [School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Han, X.F., E-mail: xfhan@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-06-15

    Highlights: • Highly ordered CoNiGa alloy nanowires with different compositions were fabricated by DC electrodeposition. • The magnetic properties of CoNiGa nanowires can be easily tailored by varying its components. • Magnetostatic interactions plays an important role in the magnetization reversal process. • A linear dependence of coercivity on temperature was found for Co{sub 55}Ni{sub 28}Ga{sub 17} samples. - Abstract: CoNiGa ternary alloy nanowire arrays were successfully fabricated by simple DC electrodeposition into the anodized aluminum oxide (AAO) templates. A systematic study of the potential and components of the electrolyte were conducted to obtain different components of CoNiGa nanowires. The largest Ga content in the prepared alloy nanowires was about 17%, while for Co and Ni contents which can be controlled in a wide range by adjusting the composition and pH value of the electrolyte appropriately. X-ray diffraction analysis confirmed that the as-grown CoNiGa nanowire arrays were polycrystal with fcc phase of Co where Co atoms partially substituted by Ni and Ga. Magnetization curves of samples with different composition were measured at room temperature as well as low temperature. The results showed that the components of the alloy nanowires have a great impact on its magnetic properties. For Co{sub 55}Ni{sub 28}Ga{sub 17} nanowires, the magnetization reversal mode changes from curling mode to coherent rotation as the angle increases, and the temperature dependence of coercivity can be well described by the thermal activation effect.

  19. Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes

    International Nuclear Information System (INIS)

    Prida, V.M.; Hernandez-Velez, M.; Cervera, M.; Pirota, K.; Sanz, R.; Navas, D.; Asenjo, A.; Aranda, P.; Ruiz-Hitzky, E.; Batallan, F.; Vazquez, M.; Hernando, B.; Menendez, A.; Bordel, N.; Pereiro, R.

    2005-01-01

    Arrays of Ni nanowires electrodeposited into self-aligned and randomly disordered titania nanotube arrays grown by anodization process are investigated by X-ray diffraction, SEM, rf-GDOES and VSM magnetometry. The titania nanotube outer diameter is about 160 nm, wall thickness ranging from 60 to 70 nm and 300 nm in depth. The so-obtained Ni nanowires reach above 100 nm diameter and 240 nm length, giving rise to coercive fields of 98 and 200 Oe in the perpendicular or parallel to the nanowires axis hysteresis loops, respectively. The formation of magnetic vortex domain states is also discussed

  20. Magnetic Properties of FeNi-Based Thin Film Materials with Different Additives

    Directory of Open Access Journals (Sweden)

    Cai Liang

    2014-07-01

    Full Text Available This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B.

  1. Magnetic properties of FeNi-based thin film materials with different additives

    KAUST Repository

    Liang, C.

    2014-07-04

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B. 2014 by the authors.

  2. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors

    Science.gov (United States)

    Sun, Zhipeng; Firdoz, Shaik; Ying-Xuan Yap, Esther; Li, Lan; Lu, Xianmao

    2013-05-01

    We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization.We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly

  3. Electronic network modeling of rechargeable batteries: II: The NiCd system

    NARCIS (Netherlands)

    Notten, P.H.L.; Kruijt, W.S.; Bergveld, H.J.

    1998-01-01

    Based on the concept of a defined sealed rechargeable NiCd battery, the mathematics of the various electrochemical and physical processes occurring inside the battery are described. Subsequently, these sets of mathematical equations are clustered and converted into an electronic network model.

  4. Comparison of Nickel XANES Spectra and Elemental Maps from a Ureilite, a LL3.8 Ordinary Chondrite, Two Carbonaceous Chondrites and Two Large Cluster IDPs

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Sutton, S.; Zolensky, M. E.

    2014-01-01

    Nickel in the extraterrestrial world is commonly found in both Fe-Ni sulfide and Fe-Ni met-al forms [1] and in the pure metal state in the interior of iron meteorites where it is not easily oxidized. Ni is also found in olivine, pyroxene and glasses and in some melts the partitioning of Ni between the olivines and glass is controlled by the amount of S in the melt [2]. Its most common valence state is Ni(2+) but Ni also occurs as Ni(0), Ni(+), and Ni(3+) and rarely as Ni(2-), Ni(1-) and Ni(4+) [3]. It's valence state in olivines is Ni(2+) in octa-hedral coordination on the M1 site and rarely on the M2 site.[4]. The chemical sensitivity of X-ray absorp-tion near-edge structure (XANES) spectroscopy is well established and can be used to determine not only va-lence states but also coordination sites [5]. We report here Ni XANES spectroscopy and elemental maps collected from 2 carbonaceous chondrites, 2 large clus-ter IDPs, 1 ureilite and 1 LL3 orginary chondrite.Using XANES it may be possible to find a common trait in the large cluster IDPs that will also be found in mete-orite samples.

  5. Uniform deposition of size-selected clusters using Lissajous scanning

    International Nuclear Information System (INIS)

    Beniya, Atsushi; Watanabe, Yoshihide; Hirata, Hirohito

    2016-01-01

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonal directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt n (n = 7, 15, 20) clusters uniformly deposited on the Al 2 O 3 /NiAl(110) surface and demonstrated the importance of uniform deposition.

  6. Uniform deposition of size-selected clusters using Lissajous scanning

    Energy Technology Data Exchange (ETDEWEB)

    Beniya, Atsushi; Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Hirata, Hirohito [Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan)

    2016-05-15

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonal directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt{sub n} (n = 7, 15, 20) clusters uniformly deposited on the Al{sub 2}O{sub 3}/NiAl(110) surface and demonstrated the importance of uniform deposition.

  7. Optical transparency of graphene layers grown on metal surfaces

    International Nuclear Information System (INIS)

    Rut’kov, E. V.; Lavrovskaya, N. P.; Sheshenya, E. S.; Gall, N. R.

    2017-01-01

    It is shown that, in contradiction with the fundamental results obtained for free graphene, graphene films grown on the Rh(111) surface to thicknesses from one to ~(12–15) single layers do not absorb visible electromagnetic radiation emitted from the surface and influence neither the brightness nor true temperature of the sample. At larger thicknesses, such absorption occurs. This effect is observed for the surfaces of other metals, specifically, Pt(111), Re(1010), and Ni(111) and, thus, can be considered as being universal. It is thought that the effect is due to changes in the electronic properties of thin graphene layers because of electron transfer between graphene and the metal substrate.

  8. Optical transparency of graphene layers grown on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rut’kov, E. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lavrovskaya, N. P. [State University of Aerospace Instrumentation (Russian Federation); Sheshenya, E. S., E-mail: sheshenayket@gmail.ru; Gall, N. R. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-04-15

    It is shown that, in contradiction with the fundamental results obtained for free graphene, graphene films grown on the Rh(111) surface to thicknesses from one to ~(12–15) single layers do not absorb visible electromagnetic radiation emitted from the surface and influence neither the brightness nor true temperature of the sample. At larger thicknesses, such absorption occurs. This effect is observed for the surfaces of other metals, specifically, Pt(111), Re(1010), and Ni(111) and, thus, can be considered as being universal. It is thought that the effect is due to changes in the electronic properties of thin graphene layers because of electron transfer between graphene and the metal substrate.

  9. Effect of minor elements on microstructure evolution in Ni alloys irradiated with neutrons

    International Nuclear Information System (INIS)

    Xu, Q.; Yoshiie, T.

    2001-01-01

    The minor elements, Si (-5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) were chosen to investigate the effects of volume size factor as shown in the parentheses on void swelling in neutron irradiated Ni alloys. Neutron irradiation temperature and dose were changed widely from 473 K to 703 K, and 0.001 dpa to 1 dpa, respectively. Voids were observed by transmission electron microscopy (TEM) in Ni even after a very small irradiation dose of 0.026 dpa at 573 K. With increasing dose, the number density of voids was nearly constant while void size increased. The microstructure evolution in Ni-2 at%Cu and Ni-2 at%Ge alloys was similar to that in Ni. However, in Ni-2 at%Si and Ni-2 at%Sn alloys, no voids were observed by TEM even at 703 K to 1 dpa. The minor elements, Si and Sn, play an important role for the suppression of vacancy clusters. Vacancies are annihilated by mutual recombination with interstitials in Si and Sn added alloys. (orig.)

  10. Resistivity and Passivity Characterization of Ni-Base Glassy Alloys in NaOH Media

    Directory of Open Access Journals (Sweden)

    Khadijah M. Emran

    2018-01-01

    Full Text Available Resistivity and passivation behavior of two Ni-base bulk metallic glasses, with the nominal composition of Ni70Cr21Si0.5B0.5P8C ≤ 0.1Co ≤ 1Fe ≤ 1 (VZ1 and Ni72.65Cr7.3-Si6.7B2.15C ≤ 0.06Fe8.2Mo3 (VZ2, in various concentrations of NaOH solutions were studied. The investigations involved cyclic polarization (CP, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM methods. Cyclic polarization measurements showed spontaneous passivation for both Ni-base glassy alloys at all alkaline concentrations, due to the presence of chromium as an alloying element that formed an oxide film on the alloy surface. The EIS analysis showed that the passive layers grown on the two Ni-base glassy alloy surfaces are formed by a double oxide layer structure. Scanning electron microscope (SEM examinations of the electrode surface showed Cr, Ni, Fe, and O rich corrosion products that reduced the extent of corrosion damage. Atomic force microscopy (AFM imaging technique was used to evaluate the topographic and morphologic features of surface layers formed on the surface of the alloys.

  11. The effect of Ni on concentration of the most abundant essential cations in several Brassica species

    Directory of Open Access Journals (Sweden)

    Putnik-Delić Marina I.

    2014-01-01

    Full Text Available Some plants from the genus Brassica have the ability to tolerate excessive concentrations of heavy metals, including Ni. Considering the fact that Ni is a very toxic element for living beings we wanted to examine its influence on some species from genus Brassicaceae. The aim of this study was to investigate the effect of Ni on distribution and accumulation of essential macronutrients from the standpoint of food quality and phytoremediation potential. Experiments were performed using winter (W and spring (S varieties of rapeseed (Brassica napus, L., white mustard (Brassica alba, L., black mustard (Brassica nigra, L. and turnip (Brassica rapa, L.. The seeds were exposed to 10 μM Ni from the beginning of germination. Plants were grown in water cultures, in semi-controlled conditions of a greenhouse, on ½ strength Hoagland solution to which was added Ni in the same concentration as during germination. Concentrations and distribution of Ca, Mg, K in leaf and stem were altered in the presence of increased concentration of Ni. Significant differences were found between the control and Ni-treated plants as well as among the genotypes. [Projekat Ministarstva nauke Republike Srbije, br. TR 31036 i br. TR 31016

  12. Tuning the magnetic properties of GaAs:Mn/MnAs hybrids via the MnAs cluster shape

    International Nuclear Information System (INIS)

    Nidda, H-A Krug von; Kurz, T; Loidl, A; Hartmann, Th; Klar, P J; Heimbrodt, W; Lampalzer, M; Volz, K; Stolz, W

    2006-01-01

    We report a systematic study of ferromagnetic resonance in granular GaAs:Mn/MnAs hybrids grown on GaAs(001) substrates by metal-organic vapour-phase epitaxy. The ferromagnetic resonance of the MnAs clusters can be resolved at all temperatures below T c . An additional broad absorption is observed below 60 K and is ascribed to localized charge carriers of the GaAs:Mn matrix. The anisotropy of the MnAs ferromagnetic resonance field originates from the magneto-crystalline field and demagnetization effects of the ferromagnetic MnAs clusters embedded in the GaAs:Mn matrix. Its temperature dependence basically scales with magnetization. Comparison of the observed angular dependence of the resonance field with model calculations yields the preferential orientation and shape of the clusters formed in hybrid layers of different thickness (150-1000 nm) grown otherwise at the same growth conditions. The hexagonal axes of the MnAs clusters are oriented along the four cubic GaAs space diagonals. Thin layers contain lens-shaped MnAs clusters close to the surface, whereas thick layers also contain spherical clusters in the bulk of the layer. The magnetic properties of the hexagonal MnAs clusters can be tuned by a controlled variation of the cluster shape

  13. Structure and composition of layers of Ni-Co-Mn-In Heusler alloys obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wisz, Grzegorz; Sagan, Piotr; Stefaniuk, Ireneusz; Cieniek, Bogumil; Maziarz, Wojciech; Kuzma, Marian

    2017-01-01

    In present work we were analysing thin layers of Ni-Co-Mn-In alloys, grown by pulsed laser deposition method (PLD) on Si, NaCl and glass substrates. For target ablation the second harmonics of YAG:Nd 3+ laser was used. The target had the composition Ni 45 Co 5 Mn 34.5 In 14.5 . The morphology of the layers and composition were studied by electron microscopy TESCAN Vega3 equipped with microanalyzer EDS – Easy EdX system working with Esprit Bruker software. The X-ray diffraction measurements (XRD), performed on spectrometer Bruker XRD D8 Advance system, reveals Ni 2 -Mn-In cubic phase having lattice constant a = 6.02Å.

  14. Semiconducting p-type MgNiO:Li epitaxial films fabricated by cosputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Hun; Chun, Sung Hyun; Cho, Hyung Koun [School of Advanced Materials Science and Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2013-07-15

    Li-doped ternary Mg{sub x}Ni{sub 1-x}O thin films were deposited on (0001) Al{sub 2}O{sub 3} substrates by a radio frequency (RF) magnetron cosputtering method with MgO and NiO:Li targets. The Mg mole fraction and Li content were relatively controlled by changing RF power for the MgO target over a range of 0-300 W, while the NiO:Li target was kept at 150 W. As a result, all films were epitaxially grown on (0001) Al{sub 2}O{sub 3} substrates with the relationship of [110]{sub NiO}||[1110]{sub Al2O3}, [112]{sub NiO}||[2110]{sub Al2O3} (in-plane), and [111]{sub NiO}||[0001]{sub Al2O3} (out-of-plane), and showed p-type semiconducting properties. Furthermore, from x-ray diffraction patterns, the authors found that MgO was effectively mixed with NiO:Li without structural deformation due to low lattice mismatch (0.8%) between NiO and MgO. However, the excess Li contents degraded the crystallinity of the MgNiO films. The band-gap of films was continuously shifted from 3.66 eV (339 nm) to 4.15 eV (299 nm) by the RF power of the MgO target. A visible transmittance of more than 80% was exhibited at RF powers higher than 200 W. Ultimately, the electrical resistivity of p-type MgNiO films was improved from 7.5 to 673.5 {Omega}cm, indicating that the Li-doped MgNiO films are good candidates for transparent p-type semiconductors.

  15. Magnetic and magneto-transport studies of substrate effect on the martensitic transformation in a NiMnIn shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Andrei [Department of Physics and Astronomy, University of Nebraska at Lincoln, Lincoln, NE 68588 (United States); Kirianov, Eugene; Zlenko, Albina [Lincoln South West High School, Lincoln, NE 68512 (United States); Quetz, Abdiel; Aryal, Anil; Pandey, Sudip; Dubenko, Igor; Ali, Naushad [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Stadler, Shane [Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Al-Aqtash, Nabil; Sabirianov, Renat [Department of Physics, University of Nebraska at Omaha, Omaha, NE 68182 (United States)

    2016-05-15

    The effect of substrates on the magnetic and transport properties of Ni{sub 2}Mn{sub 1.5}In{sub 0.5} ultra-thin films were studied theoretically and experimentally. High quality 8-nm films were grown by laser-assisted molecular beam epitaxy deposition. Magneto-transport measurements revealed that the films undergo electronic structure transformation similar to those of bulk materials at the martensitic transformation. The temperature of the transformation depends strongly on lattice parameters of the substrate. To explain this behavior, we performed DFT calculations on the system and found that different substrates change the relative stability of the ferromagnetic (FM) austenite and ferrimagnetic (FiM) martensite states. We conclude that the energy difference between the FM austenite and FiM martensite states in Ni{sub 2}Mn{sub 1.5}In{sub 0.5} films grown on MgO (001) substrates is ΔE = 0.20 eV per NiMnIn f.u, somewhat lower compared to ΔE = 0.24 eV in the bulk material with the same lattice parameters. When the lattice parameters of Ni{sub 2}Mn{sub 1.5}In{sub 0.5} film have values close to those of the MgO substrate, the energy difference becomes ΔE = 0.08 eV per NiMnIn f.u. These results suggest the possibility to control the martensitic transition in thin films through substrate engineering.

  16. Textured YBCO films grown on wires: application to superconducting cables

    International Nuclear Information System (INIS)

    Dechoux, N; Jiménez, C; Chaudouët, P; Rapenne, L; Sarigiannidou, E; Robaut, F; Petit, S; Garaudée, S; Porcar, L; Soubeyroux, J L; Odier, P; Bruzek, C E; Decroux, M

    2012-01-01

    Efforts to fabricate superconducting wires made of YBa 2 Cu 3 O 7 (YBCO) on La 2 Zr 2 O 7 (LZO) buffered and biaxially textured Ni-5 at.%W (NiW) are described. Wires were manually shaped from LZO buffered NiW tapes. Different diameters were produced: 1.5, 2 and 3 mm. The wires were further covered with YBCO grown by metal organic chemical vapor deposition (MOCVD). We developed an original device in which the round substrate undergoes an alternated rotation of 180° around its axis in addition to a reel-to-reel translation. This new approach allows covering the whole circumference of the wire with a YBCO layer. This was confirmed by energy dispersive x-ray spectroscopy (EDX) analysis coupled to a scanning electron microscope (SEM). For all wire diameters, the YBCO layer thickness varied from 300 to 450 nm, and the cationic composition was respected. Electron backscattering diffraction (EBSD) measurements were performed directly on an as-deposited wire without surface preparation allowing the investigation of the crystalline quality of the film surface. Combining EBSD with XRD results we show that YBCO grows epitaxially on the LZO buffered NiW wires. For the first time, superconductive behaviors have been detected on round substrates in both the rolling and circular direction. J c reached 0.3 MA cm −2 as measured at 77 K by transport and third-harmonic detection. Those preliminary results confirm the effectiveness of the MOCVD for complex geometries, especially for YBCO deposition on small diameter wires. This approach opens huge perspectives for the elaboration of a new generation of YBCO-based round conductors. (paper)

  17. Magnetic Properties and Structural Study of Ni-Co/Cu Multilayers Prepared by Electrodeposition Method

    Directory of Open Access Journals (Sweden)

    M. Jafari Fesharaki

    2015-07-01

    Full Text Available Ni-Co/Cu multilayers have been grown by electrodeposition method from a single electrolyte (based on Ni(SO4.6H2O, Co(SO4.7H2O, Cu(SO4 and H3BO3 using galvanostatic control on titanium sublayers. The X-ray diffraction (XRD patterns confirmed the multilayered structure with the nanometer thicknesses. Also, electron diffraction x-ray (EDX  analysis confirmed the purity of deposited samples. The morphology of the samples was estimated by scanning electron microscope (SEM. Magnetoresistance (MR measurements were carried out at room temperature for the Ni-Co/Cu multilayers by measuring the resistivity in a magnetic fields varying between ±6kOe as a function of the Ni-Co and Cu layer thicknesses; (1 dCu(nm 4 and 3 dNi-Cu(nm 5. The Maximum value of giant magnetoresistance (GMR was obtained when the Ni-Co and Cu thicknesses were 4.0nm and 4.0nm respectively. The hysteresis loop of the samples at room temperature was studied using an alternating gradient force magnetometer (AGFM. Finally, the temperature dependence of magnetization for Ni-Co/Cu multilayers; (dNi-Cu(4nm/dCu(2nm and dNi-Cu(3nm/dCu(3nm measured by Faraday balance and decreasing the magnetization with increasing the temperature discussed according to electron scattering due to spin fluctuation.

  18. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm{sub 2}O{sub 3} addition prepared by laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shihong [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)], E-mail: zsh10110903@hotmail.com; Li Mingxi [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); Yoon, Jae Hong; Cho, Tong Yul [School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)

    2008-12-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm{sub 2}O{sub 3} powders, which are prepared on Q235 steel plate by 2.0 kW CO{sub 2} laser deposition. The results indicate that with rare earth oxide Sm{sub 2}O{sub 3} addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm{sub 2}O{sub 3}/Ni-base alloy coatings have similar microstructure showing the primary phase of {gamma}-Ni dendrite and eutectic containing {gamma}-Ni and Cr{sub 23}C{sub 6} phases. However, compared to micron-Sm{sub 2}O{sub 3}/Ni-base alloy, preferred orientation of {gamma}-Ni dendrite of nano-Sm{sub 2}O{sub 3}/Ni-base alloy is weakened. Planar crystal of several-{mu}m thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm{sub 2}O{sub 3}/Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm{sub 2}O{sub 3} size from micron to nano. The improvement on tribological property of nano-Sm{sub 2}O{sub 3}/Ni-base alloy over micron-Sm{sub 2}O{sub 3}/Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO{sub 3} solution, the corrosion resistance is greatly improved with nano-Sm{sub 2}O{sub 3} addition since the decrease of corrosion ratio along grain-boundary in nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating contributes to harmonization of corrosion potential.

  19. Enhanced sensitivity in non-enzymatic glucose detection by improved growth kinetics of Ni-based nanostructures

    Science.gov (United States)

    Urso, M.; Pellegrino, G.; Strano, V.; Bruno, E.; Priolo, F.; Mirabella, S.

    2018-04-01

    Ni-based nanostructures are attractive catalytic materials for many electrochemical applications, among which are non-enzymatic sensing, charge storage, and water splitting. In this work, we clarify the synthesis kinetics of Ni(OH)2/NiOOH nanowalls grown by chemical bath deposition at room temperature and at 50 °C. We applied the results to non-enzymatic glucose sensing, reaching a highest sensitivity of 31 mA cm-2mM-1. Using scanning electron microscopy, x-ray diffraction analysis and Rutherford backscattering spectrometry we found that the growth occurs through two regimes: first, a quick random growth leading to disordered sheets of Ni oxy-hydroxide, followed by a slower growth of well-aligned sheets of Ni hydroxide. A high growth temperature (50 °C), leading mainly to well-aligned sheets, offers superior electrochemical properties in terms of charge storage, charge carrier transport and catalytic action, as confirmed by cyclic voltammetry and electrochemical impedance spectroscopy analyses. The reported results on the optimization and application of low-cost synthesis of these Ni-based nanostructures have a large potential for application in catalysis, (bio)sensing, and supercapacitors areas.

  20. Coupled-Cluster and Configuration-Interaction Calculations for Heavy Nuclei

    International Nuclear Information System (INIS)

    Horoi, M.; Gour, J. R.; Wloch, M.; Lodriguito, M. D.; Brown, B. A.; Piecuch, P.

    2007-01-01

    We compare coupled-cluster (CC) and configuration-interaction (CI) results for 56 Ni obtained in the pf-shell basis, focusing on practical CC approximations that can be applied to systems with dozens or hundreds of correlated fermions. The weight of the reference state and the strength of correlation effects are controlled by the gap between the f 7/2 orbit and the f 5/2 , p 3/2 , p 1/2 orbits. Independent of the gap, the CC method with 1p-1h and 2p-2h clusters and a noniterative treatment of 3p-3h clusters is as accurate as the more demanding CI approach truncated at the 4p-4h level

  1. Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2012-11-01

    Full Text Available In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM, high resolution transmission electron microscopy (HRTEM and X-ray diffraction (XRD techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples.

  2. Cluster-Bethe-Lattice study of a planar antiferromagnet: Rb2NiF4

    International Nuclear Information System (INIS)

    Cruz, G.A.C. de la; Silva, C.E.T.G. da

    1979-01-01

    A discussion of the Cluster-Bethe-Lattice method is presented for a planar antiferromagnet for which the hamiltonian parameters are known and the one-magnon density of states may be computed exactly. All the square clusters of 1 to 121 atoms are studied both connected to and isolated from the Bethe lattices. It is shown that, even for the largest cluster treated, the approximation is still far from the exact result. It is discussed the limitations of the method [pt

  3. NiCo_2O_4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    International Nuclear Information System (INIS)

    Wang, Ruiqi; Xia, Chuan; Wei, Nini; Alshareef, Husam N.

    2016-01-01

    Highlights: • NiCo_2O_4 nanostructures are prepared via a simple hydrothermal method. • Outer shell of TiN is then grown through conformal atomic layer deposition. • Electrodes exhibit significantly enhanced rate capability with TiN coating. • Solid-state polymer electrolyte is employed to improve cycling stability. • Full devices show a stack power density of 58.205 mW cm"−"3 at 0.061 mWh cm"−"3. - Abstract: Ternary transition metal oxides such as NiCo_2O_4 show great potential as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo_2O_4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo_2O_4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo_2O_4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo_2O_4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm"−"3 at a stack energy density of 0.061 mWh cm"−"3. To the best of our knowledge, these values are the highest of any NiCo_2O_4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo_2O_4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm"−"2. These results illustrate the promise of ALD-assisted hybrid NiCo_2O_4@TiN electrodes within sustainable and integrated energy storage applications.

  4. Cluster-assembled overlayers and high-temperature superconductors

    International Nuclear Information System (INIS)

    Ohno, T.R.; Yang, Y.; Kroll, G.H.; Krause, K.; Schmidt, L.D.; Weaver, J.H.; Kimachi, Y.; Hidaka, Y.; Pan, S.H.; de Lozanne, A.L.

    1991-01-01

    X-ray photoemission results for interfaces prepared by cluster assembly with nanometer-size clusters deposited on high-T c superconductors (HTS's) show a reduction in reactivity because atom interactions with the surface are replaced by cluster interactions. Results for conventional atom deposition show the formation of overlayer oxides that are related to oxygen depletion and disruption of the near-surface region of the HTS's. For cluster assembly of Cr and Cu, there is a very thin reacted region on single-crystal Bi 2 Sr 2 CaCu 2 O 8 . Reduced reactivity is observed for Cr cluster deposition on single-crystal YBa 2 Cu 3 O 7 -based interfaces. There is no evidence of chemical modification of the surface for Ge and Au cluster assembly on Bi 2 Sr 2 CaCu 2 O 8 (100). The overlayer grown by Au cluster assembly on Bi 2 Sr 2 CaCu 2 O 8 covers the surface at low temperature but roughening occurs upon warming to 300 K. Scanning-tunneling-microscopy results for the Au(cluster)/Bi 2 Sr 2 CaCu 2 O 8 system warmed to 300 K shows individual clusters that have coalesced into large clusters. These results offer insight into the role of surface energies and cluster interactions in determining the overlayer morphology. Transmission-electron-microscopy results for Cu cluster assembly on silica show isolated irregularly shaped clusters that do not interact at low coverage. Sintering and labyrinth formation is observed at intermediate coverage and, ultimately, a continuous film is achieved at high coverage. Silica surface wetting by Cu clusters demonstrates that dispersive force are important for these small clusters

  5. How clustering dynamics influence lumber utilization patterns in the Amish-based furniture industry in Ohio

    Science.gov (United States)

    Matthew S. Bumgardner; Gary W. Graham; P. Charles Goebel; Robert L. Romig

    2011-01-01

    Preliminary studies have suggested that the Amish-based furniture and related products manufacturing cluster located in and around Holmes County, Ohio, uses sizeable quantities of hardwood lumber. The number of firms within the cluster has grown even as the broader domestic furniture manufacturing sector has contracted. The present study was undertaken in 2008 (spring/...

  6. Electronic and magnetic properties of 3d-metal trioxides superhalogen cluster-doped monolayer MoS2: A first-principles study

    International Nuclear Information System (INIS)

    Li, Dan; Niu, Yuan; Zhao, Hongmin; Liang, Chunjun; He, Zhiqun

    2014-01-01

    Utilizing first-principle calculations, the structural, electronic, and magnetic properties of monolayer MoS 2 doped with 3d transition-metal (TM) atoms and 3d-metal trioxides (TMO 3 ) superhalogen clusters are investigated. 3d-metal TMO 3 superhalogen cluster-doped monolayers MoS 2 almost have negative formation energies except CoO 3 and NiO 3 doped monolayer MoS 2 , which are much lower than those of 3d TM-doped structures. 3d-metal TMO 3 superhalogen clusters are more easily embedded in monolayer MoS 2 than 3d-metal atoms. MnO 3 , FeO 3 , CoO 3 , and NiO 3 incorporated into monolayer MoS 2 are magnetic, and the total magnetic moments are approximately 1.0, 2.0, 3.0, and 4.0 μB per supercell, respectively. MnO 3 and FeO 3 incorporated into monolayer MoS 2 become semiconductors, whereas CoO 3 and NiO 3 incorporated into monolayer MoS 2 become half-metallic. Our studies demonstrate that the half-metallic ferromagnetic nature of 3d-metal TMO 3 superhalogen clusters-doped monolayer MoS 2 has a great potential for MoS 2 -based spintronic device applications. -- Highlights: •TMO 3 superhalogen clusters incorporated into monolayer MoS 2 were investigated. •TMO 3 doped structures have much lower formation energies than TM doped structures. •TMO 3 cluster-doped MoS 2 are thermodynamically favored. •Significant charge transfers between O atoms and Mo atoms in TMO 3 doped structures. •MnO 3 , FeO 3 , CoO 3 , and NiO 3 incorporated into monolayer MoS 2 are magnetic.

  7. Exploring the magnetization dynamics of NiFe/Pt multilayers in flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Corrêa, M.A., E-mail: marciocorrea@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Dutra, R.; Marcondes, T.L. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, Urca, 22290-180 Rio de Janeiro, RJ (Brazil); Mori, T.J.A. [Laboratório Nacional de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro, 1000, Guará, 13083-100 Campinas, SP (Brazil); Bohn, F. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Sommer, R.L. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, Urca, 22290-180 Rio de Janeiro, RJ (Brazil)

    2016-09-15

    Highlights: • Magnetic properties of multilayers grown onto flexible substrates were investigated. • Experimental and theoretical magnetization dynamics results are presented. • The flexible substrates become promising candidate for rf-frequency devices. - Abstract: We investigate the structural and magnetic properties, and the magnetization dynamics in Ni{sub 81}Fe{sub 19}/Pt multilayer systems grown onto rigid and flexible substrates. The structural characterization shows evidence of a superlattice behavior, while the quasi-static magnetization characterization reveal a weak magnetic anisotropy induced in the multilayers. The magnetization dynamics is investigated through the magnetoimpedance effect. We employ a theoretical approach to describe the experimental magnetoimpedance effect and verify the influence of the effective damping parameter on the magnetization dynamics. Experimental data and theoretical results are in agreement and suggest that the multilayers present high effective damping parameter. Moreover, our experiments raise an interesting issue on the possibility of achieving considerable MI% values, even for systems with weak magnetic anisotropy and high damping parameter grown onto flexible substrates.

