WorldWideScience

Sample records for ng n2o-n g-1

  1. Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction

    Science.gov (United States)

    Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P.

    2017-02-01

    TiO2/g-C3N4 photocatalysts with the various TiO2/g-C3N4 weight ratios from 1:2 to 1:6 were fabricated by mechanical mixing in water suspension followed by calcination. Pure TiO2 was prepared by thermal hydrolysis and pure g-C3N4 was prepared from commercial melamine by thermal annealing at 620 °C. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, Raman spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, photoelectrochemical measurements and nitrogen physisorption. The prepared mixtures along with pure TiO2 and g-C3N4 were tested for the photocatalytic decomposition of nitrous oxide under UVC (λ = 254 nm), UVA (λ = 365 nm) and Vis (λ > 400 nm) irradiation. The TiO2/g-C3N4 nanocomposites showed moderate improvement compared to pure g-C3N4 but pure TiO2 proved to be a better photocatalyst under UVC irradiation. However, under UVA irradiation conditions, the photocatalytic activity of TiO2/g-C3N4 (1:2) nanocomposite exhibited an increase compared to pure TiO2. Nevertheless, further increase of g-C3N4 amount leads/led to a decrease in reactivity. These results are suggesting the nanocomposite with the optimal weight ratio of TiO2 and g-C3N4 have shifted absorption edge energy towards longer wavelengths and decreased the recombination rate of charge carriers compared to pure g-C3N4. This is probably due to the generation of heterojunction on the TiO2/g-C3N4 interface.

  2. N.G. Basov and early works on semiconductor lasers at P.N. Lebedev Physics Institute

    International Nuclear Information System (INIS)

    Eliseev, P G

    2012-01-01

    A survey is presented of works on creation and investigation of semiconductor lasers during 1957 – 1977 at the P.N. Lebedev Physics Institute. Many of these works were initiated by N.G. Basov, starting from pre-laser time, when N.G. Basov and his coworkers formulated principal conditions of creation of lasers on interband transitions in semiconductors. Main directions of further works were diode lasers based on various materials and structures, their characteristics of output power, high-speed operation and reliability. (special issue devoted to the 90th anniversary of n.g. basov)

  3. Photocatalytic decomposition of N{sub 2}O over TiO{sub 2}/g-C{sub 3}N{sub 4} photocatalysts heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Kočí, K., E-mail: kamila.koci@vsb.cz [Institute of Environmental technologies, VŠB Technical University of Ostrava 17. listopadu 15/2172, 708 00 Ostrava (Czech Republic); Reli, M.; Troppová, I.; Šihor, M. [Institute of Environmental technologies, VŠB Technical University of Ostrava 17. listopadu 15/2172, 708 00 Ostrava (Czech Republic); Kupková, J. [Nanotechnology center, VŠB Technical University of Ostrava 17. listopadu 15/2172, 708 00 Ostrava (Czech Republic); Kustrowski, P. [Faculty of Chemistry, Jagiellonian University in Kraków, ul. Ingardena 3, 30-060 Kraków (Poland); Praus, P. [Institute of Environmental technologies, VŠB Technical University of Ostrava 17. listopadu 15/2172, 708 00 Ostrava (Czech Republic); Department of Chemistry, VŠB Technical University of Ostrava 17. listopadu 15/2172, 708 00 Ostrava (Czech Republic)

    2017-02-28

    Highlights: • TiO{sub 2}/g-C{sub 3}N{sub 4} photocatalysts with the various TiO{sub 2}/g-C{sub 3}N{sub 4} weight ratios. • N{sub 2}O photocatalytic decomposition under UVC and UVA irradiation. • Heterojunction on the TiO{sub 2}/g-C{sub 3}N{sub 4} interface play an important role. • Optimal ratio of TiO{sub 2}:g-C{sub 3}N{sub 4} was 1:2 for the highest activity at UVA irradiation. - Abstract: TiO{sub 2}/g-C{sub 3}N{sub 4} photocatalysts with the various TiO{sub 2}/g-C{sub 3}N{sub 4} weight ratios from 1:2 to 1:6 were fabricated by mechanical mixing in water suspension followed by calcination. Pure TiO{sub 2} was prepared by thermal hydrolysis and pure g-C{sub 3}N{sub 4} was prepared from commercial melamine by thermal annealing at 620 °C. All the nanocomposites were characterized by X-ray powder diffraction, UV–vis diffuse reflectance spectroscopy, Raman spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, photoelectrochemical measurements and nitrogen physisorption. The prepared mixtures along with pure TiO{sub 2} and g-C{sub 3}N{sub 4} were tested for the photocatalytic decomposition of nitrous oxide under UVC (λ = 254 nm), UVA (λ = 365 nm) and Vis (λ > 400 nm) irradiation. The TiO{sub 2}/g-C{sub 3}N{sub 4} nanocomposites showed moderate improvement compared to pure g-C{sub 3}N{sub 4} but pure TiO{sub 2} proved to be a better photocatalyst under UVC irradiation. However, under UVA irradiation conditions, the photocatalytic activity of TiO{sub 2}/g-C{sub 3}N{sub 4} (1:2) nanocomposite exhibited an increase compared to pure TiO{sub 2}. Nevertheless, further increase of g-C{sub 3}N{sub 4} amount leads/led to a decrease in reactivity. These results are suggesting the nanocomposite with the optimal weight ratio of TiO{sub 2} and g-C{sub 3}N{sub 4} have shifted absorption edge energy towards longer wavelengths and decreased the recombination rate of charge carriers compared to pure g-C{sub 3}N{sub 4}. This is

  4. Nitrous Oxide (N2O) Emissions by Termites: Does the Feeding Guild Matter?

    Science.gov (United States)

    Brauman, Alain; Majeed, Muhammad Zeeshan; Buatois, Bruno; Robert, Alain; Pablo, Anne-Laure; Miambi, Edouard

    2015-01-01

    In the tropics, termites are major players in the mineralization of organic matter leading to the production of greenhouse gases including nitrous oxide (N2O). Termites have a wide trophic diversity and their N-metabolism depends on the feeding guild. This study assessed the extent to which N2O emission levels were determined by termite feeding guild and tested the hypothesis that termite species feeding on a diet rich in N emit higher levels of N2O than those feeding on a diet low in N. An in-vitro incubation approach was used to determine the levels of N2O production in 14 termite species belonging to different feeding guilds, collected from a wide range of biomes. Fungus-growing and soil-feeding termites emit N2O. The N2O production levels varied considerably, ranging from 13.14 to 117.62 ng N2O-N d(-1) (g dry wt.)(-1) for soil-feeding species, with Cubitermes spp. having the highest production levels, and from 39.61 to 65.61 ng N2O-N d(-1) (g dry wt.)(-1) for fungus-growing species. Wood-feeding termites were net N2O consumers rather than N2O producers with a consumption ranging from 16.09 to 45.22 ng N2O-N d(-1) (g dry wt.)(-1). Incubating live termites together with their mound increased the levels of N2O production by between 6 and 13 fold for soil-feeders, with the highest increase in Capritermes capricornis, and between 14 and 34 fold for fungus-growers, with the highest increase in Macrotermes muelleri. Ammonia-oxidizing (amoA-AOB and amoA-AOA) and denitrifying (nirK, nirS, nosZ) gene markers were detected in the guts of all termite species studied. No correlation was found between the abundance of these marker genes and the levels of N2O production from different feeding guilds. Overall, these results support the hypothesis that N2O production rates were higher in termites feeding on substrates with higher N content, such as soil and fungi, compared to those feeding on N-poor wood.

  5. Nitrous Oxide (N2O Emissions by Termites: Does the Feeding Guild Matter?

    Directory of Open Access Journals (Sweden)

    Alain Brauman

    Full Text Available In the tropics, termites are major players in the mineralization of organic matter leading to the production of greenhouse gases including nitrous oxide (N2O. Termites have a wide trophic diversity and their N-metabolism depends on the feeding guild. This study assessed the extent to which N2O emission levels were determined by termite feeding guild and tested the hypothesis that termite species feeding on a diet rich in N emit higher levels of N2O than those feeding on a diet low in N. An in-vitro incubation approach was used to determine the levels of N2O production in 14 termite species belonging to different feeding guilds, collected from a wide range of biomes. Fungus-growing and soil-feeding termites emit N2O. The N2O production levels varied considerably, ranging from 13.14 to 117.62 ng N2O-N d(-1 (g dry wt.(-1 for soil-feeding species, with Cubitermes spp. having the highest production levels, and from 39.61 to 65.61 ng N2O-N d(-1 (g dry wt.(-1 for fungus-growing species. Wood-feeding termites were net N2O consumers rather than N2O producers with a consumption ranging from 16.09 to 45.22 ng N2O-N d(-1 (g dry wt.(-1. Incubating live termites together with their mound increased the levels of N2O production by between 6 and 13 fold for soil-feeders, with the highest increase in Capritermes capricornis, and between 14 and 34 fold for fungus-growers, with the highest increase in Macrotermes muelleri. Ammonia-oxidizing (amoA-AOB and amoA-AOA and denitrifying (nirK, nirS, nosZ gene markers were detected in the guts of all termite species studied. No correlation was found between the abundance of these marker genes and the levels of N2O production from different feeding guilds. Overall, these results support the hypothesis that N2O production rates were higher in termites feeding on substrates with higher N content, such as soil and fungi, compared to those feeding on N-poor wood.

  6. Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A.

    Science.gov (United States)

    Hu, Shuisheng; Ouyang, Wenjun; Guo, Longhua; Lin, Zhenyu; Jiang, Xiaohua; Qiu, Bin; Chen, Guonan

    2017-06-15

    A fluorescent biosensor for ochratoxin A was fabricated on the basis of a new nanocomposite (Fe 3 O 4 /g-C 3 N 4 /HKUST-1 composites). Fe 3 O 4 /g-C 3 N 4 /HKUST-1 was synthesized in this work for the first time, which combined HKUST-1 with g-C 3 N 4 to improve its chemical stability. Fe 3 O 4 /g-C 3 N 4 /HKUST-1 composites have strong adsorption capacity for dye-labeled aptamer and are able to completely quench the fluorescence of the dye through the photoinduced electron transfer (PET) mechanism. In the presence of ochratoxin A (OTA), it can bind with the aptamer with high affinity, causing the releasing of the dye-labeled aptamer from the Fe 3 O 4 /g-C 3 N 4 /HKUST-1 and therefore results in the recovery of fluorescence. The fluorescence intensity of the biosensor has a linear relationship with the OTA concentration in the range of 5.0-160.0ng/mL. The LOD of sensor is 2.57ng/mL (S/N=3). This fluorescence sensor based on the Fe 3 O 4 /g-C 3 N 4 /HKUST-1 composites has been applied to detect OTA in corn with satisfying results. Copyright © 2016. Published by Elsevier B.V.

  7. Theoretical study of [Li(H2O)n]+ and [K(H2O)n]+ (n = 1-4) complexes

    International Nuclear Information System (INIS)

    Wojcik, M.J.; Mains, G.J.; Devlin, J.P.

    1995-01-01

    The geometries, successive binding energies, vibrational frequencies, and infrared intensities are calculated for the [Li(H 2 O) n ] + and [K(H 2 O) n ] + (n = 1-4) complexes. The basis sets used are 6-31G * and LANL1DZ (Los Alamos ECP+DZ) at the SCF and MP2 levels. There is an agreement for calculated structures and frequencies between the MP2/6-31G * and MP2/LANL1DZ basis sets, which indicates that the latter can be used for calculations of water complexes with heavier ions. Our results are in a reasonable agreement with available experimental data and facilitate experimental study of these complexes. 19 refs., 4 figs., 6 tabs

  8. Theoretical study of the interaction of N2 with water molecules. (H2O)/sub n/:N2, n = 1--8

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Eisgruber, C.L.

    1984-01-01

    Ab initio molecular orbital calculations including correlation energy have been carried out on the interaction of a single H 2 O molecule with N 2 . The potential energy surface for H 2 O:N 2 is found to have a minimum corresponding to a HOH xxx N 2 structure with a weak ( -1 ) hydrogen bond. A second, less stable, configuration corresponding to a H 2 O xxx N 2 structure with N 2 bonded side on to the oxygen of H 2 O was found to be either a minimum or a saddle point in the potential energy surface depending on the level of calculation. The minimal STO-3G basis set was used to investigate the interaction of up to eight H 2 O molecules with N 2 . Two types of clusters, one containing only HOH xxx N 2 interactions and the other containing both HOH xxxN 2 and H 2 O xxx N 2 interactions, were investigated for [N 2 :(H 2 O)/sub n/, n = 2--8

  9. Unconventionally prepared TiO2/g-C3N4 photocatalysts for photocatalytic decomposition of nitrous oxide

    Science.gov (United States)

    Troppová, Ivana; Šihor, Marcel; Reli, Martin; Ritz, Michal; Praus, Petr; Kočí, Kamila

    2018-02-01

    The TiO2/g-C3N4 nanocomposites with the various TiO2:g-C3N4 weight ratios from 1:1 to 1:3 were prepared unconventionally by pressurized hot water processing in a flow regime. The parent TiO2 and g-C3N4 was prepared by thermal hydrolysis and thermal annealing, respectively. The nanocomposites as well as parent TiO2 and g-C3N4 were characterized using several complementary characterization methods and investigated in the photocatalytic decomposition of N2O under UVA (λ = 365 nm) irradiation. All the prepared TiO2/g-C3N4 nanocomposites showed higher photocatalytic activity in comparison with the pure g-C3N4 and chiefly pure TiO2. The photocatalytic activity of TiO2/g-C3N4 nanocomposites was decreasing in the following sequence: TiO2/g-C3N4 (1:3) > TiO2/g-C3N4 (1:2) > TiO2/g-C3N4 (1:1). In comparison with the parent TiO2 or g-C3N4, the TiO2/g-C3N4 nanocomposites' photocatalytic capability was significantly enhanced by coupling TiO2 with g-C3N4. The generation of TiO2/g-C3N4 Z-scheme photocatalyst mainly benefited from the effective separation of photoinduced electron-hole pairs and the extended optical absorption range. The TiO2/g-C3N4 (1:3) nanocomposite showed the best photocatalytic behavior in a consequence of the optimal weight ratio of TiO2:g-C3N4 and the lowest band gap energy from all nanocomposites. The N2O conversion in its presence was 70.6% after 20 h of UVA irradiation.

  10. Comparison and mechanism of photocatalytic activities of N-ZnO and N-ZrO2 for the degradation of rhodamine 6G.

    Science.gov (United States)

    Sudrajat, Hanggara; Babel, Sandhya

    2016-05-01

    N-doped ZnO (N-ZnO) and N-doped ZrO2 (N-ZrO2) are synthesized by novel, simple thermal decomposition methods. The catalysts are evaluated for the degradation of rhodamine 6G (R6G) under visible and UV light. N-ZnO exhibits higher dye degradation under both visible and UV light compared to N-ZrO2 due to possessing higher specific surface area, lower crystalline size, and lower band gap. However, it is less reusable than N-ZrO2 and its photocatalytic activity is also deteriorated at low pH. At the same intensity of 3.5 W/m(2), UVC light is shown to be a better UV source for N-ZnO, while UVA light is more suitable for N-ZrO2. At pH 7 with initial dye concentration of 10 mg/L, catalyst concentration of 1 g/L, and UVC light, 94.3 % of R6G is degraded by N-ZnO within 2 h. Using UVA light under identical experimental conditions, 93.5 % degradation of R6G is obtained by N-ZrO2. Moreover, the type of light source is found to determine the reactive species produced in the R6G degradation by N-ZnO and N-ZrO2. Less oxidative reactive species such as superoxide radical and singlet oxygen play a major role in the degradation of R6G under visible light. On the contrary, highly oxidative hydroxyl radicals are predominant under UVC light. Based on the kinetic study, the adsorption of R6G on the catalyst surface is found to be the controlling step.

  11. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    Science.gov (United States)

    2017-10-31

    VC-nH2O for Small and Water-Dominated Molecular Clusters October 31, 2017 Approved for public release; distribution is unlimited. L. Huang S.g...Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters L. Huang,1 S.G...nH2O molecular clusters using density function theory (DFT). DFT can provide interpretation of absorption spectra with respect to molecular

  12. Oxygen vibrations in the series Bi2Sr2Ca{_{n-1}}Cu{n}O{_{4+2 n+y}}

    Science.gov (United States)

    Faulques, E.; Dupouy, P.; Lefrant, S.

    1991-06-01

    We present a discussion of the oxygen vibrations in the Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} high T_c superconductors with the aim of interpreting Raman spectra in the case of the non-symmorphic Amaa structure. Group theory shows that the oxygen atoms belonging to the central CuO{2} plane generate a Raman activity for the n=1,3 phases. Consequently, we propose a novel assignment for the lines of weak intensity at 297, 316 and 333 cm^{-1}. It is shown that the two components of the 460 cm^{-1} band may be consistent with the Amma structure. Spectra recorded in crossed polarization exhibit weak lines which could be assigned to B {1g} modes expected for the three phases. Nous présentons une discussion sur les vibrations des atomes d'oxygène dans la série des supraconducteurs Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} dans le but d'interpréter les spectres Raman. L'analyse des modes normaux de vibration de la structure Amaa pour les phases n=1 ou 3 montre que les atomes d'oxygène du plan CuO{2} contenant les centres d'inversion donnent lieu à une activité Raman. En conséquence, nous proposons une nouvelle attribution pour les raies de faible intensité à 297, 316 et 333 cm^{-1}. Nous montrons que le dédoublement de la bande à 460 cm^{-1} pourrait être dû à la structure Amaa. Les spectres enregistrés en polarization croisée montrent de faibles bandes qui peuvent être attribuées aux modes B {1g} attendus pour les trois phases.