  8. Investigating a tuberculosis cluster among Filipino health care workers in a low-incidence country.

    Science.gov (United States)

    Davidson, J A; Fulton, N; Thomas, H L; Lalor, M K; Zenner, D; Brown, T; Murphy, S; Anderson, L F

    2018-03-01

    Nearly 8% of adult tuberculosis (TB) cases in England, Wales and Northern Ireland (EW&NI) occur among health care workers (HCWs), the majority of whom are from high TB incidence countries. To determine if a TB cluster containing multiple HCWs was due to nosocomial transmission. A cluster of TB cases notified in EW&NI from 2009 to 2014, with indistinguishable 24-locus mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) profiles, was identified through routine national cluster review. Cases were investigated to identify epidemiological links, and occupational health (OH) information was collected for HCW cases. To further discriminate strains, typing of eight additional loci was conducted. Of the 53 cases identified, 22 were HCWs. The majority (n = 43), including 21 HCWs, were born in the Philippines. Additional typing split the cluster into three subclusters and seven unique strains. No epidemiological links were identified beyond one household and a common residential area. HCWs in this cluster received no or inadequate OH assessment. The MIRU-VNTR profile of this cluster probably reflects common endemic strains circulating in the Philippines, with reactivation occurring in the UK. Furthermore, 32-locus typing showed that 24-locus MIRU-VNTR failed to distinguish strain diversity. The lack of OH assessment indicates that latent tuberculous infection could have been identified and treated, thereby preventing active cases from occurring.

  9. Electrodeposited binder-free NiCo2O4@carbon nanofiber as a high performance anode for lithium ion batteries

    Science.gov (United States)

    Zhang, Jie; Chu, Ruixia; Chen, Yanli; Jiang, Heng; Zhang, Ying; Huang, Nay Ming; Guo, Hang

    2018-03-01

    Binder-free nickel cobaltite on a carbon nanofiber (NiCo2O4@CNF) anode for lithium ion batteries was prepared via a two-step procedure of electrospinning and electrodeposition. The CNF was obtained by annealing electrospun poly-acrylonitrile (PAN) in nitrogen (N2). The NiCo2O4 nanostructures were then grown on the CNF by electrodeposition, followed by annealing in air. Experimental results showed that vertically aligned NiCo2O4 nanosheets had uniformly grown on the surface of the CNF, forming an interconnected network. The NiCo2O4@CNF possessed considerable lithium storage capacity and cycling stability. It exhibited a high reversible capacity of 778 mAhg-1 after 300 cycles at a current density of 0.25 C (1 C = 890 mAg-1) with an average capacity loss rate of 0.05% per cycle. The NiCo2O4@CNF had considerable rate capacities, delivering a capacity of 350 mAhg-1 at a current density of 2.0 C. The outstanding electrochemical performance can be mainly attributed to the following: (1) The nanoscale structure of NiCo2O4 could not only shorten the diffusion path of lithium ions and electrons but also increase the specific surface area, providing more active sites for electrochemical reactions. (2) The CNF with considerable mechanical strength and electrical conductivity could function as an anchor for the NiCo2O4 nanostructure and ensure an efficient electron transfer. (3) The porous structure resulted in a high specific surface area and an effective buffer for the volume changes during the repeated charge-discharge processes. Compared with a conventional hydrothermal method, electrodeposition could significantly simplify the preparation of NiCo2O4, with a shorter preparation period and lower energy consumption. This work provides an alternative strategy to obtain a high performance anode for lithium ion batteries.

  10. Exchange biased FeNi/FeMn bilayers with coercivity and switching field enhanced by FeMn surface oxidation

    Directory of Open Access Journals (Sweden)

    A. V. Svalov

    2013-09-01

    Full Text Available FeNi/FeMn bilayers were grown in a magnetic field and subjected to heat treatments at temperatures of 50 to 350 °C in vacuum or in a gas mixture containing oxygen. In the as-deposited state, the hysteresis loop of 30 nm FeNi layer was shifted. Low temperature annealing leads to a decrease of the exchange bias field. Heat treatments at higher temperatures in gas mixture result in partial oxidation of 20 nm thick FeMn layer leading to a nonlinear dependence of coercivity and a switching field of FeNi layer on annealing temperature. The maximum of coercivity and switching field were observed after annealing at 300 °C.

  11. In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth.

    Science.gov (United States)

    Patera, Laerte L; Africh, Cristina; Weatherup, Robert S; Blume, Raoul; Bhardwaj, Sunil; Castellarin-Cudia, Carla; Knop-Gericke, Axel; Schloegl, Robert; Comelli, Giovanni; Hofmann, Stephan; Cepek, Cinzia

    2013-09-24

    The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) via replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes.

  12. Control of the magnetic in-plane anisotropy in off-stoichiometric NiMnSb

    International Nuclear Information System (INIS)

    Gerhard, F.; Schumacher, C.; Gould, C.; Molenkamp, L. W.

    2014-01-01

    NiMnSb is a ferromagnetic half-metal which, because of its rich anisotropy and very low Gilbert damping, is a promising candidate for applications in information technologies. We have investigated the in-plane anisotropy properties of thin, molecular beam epitaxy-grown NiMnSb films as a function of their Mn concentration. Using ferromagnetic resonance to determine the uniaxial and four-fold anisotropy fields, (2K U )/(M s ) and (2K 1 )/(M s ) , we find that a variation in composition can change the strength of the four-fold anisotropy by more than an order of magnitude and cause a complete 90° rotation of the uniaxial anisotropy. This provides valuable flexibility in designing new device geometries

  13. Microstructural Evolution of NiCoCrAlHfYSi and NiCoCrAlTaY Coatings Deposited by AC-HVAF and APS

    Science.gov (United States)

    Han, Yujun; Chen, Hongfei; Gao, Dong; Yang, Guang; Liu, Bin; Chu, Yajie; Fan, Jinkai; Gao, Yanfeng

    2017-12-01

    The chemical composition of NiCoCrAlHfYSi with a suitable particle size, deposited using an activated combustion-high velocity air fuel (AC-HVAF) spray, is a potentially promising process because dense, continuous and pure alumina can be formed on the surface of the MCrAlY metallic coatings after isothermal oxidation exposure. The NiCoCrAlHfYSi (Amdry386) and NiCoCrAlTaY (Amdry997) coatings were produced using AC-HVAF and APS, respectively. Isothermal oxidation was subsequently conducted at 1050 °C in air for 200 h. This paper compares the characteristics of four coated samples, including the surface roughness, elastic modulus, hardness, oxide content, microstructural characteristics and phase evolution of thermally grown oxides (TGO). The growth of both the TGO and alumina scales in the TGO of the HVAF386 coating was relatively rapid. The θ- to α-alumina phase transformation was strongly determined by the Hf and Si dopants in the HVAF386 coating. Finally, the extent of grain refinement and deformation storage energy in the HVAF997 coatings were determined to be significantly crucial for the θ- to α-alumina phase transformation.

  14. Low dislocation density InAlN/AlN/GaN heterostructures grown on GaN substrates and the effects on gate leakage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Junji, E-mail: kotani.junji-01@jp.fujitsu.com; Yamada, Atsushi; Ishiguro, Tetsuro; Tomabechi, Shuichi; Nakamura, Norikazu [Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197 (Japan)

    2016-04-11

    This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 10{sup 4 }cm{sup −2} and 1.2 × 10{sup 9 }cm{sup −2} by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, and a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel–Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.

  15. Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi-Montes, Natalia, E-mail: nataliarin@gmail.com [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain); Gorria, Pedro [Departamento de Física & IUTA, EPI, Universidad de Oviedo, E-33203 Gijón (Spain); Martínez-Blanco, David [Servicios Científico-Técnicos, Universidad de Oviedo, E-33006 Oviedo (Spain); Fuertes, Antonio B. [Instituto Nacional del Carbón, CSIC, E-33080 Oviedo (Spain); Fernández Barquín, Luis [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, E-39005 Santander (Spain); Puente-Orench, Inés [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Blanco, Jesús A. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-02-15

    Among all bi-magnetic core(transition metal)@shell(transition metal oxide) nanoparticles (NPs), Ni@NiO ones show an onset temperature for the exchange bias (EB) effect far below the Néel temperature of bulk antiferromagnetic NiO. In this framework, the role played by the magnetism of NiO at the nanoscale is investigated by comparing the microstructure and magnetic properties of NiO and Ni@NiO NPs. With the aim of bridging the two systems, the diameter of the NiO NPs (~4 nm) is chosen to be comparable to the shell thickness of Ni@NiO ones (~2 nm). The EB effect in Ni@NiO NPs is attributed to the exchange coupling between the core and the shell, with an interfacial exchange energy of ΔE~0.06 erg cm{sup −2}, thus comparable to previous reports on Ni/NiO interfaces both in thin film and NP morphologies. In contrast, the EB detected in NiO NPs is explained in a picture where uncompensated spins located on a magnetically disordered surface shell are exchange coupled to the antiferromagnetic core. In all the studied NPs, the variation of the EB field as a function of temperature is described according to a negative exponential law with a similar decay constant, yielding a vanishing EB effect around T~40–50 K. In addition, the onset temperature for the EB effect in both NiO and Ni@NiO NPs seems to follow a universal dependence with the NiO crystallite size. - Highlights: • Comparison of the exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. • Universal temperature dependence of the exchange bias effect. • Suggested similar physical origin of the effect in both systems. • Size and crystallinity of the NiO shell hold the key for exchange bias properties.

  16. The superexchange interactions and magnetic ordering in low-dimentional ludwigite Ni_5GeB_2O_1_0

    International Nuclear Information System (INIS)

    Sofronova, S.N.; Bezmaternykh, L.N.; Eremin, E.V.; Nazarenko, I.I.; Volkov, N.V.; Kartashev, A.V.; Moshkina, E.M.

    2016-01-01

    The ludwigite Ni_5Ge(BO_5)_2 belongs to a family of oxyborates which have low-dimensional subunits in the form of three-leg ladders unit structure. This material was studied by magnetic and thermodynamic measurements. Ni_5Ge(BO_5)_2 does not show full long-range magnetic order, but one goes into a partial ordering or spin-glass state at 87 K. The superexchange interactions were calculated in the framework of a simple indirect coupling model. Different models of magnetic structure of Ni_5Ge(BO_5)_2 and its unique magnetic behaviour was discussed. - Highlights: • The single crystals of Ni_5Ge(BO_5)_2 with a ludwigite structure were grown. • Magnetic and the specific heat measurements were performed. • The calculation of the exchange interactions shows a competition between interactions. • The magnetic behaviour corresponds to ions moments part freezing or spin-glass state. • We propose two models of magnetic ordering in Ni_5Ge(BO_5)_2.

  17. A Comparative Study of Spatially Clustered Distribution of Jumbo Flying Squid (Dosidicus gigas) Offshore Peru

    Institute of Scientific and Technical Information of China (English)

    FENG Yongjiu; CUI Li; CHEN Xinjun; LIU Yu

    2017-01-01

    We examined spatially clustered distribution of jumbo flying squid (Dosidicus gigas) in the offshore waters of Peru bounded by 78°-86°W and 8°-20°S under 0.5°×0.5° fishing grid.The study is based on the catch-per-unit-effort (CPUE) and fishing effort from Chinese mainland squid jigging fleet in 2003-2004 and 2006-2013.The data for all years as well as the eight years (excluding E1 Ni(n)o events) were studied to examine the effect of climate variation on the spatial distribution of D.gigas.Five spatial clusters reflecting the spatial distribution were computed using K-means and Getis-Ord Gi* for a detailed comparative study.Our results showed that clusters identified by the two methods were quite different in terms of their spatial patterns,and K-means was not as accurate as Getis-Ord Gi*,as inferred from the agreement degree and receiver operating characteristic.There were more areas of hot and cold spots in years without the impact of El Ni(n)o,suggesting that such large-scale climate variations could reduce the clustering level ofD.gigas.The catches also showed that warm E1 Ni(n)o conditions and high water temperature were less favorable for D.gigas offshore Peru.The results suggested that the use of K-means is preferable if the aim is to discover the spatial distribution of each sub-region (cluster) of the study area,while Getis-Ord Gi* is preferable if the aim is to identify statistically significant hot spots that may indicate the central fishing ground.

  18. A comparative study of spatially clustered distribution of jumbo flying squid ( Dosidicus gigas) offshore Peru

    Science.gov (United States)

    Feng, Yongjiu; Cui, Li; Chen, Xinjun; Liu, Yu

    2017-06-01

    We examined spatially clustered distribution of jumbo flying squid ( Dosidicus gigas) in the offshore waters of Peru bounded by 78°-86°W and 8°-20°S under 0.5°×0.5° fishing grid. The study is based on the catch-per-unit-effort (CPUE) and fishing effort from Chinese mainland squid jigging fleet in 2003-2004 and 2006-2013. The data for all years as well as the eight years (excluding El Niño events) were studied to examine the effect of climate variation on the spatial distribution of D. gigas. Five spatial clusters reflecting the spatial distribution were computed using K-means and Getis-Ord Gi* for a detailed comparative study. Our results showed that clusters identified by the two methods were quite different in terms of their spatial patterns, and K-means was not as accurate as Getis-Ord Gi*, as inferred from the agreement degree and receiver operating characteristic. There were more areas of hot and cold spots in years without the impact of El Niño, suggesting that such large-scale climate variations could reduce the clustering level of D. gigas. The catches also showed that warm El Niño conditions and high water temperature were less favorable for D. gigas offshore Peru. The results suggested that the use of K-means is preferable if the aim is to discover the spatial distribution of each sub-region (cluster) of the study area, while Getis-Ord Gi* is preferable if the aim is to identify statistically significant hot spots that may indicate the central fishing ground.

  19. Magnetic and electrical properties in BaNiS2-type solid solutions

    International Nuclear Information System (INIS)

    Irizawa, Akinori; Yoshimura, Kazuyoshi; Kosuge, Koji

    2000-01-01

    The magnetic and electrical properties are reported in the new solid solutions BaCo 1-x Cu x S 2 and BaNi 1-x Fe x S 2 . Both compounds show spin-glass-like behavior, although the type of spin frustrations is different with each other. BaCo 1-x Cu x S 2 shows a competition type spin-glass behavior with reentrant phenomenon from antiferromagnetic to spin-glass at low temperatures. BaNi 1-x Fe x S 2 shows a dilute type spin-glass behavior together with super-paramagnetic properties. The temperature variation of 57 Fe Moessbauer spectra in BaNi 0.8 Fe 0.2 S 2 is explicable in a framework of cluster-glass. (author)

  20. Bombardment of Ni(100) surface with low-energy argons: molecular dynamics simulations

    International Nuclear Information System (INIS)

    Guevenc, Ziya B.; Hippler, Rainer; Jackson, Bret

    2005-01-01

    Results of molecular dynamics simulations of the sputtering of Ni(100) by Ar atoms are reported. The solid is described by an embedded atom potential, and the interaction between the projectile and the metal atoms is modelled by a Morse-like function. Processes leading to Ni atom emissions from the lattice are analysed over the energy range of 70-80 eV. In this energy range cluster (larger than three atoms) emission is not observed. The maximum penetration depth of Ar, the kinetic energy and angular distributions of the reflected Ar, and the sputtered Ni atoms are evaluated as functions of the impact energy and sputtering time. The computed sputtering yield is compared with the available theoretical and experimental data

  1. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors

    Science.gov (United States)

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-11-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g-1 at current densities of 1, 2, 5, 10 A g-1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.

  2. X-ray determination of static displacements of atoms in alloyed Ni3Al

    International Nuclear Information System (INIS)

    Morinaga, M.; Sone, K.; Kamimura, T.; Ohtaka, K.; Yukawa, N.

    1988-01-01

    Single crystals of Ni 3 (Al, M) were grown by the Bridgman method, where M is Ti, V, Cr, Mn, Fe, Nb, Mo and Ta. The composition was controlled to be about Ni 75 Al 20 M 5 so that the alloying element, M, substitutes mainly for Al. With these crystals conventional X-ray structural analysis was performed. The measured static displacements of atoms from the average lattice points depended largely on the alloying elements and varied in the range 0.00-0.13 A for Ni atoms and 0.09-0.18 A for Al atoms. It was found that these atomic displacements correlated well with the atomic radius of the alloying element, M. For example, when the atomic radius of M is larger than that of Al, the static displacements are large for the atoms in the Al sublattice but small for the atoms in the Ni sublattice. By contrast, when the atomic radius of M is smaller than that of Al, the displacements are more enhanced in the Ni sublattice than in the Al sublattice. Thus, there is an interesting correlation between the atomic displacements in both the Al and Ni sublattices in the presence of alloying elements. This seems to be one of the characteristics of alloyed compounds with several sublattices. (orig.)

  3. Low Temperature Steam Methane Reforming Over Ni Based Catalytic Membrane Prepared by Electroless Palladium Plating.

    Science.gov (United States)

    Lee, Sang Moon; Hong, Sung Chang; Kim, Sung Su

    2018-09-01

    A Pd/Ni-YSZ porous membrane with different palladium loadings and hydrazine as a reducing reagent was prepared by electroless plating and evaluated for the steam methane reforming activity. The steam-reforming activity of a Ni-YSZ porous membrane was greatly increased by the deposition of 4 g/L palladium in the low-temperature range (600 °C). With an increasing amount of reducing reagent, the Pd clusters were well dispersed on the Ni-YSZ surface and were uniform in size (∼500 nm). The Pd/Ni-YSZ catalytic porous membrane prepared by 1 of Pd/hydrazine ratio possessed an abundant amount of metallic Pd. The optimal palladium loadings and Pd/hydrazine ratio increased the catalytic activity in both the steam-reforming reaction and the Pd dispersion.

  4. Synthesis, crystal structure and magnetic characterization of a cyanide-bridged Mo-Ni nanosized molecular wheel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Daopeng; Zhang, Hongyan; Wang, Ping [Shandong Univ. of Technology, College of Chemical Engineering, Zibo (China); Kong, Lingqian [Liaocheng Univ. (China). Dongchang College

    2015-11-01

    By using K{sub 4}[Mo(CN){sub 8}] and [Ni(L)(H{sub 2}O){sub 2}][ClO{sub 4}]{sub 2} as reagents (L = 2,12-dimethyl-3,7,11,17-tetraazabicyclo [11.3.1]heptadeca-1(17),13,15-triene), a new cyanide-bridged Mo-Ni complex containing the building blocks [Ni(H{sub 2}O)(L)]{sup 2+} and [Ni(L)]{sup 2+} bridged by [Mo(CN){sub 8}]{sup 4-} units has been obtained. The complex with the formula {[Ni(H_2O)(L)][Ni(L)][Mo(CN)_8]}{sub 6} . 36H{sub 2}O . 2CH{sub 3}OH (1) was characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The structure determination reveals an octadecanuclear cluster in the form of a 36-membered macrocycle, in which the largest intramolecular W..W and Ni..Ni distances are 16.5 and 14.4 Aa, respectively, indicating that complex 1 is a nanosized molecular wheel. Investigation of its magnetic properties has shown weak antiferromagnetic coupling between the adjacent Ni(II) ions bridged by the diamagnetic [Mo(CN){sub 8}]{sup 4-} ions.

  5. Microstructural development in NiAl/Ni-Si-B/Ni transient liquid phase bonds

    International Nuclear Information System (INIS)

    Gale, W.F.; Orel, S.V.

    1996-01-01

    A transmission electron microscopy (TEM) based investigation of microstructural development during transient liquid phase bonding of near-stoichiometric NiAl to commercial purity nickel is presented in this article. The work described employed Ni-4.5 wt pct Si-3.2 wt pct B (BNi-3) melt-spun interlayers. The precipitation of both Ni-Al based phases and borides within the joint and adjacent substrate regions is discussed. The article considers martensite formation (within the NiAl substrate) and the precipitation of L1 2 type phases (both within the joint and at the interface with the NiAl substrate). The relative roles of the two substrate materials (NiAl and Ni) in the isothermal resolidification process are identified. The preferential formation of Ni 3 B boride phases in the Ni substrate near the original location of the Ni substrate-joint interface is discussed and contrasted with the absence of similar events in the NiAl substrate

  6. Angular distributions of particles sputtered from multicomponent targets with gas cluster ions

    Energy Technology Data Exchange (ETDEWEB)

    Ieshkin, A.E. [Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Ermakov, Yu.A., E-mail: yuriermak@yandex.ru [Skobeltsyn Nuclear Physics Research Institute, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Chernysh, V.S. [Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation)

    2015-07-01

    The experimental angular distributions of atoms sputtered from polycrystalline W, Cd and Ni based alloys with 10 keV Ar cluster ions are presented. RBS was used to analyze a material deposited on a collector. It has been found that the mechanism of sputtering, connected with elastic properties of materials, has a significant influence on the angular distributions of sputtered components. The effect of non-stoichiometric sputtering at different emission angles has been found for the alloys under cluster ion bombardment. Substantial smoothing of the surface relief was observed for all targets irradiated with cluster ions.

  7. Internal carbonitriding behavior of Ni-V, Ni-Cr, and Ni-3Nb alloys

    International Nuclear Information System (INIS)

    Allen, A.T.; Douglass, D.L.

    1999-01-01

    Ni-2V, Ni-5V, Ni-12V, Ni-10Cr, Ni-20Cr, and Ni-3Nb alloys were carbonitrided in C 3 H 6 and NH 3 gas mixtures (bal H 2 ) over the range 700--1,000 C. Carbonitridation of Ni-12V and Ni-20Cr in C 3 H 6 /NH 3 /H 2 (1.5/1.5/97 v/o) and (1.5/10/88.5 v/o) produced duplex subscales consisting of near-surface nitrides with underlying carbides. Growth of each zone obeyed the parabolic rate law under most conditions. The presence of carbon generally did not effect the depth of the nitride zones compared to nitriding the alloys in NH 3 /H 2 (10/90 v/o). However, at 700 C, the nitride zones were deeper in the carbonitrided Ni-V alloys and Ni-20Cr. The presence of nitrogen generally increased the depth of the carbide zones in Ni-12V and Ni-20Cr compared to carburizing these alloys in C 3 H 6 /H 2 (1.5/98.5 v/o). VN, CrN, and NbN formed in Ni-V, Ni-Cr, and Ni-Nb alloys, respectively, whereas the underlying carbide layers contained V 4 C 3 in Ni-12V, Cr 3 C 2 above a zone of Cr 7 C 3 in Ni-20Cr, and NbC in Ni-3Nb. The solubilities and diffusivities of nitrogen and carbon in nickel were determined. Nitrogen and carbon each exhibited retrograde solubility with temperature in pure Ni in both carbonitriding environments. Nitrogen diffusion in nickel was generally lower in each carbonitriding mixture compared to nitrogen diffusion in a nitriding environment, except at 700 C when nitrogen diffusion was higher. Carbon diffusion in nickel was generally higher in the carbonitriding environments compared to carbon diffusion in a carburizing environment

  8. In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance

    Science.gov (United States)

    Chen, Haichao; Jiang, Jianjun; Zhang, Li; Xia, Dandan; Zhao, Yuandong; Guo, Danqing; Qi, Tong; Wan, Houzhao

    2014-05-01

    Self-standing NiCo2S4 nanotube arrays have been in situ grown on Ni foam by the anion-exchange reaction and directly used as the electrode for supercapacitors. The NiCo2S4 nanotube in the arrays effectively reduces the inactive material and increases the electroactive surface area because of the ultrathin wall, which is quite competent to achieve high utilization efficiency at high electroactive materials mass loading. The NiCo2S4 nanotube arrays hybrid electrode exhibits an ultrahigh specific capacitance of 14.39 F cm-2 at 5 mA cm-2 with excellent rate performance (67.7% retention for current increases 30 times) and cycling stability (92% retention after 5000 cycles) at a high mass loading of 6 mg cm-2. High areal capacitance (4.68 F cm-2 at 10 mA cm-2), high energy density (31.5 Wh kg-1 at 156.6 W kg-1) and high power density (2348.5 W kg-1 at 16.6 Wh kg-1) can be achieved by assembling asymmetric supercapacitor with reduced graphene oxide at a total active material mass loading as high as 49.5 mg. This work demonstrates that NiCo2S4 nanotube arrays structure is a superior electroactive material for high-performance supercapacitors even at a mass loading of potential application-specific scale.

  9. Preparation and characterization of self-assembled layer by layer NiCo2O4–reduced graphene oxide nanocomposite with improved electrocatalytic properties

    International Nuclear Information System (INIS)

    Srivastava, Manish; Elias Uddin, Md.; Singh, Jay; Kim, Nam Hoon; Lee, Joong Hee

    2014-01-01

    Graphical abstract: NiCo 2 O 4 were grown on RGO by in situ synthesis process. FE-SEM investigation revealed self assembled layer by layer growth of NiCo 2 O 4 –RGO nanocomposite. NiCo 2 O 4 –RGO nanocomposite exhibited synergetic effect of NiCo 2 O 4 nanoparticles and RGO on its electrochemical performance. -- Highlights: • NiCo 2 O 4 were grown on RGO by in-situ synthesis process. • FE-SEM image revealed self-assembled layer by layer growth of NiCo 2 O 4 -RGO nanocomposite. • NiCo 2 O 4 -RGO nanocomposite exhibited synergetic effects on its electrochemical performance. -- Abstract: NiCo 2 O 4 nanoparticles dispersed on reduced graphene oxide (RGO) are prepared by simultaneously reducing graphene oxide (GO), nickel and cobalt nitrate via a hydrothermal method assisted by post annealing at low temperature. The method involves formation of hydroxides on GO using ammonia under hydrothermal conditions. Subsequent thermal treatment at 300 °C led to the conversion of hydroxides into single-phase NiCo 2 O 4 atop the RGO. The synthesized products are characterized through several techniques including X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The FE-SEM investigations reveal the growth of a layer by layer assembly of NiCo 2 O 4 –RGO (2:1) nanocomposite, where the NiCo 2 O 4 nanoparticles are tightly packed between the layers of RGO. Further, the catalytic properties of the NiCo 2 O 4 –RGO nanocomposite are investigated for the oxygen evolution reaction (OER) through cyclic voltammetry (CV) measurements. It is observed that the special structural features of the NiCo 2 O 4 –RGO (2:1) nanocomposite, including layer by layer assembly, integrity and excellent dispersion of the NiCo 2 O 4 nanoparticles atop the RGO, produced

  10. Electrical characterization of 6H-SiC grown by physical vapor transport method

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, G., E-mail: gzaremba@ite.waw.p [Institute of Electron Technology, Department of Analysis of Semiconductor Nanostructures, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Kaniewska, M.; Jung, W. [Institute of Electron Technology, Department of Analysis of Semiconductor Nanostructures, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Guziewicz, M. [Institute of Electron Technology, Department of Semiconductor Processing for Photonics, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Grasza, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw (Poland)

    2009-11-25

    Deep level transient spectroscopy (DLTS) and capacitance versus voltage (C-V) measurements have been used to study the electrical properties of electron traps in n-type 6H-silicon carbide (SiC) grown by physical vapor transport (PVT) technique, designed as Schottky diodes. Ir Schottky- and Ni ohmic-contacts were deposited by sputtering. Current versus voltage (I-V) measurements showed that sputter deposition of the Schottky contact yields diodes with a reduced barrier height and poor rectification characteristics. Four main electron traps revealed in DLTS spectra have activation energies at 0. 39, 0.41, 0,66, and 0.74 eV below the conduction band. Based on a comparison made with electron traps reported in the literature, we conclude that three of them are well-known traps found in the as-grown or irradiated material. There was no emission signature in the literature to make such a correspondence for the trap at 0.74 eV. Strongly nonhomogenous spatial distribution with a tendency of the trap to accumulation at the surface was found by DLTS and C-V profiling. This together with the fact that the trap at 0.74 eV has not been previously reported in as-grown or processed material makes it possible that the trap is sputter deposition induced defect.

  11. Effect of impurities on the growth of {113} interstitial clusters in silicon under electron irradiation

    OpenAIRE

    Nakai, K.; Hamada, K.; Satoh, Y.; Yoshiie, T.

    2011-01-01

    The growth and shrinkage of interstitial clusters on {113} planes were investigated in electron irradiated Czochralski grown silicon (Cz-Si), floating-zone silicon (Fz-Si), and impurity-doped Fz-Si (HT-Fz-Si) using a high voltage electron microscope. In Fz-Si, {113} interstitial clusters were formed only near the beam incident surface after a long incubation period, and shrank on subsequent irradiation from the backside of the specimen. In Cz-Si and HT-Fz-Si, {113} interstitial clusters nucle...

  12. Genetic diversity in cassava landraces grown on farms in Alta Floresta-MT, Brazil.

    Science.gov (United States)

    Tiago, A V; Rossi, A A B; Tiago, P V; Carpejani, A A; Silva, B M; Hoogerheide, E S S; Yamashita, O M

    2016-09-02

    Brazil is considered one of the domestication centers of cassava (Manihot esculenta), containing a large part of the biological diversity and traditional knowledge of the species. The aim of the present study was to evaluate the genetic diversity of cassava landraces grown by farmers in the north of Mato Grosso State, Brazil, using inter simple sequence repeat (ISSR) molecular markers. The study was carried out in the municipality of Alta Floresta, MT, on farms located in two rural areas. Seventeen cassava landraces were selected. The DNA was extracted and polymerase chain reaction amplifications were performed using 15 ISSR primers. Genetic similarity estimates were calculated using Jaccard's index and the generated matrix was used for clustering the genotypes by using UPGMA and Tocher's methods. The 15 ISSR primers amplified 120 fragments, revealing 61.67% polymorphism. The polymorphism information content ranged from 0.04 to 0.61, averaging 0.39. The most similar genotypes were AF5 and AF8, whereas the least similar were AF1 and AF16. The UPGMA clustering method formed five groups. Group I included twelve landraces, Group II contained two, and the other groups contained one landrace each. Tocher's method resulted in six groups: 12 landraces clustered in one group, and the other groups each contained one landrace. The ISSR markers proved efficient in revealing genetic diversity among the cassava landraces. The landraces grown by farmers in the two rural areas of Alta Floresta have a great variability and, thus, can be exploited in programs for breeding and preservation of the species.

  13. Ionization of water clusters by fast Highly Charged Ions: Stability, fragmentation, energetics and charge mobility

    International Nuclear Information System (INIS)

    Legendre, S; Maisonny, R; Capron, M; Bernigaud, V; Cassimi, A; Gervais, B; Grandin, J-P; Huber, B A; Manil, B; Rousseau, P; Tarisien, M; Adoui, L; Lopez-Tarifa, P; AlcamI, M; MartIn, F; Politis, M-F; Penhoat, M A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study dissociative ionization of water clusters by impact of fast Ni ions. Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized clusters. An unusual stability of the (H 2 O) 4 H ''+ ion is observed, which could be the signature of the so called ''Eigen'' structure in gas phase water clusters. High charge mobility, responsible for the formation of protonated water clusters that dominate the mass spectrum, is evidenced. These results are supported by CPMD and TDDFT simulations, which also reveal the mechanisms of such mobility.

  14. Characterization of atom clusters in irradiated pressure vessel steels and model alloys

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Akamatsu, M.; Van Duysen, J.C.

    1993-12-01

    In order to characterize the microstructural evolution of the iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions and, for comparison, low copper model alloys irradiated with neutrons and electrons have been studied. The characterization has been carried out mainly thanks to small angle neutron scattering and atom probe experiments. Both techniques lead to the conclusion that clusters develop with irradiations. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex. Solute atoms like Ni, Mn and Si, sometimes associated with Cu, segregate as ''clouds'' more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs

  15. Examination of evidence for collinear cluster tri-partition

    Science.gov (United States)

    Pyatkov, Yu. V.; Kamanin, D. V.; Alexandrov, A. A.; Alexandrova, I. A.; Goryainova, Z. I.; Malaza, V.; Mkaza, N.; Kuznetsova, E. A.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.

    2017-12-01

    Background: In a series of experiments at different time-of-flight spectrometers of heavy ions we have observed manifestations of a new at least ternary decay channel of low excited heavy nuclei. Due to specific features of the effect, it was called collinear cluster tri-partition (CCT). The obtained experimental results have initiated a number of theoretical articles dedicated to different aspects of the CCT. Special attention was paid to kinematics constraints and stability of collinearity. Purpose: To compare theoretical predictions with our experimental data, only partially published so far. To develop the model of one of the most populated CCT modes that gives rise to the so-called "Ni-bump." Method: The fission events under analysis form regular two-dimensional linear structures in the mass correlation distributions of the fission fragments. The structures were revealed both at a highly statistically reliable level but on the background substrate, and at the low statistics in almost noiseless distribution. The structures are bounded by the known magic fragments and were reproduced at different spectrometers. All this provides high reliability of our experimental findings. The model of the CCT proposed here is based on theoretical results, published recently, and the detailed analysis of all available experimental data. Results: Under our model, the CCT mode giving rise to the Ni bump occurs as a two-stage breakup of the initial three body chain like the nuclear configuration with an elongated central cluster. After the first scission at the touching point with one of the side clusters, the predominantly heavier one, the deformation energy of the central cluster allows the emission of up to four neutrons flying apart isotropically. The heavy side cluster and a dinuclear system, consisting of the light side cluster and the central one, relaxed to a less elongated shape, are accelerated in the mutual Coulomb field. The "tip" of the dinuclear system at the moment

  16. Antiferromagnetic coupling of TbPc2 molecules to ultrathin Ni and Co films

    Directory of Open Access Journals (Sweden)

    David Klar

    2013-05-01

    Full Text Available The magnetic and electronic properties of single-molecule magnets are studied by X-ray absorption spectroscopy and X-ray magnetic circular dichroism. We study the magnetic coupling of ultrathin Co and Ni films that are epitaxially grown onto a Cu(100 substrate, to an in situ deposited submonolayer of TbPc2 molecules. Because of the element specificity of the X-ray absorption spectroscopy we are able to individually determine the field dependence of the magnetization of the Tb ions and the Ni or Co film. On both substrates the TbPc2 molecules couple antiferromagnetically to the ferromagnetic films, which is possibly due to a superexchange interaction via the phthalocyanine ligand that contacts the magnetic surface.

  17. Direct transfer of multilayer graphene grown on a rough metal surface using PDMS adhesion engineering

    Science.gov (United States)

    Jang, Heejun; Kang, Il-Suk; Lee, Youngbok; Cha, Yun Jeong; Yoon, Dong Ki; Ahn, Chi Won; Lee, Wonhee

    2016-09-01

    The direct transfer of graphene using polydimethylsiloxane (PDMS) stamping has advantages such as a ‘pick-and-place’ capability and no chemical residue problems. However, it is not easy to apply direct PDMS stamping to graphene grown via chemical vapor deposition on rough, grainy metal surfaces due to poor contact between the PDMS and graphene. In this study, graphene consisting of a mixture of monolayers and multiple layers grown on a rough Ni surface was directly transferred without the use of an adhesive layer. Liquid PDMS was cured on graphene to effect a conformal contact with the graphene. A fast release of graphene from substrate was achieved by carrying out wet-etching-assisted mechanical peeling. We also carried out a thermal post-curing of PDMS to control the level of adhesion between PDMS and graphene and hence facilitate a damage-free release of the graphene. Characterization of the transferred graphene by micro-Raman spectroscopy, SEM/EDS and optical microscopy showed neither cracks nor contamination from the transfer. This technique allows a fast and simple transfer of graphene, even for multilayer graphene grown on a rough surface.

  18. Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy.

    Science.gov (United States)

    Tung, Kar Hoo Patrick; Huang, Jian; Danner, Aaron

    2016-06-01

    Growth of ordered GaAs and InGaAs quantum rings (QRs) in a patterned SiO2 nanohole template by molecular beam epitaxy (MBE) using droplet epitaxy (DE) process is demonstrated. DE is an MBE growth technique used to fabricate quantum nanostructures of high crystal quality by supplying group III and group V elements in separate phases. In this work, ordered QRs grown on an ordered nanohole template are compared to self-assembled QRs grown with the same DE technique without the nanohole template. This study allows us to understand and compare the surface kinetics of Ga and InGa droplets when a template is present. It is found that template-grown GaAs QRs form clustered rings which can be attributed to low mobility of Ga droplets resulting in multiple nucleation sites for QR formation when As is supplied. However, the case of template-grown InGaAs QRs only one ring is formed per nanohole; no clustering is observed. The outer QR diameter is a close match to the nanohole template diameter. This can be attributed to more mobile InGa droplets, which coalesce from an Ostwald ripening to form a single large droplet before As is supplied. Thus, well-patterned InGaAs QRs are demonstrated and the kinetics of their growth are better understood which could potentially lead to improvements in the future devices that require the unique properties of patterned QRs.

  19. Formation of nano sized ODS clusters in mechanically alloyed NiAl-(Y,Ti,O) alloys

    International Nuclear Information System (INIS)

    Kim, Yong Deog; Bae Seong Man; Wirth, Brian D.

    2012-01-01

    The Reactor Pressure Vessel (RPV) is the key component in determining the lifetime of nuclear power plants because it is subject to the significant aging degradation by irradiation and thermal aging, and there is no practical method for replacing that component. Advanced reactors with much larger capacity than current reactor require the usage of higher strength materials inevitably. The SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are larger than in conventional RPV steels, could be a promising RPV material offering improved strength and toughness from its tempered martensitic microstructure. For a structural integrity of RPV, the effect of neutron irradiation on the material property is one of the key issues. The RPV materials suffer from the significant degradation of transition properties by the irradiation embrittlement when its strength is increased by a hardening mechanism. Therefore, the potential for application of SA508 Gr.4N steel as the structural components for nuclear power reactors depends on its ability to maintain adequate transition properties against the operating neutron does. However, it is not easy to fine the data on the irradiation effect on the mechanical properties of SA508 Gr.4N steel. In this study, the irradiation embrittlement of SA508 Gr.4N Ni-Cr-Mo low alloy steel was evaluated by using specimens irradiated in research reactor. For comparison, the variations of mechanical properties by neutron irradiation for commercial SA508 Gr.3 Mn-Mo-Ni low alloy steel were also evaluated

  20. Ionization and fragmentation of water clusters by fast highly charged ions

    International Nuclear Information System (INIS)

    Adoui, L; Cassimi, A; Gervais, B; Grandin, J-P; Guillaume, L; Maisonny, R; Legendre, S; Tarisien, M; Lopez-Tarifa, P; Alcami, M; Martin, F; Politis, M-F; Penhoat, M-A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study the dissociative ionization of water clusters by impact of 12 MeV/u Ni 25+ ions. Cold target recoil ion momentum spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized water clusters. An unusual stability of the H 9 O + 4 ion is observed, which could be the signature of the so-called Eigen structure in gas-phase water clusters. From the analysis of coincidences between charged fragments, we conclude that charge mobility is very high and is responsible for the formation of protonated water clusters, (H 2 O) n H + , that dominate the mass spectrum. These results are supported by Car-Parrinello molecular dynamics and time-dependent density functional theory simulations, which also reveal the mechanisms of such mobility.

  1. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    Science.gov (United States)

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. The effect of alloying elements on the vacancy defect evolution in electron-irradiated austenitic Fe-Ni alloys studied by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Druzhkov, A.P. [Institute of Metal Physics, Ural Branch RAS, 18 Kovalevskaya St., 620041 Ekaterinburg (Russian Federation)], E-mail: druzhkov@imp.uran.ru; Perminov, D.A.; Davletshin, A.E. [Institute of Metal Physics, Ural Branch RAS, 18 Kovalevskaya St., 620041 Ekaterinburg (Russian Federation)

    2009-01-31

    The vacancy defect evolution under electron irradiation in austenitic Fe-34.2 wt% Ni alloys containing oversized (aluminum) and undersized (silicon) alloying elements was investigated by positron annihilation spectroscopy at temperatures between 300 and 573 K. It is found that the accumulation of vacancy defects is considerably suppressed in the silicon-doped alloy. This effect is observed at all the irradiation temperatures. The obtained results provide evidence that the silicon-doped alloy forms stable low-mobility clusters involving several Si and interstitial atoms, which are centers of the enhanced recombination of migrating vacancies. The clusters of Si-interstitial atoms also modify the annealing of vacancy defects in the Fe-Ni-Si alloy. The interaction between small vacancy agglomerates and solute Al atoms is observed in the Fe-Ni-Al alloy under irradiation at 300-423 K.

  3. Vacancy clustering and acceptor activation in nitrogen-implanted ZnO

    Science.gov (United States)

    Børseth, Thomas Moe; Tuomisto, Filip; Christensen, Jens S.; Monakhov, Edouard V.; Svensson, Bengt G.; Kuznetsov, Andrej Yu.

    2008-01-01

    The role of vacancy clustering and acceptor activation on resistivity evolution in N ion-implanted n -type hydrothermally grown bulk ZnO has been investigated by positron annihilation spectroscopy, resistivity measurements, and chemical profiling. Room temperature 220keV N implantation using doses in the low 1015cm-2 range induces small and big vacancy clusters containing at least 2 and 3-4 Zn vacancies, respectively. The small clusters are present already in as-implanted samples and remain stable up to 1000°C with no significant effect on the resistivity evolution. In contrast, formation of the big clusters at 600°C is associated with a significant increase in the free electron concentration attributed to gettering of amphoteric Li impurities by these clusters. Further annealing at 800°C results in a dramatic decrease in the free electron concentration correlated with activation of 1016-1017cm-3 acceptors likely to be N and/or Li related. The samples remain n type, however, and further annealing at 1000°C results in passivation of the acceptor states while the big clusters dissociate.

  4. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler

    Energy Technology Data Exchange (ETDEWEB)

    Orlowska, Elzbieta, E-mail: elo@mb.au.dk [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Przybylowicz, Wojciech; Orlowski, Dariusz [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Turnau, Katarzyna [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Mesjasz-Przybylowicz, Jolanta [Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129 (South Africa)

    2011-12-15

    The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining. - Highlights: > The role of arbuscular mycorrhizal fungi in Ni-hyperaccumulating plant was studied. > Growth of Berkheya coddii was significantly enhanced by mycorrhizal inoculation. > Mycorrhizal symbiosis increased Ni uptake to aboveground part of the plants. > Mycorrhizal colonization affected concentration and uptake of other elements. > Arbuscular mycorrhizal fungi could improve the techniques of nickel phytomining. - Inoculation of Ni-hyperaccumulating plant Berkheya coddii with arbuscular mycorrhizal fungi significantly enhanced plant growth and increased Ni uptake.

  5. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler

    International Nuclear Information System (INIS)

    Orlowska, Elzbieta; Przybylowicz, Wojciech; Orlowski, Dariusz; Turnau, Katarzyna; Mesjasz-Przybylowicz, Jolanta

    2011-01-01

    The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining. - Highlights: → The role of arbuscular mycorrhizal fungi in Ni-hyperaccumulating plant was studied. → Growth of Berkheya coddii was significantly enhanced by mycorrhizal inoculation. → Mycorrhizal symbiosis increased Ni uptake to aboveground part of the plants. → Mycorrhizal colonization affected concentration and uptake of other elements. → Arbuscular mycorrhizal fungi could improve the techniques of nickel phytomining. - Inoculation of Ni-hyperaccumulating plant Berkheya coddii with arbuscular mycorrhizal fungi significantly enhanced plant growth and increased Ni uptake.

  6. Influence of a transition metal atom on the geometry and electronic structure of Mg and Mg-H clusters

    International Nuclear Information System (INIS)

    Siretskiy, M.Yu.; Shelyapina, M.G.; Fruchart, D.; Miraglia, S.; Skryabina, N.E.

    2009-01-01

    We report on the study of (MgH 2 ) n + M complexes (M = Ti or Ni) carried out within the framework of the cluster density functional theory (DFT) method. The influence of such transition metal atoms on the cluster geometry and electronic structure is discussed considering the stability of MgH 2 hydride.

  7. Mechanistic insights from DGT and soil solution measurements on the uptake of Ni and Cd by radish.

    Science.gov (United States)

    Luo, Jun; Cheng, Hao; Ren, Jinghua; Davison, William; Zhang, Hao

    2014-07-01

    This work tests the previously proposed hypothesis that plant uptake of metals is determined dominantly by diffusional controlled or plant limiting uptake mechanisms at, respectively, low and high metal concentrations. Radish (Raphanus sativus) was grown in 13 soils spiked with Ni (10 and 100 mg kg(-1)) and Cd (0.5 and 4 mg kg(-1)) for 4 weeks to investigate the mechanisms affecting plant uptake. Soil solution concentrations, Css, of Ni and Cd were measured, along with the DGT interfacial concentration, CDGT, and the derived effective concentration in soil solution, CE. Free ion activities, aNi(2+) and aCd(2+), were obtained using WHAM 6. Although there was a poor relationship between Ni in radish roots and either Css or aNi(2+) in unamended soils, the distribution of data could be rationalized in terms of the extent of release of Ni from the soil solid phase, as identified by DGT and soil solution measurements. By contrast Ni in radish was linearly related to CE, demonstrating diffusion limited uptake. For soils amended with high concentrations of Ni, linear relationships were obtained for Ni in radish plotted against, Css, aNi(2+), and CE, consistent with the plant controlling uptake. For Ni the hypothesis concerning dominant diffusional and plant limiting uptake mechanisms was demonstrated. Poor relationships between Cd in radish and Css, aCd(2+), and CE, irrespective of amendment by Cd, showed the importance of factors other than diffusional supply, such as rhizosphere and inhibitory processes, and that fulfilment of this hypothesis is plant and metal specific.

  8. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    Science.gov (United States)

    Bergner, F.; Gillemot, F.; Hernández-Mayoral, M.; Serrano, M.; Török, G.; Ulbricht, A.; Altstadt, E.

    2015-06-01

    Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  9. Interaction of Nickel and Manganese in Accumulation and Localization in Leaves of the Ni Hyperaccumulators Alyssum murale and Alyssum corsicum

    Energy Technology Data Exchange (ETDEWEB)

    Broadhurst, C.; Tappero, R; Maugel, T; Erbe, E; Sparks, D; Chaney, R

    2009-01-01

    The genus Alyssum contains >50 Ni hyperaccumulator species; many can achieve >2.5% Ni in dry leaf. In soils with normal Mn levels, Alyssum trichome bases were previously observed to accumulate Ni and Mn to high levels. Here we report concentration and localization patterns in A. murale and A. corsicum grown in soils with nonphytotoxic factorial additions of Ni and Mn salts. Four leaf type subsets based on size and age accumulated Ni and Mn similarly. The greatest Mn accumulation (10 times control) was observed in A. corsicum with 40 mmol Mn kg-1 and 40 mmol Ni kg-1 added to potting soil. Whole leaf Ni concentrations decreased as Mn increased. Synchrotron X-ray fluorescence mapping of whole fresh leaves showed localized in distinct high-concentration Mn spots associated with trichomes, Ni and Mn distributions were strongly spatially correlated. Standard X-ray fluorescence point analysis/mapping of cryofractured and freeze-dried samples found that Ni and Mn were co-located and strongly concentrated only in trichome bases and in cells adjacent to trichomes. Nickel concentration was also strongly spatially correlated with sulfur. Results indicate that maximum Ni phytoextraction by Alyssum may be reduced in soils with higher phytoavailable Mn, and suggest that Ni hyperaccumulation in Alyssum species may have developed from a Mn handling system.

  10. Characterization of the hierarchical microstructure of a Ni-Al-Ti model alloy; Charakterisierung der hierarchischen Mikrostruktur einer Ni-Al-Ti Modell-Legierung

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Florian

    2014-02-28

    Phase separation of γ{sup '} precipitates determines the microstructure and mechanical properties of nickel-based superalloys. Upon ageing, γ spheres form inside ordered (L1{sub 2}) γ{sup '} precipitates, undergo a morphological change to plates and finally split the γ{sup '} precipitates. To clarify the identity of the insufficiently characterized γ particles and to elucidate their influence on the evolution of the microstructure and the mechanical properties, differently heat treated samples of a Ni-Al-Ti modell alloy were investigated from the micrometer to the atomic scale. The single crystalline cast material was broadly characterized by means of light and scanning electron microscopy, the laue method (back-reflection), differential scanning calorimetry as well as electron probe microanalysis. Dendritic segregations were found, whereas the dendrite cores show an enrichment in nickel and aluminum and in turn the interdendritic regions show an enrichment in titanium. An adequate combination of temperature and time was determined on the basis of quantitative analyses after different homogenization treatments. The evolution of the hierarchical microstructure was investigated on the nanometer scale by means of transmission electron microscopy and on the atomic scale with atom probe tomography. The combined analyses reveal that Ni-rich clusters form within the γ{sup '} precipitates during the early stages of phase separation. These Ni-rich clusters coalesce and thereby form γ spheres which undergo a morphological change to plates accompanied by a chemical evolution. In the beginning the γ spheres are located well within the metastable γ + γ{sup '} two-phase region and later, after the morphological change, achieve the equilibrium composition of the γ phase. Furthermore the involved energies were considered in order to elucidate the driving forces for the phase separation of γ{sup '} precipitates. A correlation between the

  11. Investigation of Ni@CoO core-shell nanoparticle films synthesized by sequential layer deposition

    International Nuclear Information System (INIS)

    Spadaro, M.C.; Luches, P.; Benedetti, F.; Valeri, S.; Turchini, S.; Bertoni, G.; Ferretti, A.M.; Capetti, E.; Ponti, A.; D’Addato, S.

    2017-01-01

    Highlights: • We studied Ni/CoO core-shell nanoparticles (NP) obtained with a gas aggregation source. • The NP oxide shells were produced bye reactive deposition of Co in Oxygen atmosphere (p_O_2 ≈ 10"−"7 mbar). • XPS, SEM, STEM were used to obtain information on Ni chemical state and NP structure and morphology. • XMCD result showed evidence of remanent magnetization at room temperature. • We interpret XMCD results as due to stabilization induced by exchange bias due to AFM/FM coupling at the core/shell interface. - Abstract: Films of Ni@CoO core-shell nanoparticles (NP Ni core size d ≈ 11 nm) have been grown on Si/SiO_x and lacey carbon supports, by a sequential layer deposition method: a first layer of CoO was evaporated on the substrate, followed by the deposition of a layer of pre-formed, mass-selected Ni NPs, and finally an overlayer of CoO was added. The Ni NPs were formed by a magnetron gas aggregation source, and mass selected with a quadrupole mass filter. The morphology of the films was investigated with Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. The Ni NP cores have a shape compatible with McKay icosahedron, caused by multitwinning occurring during their growth in the source, and the Ni NP layer shows the typical random paving growth mode. After the deposition of the CoO overlayer, CoO islands are observed, gradually extending and tending to merge with each other, with the formation of shells that enclose the Ni NP cores. In situ X-ray Photoelectron Spectroscopy showed that a few Ni atomic layers localized at the core-shell interface are oxidized, hinting at the possibility of creating an intermediate NiO shell between Ni and CoO, depending on the deposition conditions. Finally, X-ray Magnetic Circular Dichroism at the Ni L_2_,_3 absorption edge showed the presence of magnetization at room temperature even at remanence, revealing the possibility of magnetic stabilization of the NP film.

  12. Texture and microstructure analysis of epitaxial oxide layers prepared on textured Ni-12wt%Cr tapes

    Energy Technology Data Exchange (ETDEWEB)

    Huehne, R; Kursumovic, A; Tomov, R I; Glowacki, B A [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Holzapfel, B [Institut fuer Festkoerper- und Werkstoffforschung, Helmholtzstrasse 20, 01069 Dresden (Germany); Evetts, J E [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom)

    2003-05-07

    Oxide layers for the preparation of YBa{sub 2}Cu{sub 3}O{sub 7-x} coated conductors were grown on highly textured Ni-12wt%Cr tapes in pure oxygen using surface oxidation epitaxy at temperatures between 1000 deg. C and 1300 deg. C. Microstructural investigations revealed a layered oxide structure. The upper layer consists mainly of dense cube textured NiO. This is followed by a porous layer containing NiO and NiCr{sub 2}O{sub 4} particles. A detailed texture analysis showed a cube-on-cube relationship of the NiCr{sub 2}O{sub 4} spinel to the metal substrate. Untextured Cr{sub 2}O{sub 3} particles in a nickel matrix were found in a third layer arising from internal oxidation of the alloy. A high surface roughness and mechanical instability of the oxide were observed, depending on oxidation temperature and film thickness. However, mechanically stable oxide layers have been prepared using an additional annealing step in a protective atmosphere. Additionally, mechanical polishing or a second buffer layer, which grows with a higher smoothness, may be applied to reduce the surface roughness for coated conductor applications.

  13. Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Kuldeep Chand, E-mail: dkuldeep.physics@gmail.com [Department of Physics, Panjab University, Chandigarh 160014 (India); Kotnala, R.K., E-mail: rkkotnala@gmail.com [CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2017-02-15

    Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-T{sub c} ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism. - Graphical abstract: The lattice defects/vacancies attributed by Ni and Ce ions in the wurtzite ZnO structure are responsible in high T{sub c} -ferromagnetism due to long-range magnetic

  14. Preliminary screening of Ni(II metal tolerance and dye-decolorizing by Nocardiopsis sp. SD8

    Directory of Open Access Journals (Sweden)

    Ramasamy Thangaraj

    2016-04-01

    Full Text Available Objective: To reveal the screening of metal tolerance and dye-decolorizing of Nocardiopsis sp. Methods: NiSO4 and Congo red dye were used for evaluating the metal tolerance and dyedecolorizing of the randomly selected actinobacterial isolates. Results: Nocardiopsis sp. SD8 showed a better efficiency in Ni(II tolerance, though a longer lag phase was observed for this microorganism grown for 7 days in integrated mismatch negativity. Interestingly, we also found that Nocardiopsis sp. SD8 had dye-decolorizing, hemolytic, lipase and protease activity. Conclusions: The present results revealed the bioremediation of metal resistant and diverse properties of Nocardiopsis sp. SD8 and further investigations are needed to extract and identify the potent molecule.

  15. Structure, magnetism, and transport of single-crystalline R NiSi3 (R = Y, Gd-Tm, Lu)

    Science.gov (United States)

    Arantes, Fabiana R.; Aristizábal-Giraldo, Deisy; Masunaga, Sueli H.; Costa, Fanny N.; Ferreira, Fabio F.; Takabatake, Toshiro; Mendonça-Ferreira, Leticie; Ribeiro, Raquel A.; Avila, Marcos A.

    2018-04-01

    We report on the physical properties of the intermetallic series R NiSi3 (R =Y , Gd-Tm, Lu). High quality single crystals with platelike morphology were grown using the Sn flux method. X-ray powder diffraction data show that this series crystallizes in the orthorhombic space group Cmmm, and Laue patterns indicate that the b axis remains perpendicular to the plane of the plates. Magnetization measurements show anisotropic antiferromagnetic ground states for R = Gd-Tm with Néel temperatures ranging from TN=2.6 K (TmNiSi3) up to 32.2 K (TbNiSi3), as well as metamagnetic transitions that in some cases appear together with hysteresis (TbNiSi3,DyNiSi3, and HoNiSi3). The easy axis changes from a axis to b axis on going from R = Gd-Ho to R = Er-Tm. All transitions from antiferromagnetic to paramagnetic states are clearly marked by sharp peaks in specific heat as well as in the derivative of resistivity measurements, which show metallic temperature dependence for all compounds and residual values in the range of 1 μ Ω cm . DyNiSi3 has two close phase transitions, while HoNiSi3 presents distinct critical temperatures for applied fields in the a or c directions (10.4 and 6.3 K, respectively), pointing to possible component-specific ordering of the local magnetic moments.

  16. Epitaxial YBa2Cu3O7 on biaxially textured (001) Ni: An approach to high critical current density superconducting tapes

    International Nuclear Information System (INIS)

    Norton, D.P.; Goyal, A.; Budai, J.D.

    1997-01-01

    In-plane aligned, c-axis oriented YBa 2 Cu 3 O 7 (YBCO) films with superconducting critical current densities, J c , as high as 700,000 amperes per square centimeter at 77 kelvin have been grown on thermo-mechanically, rolled-textured (001) Ni tapes using pulsed-laser deposition. Epitaxial growth of oxide buffer layers directly on biaxially textured Ni, formed by recrystallization of cold-rolled pure Ni, enables the growth of 1.5 micrometer-thick YBCO films with superconducting properties that are comparable to those observed for epitaxial films on single crystal oxide substrates. This result represents a viable approach for producing long-length superconducting tapes for high current, high field applications at 77 kelvin

  17. Mineral concentrations of forage legumes and grasses grown in acidic soil amended with flue gas desulfurization products

    Energy Technology Data Exchange (ETDEWEB)

    Clark, R.B.; Baligar, V.C. [USDA ARS, Beltsville, MD (USA). Beltsville Agricultural Research Center West

    2003-07-01

    Considerable quantities of flue gas desulfurization products (FGDs) are generated when coal is burned for production of electricity, and these products have the potential to be reused rather than discarded. Use of FGDs as soil amendments could be important in overall management of these products, especially on acidic soils. Glasshouse studies were conducted to determine shoot concentrations of calcium (Ca), sulfur (S), potassium (K), magnesium (Mg), phosphorus (P), boron (B), zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), aluminum (Al), sodium (Na), molybdenum (Mo), nickel (Ni), cadmium (Cd), chromium (Cr), and lead (Pb) in alfalfa (Medicago sativa), white clover (Trifolium repens), orchardgrass (Dacrylis glomerata), tall fescue (Festuca arundinacea), switchgrass (Panicum virgatum), and eastern gamagrass (Tripsacum dactyloides) grown in acidic (pH 4) soil (Typic Hapludult) amended with various levels of three FGDs and the control compounds CaCO{sub 3}, CaSO{sub 3}, and CaSO{sub 4}. Shoot concentrations of Ca, S, Mg, and B generally increased as levels of soil applied FGD increased. Concentrations of Mn, Fe, Zn, Cu were lower in shoots, especially when soil pH was high ({gt}7). Shoot concentrations of the trace elements Mo, Ni, Cd, Cr, and Pb were not above those reported as normal for foliage. Overall concentrations of most minerals remained near normal for shoots when plants were grown in FGD amended acidic soil.

  18. Iron clustering in GaSe epilayers grown on GaAs(111)B

    International Nuclear Information System (INIS)

    Moraes, A R de; Mosca, D H; Mattoso, N; Guimaraes, J L; Klein, J J; Schreiner, W H; Souza, P E N de; Oliveira, A J A de; Vasconcellos, M A Z de; Demaille, D; Eddrief, M; Etgens, V H

    2006-01-01

    In this paper we report on the structural, morphological and magnetic properties of semiconducting GaSe epilayers, grown by molecular beam epitaxy, doped to different iron contents (ranging from 1 to 22 at.% Fe). Our results indicate that iron forms metallic Fe nanoparticles with diameters ranging from 1 to 20 nm embedded in the crystalline GaSe matrix. The Fe incorporation proceeds by segregation and agglomeration and induces a progressive disruption of the lamellar GaSe epilayers. The magnetization as a function of the temperature for zero-field cooling with the magnetic field parallel to the surface of the sample provides evidence of superparamagnetic behaviour of the nanoparticles. Cathodoluminescence experiments performed at room temperature reveal semiconducting behaviour even for samples with Fe concentrations as high as 20 at.%

  19. Raman study of low-temperature-grown Al0.29Ga0.71ASGaAs photorefractive materials

    International Nuclear Information System (INIS)

    Guo, L.W.; Han, Y.J.; Hu, C.Y.; Tan, P.H.; Yang, F.H.; Huang, Q.; Zhou, J.M.

    2002-01-01

    We report on the observation of resonant Raman scattering in low-temperature-grown AlGaASGaAs structure. Two kinds of excitation lights, 632.8 and 488 nm laser lines, were used to detect scattering signal from different regions based on different penetration depths. Under the outgoing resonant condition, up to fourth-order resonant Raman peaks were observed in the low-temperature-grown AlGaAs alloy, owing to a broad exciton luminescence in low-temperature-grown AlGaAs alloy induced by intrinsic defects and As cluster after post-annealing. These resonant peaks were assigned according to their fundamental modes. Among the resonant peaks, besides the overtones of the GaAs- or AlAs-like mode, there exist combination bands of these two kinds of modes. In addition, a weak scattering peak similar to the bulk GaAs longitudinal optical mode was observed in low-temperature Raman experiments. We consider the weak signal correlated with GaAs clusters appearing in AlGaAs alloys. The accumulation of GaAs in AlGaAs alloys was enhanced after annealing at high temperatures. A detailed study of the dependence of vibration modes on measuring temperature and post-annealing conditions is given also. In light of our experiments, it is suggested that a Raman scattering experiment is a sensitive microscopic probe of local disorder and, especially performed at low temperature, is a superior method in detecting and analyzing the weak interaction between phonons and electrons

  20. Impact of medium-range order on the glass transition in liquid Ni-Si alloys

    Science.gov (United States)

    Lü, Y. J.; Entel, P.

    2011-09-01

    We study the thermophysical properties and structure of liquid Ni-Si alloys using molecular dynamics simulations. The liquid Ni-5% and 10%Si alloys crystallize to form the face-centered cubic (Ni) at 900 and 850 K, respectively, and the glass transitions take place in Ni-20% and 25%Si alloys at about 700 K. The temperature-dependent self-diffusion coefficients and viscosities exhibit more pronounced non-Arrhenius behavior with the increase of Si content before phase transitions, indicating the enhanced glass-forming ability. These appearances of thermodynamic properties and phase transitions are found to closely relate to the medium-range order clusters with the defective face-centered cubic structure characterized by both local translational and orientational order. This locally ordered structure tends to be destroyed by the addition of more Si atoms, resulting in a delay of nucleation and even glass transition instead.

  1. Copepod community structure in Bahia de Banderas during the 2008-2009 La Niña and their transition to the 2009-2010 El Niño

    Directory of Open Access Journals (Sweden)

    Jiménez-Pérez, L.C.