  13. An Asymmetric Supercapacitor with Mesoporous NiCo2O4 Nanorod/Graphene Composite and N-Doped Graphene Electrodes

    Science.gov (United States)

    Mao, J. W.; He, C. H.; Qi, J. Q.; Zhang, A. B.; Sui, Y. W.; He, Y. Z.; Meng, Q. K.; Wei, F. X.

    2018-01-01

    In the present work, mesoporous NiCo2O4 nanorod/graphene oxide (NiCo2O4/GO) composite was prepared by a facile and cost-effective hydrothermal method and meanwhile, N-doped graphene (N-G) was fabricated also by a hydrothermal synthesis process. NiCo2O4/GO composite and N-G were used as positive and negative electrodes for the supercapacitor, respectively, which all displayed excellent electrochemical performances. The NiCo2O4/GO composite electrode exhibited a high specific capacitance of 709.7 F g-1 at a current density of 1 A g-1 and excellent rate capability as well as good cycling performance with 84.7% capacitance retention at 6 A g-1 after 3000 cycles. A high-voltage asymmetric supercapacitor (ASC) was successfully fabricated using NiCo2O4/GO composite and N-G as the positive and negative electrodes, respectively, in 1 M KOH aqueous electrolyte. The ASC delivered a high energy density of 34.4 Wh kg-1 at a power density of 800 W kg-1 and still maintained 28 Wh kg-1 at a power density of 8000 W kg-1. Furthermore, this ASC showed excellent cycling stability with 94.3% specific capacitance retained at 5 A g-1 after 5000 cycles. The impressive results can be ascribed to the positive synergistic effects of the two electrodes. Evidently, our work provides useful information for assembling high-performance supercapacitor devices.

  14. Association equilibrium constants and populations of clusters (H2O)n(g) and (D2O)n(g): differences between isotopomers and a possible relation to isotope enrichment

    International Nuclear Information System (INIS)

    Slanina, Z.

    1986-01-01

    Equilibrium constants of H 2 O(g) and D 2 O(g) associations to clusters (H 2 O) n (g) and (D 2 O) n (g) were calculated on the basis of the ab initio SCF CI MCY-B water-water pair potential. Populations of the components of equilibrium cluster mixtures were evaluated at various temperatures and pressures for both isotopomeric series. Differences between the H and D steam are pointed out and possible consequences are discussed. (author)

  15. Bradykinin-activated transmembrane signals are coupled via N/sub o/ or N/sub i/ to production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastoma-glioma hybrid cells

    International Nuclear Information System (INIS)

    Higashida, H.; Streaty, R.A.; Klee, W.; Nirenberg, M.

    1986-01-01

    The addition of bradykinin to NG108-15 cells results in a transient hyperpolarization followed by prolonged cell depolarization. Injection of inositol 1,4,5-trisphosphate or Ca 2+ into the cytoplasm of NG108-15 cells also elicits cell hyperpolarization followed by depolarization. Tetraethylammonium ions inhibit the hyperpolarizing response of cells to bradykinin or inositol 1,4,5-trisphosphate. Thus, the hyperpolarizing phase of the cell response may be due to inositol 1,4,5-trisphosphate-dependent release of stored 45 Ca-labelled Ca 2+ into the cytoplasm, which activates Ca 2+ -dependent K + channels. The depolarizing phase of the cell response to bradykinin is due largely to inhibition of M channels, thereby decreasing the rate of K + efflux from cells and, to a lesser extent, to activation of Ca 2+ -dependent ion channels and Ca 2+ channels. In contrast, injection of inositol 1,4,5-trisphosphate or Ca 2+ into the cytosol did not alter M channel activity. Incubation of NG108-15 cells with pertussis toxin inhibits bradykinin-dependent cell hyperpolarization and depolarization. Bradykinin stimulates low K/sub m/ GTPase activity and inhibits adenylate cyclase in NG108-15 membrane preparations but not in membranes prepared from cells treated with pertussis toxin. These results show that [bradykinin-receptor] complexes interact with N/sub o/ or N/sub i/ and suggest that N/sub o/ and/or N/sub i/ mediate the transduction of signals from bradykinin receptors to phospholipase C and adenylate cyclase

  16. An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method

    Science.gov (United States)

    Zhang, Guanghui; Zhang, Tianyong; Li, Bin; Jiang, Shuang; Zhang, Xia; Hai, Li; Chen, Xingwei; Wu, Wubin

    2018-03-01

    An ingenious method was employed to design and fabricate the TiO2/g-C3N4 heterojunction photocatalysts in this study. The thermal oxidation etching of g-C3N4 nanosheets and the in situ growth of TiO2 nanocrystal on the surface of g-C3N4 nanosheets were completed simultaneously by the calcination process. The g-C3N4 nanosheets played a crucial role in regulating and assembling the structures and morphologies of TiO2. Furthermore, the thickness and content of g-C3N4, and the crystallinity of TiO2 in TiO2/g-C3N4 composites could be regulated and controlled by the calcination temperature. Among the resultant TiO2/g-C3N4 samples, the TiO2/g-C3N4 sample with 41.6 wt% g-C3N4 exhibited the highest photocatalytic activity. It could degrade almost all MO molecules under visible light irradiation within 3 h. Moreover, it displayed higher visible light photocatalytic performance for degrading MO solution than pure g-C3N4 and D-TiO2. The synergistic effect between TiO2 and g-C3N4 makes significant contributions to the enhancement of the visible light photocatalytic activity. In addition, the favorable photocatalytic performance of TiO2/g-C3N4 nanocomposites is also attributed to the porous structures and uniform morphologies, and large surface area. Furthermore, the resultant TiO2/g-C3N4 exhibits excellent photocatalytic stability. Radical trapping experiments indicated that rad O2- and h+ were the main reactive species during the photodegradation process under visible light irradiation. Hopefully, the results can offer new design and strategy for preparing other g-C3N4-based nanocomposites for environmental and energy applications.

  17. O movimento Yīn e Yáng na cosmologia da medicina chinesa

    Directory of Open Access Journals (Sweden)

    Bernardo Diniz Coutinho

    2015-09-01

    Full Text Available Após ter se desenvolvido no Oriente, embasada pela cosmologia taoista, a medicina chinesa vem sendo praticada no Ocidente baseada na fundamentação científica e no paradigma biomédico, abandonando alguns elementos tradicionais dessa racionalidade, como a teoria Yīn e Yáng, conhecimento essencial para o entendimento do processo saúde-doença decorrente da circulação do sopro vital pelo corpo. Este artigo estuda o movimento da dupla Yīn e Yáng na doutrina médica chinesa, buscando conhecer como se desenvolveu essa linha de pensamento e a sua contribuição na elaboração do sistema diagnóstico e terapêutico. A metodologia utilizada foi a análise da literatura que aborda o objeto a partir do referencial teórico do pensamento taoista e da medicina tradicional chinesa.

  18. Upwelling intensity modulates N2O concentrations over the western Indian shelf

    Digital Repository Service at National Institute of Oceanography (India)

    Sudheesh, V.; Gupta, G.V.M.; Sudharma, K.V.; Naik, H.; Shenoy, D.M.; Sudhakar, M.; Naqvi, S.W.A.

    Pacific Ocean (off central Chile and Peru) have been identified as ‘‘hot spots’’ of N2O production with N2O saturations up to 8250% and 2426–12,244%, respectively [Naqvi et al., 2005; Cornejo et al., 2007; Ar�evalo-Mart�ınez et al., 2015]. The N2O flux per... Peru. (ETSP) 7.6–986 27–1825 Ar�evalo-Mart�ınez et al. [2015] Off central Chile (ETSP) 6.7–59 245 (30 m) 29.8–195 Cornejo et al. [2007] 5.1–30.1 206 (40 m) 27.7–42.9 Farias et al. [2009] Oman shelf 9.7–24.7 48.8 (50 m) N.G. Naqvi et al. [2010] Eastern...

  19. Magnetism of Bi2Sr2Can-1CunO2n+4+δ (n = 1,2,3)

    International Nuclear Information System (INIS)

    Ishida, T.; Koga, K.; Kanoda, K.; Takahashi, T.

    1992-01-01

    The normal-state dc susceptibility χ dc of the Bi 2 Sr 2 Ca n-1 Cu n O 2n+4+δ (n=1, 2, 3) pellet is of the order of +10 -7 emu/g. A large Curie-Weiss component is found in χ dc and the ESR spin susceptibility χ ESR of the pulverized 2201, 2212 and 2223 samples but it almost disappears by annealing. The relative magnitudes of χ ESR to χ dc for the annealed powders are dissimilar among the three phases: ESR of the 2201 sample is silent, χ ESR of the 2212 phase has almost the same magnitude as χ dc and χ ESR of the 2223 phase is appreciable but smaller than χ dc . (orig.)

  20. Nitrous Oxide (N2O) Emissions from Vehicles

    International Nuclear Information System (INIS)

    Becker, K.H.; Kurtenbach, R.; Lorzer, J.C.; Wiesen, P.; Jensen, T.; Wallington, T.J.

    2000-01-01

    N2O is an important greenhouse gas and accurate emission data are required to assess its impact on global climate. It is well established that automobiles, particularly those equipped with 3-way catalysts, emit N2O. However, the vehicle contribution to the global N2O budget is uncertain. We report results of N2O emission measurements performed in a road tunnel in Germany and using a chassis dynamometer system in the USA. We estimate that the global vehicle fleet emits (0.12±0.06) Tg yr-1 of N2O. From the emission factor (g N2O/g CO2) determined an annual N2O emission of (0.12±0.06) Tg yr-1 of N2O (0.08±0.04 Tg N yr-1) for the global vehicle fleet has been estimated which represents 1-4% of the atmospheric growth rate of this species. 9 refs

  1. High sensitivity cavity ring down spectroscopy of N_2O near 1.22 µm: (II) "1"4N_2"1"6O line intensity modeling and global fit of "1"4N_2"1"8O line positions

    International Nuclear Information System (INIS)

    Tashkun, S.A.; Perevalov, V.I.; Karlovets, E.V.; Kassi, S.; Campargue, A.

    2016-01-01

    In a recent work (Karlovets et al., 2016 [1]), we reported the measurement and rovibrational assignments of more than 3300 transitions belonging to 64 bands of five nitrous oxide isotopologues ("1"4N_2"1"6O, "1"4N"1"5N"1"6O, "1"5N"1"4N"1"6O, "1"4N_2"1"8O and "1"4N_2"1"7O) in the high sensitivity CRDS spectrum recorded in the 7915–8334 cm"−"1 spectral range. The assignments were performed by comparison with predictions of the effective Hamiltonian models developed for each isotopologue. In the present paper, the large amount of measurements from our previous work mentioned above and literature are gathered to refine the modeling of the nitrous oxide spectrum in two ways: (i) improvement of the intensity modeling for the principal isotopologue, "1"4N_2"1"6O, near 8000 cm"−"1 from a new fit of the relevant effective dipole moment parameters, (ii) global modeling of "1"4N_2"1"8O line positions from a new fit of the parameters of the global effective Hamiltonian using an exhaustive input dataset collected in the literature in the 12–8231 cm"−"1 region. The fitted set of 81 parameters allowed reproducing near 5800 measured line positions with an RMS deviation of 0.0016 cm"−"1. The dimensionless weighted standard deviation of the fit is 1.22. As an illustration of the improvement of the predictive capabilities of the obtained effective Hamiltonian, two new "1"4N_2"1"8O bands could be assigned in the CRDS spectrum in the 7915–8334 cm"−"1 spectral range. A line list at 296 K has been generated in the 0–10,700 cm"−"1 range for "1"4N_2"1"8O in natural abundance with a 10"−"3"0 cm/molecule intensity cutoff. - Highlights: • Line parameters of two new "1"4N_2"1"8O bands centered at 7966 cm"−"1 and at 8214 cm"−"1. • Refined sets of the "1"4N_2"1"6O effective dipole moment parameters for ΔP=13,14 series. • Global modeling of "1"4N_2"1"8O line positions and intensities in the 12–8231 cm"−"1 range. • 5800 observed of "1"4N_2"1"8O line positions

  2. Effect of rutile TiO{sub 2} on the photocatalytic performance of g-C{sub 3}N{sub 4}/brookite-TiO{sub 2-x}N{sub y} photocatalyst for NO decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huihui, E-mail: lihh@lzu.edu.cn [Key Laboratory for Magnetism Magnetic Materials of the Ministry of Education, Lanzhou University, 222 south Tianshui Road, Lanzhou, 730000 (China); Wu, Xiaoyong [Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Yin, Shu [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Katsumata, Kenichi [Photocatalysis International Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 (Japan); Wang, Yuhua [Key Laboratory for Magnetism Magnetic Materials of the Ministry of Education, Lanzhou University, 222 south Tianshui Road, Lanzhou, 730000 (China)

    2017-01-15

    Graphical abstract: g-C{sub 3}N{sub 4}/rutile-brookite TiO{sub 2-x}Ny forms a Z-scheme photocatalytic system, which shows improvement on the photocatalytic activity than that of g-C{sub 3}N{sub 4}/single brookite TiO{sub 2-x}N{sub y}. - Highlights: • g-C{sub 3}N{sub 4}/rutile-brookite TiO{sub 2-x}N{sub y} forms a Z-scheme photocatalytic system. • Photogenerated electrons can efficiently transfer from rutile TiO{sub 2} to g-C{sub 3}N{sub 4}. • Single brookite TiO{sub 2-x}N{sub y} shows lower photo-utilization efficiency than rutile-brookite mixed one. • DeNO{sub x} activities of brookite TiO{sub 2-x}N{sub y} hybrids decrease with g-C{sub 3}N{sub 4} amount increase. - Abstract: Novel g-C{sub 3}N{sub 4}/rutile-brookite TiO{sub 2-x}N{sub y} composite photocatalysts were fabricated through a facile solvothermal approach. The effect of rutile phase TiO{sub 2} with brookite TiO{sub 2} and g-C{sub 3}N{sub 4} on the photocatalytic activity of g-C{sub 3}N{sub 4}/nitrogen-doped TiO{sub 2} composite was studied. The photocatalytic performance of the photocatalyst was evaluated by measuring the degradation of NO gas under visible and UV light irradiation. It is suggested that g-C{sub 3}N{sub 4}/rutile-brookite TiO{sub 2-x}N{sub y} forms a Z-scheme photocatalytic system, which shows improvement on the photocatalytic activity than that of g-C{sub 3}N{sub 4}/single brookite TiO{sub 2-x}N{sub y}. By importing rutile phase TiO{sub 2-x}N{sub y}, the photogenerated electrons can efficiently transfer from rutile TiO{sub 2} to g-C{sub 3}N{sub 4}, which results in the separation of electron and hole pairs, enhancing the photocatalytic ability. However, single brookite TiO{sub 2-x}N{sub y} can not remove the photogenerated electrons efficiently and the photocatalytic performances of composites decrease with g-C{sub 3}N{sub 4} amount increase.

  3. M(4-PridinkarboksialdehidNi(CN4.nG Hofmann Tipi Konak-Konuk Bileşiklerinin Kırmızıaltı Spektroskopik Özelliklerinin İncelenmesi (M = Ni, Cd ve G = 1,4-Dioksan

    Directory of Open Access Journals (Sweden)

    Zeki KARTAL

    2014-12-01

    M(4-PyridinecarboxaldehydeNi(CN4.nG Hofmann Type Clathrates (M = Ni, Cd and G = 1,4-Dioxane Abstract: In this study, clathrate of 4-pyridinecarboxaldehyde tetracyanonickel-dioxane, given by the formula M(4-PyridinecarboxaldehydeNi(CN4 nG (m = Ni, Cd and G = 1,4-dioxane, is obtained for the first time through chemical methods. The FT-IR spectroscopic data in the region of (3000–400 cm-1 was recorded and the IR vibrational modes frequencies were given and explained in detail. The spectral analyzes results of the newly synthesized clathrate of 4-pyridinecarboxaldehyde tetracyanonickel- dioxane suggests that these clathrates are new examples of the Hofmann-type dioxane clathrates. In our study, the Hofmann-type dioxane clathrates formed by bounding electrons of nitrogen-donor atom of pyridine ring and electrons of oxygen-donor atom of aldehyde group (-CH=O of 4-pyridinecarboxaldehyde ligand molecule to transition metal atoms consist of the corrugated |M–Ni(CN4|ï‚¥ polymeric layers which are held in parallel through the chain of (–M–4PCA–M–. Key words: Infrared Spectroscopy, Hofmann Types Clathrates, Tetracyanonickelate, 4-pyridinecarboxaldehyde, 1,4-dioxane

  4. Uptake properties of Ni2+ by nCaO.Al2O3.2SiO2 (n=1-4) prepared from solid-state reaction of kaolinite and calcite.

    Science.gov (United States)

    Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2005-08-31

    A series of nCaO.Al2O3.2SiO2 samples (n=1-4) were prepared by solid-state reaction of mechanochemically treated mixtures of kaolinite and calcite fired at 600-1000 degrees C for 24 h. All the samples were X-ray amorphous after firing at 600-800 degrees C but had crystallized by 900 degrees C. The main crystalline phases were anorthite (n=1), gehlenite (n=2 and 3) and larnite (n=4). The uptake of Ni2+ by nCaO.Al2O3.2SiO2 samples fired at 800 and 900 degrees C was investigated at room temperature using solutions with initial Ni2+ concentrations of 0.1-50 mmol/l. Amorphous samples (fired at 800 degrees C) showed a higher Ni2+ uptake capacity than crystalline samples (fired at 900 degrees C). Ni2+ uptake was found to increase with increasing of CaO content. Amorphous 4CaO.Al2O3.2SiO2 showed the highest Ni2+ uptake capacity (about 9 mmol/g). The Ni2+ uptake abilities of the present samples are higher than those of other materials reported in the literature. Since the sorbed Ni2+/released Ca2+ ratios of these samples are close to unity, ion replacement of Ni2+ for Ca2+ is thought to be the principal mechanism of Ni2+ uptake by the present samples.