    2016-09-01

    Full Text Available In order to investigate the taxonomic copepod community structure and its relations with the climate conditions in the Pacific Ocean, bimonthly samples were made between February 2009 and April 2010. Samples were collected by vertical tows between the surface and the vicinity of the bottom with a 40 cm mouth diameter and 335 µ mesh size standard zooplankton net. At the beginning of the study water temperatures were low indicating that La Niña conditions prevailed in the bay. However, at the end of June, 2 °C warmer waters associated with El Niño 2009-2010 arrival were detected. These conditions persisted at least until February 2010, and by April water temperature returned to normal. 57 copepods species were recorded, being Acartia tonsa, Acartia lilljeborgi, Oithona plumífera, Centropages furcatus and Nannocalanus minor the most representative species. These five populations accounted most of the 90 % of the collected animals. Cluster and Non-Metric Multidimensional Scaling (NMDS methods show two groups that seem to be associated with La Niña and El Niño conditions. The analysis of similarities (ANOSIM indicated that these assemblages were different (r=0.411; p=0.01 %. Simper analysis indicated that A. tonsa was the dominant population (85.4 % at the end of the 2008-2009 La Niña; this population was followed by A. lilljeborgi (7.9 % and Pareucalanus subtenuis (2.5 %. During the El Niño the dominance of A. tonsa disappeared (32 % while Oithona plumífera, Temora discaudata and Undinula darwinii increased. At the end of El Niño, species diversity and richness also changed. At the end of the 2008-2009 La Niña conditions, 40 species were recorded, while during El Niño the species richness increased to 52 species.

  2. Kinetic Monte Carlo simulation of nanostructural evolution under post-irradiation annealing in dilute FeMnNi

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M. [SCK-CEN, Nuclear Materials Science Institute, Mol (Belgium); Unite Materiaux et Transformations (UMET), UMR 8207, Universite de Lille 1, ENSCL, Villeneuve d' Ascq (France); Becquart, C.S. [Unite Materiaux et Transformations (UMET), UMR 8207, Universite de Lille 1, ENSCL, Villeneuve d' Ascq (France); Laboratoire commun EDF-CNRS, Etude et Modelisation des Microstructures pour le Vieillissement des Materiaux (EM2VM) (France); Domain, C. [EDF R and D, Departement Materiaux et Mecanique des Composants, Les Renardieres, Moret sur Loing (France); Laboratoire commun EDF-CNRS, Etude et Modelisation des Microstructures pour le Vieillissement des Materiaux (EM2VM) (France); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Mol (Belgium)

    2015-01-01

    Post-irradiation annealing experiments are often used to obtain clearer information on the nature of defects produced by irradiation. However, their interpretation is not always straightforward without the support of physical models. We apply here a physically-based set of parameters for object kinetic Monte Carlo (OKMC) simulations of the nanostructural evolution of FeMnNi alloys under irradiation to the simulation of their post-irradiation isochronal annealing, from 290 to 600 C. The model adopts a ''grey alloy'' scheme, i.e. the solute atoms are not introduced explicitly, only their effect on the properties of point-defect clusters is. Namely, it is assumed that both vacancy and SIA clusters are significantly slowed down by the solutes. The slowing down increases with size until the clusters become immobile. Specifically, the slowing down of SIA clusters by Mn and Ni can be justified in terms of the interaction between these atoms and crowdions in Fe. The results of the model compare quantitatively well with post-irradiation isochronal annealing experimental data, providing clear insight into the mechanisms that determine the disappearance or re-arrangement of defects as functions of annealing time and temperature. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Cluster Analysis in Rapeseed (Brassica Napus L.)

    International Nuclear Information System (INIS)

    Mahasi, J.M

    2002-01-01

    With widening edible deficit, Kenya has become increasingly dependent on imported edible oils. Many oilseed crops (e.g. sunflower, soya beans, rapeseed/mustard, sesame, groundnuts etc) can be grown in Kenya. But oilseed rape is preferred because it very high yielding (1.5 tons-4.0 tons/ha) with oil content of 42-46%. Other uses include fitting in various cropping systems as; relay/inter crops, rotational crops, trap crops and fodder. It is soft seeded hence oil extraction is relatively easy. The meal is high in protein and very useful in livestock supplementation. Rapeseed can be straight combined using adjusted wheat combines. The priority is to expand domestic oilseed production, hence the need to introduce improved rapeseed germplasm from other countries. The success of any crop improvement programme depends on the extent of genetic diversity in the material. Hence, it is essential to understand the adaptation of introduced genotypes and the similarities if any among them. Evaluation trials were carried out on 17 rapeseed genotypes (nine Canadian origin and eight of European origin) grown at 4 locations namely Endebess, Njoro, Timau and Mau Narok in three years (1992, 1993 and 1994). Results for 1993 were discarded due to severe drought. An analysis of variance was carried out only on seed yields and the treatments were found to be significantly different. Cluster analysis was then carried out on mean seed yields and based on this analysis; only one major group exists within the material. In 1992, varieties 2,3,8 and 9 didn't fall in the same cluster as the rest. Variety 8 was the only one not classified with the rest of the Canadian varieties. Three European varieties (2,3 and 9) were however not classified with the others. In 1994, varieties 10 and 6 didn't fall in the major cluster. Of these two, variety 10 is of Canadian origin. Varieties were more similar in 1994 than 1992 due to favorable weather. It is evident that, genotypes from different geographical

  4. Bi cluster-assembled interconnects produced using SU8 templates

    International Nuclear Information System (INIS)

    Partridge, J G; Matthewson, T; Brown, S A

    2007-01-01

    Bi clusters with an average diameter of 25 nm have been deposited from an inert gas aggregation source and assembled into thin-film interconnects which are formed between planar electrical contacts and supported on Si substrates passivated with Si 3 N 4 or thermally grown oxide. A layer of SU8 (a negative photoresist based on EPON SU-8 epoxy resin) is patterned using optical or electron-beam lithography, and it defines the position and dimensions of the cluster film. The conduction between the contacts is monitored throughout the deposition/assembly process, and subsequent I(V) characterization is performed in situ. Bi cluster-assembled interconnects have been fabricated with nanoscale widths and with up to 1:1 thickness:width aspect ratios. The conductivity of these interconnects has been increased, post-deposition, using a simple thermal annealing process

  5. Do protein crystals nucleate within dense liquid clusters?

    International Nuclear Information System (INIS)

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-01-01

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10 −3 of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  6. Synthesis of few-layer graphene on a Ni substrate by using DC plasma enhanced chemical vapor deposition (PE-CVD)

    International Nuclear Information System (INIS)

    Kim, Jeong Hyuk; Castro, Edward Joseph; Hwang, Yong Gyoo; Lee, Choong Hun

    2011-01-01

    In this work, few-layer graphene (FLG) was successfully grown on polycrystalline Ni a large scale by using DC plasma enhanced chemical vapor deposition (DC PE-CVD), which may serve as an alternative route in large-scale graphene synthesis. The synthesis time had an effect on the quality of the graphene produced. The applied DC voltage, on the other hand, influenced the minimization of the defect densities in the graphene grown. We also present a method of producing a free-standing polymethyl methacrylate (PMMA)/graphene membrane on a FeCl 3(aq) solution, which could then be transferred to the desired substrate.

  7. Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability

    International Nuclear Information System (INIS)

    Sun, Y.J.; Qu, D.D.; Huang, Y.J.; Liss, K.-D.; Wei, X.S.; Xing, D.W.; Shen, J.

    2009-01-01

    Zr-Cu-Ni-Al quaternary amorphous alloy compositions with varying glass-forming ability are developed by an efficient method of proportional mixing of binary eutectics. The critical diameter of the glassy sample is improved from 6 mm for Zr 53 Cu 18.7 Ni 12 Al 16.3 to 14 mm for Zr 50.7 Cu 28 Ni 9 Al 12.3 by straightforwardly adjusting the eutectic unit's coefficients. The drastic improvement in GFA is attributed to balancing the chemical affinities of the Zr, Cu, Ni and Al components in the melt prior to solidification which makes the precipitation of competing crystalline phases more difficult. As the glass-forming ability increases, the concentration of Cu in the alloys exhibits a same trend. Based on synchrotron radiation high-energy X-ray diffraction analysis and Miracle's structural model, it is envisioned that the substitution of additional Cu atoms for Zr atoms in the investigated alloys stabilizes the efficient cluster packing structure of the amorphous alloys, leading to the pronounced increase in their glass-forming ability

  8. CLUSTER OF INDONESIA KABUPATEN-KOTA POTENTIAL IN DEVELOPING FOOD CROP AND HORTICULTURE COMMODITIES

    Directory of Open Access Journals (Sweden)

    Imam Wahyudi

    2016-09-01

    Full Text Available Identification of potential areas in an agricultural sector is needed in order to meet the national food needs, among others, by carrying out mapping the potential areas through clustering the Kabupaten-Kota in Indonesia, especially on imported agricultural commodities of food crops and horticultures. The use of cluster analysis with top-down clustering method (K-means produces the best cluster. Of 268 regencies-cities, there are 7 clusters, namely Cluster 1 consisting of 154 regencies, Cluster 2 consisting of 2 regencies, Cluster 3 consisting of only1 regency, Cluster 4 consisting of 8 regencies, Cluster 5 consisting of 24 regencies, Cluster 6 consisting of 75 regencies, and Cluster 7 consisting of 4 regencies. Each cluster has its own dominant commodity characteristics.  The results of typology klassen on constructed clusters show that food crop and horticulture commodities have grown well and fast. Out of 13 commodities, there are 7 major commodities: Cluster 1: rice and corns; Clusters 2, 3 and 7: cassava; Cluster 4: corns, cassavas and chilly; Cluster 5: apples; Cluster 6: corns, shallots, and garlic. Six other commodities do not grow well, namely sorghum, potatoes, soybeans, peanuts, oranges, and grapes. The potential lack of an area is due to the plants’ low productivity, which is mainly because of plant pests, highly operational cost, climates and natural disasters. Keywords: imports, food crops, horticulture, cluster, and leading sector.

  9. Nickel cobaltite nanograss grown around porous carbon nanotube-wrapped stainless steel wire mesh as a flexible electrode for high-performance supercapacitor application

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Zheng, Zhi-Bin; Lai, Yu-Sheng; Jow, Jiin-Jiang

    2015-01-01

    Graphical abstract: Nickel cobaltite nanograss with bimodal pore size distribution is grown around the carbon nanotube-wrapped stainless steel wire mesh as a high capacitance and stable electrode for high-performance and flexible supercapacitors. - Highlights: • NiCo 2 O 4 nanograss with bimodal pore size distribution is hydrothermally prepared. • Carbon nanotubes (CNTs) wrap around stainless steel (SS) wire mesh as a scaffold. • NiCo 2 O 4 grown on CNT-wrapped SS mesh shows excellent capacitive performance. • Porous CNT layer allows for rapid transport of electron and electrolyte. - Abstract: Nickel cobaltite nanograss with bimodal pore size distribution (small and large mesopores) is grown on various electrode substrates by one-pot hydrothermal synthesis. The small pores (<5 nm) in the nanograss of individual nanorods contribute to large surface area, while the large pore channels (>20 nm) between nanorods offer fast transport paths for electrolyte. Carbon nanotubes (CNTs) with high electrical conductivity wrap around stainless steel (SS) wire mesh by electrophoresis as an electrode scaffold for supporting the nickel cobaltite nanograss. This unique electrode configuration turns out to have great benefits for the development of supercapacitors. The specific capacitance of nickel cobaltite grown around CNT-wrapped SS wire mesh reaches 1223 and 1070 F g −1 at current densities of 1 and 50 A g −1 , respectively. CNT-wrapped SS wire mesh affords porous and conductive networks underneath the nanograss for rapid transport of electron and electrolyte. Flexible CNTs connect the nanorods to mitigate the contact resistance and the volume expansion during cycling test. Thus, this tailored electrode can significantly reduce the ohmic resistance, charge-transfer resistance, and diffusive impedance, leading to high specific capacitance, prominent rate performance, and good cycle-life stability.

  10. Synthesis of NiO@MnO_2 core/shell nanocomposites for supercapacitor application

    International Nuclear Information System (INIS)

    Chen, Junjiao; Huang, Ying; Li, Chao; Chen, Xuefang; Zhang, Xiang

    2016-01-01

    Graphical abstract: - Highlights: • MnO_2 nanosheets were grown on the surface of porous NiO microtube. • The NiO@MnO_2 nanocomposite exhibits excellent cycle performance. • The nanocomposite exhibits specific capacitance of 266.7 F g"−"1 at 0.5 A g"−"1. - Abstract: In this work, NiO@MnO_2 core/shell nanocomposites were fabricated by a two-step method. The morphology and structure of the nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction analysis and thermal gravity analysis. In addition, the supercapacitive performances were examined by cyclic voltammogram (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS). The electrochemical results indicate that the composite exhibits a specific capacitance of 266.7 F g"−"1 at 0.5 A g"−"1 and excellent cycling stability (81.7% retention after 2000 cycles at 1 A g"−"1). Therefore, this wok offers meaningful reference for supercpacitor applications in the future.

  11. Analysis of the structure of climate networks under El Niño and La Niña conditions

    Science.gov (United States)

    Graciosa, Juan Carlos; Pastor, Marissa

    The El Niño-Southern Oscillation (ENSO) is the most important driver of natural climate variability and is characterized by anomalies in the sea surface temperatures (SST) over the tropical Pacific ocean. It has three phases: neutral, a warming phase or El Niño, and a cooling phase called La Niña. In this research, we modeled the climate under the three phases as a network and characterized its properties. We utilized the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) daily surface temperature reanalysis data from January 1950 to December 2016. A network associated to a month was created using the temperature spanning from the previous month to the succeeding month, for a total of three months worth of data for each network. Each site of the included data was a potential node in the network and the existence of links were determined by the strength of their relationship, which was based on mutual information. Interestingly, we found that climate networks exhibit small-world properties and these are found to be more prominent from October to April, coinciding with observations that El Niño occurrences peak from December to March. During these months, the temperature of a relatively large part of the Pacific ocean and its surrounding areas increase and the anomaly values become synchronized. This synchronization in the temperature anomalies forms links around the Pacific, increasing the clustering in the region and in effect, that of the entire network.

  12. Magnetic properties of a metal-organic porous network [Ni2(BODC)2(TED)

    Science.gov (United States)

    Yuen, Tan; Danilovic, D.; Li, Kunhao; Li, Jing

    2008-04-01

    A new material [Ni2(BODC)2(TED)], (BODC =4,4'-bicyclo[2.2.2]octane dicarboxylate and TED =triethylene-4,4'-diamine), which is a guest-free, porous metal-organic coordination network, has been successfully synthesized. The crystal structure of this compound is tetragonal with the space group P4/mmm. It is a three-dimensional network that can be deconstructed into rectangular gridlike layers along ab planes. These planes are formed by BODC and Zn2O4 paddle-wheel-like clusters, and the TED ligands from the axial directions of the paddle-wheels connect the layers into a three-dimesional structure. There are no guest molecules found in the pores. The shortest Ni-Ni distance within the paddle wheel is found to be 2.613Å. Magnetic susceptibility χ(T )=M(T)/H and isothermal magnetization M(H ) measurements have been measured on powder samples of this compound. The results of χ(T ) show that there is a rapid increase in the susceptibility below 20K due to a spontaneous ordering of the Ni2+ moments. The effective moment μeff of Ni2+ is about 2.20μB at room temperature. The M(H ) result at 1.8K shows a clear hysteresis with a coercivity of Hcoe≈1700G. The behavior of this compound is discussed in terms of Ni-Ni coupling within the Ni dimers and dimer chains.

  13. Vertically grown Ge nanowire Schottky diodes on Si and Ge substrates

    Science.gov (United States)

    Chandra, Nishant; Tracy, Clarence J.; Cho, Jeong-Hyun; Picraux, S. T.; Hathwar, Raghuraj; Goodnick, Stephen M.

    2015-07-01

    The processing and performance of Schottky diodes formed from arrays of vertical Ge nanowires (NWs) grown on Ge and Si substrates are reported. The goal of this work is to investigate CMOS compatible processes for integrating NWs as components of vertically scaled integrated circuits, and elucidate transport in vertical Schottky NWs. Vertical phosphorus (P) doped Ge NWs were grown using vapor-liquid-solid epitaxy, and nickel (Ni)-Ge Schottky contacts were made to the tops of the NWs. Current-voltage (I-V) characteristics were measured for variable ranges of NW diameters and numbers of nanowires in the arrays, and the I-V characteristics were fit using modified thermionic emission theory to extract the barrier height and ideality factor. As grown NWs did not show rectifying behavior due to the presence of heavy P side-wall doping during growth, resulting in a tunnel contact. After sidewall etching using a dilute peroxide solution, rectifying behavior was obtained. Schottky barrier heights of 0.3-0.4 V and ideality factors close to 2 were extracted using thermionic emission theory, although the model does not give an accurate fit across the whole bias range. Attempts to account for enhanced side-wall conduction due to non-uniform P doping profile during growth through a simple shunt resistance improve the fit, but are still insufficient to provide a good fit. Full three-dimensional numerical modeling using Silvaco Atlas indicates that at least part of this effect is due to the presence of fixed charge and acceptor like traps on the NW surface, which leads to effectively high ideality factors.

  14. Health risk assessment of heavy metals contamination in tomato and green pepper plants grown in soils amended with phosphogypsum waste materials.

    Science.gov (United States)

    Al-Hwaiti, Mohammad; Al-Khashman, Omar

    2015-04-01

    Phosphogypsum (PG) is a waste produced by the phosphate fertilizer industry that has relatively high concentrations of some heavy metals (e.g., Cd, Cr, Cu, Pb, V, and Zn). The present study was conducted to investigate heavy metal contamination in soils and vegetables (tomatoes and green peppers) and to evaluate the possible health risks associated with the consumption of vegetables grown in PG-amended soils. The enrichment factor values indicated that Pb, Cr, Cu, Ni, Zn, and V were depleted to minimally enriched, and Cd was moderately enriched. The pollution load index values indicated that the PG-amended soils were strongly polluted with Cd, moderately polluted with Cr and Ni, and slightly polluted with Pb, Cu, Zn and V. The geo-accumulation index values indicated that the PG-amended soils were uncontaminated with Pb, Cr, Cu, Ni, Zn, V, and moderately contaminated with Cd. The trace metal transfer for Cd, Cr, Pb, and Zn concentrations was below what are considered as acceptable limits ( Pb > Cd > Cr. The biological absorption coefficients in plants are, in order of highest to lowest, Pb > Zn > Cd > Cr, which suggests that Pb is more bioavailable to plants than Cd, Cr, and Zn. Furthermore, this study highlights that both adults and children consuming vegetables (e.g., tomatoes and green peppers) grown in PG-amended soils ingest significant amounts of the metals studied. However, the daily intake of metals (DIM) and the health risk index (HRI) values are contaminated soils, which were not included in this study.

  15. Laser clad Ni-base alloy added nano- and micron-size CeO 2 composites

    Science.gov (United States)

    Zhang, Shi Hong; Li, Ming Xi; Cho, Tong Yul; Yoon, Jae Hong; Lee, Chan Gyu; He, Yi Zhu

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders are mixed with both 1.5 wt% (%) micron-CeO 2 (m-CeO 2) and also 1.0-3.0% nano-CeO 2 (n-CeO 2) powders. These mixtures are coated on low carbon steel (Q235) by 2.0 kW CO 2 laser cladding. The effects on microstructures, microhardness and wear resistance of the coating by the addition of m- and n-CeO 2 powders to NBA (m- and n-CeO 2/NBA) have been investigated. Addition to the primary phases of γ-Ni, Cr 23C 6 and Ni 3B of NBA coating, CeNi 3 shows up both in m- and n-CeO 2/NBA coatings and CeNi 5 appears only in n-CeO 2/NBA coating. Directional dendrite and coarse equiaxed dendrite are grown in m-CeO 2/NBA coating from interface to central zone, whereas multi-oriented dendrite and fine equiaxed dendrite growth by addition of n-CeO 2. The microhardness and wear resistance of coatings are greatly improved by CeO 2 powder addition, and compared to the addition of 1.0% and 3.0%, 1.5% n-CeO 2/NBA is the best. Hardness and wear resistance of the coating improves with decreasing CeO 2 size from micron to nano.

  16. Asymmetric electroresistance of cluster glass state in manganites

    KAUST Repository

    Lourembam, James

    2014-03-31

    We report the electrostatic modulation of transport in strained Pr0.65(Ca0.75Sr0.25)0.35MnO3 thin films grown on SrTiO3 by gating with ionic liquid in electric double layer transistors (EDLT). In such manganite films with strong phase separation, a cluster glass magnetic state emerges at low temperatures with a spin freezing temperature of about 99 K, which is accompanied by the reentrant insulating state with high resistance below 30 K. In the EDLT, we observe bipolar and asymmetric modulation of the channel resistance, as well as an enhanced electroresistance up to 200% at positive gate bias. Our results provide insights on the carrier-density-dependent correlated electron physics of cluster glass systems.

  17. Development of biaxially textured buffer layers on rolled-Ni substrates for high current YBa2Cu3O7-y coated conductors

    International Nuclear Information System (INIS)

    Paranthaman, M.; Goyal, A.; Norton, D.P.

    1996-01-01

    This paper describes the development of 3 buffer layer architectures with good biaxial textures on rolled-Ni substrates using vacuum processing techniques. The techniques include pulsed laser ablation, e-beam evaporation, dc and rf magnetron sputtering. The first buffer layer architecture consists of an epitaxial laminate of Ag/Pd(Pt)/Ni. The second buffer layer consists of an epitaxial laminate of CeO 2 /Pd/Ni. The third alternative buffer layer architecture consists of an epitaxial laminate of YSZ/CeO 2 /Ni. The cube (100) texture in the Ni was produced by cold rolling followed by recrystallization. Crystallographic orientations of the Pd, Ag, CeO 2 , and YSZ films grown were all (100). We recently demonstrated a critical- current density of 0.73x10 6 A/cm 2 at 77 K and zero field on 1.4 μm thick YBa 2 Cu 3 O 7-y (YBCO) film. This film was deposited by pulsed laser ablation on a YBCO/YSZ/CeO 2 /Ni substrate

  18. Magnetron sputtered Cu{sub 3}N/NiTiCu shape memory thin film heterostructures for MEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Choudhary, Nitin [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Goyal, Rajendra N. [Indian Institute of Technology, Roorkee, Department of Chemistry (India); Viladkar, S. [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Matai, I.; Gopinath, P. [Indian Institute of Technology, Roorkee, Centre for Nanotechnology (India); Chockalingam, S. [Indian Institute of Technology, Guwahati, Department of Biotechnology (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India)

    2013-03-15

    In the present study, for the first time, Cu{sub 3}N/NiTiCu/Si heterostructures were successfully grown using magnetron sputtering technique. Nanocrystalline copper nitride (Cu{sub 3}N with thickness {approx}200 nm) thin films and copper nanodots were subsequently deposited on the surface of 2-{mu}m-thick NiTiCu shape memory thin films in order to improve the surface corrosion and nickel release properties of NiTiCu thin films. Interestingly, the phase transformation from martensite phase to austenite phase has been observed in Cu{sub 3}N/NiTiCu heterostructures with corresponding change in texture and surface morphology of top Cu{sub 3}N films. Field emission scanning electron microscopy and atomic force microscope images of the heterostructures reveals the formation of 20-nm-sized copper nanodots on NiTiCu surface at higher deposition temperature (450 Degree-Sign C) of Cu{sub 3}N. Cu{sub 3}N passivated NiTiCu films possess low corrosion current density with higher corrosion potential and, therefore, better corrosion resistance as compared to pure NiTiCu films. The concentration of Ni released from the Cu{sub 3}N/NiTiCu samples was observed to be much less than that of pure NiTiCu film. It can be reduced to the factor of about one-ninth after the surface passivation resulting in smooth, homogeneous and highly corrosion resistant surface. The antibacterial and cytotoxicity of pure and Cu{sub 3}N coated NiTiCu thin films were investigated through green fluorescent protein expressing E. coli bacteria and human embryonic kidney cells. The results show the strong antibacterial property and non cytotoxicity of Cu{sub 3}N/NiTiCu heterostructure. This work is of immense technological importance due to variety of BioMEMS applications.

  19. Hydrothermally formed three-dimensional hexagon-like P doped Ni(OH)2 rod arrays for high performance all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Li, Kunzhen; Li, Shikuo; Huang, Fangzhi; Lu, Yan; Wang, Lei; Chen, Hong; Zhang, Hui

    2018-01-01

    Three dimensional hexagon-like phosphrous (P) doped Ni(OH)2 rod arrays grown on Ni foam (NF) are fabricated by a facile and green one-step hydrothermal process. Ni foam is only reacted in a certain concentration of P containing H2O2 aqueous solution. The possible growth mechanism of the P doped Ni(OH)2 rod arrays is discussed. As a battery-type electrode material in situ formed on Ni foam, the binder-free P doped Ni(OH)2 rod arrays electrode displays a ultrahigh specific areal capacitance of 2.11C cm-2 (3.51 F cm-2) at 2 mA cm-2, and excellent cycling stability (95.5% capacitance retention after 7500 cycles). The assembled all-solid-state asymmetric supercapacitor (AAS) based on such P doped Ni(OH)2 rod arrays as the positive electrode and activated carbon as the negative electrode achieves an energy density of 81.3 Wh kg-1 at the power density of 635 W kg-1. The AAS device also exhibits excellent practical performance, which can easily drive an electric fan (3 W rated power) when two AAS devices are assembled in series. Thus, our synthesized P doped Ni(OH)2 rod arrays has a lot of potential applications in future energy storage prospects.

  20. Binary eutectic clusters and glass formation in ideal glass-forming liquids

    International Nuclear Information System (INIS)

    Lu, Z. P.; Shen, J.; Xing, D. W.; Sun, J. F.; Liu, C. T.

    2006-01-01

    In this letter, a physical concept of binary eutectic clusters in 'ideal' glass-forming liquids is proposed based on the characteristics of most well-known bulk metallic glasses (BMGs). The authors approach also includes the treatment of binary eutectic clusters as basic units, which leads to the development of a simple but reliable method for designing BMGs more efficiently and effectively in these unique glass-forming liquids. As an example, bulk glass formers with superior glass-forming ability in the Zr-Ni-Cu-Al and Zr-Fe-Cu-Al systems were identified with the use of the strategy

  1. Smoothing of ZnO films by gas cluster ion beam

    International Nuclear Information System (INIS)

    Chen, H.; Liu, S.W.; Wang, X.M.; Iliev, M.N.; Chen, C.L.; Yu, X.K.; Liu, J.R.; Ma, K.; Chu, W.K.

    2005-01-01

    Planarization of wide-band-gap semiconductor ZnO surface is crucial for thin-film device performance. In this study, the rough initial surfaces of ZnO films deposited by r.f. magnetron sputtering on Si substrates were smoothed by gas cluster ion beams. AFM measurements show that the average surface roughness (R a ) of the ZnO films could be reduced considerably from 16.1 nm to 0.9 nm. Raman spectroscopy was used to monitor the structure of both the as-grown and the smoothed ZnO films. Rutherford back-scattering in combination with channeling effect was used to study the damage production induced by the cluster bombardment

  2. Exclusive study of Ni+Ni and Ni+Au central collisions: phase coexistence and spinodal decomposition; Etude exclusive des collisions centrales Ni+Ni et Ni+Au: coexistence de phase et decomposition spinodale

    Energy Technology Data Exchange (ETDEWEB)

    Guiot, B

    2002-12-01

    The INDRA multidetector allowed us to study the Ni+Ni collisions at 32A MeV and the Ni+Au collisions at 52,4 MeV. Central collisions leading to 'quasi-fused' systems were isolated using multidimensional analysis techniques: the Discriminant Analysis and the Principal Component Analysis. Comparison with a statistical model shows that the selected events are compatible with thermodynamical equilibrium. The average thermal excitation energy is 5A MeV for both systems. Calculations of heat capacities show that the deexcitation of the hot sources are akin to a liquid-gas phase transition of nuclear matter. Indeed heat capacities exhibit a negative branch as expected for a phase transition of a finite system. The dynamics of this phase transition has been investigated by applying the charge correlation method. An enhanced production of events with equal-sized fragments has been evidenced for Ni+Au at 52A MeV. No signal was found for Ni+Ni at 32A MeV. Finally this method was improved by taking into account the total charge conservation. The signal is seen more clearly for Ni+Au at 52A MeV, but is ambiguous for Ni+Ni at 32A MeV. The path followed in the state diagram, or the involved time scales, seem to be different for these systems. (authors)

  3. Defect attributed variations of the photoconductivity and photoluminescence in the HVPE and MOCVD as-grown and irradiated GaN structures

    International Nuclear Information System (INIS)

    Gaubas, E.; Pobedinskas, P.; Vaitkus, J.; Uleckas, A.; Zukauskas, A.; Blue, A.; Rahman, M.; Smith, K.M.; Aujol, E.; Beaumont, B.; Faurie, J.-P.; Gibart, P.

    2005-01-01

    The effect of native and radiation induced defects on the photoconductivity transients and photoluminescence spectra have been examined in GaN epitaxial layers of 2.5 and 12μm thickness grown on bulk n-GaN/sapphire substrates by metal-organic chemical vapor deposition (MOCVD). For comparison, free-standing GaN as-grown samples of 500μm thickness, fabricated by hydride vapor phase epitaxy (HVPE), were investigated. Manifestation of defects induced by 10-keV X-ray irradiation with the dose of 600Mrad and 100-keV neutrons with the fluences of 5x10 14 and 10 16 cm -2 as well as of 24GeV/c protons with fluence 10 16 cm -2 have been revealed through contact photoconductivity and microwave absorption transients. The amplitude of the initial photoconductivity decay is significantly reduced by the native and radiation defects density. Synchronous decrease of the steady-state PL intensity of yellow, blue and ultraviolet bands peaked at 2.18, 2.85, and 3.42eV, respectively, with density of radiation-induced defects is observed. The decrease of the PL intensity is accompanied by an increase of asymptotic decay lifetime in the photoconductivity transients, which is due to excess-carrier multi-trapping. The decay fits the stretched exponent approximation exp[-(t/τ) α ] with the different factors α in as-grown material (α∼0.7) and irradiated samples (α∼0.3). The fracton dimension d s of disordered structure changes from 4.7 to 0.86 for as-grown and irradiated material, respectively, and it implies the percolative carrier motion on an infinite cluster of dislocations net in the as-grown material and cluster fragmentation into finite fractons after irradiations

  4. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    Science.gov (United States)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  5. Effects of electronic excitation in 150 keV Ni ion irradiation of metallic systems

    Science.gov (United States)

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    2018-01-01

    We use the two-temperature model in molecular dynamic simulations of 150 keV Ni ion cascades in nickel and nickel-based alloys to investigate the effect of the energy exchange between the atomic and the electronic systems during the primary stages of radiation damage. We find that the electron-phonon interactions result in a smaller amount of defects and affect the cluster formation, resulting in smaller clusters. These results indicate that ignoring the local heating due to the electrons results in the overestimation of the amount of damage and the size of the defect clusters. A comparison of the average defect production to the Norgett-Robinson-Torrens (NRT) prediction over a range of energies is provided.

  6. Preparation and characterization of self-assembled layer by layer NiCo{sub 2}O{sub 4}–reduced graphene oxide nanocomposite with improved electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Manish; Elias Uddin, Md. [Advanced Materials Research Institute for BIN Fusion Technology (BK Plus Global Program), Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Singh, Jay [Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042 (India); Kim, Nam Hoon [Advanced Materials Research Institute for BIN Fusion Technology (BK Plus Global Program), Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Lee, Joong Hee, E-mail: jhl@chonbuk.ac.kr [Advanced Materials Research Institute for BIN Fusion Technology (BK Plus Global Program), Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Advanced Wind Power System Research Center, Department of Polymer and Nano Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2014-03-25

    Graphical abstract: NiCo{sub 2}O{sub 4} were grown on RGO by in situ synthesis process. FE-SEM investigation revealed self assembled layer by layer growth of NiCo{sub 2}O{sub 4}–RGO nanocomposite. NiCo{sub 2}O{sub 4}–RGO nanocomposite exhibited synergetic effect of NiCo{sub 2}O{sub 4} nanoparticles and RGO on its electrochemical performance. -- Highlights: • NiCo{sub 2}O{sub 4} were grown on RGO by in-situ synthesis process. • FE-SEM image revealed self-assembled layer by layer growth of NiCo{sub 2}O{sub 4}-RGO nanocomposite. • NiCo{sub 2}O{sub 4}-RGO nanocomposite exhibited synergetic effects on its electrochemical performance. -- Abstract: NiCo{sub 2}O{sub 4} nanoparticles dispersed on reduced graphene oxide (RGO) are prepared by simultaneously reducing graphene oxide (GO), nickel and cobalt nitrate via a hydrothermal method assisted by post annealing at low temperature. The method involves formation of hydroxides on GO using ammonia under hydrothermal conditions. Subsequent thermal treatment at 300 °C led to the conversion of hydroxides into single-phase NiCo{sub 2}O{sub 4} atop the RGO. The synthesized products are characterized through several techniques including X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The FE-SEM investigations reveal the growth of a layer by layer assembly of NiCo{sub 2}O{sub 4}–RGO (2:1) nanocomposite, where the NiCo{sub 2}O{sub 4} nanoparticles are tightly packed between the layers of RGO. Further, the catalytic properties of the NiCo{sub 2}O{sub 4}–RGO nanocomposite are investigated for the oxygen evolution reaction (OER) through cyclic voltammetry (CV) measurements. It is observed that the special structural features of the NiCo{sub 2}O{sub 4}–RGO (2:1) nanocomposite, including

  7. Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes

    Directory of Open Access Journals (Sweden)

    Tahar eGhnaya

    2015-03-01

    Full Text Available The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 µM Cd, 100 µM Ni and the combination of 50 µM Cd + 100 µM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants individually exposed to heavy metal application than in those subjected to the combined treatment Cd + Ni, suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However a minor relationship was observed between metal application and fumaric, malic and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species.

  8. Investigation of Ni@CoO core-shell nanoparticle films synthesized by sequential layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Spadaro, M.C., E-mail: mariachiara.spadaro@unimore.it [CNR-NANO, via G. Campi 213/a, 41125 Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, 41125 Modena (Italy); Luches, P. [Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, 41125 Modena (Italy); Benedetti, F.; Valeri, S. [CNR-NANO, via G. Campi 213/a, 41125 Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, 41125 Modena (Italy); Turchini, S. [CNR-ISM, Via Fosso del Cavaliere 100, 00133 Roma (Italy); Bertoni, G. [CNR-IMEM, Parco Area delle Scienze 37/a, 43124 Parma (Italy); Ferretti, A.M.; Capetti, E.; Ponti, A. [Laboratorio di Nanotecnologie, Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, via G. Fantoli 16/15, 20138 Milano (Italy); D’Addato, S. [CNR-NANO, via G. Campi 213/a, 41125 Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, 41125 Modena (Italy)

    2017-02-28

    Highlights: • We studied Ni/CoO core-shell nanoparticles (NP) obtained with a gas aggregation source. • The NP oxide shells were produced bye reactive deposition of Co in Oxygen atmosphere (p{sub O2} ≈ 10{sup −7} mbar). • XPS, SEM, STEM were used to obtain information on Ni chemical state and NP structure and morphology. • XMCD result showed evidence of remanent magnetization at room temperature. • We interpret XMCD results as due to stabilization induced by exchange bias due to AFM/FM coupling at the core/shell interface. - Abstract: Films of Ni@CoO core-shell nanoparticles (NP Ni core size d ≈ 11 nm) have been grown on Si/SiO{sub x} and lacey carbon supports, by a sequential layer deposition method: a first layer of CoO was evaporated on the substrate, followed by the deposition of a layer of pre-formed, mass-selected Ni NPs, and finally an overlayer of CoO was added. The Ni NPs were formed by a magnetron gas aggregation source, and mass selected with a quadrupole mass filter. The morphology of the films was investigated with Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. The Ni NP cores have a shape compatible with McKay icosahedron, caused by multitwinning occurring during their growth in the source, and the Ni NP layer shows the typical random paving growth mode. After the deposition of the CoO overlayer, CoO islands are observed, gradually extending and tending to merge with each other, with the formation of shells that enclose the Ni NP cores. In situ X-ray Photoelectron Spectroscopy showed that a few Ni atomic layers localized at the core-shell interface are oxidized, hinting at the possibility of creating an intermediate NiO shell between Ni and CoO, depending on the deposition conditions. Finally, X-ray Magnetic Circular Dichroism at the Ni L{sub 2,3} absorption edge showed the presence of magnetization at room temperature even at remanence, revealing the possibility of magnetic stabilization of the NP film.

  9. Rapid microwave-assisted synthesis of mesoporous NiMoO_4 nanorod/reduced graphene oxide composites for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Liu, Ting; Chai, Hui; Jia, Dianzeng; Su, Ying; Wang, Tao; Zhou, Wanyong

    2015-01-01

    Graphical abstract: Mesoporous NiMoO_4-rGO shows high specific capacitance of 1274 F/g at 1 A/g and ultrahigh energy density of 30.3 Wh/kg at a power density of 187 W/kg. - Abstract: Mesoporous NiMoO_4 nanorods grown on the surface of reduced graphene oxide composites (NiMoO_4-rGO) were synthesized via a simple, rapidly, and environment-friendly microwave-solvothermal method. The structure and morphology of the composites were characterized by X-ray diffraction, Raman spectra, scanning electron microscopy, and transmission electron microscopy. The NiMoO_4-rGO composite exhibited high performance as an electrode material for supercapacitors. At a current density of 1 A g"−"1, the specific capacitance reached 1274 F g"−"1, which is higher than that of pure NiMoO_4 (800 F g"−"1). NiMoO_4-rGO can retain about 81.1% of its initial capacitance after 1000 charge/discharge cycles. Remarkably, NiMoO_4-rGO composites can be applied in asymmetric supercapacitors with ultrahigh energy density of 30.3 Wh kg"−"1 at a power density of 187 W kg"−"1. The enhanced electrochemical performance of NiMoO_4-rGO is mainly ascribed to the mesoporous-NiMoO_4 nanorods with large specific surface area, as well as high coupling with conductive rGO.

  10. Carbon nanotube growth from catalytic nano-clusters formed by hot-ion-implantation into the SiO{sub 2}/Si interface

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Arima, Hiroki; Yokoyama, Ai; Saito, Yasunao; Nakata, Jyoji [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan)

    2012-07-01

    We have studied growth of chirality-controlled carbon nanotubes (CNTs) from hot-implantation-formed catalytic nano-clusters in a thermally grown SiO{sub 2}/Si substrate. This procedure has the advantage of high controllability of the diameter and the number of clusters by optimizing the conditions of the ion implantation. In the present study, Co{sup +} ions with ion dose of 8 Multiplication-Sign 10{sup 16} cm{sup -2} are implanted in the vicinity of the SiO{sub 2}/Si interface at 300 Degree-Sign C temperature. The implanted Co atoms located in the SiO{sub 2} layer has an amorphous-like structure with a cluster diameter of several nm. In contrast, implanted Co atoms in the Si substrate are found to take a cobalt silicide structure, confirmed by the high-resolution image of transmission electron microscope. CNTs are grown by microwave-plasma-enhanced chemical vapor deposition. We have confirmed a large amount of vertically-aligned multi-walled CNTs from the Co nano-clusters formed by the hot-ion-implantation near the SiO{sub 2}/Si interface.

  11. The genetics of Ménière’s disease

    Directory of Open Access Journals (Sweden)

    Chiarella G

    2015-01-01

    Full Text Available Giuseppe Chiarella,1 C Petrolo,1 E Cassandro2 1Department of Experimental and Clinical Medicine, Audiology and Phoniatrics Unit, Magna Graecia University of Catanzaro, Catanzaro, Italy; 2Department of Medicine and Surgery, University of Salerno, Salerno, Italy Abstract: Our understanding of the genetic basis of Ménière’s disease (MD is still limited. Although the familial clustering and the geographical and racial differences in incidence strongly suggest a certain role for genetic factors in the development of MD, no convincing evidence for an association with any gene exists, at present. In this review, starting from rational bases for a genetic approach to MD, we explored the numerous reports published in literature and summarize the recent advances in understanding of the genetic fundaments of the disease. Keywords: Mènière’s disease, gene, vertigo, etiology, pathogenesis

  12. Nutrient Shielding in Clusters of Cells

    Science.gov (United States)

    Lavrentovich, Maxim O.; Koschwanez, John H.; Nelson, David R.

    2014-01-01

    Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells’ spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness ℓ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter ν that characterizes the absorption strength of each cell. The parameter ν can vary over many orders of magnitude between different cell types, ranging from bacteria and yeast to human tissue. The thickness ℓ decreases with increasing ν, increasing cell volume fraction ϕ, and decreasing ambient nutrient concentration ψ∞. The theoretical results are compared with numerical simulations and experiments. In the latter studies, colonies of budding yeast, Saccharomyces cerevisiae, are grown on glucose media and imaged under a confocal microscope. We measure the growth inside the colonies via a fluorescent protein reporter and compare the experimental and theoretical results for the thickness ℓ. PMID:23848711

  13. Nickel group cluster anion reactions with carbon monoxide: Rate coefficients and chemisorption efficiency

    Science.gov (United States)

    Hintz, Paul A.; Ervin, Kent M.

    1994-04-01

    Reactions of Ni-n(n=3-10), Pd-n(n=3-8), and Pt-n(n=3-7) with CO are studied in a flow tube reactor. Bimolecular rate coefficients are measured for the association reaction of CO adsorbing on the cluster surface. The rate coefficients range from about 10% of the collision rate for the trimer anions to near the collision rate for clusters larger than four atoms. The maximum number of CO molecules that bind to each cluster is determined. Whereas the saturation limits for nickel are typical for an 18 electron transition metal, the limits for platinum are lower, reflecting the electron deficient structures observed in condensed phase chemistry. The CO saturated palladium clusters represent the first examples of saturated binary palladium carbonyl compounds. Comparisons are made to similar studies on metal cation and neutral clusters and also to surface scattering studies of nickel group metals.

  14. Kinetics of Ni:C Thin Film Composition Formation at Different Temperatures and Fluxes

    Directory of Open Access Journals (Sweden)

    Gediminas KAIRAITIS

    2013-09-01

    Full Text Available In this work analysis considering Ni:C thin films growth on thermaly oxidized Si substrate by proposed kinetic model is presented. Model is built considering experimental results where microstructure evolution as a function of the substrate temperature and metal content of Ni:C nanocomposite films grown by hyperthermal ion deposition is investigated. The proposed kinetic model is based on the rate equations and includes processes of adsorption, surface segregation, diffusion, chemical reactions of constituents. The experimental depth profile curves were fitted by using proposed model. The obtained results show a good agreement with experiment taking into account concentration dependent diffusion. It is shown by modeling that with the increase of substrate temperature the process of nickel surface segregation becomes most important. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5234

  15. Effect of chelating agents and metal ions on nickel bioavailability and chlorophyll fluorescence response in wheat- An approach for attenuation of Ni stress

    Directory of Open Access Journals (Sweden)

    Nilima Patnaik

    2012-08-01

    Full Text Available The objectives of the study are to analyze the physiological changes, biochemical alterations and attenuation of nickel toxicity effects in wheat seedlings under combined applications of Ni ions, metal chelators (EDTA/Citric Acid and metal ions (Zn2+ /Mg2+. Wheat (Triticum aestivum L cv UP262 seedlings were grown hydroponically using different concentrations of Ni up to 7 days along with chelators and metal ions for study. The seedling growth was maximum with NiCl2–Zn2+ (100μM and minimum with NiCl2–EDTA (100μM treatments. Total chlorophyll content was maximum in the seedlings treated with NiCl2-Zn2+ (100μM and minimum in NiCl2-EDTA (100μM treatments. NiCl2–EDTA (100μM showed less Fo and Fm values and therefore, a trend in the decrease in OJIP transient indicates the maximum alteration of photochemical activity of PS-II in presence of NiCl2–EDTA (100μM treatment. Similar observation was found by NiCl2 –EDTA (200μM treatment where Fo and Fm values were noted to decline. High nickel content in roots of the seedlings was noted as compared to shoots.

  16. Synthesis of NiO@MnO{sub 2} core/shell nanocomposites for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjiao; Huang, Ying, E-mail: chenjunjiao001@163.com; Li, Chao; Chen, Xuefang; Zhang, Xiang

    2016-01-01

    Graphical abstract: - Highlights: • MnO{sub 2} nanosheets were grown on the surface of porous NiO microtube. • The NiO@MnO{sub 2} nanocomposite exhibits excellent cycle performance. • The nanocomposite exhibits specific capacitance of 266.7 F g{sup −1} at 0.5 A g{sup −1}. - Abstract: In this work, NiO@MnO{sub 2} core/shell nanocomposites were fabricated by a two-step method. The morphology and structure of the nanocomposites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction analysis and thermal gravity analysis. In addition, the supercapacitive performances were examined by cyclic voltammogram (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS). The electrochemical results indicate that the composite exhibits a specific capacitance of 266.7 F g{sup −1} at 0.5 A g{sup −1} and excellent cycling stability (81.7% retention after 2000 cycles at 1 A g{sup −1}). Therefore, this wok offers meaningful reference for supercpacitor applications in the future.

  17. Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity.

    Science.gov (United States)

    Bhutiya, Priyank L; Mahajan, Mayur S; Abdul Rasheed, M; Pandey, Manoj; Zaheer Hasan, S; Misra, Nirendra

    2018-06-01

    Seaweed cellulose was isolated from green seaweed Ulva fasciata using a common bleaching agent. Sheet containing porous mesh was prepared from the extracted seaweed crystalline cellulose along with zinc oxide (ZnO) nanorod clusters grown over the sheet by single step hydrothermal method. Seaweed cellulose and zinc oxide nanorod clusters deposited seaweed cellulose sheet was characterized by FT-IR, XRD, TGA, and SEM-EDX. Morphology showed that the diameter of zinc oxide nanorods were around 70nm. Zinc oxide nanorod clusters deposited on seaweed cellulose sheet gave remarkable antibacterial activity towards gram-positive (Staphylococcus aureus, Bacillus ceresus, Streptococcus thermophilis) and gram-negative (Escherichia coli, Pseudomonas aeruginous) microbes. Such deposited sheet has potential applications in pharmaceutical, biomedical, food packaging, water treatment and biotechnological industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Direct characterization of phase transformations and morphologies in moving reaction zones in Al/Ni nanolaminates using dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.S., E-mail: judy.kim@materials.ox.ac.uk [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Chemical Engineering and Materials Science/Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616 (United States); LaGrange, T.; Reed, B.W. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Knepper, R.; Weihs, T.P. [Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Browning, N.D. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Chemical Engineering and Materials Science/Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Campbell, G.H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States)

    2011-05-15

    Highlights: > Fast phase transformations are examined in Al/Ni reactive nanolaminates. > Results visible only by dynamic transmission electron microscopy at ns resolution. > NiAl forms under 15 ns after reaction front in all three stoichiometries studied. > DTEM imaging reveals a transient cellular morphology in nonequiatomic films. - Abstract: Phase transformations and transient morphologies are examined as exothermic formation reactions self-propagate across Al/Ni nanolaminate films. The rapid evolution of these phases and sub-micrometer morphological features requires nanoscale temporal and spatial resolution that is not available with traditional in situ electron microscopy. This work uses dynamic transmission electron microscopy to identify intermetallic products and phase morphologies, as exothermic formation reactions self-propagate in nanolaminate films grown with 3:2, 2:3 and 1:1 Al/Ni atomic ratios. Single-shot diffraction patterns with 15 ns temporal resolution reveal that the NiAl intermetallic forms within {approx}15 ns of the reaction front's arrival in all three types of films and is the only intermetallic phase to form, as the reactions self-propagate and quench very rapidly. Time-resolved imaging reveals a transient cellular morphology in the Al-rich and Ni-rich foils, but not in the equiatomic films. The cellular features in the Al-rich and Ni-rich films are attributed to a cooling trajectory through a two-phase field of liquid + NiAl.

  19. Ni-Pt nanoparticles growing on metal organic frameworks (MIL-96) with enhanced catalytic activity for hydrogen generation from hydrazine at room temperature.

    Science.gov (United States)

    Wen, Lan; Du, Xiaoqiong; Su, Jun; Luo, Wei; Cai, Ping; Cheng, Gongzhen

    2015-04-07

    Well-dispersed bimetallic Ni-Pt nanoparticles (NPs) with different compositions have been successfully grown on the MIL-96 by a simple liquid impregnation method using NaBH4 as the reducing agent. Powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, N2 adsorption-desorption, and inductively coupled plasma-atomic emission spectroscopy measurements were employed to characterize the NiPt/MIL-96. Catalytic activity of NiPt/MIL-96 catalysts was tested in the hydrogen generation from the aqueous alkaline solution of hydrazine at room temperature. These catalysts are composition dependent on their catalytic activity, while Ni64Pt36/MIL-96 exhibits the highest catalytic activity among all the catalysts tested, with a turnover frequency value of 114.3 h(-1) and 100% hydrogen selectivity. This excellent catalytic performance might be due to the synergistic effect of the MIL-96 support and NiPt NPs, while NiPt NPs supported on other conventional supports, such as SiO2, carbon black, γ-Al2O3, poly(N-vinyl-2-pyrrolidone) (PVP), and the physical mixture of NiPt and MIL-96, all of them exhibit inferior catalytic activity compared to that of NiPt/MIL-96.

  20. Dynamic stabilities of icosahedral-like clusters and their ability to form quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaogang; Hamid, Ilyar; Duan, Haiming, E-mail: dhm@xju.edu.cn [College of Physics Science and Technology. Xinjiang University, Urumqi 830046 (China)

    2016-06-15

    The dynamic stabilities of the icosahedral-like clusters containing up to 2200 atoms are investigated for 15 metal elements. The clusters originate from five different initial structures (icosahedron, truncated decahedron, octahedron, closed-shell fragment of an HCP structure, and non-closed-shell fragment of an HCP structure). The obtained order of the dynamic stabilities of the icosahedral-like clusters can be assigned to three groups, from stronger to weaker, according to the size ranges involved: (Zr, Al, Ti) > (Cu, Fe, Co, Ni, Mg, Ag) > (Pb, Au, Pd, Pt, Rh, Ir), which correspond to the predicted formation ability of the quasicrystals. The differences of the sequences can be explained by analyzing the parameters of the Gupta-type many-body inter-atomic potentials.

  1. Synthesis and field emission properties of carbon nanotubes grown in ethanol flame based on a photoresist-assisted catalyst annealing process

    International Nuclear Information System (INIS)

    Yang Xiaoxia; Fang Guojia; Liu Nishuang; Wang Chong; Zheng Qiao; Zhou Hai; Zhao Dongshan; Long Hao; Liu Yuping; Zhao Xingzhong

    2009-01-01

    Carbon nanotubes (CNTs) have been grown directly on a Si substrate without a diffusion barrier in ethanol diffusion flame using Ni as the catalyst after a photoresist-assisted catalyst annealing process. The growth mechanism of as-synthesized CNTs is confirmed by scanning electron microscopy, high resolution transmission-electron microscopy and energy-dispersive spectroscopy. The photoresist is the key for the formation of active catalyst particles during annealing process, which then result in the growth of CNTs. The catalyst annealing temperature has been found to affect the morphologies and field electron emission properties of CNTs significantly. The field emission properties of as-grown CNTs are investigated with a diode structure and the obtained CNTs exhibit enhanced characteristics. This technique will be applicable to a low-cost fabrication process of electron-emitter arrays.

  2. Classical group theory adapted to the mechanism of Pt3Ni nanoparticle growth: the role of W(CO)6 as the "shape-controlling" agent.

    Science.gov (United States)

    Radtke, M; Ignaszak, A

    2016-01-07

    Classical group theory was applied to prove the Pt3Ni crystallographic transformation from Platonic cubic to Archimedean cuboctahedral structures and the formation of Pt3Ni polypods. The role of W(CO)6 as a shape-controlling agent is discussed with respect to the crystallographic features of the clusters and superstructures generated as control samples.

  3. Effect of Nano-Ni Catalyst on the Growth and Characterization of Diamond Films by HFCVD

    Directory of Open Access Journals (Sweden)

    Chien-Chung Teng

    2010-01-01

    Full Text Available Four different catalysts, nanodiamond seed, nano-Ni, diamond powder, and mixture of nano-Ni/diamond powder, were used to activate Si wafers for diamond film growth by hot-filament CVD (HFCVD. Diamond crystals were shown to grow directly on both large diamond powder and small nanodiamond seed, but a better crystallinity of diamond film was observed on the ultrasonicated nanodiamond seeded Si substrate. On the other hand, nano-Ni nanocatalysts seem to promote the formation of amorphous carbon but suppress transpolyacetylene (t-PA phases at the initial growth of diamond films. The subsequent nucleation and growth of diamond crystals on the amorphous carbon layer leads to generation of the spherical diamond particles and clusters prior to coalescence into continuous diamond films based on the CH3 addition mechanism as characterized by XRD, Raman, ATR/FT-IR, XPS, TEM, SEM, and AFM techniques. Moreover, a 36% reduction in surface roughness of diamond film assisted by nano-Ni catalyst is quite significant.

  4. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties

    Science.gov (United States)

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    Abstract A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV−visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties. PMID:27877868

  5. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates

    International Nuclear Information System (INIS)

    Vandamme, N; Janssens, E; Vanhoutte, F; Lievens, P; Haesendonck, C van

    2003-01-01

    We systematically studied the influence of the substrate on the shape, mobility, and stability of deposited gold clusters. The Au n clusters were produced in a laser vaporization source and deposited with low kinetic energy (∼0.4 eV/atom) on atomically flat substrates (graphite, mica, and gold and silver films on mica) under UHV conditions. Their size distribution is probed with time-of-flight mass spectrometry and ranges from dimers to several hundreds of atoms. Scanning probe microscopy is used to characterize the deposited clusters and the formation of islands by cluster aggregation. On all substrates, Au n islands can be clearly distinguished and the islands are flattened despite the small impact energy. The shape and size of the island configurations are strongly system dependent. Gold clusters deposited on Au(111) and Ag(111) films grown on mica do not aggregate, but deform due to strong cluster-substrate interactions. The clusters tend to grow epitaxially on these surfaces. On graphite and on mica, deposited clusters do diffuse and aggregate. On the graphite surface, large ramified islands are formed by juxtaposition of small islands and trapping of the clusters at the step edges. On the other hand, the diffusion of the clusters on mica results in a total coalescence of the Au n clusters into compact islands

  6. Electrical resistivity, magnetoresistance and magnetostriction of Ni81Fe19 monolithic films on SiO2

    International Nuclear Information System (INIS)

    Sahingoez, R.

    2004-01-01

    Ultra thin films of Ni 8 1Fe 1 9, 1Onm, 6nm, 5nm, 3nm and 2.5, 2nm thick have been grown on thermally oxidised Si. Pirst, the thickness dependence of electrical resistivity of Ni 8 1Fe 1 9 monolithic films was measured. It was found that the electrical resistivity was proportional to t - 4, where t indicates the thickness of the sample. Second, the magnetoresistance (MR), of the samples was plotted against applied DC magnetic field. The thickness dependence of MR was investigated. The next step was to investigate the effect of stress on MR. The aim of the final part was to show that MR values could be used to calculate the magnetostriction constant

  7. SrNi{sub 7.90(8)}In{sub 5.10(8)}. A new superstructure in the NaZn{sub 13} family

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Rolf-Dieter; Poettgen, Rainer [Inst. fuer Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Univ. Muenster (Germany); Muts, Ihor [Inst. fuer Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Univ. Muenster (Germany); Inorganic Chemistry Dept., Ivan Franko National Univ., Lviv (Ukraine); Zaremba, Vasyl [Inorganic Chemistry Dept., Ivan Franko National Univ., Lviv (Ukraine)

    2009-07-01

    SrNi{sub 7.90(8)}In{sub 5.10(8)} was synthesized by induction melting of the elements in a sealed tantalum tube in a water-cooled silica sample chamber. The structure was refined on the basis of single crystal X-ray diffractometer data: Cccm, a = 1615.2(4), b = 1822.3(4), c = 1238.5(4) pm, wR2 = 0.1481, 4144F{sup 2} values and 150 variables. The striking structural motifs of the SrNi{sub 7.90}In{sub 5.10} structure are one-dimensional [Ni{sub 7} ] cluster units (242-286 pm Ni-Ni) which are surrounded by indium atoms. The structural relationship to the other NaZn{sub 13} superstructures is discussed on the basis of a group-subgroup scheme. (orig.)

  8. Low-energy charge transfer excitations in NiO

    International Nuclear Information System (INIS)

    Sokolov, V I; Yermakov, A Ye; Uimin, M A; Gruzdev, N B; Pustovarov, V A; Churmanov, V N; Ivanov, V Yu; Sokolov, P S; Baranov, A N; Moskvin, A S

    2012-01-01

    Comparative analysis of photoluminescence (PL) and photoluminescence excitation (PLE) spectra of NiO poly- and nanocrystals in the spectral range 2-5.5 eV reveals two PLE bands peaked near 3.7 and 4.6 eV with a dramatic rise in the low-temperature PLE spectral weight of the 3.7 eV PLE band in the nanocrystalline NiO as compared with its polycrystalline counterpart. In frames of a cluster model approach we assign the 3.7 eV PLE band to the low-energy bulk-forbidden p-d (t 1g (π)-e g ) charge transfer (CT) transition which becomes the allowed one in the nanocrystalline state while the 4.6 eV PLE band is related to a bulk allowed d-d (e g -e g ) CT transition scarcely susceptible to the nanocrystallization. The PLE spectroscopy of the nanocrystalline materials appears to be a novel informative technique for inspection of different CT transitions.

  9. Degradación de recubrimientos ZrO2-CaO/NiAlMo por oxidación isoterma

    Directory of Open Access Journals (Sweden)

    Utrilla, V.

    2006-12-01

    Full Text Available This paper analyses the degradation of a ceramic top coating 70%ZrO2 – 30%CaO deposited onto a stainless steel AISI 304 by thermal spray, using Ni-6%Al-5%Mo as overlay coating. These thermal barrier coatings were heat treated for 48, 120 and 288 h at 800 ºC to evaluate the degradation of these materials by isothermal oxidation. The microstructure evolution during oxidation was analysed by environmental scanning electron microscopy, transmission electron microscopy, X ray microanalysis and X ray diffraction. A thermally grown oxide layer was observed between the overlay coating and the ceramic top coating after oxidation. This layer was formed by a mixed Al and Ni oxides.En este trabajo se estudia la degradación de un recubrimiento 70%ZrO2 – 30%CaO crecido por proyección térmica de oxiacetileno sobre un acero inoxidable austenítico AISI 304 y empleando una leación de Ni-6%Al-5%Mo como capa de anclaje. Los recubrimientos se trataron térmicamente en aire a 800 ºC durante 48, 120 y 288 horas para evaluar la degradación de estos materiales por oxidación isotérmica. La evolución de la microestructura de las barreras como consecuencia del proceso de oxidación se analizó mediante microscopía electrónica de barrido ambiental, microscopía electrónica de transmisión, microanálisis de rayos X (EDX y difracción de rayos X. Durante la oxidación de los recubrimientos creció una capa intermedia de óxidos (“thermally grown oxides”, TGO entre el anclaje metálico y el recubrimiento cerámico formada por una mezcla de óxidos de Al y Ni.

  10. Fe2Ni2N nanosheet array: an efficient non-noble-metal electrocatalyst for non-enzymatic glucose sensing

    Science.gov (United States)

    You, Chao; Dai, Rui; Cao, Xiaoqin; Ji, Yuyao; Qu, Fengli; Liu, Zhiang; Du, Gu; Asiri, Abdullah M.; Xiong, Xiaoli; Sun, Xuping; Huang, Ke

    2017-09-01

    It is very important to develop enhanced electrochemical sensing platforms for molecular detection and non-noble-metal nanoarray architecture, as electrochemical catalyst electrodes have attracted great attention due to their large specific surface area and easy accessibility to target molecules. In this paper, we demonstrate that an Fe2Ni2N nanosheet array grown on Ti mesh (Fe2Ni2N NS/TM) shows high electrocatalytic activity toward glucose electrooxidation in alkaline medium. As an electrochemical glucose sensor, such an Fe2Ni2N NS/TM catalyst electrode demonstrates superior sensing performance with a short response time of less than 5 s, a wide linear range of 0.05 μM-1.5 mM, a low detection limit of 0.038 μM (S/N = 3), a high sensitivity of 6250 μA mM-1 cm-2, as well as high selectivity and long-term stability.

  11. In situ synthesis of oriented NiS nanotube arrays on FTO as high-performance counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan, E-mail: liyan-nwnu@163.com [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China); Chang, Yin [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China); Zhao, Yun [Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Wang, Jian; Wang, Cheng-wei [Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China)

    2016-09-15

    Oriented nickel sulfide (NiS) nanotube arrays were successfully in-situ fabricated on conductive glass substrate and used directly as counter electrode for dye-sensitized solar cells without any post-processing. Compared with Pt counter electrode, for the beneficial effect of electronic transport along the axial direction through the arrays to the substrate, oriented NiS nanotube arrays exhibit both higher electrocatalytic activity for I{sub 3}{sup −} reduction and better electrochemical stability, resulting in a significantly improved power conversion efficiency of 9.8%. Such in-situ grown oriented sulfide semiconductor nanotube arrays is expected to lead a new class structure of composites for highly efficient cathode materials. - Highlights: • In-situ synthesis strategy was proposed to construct oriented NiS nanotube arrays. • Such oriented tube nanostructure benefits the electronic transport along the axial direction of the arrays. • As CE of DSSCs, NiS nanotube arrays exhibit both higher efficiency (9.8%) and electrochemical stability than Pt.

  12. High-performance hybrid (electrostatic double-layer and faradaic capacitor-based) polymer actuators incorporating nickel oxide and vapor-grown carbon nanofibers.