  5. Nngör

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Nngör. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 317-322 Surfactants. Effect of sodium dodecyl sulfate on flow and electrokinetic properties of Na-activated bentonite dispersions · E Günıster S İşçı A Alemdar Nngör · More Details ...

  6. Construction of g-C3N4/CeO2/ZnO ternary photocatalysts with enhanced photocatalytic performance

    Science.gov (United States)

    Yuan, Yuan; Huang, Gui-Fang; Hu, Wang-Yu; Xiong, Dan-Ni; Zhou, Bing-Xin; Chang, Shengli; Huang, Wei-Qing

    2017-07-01

    Promoting the spatial separation of photoexcited charge carriers is of paramount significance for photocatalysis. In this work, binary g-C3N4/CeO2 nanosheets are first prepared by pyrolysis and subsequent exfoliation method, then decorated with ZnO nanoparticles to construct g-C3N4/CeO2/ZnO ternary nanocomposites with multi-heterointerfaces. Notably, the type-II staggered band alignments existing between any two of the constituents, as well as the efficient three-level transfer of electron-holes in unique g-C3N4/CeO2/ZnO ternary composites, leads to the robust separation of photoexcited charge carriers, as verified by its photocurrent increased by 8 times under visible light irradiation. The resulting g-C3N4/CeO2/ZnO ternary nanocomposites unveil appreciably increased photocatalytic activity, faster than that of pure g-C3N4, ZnO and g-C3N4/CeO2 by a factor of 11, 4.6 and 3.7, respectively, and good stability toward methylene blue (MB) degradation. The remarkably enhanced photocatalytic activity of g-C3N4/CeO2/ZnO ternary heterostructures can be interpreted in terms of lots of active sites of nanosheet shapes and the efficient charge separation owing to the resulting type-II band alignment with more than one heterointerface and the efficient three-level electron-hole transfer. A plausible mechanism is also elucidated via active species trapping experiments with various scavengers, which indicating that the photogenerated holes and •OH radicals play a crucial role in photodegradation reaction under visible light irradiation. This work suggest that the rational design and construction of type II multi-heterostructures is powerful for developing highly efficient and reusable visible-light photocatalysts for environmental purification and energy conversion.

  7. Diaqua-2κ2O-bis(μ-1-oxido-2-naphthoato-1:2κ3O1,O2:O2′;2:3κ3O2:O1,O2′-bis(1-oxido-2-naphthoato-1κ1O2,O2;3κ2O1,O2-hexapyridine-1κ2N,2κ2N,3κ2N-trimanganese(II/III pyridine disolvate dihydrate

    Directory of Open Access Journals (Sweden)

    Daqi Wang

    2008-12-01

    Full Text Available The title complex, [Mn3(C11H6O34(C5H5N6(H2O22H22C5H5N, is a trinuclear mixed oxidation state complex of overline1 symmetry. The three Mn atoms are six-coordinated in the shape of distorted octahedra, each coordinated with an O4N2 set of donor atoms, where the ligands exhibit mono- and bidentate modes. However, the coordination of the MnII ion located on the inversion centre involves water molecules at two coordination sites, whereas that of the two symmetry-related MnIII ions involves an O4N2 set of donor atoms orginating from the organic ligands. Intramolecular C—H...π interactions between neighbouring pyridine ligands stabilize this arrangement. A two-dimensional network parallel to (001 is formed by intermolecular O—H...O hydrogen bonds.

  8. Enhanced visible light photocatalytic activity in SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Hao; Zhao, Xiaoru, E-mail: xrzhao@nwpu.edu.cn; Duan, Libing; Liu, Ruidi; Li, Hui

    2017-04-15

    Highlights: • Novel SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures were successfully synthesized. • The core-shell structures exhibited enhanced visible light photocatalytic activity. • The enhanced photocatalytic activity was due to synergic action of SnO{sub 2} and g-C{sub 3}N{sub 4}. - Abstract: SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures were successfully synthesized by simple calcination of SnO{sub 2} microspheres and urea in a muffle furnace. The investigation of morphologies and microstructures showed that g-C{sub 3}N{sub 4} was wrapped tightly on the surface of SnO{sub 2} microspheres with large intimate interface contact areas between the g-C{sub 3}N{sub 4} shells and SnO{sub 2} cores. The X-ray photoelectron spectroscopy results and photoluminescence spectra demonstrated that the intimate interface contacts could facilitate the transfer and separation of the photogenerated charge carriers at their interface, thus the recombination of the photogenerated electron-hole pairs was impeded. The photocatalytic activity of the synthesized composites was evaluated by the photodegradation of methyl orange under visible light irradiation. It was found that SnO{sub 2}@g-C{sub 3}N{sub 4} exhibited higher photodegradation rate (k = 0.013 min{sup −1}) than that of g-C{sub 3}N{sub 4} (k = 0.008 min{sup −1}) and pure SnO{sub 2}. The enhanced photocatalytic activity could be attributed to the synergic action of SnO{sub 2} and g-C{sub 3}N{sub 4}.

  9. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    Science.gov (United States)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  10. XANES study on Ruddlesdan-Popper phase, Lan+1NinO3n+1 (n = 1, 2 and ∞)

    International Nuclear Information System (INIS)

    Park, Jung-Chul; Kim, Dong-Kuk; Byeon, Song-Hu; Kim, Don

    2001-01-01

    Ruddlesden-Popper phase, La n+1 Ni n O 3n+ 1 (n = 1, 2, and ∞) compounds were prepared by citrate sol-gel method. We revealed the origin of the variation of the electrical conductivities in La n+1 Ni n O 3n+1 (n= 1, 2, and ∞) using resistivity measurements, Rietveld analysis, and X-ray absorption spectroscopy. According to the XANES spectra, it is found that the degree of 4pπ - 4pσ energy splitting between 8345 eV and 8350 eV is qualitatively proportional to the elongation of the out-of-plane Ni-O bond length. With the decrease of 4pπ-4pσ splitting, the strong hybridization of the σ-bonding between Ni-3d and O-2p orbitals creates narrow antibonding σ bands, which finally results in the lower electrical resistivity. (au)

  11. Raman study of HgBa 2Ca n-1 Cu nO 2 n+2+ δ ( n=1,2,3,4 and 5) superconductors

    Science.gov (United States)

    Zhou, Xingjiang; Cardona, M.; Chu, C. W.; Lin, Q. M.; Loureiro, S. M.; Marezio, M.

    1996-02-01

    Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa 2Ca n-1 Cu nO 2 n+2+ δ ( n=1,2,3,4 and 5) high- Tc superconductor family using different laser frequencies. Local laser annealing measurements were carried out to investigate the variation of the Raman spectra with the excess oxygen content, δ. A systematic evolution of the spectra, which display mainly peaks near 590, 570, 540 and 470 cm -1, with increasing number of CuO 2 layers has been observed; its origin has been shown to lie in the variation of the interstitial oxygen content. In addition to confirming that the 590 cm -1 mode represents vibration of apical oxygens in the absence of neighboring excess oxygen, the 570 cm -1 mode, which may be composed of some finer structures, has been assigned to the vibration of the apical oxygen modified by the presence of the neighboring excess oxygens. The 540 and 470 cm -1 modes may represent the direct vibration of excess oxygens. The implication of possible different distribution sites of excess oxygens is discussed. All other observed lower-frequency modes are also assigned.

  12. Infrared spectroscopic and theoretical study of the HC2n+1O+ (n = 2-5) cations

    Science.gov (United States)

    Jin, Jiaye; Li, Wei; Liu, Yuhong; Wang, Guanjun; Zhou, Mingfei

    2017-06-01

    The carbon chain cations, HC2n+1O+ (n = 2-5), are produced via pulsed laser vaporization of a graphite target in supersonic expansions containing carbon monoxide and hydrogen. The infrared spectra are measured via mass-selected infrared photodissociation spectroscopy of the CO "tagged" [HC2n+1O.CO]+ cation complexes in the 1600-3500 cm-1 region. The geometries and electronic ground states of these cation complexes are determined by their infrared spectra compared to the predications of theoretical calculations. All of the HC2n+1O+ (n = 2-5) core cations are characterized to be linear carbon chain derivatives terminated by hydrogen and oxygen, which have the closed-shell singlet ground states with polyyne-like carbon chain structures.

  13. An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 heterostructure for enhanced visible light photocatalytic performance

    Science.gov (United States)

    Guo, Yanru; Xiao, Limin; Zhang, Min; Li, Qiuye; Yang, Jianjun

    2018-05-01

    An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 ternary nanocomposite was fabricated using nanotubular titanic acid as precursors via a simple photo-deposition of Pd nanoparticles and calcination process. The prepared nanocomposites were investigated by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy, respectively. For g-C3N4/TiO2 binary nanocomposites, at the optimal content of g-C3N4 (2%), the apparent photocatalytic activity of 2%g-C3N4/TiO2 was 9 times higher than that of pure TiO2 under visible-light illumination. After deposition of Pd (1 wt%) at the contact interface between g-C3N4 and TiO2, the 2%g-C3N4/Pd/TiO2 ternary nanocomposites demonstrated the highest visible-light-driven photocatalytic activity for the degradation of gaseous propylene, which was 16- and 2-fold higher activities than pure TiO2 and 2%g-C3N4/TiO2, respectively. The mechanism for the enhanced photocatalytic performance of the g-C3N4/Pd/TiO2 photo-catalyst is proposed to be based on the efficient separation of photo-generated electron-hole pairs through Z-scheme system, in which uniform dispersity of Pd nanoparticles at contact interface between g-C3N4 and TiO2 and oxygen vacancies promote charge separation.

  14. Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study

    Science.gov (United States)

    Opoku, Francis; Govender, Krishna Kuben; Sittert, Cornelia Gertina Catharina Elizabeth van; Govender, Penny Poomani

    2018-01-01

    Graphite-like carbon nitride (g-C3N4)-based heterostructures have received much attention due to their prominent photocatalytic activity. The g-C3N4/Bi2WO6 and g-C3N4/Bi2MoO6 heterostructures, which follow a typical hetero-junction charge transfer mechanisms show a weak potential for hydrogen evolution and reactive radical generation under visible light irradiation. A mediator-free Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures photocatalyst are designed for the first time using first-principles studies. Moreover, theoretical understanding of the underlying mechanism, the effects of interfacial composition and the role the interface play in the overall photoactivity is still unexplained. The calculated band gap of the heterostructures is reduced compared to the bulk Bi2WO6 and Bi2MoO6. In this study, we systematically calculated energy band structure, optical properties and charge transfer of the g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures using the hybrid density functional theory approach. The results show that the charge transfer at the interface of the heterostructures induces a built-in potential, which benefits the separation of photogenerated charge carriers. The g-C3N4/Bi2MoO6(010) heterostructure with more negative adhesion energy (-1.10 eVA-2) is predicted to have a better adsorptive ability and can form more easily compared to the g-C3N4/Bi2WO6(010) interface (-1.16 eVA-2). Therefore, our results show that the g-C3N4 interaction with Bi2MoO6 is stronger than Bi2WO6, which is also verified by the smaller vertical separation (3.25 Å) between Bi2MoO6 and g-C3N4 compared to the g-C3N4/Bi2WO6(010) interface (3.36 Å). The optical absorption verifies that these proposed Z-scheme heterostructures are excellent visible light harvesting semiconductor photocatalyst materials. This enhancement is ascribed to the role of g-C3N4 monolayer as an electron acceptor and the direct Z-scheme charge carrier transfer at the interface of

  15. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4.nH2O nanorods

    Science.gov (United States)

    Ghosh, Debasis; Giri, Soumen; Das, Chapal Kumar

    2013-10-01

    One-dimensional NiMoO4.nH2O nanorods and their graphene based hybrid composite with good electrochemical properties have been synthesized by a cost effective hydrothermal procedure. The formation of the mixed metal oxide and the composite was confirmed by XRD, XPS and Raman analyses. The morphological characterizations were carried out using FESEM and TEM analyses. The materials were subjected to electrochemical characterization through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) studies with 6 M KOH as the supporting electrolyte. For NiMoO4.nH2O, a maximum specific capacitance of 161 F g-1 was obtained at 5 A g-1 current density, accompanied with an energy density of 4.53 W h kg-1 at a steady power delivery rate of 1125 W kg-1. The high utility of the pseudocapacitive NiMoO4.nH2O was achieved in its graphene based composite, which exhibited a high specific capacitance of 367 F g-1 at 5 A g-1 current density and a high energy density of 10.32 W h kg-1 at a power density of 1125 W kg-1 accompanied with long term cyclic stability.One-dimensional NiMoO4.nH2O nanorods and their graphene based hybrid composite with good electrochemical properties have been synthesized by a cost effective hydrothermal procedure. The formation of the mixed metal oxide and the composite was confirmed by XRD, XPS and Raman analyses. The morphological characterizations were carried out using FESEM and TEM analyses. The materials were subjected to electrochemical characterization through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) studies with 6 M KOH as the supporting electrolyte. For NiMoO4.nH2O, a maximum specific capacitance of 161 F g-1 was obtained at 5 A g-1 current density, accompanied with an energy density of 4.53 W h kg-1 at a steady power delivery rate of 1125 W kg-1. The high utility of the pseudocapacitive NiMoO4.nH2O was achieved in its graphene

  16. A weak-light-responsive TiO2/g-C3N4 composite film: photocatalytic activity under low-intensity light irradiation.

    Science.gov (United States)

    Wang, Peifang; Guo, Xiang; Rao, Lei; Wang, Chao; Guo, Yong; Zhang, Lixin

    2018-05-10

    A TiO 2 /g-C 3 N 4 composite photocatalytic film was prepared by in situ synthesis method and its photocatalytic capability under weak-visible-light condition was studied. The co-precursor with different ratio of melamine and TiO 2 sol-gel precursor were treated using ultrasonic mixing, physical deposition, and co-sintering method to form the smooth, white-yellow, and compact TiO 2 /g-C 3 N 4 composite films. The prepared TiO 2 /g-C 3 N 4 materials were characterized by SEM, TEM, EDS, XRD, BET, VBXPS, and UV-vis diffuse reflectance spectra. The results of composite showed that TiO 2 and g-C 3 N 4 have close interfacial connections which are favorable to charge transfer between these two semiconductors with suitable band structure, g-C 3 N 4 retard the anatase-to-rutile phase transition of TiO 2 significantly, the specific surface area were increased with g-C 3 N 4 ratio raised. Under weak-light irradiation, composite films photocatalytic experiments exhibited RhB removal efficiency approaching 90% after three recycles. Powders suspension degradation experiments revealed the removal efficiency of TiO 2 /g-C 3 N 4 (90.8%) was higher than pure TiO 2 (52.1%) and slightly lower than pure g-C 3 N 4 (96.6%). By control experiment, the enhanced photocatalysis is ascribed to the combination of TiO 2 and g-C 3 N 4 , which not only produced thin films with greater stability but also formed heterojunctions that can be favorable to charge transfer between these two semiconductors with suitable band structure. This study presents the potential application of photocatalytic film in the wastewater treatment under weak-light situation.

  17. The temperature dependences of the N2+ + N2N4+ and O2+ + O2O4+ association reactions

    International Nuclear Information System (INIS)

    Boehringer, H.; Arnold, F.; Smith, D.; Adams, N.G.

    1983-01-01

    The temperature dependencies of three body association reactions have been investigated in attempts to elucidate the mechanisms of ion-molecule association. The variation with temperature of the three-body rate coefficients is described usually as a power law k approximately Tsup(-n). Experience has shown that with measurements over limited temperature ranges as with previous methods the derived coefficients n are wrong and measurements over large temperature ranges are desirable. The selected ion flow-tube and the drift tube methods developed in Birmingham and Heidelberg provide measurements over (overlapping) wide temperature rang. In collaboration of the Birmingham and the Heidelberg group the He stabilized reactions N 2 + + N 2 + He → N 4 + + He and O 2 + + O 2 + He → O 4 + + He reactions over 30 to 600 deg K. A power law dependence is found above 100 K. The temperature dependencies of the rate constants are interpred and used as a critical test of recent theories of association reactions by D.R. Bates and E. Herbst. (G.Q.)

  18. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    Science.gov (United States)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  19. Indirect N2O emission due to atmospheric N deposition for the Netherlands

    International Nuclear Information System (INIS)

    Denier van der Gon, H.; Bleeker, A.

    2005-10-01

    Nitrous oxide (N2O) is a potent greenhouse gas produced in soils and aquatic systems. The UNFCCC requires participants to report 'indirect' N2O emissions, following from agricultural N losses to ground- and surface water and N deposition on (other) ecosystems due to agricultural sources. Indirect N2O emission due to atmospheric N deposition is presently not reported by the Netherlands. In this paper, we quantify the consequences of various tiers to estimate indirect N2O due to deposition for a country with a high agricultural N use and discuss the reliability and potential errors in the IPCC methodology. A literature review suggests that the current IPCC default emission factor for indirect N2O from N deposition is underestimated by a factor 2. Moreover, considering anthropogenic N emissions from agriculture only and not from e.g., traffic and industry, results in further underestimation of indirect N2O emissions. We calculated indirect N2O emissions due to Dutch anthropogenic N emissions to air by using official Dutch N emission data as input in an atmospheric transport and deposition model in combination with land use databases. Next, land use-specific emission factors were used to estimate the indirect N2O emission. This revealed that (1) for some countries, like the Netherlands, most agricultural N emitted will be deposited on agricultural soils, not on natural ecosystems and, (2) indirect N2O emissions are at least 20% higher because more specific emission factors can be applied that are higher than the IPCC default. The results suggest that indirect N2O emission due to deposition is underestimated in current N2O budgets

  20. Production of N2O in soil during decomposition of dead yeast cells with different spatial distributions

    DEFF Research Database (Denmark)

    Ambus, P.

    1996-01-01

    Production and sources of N2O were determined in soil columns amended with autoclaved yeast cells either mixed into or added as 0.5 cm(3) lumps to the soil in combination with no or 200 mu g NO3--Ng(-1). At four occasions over a two-week study period, subsets of cores were measured for N2O...... production during 4-hour incubations under atmospheres of ambient air, 10 Pa of C2H2, and N-2, respectively. Denitrification enzyme activity (DEA) was assessed in subsamples of cores that had been incubated continuously under air. Autoclaved yeast provided a C-source readily available for denitrifying...

  1. Surface modification of TiO2 with g-C3N4 for enhanced UV and visible photocatalytic activity

    International Nuclear Information System (INIS)

    Lei, Juying; Chen, Ying; Shen, Fan; Wang, Lingzhi; Liu, Yongdi; Zhang, Jinlong

    2015-01-01

    Highlights: • g-C 3 N 4 /TiO 2 was prepared by a one-step preparation under mild conditions. • Photocatalysts showed excellent activity under both UV and visible light. • A neat surface modification process is proved, excluding influence of N doping. • Two photocatalytic mechanisms under different wavelengths are proposed. • A wide range of available wavelengths would greatly improve practicability of TiO 2 . - Abstract: g-C 3 N 4 modified TiO 2 composites were prepared through a simple calcination process of anatase and cyanamide. The as-prepared samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectrophotometry (DRS), fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), thermogravimetry differential thermal analysis (TG–DTA) and X-ray photoelectron spectroscopy (XPS), proving a successful modification of TiO 2 with g-C 3 N 4 . Photodegradation of acid orange 7 (AO7) was used to evaluate the photocatalytic activities of the composites, showing excellent activity of them under both visible and UV light. In addition, base treatment was then introduced to investigate the interaction between g-C 3 N 4 and TiO 2 . After removing the g-C 3 N 4 modified on TiO 2 by base, no nitrogen doping is found in TiO 2 lattice, demonstrating the g-C 3 N 4 was surface attached on TiO 2 and attributing all improvement of photocatalytic activity of g-C 3 N 4 /TiO 2 composite to the synergy between the two semiconductors

  2. Poly[[μ2-2,2′-diethyl-1,1′-(butane-1,4-diyldiimidazole-κ2N3:N3′](μ2-5-hydroxyisophthalato-κ2O1:O3zinc

    Directory of Open Access Journals (Sweden)

    Ying-Ying Liu

    2011-11-01

    Full Text Available In the title coordination polymer, [Zn(C8H4O5(C14H22N4]n, the ZnII cation is coordinated by an O2N2 donor set in a distorted tetrahedral geometry. The ZnII ions are linked by μ2-OH-bdc (OH-H2bdc = 5-hydroxyisophthalic acid and bbie ligands [bbie = 2,2′-diethyl-1,1′-(butane-1,4-diyldiimidazole], forming a two-dimensional layer parallel to the ab plane. The layers are further connected through intermolecular C—H...O and O—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the bbie ligand, the two C atoms in the ethyl group are each disordered over two positions with a site-occupancy ratio of 0.69:0.31.

  3. Octa-akis(4-amino-pyridine)-1κN,2κN-aqua-2κO-μ-carbonato-1:2κO,O':O''-dinickel(II) dichloride penta-hydrate.

    Science.gov (United States)

    Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B; Alfred Cecil Raj, S

    2008-10-18

    In the title compound, [Ni(2)(CO(3))(C(5)H(6)N(2))(8)(H(2)O)]Cl(2)·5H(2)O, one of the the Ni(II) ions is six-coordinated in a distorted octa-hedral geometry, with the equatorial plane defined by four pyridine N atoms from four amino-pyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other Ni(II) ion is also six-coordinated, by four other pyridine N atoms from four other amino-pyridine ligands and two carbonate O atoms to complete a distorted octa-hedral geometry. In the crystal structure, mol-ecules are linked into an infinite three-dimensional network by O-H⋯O, N-H⋯Cl, N-H⋯O, O-H⋯N, C-H⋯O, C-H⋯N and C/N-H⋯π inter-actions involving the pyridine rings.

  4. Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae.

    Science.gov (United States)

    Dalai, Swayamprava; Pakrashi, Sunandan; Bhuvaneshwari, M; Iswarya, V; Chandrasekaran, N; Mukherjee, Amitava

    2014-01-01

    The reactivity and toxicity of the soluble toxicants in the presence of the engineered nanomaterials is not well explored. In this study, the probable effects of TiO2 and Al2O3 nanoparticles (n-TiO2, n-Al2O3) on the toxicity of Cr(VI) were assessed with the dominant freshwater algae, Scenedesmus obliquus, in a low range of exposure concentrations (0.05, 0.5 and 1μg/mL). In the presence of 0.05μg/mL n-TiO2, the toxicity of Cr(VI) decreased considerably, which was presumably due to the Cr(VI) adsorption on the nanoparticle surface leading to its aggregation and precipitation. The elevated n-TiO2 concentrations (0.5 and 1μg/mL) did not significantly influence Cr(VI) bio-availability, and a dose dependent toxicity of Cr(VI) was observed. On the other hand, n-Al2O3 did not have any significant effect on the Cr(VI) toxicity. The microscopic observations presented additional information on the morphological changes of the algal cells in the presence of the binary toxicants. The generation of reactive oxygen species (ROS) suggested contribution of oxidative stress on toxicity and LDH release confirmed membrane permeability of algal cells upon stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance

    Science.gov (United States)

    Nie, Ning; Zhang, Liuyang; Fu, Junwei; Cheng, Bei; Yu, Jiaguo

    2018-05-01

    Photocatalytic reduction of CO2 into hydrocarbon fuels has been regarded as a promising approach to ease the greenhouse effect and the energy shortage. Herein, an electrostatic self-assembly method was exploited to prepare g-C3N4/ZnO composite microsphere. This method simply utilized the opposite surface charge of each component, achieving a hierarchical structure with intimate contact between them. A much improved photocatalytic CO2 reduction activity was attained. The CH3OH production rate was 1.32 μmol h-1 g-1, which was 2.1 and 4.1 times more than that of the pristine ZnO and g-C3N4, respectively. This facile design bestowed the g-C3N4/ZnO composite an extended light adsorption caused by multi-light scattering effect. It also guaranteed the uniform distribution of g-C3N4 nanosheets on the surface of ZnO microspheres, maximizing their advantage and synergistic effect. Most importantly, the preeminent performance was proposed and validated based on the direct Z-scheme. The recombination rate was considerably suppressed. This work features the meliority of constructing hierarchical direct Z-scheme structures in photocatalytic CO2 reduction reactions.

  6. Visible-light-driven g-C{sub 3}N{sub 4}/Ti{sup 3+}-TiO{sub 2} photocatalyst co-exposed {0 0 1} and {1 0 1} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr(VI) reduction

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dan; Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn; Wan, Zhen

    2015-12-15

    Graphical abstract: Schematic illustration for the mechanism of photo-generated charge carrier transfers in g-C{sub 3}N{sub 4}/Ti{sup 3+}-TiO{sub 2} photocatalyst and its visible-light photocatalytic performance. - Highlights: • g-C{sub 3}N{sub 4}/Ti{sup 3+}-TiO{sub 2} composite co-exposed {0 0 1} and {1 0 1} facets of TiO{sub 2} was synthesized. • RhB and Cr(VI) aqueous solutions were used to evaluate the photocatalytic activities. • h{sup +} and ·O{sub 2}{sup −} are the critical reactive species in the degradation of RhB solution. • Surface heterojunction of co-exposed {1 0 1} and {0 0 1} facets improve the separation. - Abstract: Novel g-C{sub 3}N{sub 4/}Ti{sup 3+}-TiO{sub 2} photocatalyst co-exposed {0 0 1} and {1 0 1} facets of TiO{sub 2} was synthesized via a hydrothermal–sonication assisted strategy. The photocatalytic activities of the as-obtained photocatalyst were evaluated by the degradation of rhodamine B (RhB) and the reduction of Cr(VI) under visible-light irradiation. It was found that the g-C{sub 3}N{sub 4}/Ti{sup 3+}-TiO{sub 2} composites with 6 wt% g-C{sub 3}N{sub 4} exhibited the highest visible-light photocatalytic efficiency, which is also higher than the pure g-C{sub 3}N{sub 4} and Ti{sup 3+}-TiO{sub 2}. A possible photocatalytic mechanism was discussed on the basis of the theoretical analyses and scavenger experiments. Results show that holes (h{sup +}) and superoxide anions (·O{sub 2}{sup −}) reactive species participated in the degradation of RhB solution over the g-C{sub 3}N{sub 4}/Ti{sup 3+}-TiO{sub 2} composites. The enhanced photocatalytic activities of g-C{sub 3}N{sub 4}/Ti{sup 3+}-TiO{sub 2} composites can be attributed to the wide optical adsorption of g-C{sub 3}N{sub 4} and Ti{sup 3+} as well as the effectively separation and transportation of photo-generated electrons and holes pairs, which was resulted from the surface heterojunction between the g-C{sub 3}N{sub 4} and Ti{sup 3+}-TiO{sub 2} nanosheets co-exposed {1

  7. Magnetically Separable Fe2O3/g-C3N4 Nanocomposites with Cocoon-Like Shape: Magnetic Properties and Photocatalytic Activities

    Science.gov (United States)

    Yu, Xiaojia; Yang, Xiaoyu; Li, Guang

    2018-01-01

    We report magnetically separable Fe2O3/g-C3N4 nanocomposites as a photocatalyst under visible-light irradiation in this study. The Fe2O3/g-C3N4 nanocomposites were synthesized through a two-step hydrothermal method. The Fe2O3 with cocoon-like shape was obviously dispersed on the surface of g-C3N4 with porous and layered nanostructure as seen from micrographs of the particles. Furthermore, the magnetic conversion of the samples was studied via vibrating sample magnetometer technology. It was found that the saturated magnetization Ms of the Fe2O3/g-C3N4 nanoparticles obviously decreased in the presence of g-C3N4, and the photocatalytic activity of the samples investigated by degrading Rhodamine B suggested that the Fe2O3/g-C3N4 photocatalyst was prior to the pure Fe2O3 and g-C3N4 samples. In addition, the magnetically separable ability of Fe2O3/g-C3N4 nanocomposites was efficiently exhibited by an external magnet.

  8. Contribution of vehicle exhaust to the global N2O budget

    International Nuclear Information System (INIS)

    Becker, K.H.; Loerzer, J.C.; Kurtenbach, R.; Wiesen, P.; Jensen, T.E.; Wallington, T.J.

    2000-01-01

    Assessment of the impact of vehicle emissions on the global environment requires accurate data concerning nitrous oxide (N 2 O) emissions. We report herein 'real world' N 2 O emissions from road vehicles in a tunnel in Wuppertal, Germany, together with 'laboratory' emission measurements conducted at the Ford Motor Company using a chassis dynamometer with a standard driving cycle for 26 different cars and trucks. Consistent results were obtained from both approaches suggesting that a good approximation of the average emission factor (g N 2 O/g CO 2 )=(4±2) x 10 -5 . This corresponds to an emission rate of 11-5 mg N 2 O/km for vehicles with fuel economies of 12-6 1/100 km (20-40 miles/US gallon). N 2 O emissions from vehicles have a global warming impact, which is 1-2% of that of the CO 2 emissions from vehicles. We estimate an annual emission of (0.12±0.06) Tg yr -1 of N 2 O (0.08±0.04 Tg N yr -1 ) from the global vehicle fleet which represents 1-4% of the atmospheric growth rate of this species. These results update and supersede our previous study of N 2 O emissions from vehicles. (author)

  9. The cocrystal μ-oxalato-κ4O1,O2:O1′,O2′-bis(aqua(nitrato-κO{[1-(2-pyridyl-κNethylidene]hydrazine-κN}copper(II μ-oxalato-κ4O1,O2:O1′,O2′-bis((methanol-κO(nitrato-κO{[1-(2-pyridyl-κNethylidene]hydrazine-κN}copper(II (1/1

    Directory of Open Access Journals (Sweden)

    Youssouph Bah

    2008-09-01

    Full Text Available The title cocrystal, [Cu2(C2O4(NO32(C7H9N32(H2O2][Cu2(C2O4(NO32(C7H9N32(CH4O2], is a 1:1 cocrystal of two centrosymmetric CuII complexes with oxalate dianions and Schiff base ligands. In each molecule, the CuII centre is in a distorted octahedral cis-CuN2O4 environment, the donor atoms of the N,N′-bidentate Schiff base ligand and the bridging O,O′-bidentate oxalate group lying in the equatorial plane. In one molecule, a monodentate nitrate anion and a water molecule occupy the axial sites, and in the other, a monodentate nitrate anion and a methanol molecule occupy these sites. In the crystal structure, intermolecular N—H...O, O—H...O and N—H...N hydrogen bonds link the molecules into a network. Weak intramolecular N—H...O interactions are also observed.

  10. Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.

    Science.gov (United States)

    Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia

    2018-06-06

    The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.

  11. Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation

    Science.gov (United States)

    Zhang, Liping; Wang, Guohong; Xiong, Zhenzhong; Tang, Hua; Jiang, Chuanjia

    2018-04-01

    A combined hydrothermal-calcination approach is developed to synthesize hierarchical β-Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced visible light photoactivity for Rhodamine B (RhB) degradation. First, Bi2O2CO3 microflowers were hydrothermally prepared using Bi(NO3)3·5H2O as feedstocks, and then a series of β-Bi2O3/g-C3N4 direct Z-scheme photocatalysts were synthesized via a facile calcination method using Bi2O2CO3 and g-C3N4 as precursors. The samples were systematically characterized by various characterization technologies including X-ray diffraction, scanning and transmission electron microscopes, Fourier transform infrared spectroscopy and N2 absorption-desorption equipment. It was found that the g-C3N4 content in the precursors played a key role in affecting the photocatalytic activity of the final products. The β-Bi2O3/g-C3N4 heterojunction exhibited higher photocatalytic activity than single active components (β-Bi2O3 and g-C3N4), indicating the presence of a synergistic effect between two active components in β-Bi2O3/g-C3N4 heterojunction. Among all as-prepared catalysts, the 70 wt.% g-C3N4/Bi2O2CO3 exhibits the highest activity for RhB degradation, and the apparent reaction rate constant k (42.2 × 10-3 min-1) is 3.1 and 1.7 times as high as that of pure β-Bi2O3 (13.5 × 10-3 min-1) and g-C3N4 (25.2 × 10-3 min-1), respectively. The enhanced photocatalytic performance of β-Bi2O3/g-C3N4 heterostructure photocatalysts is mainly due to the high surface area, closely contacted interfaces between the β-Bi2O3 and g-C3N4 component, and the formation of direct Z-scheme structure in the β-Bi2O3/g-C3N4 composites.

  12. Interface engineered construction of porous g-C3N4/TiO2 heterostructure for enhanced photocatalysis of organic pollutants

    Science.gov (United States)

    Li, Ya-Nan; Chen, Zhao-Yang; Wang, Min-Qiang; Zhang, Long-zhen; Bao, Shu-Juan

    2018-05-01

    A porous g-C3N4/TiO2 with hierarchical heterostructure has been successfully fabricated through a in situ assembling of small needle-like TiO2 on the surface of ultrathin g-C3N4 sheets. The ultrathin g-C3N4 sheets with carbon vacancies and rich hydroxyl groups were found to facilitate the nucleation and in situ growth of TiO2 and also to modulate the surface chemical activity of the g-C3N4/TiO2 hierarchical heterostructure. The as-designed photocatalytic heterojunction degraded Acid Orange with 82% efficiency after 10 min under simulated solar light, and possessed excellent cycle stability. Relative physical characterizations and photochemical experiments reveal that engineering the interface/surface of g-C3N4 plays a vital role in effectively constructing heterostructures of g-C3N4/TiO2, thus realizing efficient photoinduced electron-hole separation during photocatalytic process.

  13. (2-Formyl-6-methoxyphenolato-κ2O1,O2(perchlorato-κO(1,10-phenanthroline-κ2N,N′copper(II

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Wu

    2008-05-01

    Full Text Available In the title molecule, [Cu(C8H7O3(ClO4(C12H8N2], the CuII ion is five-coordinated by two N atoms [Cu—N = 1.995 (3 and 2.022 (3 Å] from a 1,10-phenanthroline ligand, two O atoms [Cu—O = 1.908 (2 and 1.927 (2 Å] from an o-vanillin ligand and one O atom [Cu—O = 2.510 (3 Å] from a perchlorate anion in a distorted square-pyramidal geometry. Three O atoms of the perchlorate anion are rotationally disordered between two orientations, with occupancies of 0.525 (13 and 0.475 (13. In the crystal structure, two molecules related by a centre of symmetry are paired in such a way that the phenolate O atom from one molecule completes the distorted octahedral Cu coordination in another molecule [Cu...O = 2.704 (2 Å].