    Science.gov (United States)

    Terasawa, Naohiro; Asaka, Kinji

    2014-12-02

    The electrochemical and electromechanical properties of polymeric actuators prepared using nickel peroxide hydrate (NiO2·xH2O) or nickel peroxide anhydride (NiO2)/vapor-grown carbon nanofibers (VGCF)/ionic liquid (IL) electrodes were compared with actuators prepared using solely VGCFs or single-walled carbon nanotubes (SWCNTs) and an IL. The electrode in these actuator systems is equivalent to an electrochemical capacitor (EC) exhibiting both electrostatic double-layer capacitor (EDLC)- and faradaic capacitor (FC)-like behaviors. The capacitance of the metal oxide (NiO2·xH2O or NiO2)/VGCF/IL electrode is primarily attributable to the EDLC mechanism such that, at low frequencies, the strains exhibited by the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators primarily result from the FC mechanism. The VGCFs in the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators strengthen the EDLC mechanism and increase the electroconductivity of the devices. The mechanism underlying the functioning of the NiO2·xH2O/VGCF/IL actuator in which NiO2·xH2O/VGCF = 1.0 was found to be different from that of the devices produced using solely VGCFs or SWCNTs, which exhibited only the EDLC mechanism. In addition, it was found that both NiO2 and VGCFs are essential with regard to producing actuators that are capable of exhibiting strain levels greater than those of SWCNT-based polymer actuators and are thus suitable for practical applications. Furthermore, the frequency dependence of the displacement responses of the NiO2·xH2O/VGCF and NiO2/VGCF polymer actuators were successfully simulated using a double-layer charging kinetic model. This model, which accounted for the oxidization and reduction reactions of the metal oxide, can also be applied to SWCNT-based actuators. The results of electromechanical response simulations for the NiO2·xH2O/VGCF and NiO2/VGCF actuators predicted the strains at low frequencies as well as the time constants of the devices, confirming that the model is applicable

  13. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-01-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm 3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  14. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  15. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Science.gov (United States)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-02-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  16. Investigations on Cu-Ni and Cu-Al systems with secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Rodriguez-Murcia, H.; Beske, H.E.

    1976-04-01

    The ratio of the ionization coefficients of secondary atomic ions emitted from the two component systems Cu-Ni and Cu-Al was investigated as a function of the concentration of the two components. In the low concentration range the ratio of the ionization coefficients is a constant. An influence of the phase composition on the ratio of the ionization coefficients was found in the Cu-Al system. In addition, the cluster ion emission was investigated as a function of the concentration and the phase composition of the samples. The secondary atomic ion intensity was influenced by the presence of cluster ions. The importance of the cluster ions in quantitative analysis and phase determination by means of secondary ion mass spectrometry are discussed. (orig.) [de

  17. Magnetoresistance and magnetostriction of Ni81Fe19 and Co90Fe10 mono- and bilayer films

    International Nuclear Information System (INIS)

    Sahingoz, R.; Hollingworth, M.P.; Gibbs, M.R.J.; Murdoch, S.J.

    2005-01-01

    Monolayer and bilayer films of Ni 81 Fe 19 , Co 90 Fe 10 , Co 90 Fe 10 /Ni 81 Fe 19 , and Ni 81 Fe 19 /Co 90 Fe 10 have been grown on thermally oxidized Si. The magnetoresistance (MR) of the samples was measured as a function of applied DC magnetic field, using a four-point probe method. The magnetostriction constant, λ s , was derived from the change of anisotropy field as a function of strain. The dependence of the MR on different combinations of film layers was investigated. The magnetoresistance of the bilayers changed dramatically upon reversal of the layer order. The mono- and bilayer samples with the same material on top of the substrate showed similar MR loop shapes. However, the saturation fields of the bilayers were larger than those for the monolayers. The magnetostriction of all samples was negative. We discuss the consequences for the study and optimization of spin-valve devices

  18. Genomic and expression analysis of the vanG-like gene cluster of Clostridium difficile.

    Science.gov (United States)

    Peltier, Johann; Courtin, Pascal; El Meouche, Imane; Catel-Ferreira, Manuella; Chapot-Chartier, Marie-Pierre; Lemée, Ludovic; Pons, Jean-Louis

    2013-07-01

    Primary antibiotic treatment of Clostridium difficile intestinal diseases requires metronidazole or vancomycin therapy. A cluster of genes homologous to enterococcal glycopeptides resistance vanG genes was found in the genome of C. difficile 630, although this strain remains sensitive to vancomycin. This vanG-like gene cluster was found to consist of five ORFs: the regulatory region consisting of vanR and vanS and the effector region consisting of vanG, vanXY and vanT. We found that 57 out of 83 C. difficile strains, representative of the main lineages of the species, harbour this vanG-like cluster. The cluster is expressed as an operon and, when present, is found at the same genomic location in all strains. The vanG, vanXY and vanT homologues in C. difficile 630 are co-transcribed and expressed to a low level throughout the growth phases in the absence of vancomycin. Conversely, the expression of these genes is strongly induced in the presence of subinhibitory concentrations of vancomycin, indicating that the vanG-like operon is functional at the transcriptional level in C. difficile. Hydrophilic interaction liquid chromatography (HILIC-HPLC) and MS analysis of cytoplasmic peptidoglycan precursors of C. difficile 630 grown without vancomycin revealed the exclusive presence of a UDP-MurNAc-pentapeptide with an alanine at the C terminus. UDP-MurNAc-pentapeptide [d-Ala] was also the only peptidoglycan precursor detected in C. difficile grown in the presence of vancomycin, corroborating the lack of vancomycin resistance. Peptidoglycan structures of a vanG-like mutant strain and of a strain lacking the vanG-like cluster did not differ from the C. difficile 630 strain, indicating that the vanG-like cluster also has no impact on cell-wall composition.

  19. Crystal growth by Bridgman and Czochralski method of the ferromagnetic quantum critical material YbNi4P2

    Science.gov (United States)

    Kliemt, K.; Krellner, C.

    2016-09-01

    The tetragonal YbNi4P2 is one of the rare examples of compounds that allow the investigation of a ferromagnetic quantum critical point. We report in detail on two different methods which have been used to grow YbNi4P2 single crystals from a self-flux. The first, a modified Bridgman method, using a closed crucible system yields needle-shaped single crystals oriented along the [001]-direction. The second method, the Czochralski growth from a levitating melt, yields large single crystals which can be cut in any desired orientation. With this crucible-free method, samples without flux inclusions and a resistivity ratio at 1.8 K of RR1.8K = 17 have been grown.

  20. Clustering of near clusters versus cluster compactness

    International Nuclear Information System (INIS)

    Yu Gao; Yipeng Jing

    1989-01-01

    The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)

  1. Characterization of oxide scales grown on alloy 310S stainless steel after long term exposure to supercritical water at 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Yashar, E-mail: behnamia@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Mostafaei, Amir [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kohandehghan, Alireza [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Amirkhiz, Babak Shalchi [Canmet MATERIALS, Natural Resources Canada, Hamilton, Ontario L8P 0A5 (Canada); Serate, Daniel [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Zheng, Wenyue [Canmet MATERIALS, Natural Resources Canada, Hamilton, Ontario L8P 0A5 (Canada); Guzonas, David [Canadian Nuclear Laboratories, Chalk River Laboratories, Chalk River, Ontario K0J 1J0 (Canada); Chmielus, Markus [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Chen, Weixing, E-mail: Weixing@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Luo, Jing Li, E-mail: Jingli.luo@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada)

    2016-10-15

    The oxide scale grown of static capsules made of alloy 310S stainless steel was investigated by exposure to the supercritical water at 500 °C 25 MPa for various exposure times up to 20,000 h. Characterization techniques such as X-ray diffraction, scanning/transmission electron microscopy, energy dispersive spectroscopy, and fast Fourier transformation were employed on the oxide scales. The elemental and phase analyses indicated that long term exposure to the SCW resulted in the formation of scales identified as Fe{sub 3}O{sub 4} (outer layer), Fe-Cr spinel (inner layer), Cr{sub 2}O{sub 3} (transition layer) on the substrate, and Ni-enrichment (chrome depleted region) in the alloy 310S. It was found that the layer thickness and weight gain vs. exposure time followed parabolic law. The oxidation mechanism and scales grown on the alloy 310S stainless steel exposed to SCW are discussed. - Highlights: •Oxidation of alloy 310S stainless steel exposed to SCW (500 °C/25 MPa) •The layer thickness and weight gain vs. exposure time followed parabolic law. •Oxide layers including Fe{sub 3}O{sub 4} (outer), Fe-Cr spinel (inner) and Cr{sub 2}O{sub 3} (transition) •Ni element is segregated by the selective oxidation of Cr.

  2. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  3. Oxide-supported metal clusters: models for heterogeneous catalysts

    International Nuclear Information System (INIS)

    Santra, A K; Goodman, D W

    2003-01-01

    Understanding the size-dependent electronic, structural and chemical properties of metal clusters on oxide supports is an important aspect of heterogeneous catalysis. Recently model oxide-supported metal catalysts have been prepared by vapour deposition of catalytically relevant metals onto ultra-thin oxide films grown on a refractory metal substrate. Reactivity and spectroscopic/microscopic studies have shown that these ultra-thin oxide films are excellent models for the corresponding bulk oxides, yet are sufficiently electrically conductive for use with various modern surface probes including scanning tunnelling microscopy (STM). Measurements on metal clusters have revealed a metal to nonmetal transition as well as changes in the crystal and electronic structures (including lattice parameters, band width, band splitting and core-level binding energy shifts) as a function of cluster size. Size-dependent catalytic reactivity studies have been carried out for several important reactions, and time-dependent catalytic deactivation has been shown to arise from sintering of metal particles under elevated gas pressures and/or reactor temperatures. In situ STM methodologies have been developed to follow the growth and sintering kinetics on a cluster-by-cluster basis. Although several critical issues have been addressed by several groups worldwide, much more remains to be done. This article highlights some of these accomplishments and summarizes the challenges that lie ahead. (topical review)

  4. Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Intawongse, Marisa [Biomolecular and Biomedical Research Centre, School of Applied Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom); Dean, John R. [Biomolecular and Biomedical Research Centre, School of Applied Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom)], E-mail: john.dean@unn.ac.uk

    2008-03-15

    The oral bioaccessibility of metals in vegetable plants grown on contaminated soil was assessed. This was done using the physiologically-based extraction test (PBET) to simulate the human digestion of plant material. A range of vegetable plants, i.e. carrot, lettuce, radish and spinach, were grown on metal contaminated soil. After reaching maturity the plants were harvested and analysed for their total metal content (i.e. Cr, Cd, Cu, Fe, Mn, Mo, Ni, Pb and Zn) by inductively coupled plasma-mass spectrometry (ICP-MS). The plant samples were then subsequently extracted using an in vitro gastrointestinal approach or PBET to assess the likelihood of oral bioaccessibility if the material was consumed by humans. - Evaluation of a physiologically-based extraction test to assess the risk to humans of consuming contaminated vegetables.

  5. Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil

    International Nuclear Information System (INIS)

    Intawongse, Marisa; Dean, John R.

    2008-01-01

    The oral bioaccessibility of metals in vegetable plants grown on contaminated soil was assessed. This was done using the physiologically-based extraction test (PBET) to simulate the human digestion of plant material. A range of vegetable plants, i.e. carrot, lettuce, radish and spinach, were grown on metal contaminated soil. After reaching maturity the plants were harvested and analysed for their total metal content (i.e. Cr, Cd, Cu, Fe, Mn, Mo, Ni, Pb and Zn) by inductively coupled plasma-mass spectrometry (ICP-MS). The plant samples were then subsequently extracted using an in vitro gastrointestinal approach or PBET to assess the likelihood of oral bioaccessibility if the material was consumed by humans. - Evaluation of a physiologically-based extraction test to assess the risk to humans of consuming contaminated vegetables

  6. Chemical abundances of globular clusters in NGC 5128 (Centaurus A)

    Science.gov (United States)

    Hernandez, Svea; Larsen, Søren; Trager, Scott; Kaper, Lex; Groot, Paul

    2018-06-01

    We perform a detailed abundance analysis on integrated-light spectra of 20 globular clusters (GCs) in the early-type galaxy NGC 5128 (Centaurus A). The GCs were observed with X-Shooter on the Very Large Telescope (VLT). The cluster sample spans a metallicity range of -1.92 poor GCs in NGC 5128 is genuine, it could hint at a chemical enrichment history different than that experienced by the MW. We also measure Na abundances in 9 out of 20 GCs. We find evidence for intracluster abundance variations in six of these clusters where we see enhanced [Na/Fe] > +0.25 dex. We obtain the first abundance measurements of Cr, Mn, and Ni for a sample of the GC population in NGC 5128 and find consistency with the overall trends observed in the MW, with a slight enhancement (<0.1 dex) in the Fe-peak abundances measured in the NGC 5128.

  7. Variations in 137Cs activity concentrations in individual fruitbodies in clusters of Cantharellus tubaeformis

    International Nuclear Information System (INIS)

    Nikolova, I.; Johanson, K.J.

    1999-01-01

    Fruitbodies of Cantharellus tubaeformis grown in clusters were collected from a normal Swedish coniferous forest. In the laboratory, individual fruitbodies were transferred into plastic vials and the 137 Cs activity concentrations were determined and expressed as Bq kg -1 fresh weight. After drying at 55 o , the 137 CS levels were recalculated and expressed as Bq kg -1 dry weight. Large variations of 137 Cs activity concentrations between individual fruitbodies within the clusters were observed. In 1995, the range in the 137 CS levels of individual fruitbodies in one cluster were from 9,194 to 164,811 and in another cluster from 2,338 to 38,377 Bq kg -1 . The mean values for these two clusters were 90,294 and 13,556 Bq kg -1 respectively. In 1998, the mean value for eight clusters showed a range from 26,373 to 67,281 Bq kg -1 . The largest variations between individual fruitbodies within a cluster were from 11,875 to 107,160 Bq kg -1 . Refs. 10 (author)

  8. Exclusive study of Ni+Ni and Ni+Au central collisions: phase coexistence and spinodal decomposition

    International Nuclear Information System (INIS)

    Guiot, B.

    2002-12-01

    The INDRA multidetector allowed us to study the Ni+Ni collisions at 32A MeV and the Ni+Au collisions at 52,4 MeV. Central collisions leading to 'quasi-fused' systems were isolated using multidimensional analysis techniques: the Discriminant Analysis and the Principal Component Analysis. Comparison with a statistical model shows that the selected events are compatible with thermodynamical equilibrium. The average thermal excitation energy is 5A MeV for both systems. Calculations of heat capacities show that the deexcitation of the hot sources are akin to a liquid-gas phase transition of nuclear matter. Indeed heat capacities exhibit a negative branch as expected for a phase transition of a finite system. The dynamics of this phase transition has been investigated by applying the charge correlation method. An enhanced production of events with equal-sized fragments has been evidenced for Ni+Au at 52A MeV. No signal was found for Ni+Ni at 32A MeV. Finally this method was improved by taking into account the total charge conservation. The signal is seen more clearly for Ni+Au at 52A MeV, but is ambiguous for Ni+Ni at 32A MeV. The path followed in the state diagram, or the involved time scales, seem to be different for these systems. (authors)

  9. MINERALS, MICROELEMENTS AND POLYPHENOLS CONTENT IN THE SOYBEAN VARIETIES GROWN IN DIFFERENT LOCALITIES OF SLOVAKIA

    Directory of Open Access Journals (Sweden)

    Mária Timoracká

    2015-02-01

    Full Text Available The aim of this study was to evaluate the influence of the grown locality on minerals and risky metal intake from the soil and on polyphenols formation in the soybean seeds. The research was realised in five localities of Slovakia using the seven soybean varieties. From the point of the soil hygiene, all determined values of heavy metals content in soils were lower than given hygienic limits, with the exception of Cd. Minerals and heavy metals contents in the soybean samples show significant differences between cultivars and localities. The values show imbalance between the potassium contents and other minerals. The order of the elements levels was determined as following: Fe > Zn > Mn > Cu > Ni > Pb > Cr ≈ Co > Cd. The risky elements contents, with exception of Cd, Cu, Pb and Ni content (only in some localities, did not exceed a limit for legumes by Food Codex SR. The total polyphenols content ranged from 817.6 to 1281.0 μg eq. tannic acid/g and suggest the variety dependence, but the locality influence was not significantly confirmed.

  10. Oxidation behavior of a single-crystal Ni-base superalloy between 900 and 1000 {sup o}C in air

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T., E-mail: liuchunting76@yahoo.com.c [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China); Ma, J. [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China); Sun, X.F. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2010-02-18

    The oxidation behavior of a single-crystal Ni-base superalloy DD32 was studied in air at 900 and 1000 {sup o}C and analyzed by X-ray diffraction (XRD), scanning electron microscopy, combined with energy-dispersive X-ray spectroscopy (SEM/EDS). At 900 and 1000 {sup o}C, two oxidation steps appear in the oxidation kinetics. The first one is controlled by NiO growth and the second by Al{sub 2}O{sub 3} growth until a continuous Al{sub 2}O{sub 3} layer formed under the previously grown NiO layer after a critical time. The variations in the chemical composition due to segregations, which resulted from the solidification process, led to the formation of different kinds of oxide scale on the dendritic and interdendritic area during oxidation between 900 and 1000 {sup o}C. The scales formed between 900 and 1000 {sup o}C were complicated, and consisted of three layers: an outer columnar NiO layer with a small amount of CoO, an intermediate layer mainly composed of W{sub 20}O{sub 58}, CrTaO{sub 4}, a small amount of spinels NiCr{sub 2}O{sub 4}, NiAl{sub 2}O{sub 4} and CoAl{sub 2}O{sub 4}, an inner continuous layer of {alpha}-Al{sub 2}O{sub 3}.

  11. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  12. Variability of Mn, Fe, Ni, Cu and Co in manganese nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Jauhari, P.

    clays which contain higher Fe and Co. Clustering of analysed shows that Ni and Cu are geochemically associated with Mn, and Co with in both sediment types. However, the degree of correlation between all the elements is higher in the nodules from red clay...

  13. Tracing the Chemical Evolution of Metal-rich Galactic Bulge Globular Clusters

    Science.gov (United States)

    Munoz Gonzalez, Cesar; Saviane, Ivo; Geisler, Doug; Villanova, Sandro

    2018-01-01

    We present in this poster the metallicity characterization of the four metal rich Bulge Galactic Gobular Clusters, which have controversial metallicities. We analyzed our high-resolution spectra (using UVES-580nm and GIRAFFE-HR13 setups) for a large sample of RGB/AGB targets in each cluster in order to measure their metallicity and prove or discard the iron spread hypothesis. We have also characterized chemically stars with potentially different iron content by measuring light (O, Na, Mg, Al), alpha (Si, Ca, Ti), iron–peak (V, Cr, Ni, Mn) and s and r process (Y, Zr, Ba, Eu) elements. We have identified possible channels responsible for the chemical heterogeneity of the cluster populations, like AGB or massive fast-rotating stars contamination, or SN explosion. Also, we have analyzed the origin and evolution of these bulge GCs and their connection with the bulge itself.

  14. Characterization of 380nm UV-LEDs grown on free-standing GaN by atmospheric-pressure metal-organic chemical vapor deposition

    Science.gov (United States)

    Shieh, C. Y.; Li, Z. Y.; Kuo, H. C.; Chang, J. Y.; Chi, G. C.

    2014-03-01

    We reported the defects and optical characterizations of the ultraviolet light-emitting diodes grown on free-standing GaN substrate (FS-GaN) and sapphire. Cross-sectional transmission electron microscopy (TEM) images showed that the total defect densities of grown UV LEDs on FS-GaN and sapphire including edge, screw and mixed type were 3.6×106 cm-2 and 5.5×108 cm-2. When substrate of UV LEDs was changed from sapphire to FS-GaN, it can be clearly found that the crystallography of GaN epilayers was drastically different from that GaN epilayers on sapphire. Besides, the microstructures or indium clustering can be not observed at UV LEDs on FS-GaN from TEM measurement. The internal quantum efficiency of UVLEDs on FS-GaN and sapphire were 34.8 % and 39.4 % respectively, which attributed to indium clustering in multi-layers quantum wells (MQWs) of UV LEDs on sapphire. The relationship between indiumclustering and efficiency droop were investigated by temperature-dependent electroluminescence (TDEL) measurements.

  15. Plasticity of decagonal Al-Ni-Co single quasicrystals

    International Nuclear Information System (INIS)

    Schall, P.

    2002-03-01

    Decagonal quasicrystals exhibit quasiperiodic order along two spatial directions and periodic order along the third. Many physical properties of these materials show an anisotropic behaviour. Three different modifications of the decagonal phase in the Al-Ni-Co system were grown as single crystals using the Bridgman and flux growth techniques: quasicrystals of a nickel-rich composition, the so-called basic Ni phase, of a composition of about Al 70 Ni 15 Co 15 and of a cobalt-rich composition, so-called basic Co. Plastic deformation experiments at constant strain rate were carried out on these phases at temperatures of about 70 to 85% of the melting temperature. Stress-relaxation tests and temperature changes were performed during the deformation to study the strain-rate and temperature sensitivity of the flow stress, respectively. Distinct anisotropies are observed in the plastic behaviour, which differ fundamentally for the three modifications. Microstructural investigations of deformed samples by transmission electron microscopy show that plastic deformation is mediated by a dislocation mechanism. Depending on orientation a pure glide, a pure climb or a mixed glide and climb process is observed. Burgers vectors were determined by convergent beam electron diffraction in direction and length. Three different types of dislocations are observed, i.e. dislocations with a periodic, quasiperiodic and a mixed Burgers vector. The Burgers vectors were identified in a current structure model. The dislocations with the periodic and the mixed Burgers vector exhibit reactions which are of fundamental importance for the macroscopic deformation behaviour. In particular, they explain the different plastic behaviours of the three modifications. (orig.)

  16. Heavy cluster in cold nuclear rearrangements in fusion and fission

    International Nuclear Information System (INIS)

    Armbruster, P.

    1997-01-01

    The experimental evidence for the appearance of cluster aspects in the dynamics of large rearrangements processes, as fusion and fission, is presented. Clusters in the sense as used in the following are strongly bound, doubly magic neutron rich nuclei as 48 Ca 28 , 78 Ni 50 , 132 Sn 82 , and 208 Pb 126 , the spherical nuclei Z=114 - 126 and N=184, and nuclei with closed shells N=28, 50, 82, and 126, and Z=28, 50, and 82. As with increasing nucleon numbers, the absolute shell corrections to the binding energies increase, the strongest effects are to be observed for the higher shells. The 132 cluster manifests itself in low energy fission (Faissner, H. and Wildermuth, K. Nucl. Phys., 58 (1964) 177). The 208 Pb cluster gave the new radioactivity (Rose, M.J. and Jones G.A., Nature, 307 (1984) 245) and the first superheavy elements (SHE) (Armbruster P., Ann. Rev. Nucl. Part. Sci., 35 (1985) 135-94; Munzenberg, G. Rep. Progr. Phys., 51 (1988) 57). The paper discuss experiments concerning the stability of clusters to intrinsic excitation energy in fusion and fission (Armbruster, P. Lect. Notes Phys., 158 (1982) 1). and the manifestation of clusters in the fusion entrance channel (Armbruster, P., J. Phys. Soc. Jpn., 58 (1989) 232). The importance of compactness of the clustering system seems to be equally decisive in fission and fusion. Finally, it s covered the importance of clusters for the production of SHEs)

  17. Facile synthesis of MnO2/rGO/Ni composite foam with excellent pseudocapacitive behavior for supercapacitors

    International Nuclear Information System (INIS)

    Sun, Youyi; Zhang, Wenhui; Li, Diansen; Gao, Li; Hou, Chunlin; Zhang, Yinghe; Liu, Yaqing

    2015-01-01

    In this study, the MnO 2 /reduced graphene oxide/Ni (MnO 2 /rGO/Ni) composite foam as a binder-free supercapacitor electrode was prepared by a facile method. The rGO film has been firstly coated on the skeletons of Ni foam current collectors by chemical deposition method and that have been used as substrates for preparation of a novel three dimensional rGO/Ni composite foam-supported porous MnO 2 film by the hydrothermal method. The structure of MnO 2 /rGO/Ni composite foam was characterized by Raman spectra, IR spectra and Scanning electron microscopy. It indicated that the high-quality rGO film have been coated on skeletons of Ni foam current collectors and the MnO 2 film had a 3D network microstructure, consisting of interlaced nanosheets. Furthermore, the binder-free MnO 2 /rGO/Ni composite foam electrode has been characterized by the cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectra. It exhibited excellent pseudocapacitive behavior with specific capacitance of 479.0 F/g. The capacitance could retain about 83.5% after 1000 charge–discharge cycles. This simple synthetic approach provides a convenient route for the large scale preparation of 3D porous MnO 2 /rGO/Ni composite foam for lots of applications in future. - Graphical abstract: The MnO 2 /rGO/Ni composite foam was prepared by a facile method as shown in Fig. 1 and the unique structure of composite foam was suited to be a binder-free supercapacitor electrode due to low resistance, 3D network and porous structure. - Highlights: • The MnO 2 /rGO directly grown on Ni foam was firstly reported. • The MnO 2 /rGO/Ni composite foam was prepared by a facile method. • The MnO 2 /graphene/Ni composite foam as a binder-free supercapacitor electrode exhibited excellent pseudocapacitive behavior

  18. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    International Nuclear Information System (INIS)

    Chopra, Nitin; Claypoole, Leslie; Bachas, Leonidas G.

    2010-01-01

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  19. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Nitin [University of Alabama, Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT) (United States); Claypoole, Leslie [Fairmont State University (United States); Bachas, Leonidas G., E-mail: bachas@uky.ed [University of Kentucky, Department of Chemistry (United States)

    2010-10-15

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  20. Interaction between solute atoms and radiation defects in Fe-Ni-Si and Fe-Mn-Si alloys under irradiation with proton ions at low-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kenta, E-mail: murakami@tokai.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki, 319-1188 (Japan); Iwai, Takeo, E-mail: iwai@med.id.yamagata-u.ac.jp [Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata-shi, 990-9585 (Japan); Abe, Hiroaki [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki, 319-1188 (Japan); Sekimura, Naoto, E-mail: sekimura@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1, Tokyo, Hongo, Bunkyo, 113-8656 (Japan)

    2016-12-15

    Isochronal annealing followed by residual resistivity measurements at 12 K was performed in Fe-0.6Ni-0.6Si and Fe-1.5Mn-0.6Si alloys irradiated with 1 MeV proton ions below 70 K, and recovery stages were compared with those of Fe–0.6Ni and Fe–1.5Mn. The effects of silicon addition in the Fe-Ni alloy was observed as the appearance of a new recovery stage at 282–372 K, presumably corresponding to clustering of solute atoms in matrix, and as a change in mixed dumbbell migration at 122–142 K. Silicon addition mitigated the manganese effect in Fe–Mn alloy that is obstructing the recovery of radiation defects. Reduction of resistivity in Fe-Mn-Si alloy also suggested formation of small solute atom clusters.

  1. Effect of Sodium Sulfide on Ni-Containing Carbon Monoxide Dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Jian Feng; Paul A. Lindahl

    2004-07-28

    OAK-B135 The structure of the active-site C-cluster in CO dehydrogenase from Carboxythermus hydrogenoformans includes a {mu}{sup 2}-sulfide ion bridged to the Ni and unique Fe, while the same cluster in enzymes from Rhodospirillum rubrum (CODH{sub Rr}) and Moorella thermoacetica (CODH{sub Mt}) lack this ion. This difference was investigated by exploring the effects of sodium sulfide on activity and spectral properties. Sulfide partially inhibited the CO oxidation activity of CODH{sub Rr} and generated a lag prior to steady-state. CODH{sub Mt} was inhibited similarly but without a lag. Adding sulfide to CODH{sub Mt} in the C{sub red1} state caused the g{sub av} = 1.82 EPR signal to decline and new features to appear, including one with g = 1.95, 1.85 and (1.70 or 1.62). Removing sulfide caused the g{sub av} = 1.82 signal to reappear and activity to recover. Sulfide did not affect the g{sub av} = 1.86 signal from the C{sub red2} state. A model was developed in which sulfide binds reversibly to C{sub red1}, inhibiting catalysis. Reducing this adduct causes sulfide to dissociate, C{sub red2} to develop, and activity to recover. Using this model, apparent K{sub I} values are 40 {+-} 10 nM for CODH{sub Rr} and 60 {+-} 30 {micro}M for CODH{sub Mt}. Effects of sulfide are analogous to those of other anions, including the substrate hydroxyl group, suggesting that these ions also bridge the Ni and unique Fe. This proposed arrangement raises the possibility that CO binding labilizes the bridging hydroxyl and increases its nucleophilic tendency towards attacking Ni-bound carbonyl.

  2. Effect of impurities on the growth of {113} interstitial clusters in silicon under electron irradiation

    Science.gov (United States)

    Nakai, K.; Hamada, K.; Satoh, Y.; Yoshiie, T.

    2011-01-01

    The growth and shrinkage of interstitial clusters on {113} planes were investigated in electron irradiated Czochralski grown silicon (Cz-Si), floating-zone silicon (Fz-Si), and impurity-doped Fz-Si (HT-Fz-Si) using a high voltage electron microscope. In Fz-Si, {113} interstitial clusters were formed only near the beam incident surface after a long incubation period, and shrank on subsequent irradiation from the backside of the specimen. In Cz-Si and HT-Fz-Si, {113} interstitial clusters nucleated uniformly throughout the specimen without incubation, and began to shrink under prolonged irradiation at higher electron beam intensity. At lower beam intensity, however, the {113} interstitial cluster grew stably. These results demonstrate that the {113} interstitial cluster cannot grow without a continuous supply of impurities during electron irradiation. Detailed kinetics of {113} interstitial cluster growth and shrinkage in silicon, including the effects of impurities, are proposed. Then, experimental results are analyzed using rate equations based on these kinetics.

  3. Behaviour of human endothelial cells on surface modified NiTi alloy.

    Science.gov (United States)

    Plant, Stuart D; Grant, David M; Leach, Lopa

    2005-09-01

    Intravascular stents are being designed which utilise the shape memory properties of NiTi alloy. Despite the clinical advantages afforded by these stents their application has been limited by concerns about the large nickel ion content of the alloy. In this study, the surface chemistry of NiTi alloy was modified by mechanical polishing and oxidising heat treatments and subsequently characterised using X-ray photon spectroscopy (XPS). The effect of these surfaces on monolayer formation and barrier integrity of human umbilical vein endothelial cells (HUVEC) was then assessed by confocal imaging of the adherens junctional molecule VE-cadherin, perijunctional actin and permeability to 42kDa dextrans. Dichlorofluoroscein assays were used to measure oxidative stress in the cells. XPS analysis of NiTi revealed its surface to be dominated by TiO(2). However, where oxidation had occurred after mechanical polishing or post polishing heat treatments at 300 and 400 degrees C in air, a significant amount of metallic nickel or nickel oxide species (10.5 and 18.5 at%) remained on the surface. Exposure of HUVECs to these surfaces resulted in increased oxidative stress within the cells, loss of VE-cadherin and F-actin and significantly increased paracellular permeability. These pathological phenomena were not found in cells grown on NiTi which had undergone heat treatment at 600 degrees C. At this temperature thickening of the TiO(2) layer had occurred due to diffusion of titanium ions from the bulk of the alloy, displacing nickel ions to sub-surface areas. This resulted in a significant reduction in nickel ions detectable on the sample surface (4.8 at%). This study proposes that the integrity of human endothelial monolayers on NiTi is dependent upon the surface chemistry of the alloy and that this can be manipulated, using simple oxidising heat treatments.