  14. (μ-3-Acetyl-5-carboxylato-4-methylpyrazolido-1:2κ4N2,O3:N1,O5-μ-chlorido-tetrapyridine-1κ2N,2κ2N-chlorido-1κCl-dicopper(II propan-2-ol solvate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2009-10-01

    Full Text Available The title compound, [Cu2(C7H6N2O3Cl2(C5H5N4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octahedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H...O hydrogen bond connects the complex molecules and propan-2-ol solvent molecules into pairs. These pairs form columns along the a axis.

  15. [μ-N,N′-Bis(2-aminoethylethane-1,2-diamine-κ4N1,N1′:N2,N2′]bis{[N,N′-bis(2-aminoethylethane-1,2-diamine-κ4N,N′,N′′,N′′′]cadmium} tetrakis(perchlorate

    Directory of Open Access Journals (Sweden)

    Hamid Goudarziafshar

    2012-09-01

    Full Text Available The centrosymmetric dinuclear cadmium title complex, [Cd2(C6H18N43](ClO44, was obtained by the reaction of N,N′-bis(2-aminoethylethane-1,2-diamine (trien with Cd(NO32·4H2O and sodium perchlorate in methanol. The CdII cation is coordinated by four N atoms of a non-bridging trien ligand and by two N atoms of a bridging trien ligand in a slightly distorted octahedral coordination geometry. The bridging ligand shares another two N atoms with a neighboring symmetry-equivalent CdII cation. The structure displays C—H...O and N—H...O hydrogen bonding. The perchlorate anion is disordered over two sets of sites in a 0.854 (7: 0.146 (7 ratio.

  16. Structure and stability of small Li2 +(X2Σ+ g )-Xen (n = 1-6) clusters

    Science.gov (United States)

    Saidi, Sameh; Ghanmi, Chedli; Berriche, Hamid

    2014-04-01

    We have studied the structure and stability of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters for special symmetry groups. The potential energy surfaces of these clusters, are described using an accurate ab initio approach based on non-empirical pseudopotential, parameterized l-dependent polarization potential and analytic potential forms for the Li+Xe and Xe-Xe interactions. The pseudopotential technique has reduced the number of active electrons of Li2 +(X2Σ+ g )-Xe n ( n = 1-6) clusters to only one electron, the Li valence electron. The core-core interactions for Li+Xe are included using accurate CCSD(T) potential fitted using the analytical form of Tang and Toennies. For the Xe-Xe potential interactions we have used the analytical form of Lennard Jones (LJ6 - 12). The potential energy surfaces of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters are performed for a fixed distance of the Li2 +(X2Σ+ g ) alkali dimer, its equilibrium distance. They are used to extract information on the stability of the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters. For each n, the stability of the different isomers is examined by comparing their potential energy surfaces. Moreover, we have determined the quantum energies ( D 0), the zero-point-energies (ZPE) and the ZPE%. To our best knowledge, there are neither experimental nor theoretical works realized for the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters, our results are presented for the first time.

  17. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production

    Science.gov (United States)

    Dong, Zhifang; Wu, Yan; Thirugnanam, Natarajan; Li, Gonglin

    2018-02-01

    In the present work, a novel ZnO/ZnS/g-C3N4 ternary nanocomposite with double Z-scheme heterojunction has been designed via a two-step facile chemical conversion route. The spherical ZnS nanoparticles were uniformly loaded onto ZnO nanoflowers surface. And then the ZnO/ZnS nanocomposite was further hybridized with g-C3N4 nanosheets. Ternary ZnO/ZnS/g-C3N4 nanocomposite displays the largest specific surface area (about 76.2 m2/g), which provides plentiful activated sites for photocatalytic reaction. Furthermore, the ternary material exhibits the highest methylene blue photodegradation rate of about 0.0218 min-1 and the optimum photocatalytic H2 production (1205 μmol/g) over water splitting at 4 h under solar light irradiation. Moreover, it showed the highest photocurrent effect and the minimum charge-transfer resistance. These results implied that the higher photoactivity of ZnO/ZnS/g-C3N4 nanocomposite could be attributed to the multi-steps charge transfer and effective electron-hole separation in the double Z-scheme system.

  18. Multiple anion...π interactions in tris(1,10-phenanthroline-κ(2)N,N')iron(II) bis[1,1,3,3-tetracyano-2-(2-hydroxyethyl)propenide] monohydrate.

    Science.gov (United States)

    Setifi, Zouaoui; Domasevitch, Konstantin V; Setifi, Fatima; Mach, Pavel; Ng, Seik Weng; Petříček, Vaclav; Dušek, Michal

    2013-11-01

    In the ionic structure of the title compound, [Fe(C12H8N2)3](C9H5N4O2)2·H2O, the octahedral tris-chelate [Fe(phen)3](2+) dications [Fe-N = 1.9647 (14)-1.9769 (14) Å; phen is 1,10-phenathroline] afford one-dimensional chains by a series of slipped π-π stacking interactions [centroid-to-centroid distances = 3.792 (3) and 3.939 (3) Å]. The 1,1,3,3-tetracyano-2-(2-hydroxyethyl)propenide anions, denoted tcnoetOH(-), reveal an appreciable delocalization of π-electron density, involving the central propenide [C-C = 1.383 (3)-1.401 (2) Å] fragment and four nitrile groups, and this is also supported by density functional theory (DFT) calculations at the B97D/6-311+G(2d,2p) level. Primary noncovalent inter-moiety interactions comprise conventional O-H...O(N) and weak C-H...O(N) hydrogen bonding [O...O(N) = 2.833 (2)-3.289 (5) Å and C...O(N) = 3.132 (2)-3.439 (2) Å]. The double anion...π interaction involving a nitrile group of tcnoetOH(-) and two cis-positioned pyridine rings (`π-pocket') of [Fe(phen)3](2+) [N...centroid = 3.212 (2) and 3.418 (2) Å] suggest the relevance of anion...π stackings for charge-diffuse polycyanoanions and common M-chelate species.

  19. Fabrication of AgFeO{sub 2}/g-C{sub 3}N{sub 4} nanocatalyst with enhanced and stable photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Dandan [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Hubei Provincial Collaborative Innovation Center for High Efficient Utilization of Vanadium Resources, Wuhan 430070 (China); Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); Hubei Provincial Collaborative Innovation Center for High Efficient Utilization of Vanadium Resources, Wuhan 430070 (China)

    2017-01-01

    Highlights: • AgFeO{sub 2}/g-C{sub 3}N{sub 4} nanocatalyst was synthesized via a facile precipitation method. • The composite displays superior e{sup ∧}/h{sup +} pair separation compared to AgFeO{sub 2} and g-C{sub 3}N{sub 4}. • The composite shows high and stable photocatalytic activity both in water and air. • The active h{sup +} plays the dominate role in the degradation process. - Abstract: This work reported a novel AgFeO{sub 2}/g-C{sub 3}N{sub 4} composite with enhanced photocatalytic activity, which was fabricated by a simple precipitation method. The g-C{sub 3}N{sub 4} sheets with thickness of 2• 4 nm were successfully loaded on the surface of the AgFeO{sub 2} particles. As compared to pure AgFeO{sub 2} and pure g-C{sub 3}N{sub 4}, the as-prepared AgFeO{sub 2}/g-C{sub 3}N{sub 4} photocatalysts exhibited superior absorption in the visible-light region and displayed promising visible-light photocatalytic performance in the degradation of organic contaminations both in water and in air. About 94% of Acid red G (ARG) can be degraded by the optimized AgFeO{sub 2}/g-C{sub 3}N{sub 4} sample, which is ∱/47.5 and ∱/410.7 times higher than that by pure AgFeO{sub 2} and pure g-C{sub 3}N{sub 4}, respectively. Meanwhile, it can also effectively degrade ∱/487% of gaseous formaldehyde to CO{sub 2} within 9 h. The enhanced photocatalytic property and stability of the AgFeO{sub 2}/g-C{sub 3}N{sub 4} composite can be attributed to its specific nanostructure, effective electron-hole separation and the formation of Z-scheme heterostructure between AgFeO{sub 2} and g-C{sub 3}N{sub 4}. This work could provide new and helpful insights into the photocatalytic application of Ag-based delafossite materials.

  20. Hierarchical Cu2O foam/g-C3N4 photocathode for photoelectrochemical hydrogen production

    Science.gov (United States)

    Ma, Xinzhou; Zhang, Jingtao; Wang, Biao; Li, Qiuguo; Chu, Sheng

    2018-01-01

    Solar photoelectrochemical (PEC) hydrogen production is a promising way for solving energy and environment problems. Earth-abundant Cu2O is a potential light absorber for PEC hydrogen production. In this article, hierarchical porous Cu2O foams are prepared by thermal oxidation of the electrochemically deposited Cu foams. PEC performances of the Cu2O foams are systematically studied and discussed. Benefiting from their higher light harvesting and more efficient charge separation, the Cu2O foams demonstrate significantly enhanced photocurrents and photostability compared to their film counterparts. Moreover, by integrating g-C3N4, hierarchical Cu2O foam/g-C3N4 composites are prepared with further improved photocurrent and photostability, appearing to be potential photocathodes for solar PEC hydrogen production. This study may provide a new and useful insight for the development of Cu2O-based photocathodes for PEC hydrogen production.

  1. Carbon/CuO nanosphere-anchored g-C3N4 nanosheets as ternary electrode material for supercapacitors

    Science.gov (United States)

    Vattikuti, S. V. Prabhakar; Reddy, B. Purusottam; Byon, Chan; Shim, Jaesool

    2018-06-01

    Novel electrode materials for supercapacitors comprised of carbon and copper oxide (CuO) nanospheres on graphitic carbon nitride (g-C3N4) nanosheets, denoted as C/CuO@g-C3N4 are self-assembled via a one-step co-pyrolysis decomposition method. The pure g-C3N4 and C/CuO@g-C3N4 were confirmed by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), thermal gravimetric and differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption studies and Fourier-transform infrared spectroscopy (FTIR). The specific capacitance was 247.2 F g-1 in 0.5 M NaOH at a current density of 1 A g-1, and more than 92.1% of the capacitance was retained after 6000 cycles. The property enhancement was ascribed to the synergistic effects of the three components in the composite. These results suggest that C/CuO@g-C3N4 possessed an excellent cyclic stability with respect to their capacity performance as electrode materials.

  2. Epitaxial growth of mixed conducting layered Ruddlesden–Popper La{sub n+1}Ni{sub n}O{sub 3n+1} (n = 1, 2 and 3) phases by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kuan-Ting; Soh, Yeong-Ah; Skinner, Stephen J., E-mail: s.skinner@imperial.ac.uk

    2013-10-15

    Graphical abstract: - Highlights: • High quality epitaxial thin films of layered Ruddlesden–Popper nickelates were prepared. • For the first time this has been achieved by the PLD process. • n = 1, 2 and 3 films were successfully deposited on SrTiO{sub 3} and NdGaO{sub 3} substrates. • c-Axis oriented films were confirmed by XRD analysis. • In-plane and out-of-plane strain effects on lattice are discussed. - Abstract: Layered Ruddlesden–Popper phases of composition La{sub n+1}Ni{sub n}O{sub 3n+1} (n = 1, 2 and 3) have been epitaxially grown on SrTiO{sub 3} (0 0 1) or NdGaO{sub 3} (1 1 0) single crystal substrates using the pulsed laser deposition technique. X-ray diffraction analyses (θ/2θ, rocking curves, and φ-scans) and atomic force microscopy confirms the high-quality growth of the series of films with low surface roughness values (less than 1 nm). In particular, epitaxial growth of the higher order phases (n = 2 and 3) of lanthanum nickelate have been demonstrated for the first time.

  3. Rational construction of Z-scheme Ag_2CrO_4/g-C_3N_4 composites with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Luo, Jin; Zhou, Xiaosong; Ma, Lin; Xu, Xuyao

    2016-01-01

    Highlights: • Novel visible-light driven Ag_2CrO_4/g-C_3N_4 composites were synthesized. • Ag_2CrO_4/g-C_3N_4 exhibited enhanced visible-light photocatalytic activity. • The reasons for the enhanced photocatalytic activity were revealed. - Abstract: Novel visible-light driven Z-scheme Ag_2CrO_4/g-C_3N_4 composites with different contents of Ag_2CrO_4 were fabricated by a facile chemical precipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy and photoelectrochemical measurements. Compared with individual g-C_3N_4 and Ag_2CrO_4, the Ag_2CrO_4/g-C_3N_4 composites displayed much larger photocatalytic activities for the photocatalytic degradation of methyl orange (MO) solution at room temperature under visible light irradiation (λ > 420 nm). Importantly, the optimum photodegradation rate constant of the Ag_2CrO_4/g-C_3N_4 composite at a theoretical weight content of 8.0% Ag_2CrO_4 for the photodegradation of MO was 0.0068 min"−"1, which was 5.7 and 4.3 times higher than that of pure g-C_3N_4 and Ag_2CrO_4, respectively. Such enormous enhancement in photocatalytic performance was predominantly ascribed to the efficient separation and transfer of photogenerated electrons and holes at the Ag_2CrO_4/g-C_3N_4 interface imparted through the Z-scheme electron transfer. Furthermore, radical trap experiments depicted that both the holes and superoxide radical anions were thought to dominate oxidative species of the Ag_2CrO_4/g-C_3N_4 composite for MO degradation under visible light irradiation. Ultimately, a tentative Z-scheme photodegradation mechanism was proposed. This work may be useful for the rational design of new types of Z-scheme photocatalysts and provide some illuminate insights into the Z-scheme transfer mechanism for application in energy

  4. Structure and stability of nonstoichiometric cubic phase δ-NbN1.2(O,C)

    International Nuclear Information System (INIS)

    Shalaeva, E.V.; Mitrofanov, B.V.; Shveikin, G.P.

    1996-01-01

    The nonstoichiometric δ-niobium nitride with surplus content of nitrogen atoms and the NaCl-type structure (a=0.439 nm), i.e. δ-NbN 1.2 (O, C), is stabilized in epitaxial deposited films. The diffraction patterns of these films display intensive diffuse scattering with regular intensity vanishings in the form of plane regions in the vicinity of structural and superstructural reciprocal space points of the δ-phase and in the form of spherical surfaces in the neighbourhood of structural points. The analysis performed shows that this scattering can be associated with the presence of mixed-nature short-range order regions in the nonstoichiometric δ-NbN 1.2 (O, C) phase which are characterized by longitudinal uncorrelated atomic displacement waves, as well as by concentration-type waves. The ordered oxycarbonitride phase (X-phase) described in the first approximation by the cubic lattice with parameter a=0.392 nm is found to precipitate when annealing the films at T=873 K. It has been established that the diffuse scattering occurring in δ-NbN 1.2 (O, C) and the structure of short-range order regions exhibit certain correlation with the structure of the precipitated ordered phase - G 100 x ∼1.1G 100 δ = K 1 ; G 010 x ∼1.1G 010 δ = K 2 (where K 1 and K 2 are wave vectors of longitudinal atomic displacement waves characterizing short-range order). (orig.)

  5. O2(b1∑+g) relaxation in active medium of oxygen-iodine laser

    Science.gov (United States)

    Tolstov, G. I.; Zagidullin, M. V.; Khvatov, N. A.; Medvedkov, I. A.; Mikheyev, P. A.

    2018-04-01

    Rate constants for the removal of O2 b1∑+g by collisions with O2, N2, CO2 and H2O have been determined at temperature 297 K. O2(b1 ∑+g) was excited by pulses from a tunable dye laser, and the deactivation kinetics were followed by observing the temporal behavior of the b1∑+g - X3∑-g fluorescence. The removal rate constants for CO2, N2 and H2O were not strongly dependent on temperature, and could be represented by the expressions kCO2=(1.8+/-0.05)×10-16 kN2=(2.2 +/- 0.2)×10-15, and kH2O=(6.12+/-0.67)×10-12 cm3 molecule-1 s-1. Rate constant for O2(b1∑+ ) removal by O2(X), being orders of magnitude lower, represented by the fitted expression kO2=(3.67 +/- 0.06)×10-17 cm3 molecule-1 s-1. All of the rate constants measured at room temperature were found to be in good agreement with previously reported values.

  6. (3-Methylbenzonitrile-1κN-cis-tetrakis(μ-N-phenylacetamidato-1:2κ4N:O;1:2κ4O:N-dirhodium(II(Rh—Rh

    Directory of Open Access Journals (Sweden)

    Cassandra T. Eagle

    2014-08-01

    Full Text Available The complex molecule of the title compound, [Rh2{N(C6H5COCH3}4(NCC7H7], has crystallographically-imposed mirror symmetry. The four acetamide ligands bridging the dirhodium core are arranged in a 2,2-cis manner with two N atoms and two O atoms coordinating to the unique RhII atom cis to one another. The Neq—Rh—Rh—Oeq torsion angles on the acetamide bridge are 0.75 (7 and 1.99 (9°. The axial nitrile ligand completes the distorted octahedral coordination sphere of one RhII atom and shows a nonlinear coordination, with an Rh—N—C bond angle of 162.8 (5°; the N—C bond length is 1.154 (7 Å.

  7. Investigation of N2O Production from 266 and 532 nm Laser Flash Photolysis of O3/N2/O2 Mixtures

    Science.gov (United States)

    Estupinan, E. G.; Nicovich, J. M.; Li, J.; Cunnold, D. M.; Wine, P. H.

    2002-01-01

    Tunable diode laser absorption spectroscopy has been employed to measure the amount of N2O produced from laser flash photolysis of O3/N2/O2 mixtures at 266 and 532 nm. In the 532 nm photolysis experiments very little N2O is observed, thus allowing an upper limit yield of 7 x 10(exp -8) to be established for the process O3 + N2 yield N2O + O2, where O3 is nascent O3 that is newly formed via O(3P(sub J)) + O2 recombination (with vibrational excitation near the dissociation energy of O3). The measured upper limit yield is a factor of approx. 600 smaller than a previous literature value and is approximately a factor of 10 below the threshold for atmospheric importance. In the 266 nm photolysis experiments, significant N2O production is observed and the N2O quantum yield is found to increase linearly with pressure over the range 100 - 900 Torr in air bath gas. The source of N2O in the 266 nm photolysis experiments is believed to be the addition reaction O(1D(sub 2)) + N2 + M yields (k(sub sigma)) N2O + M, although reaction of (very short-lived) electronically excited O3 with N2 cannot be ruled out by the available data. Assuming that all observed N2O comes from the O(1D(sub 2)) + N2 + M reaction, the following expression describes the temperature dependence of k(sub sigma) (in its third-order low-pressure limit) that is consistent with the N2O yield data: k(sub sigma) = (2.8 +/- 0.1) x 10(exp -36)(T/300)(sup -(0-88+0.36)) cm(sup 6) molecule(sup -2)/s, where the uncertainties are 2(sigma) and represent precision only. The accuracy of the reported rate coefficients at the 95% confidence level is estimated to be 30 - 40% depending on the temperature. Model calculations suggest that gas phase processes initiated by ozone absorption of a UV photon represent about 1.4% of the currently estimated global source strength of atmospheric N2O. However, these processes could account for a significant fraction of the oxygen mass-independent enrichment observed in atmospheric N2O, and

  8. Thermal expansion of superconducting phases Bi sub 2 Sr sub 2 Ca sub n-1 Cu sub n O sub 2n+2+. delta. with n=1,2,3. Termicheskoe rasshirenie sverkhprovodyashchikh faz Bi sub 2 Sr sub 2 Ca sub n-1 Cu sub n O sub 2n+2+. delta. s n=1,2,3

    Energy Technology Data Exchange (ETDEWEB)

    Zhurov, V V; Ivanov, S A [Nauchno-Issledovatel' skij Fiziko-Khimicheskij Inst., Moscow (USSR); Bush, A A; Romanov, B N [Moskovskij Inst. Radiotekhniki, Ehlektroniki i Avtomatiki, Moscow (USSR)

    1990-10-01

    Consideration is given to results of X-ray diffraction studies of temperature dependences of a{sub 0},c{sub 0} sublattice parameters of Bi{sub 2}Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub 2n+2+}{delta} superconducting phases with n=1,2,3 (2201, 2212, 2223) in 90-1000 K range. The obtained dependences are composed of some temperature linear sections, where values of thermal coefficients of linear expansion {alpha}{sub a}, {alpha}{sub c} were determined for all examined phases. During first heating of samples of 2212 phase a{sub 0}(T), c{sub 0}(T) dependences deviate in {approx equal}500-700 K range from linear ones till the occurence of a section with negative a{sub c}. After heating of 2212 phase up to T>{approx equal}700 K and cooling down to 300 K, a{sub 0},c{sub 0} parameters decrease by {approx equal}0.006 and 0.08 A respectively. Data on the effect of preparation method and thermal prehistory of 2212 samples and on relative content of calcium atoms in them for these anomalies were obtained. Some possible reasons of their occurence were analyzed.

  9. A novel one-step strategy toward ZnMn2O4/N-doped graphene nanosheets with robust chemical interaction for superior lithium storage

    International Nuclear Information System (INIS)

    Wang, Dong; Zhou, Weiwei; Zhang, Yong; Wang, Yali; Wu, Gangan; Yu, Kun; Wen, Guangwu

    2016-01-01

    Ingenious hybrid electrode design, especially realized with a facile strategy, is appealing yet challenging for electrochemical energy storage devices. Here, we report the synthesis of a novel ZnMn 2 O 4 /N-doped graphene (ZMO/NG) nanohybrid with sandwiched structure via a facile one-step approach, in which ultrafine ZMO nanoparticles with diameters of 10–12 nm are well dispersed on both surfaces of N-doped graphene (NG) nanosheets. Note that one-step synthetic strategies are rarely reported for ZMO-based nanostructures. Systematical control experiments reveal that the formation of well-dispersed ZMO nanoparticles is not solely ascribed to the restriction effect of the functional groups on graphene oxide (GO), but also to the presence of ammonia. Benefitting from the synergistic effects and robust chemical interaction between ZMO nanoparticles and N-doped graphene nanosheets, the ZMO/NG hybrids deliver a reversible capacity up to 747 mAh g1 after 200 cycles at a current density of 500 mA g1 . Even at a high current density of 3200 mA g1 , an unrivaled capacity of 500 mAh g1 can still be retained, corroborating the good rate capability. (paper)

  10. Construction of g-C_3N_4/Al_2O_3 hybrids via in-situ acidification and exfoliation with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Wang, Xiao-jing; Liu, Chao; Li, Xu-li; Li, Fa-tang; Li, Yu-pei; Zhao, Jun; Liu, Rui-hong

    2017-01-01

    Highlights: • Ultrathin g-C_3N_4/Al_2O_3 hybrids are prepared via in-situ reaction. • The structure modification role of in-situ formed HNO_3 for g-C_3N_4 is found. • The ultrathin g-C_3N_4 nanosheets are formed by the acidified melamine and Al(OH)_3. • In-situ calcination of melamine and Al(OH)_3 benefits the contact of C_3N_4 and Al_2O_3. • The activity of g-C_3N_4/Al_2O_3 is 16.6 times that of pristine g-C_3N_4 in degrading RhB. - Abstract: Homogeneous ultrathin g-C_3N_4 nanosheets/Al_2O_3 heterojunctions are synthesized using melamine and Al(NO_3)_3 via in-situ reaction and the following thermal polymerization approach. The in-situ reaction between melamine and Al(NO_3)_3 results in the existence of HNO_3-acidified melamine and Al(OH)_3 aggregates via the hydrolysis of Al(NO_3)_3. After thermal polymerization, the aggregates are converted to g-C_3N_4/Al_2O_3 composites. The thermal polymerization of acidified melamine and the support effect of aluminum hydroxide for g-C_3N_4 during the calcination process lead to highly dispersed amrophous Al_2O_3 on ultrathin g-C_3N_4 nanosheets, which is beneficial for the separation of photogenerated electron-hole pairs in the heterojunction. The degradation rate for Rhodamine B (RhB) over the most activie sample is 16.6 times than that of pristine g-C_3N_4 under visible light irradiation, which can be attributed to the high specific surface area, highly dispersion of amorphous Al_2O_3 on ultrathin g-C_3N_4 nanosheet, and the effective electrons transfer from g-C_3N_4 to the amorphous Al_2O_3.

  11. Suitability of quantum cascade laser spectroscopy for CH4 and N2O eddy covariance flux measurements

    Directory of Open Access Journals (Sweden)

    A. T. Vermeulen

    2007-08-01

    Full Text Available A quantum cascade laser spectrometer was evaluated for eddy covariance flux measurements of CH4 and N2O using three months of continuous measurements at a field site. The required criteria for eddy covariance flux measurements including continuity, sampling frequency, precision and stationarity were examined. The system operated continuously at a dairy farm on peat grassland in the Netherlands from 17 August to 6 November 2006. An automatic liquid nitrogen filling system for the infrared detector was employed to provide unattended operation of the system. The electronic sampling frequency was 10 Hz, however, the flow response time was 0.08 s, which corresponds to a bandwidth of 2 Hz. A precision of 2.9 and 0.5 ppb Hz−1/2 was obtained for CH4 and N2O, respectively. Accuracy was assured by frequent calibrations using low and high standard additions. Drifts in the system were compensated by using a 120 s running mean filter. The average CH4 and N2O exchange was 512 ngC m−2 s−1 (2.46 mg m−2 hr−1 and 52 ngN m−2 s−1 (0.29 mg m−2 hr−1. Given that 40% of the total N2O emission was due to a fertilizing event.

  12. Thermochemical characteristics of La n+1Ni nO3n+1 oxides

    International Nuclear Information System (INIS)

    Bannikov, D.O.; Safronov, A.P.; Cherepanov, V.A.

    2006-01-01

    Lanthanum nickelates: La 2 NiO 4+δ , La 3 Ni 2 O 7-δ , La 4 Ni 3 O 10-δ and LaNiO 3-δ the members of Ruddlesden-Popper series La n+1 Ni n O 3n+1 were prepared using citrate route. Dissolution enthalpies of complex oxides as well as a number of subsidiary substances were measured by means of Calvet calorimeter in 1 M solution of hydrochloric acid at 25 deg. C. The dissolution scheme of complex oxides in hydrochloric acid was proposed and enthalpies of formation of the complex oxides from binary oxides were calculated considering oxygen nonstoichiometry of these substances. Enthalpies of step-by-step oxidation were evaluated. Partial enthalpy contribution of LaO layers was calculated endothermic equals to 30.9 J/mol while partial enthalpy contribution of perovskite LaNiO 3 layers was negative equals to -97.0 J/mol. Enthalpy of formation of any complex oxide of Ruddlesden-Popper series fits very well to the linear regression based on these values

  13. Ab initio studies of O-2(-) (H2O)(n) and O-3(-) (H2O)(n) anionic molecular clusters, n

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurten, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    that anionic O-2(-)(H2O)n and O-3(-)(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding....... Although clustering up to 12 H2O, we find that the O-2 and O-3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O-2(-) and O-3(-) speicies are thus accessible for further reactions. We consider the distributions of cluster sizes as function of altitude before...

  14. Highly Enhanced Photoreductive Degradation of Polybromodiphenyl Ethers with g-C3N4/TiO2 under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Weidong Ye

    2017-04-01

    Full Text Available A series of high activity photocatalysts g-C3N4-TiO2 were synthesized by simple one-pot thermal transformation method and characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, X-ray diffraction (XRD, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller (BET surface area, and ultraviolet–visible diffuse reflectance spectroscopy (UV-Vis-DRS. The g-C3N4-TiO2 samples show highly improved photoreductive capability for the degradation of polybromodiphenyl ethers compared with g-C3N4 under visible light irradiation. Among all the hybrids, 0.02-C3N4-TiO2 with 2 wt % g-C3N4 loaded shows the highest reaction rate, which is 15 times as high as that in bare g-C3N4. The well-matched band gaps in heterojunction g-C3N4-TiO2 not only strengthen the absorption intensity, but also show more effective charge carrier separation, which results in the highly enhanced photoreductive performance under visible light irradiation. The trapping experiments show that holetrapping agents largely affect the reaction rate. The rate of electron accumulation in the conductive band is the rate-determining step in the degradation reaction. A possible photoreductive mechanism has been proposed.

  15. Synthesis, structures, and magnetic properties of novel Roddlesden-Popper homologous series Srn+1ConO3n+1 (n=1,2,3,4, and ∞)

    International Nuclear Information System (INIS)

    Wang, X.L.; Sakurai, H.; Takayama-Muromachi, E.

    2005-01-01

    Roddlesden-Popper homologous series Sr n+1 Co n O 3n+1 (n=1,2,3,4, and ∞) compounds were successfully synthesized by a high pressure and high temperature technique. Structure refinement revealed that these compounds crystallize in tetragonal structures, while the compound n=∞ is cubic. These compounds are ferromagnetic with the Curie temperature decreasing from 255 K for n=1 to about 200 K for n=2-4 and down to 175 K for SrCoO 3 . Co 4+ ions present as intermediate spin states for n=1-4, but in the low spin state in SrCoO 3 . Negative magnetoresistance was observed for Sr 2 CoO 4 and found to be larger than that for SrCoO 3

  16. Nitrous oxide (N2O) emission from aquaculture: a review.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Khanal, Samir Kumar

    2012-06-19

    Nitrous oxide (N(2)O) is an important greenhouse gas (GHG) which has a global warming potential 310 times that of carbon dioxide (CO(2)) over a hundred year lifespan. N(2)O is generated during microbial nitrification and denitrification, which are common in aquaculture systems. To date, few studies have been conducted to quantify N(2)O emission from aquaculture. Additionally, very little is known with respect to the microbial pathways through which N(2)O is formed in aquaculture systems. This review suggests that aquaculture can be an important anthropogenic source of N(2)O emission. The global N(2)O-N emission from aquaculture in 2009 is estimated to be 9.30 × 10(10) g, and will increase to 3.83 × 10(11)g which could account for 5.72% of anthropogenic N(2)O-N emission by 2030 if the aquaculture industry continues to increase at the present annual growth rate (about 7.10%). The possible mechanisms and various factors affecting N(2)O production are summarized, and two possible methods to minimize N(2)O emission, namely aquaponic and biofloc technology aquaculture, are also discussed. The paper concludes with future research directions.

  17. Nano-level determination of copper with atomic absorption spectrometry after pre-concentration on N,N-(4-methyl-1,2-phenylene)diquinoline-2-carboxamide-naphthalene

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Behzad, E-mail: rezaei@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Sadeghi, Elham; Meghdadi, Soraia [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2009-09-15

    A novel, simple, sensitive and effective method has been developed for selective extraction and pre-concentration of copper on N,N-(4-methyl-1,2-phenylene)diquinoline-2-carboxamide-naphthalene. After pre-concentration, copper was eluted from sorbent with hydrochloric acid, and then flame atomic absorption spectrometry (FAAS) was used for its determination. The effect of pH, sample flow rate and the volume and concentration of eluent on the recovery of the analyte was investigated and the optimum conditions were established. A pre-concentration factor of 400, and an adsorption capacity of 6.9 mg g{sup -1} of the solid-phase sorbent or 82.8 mg g{sup -1} of ligand was achieved using the optimum conditions. The calibration graph was linear in the range of 1.0-4000 ng mL{sup -1} with the detection limit of 1.0 ng mL{sup -1}. A R.S.D. value of 2.4% was obtained by this method for 400 ng mL{sup -1} of Cu{sup 2+} solution. This procedure has been successfully applied to separate and determine the ultra trace levels of copper in the environmental samples, free from the interference of some diverse ions.

  18. Poly[[sesqui[mu2-1,4-bis(imidazol-1-ylmethyl)benzene-kappa(2)N:N'](carbonato-kappa(2)O,O')copper(II)] 1,4-bis(imidazol-1-ylmethyl)benzene hemisolvate pentahydrate].

    Science.gov (United States)

    Dai, Yu-Mei; Tang, En; Huang, Jin-Feng; Yang, Qiu-Yan

    2008-10-01

    The asymmetric unit of the title compound, {[Cu(CO(3))(C(14)H(14)N(4))(1.5)] x 0.5 C(14)H(14)N(4) x 5 H(2)O}(n), contains one Cu(II) cation in a slightly distorted square-pyramidal coordination environment, one CO(3)(2-) anion, one full and two half 1,4-bis(imidazol-1-ylmethyl)benzene (bix) ligands, one half-molecule of which is uncoordinated, and five uncoordinated water molecules. One of the coordinated bix ligands and the uncoordinated bix molecule are situated about centers of symmetry, located at the centers of the benzene rings. The coordinated bix ligands link the copper(II) ions into a [Cu(bix)(1.5)](n) molecular ladder. These molecular ladders do not form interpenetrated ladders but are arranged in an ABAB parallel terrace, i.e. with the ladders arranged one above another, with sequence A translated with respect to B by 8 A. To best of our knowledge, this arrangement has not been observed in any of the molecular ladder frameworks synthesized to date. The coordination environment of the Cu(II) atom is completed by two O atoms of the CO(3)(2-) anion. The framework is further strengthened by extensive O-H...O and O-H...N hydrogen bonds involving the water molecules, the O atoms of the CO(3)(2-) anion and the N atoms of the bix ligands. This study describes the first example of a molecular ladder coordination polymer based on bix and therefore demonstrates further the usefulness of bix as a versatile multidentate ligand for constructing coordination polymers with interesting architectures.