  4. Characterization of Radiation-Induced Clustering using Atom Probe Tomography in Nuclear Structural Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyeong Geun; Lim, Sang Yeob; Chang, Kun Ok; Ha, Jin Hyung; Kwon, Jun Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The degradations include the change in mechanical properties, which are related to the microstructure evolution caused by irradiation. The most widely used tool for the imaging irradiated microstructure is transmission electron microscopy (TEM). The composition of irradiation defects can be analyzed using X-ray spectroscopy (EDS) equipped in the TEM. However, composition characterization of the nano-sized irradiation defects in the matrix is limited due to the beam broadening of TEM and the overlapping of the probed volume during EDS analysis. Recently, Atom probe tomography (APT) has been introduced to the characterization of irradiation defects. APT provides sub-nano scale position of atoms and the chemical composition of a selected volume. SS316 irradiated with Fe ions at above 300 .deg. C caused significant clustering and segregation of Si and Ni at defect sinks. The neutron irradiated low alloy steel showed similar clustering of Ni and Si. The approach of using APT was demonstrated to be well suited for discovering the structure of irradiation defects and performing quantitative analysis in nuclear materials irradiated at high temperature.

  5. Nanostructure evolution under irradiation of Fe(C)MnNi model alloys for reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Laboratoire commun EDF-CNRS Etude et Modélisation des Microstructures pour le Vieillissement des Matériaux (EM2VM) (France); Domain, C. [EDF R& D, Département Matériaux et Mécanique des Composants, Les Renardières, F-77250 Moret sur Loing (France); Laboratoire commun EDF-CNRS Etude et Modélisation des Microstructures pour le Vieillissement des Matériaux (EM2VM) (France); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2015-06-01

    Radiation-induced embrittlement of bainitic steels is one of the most important lifetime limiting factors of existing nuclear light water reactor pressure vessels. The primary mechanism of embrittlement is the obstruction of dislocation motion produced by nanometric defect structures that develop in the bulk of the material due to irradiation. The development of models that describe, based on physical mechanisms, the nanostructural changes in these types of materials due to neutron irradiation are expected to help to better understand which features are mainly responsible for embrittlement. The chemical elements that are thought to influence most the response under irradiation of low-Cu RPV steels, especially at high fluence, are Ni and Mn, hence there is an interest in modelling the nanostructure evolution in irradiated FeMnNi alloys. As a first step in this direction, we developed sets of parameters for object kinetic Monte Carlo (OKMC) simulations that allow this to be done, under simplifying assumptions, using a “grey alloy” approach that extends the already existing OKMC model for neutron irradiated Fe–C binary alloys [1]. Our model proved to be able to describe the trend in the buildup of irradiation defect populations at the operational temperature of LWR (∼300 °C), in terms of both density and size distribution of the defect cluster populations, in FeMnNi model alloys as compared to Fe–C. In particular, the reduction of the mobility of point-defect clusters as a consequence of the presence of solutes proves to be key to explain the experimentally observed disappearance of detectable point-defect clusters with increasing solute content.

  6. Liquid flow deposited spinel (Ni,Mn){sub 3}O{sub 4} thin films for microbolometer applications

    Energy Technology Data Exchange (ETDEWEB)

    Le, Duc Thang, E-mail: ducthang36@skku.edu [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jeon, Chang Jun; Lee, Kui Woong; Jeong, Young Hun; Yun, Ji Sun [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Yoon, Dae Ho, E-mail: dhyoon@skku.edu [School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Cho, Jeong Ho, E-mail: goedc@kicet.re.kr [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of)

    2015-03-01

    Highlights: • Highly quality (Ni,Mn){sub 3}O{sub 4} thin films were grown using liquid flow deposited (LFD) technique. • It is possible to deposit multi–component manganite–oxide thin films by LFD at low temperatures. • Nickel–manganite films showed a good negative temperature coefficient (NTC) characteristic. • Liquid flow deposited (Ni,Mn){sub 3}O{sub 4} thin films are very potential for microbolometer applications. - Abstract: A liquid flow deposition (LFD) technique was initially used for the fabrication of single-component Mn{sub 3}O{sub 4} thin films onto Si wafer substrates at a range of substrate temperatures of 30–80 °C, with the introduction of an oxidizing reagent (H{sub 2}O{sub 2}). As a result, solid thin films were well formed from an aqueous solution. An X-ray diffraction (XRD) analysis showed typical characteristics of hausmannite Mn{sub 3}O{sub 4} with a spinel tetragonal phase. Field-emission scanning electron microscopy (FE-SEM) observations revealed nano-sized grains arranged uniformly on a dense and smooth surface for all of the as-deposited films. On the other hand, the LFD method was then extended to prepare two-component nickel–manganite films according to the binary chemical composition of Ni{sub x}Mn{sub 3−x}O{sub 4} with x = 0.02–0.2. The as-grown nickel–manganite films showed a surface with a good quality with a spherical bead-like architecture when x ≤ 0.10, while a conversion from spherical grains into highly porous nanowalls in the microstructure was noted in films when x ≥ 0.12. These results signify that it is possible to fabricate various multi-component manganite-oxide thin films at a low temperature. In addition, the dependences of the room-temperature electrical resistivity (ρ) and the temperature coefficient of resistance (TCR) on the Ni substitution level (x) were investigated on films annealed at 400 °C.

  7. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Renqi

    2016-03-04

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  8. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Renqi; Xia, Chuan; Wei, Nini; Alshareef, Husam N.

    2016-01-01

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  9. Controlled p-type to n-type conductivity transformation in NiO thin films by ultraviolet-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pranav; Dutta, Titas; Mal, Siddhartha; Narayan, Jagdish [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606 (United States)

    2012-01-01

    We report the systematic changes in structural, electrical, and optical properties of NiO thin films on c-sapphire introduced by nanosecond ultraviolet excimer laser pulses. Epitaxial nature of as deposited NiO was determined by x-ray diffraction phi scans and transmission electron microscopy (TEM) and it was established that NiO film growth takes place with twin domains on sapphire where two types of domains have 60 deg. in-plane rotation with respect to each other about the [111] growth direction. We determined that at pulsed laser energy density of 0.275 J/cm{sup 2}, NiO films exhibited conversion from p-type semiconducting to n-type conductive behavior with three orders of magnitude decrease in resistivity, while maintaining its cubic crystal structure and good epitaxial relationship. Our TEM and electron-energy-loss spectroscopy studies conclusively ruled out the presence of any Ni clustering or precipitation due to the laser treatment. The laser-induced n-type carrier transport and conductivity enhancement were shown to be reversible through subsequent thermal annealing in oxygen. This change in conductivity behavior was correlated with the nonequilibrium concentration of laser induced Ni{sup 0}-like defect states.

  10. Structure alterations in Al-Y-based metallic glasses with La and Ni addition

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X. M.; Wang, X. D., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn; Yu, Q.; Cao, Q. P.; Jiang, J. Z., E-mail: wangxd@zju.edu.cn, E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D. X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Zhang, J.; Hu, T. D. [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Lai, L. H.; Xie, H. L.; Xiao, T. Q. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201203 (China)

    2016-03-21

    The atomic structures of Al{sub 89}Y{sub 11}, Al{sub 90}Y{sub 6.5}La{sub 3.5}, and Al{sub 82.8}Y{sub 6.07}Ni{sub 8}La{sub 3.13} metallic glasses have been studied by using high energy X-ray diffraction, X-ray absorption fine structure combined with the ab initio molecular dynamics and reverse Monte Carlo simulations. It is demonstrated that the partial replacement of Y atoms by La has limited improvement of the glass forming ability (GFA), although La atoms reduce the ordering around Y atoms and also the fractions of icosahedron-like polyhedra centered by Al atoms. In contrast, Ni atoms can significantly improve the GFA, which are inclined to locate in the shell of polyhedra centered by Al, Y, and La atoms, mainly forming Ni-centered icosahedron-like polyhedra to enhance the spatial connectivity between clusters and suppress the crystallization.

  11. Synthesis of Ni3Ta, Ni2Ta and NiTa by high-energy ball milling and subsequent heat treatment

    International Nuclear Information System (INIS)

    Benites, H.S.N.; Silva, B.P da; Ramos, A.S.; Silva, A.A.A.P.; Coelho, G.C.; Lima, B.B. de

    2014-01-01

    The tantalum has relevance for the development of multicomponent Ni-based superalloys which are hardened by solid solution and precipitation mechanisms. Master alloys are normally used in the production step in order to produce refractory metals and alloys. The present work reports on the synthesis of Ni_3Ta, Ni_2Ta and NiTa by high-energy ball milling and subsequent heat treatment. The elemental Ni-25Ta, Ni-33Ta and Ni-50Ta (at.-%) powder mixtures were ball milled under Ar atmosphere using stainless steel balls and vials, 300 rpm and a ball-to-powder weight ratio of 10:1. Following, the as-milled samples were uniaxially compacted and heat-treated at 1100 deg C for 4h under Ar atmosphere. The characterization of as-milled and heat-treated samples was conducted by means of X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. A large amount of Ni_3Ta, Ni_2Ta and NiTa was formed in the mechanically alloyed heat-treated Ni-25Ta, Ni-33Ta and Ni-50Ta alloys. (author)

  12. Development of a pH sensor using nanoporous nanostructures of NiO.

    Science.gov (United States)

    Ibupoto, Z H; Khun, K; Willander, M

    2014-09-01

    Glass is the conventional material used in pH electrodes to monitor pH in various applications. However, the glass-based pH electrode has some limitations for particular applications. The glass sensor is limited in the use of in vivo biomedical, clinical or food applications because of the brittleness of glass, its large size, the difficulty in measuring small volumes and the absence of deformation (inflexibility). Nanostructure-based pH sensors are very sensitive, reliable, fast and applicable towards in vivo measurements. In this study, nanoporous NiO nanostructures are synthesized on a gold-coated glass substrate by a hydrothermal route using poly(vinyl alcohol) (PVA) as a stabilizer. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used for the morphological and crystalline studies. The grown NiO nanostructures are uniform and dense, and they possess good crystallinity. A pH sensor based on these NiO nanostructures was developed by testing the different pH values from 2-12 of phosphate buffered saline solution. The proposed pH sensor showed robust sensitivity of -43.74 ± 0.80 mV/pH and a quick response time of less than 10 s. Moreover, the repeatability, reproducibility and stability of the presented pH sensor were also studied.

  13. Growth of Ge films by cluster beam deposition

    CERN Document Server

    Xu, J L; Feng, J Y

    2002-01-01

    Ge epitaxial layers with reasonable quality were grown on the Si(1 1 1) substrates by cluster beam deposition (CBD) process. The growth temperature plays a dominant role in the epitaxial growth of Ge films. The substrate temperature for epitaxial growth is about 500 deg. C, which is lower than the reported critical temperature of Ge epitaxial growth by MBE and CVD. A stress induced phase transition of Ge lattice from cubic to tetragonal is also observed in the CBD process, and the mechanism is discussed.

  14. Effect of liming on nickel bioavailability and toxicity to oat and soybean grown in field soils containing aged emissions from a nickel refinery.

    Science.gov (United States)

    Cioccio, Stephen; Gopalapillai, Yamini; Dan, Tereza; Hale, Beverley

    2017-04-01

    Remediation of soils elevated in trace metals so that the soils may provide ecosystems services is typically achieved through pH adjustment or addition of sorbents. The present study aimed to generate higher-tier in situ toxicity data for elevated nickel (Ni) in soils with and without lime addition and to explore the effect of liming on soil chemistry and bioavailability of Ni to plants. A multiyear study of agronomic yield of field-grown oat and soybean occurred in 3 adjacent fields that had received air emissions from a Ni refinery for 66 yr. The soil Ni concentration in the plots ranged between 1300 mg/kg and 4900 mg/kg, and each field was amended with either 50 Mg/ha, 10 Mg/ha, or 0 Mg/ha (or tonnes/ha) of crushed dolomitic limestone. As expected, liming raised the pH of the soils and subsequently reduced the plant availability of Ni. Toxicity thresholds (effective concentrations causing 50% reduction in growth) for limed soils supported the hypothesis that liming reduces toxicity. Relationships were found between relative yield and soil cation exchange capacity and between relative yield and soil pH, corroborating findings of the European Union Risk Assessments and the Metals in Asia studies, respectively. Higher tier ecotoxicity data such as these are a valuable contribution to risk assessment for Ni in soils. Environ Toxicol Chem 2017;36:1110-1119. © 2016 SETAC. © 2016 SETAC.

  15. On the nature of Ni···Ni interaction in a model dimeric Ni complex.

    Science.gov (United States)

    Kamiński, Radosław; Herbaczyńska, Beata; Srebro, Monika; Pietrzykowski, Antoni; Michalak, Artur; Jerzykiewicz, Lucjan B; Woźniak, Krzysztof

    2011-06-07

    A new dinuclear complex (NiC(5)H(4)SiMe(2)CHCH(2))(2) (2) was prepared by reacting nickelocene derivative [(C(5)H(4)SiMe(2)CH=CH(2))(2)Ni] (1) with methyllithium (MeLi). Good quality crystals were subjected to a high-resolution X-ray measurement. Subsequent multipole refinement yielded accurate description of electron density distribution. Detailed inspection of experimental electron density in Ni···Ni contact revealed that the nickel atoms are bonded and significant deformation of the metal valence shell is related to different populations of the d-orbitals. The existence of the Ni···Ni bond path explains the lack of unpaired electrons in the complex due to a possible exchange channel.

  16. Magnetic phase transition in 2 nm NixCu1-x (0 ≤ x ≤ 1) clusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2014-01-01

    NixCu1-x (0 ≤ x ≤ 1) clusters with a diameter of 2 nm (459 atoms) are modeled by a combination of basin hopping global sampling and reoptimization within spin-polarized density functional theory. The favorable structures for different Ni/Cu ratios

  17. Gd-Ni-Si system

    International Nuclear Information System (INIS)

    Bodak, O.I.; Shvets, A.F.

    1983-01-01

    By X-ray phase analysis method isothermal cross section of phase diagram of the Gd-Ni-Si system at 870 K is studied. The existence of nine previously known compounds (GdNisub(6.72)Sisub(6.28), GdNi 10 Si 2 , GdNi 5 Si 3 , GdNi 4 Si, GdNi 2 Si 2 , GdNiSi 3 , GdNiSi 2 , Gd 3 Ni 6 Si 2 and GdNiSi) is confirmed and three new compounds (GdNisub(0.2)Sisub(1.8), Gdsub(2)Nisub(1-0.8)Sisub(1-1.2), Gd 5 NiSi 4 ) are found. On the base of Gd 2 Si 3 compound up to 0.15 at. Ni fractions, an interstitial solid solution is formed up to 0.25 at Ni fractions dissolution continues of substitution type. The Gd-Ni-Si system is similar to the Y-Ni-Si system

  18. Enhancement of room temperature ferromagnetic behavior of rf sputtered Ni-CeO_2 thin films

    International Nuclear Information System (INIS)

    Murugan, R.; Vijayaprasath, G.; Mahalingam, T.; Ravi, G.

    2016-01-01

    Highlights: • Ni-CeO_2 thin films deposited by using rf Magnetron sputtering with different concentrations of Ni. • Deposited thin films have single crystalline and uniform surface morphology. • Photoluminescence and micro-Raman spectra were interpreted for Ni-CeO_2 thin films. • XPS spectra confirmed Ni ions were present in the doped CeO_2 thin films. • Ni ions induced ferromagnetic behavior of Ni-CeO_2 films were confirmed through VSM. - Abstract: Ni-doped CeO_2 thin films were prepared under Ar"+ atmosphere on glass substrates using rf magnetron sputtering. To assess the properties of the prepared thin films, the influence of various amounts of Ni dopant on structural, morphological, optical, vibrational, compositional and magnetic properties of the CeO_2 films were studied by using X-Ray diffraction (XRD), atomic force microscope (AFM), photoluminescence (PL), micro-Raman, X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). XRD patterns for all the samples revealed the expected CeO_2 cubic fluorite-type structure and Ni ions were uniformly distributed in the samples. AFM images of the prepared samples indicate high dense, columnar structure with uniform distribution of CeO_2. Room-temperature photoluminescence (PL) and micro-Raman spectroscopic studies revealed an increase of oxygen vacancies with higher concentration of Ni in CeO_2. XPS results confirm the presence of Ni_2_p, O_1_s and Ce and depict that cerium is present as both Ce"4"+ and Ce"3"+ oxidation states in Ce_1_−_xNi_xO_2 (x = 15%) thin film. Field dependent magnetization measurements revealed a paramagnetic behavior for pure CeO_2, while a ferromagnetic behavior appeared when Ni is doped in CeO_2 films. Doping dependent magnetization measurements suggest that the observed ferromagnetism is due to the presence of metallic Ni clusters with nanometric size and broad size distribution.

  19. Studying the Effect of the Concentration of PTFE Nanoparticles on the Tribological Behavior of Ni-P-PTFE Composite Coatings

    Directory of Open Access Journals (Sweden)

    Hamid Rahmati

    2015-10-01

    Full Text Available In the past 30 years, electroless nickel (EN plating has grown to such proportions that these coatings and their applications are now found underground, in outer space, and in a myriad of areas in between. Moreover, in order to further improve the mechanical and tribological properties of the nickel-phosphorous (Ni-P coatings, Ni-P/PTFE composite coatings can be obtained, which provides even greater friction behavior and lubricity than the one naturally occurring in the nickel-phosphorous alloy deposit. In this paper, The Ni-P-PTFE coating was deposited on mild carbon steel surface via electroless deposition process. The friction behavior and wear mechanisms of Ni-P-PTFE nanocomposite coating were studied at different concentrations of PTFE. Frictional behavior was examined using a pin on disk wear test method. Surface morphology and worn surface was evaluated using field emission scanning electron microscopy (FESEM and energy dispersive spectroscopy (EDS analysis. The results showed that the incorporation of PTFE nanoparticles can reduce the wear rate of Ni-P coating from 33.07×10-6 mm3/Nm to 12.46×10-6 mm3/Nm for the Ni-P PTFE containing 10 g/l PTFE and decrease the friction coefficient from 0.64 to 0.2. Thus the tribological behavior of Ni-P coating is much improved in the presence of PTFE nanoparticles and 10 g/l is the optimized concentration of PTFE in the electroless bath.

  20. Formation of nano-sized pinholes array in thin Ni film on MgO(100) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lin Chuan; Naramoto, Hiroshi; Xu Yonghua; Kitazawa, Sin-iti; Narumi, Kazumasa; Sakai, Seiji

    2003-10-22

    We have grown thin Ni films with various thicknesses on polished MgO(100) single crystal substrates in an e-gun evaporation system. The morphology of the as-deposited films was characterized with atomic force microscopy. Pinholes with average diameter of 5-10 nm are found in the film with thickness from 1 to 15 nm, and pinholes array was observed in the film 10 nm thick. The origin of such structure formation is discussed in terms of the elastic strain energy.

  1. Search for positron localization near transition-metal solutes of negative effective charge in Ni and Cu

    International Nuclear Information System (INIS)

    Hunter, D.M.; Grynszpan, R.I.; Arrott, A.S.

    1993-01-01

    Results of an early (1973) angular correlation (ACAR) study of dilute (0.5 at.%) Cu based alloys by a Japanese group were interpreted in terms of an attraction of e + by transition metal solutes of effective negative charge. Doppler Broadening (DB) measurements reveal no such an effect for Cu(Mn) and Cu(Ni) solid solutions as well as for Ni alloys with 3d, 4d and 5d transition metal solutes (0.1 to 1.5 at.%) i.e. no evidence of e + localization near these impurities is seen. Our results strongly suggest that the ACAR results are due to the metallurgical state of the samples. In contrast, significant DB lineshape parameter variations, observed for our Ni(Zr) alloys, are attributed to positron trapping in and near Ni 5 Zr precipitates. Our DB results for a series of Ni(Au) alloys are understood in terms of a combination of the effect of an overall lattice expansion and a positron preference for clusters of Au atoms. The above comparison between DB and ACAR results is supported by our 'spin polarized' DB results for a (001) Ni single crystal which resemble those obtained by other groups using a 'spin polarized' 2D-ACAR technique. (orig.)

  2. Electronic structure of Ni/sub 3/Al and Ni/sub 3/Ga alloys

    CERN Document Server

    Pong, W F; Chang, Y K; Tsai, M H; Hsieh, H H; Pieh, J Y; Tseng, P K; Lee, J F; Hsu, L S

    1999-01-01

    This work investigates the charge transfer and Al(Ga) p-Ni d hybridization effects in the intermetallic Ni/sub 3/Al(Ni/sub 3/Ga) alloy using the NiL/sub 3.2/- and K-edge and Al(Ga)K X-ray absorption near edge structure (XANES) measurements. We find that the intensity of white-line features at the NiL/sub 3.2/-edge in the Ni/sub 3/Al(Ni /sub 3/Ga) alloy decreased in comparison with that of pure Ni, which can be attributed to the enhancement of Ni3d states filling and the depletion of the density of Ni 3d unoccupied states in the Ni/sub 3 /Al(Ni/sub 3/Ga) alloy. Two clear features are also observed in the Ni/sub 3/Al(Ni/sub 3/Ga) XANES spectrum at the Al(Ga) K-edge, which can be assigned to the Al(Ga) unoccupied 3p (4p) states and their hybridized states with the Ni 3d/4sp states above the Fermi level in Ni/sub 3/Al(Ni/sub 3/Ga). The threshold at Al K-edge XANES for Ni/sub 3/Al clearly shifts towards higher photon energies relative to that of pure Al, indicating that Al loses charges upon forming Ni/sub 3 /Al. ...

  3. Ni-NiO core-shell inverse opal electrodes for supercapacitors.

    Science.gov (United States)

    Kim, Jae-Hun; Kang, Soon Hyung; Zhu, Kai; Kim, Jin Young; Neale, Nathan R; Frank, Arthur J

    2011-05-14

    A general template-assisted electrochemical approach was used to synthesize three-dimensional ordered Ni core-NiO shell inverse opals (IOs) as electrodes for supercapacitors. The Ni-NiO IO electrodes displayed pseudo-capacitor behavior, good rate capability and cycling performance. © The Royal Society of Chemistry 2011

  4. Metal interrelationships in plant nutrition. I. Effects of some metal toxicities on sugar beet, tomato, oat, potato, and Marrowstem kale grown in sand culture

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, E J

    1953-02-01

    Sugar beet, tomato, potato, oat, and kale were grown in sand cultures with additions of several heavy metals including Cr, Mn, Co, Ni, Cu, Zn, Pb, Cd, V, Mo, in equivalent concentrations. In sugar beet Cu/sup + +/, Co/sup + +/, Cd/sup + +/ were usually highly active in causing chlorosis mainly suggestive of iron deficiency. The effect of Cr depended on valency and was greater as CrO/sub 4//sup - -/, Zn/sup + +/, VO/sub 3//sup - -/, Cr/sup + + +/, Mn/sup + +/, and Pb/sup + +/ were less active in order. The visual responses to Co/sup + +/ and Ni/sup + +/ varied greatly with the crop tested. Cu/sup + +/, however, always induced typical iron deficiency. Crop susceptibility also varied greatly. For example, Cu/sup + +/ readily caused chlorosis in beet and also in tomato, and potato, but not in oat and kale. Ni/sup + +/ induced symptoms resembling manganese deficiency in potato and tomato and unusual oblique white and green banding leaves of oat. Zn/sup + +/ induced apparent manganese deficiency in sugar beet and Co/sup + +/ toxicity in tomato initially resembled manganese deficiency. Ni/sup + +/ and Co/sup + +/ were the most toxic of the metals tested.

  5. Electron correlation effects in the half-metallic NiMnSb within a cluster-perturbation approach with ab-initio parameters

    Directory of Open Access Journals (Sweden)

    H. Allmaier

    2008-06-01

    Full Text Available  Using a combination of electronic-structure and many-body calculations, we investigate correlations effects in the halfmetallic ferromagnet NiMnSb. A realistic many-body Hamiltonian, containing only Mn-d orbitals shows the importance of non-quasiparticle states just above the Fermi level. Our results suggest that for a better description of low energy states around Fermi level, Ni-d orbitals should be explicitly included.

  6. Electrochemical reduction approach-based 3D graphene/Ni(OH)2 electrode for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Yan, Huijun; Bai, Jianwei; Wang, Bin; Yu, Lei; Zhao, Lin; Wang, Jun; Liu, Qi; Liu, Jingyuan; Li, Zhanshuang

    2015-01-01

    Highlights: • 3D graphene foam is synthesized by a simple electrochemical reduction method. • The 3D graphene/Ni(OH) 2 composite is used as a monolithic free-standing electrode material. • The 3D conductive graphene network improves the contact between electrode and electrolyte. • Compositing graphene with Ni(OH) 2 sheets take full advantage of the synergistic effects. • Results show that the as-synthesized products have good electrochemical property. - Abstract: Using a simple electrochemical reduction approach, we have produced three-dimensional (3D) graphene foam having high conductivity and well-defined macroporous structure. Through a hydrothermal process, Ni(OH) 2 sheets are grown in-situ onto the graphene surface. This monolithic 3D graphene/Ni(OH) 2 composite is used as the free-standing electrode for supercapacitor application; it shows a high specific capacitance of 183.1 F g −1 (based on the total mass of the electrode), along with excellent rate capability and cycle performance. The asymmetric supercapacitor based on the 3D graphene/Ni(OH) 2 as a positive electrode and active carbon (AC) as a negative electrode is also assembled and it exhibits a specific capacitance of 148.3 F g −1 at 0.56 A g −1 and a high energy density of 52.7 W h kg −1 at a power density of 444.4 W kg −1 . Moreover, 3D graphene/Ni(OH) 2 //AC has a good cycle stability (87.9% capacitance retention after 1000 cycles), making it promising as one of the most attractive candidates for electrochemical energy storage. This excellent electrochemical performance results from the multiplexed 3D graphene network facilitating electron transport; the interlaced Ni(OH) 2 sheets shorten ion diffusion paths and facilitate the rapid migration of electrolyte ions

  7. An Ultrastable and High-Performance Flexible Fiber-Shaped Ni-Zn Battery based on a Ni-NiO Heterostructured Nanosheet Cathode.

    Science.gov (United States)

    Zeng, Yinxiang; Meng, Yue; Lai, Zhengzhe; Zhang, Xiyue; Yu, Minghao; Fang, Pingping; Wu, Mingmei; Tong, Yexiang; Lu, Xihong

    2017-11-01

    Currently, the main bottleneck for the widespread application of Ni-Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni-based cathode and dendrite formation of the Zn anode during the charging-discharging processes. Herein, a highly rechargeable, flexible, fiber-shaped Ni-Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni-NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni-NiO heterojunction nanosheet cathode, the as-fabricated fiber-shaped Ni-NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni-NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g -1 ) electrolytes. Moreover, a peak energy density of 6.6 µWh cm -2 , together with a remarkable power density of 20.2 mW cm -2 , is achieved by the flexible quasi-solid-state fiber-shaped Ni-NiO//Zn battery, outperforming most reported fiber-shaped energy-storage devices. Such a novel concept of a fiber-shaped Ni-Zn battery with impressive stability will greatly enrich the flexible energy-storage technologies for future portable/wearable electronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electronic Structure and Band Alignment at the NiO and SrTiO 3 p–n Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kelvin H. L. [Department of Materials Science & amp, Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.; Wu, Rui [Department of Materials Science & amp, Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.; Tang, Fengzai [Department of Materials Science & amp, Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.; Li, Weiwei [Department of Materials Science & amp, Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.; Oropeza, Freddy E. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.; Qiao, Liang [School of Materials, The University of Manchester, Manchester M13 9PL, U.K.; Lazarov, Vlado K. [Department of Physics, University of York, Heslington, York YO10 5DD, U.K.; Du, Yingge [Physical Sciences Division, Physical & amp, Computational; Payne, David J. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.; MacManus-Driscoll, Judith L. [Department of Materials Science & amp, Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.; Blamire, Mark G. [Department of Materials Science & amp, Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.

    2017-07-25

    Understanding the energetics at the interface including the alignment of valence and conduction bands, built-in potentials, and ionic and electronic reconstructions, is an important challenge in designing oxide interfaces that have controllable multi-functionalities for novel (opto-)electronic devices. In this work, we report detailed investigations on the hetero-interface of wide bandgap p-type NiO and n-type SrTiO3 (STO). We show that despite a large lattice mismatch (~7%) and dissimilar crystal structure, high-quality NiO and Li doped NiO (LNO) thin films can be epitaxially grown on STO(001) substrates through a domain matching epitaxy (DME) mechanism. X-ray photoelectron spectroscopy (XPS) studies indicate that NiO/STO heterojunctions form a type II “staggered” band alignment. In addition, a large built-in potential of up to 0.97 eV was observed at the interface of LNO and Nb doped STO (NbSTO). The LNO/NbSTO p-n heterojunctions exhibit a large rectification ratio of 2×103, but also a large ideality factor of 4.3. The NiO/STO p-n heterojunctions have important implication for applications in photocatalysis and photodetector as the interface provides favourable energetics for facile separation and transport of photogenerated electrons and holes.

  9. Facile synthesis of MnO{sub 2}/rGO/Ni composite foam with excellent pseudocapacitive behavior for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Youyi; Zhang, Wenhui [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); Li, Diansen [Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Gao, Li; Hou, Chunlin [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); Zhang, Yinghe [International Center for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Liu, Yaqing, E-mail: lyqzgz2010@163.com [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China)

    2015-11-15

    In this study, the MnO{sub 2}/reduced graphene oxide/Ni (MnO{sub 2}/rGO/Ni) composite foam as a binder-free supercapacitor electrode was prepared by a facile method. The rGO film has been firstly coated on the skeletons of Ni foam current collectors by chemical deposition method and that have been used as substrates for preparation of a novel three dimensional rGO/Ni composite foam-supported porous MnO{sub 2} film by the hydrothermal method. The structure of MnO{sub 2}/rGO/Ni composite foam was characterized by Raman spectra, IR spectra and Scanning electron microscopy. It indicated that the high-quality rGO film have been coated on skeletons of Ni foam current collectors and the MnO{sub 2} film had a 3D network microstructure, consisting of interlaced nanosheets. Furthermore, the binder-free MnO{sub 2}/rGO/Ni composite foam electrode has been characterized by the cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectra. It exhibited excellent pseudocapacitive behavior with specific capacitance of 479.0 F/g. The capacitance could retain about 83.5% after 1000 charge–discharge cycles. This simple synthetic approach provides a convenient route for the large scale preparation of 3D porous MnO{sub 2}/rGO/Ni composite foam for lots of applications in future. - Graphical abstract: The MnO{sub 2}/rGO/Ni composite foam was prepared by a facile method as shown in Fig. 1 and the unique structure of composite foam was suited to be a binder-free supercapacitor electrode due to low resistance, 3D network and porous structure. - Highlights: • The MnO{sub 2}/rGO directly grown on Ni foam was firstly reported. • The MnO{sub 2}/rGO/Ni composite foam was prepared by a facile method. • The MnO{sub 2}/graphene/Ni composite foam as a binder-free supercapacitor electrode exhibited excellent pseudocapacitive behavior.