  19. Enhanced visible light activity on direct contact Z-scheme g-C{sub 3}N{sub 4}-TiO{sub 2} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004 (China); Collaborative Innovation Center of Nano Functional Materials and Applications of Henan Province, Henan University, Kaifeng, 475004 (China); College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004 (China); Zhang, Min [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004 (China); Collaborative Innovation Center of Nano Functional Materials and Applications of Henan Province, Henan University, Kaifeng, 475004 (China); Li, Qiuye, E-mail: qiuyeli@henu.edu.cn [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004 (China); Collaborative Innovation Center of Nano Functional Materials and Applications of Henan Province, Henan University, Kaifeng, 475004 (China); Yang, Jianjun, E-mail: yangjianjun@henu.edu.cn [National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004 (China); Collaborative Innovation Center of Nano Functional Materials and Applications of Henan Province, Henan University, Kaifeng, 475004 (China)

    2017-01-01

    Highlights: • The g-C{sub 3}N{sub 4}-TiO{sub 2} composites were obtained by simple solid state sintering. • The composites were direct contact Z-scheme without an electron mediator. • TiO{sub 2} with large amount of SETOV was obtained by dehydration of NTA. - Abstract: Direct contact Z-scheme g-C{sub 3}N{sub 4}-TiO{sub 2} nanocomposites without an electron mediator are prepared via simple annealing the mixture of bulk g-C{sub 3}N{sub 4} and nanotube titanic acid (NTA) in air at 600 °C for 2 h. In the process of annealing, the bulk g-C{sub 3}N{sub 4} transformed to ultra-thin g-C{sub 3}N{sub 4} nanosheets, and NTA converted to a novel anatase TiO{sub 2}, then the two components formed a close interaction. The XPS result reveals that some amount of nitrogen is doped into this novel-TiO{sub 2}, and g-C{sub 3}N{sub 4} nanosheets exist in the composites. The results of XRD, TEM and TG indicate that the thickness of g-C{sub 3}N{sub 4} nanosheets is very thin. The ESR spectrum shows the existence of Ti{sup 3+} and single-electron-trapped oxygen vacancy in the 30%g-C{sub 3}N{sub 4}-TiO{sub 2} composites. In photocatalytic activity test, the 30%g-C{sub 3}N{sub 4}-TiO{sub 2} nanocomposites showed an excellent photo-oxidation activity of propylene under visible light irradiation (λ≥ 420 nm), and the removal efficiency of propylene reached as high as 56.6%, and the activity kept nearly 82% after four consecutive recycles. Photoluminescence (PL) result using terephthalic acid (TA) as a probe molecule indicated that the g-C{sub 3}N{sub 4}-TiO{sub 2} nanocomposites displayed a Z-sheme photocatalytic reaction system and this should be the main reason for the high photocatalytic activity. A possible photocatalytic mechanism was proposed on the basis of PL result and transient photocurrent-time curves.

  20. catena-Poly[[aquabis[N-(pyridin-3-ylisonicotinamide-κN1]copper(II]-μ-fumarato-κ2O1:O4

    Directory of Open Access Journals (Sweden)

    Sultan H. Qiblawi

    2012-12-01

    Full Text Available In the title compound, [Cu(C4H2O4(C11H9N3O2(H2O]n, CuII ions on crystallographic twofold rotation axes are coordinated in a square pyramidal environment by two trans O atoms belonging to two monodentate fumarate anions, two trans isonicotinamide pyridyl N-donor atoms from monodentate, pendant 3-pyridylisonicotinamide (3-pina ligands, and one apical aqua ligand, also sited on the crystallographic twofold rotation axis. The exobidentate fumarate ligands form [Cu(fumarate(3-pina2(H2O]n coordination polymer chains that are arranged parallel to [001]. In the crystal, these polymeric chains are anchored into supramolecular layers parallel to (100 by O—H...O hydrogen bonds between aqua ligands and unligating fumarate O atoms, and N—H...O(=C hydrogen bonds between 3-pina ligands. In turn, the layers aggregate by weak C—H...N and C—H...O hydrogen bonds, affording a three-dimensional network.

  1. Higher spin currents in the critical O(N) vector model at 1/N2

    International Nuclear Information System (INIS)

    Manashov, A.N.; Strohmaier, M.

    2017-06-01

    We calculate the anomalous dimensions of higher spin singlet currents in the critical O(N) vector model at order 1/N 2 . The results are shown to be in agreement with the four-loop perturbative computation in φ 4 theory in 4-2ε dimensions. It is known that the order 1/N anomalous dimensions of higher-spin currents happen to be the same in the Gross-Neveu and the critical vector model. On the contrary, the order 1/N 2 corrections are different. The results can also be interpreted as a prediction for the two-loop computation in the dual higher-spin gravity.

  2. Active species in a large volume N2-O2 post-discharge reactor

    International Nuclear Information System (INIS)

    Kutasi, K; Pintassilgo, C D; Loureiro, J; Coelho, P J

    2007-01-01

    A large volume post-discharge reactor placed downstream from a flowing N 2 -O 2 microwave discharge is modelled using a three-dimensional hydrodynamic model. The density distributions of the most populated active species present in the reactor-O( 3 P), O 2 (a 1 Δ g ), O 2 (b 1 Σ g + ), NO(X 2 Π), NO(A 2 Σ + ), NO(B 2 Π), NO 2 (X), O 3 , O 2 (X 3 Σ g - ) and N( 4 S)-are calculated and the main source and loss processes for each species are identified for two discharge conditions: (i) p = 2 Torr, f = 2450 MHz, and (ii) p = 8 Torr, f = 915 MHz; in the case of a N 2 -2%O 2 mixture composition and gas flow rate of 2 x 10 3 sccm. The modification of the species relative densities by changing the oxygen percentage in the initial gas mixture composition, in the 0.2%-5% range, are presented. The possible tuning of the species concentrations in the reactor by changing the size of the connecting afterglow tube between the active discharge and the large post-discharge reactor is investigated as well

  3. Structure and thermal property of N,N-diethyl-N-methyl-N-2-methoxyethyl ammonium tetrafluoroborate-H2O mixtures

    International Nuclear Information System (INIS)

    Imai, Yusuke; Abe, Hiroshi; Goto, Takefumi; Yoshimura, Yukihiro; Michishita, Yosuke; Matsumoto, Hitoshi

    2008-01-01

    By in situ observations using simultaneous X-ray diffraction and differential scanning calorimetry method, complicated phase transitions were observed in N,N-diethyl-N-methyl-N-2-methoxyethyl ammonium tetrafluoroborate, [DEME][BF 4 ] and H 2 O mixtures. In pure [DEME][BF 4 ], two different crystal structures were determined below crystallization temperature, T c . Two kinds of crystals correspond to two stages of melting upon heating. T c decreases with increasing in the H 2 O content of [DEME][BF 4 ]-H 2 O mixture. Around 6.7 mol% H 2 O, an amorphous solid, however, was formed without crystallization on cooling. Glass transition temperature, T g , of the amorphous phase depends on cooling rate of the mixture. On heating, the amorphous solid transformed to a crystal accompanied by an exothermal peak. This unusual cold crystallization is induced by H 2 O molecules. Two different dynamic components were observed in a Raman spectrum of the amorphous phase, where the lower Raman band is crystal-like and the higher one is liquid-like. At higher H 2 O concentration, coexistence of the amorphous solid and crystal was realized below T c , and the cold crystallization also occurred. In spite of a variety of phase transitions, the crystal structure of [DEME][BF 4 ]-H 2 O mixtures is the same one as pure [DEME][BF 4

  4. N2O isotopomers and N2:N2O ratio as indicators of denitrification in ecosystems

    International Nuclear Information System (INIS)

    Mander, Ülo; Zaman, Mohammad

    2015-01-01

    The world is experiencing climate change and variability due to increased greenhouse gas (GHG) emissions. The main GHG’s of concern are nitrous oxide (N 2 O), carbon dioxide (CO 2 ) and methane (CH 4 ). Agriculture contributes approximately 14% of the world’s GHG emissions. Nitrous oxide is one of the key GHG and ozone (O 3 ) depleting gas, constituting 7% of the anthropogenic greenhouse effect. On a molecular basis, N 2 O has a 310- and 16-fold greater global warming potential than each of CO 2 and CH 4 , respectively, over a 100-year period. Nitrous oxide can be produced through both chemical and biochemical pathways. They occur during denitrification (the stepwise conversion of nitrate (NO 3 - ) to nitrogen gas (N 2 ) and during nitrification by ammonia-oxidizing archea (bacteria) during the oxidation of hydroxylamine (NH 2 OH) to nitrite (NO 2 - ) which is then reduced to N 2 O and N 2 by nitrifier denitrification or heterotrophic denitrification

  5. Preparation of MoO2/g-C3N4 composites with a high surface area and its application in deep desulfurization from model oil

    Science.gov (United States)

    Hou, Liang-pei; Zhao, Rong-xiang; Li, Xiu-ping; Gao, Xiao-han

    2018-03-01

    A series of catalysts of composition X-MoO2/g-C3N4 (X = 0, 0.5, 1, 3, 5 wt.%) were successfully synthesized by calcination of a mixture of (NH4)6Mo7O24·4H2O and g-C3N4. Oxidative desulfurization experiments were conducted using X-MoO2/g-C3N4 as a catalyst, H2O2 as an oxidant, and ionic liquids (ILs) as extraction agents. Catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-IR), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller analysis (BET). Characterization results suggested that MoO2 was present in the catalyst and its crystallinity improved with increased Mo-loading. The catalysts had a larger specific surface area due to the presence of MoO2 dispersed on g-C3N4. Experimental results showed that 3%-MoO2/g-C3N4 had the highest catalytic activity among all the catalysts tested. A desulfurization rate of 96.0% was achieved under optimal conditions. Through gas chromatography-mass spectrometry (GC-MS) analysis, it was shown that dibenzothoiphene sulfone was the sole product of the oxidation desulfurization reaction. An apparent activation energy of 61.1 kJ/mol was estimated based on Arrhenius equation. The activity of 3%-MoO2/g-C3N4 slightly decreased after six runs. A possible mechanism for the reaction has been proposed.

  6. N2O, NO, N2 and CO2 emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores

    Directory of Open Access Journals (Sweden)

    C. Werner

    2014-11-01

    Full Text Available Strong seasonal variability of hygric and thermal soil conditions are a defining environmental feature in northern Australia. However, how such changes affect the soil–atmosphere exchange of nitrous oxide (N2O, nitric oxide (NO and dinitrogen (N2 is still not well explored. By incubating intact soil cores from four sites (three savanna, one pasture under controlled soil temperatures (ST and soil moisture (SM we investigated the release of the trace gas fluxes of N2O, NO and carbon dioxide (CO2. Furthermore, the release of N2 due to denitrification was measured using the helium gas flow soil core technique. Under dry pre-incubation conditions NO and N2O emissions were very low (−2 h−1; 2O-N m−2 h−1 or in the case of N2O, even a net soil uptake was observed. Substantial NO (max: 306.5 μg N m−2 h−1 and relatively small N2O pulse emissions (max: 5.8 ± 5.0 μg N m−2 h−1 were recorded following soil wetting, but these pulses were short lived, lasting only up to 3 days. The total atmospheric loss of nitrogen was generally dominated by N2 emissions (82.4–99.3% of total N lost, although NO emissions contributed almost 43.2% to the total atmospheric nitrogen loss at 50% SM and 30 °C ST incubation settings (the contribution of N2 at these soil conditions was only 53.2%. N2O emissions were systematically higher for 3 of 12 sample locations, which indicates substantial spatial variability at site level, but on average soils acted as weak N2O sources or even sinks. By using a conservative upscale approach we estimate total annual emissions from savanna soils to average 0.12 kg N ha−1 yr−1 (N2O, 0.68 kg N ha−1 yr−1 (NO and 6.65 kg N ha−1 yr−1 (N2. The analysis of long-term SM and ST records makes it clear that extreme soil saturation that can lead to high N2O and N2 emissions only occurs a few days per year and thus has little impact on the annual total. The potential contribution of nitrogen released due to pulse events

  7. The denitrification paradox: The role of O2 in sediment N2O production

    Science.gov (United States)

    Barnes, Jonathan; Upstill-Goddard, Robert C.

    2018-01-01

    We designed a novel laboratory sediment flux chamber in which we maintained the headspace O2 partial pressure at preselected values, allowing us to experimentally regulate "in-situ" O2 to evaluate its role in net N2O production by an intertidal estuarine sediment (Tyne, UK). In short-term (30 h) incubations with 10 L of overlying estuarine water (∼3 cm depth) and headspace O2 regulation (headspace: sediment/water ratio ∼9:1), net N2O production was highest at 1.2% O2 (sub-oxic; 32.3 nmol N2O m-2 d-1), an order of magnitude higher than at either 0.0% (anoxic; 2.5 N2O nmol m-2 d-1) or 20.85% (ambient; 2.3 nmol N2O m-2 d-1) O2. In a longer-term sealed incubation (∼490 h) without O2 control, time-dependent behaviour of N2O in the tank headspace was highly non-linear with time, showing distinct phases: (i) an initial period of no or little change in O2 or N2O up to ∼ 100 h; (ii) a quasi-linear, inverse correlation between O2 and N2O to ∼360 h, in which O2 declined to ∼2.1% and N2O rose to ∼7800 natm; (iii) over the following 50 h a slower O2 decline, to ∼1.1%, and a more rapid N2O increase, to ∼12000 natm; (iv) over the next 24 h a slowed O2 decline towards undetectable levels and a sharp fall in N2O to ∼4600 natm; (iv) a continued N2O decrease at zero O2, to ∼3000 natm by ∼ 490 h. These results show clearly that rapid N2O consumption (∼115 nmol m-2 d-1), presumably via heterotrophic denitrification (HD), occurs under fully anoxic conditions and therefore that N2O production, which was optimal for sub-oxic O2, results from other nitrogen transformation processes. In experiments in which we amended sediment overlying water to either 1 mM NH4+ or 1 mM NO3-, N2O production rates were 2-134 nmol N2O m-2 d-1 (NH4+ addition) and 0.4-2.2 nmol N2O m-2 d-1 (NO3- addition). We conclude that processes involving NH4+ oxidation (nitrifier nitrification; nitrifier denitrification; nitrification-coupled denitrification) are principally responsible for N2O

  8. Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity.

    Science.gov (United States)

    Faraji, Masoud; Mohaghegh, Neda; Abedini, Amir

    2018-01-01

    A series of g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plates were fabricated via simple dipping of TiO 2 nanotubes/Ti in a solution containing SnCl 2 and g-C 3 N 4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C 3 N 4 -SnO 2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO 2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis illuminations. Detailed characterization and results of photocatalytic and antibacterial activity tests revealed that semiconductor coupling significantly affected the photocatalyst properties synthesized and hence their photocatalytic and antibacterial activities. Modification of TiO 2 nanotubes/Ti plates with g-C 3 N 4 -SnO 2 deposits resulted in enhanced photocatalytic activities in both chemical and microbial systems. The g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate exhibited the highest photocatalytic and antibacterial activity, probably due to the heterojunction between g-C 3 N 4 -SnO 2 and TiO 2 nanotubes/Ti in the ternary composite plate and thus lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antibacterial mechanism for the degradation of E. coli bacteria and chemical pollutants over g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate were proposed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Synthesis and characterization of a pentadentate Schiff base N3O2 ligand and its neutral technetium(V) complex. X-ray structure of (N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4(3H)-dionato)(3-)-O,O',N,N',N double-prime)oxotechnetium(V)

    International Nuclear Information System (INIS)

    Shuang Liu; Rettig, S.J.; Orvig, C.

    1991-01-01

    Preparations of a potentially pentadentate ligand, N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4-(3H)-dione) (H 3 apa), and its neutral technetium(V) complex, [TcO(apa)], are described. The 13 C and 1 H NMR, infrared, optical, and mass spectra of the pentadentate ligand and its technetium(V) complex are reported. The X-ray structure of [TcO(apa)] has been determined. Crystals are orthorhombic, space group Pbca, with a = 12.833 (2) angstrom, b = 33.320 (5) angstrom, c = 9.942(4) angstrom, V = 4251 (2) angstrom, and Z = 8. The structure was solved by Patterson and Fourier methods and was refined by full-matrix least-squares procedures to R = 0.028 and R W = 0.032 for 4054 reflections with I ≥ 3σ(I). The technetium(V) complex has a highly distorted octahedral coordination geometry comprising a [TcO] 3+ core and the triply deprotonated pentadentate ligand wrapping around the metal center. One of the two oxygen donor atoms of the pentadentate ligand is located trans to the Tc double-bond O bond while the remaining four donor atoms, N 3 O, occupy the equatorial sites. The distance between the deprotonated N(1) atom to the Tc center is significantly shorter than a normal Tc-N single bond length of 2.10 angstroms, but longer than that for a Tc-N triple bond. 1 H NMR spectral data reveal a rigid solution structure for the complex, which undergoes no conformational and configurational exchange at temperatures up to 50C

  10. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O)

    DEFF Research Database (Denmark)

    Pilegaard, K.; Skiba, U.; Ambus, P.

    2006-01-01

    -deposition. The site with the highest average annual emission (82 mu g NO-N m(-2) h(-1)) was a spruce forest in South-Germany (Hoglwald) receiving an annual N-deposition of 2.9 g m(-2). NO emissions close to the detection limit were observed from a pine forest in Finland where the N-deposition was 0.2 N m(-2) a(-1......). No significant correlation between N2O emission and N-deposition was found. The highest average annual N2O emission (20 mu g N2O-Nm(-2) h(-1)) was found in an oak forest in the Matra mountains (Hungary) receiving an annual N-deposition of 1.6 g m(-2). N2O emission was significantly negatively correlated...

  11. μ-Acetato-κ2O:O′-[7,23-dibenzyl-15,31-dichloro-3,7,11,19,23,27-hexaazatricyclo[27.3.1.113,17]tetratriconta-1(32,2,11,13,15,17(34,18,27,29(33,30-decaene-33,34-diolato-κ10N4,N5,N6,O1,O2:N1,N2,N3,O1,O2]dinickel(II perchlorate acetonitrile disolvate

    Directory of Open Access Journals (Sweden)

    Juan Kong

    2008-01-01

    Full Text Available The title complex, [Ni2(C42H46Cl2N6O2(C2H3O2]ClO2CH3CN, was synthesized by condensation of 2,6-diformyl-4-chlorophenol with N,N-bis(aminopropylbenzylamine in the presence of NiII ions. The ligand is a 28-membered macrocycle with two identical pendant arms. The coordination geometries of the Ni atoms are both octahedral. The two Ni atoms are bridged by two phenolate O atoms of the macrocyclic ligand and one acetate ligand, with an Ni...Ni distance of 3.147 (4 Å.