  10. Polarized neutron reflectivity studies of magnetic oxidic Fe3O4/NiO and Fe3O4/CoO multilayers

    NARCIS (Netherlands)

    Ball, A.R.; Fredrikze, H.; Lind, D.M.; Wolf, R.M.; Bloemen, P.J.H.; Rekveldt, M.Th.; Zaag, van der P.J.

    1996-01-01

    The magnetic properties of [1 0 0] oriented Fe3O4/NiO and Fe3O4/CoO multilayers, MBE-grown on MgO(0 0 1) substrates, have been studied by polarized neutron reflectometry. In both samples, the Fe3O4 layer exhibits a depth-dependent magnetic profile characterized by a reduction in the magnetization

  11. Cluster decay channel in 238U + 40Ar (243 MeV)

    International Nuclear Information System (INIS)

    Pyatkov, Yu.V.; Penionzhkevich, Yu.Eh.; Osetrov, O.I.

    1999-01-01

    The reaction 238 U + 40 Ar (E lab = 243 MeV) was studied. For the first time a pronounced fine structure (FS) in the form of distinct peaks has been observed in the mass yields of the fragments of the 278 110 nuclear system decay at the initial excitation of about 60 MeV. The FS peaks are located in the vicinity of the mass numbers A ∼ 70, 100, 130, which are specific for magic nuclei (clusters) of Ni, Ge, Zr, Sn, Sr. The FS peaks contain only low-energy events linked with the very elongated prescission configurations of the system. Some events are observed which can be treated as an indication of ternary fission via such configurations with the appearance of two equal clusters. Hence presumably the collinear cluster tripartition channel is realized observed earlier in the spontaneous fission of 248 Cm and 252 Cf nuclei

  12. Switching properties of SrRuO3/Pb(Zr0.4Ti0.6)O3/SrRuO3 capacitor grown on Cu-coated Si substrate measured at various temperatures

    Science.gov (United States)

    Chen, J. H.; Liu, B. T.; Li, C. R.; Li, X. H.; Dai, X. H.; Guo, J. X.; Zhou, Y.; Wang, Y. L.; Zhao, Q. X.; Ma, L. X.

    2014-09-01

    SrRuO3(SRO)/Ni-Al/Cu/Ni-Al/SiO2/Si heterostructures annealed at various temperatures are found to remain intact after 750 \\circ\\text{C} annealing. Moreover, a SRO/Pb(Zr0.4Ti0.6)O3 (PZT)/SRO capacitor is grown on a Ni-Al/Cu/Ni-Al/SiO2/Si heterostructure, which is tested up to 100 \\circ\\text{C} to investigate the reliability of the memory capacitor. It is found that besides the good fatigue resistance and retention characteristic, the capacitor, measured at 5 V and room temperature, possesses a large remnant polarization of 25.0 μ \\text{C/cm}2 and a small coercive voltage of 0.83 V, respectively. Its dominant leakage current behavior satisfies the space-charge-limited conduction at various temperatures. Very clear interfaces can be observed from the cross-sectional images of transmission electron microscopy, indicating that the Ni-Al film can be used as a diffusion barrier layer for copper metallization as well as a conducting barrier layer between copper and oxide layer.

  13. Thermal stability and electrical characteristics of NiSi films with electroplated Ni(W) alloy

    International Nuclear Information System (INIS)

    Xin Yuhang; Hu Anmin; Li Ming; Mao Dali

    2011-01-01

    In this study, an electroplating method to deposited Ni, crystalline NiW(c-NiW), amorphous NiW (a-NiW) films on P-type Si(1 0 0) were used to form Ni-silicide (NiSi) films. After annealed at various temperatures, sheet resistance of Ni/Cu, c-NiW/Cu and a-NiW/Cu was measured to observe the performance of those diffusion barrier layers. With W added in the barrier layer, the barrier performance was improved. The results of XRD and resistance measurement of the stacked Si/Ni(W)/Cu films reveal that Cu atom could diffuse through Ni barrier layer at 450 deg. C, could diffuse through c-NiW at 550 deg. C, but could hardly diffuse through a-NiW barrier layer. c-NiW layer has a better barrier performance than Ni layer, meanwhile the resistance is lower than a-NiW layer.

  14. Tuning the magnetic properties of deposited transition metal clusters by decoration

    Energy Technology Data Exchange (ETDEWEB)

    Minar, Jan; Bornemann, S.; Ebert, H. [Dept. Chemie, LMU, Butenandtstr. 5-13, 81377 Muenchen (Germany); Staunton, J.B. [Department of Physics, University of Warwick (United Kingdom); Rusponi, S.; Brunne, H. [EPF Lausanne (Switzerland)

    2008-07-01

    Using the fully relativistic version of the KKR-method for electronic structure calculations within local spin density functional theory (LSDA) the magnetic properties of Fe, Co and Ni clusters deposited on the Pt(111) surface have been investigated. Of central interest are the role of spin-orbit coupling as it influences the spontaneous formation and orientation of magnetic moments and gives rise amongst others to the occurrence of orbital magnetic moments, the magnetic anisotropy energy (MAE) and magnetic circular dichroism in X-ray absorption (XMCD). Our systematic investigations of different clusters and nanostructures aim to reveal the mutual relationship among their spin-orbit induced properties. In addition they show how their various magnetic properties depend on the structural properties and chemical composition of the studied system. For large two-dimensional clusters we focussed especially on the dependency of the MAE on decoration with another transition metal. Our results are in qualitative agreement with recent experimental findings. We resolved the MAE contributions for inequivalent cluster atoms and will discuss the effect of the induced MAE within the Pt substrate.

  15. First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    International Nuclear Information System (INIS)

    Yun-Jiang, Wang; Chong-Yu, Wang

    2009-01-01

    A model system consisting of Ni[001](100)/Ni 3 Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni 3 Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni 3 Al multilayer can be well predicted by the Voigt–Reuss–Hill rule of mixtures. (classical areas of phenomenology)

  16. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gagorowska, B; Dus-Sitek, M [Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland)

    2007-08-15

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d{sub Cu} = 2 nm) and the thickness of Ni layer - variable (1 nm {<=} d{sub Ni} {<=} 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent.

  17. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Gagorowska, B; Dus-Sitek, M

    2007-01-01

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d Cu = 2 nm) and the thickness of Ni layer - variable (1 nm ≤ d Ni ≤ 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent

  18. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis.

    Science.gov (United States)

    Senger, Moritz; Stripp, Sven T; Soboh, Basem

    2017-07-14

    Metalloenzymes catalyze complex and essential processes, such as photosynthesis, respiration, and nitrogen fixation. For example, bacteria and archaea use [NiFe]-hydrogenases to catalyze the uptake and release of molecular hydrogen (H 2 ). [NiFe]-hydrogenases are redox enzymes composed of a large subunit that harbors a NiFe(CN) 2 CO metallo-center and a small subunit with three iron-sulfur clusters. The large subunit is synthesized with a C-terminal extension, cleaved off by a specific endopeptidase during maturation. The exact role of the C-terminal extension has remained elusive; however, cleavage takes place exclusively after assembly of the [NiFe]-cofactor and before large and small subunits form the catalytically active heterodimer. To unravel the functional role of the C-terminal extension, we used an enzymatic in vitro maturation assay that allows synthesizing functional [NiFe]-hydrogenase-2 of Escherichia coli from purified components. The maturation process included formation and insertion of the NiFe(CN) 2 CO cofactor into the large subunit, endoproteolytic cleavage of the C-terminal extension, and dimerization with the small subunit. Biochemical and spectroscopic analysis indicated that the C-terminal extension of the large subunit is essential for recognition by the maturation machinery. Only upon completion of cofactor insertion was removal of the C-terminal extension observed. Our results indicate that endoproteolytic cleavage is a central checkpoint in the maturation process. Here, cleavage temporally orchestrates cofactor insertion and protein assembly and ensures that only cofactor-containing protein can continue along the assembly line toward functional [NiFe]-hydrogenase. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Study of dipole interaction in micron-width NiFe/Cu/NiFe/NiO wire using exchange anisotropy

    International Nuclear Information System (INIS)

    Kimura, Takashi; Itagaki, Yoshio; Wakaya, Fujio; Gamo, Kenji

    2001-01-01

    The dipole interaction between a NiFe layer pinned by a NiO and a free NiFe layer in a micron-wide NiFe/Cu/NiFe/NiO wire was studied by changing the direction of the exchange bias from the NiO layer. The effect of the dipole interaction when the exchange bias was perpendicular to the wire axis was larger than that when the exchange bias was parallel to the wire axis, and was consistently explained by the stray field caused by the magnetic charges of the pinned layer. It was demonstrated that this method, using exchange anisotropy, is useful for investigating the dipole interaction between ferromagnetic materials separated by a nonmagnetic material in small-scale magnetic multilayers. [copyright] 2001 American Institute of Physics

  20. Mapping New Mobility business, innovation, and employment opportunities in Michigan : developing a data-driven graphical platform for assessing and advancing industry cluster development and entrepreneurship opportunities in urban regions : USDOT Region V

    Science.gov (United States)

    2016-12-15

    Across regional economic development leaders and policy makers, the concept of clustering has grown in importance as a framework for structuring economic growth and resurgence (Muro & Katz, 2010). Cluster identification is most often treated as a com...

  1. Raman spectroscopy of few-layer graphene prepared by C2–C6 cluster ion implantation

    International Nuclear Information System (INIS)

    Wang, Z.S.; Zhang, R.; Zhang, Z.D.; Huang, Z.H.; Liu, C.S.; Fu, D.J.; Liu, J.R.

    2013-01-01

    Few-layer graphene has been prepared on 300 nm-thick Ni films by C 2 –C 6 cluster ion implantation at 20 keV/cluster. Raman spectroscopy reveals significant influence of the number of atoms in the cluster, the implantation dose, and thermal treatment on the structure of the graphene layers. In particular, the graphene samples exhibit a sharp G peak at 1584 cm −1 and 2D peaks at 2711–2717 cm −1 . The I G /I 2D ratios higher than 1.70 and I G /I D ratio as high as 1.95 confirm that graphene sheets with low density of defects have been synthesized with much improved quality by ion implantation with larger clusters of C 4 –C 6

  2. Atomistic calculations of hydrogen interactions with Ni3Al grain boundaries and Ni/Ni3Al interfaces

    International Nuclear Information System (INIS)

    Baskes, M.I.; Angelo, J.E.; Moody, N.R.

    1995-01-01

    Embedded Atom Method (EAM) potentials have been developed for the Ni/Al/H system. The potentials have been fit to numerous properties of this system. For example, these potentials represent the structural and elastic properties of bulk Ni, Al, Ni 3 Al, and NiAl quite well. In addition the potentials describe the solution and migration behavior of hydrogen in both nickel and aluminum. A number of calculations using these potentials have been performed. It is found that hydrogen strongly prefers sites in Ni 3 Al that are surrounded by 6 Ni atoms. Calculations of the trapping of hydrogen to a number of grain boundaries in Ni 3 Al have been performed as a function of hydrogen chemical potential at room temperature. The failure of these bicrystals under tensile stress has been examined and will be compared to the failure of pure Ni 3 Al boundaries. Boundaries containing a preponderance of nickel are severely weakened by hydrogen. In order to investigate the potential embrittlement of γ/γ' alloys, trapping of hydrogen to a spherical Ni 3 Al precipate in nickel as a function of chemical potential at room temperature has been calculated. It appears that the boundary is not a strong trap for hydrogen, hence embrittlement in these alloys is not primarily due to interactions of hydrogen with the γ/γ interface

  3. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua; Wu, Xiaozhi; Wang, Rui; Liu, Qing; Gan, Liyong

    2014-01-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua

    2014-12-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  5. Simulation of the microstructural evolution under irradiation of dilute Fe-CuNiMnSi alloys by atomic kinetic monte Carlo model based on ab initio data

    International Nuclear Information System (INIS)

    Vincent, E.; Domain, C.; Vincent, E.; Becquart, C.S.

    2008-01-01

    Full text of publication follows. The embrittlement and the hardening of pressure vessel steels under radiation has been correlated with the presence solutes such as Cu, Ni, Mn and Si. Indeed it has been observed that under irradiation, these solutes tend to gather to form more or less dilute clusters. The interactions of these solutes with radiation induced point defects thus need to be characterised properly in order to understand the elementary mechanisms behind the formation of these clusters. Ab initio calculations based on the density functional theory have been performed to determine the interactions of point defects (vacancies as well as interstitials) with solute atoms in dilute FeX alloys (X Cu, Mn, Ni or Si) in order to build a database used to parameterize an atomic kinetic Monte Carlo model. The model has been applied to simulate thermal ageing as well as irradiation conditions in dilute Fe-CuNiMnSi alloys. Results obtained with this model will be presented. (authors)

  6. Carbon-cluster mass calibration at SHIPTRAP

    International Nuclear Information System (INIS)

    Chaudhuri, Ankur

    2007-01-01

    A carbon-cluster ion source has been installed and tested at SHIPTRAP, the Penning-trap mass spectrometer for mass measurements of heavy elements at GSI/Darmstadt, Germany. A precision mass determination is carried out by measuring the ion cyclotron frequency ω c =qB=m, where q/m is the charge-to-mass ratio of the ion and B is the magnetic field. The mass of the ion of interest is obtained from the comparison of its cyclotron frequency ω c with that of a well-known reference ion. Carbon clusters are the mass reference of choice since the unified atomic mass unit is defined as 1/12 of the mass of the 12 C atom. Thus the masses of carbon clusters 12 C n , n=1,2,3,.. are multiples of the unified atomic mass unit. Carbon-cluster ions 12 C n + , 5≤n≤23, were produced by laser-induced desorption and ionization from a carbon sample. Carbon clusters of various sizes ( 12 C 7 + , 12 C 9 + , 12 C 10 + , 12 C 11 + , 12 C 12 + , 12 C 15 + , 12 C 18 + , 12 C 19 + , 12 C 20 + ) were used for an investigation of the accuracy of SHIPTRAP covering a mass range from 84 u to 240 u. To this end the clusters were used both as ions of interest and reference ions. Hence the true values of the frequency ratios are exactly known. The mass-dependent uncertainty was found to be negligible for the case of (m-m ref ) -8 was revealed. In addition, carbon clusters were employed for the first time as reference ions in an on-line studies of short-lived nuclei. Absolute mass measurements of the radionuclides 144 Dy, 146 Dy and 147 Ho were performed using 12 C 11 + as reference ion. The results agree with measurements during the same run using 85 Rb + as reference ion. The investigated radionuclides were produced in the fusion-evaporation reaction 92 Mo( 58 Ni,xpyn) at SHIP (Separator for Heavy Ion reaction Products) at GSI. Among the measured nuclei 147 Ho has the lowest half life (5.8 s). A relative mass uncertainty of 5 x 10 -8 was obtained from the mass measurements using carbon clusters

  7. Enhanced piezoelectric output of NiO/nanoporous GaN by suppression of internal carrier screening

    Science.gov (United States)

    Waseem, Aadil; Jeong, Dae Kyung; Johar, Muhammad Ali; Kang, Jin-Ho; Ha, Jun-Seok; Key Lee, June; Ryu, Sang-Wan

    2018-06-01

    The efficiency of piezoelectric nanogenerators (PNGs) significantly depends on the free carrier concentration of semiconductors. In the presence of a mechanical stress, piezoelectric charges are generated at both ends of the PNG, which are rapidly screened by the free carriers. The screening effect rapidly decreases the piezoelectric output within fractions of a second. In this study, the piezoelectric outputs of bulk- and nanoporous GaN-based heterojunction PNGs are compared. GaN thin films were epitaxially grown on sapphire substrates using metal organic chemical vapor deposition. Nanoporous GaN was fabricated using electrochemical etching, depleted of free carriers owing to the surface Fermi-level pinning. A highly resistive NiO thin film was deposited on bulk- and nanoporous GaN using radio frequency magnetron sputter. The NiO/nanoporous GaN PNG (NPNG) under a periodic compressive stress of 4 MPa exhibited an output voltage and current of 0.32 V and 1.48 μA cm‑2, respectively. The output voltage and current of the NiO/thin film-GaN PNG (TPNG) were three and five times smaller than those of the NPNG, respectively. Therefore, the high-resistivity of NiO and nanoporous GaN depleted by the Fermi-level pinning are advantageous and provide a better piezoelectric performance of the NPNG, compared with that of the TPNG.

  8. Relation between shape of Ni-particles and Ni migration in Ni-YSZ electrodes – a hypothesis

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hauch, Anne; Sun, Xiufu

    2016-01-01

    This is an attempt to explain a phenomenon of total depletion of Ni next to the electrolyte in Ni-YSZ cermet electrodes in solid oxide electrolysis cells during electrolysis at high current density/overpotential. Intuitively, we would think that Ni would always migrate down the steam partial...

  9. Strain-dependence of the structure and ferroic properties of epitaxial Ni1−xTi1−yO3 thin films grown on sapphire substrates

    International Nuclear Information System (INIS)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Stephens, Sean A.; Manandhar, Sandeep; Shutthanandan, Vaithiyalingam; Colby, Robert J.; Hu, Dehong; Shelton, William A.; Chambers, Scott A.

    2015-01-01

    Polarization-induced weak ferromagnetism has been predicted a few years back in compounds MTiO 3 (M = Fe, Mn, Ni) (Fennie, 2008). We set out to stabilize this metastable, distorted perovskite structure by growing NiTiO 3 epitaxially on sapphire Al 2 O 3 (001) substrate, and to control the polar and magnetic properties via strain. Epitaxial Ni 1−x Ti 1−y O 3 films of different Ni/Ti ratios and thicknesses were deposited on Al 2 O 3 substrates by pulsed laser deposition at different temperatures, and characterized using several techniques. The effect of film thickness, deposition temperature, and film stoichiometry on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction, electron microscopy, and x-ray absorption spectroscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the Néel transition and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO 3 thin films by film stoichiometry and thickness. - Highlights: • NiTiO 3 epitaxial thin films with LiNbO 3 -type structure by pulsed laser deposition. • Strain varied by film thickness, stoichiometry, and synthesis temperature. • Systematic study of the effect of strain on film structure and physical properties. • Manipulation of ferroic properties by strain confirmed

  10. Magnetoresistance of nanogranular Ni/NiO controlled by exchange anisotropy

    International Nuclear Information System (INIS)

    Del Bianco, L.; Spizzo, F.; Tamisari, M.; Allia, P.

    2013-01-01

    A link between exchange anisotropy and magnetoresistance has been found to occur in a Ni/NiO sample consisting of Ni nanocrystallites (mean size ∼13 nm, Ni content ∼33 vol%) dispersed in a NiO matrix. This material shows metallic-type electric conduction and isotropic spin-dependent magnetoresistance as well as exchange bias effect. The latter is the outcome of an exchange anisotropy arising from the contact interaction between the Ni phase and the NiO matrix. Combined analysis of magnetization M(H) and magnetoresistance MR(H) loops measured in the 5–250 K temperature range after zero-field-cooling (ZFC) and after field-cooling (FC) from 300 K reveals that the magnetoresistance is influenced by exchange anisotropy, which is triggered by the FC process and can be modified in strength by varying the temperature. Compared to the ZFC case, the exchange anisotropy produces a horizontal shift of the FC MR(H) loop along with a reduction of the MR response associated to the reorientation of the Ni moments. A strict connection between magnetoresistance and remanent magnetization of FC loops on one side and the exchange field on the other, ruled by exchange anisotropy, is indicated. - Highlights: • Nanogranular Ni/NiO with giant magnetoresistance (MR) and exchange bias effect. • Exchange anisotropy produces a shift of the field-cooled MR(H) loop and reduces MR. • MR, remanence of field-cooled loops and exchange field are three correlated quantities. • It is possible to control MR of nanogranular systems through the exchange anisotropy

  11. Niños y niñas como cuidadores familiares

    OpenAIRE

    María Rosa Estupiñán Aponte

    2015-01-01

    En el contexto familiar, el cuidado de otra persona por parte de niños y niñas constituye un terreno inexplorado tanto en su significado como en las implicaciones que podrían darse en el proceso. Aunque históricamente se ha asignado el cuidado familiar a las mujeres generando condiciones de inequidad, incrementada con los cambios sociales de los últimos tiempos, es necesario reconocer que en muchos hogares niños y niñas se han visto obligados a desempeñar esta labor sin la preparación ni las ...

  12. Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors

    Science.gov (United States)

    Deng, Fangze; Yu, Lin; Cheng, Gao; Lin, Ting; Sun, Ming; Ye, Fei; Li, Yongfeng

    2014-04-01

    Two-dimensional ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper (CFP) are synthesized through a facile solvothermal method combined with a post thermal treatment. The well interconnected ultrathin NiCo2O4 nanosheets directly grown on the carbon nanofibers could allow for easy diffusion of the electrolyte, shorten the transport path of ion and electron and accommodate the strain during cycling. As a result, superior pseudocapacitive performance is achieved with large specific capacitance of 999 F g-1 at a high current density of 20 A g-1. The capacitance loss is 15.6% after 3000 cycles at a current density of 10 A g-1, displaying good cycle ability and high rate capability.

  13. Facile Synthesis of Cu2O/RGO/Ni(OH)2 Nanocomposite and its Double Synergistic Effect on Supercapacitor Performance

    International Nuclear Information System (INIS)

    Wang, Kun; Zhao, Chongjun; Min, Shudi; Qian, Xiuzhen

    2015-01-01

    ABSTRACT: A nanocomposite for supercapacitor electrode materials was designed and developed by integrating partially disabled Cu 2 O (low specific capacity, but high cycling ability) and Ni(OH) 2 (low cyclability and high specific capacity) in the presence of reduced graphene oxide (RGO) nanosheets. Nanocomposite of Cu 2 O/RGO/Ni(OH) 2 was directly grown on nickel foam (NF) through a facile one-pot hydrothermal process without any other reductant or oxidant, in which nickel foam acted as both a reductant of GO and Ni source, and a substrate for nanocomposite. The resultant Cu 2 O/RGO/Ni(OH) 2 nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectrometer (XPS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The electrochemical performance of the as-synthesized Cu 2 O/RGO/Ni(OH) 2 /NF electrodes were evaluated using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectrometry (EIS) in 6 mol L −1 KOH aqueous solution. This Cu 2 O/RGO/Ni(OH) 2 nanocomposite exhibits superior capacitive performance: high capability (3969.3 mF cm −2 at 30 mA cm −2 , i.e., 923.1 F g −1 at 7.0 A g −1 ), excellent cycling stability (92.4% retention even after 4,000 cycles, for RGO/Ni(OH) 2 /NF, 92.3% after 1,000 cycles), and good rate capacitance (50.3% capacity remaining at 200 mA cm −2 )

  14. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites

    International Nuclear Information System (INIS)

    Gupta, Vinay; Kawaguchi, Toshikazu; Miura, Norio

    2009-01-01

    Nanostructured Co-Ni/Co-Ni oxides were electrochemically deposited onto stainless steel electrode by electrochemical method and characterized for their structural and supercapacitive properties. The SEM images indicated that the obtained Co-Ni/Co-Ni oxides had cauliflower-type nanostructure. The X-ray diffraction pattern showed the formation of Co 3 O 4 , NiO, Co and Ni. The EDX elemental mapping images indicated that Ni, Co and O are distributed uniformly. The deposited Co-Ni/Co-Ni oxides showed good supercapacitive characteristics with a specific capacitance of 331 F/g at 1 mA/cm 2 current density in 1 M KOH electrolyte. A mechanism of the formation of cauliflower-shape Co-Ni/Co-Ni oxides was proposed. A variety of promising applications in the fields such as energy storage devices and sensors can be envisioned from Co-Ni/Co-Ni oxides

  15. Interfacial reaction of Ni{sub 3}Sn{sub 4} intermetallic compound in Ni/SnAg solder/Ni system under thermomigration

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi-Shan; Yang, Chia-Jung; Ouyang, Fan-Yi, E-mail: fyouyang@ess.nthu.edu.tw

    2016-07-25

    The growth of Ni{sub 3}Sn{sub 4} intermetallic compound (IMC) between liquid–solid interface in micro-scale Ni/SnAg/Ni system was investigated under a temperature gradient of 160 °C/cm at 260 °C on a hot plate. In contrast to a symmetrical growth of Ni{sub 3}Sn{sub 4} on both interfaces under isothermally annealed at 260 °C, the interfacial Ni{sub 3}Sn{sub 4} IMC exhibited asymmetric growth under a temperature gradient; the growth of Ni{sub 3}Sn{sub 4} at cold interface was faster than that at hot side because of temperature gradient induced mass migration of Ni atoms from the hot end toward the cold end. It was found that two-stage growth behavior of Ni{sub 3}Sn{sub 4} IMC under a temperature gradient. A growth model was established and growth kinetic analysis suggested that the chemical potential gradient controlled the growth of Ni{sub 3}Sn{sub 4} at stage I (0–120 min) whereas the dynamic equilibrium between chemical potential gradient and temperature gradient forces was attained at the hot end at stage II (120–210 min). When dynamic equilibrium was achieved at 260 °C, the critical length-temperature gradient product at the hot end was experimentally estimated to be 489.18 μm × °C/cm and the moving velocity of Ni{sub 3}Sn{sub 4} interface due to Ni consumption was calculated to be 0.134 μm/h. The molar heat of transport (Q*) of Ni atoms in molten SnAg solder was calculated to be +0.76 kJ/mol. - Highlights: • Interfacial reaction in Ni/SnAg solder/Ni system under thermal gradient. • Growth rate of Ni{sub 3}Sn{sub 4} at cold end is faster than that at hot end. • Critical length-temperature gradient product at hot end is 489.2 μm°C/cm at 260 °C. • Velocity of Ni{sub 3}Sn{sub 4} moving interface is 0.134 μm/h during dynamic equilibrium. • Molar heat of transport (Q*) of Ni in molten SnAg was +0.76 kJ/mol.

  16. Reducing the layer number of AB stacked multilayer graphene grown on nickel by annealing at low temperature.

    Science.gov (United States)

    Velasco, J Marquez; Giamini, S A; Kelaidis, N; Tsipas, P; Tsoutsou, D; Kordas, G; Raptis, Y S; Boukos, N; Dimoulas, A

    2015-10-09

    Controlling the number of layers of graphene grown by chemical vapor deposition is crucial for large scale graphene application. We propose here an etching process of graphene which can be applied immediately after growth to control the number of layers. We use nickel (Ni) foil at high temperature (T = 900 °C) to produce multilayer-AB-stacked-graphene (MLG). The etching process is based on annealing the samples in a hydrogen/argon atmosphere at a relatively low temperature (T = 450 °C) inside the growth chamber. The extent of etching is mainly controlled by the annealing process duration. Using Raman spectroscopy we demonstrate that the number of layers was reduced, changing from MLG to few-layer-AB-stacked-graphene and in some cases to randomly oriented few layer graphene near the substrate. Furthermore, our method offers the significant advantage that it does not introduce defects in the samples, maintaining their original high quality. This fact and the low temperature our method uses make it a good candidate for controlling the layer number of already grown graphene in processes with a low thermal budget.

  17. Magnetic interactions in high-energy ball-milled NiZnFe2O4/SiO2 composites

    International Nuclear Information System (INIS)

    Pozo Lopez, G.; Silvetti, S.P.; Urreta, S.E.; Cabanillas, E.D.

    2007-01-01

    Composites Ni 0.5 Zn 0.5 Fe 2 O 4 /SiO 2 are obtained after high-energy ball milling precursor oxides, in stoichiometric proportions, for 200 h at room temperature and further isothermal annealing for 1 h at 1273 K, under air and argon atmosphere, respectively. After 200 h grinding, a complex microstructure develops with small hematite crystals mixed with SiO 2 and remanent NiO and ZnO particles, and very small NiZn ferrite clusters, reaching a mean size of ∼9 nm. The high temperature treatments remove the hematite grains from the powder and promote the growth of NiZn ferrite grains to reach mean sizes nearly ∼20 nm. For treatments in oxidizing atmospheres, the major phases are SiO 2 and NiZn ferrite, while for annealing in Ar a new phase appears, fayalite, which is paramagnetic at room temperature. The M-H loops are all well described by the sum of a ferromagnetic and a superparamagnetic-like contribution. The observed properties are interpreted considering the different magnetic phases obtained, their crystal sizes and their mutual interactions

  18. Single crystals of the anisotropic Kagome staircase compounds Ni3V2O8 and Co3V2O8

    OpenAIRE

    Balakrishnan, G.; Petrenko, O. A.; Lees, M. R.; Paul, D. McK.

    2004-01-01

    Compounds with a Kagome type lattice are known to exhibit magnetic frustration. Large single crystals of two compounds Ni3V2O8 and Co3V2O8, which are variants of a Kagome net lattice, have been grown successfully by the floating zone technique using an optical image furnace. The single crystals are of high quality and exhibit intriguing magnetic properties.

  19. Electric field modulation of magnetic anisotropy and microwave absorption properties in Fe50Ni50/Teflon composite films

    Directory of Open Access Journals (Sweden)

    Zhenjun Xia

    2016-05-01

    Full Text Available Fe50Ni50 nanoparticle films with the size about 6 nm were deposited by a high energetic cluster deposition source. An electric field of about 0 - 40 kV was applied on the sample platform when the films were prepared. The field assisted deposition technique can dramatically induce in-plane magnetic anisotropy. To probe the microwave absorption properties, the Fe50Ni50 nanoparticles were deliberately deposited on the dielectric Teflon sheet. Then the laminated Fe50Ni50/Teflon composites were used to do reflection loss scan. The results prove that the application of electric field is an effective avenue to improve the GHz microwave absorption performance of our magnetic nanoparticles films expressed by the movement of reflection loss peak to high GHz region for the composites.

  20. Effects of short-range order on electronic properties of Zr-Ni glasses as seen from low-temperature specific heat

    Science.gov (United States)

    Kroeger, D. M.; Koch, C. C.; Scarbrough, J. O.; McKamey, C. G.

    1984-02-01

    Measurements of the low-temperature specific heat Cp of liquid-quenched Zr-Ni glasses for a large number of compositions in the range from 55 to 74 at.% Zr revealed an unusual composition dependence of the density of states at the Fermi level, N(EF). Furthermore, for some compositions the variation of Cp near the superconducting transition temperature Tc indicated the presence of two superconducting phases, i.e., two superconducting transitions were detected. Comparison of the individual Tc's in phase-separated samples to the composition dependence of Tc for all of the samples suggests that amorphous phases with compositions near 60 and 66.7 at.% Zr occur. We discuss these results in terms of an "association model" for liquid alloys (due to Sommer), in which associations of unlike atoms with definite stoichiometries are assumed to exist in equilibrium with unassociated atoms. We conclude that in the composition range studied, associate clusters with the compositions Zr3Ni2 and Zr2Ni occur. In only a few cases are the clusters sufficiently large, compared with the superconducting coherence length, for separate superconducting transitions to be observed. The variation of N(EF) with composition is discussed, as well as the effects of this chemical short-range ordering on the crystallization behavior and glass-forming tendency.