  12. Production of N2O in grass-clover pastures

    International Nuclear Information System (INIS)

    Carter, M.S.

    2005-09-01

    Agricultural soils are known to be a considerable source of the strong greenhouse gas nitrous oxide (N 2 O), and in soil N 2 O is mainly produced by nitrifying and denitrifying bacteria. In Denmark, grass-clover pastures are an important component of the cropping system in organic as well as conventional dairy farming, and on a European scale grass-clover mixtures represent a large part of the grazed grasslands. Biological dinitrogen (N 2 ) fixation in clover provides a major N input to these systems, but knowledge is sparse regarding the amount of fixed N 2 lost from the grasslands as N2O. Furthermore, urine patches deposited by grazing cattle are known to be hot-spots of N 2 O emission, but the mechanisms involved in the N 2 O production in urine-affected soil are very complex and not well understood. The aim of this Ph.D. project was to increase the knowledge of the biological and physical-chemical mechanisms, which control the production of N2O in grazed grass-clover pastures. Three experimental studies were conducted with the objectives of: 1: assessing the contribution of recently fixed N 2 as a source of N 2 O. 2: examining the link between N 2 O emission and carbon mineralization in urine patches. 3: investigating the effect of urine on the rates and N 2 O loss ratios of nitrification and denitrification, and evaluating the impact of the chemical conditions that arise in urine affected soil. The results revealed that only 3.2 ± 0.5 ppm of the recently fixed N 2 was emitted as N2O on a daily basis. Thus, recently fixed N released via easily degradable clover residues appears to be a minor source of N2O. Furthermore, increased N 2 O emission following urine application at rates up to 5.5 g N m -2 was not caused by enhanced denitrification stimulated by labile compounds released from scorched plant roots. Finally, the increase of soil pH and ammonium following urine application led to raised nitrification rate, which appeared to be the most important factor

  13. Tc dependence on the number of CuO2 planes in multilayered Ba2Can-1CunO2n(O, F)2 superconductors

    International Nuclear Information System (INIS)

    Iyo, A; Tanaka, Y; Kodama, Y; Kito, H; Tokiwa, K; Watanabe, T

    2006-01-01

    Multilayered cuprates of Ba 2 Ca n-1 Cu n O 2n (O, F) 2 (F-02(n-1)n) with n = 5 - 9 have been synthesized by using high pressure synthesis method in order to investigate the variation of T c . The temperature dependence of susceptibility showed that the T c (about 80 K) does not depend on n for n 5 - 9. This result can be explained using the carrier imbalance model in multilayered cuprates. Charge reservoir layers supply most of the carriers to adjacent CuO 2 planes (OP) and the OP keeps the T c constant even for large n

  14. Photocatalytic oxidation of aromatic amines using MnO2@g-C3N4

    Data.gov (United States)

    U.S. Environmental Protection Agency — An efficient and direct oxidation of aromatic amines to aromatic azo-compounds has been achieved using a MnO2@g-C3N4 catalyst under visible light as a source of...

  15. N2O, NO, N2 and CO2 emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores

    Science.gov (United States)

    Werner, C.; Reiser, K.; Dannenmann, M.; Hutley, L. B.; Jacobeit, J.; Butterbach-Bahl, K.

    2014-11-01

    Strong seasonal variability of hygric and thermal soil conditions are a defining environmental feature in northern Australia. However, how such changes affect the soil-atmosphere exchange of nitrous oxide (N2O), nitric oxide (NO) and dinitrogen (N2) is still not well explored. By incubating intact soil cores from four sites (three savanna, one pasture) under controlled soil temperatures (ST) and soil moisture (SM) we investigated the release of the trace gas fluxes of N2O, NO and carbon dioxide (CO2). Furthermore, the release of N2 due to denitrification was measured using the helium gas flow soil core technique. Under dry pre-incubation conditions NO and N2O emissions were very low (soil uptake was observed. Substantial NO (max: 306.5 μg N m-2 h-1) and relatively small N2O pulse emissions (max: 5.8 ± 5.0 μg N m-2 h-1) were recorded following soil wetting, but these pulses were short lived, lasting only up to 3 days. The total atmospheric loss of nitrogen was generally dominated by N2 emissions (82.4-99.3% of total N lost), although NO emissions contributed almost 43.2% to the total atmospheric nitrogen loss at 50% SM and 30 °C ST incubation settings (the contribution of N2 at these soil conditions was only 53.2%). N2O emissions were systematically higher for 3 of 12 sample locations, which indicates substantial spatial variability at site level, but on average soils acted as weak N2O sources or even sinks. By using a conservative upscale approach we estimate total annual emissions from savanna soils to average 0.12 kg N ha-1 yr-1 (N2O), 0.68 kg N ha-1 yr-1 (NO) and 6.65 kg N ha-1 yr-1 (N2). The analysis of long-term SM and ST records makes it clear that extreme soil saturation that can lead to high N2O and N2 emissions only occurs a few days per year and thus has little impact on the annual total. The potential contribution of nitrogen released due to pulse events compared to the total annual emissions was found to be of importance for NO emissions

  16. Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar water-splitting

    Science.gov (United States)

    Seza, A.; Soleimani, F.; Naseri, N.; Soltaninejad, M.; Montazeri, S. M.; Sadrnezhaad, S. K.; Mohammadi, M. R.; Moghadam, H. Asgari; Forouzandeh, M.; Amin, M. H.

    2018-05-01

    Highly porous nanocomposites of graphitic-carbon nitride and tin oxide (g-C3N4/SnO2) were prepared through simple pyrolysis of urea molecules under microwave irradiation. The initial amount of tin was varied in order to investigate the effect of SnO2 content on preparation and properties of the composites. The synthesized nanocomposites were well-characterized by XRD, FE-SEM, HR-TEM, BET, FTIR, XPS, DRS, and PL. A homogeneous distribution of SnO2 nanoparticles with the size of less than 10 nm on the porous C3N4 sheets could be obtained, suggesting that in-situ synthesis of SnO2 nanoparticles was responsible for the formation of g-C3N4. The process likely occurred by the aid of the large amounts of OH groups formed on the surfaces of SnO2 nanoparticles during the polycondensation reactions of tin derivatives which could facilitate the pyrolysis of urea to carbon nitride. The porous nanocomposite prepared with initial tin amount of 0.175 g had high specific surface area of 195 m2 g-1 which showed high efficiency photoelectrochemical water-splitting ability. A maximum photocurrent density of 33 μA cm-2 was achieved at an applied potential of 0.5 V when testing this nanocomposite as photo-anode in water-splitting reactions under simulated visible light irradiation, introducing it as a promising visible light photoactive material.

  17. [N,N-Bis(2-aminoethylethane-1,2-diamine](ethane-1,2-diaminenickel(II thiosulfate trihydrate

    Directory of Open Access Journals (Sweden)

    Beatrix Seidlhofer

    2012-02-01

    Full Text Available The title compound, [Ni(C2H8N2(C6H18N4]S2O3·3H2O, was accidentally synthesized under solvothermal conditions applying [Ni(en3]Cl2 (en is ethane-1,2-diamine as the Ni source. The asymmetric unit consists of one discrete [Ni(tren(en]2+ complex [tren is N,N-bis(2-aminoethylethane-1,2-diamine] in which the Ni2+ cation is sixfold coordinated within a slightly distorted octahedron, one thiosulfate anion and three water molecules. In the crystal, the complex cations, anions and water molecules are linked by an intricate hydrogen-bonding network. One C atom of the tren ligand, as well as one O atom of a water molecule, are disordered over two sites and were refined using a split model (occupancy ratios = 0.85:15 and 0.60:0.40, respectively.

  18. Synthesis of g-C{sub 3}N{sub 4}/CeO{sub 2} nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Linghua, E-mail: tanlinghua@njit.edu.cn [School of Materials Science and Engineering, Nanjing Institute of Technology, Jiangsu (China); Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Jiangsu (China); Xu, Jianhua [School of Materials Science and Engineering, Nanjing Institute of Technology, Jiangsu (China); Zhang, Xiaojuan [School of Material Engineering, Jinling Institute of Technology, Nanjing 211169 (China); Hang, Zusheng [School of Materials Science and Engineering, Nanjing Institute of Technology, Jiangsu (China); Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Jiangsu (China); Jia, Yongqiang; Wang, Shanbin [School of Materials Science and Engineering, Nanjing Institute of Technology, Jiangsu (China)

    2015-11-30

    Graphical abstract: The CeO{sub 2} nanoparticles were uniformly loaded on the surface of g-C{sub 3}N{sub 4} via a simple mixing-calcination method, and the heterostructure construction of resulting from g-C{sub 3}N{sub 4}/CeO{sub 2} nanocomposites effectively suppressed the charge recombination. Interestingly, g-C{sub 3}N{sub 4}/CeO{sub 2} nanocomposites showed an enhanced catalytic activity for thermal decomposition of ammonium perchlorate. - Highlights: • Novel g-C{sub 3}N{sub 4}/CeO{sub 2} nanocomposites were synthesized through a simple mixing-calcination method. • The g-C{sub 3}N{sub 4}/CeO{sub 2} nanocomposites were applied in catalyzing the thermal decomposition of ammonium perchlorate. • The synergetic effect of g-C{sub 3}N{sub 4} and CeO{sub 2} was the origin of the high catalytic activity. • The catalytic mechanism of g-C{sub 3}N{sub 4}/CeO{sub 2} nanocomposites to the thermal decomposition of AP was investigated. - Abstract: Novel g-C{sub 3}N{sub 4}/CeO{sub 2} nanocomposites were synthesized through a simple mixing-calcination method. The structure, morphology and composition of g-C{sub 3}N{sub 4}/CeO{sub 2} nanocomposites were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), as well as X-ray photoelectron spectroscopy (XPS). The results indicated that CeO{sub 2} nanoparticles with a diameter of 50–100 nm were uniformly loaded on the surface of g-C{sub 3}N{sub 4.} Furthermore, the catalytic effect of our prepared novel g-C{sub 3}N{sub 4}/CeO{sub 2} nanocomposites on the thermal decomposition of ammonium perchlorate (AP) was investigated by utilizing thermogravimetric and differential thermal analyses (TG-DTA). Compared with pure g-C{sub 3}N{sub 4} and CeO{sub 2}, the g-C{sub 3}N{sub 4}/CeO{sub 2} nanocomposites were proved to catalyze the thermal decomposition

  19. Implications of the (H2O)n + CO ↔ trans-HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions for primordial atmospheres of Venus and Earth

    Science.gov (United States)

    Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.

    2018-04-01

    The forward and backward (H2O)n + CO ↔ HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions were studied in order to furnish trustworthy thermochemical and kinetic data. Stationary point structures involved in these chemical processes were achieved at the B2PLYP/cc-pVTZ level so that the corresponding vibrational frequencies, zero-point energies, and thermal corrections were scaled to consider anharmonicity effects. A complete basis set extrapolation was also employed with the CCSD(T) method in order to improve electronic energy descriptions and providing therefore more accurate results for enthalpies, Gibbs energies, and rate constants. Forward and backward rate constants were encountered at the high-pressure limit between 200 and 4000 K. In turn, modified Arrhenius' equations were fitted from these rate constants (between 700 and 4000 K). Next, considering physical and chemical conditions that have supposedly prevailed on primitive atmospheres of Venus and Earth, our main results indicate that 85-88 per cent of all water forms on these atmospheres were monomers, whereas (H2O)2 and (H2O)3 complexes would represent 12-15 and ˜0 per cent, respectively. Besides, we estimate that Earth's and Venus' primitive atmospheres could have been composed by ˜0.001-0.003 per cent of HCOOH when their temperatures were around 1000-2000 K. Finally, the water loss process on Venus may have occurred by a mechanism that includes the formic acid as intermediate species.

  20. Technical Note: Simultaneous measurement of sedimentary N2 and N2O production and a modified 15N isotope pairing technique

    Science.gov (United States)

    Hsu, T.-C.; Kao, S.-J.

    2013-12-01

    Dinitrogen (N2) and/or nitrous oxide (N2O) are produced through denitrification, anaerobic ammonium oxidation (anammox) or nitrification in sediments, of which entangled processes complicate the absolute rate estimations of gaseous nitrogen production from individual pathways. The classical isotope pairing technique (IPT), the most common 15N nitrate enrichment method to quantify denitrification, has recently been modified by different researchers to (1) discriminate between the N2 produced by denitrification and anammox or to (2) provide a more accurate denitrification rate under considering production of both N2O and N2. In case 1, the revised IPT focused on N2 production being suitable for the environments of a low N2O-to-N2 production ratio, while in case 2, anammox was neglected. This paper develops a modified method to refine previous versions of IPT. Cryogenic traps were installed to separately preconcentrate N2 and N2O, thus allowing for subsequent measurement of the two gases generated in one sample vial. The precision is better than 2% for N2 (m/z 28, m/z 29 and m/z 30), and 1.5% for N2O (m/z 44, m/z 45 and m/z 46). Based on the six m/z peaks of the two gases, the 15N nitrate traceable processes including N2 and N2O from denitrification and N2 from anammox were estimated. Meanwhile, N2O produced by nitrification was estimated via the production rate of unlabeled 44N2O. To validate the applicability of our modified method, incubation experiments were conducted using sediment cores taken from the Danshuei Estuary in Taiwan. Rates of the aforementioned nitrogen removal processes were successfully determined. Moreover, N2O yield was as high as 66%, which would significantly bias previous IPT approaches if N2O was not considered. Our modified method not only complements previous versions of IPT but also provides more comprehensive information to advance our understanding of nitrogen dynamics of the water-sediment interface.

  1. Preliminary study of N[sub 2]O flux over irrigated Bermudagrass in a desert environment. [USA - Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Matthias, A.D.; Artiola, J.F.; Musil, S.A. (Arizona University, Tucson, AZ (USA). Dept. of Soil and Water Science)

    1993-04-01

    The increase of atmospheric nitrous oxide is believed to be related to human activities, including increased agricultural use of nitrogen (N) fertilizers and irrigation. The purpose of this study was to evaluate N[sub 2]O flux (F(N)) into the atmosphere using chamber and gradient profile methods over an irrigated, N fertilized, bermudagrass (Cynodon dactylon cv. 'Midiron') field in the Sonoran Desert of Arizona. For the gradient profile method it was hypothesized that locally stable atmospheric conditions would enhance N[sub 2]O concentration differences sufficiently (more than approximately) 4 nl l[sup -1] to be resolved by gas chromatographic analysis of air samples collected at two heights (0.05 and 3.3 m) over the field. Significant differences (205 and 30 nl l[sup -1]) in mean concentration occurred during two sampling intervals in late afternoon and early morning of a 24 h period on 18-19 July 1991. During those intervals the surface layer was stable and relatively large F(N) estimated by the chamber method (371 and 48 ng m[sup -2] s[sup -1]) were comparable with F(N) estimated by the gradient profile method (283 and 101 ng m[sup -2] s[sup -1]). Simulations based on similarity theory indicate that resolution of N[sub 2]O concentration differences less than l nl l[sup -1] was required, but could not be achieved, when the surface layer was unstable and/or F(N) was small. Analysis also indicates that uncertainty of F(N) estimated by the chamber method was reduced slightly by estimation of temporal variation of vapour pressure in chamber air.

  2. Preparation and infrared spectra of the Schiff base solid complexes [UO2(sal-O-phdn)(H2O)] and [UO2(sal-O-phdn) (Et3N)] (sal-O-phdn=n, n'-o-phenylenebissalicylideniminato)

    International Nuclear Information System (INIS)

    Sadeek, S.A.; Teleb, S.M.; Al-Kority, A.M.

    1993-01-01

    In the present communication, we report the preparation of the related two new complexes, [UO 2 (sal-o-phdn)(H 2 O)] and LUO 2 (sal-o-phdn)(Et 3 N)], where sal-o-phdn=N, N'-o-phenylenebis (salicylideneiminato); here U VI is seven-coordinate. The infrared spectra of these two complexes are recorded and assigned. (author). 10 refs., 1 tab

  3. (μ-3-Acetyl-5-carboxyl­ato-4-methyl­pyrazolido-1:2κ4 N 2,O 3:N 1,O 5)-μ-chlorido-tetra­pyridine-1κ2 N,2κ2 N-chlorido-1κCl-dicopper(II) propan-2-ol solvate

    Science.gov (United States)

    Malinkin, Sergey; Penkova, Larisa; Pavlenko, Vadim A.; Haukka, Matti; Fritsky, Igor O.

    2009-01-01

    The title compound, [Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octa­hedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H⋯O hydrogen bond connects the complex mol­ecules and propan-2-ol solvent mol­ecules into pairs. These pairs form columns along the a axis. PMID:21577764

  4. Nitrogen loss from high N-input vegetable fields - a) direct N2O emissions b) Spatiotemporal variability of N species (N2O, NH4+, NO3-) in soils

    Science.gov (United States)

    Pfab, H.; Ruser, R.; Palmer, I.; Fiedler, S.

    2009-04-01

    Nitrous oxide is a climate relevant trace gas. It contributes 7.9 % to the total anthropogenic greenhouse gas emission and it is also involved in stratospheric ozone depletion. Approximately 85 % of the anthropogenic N2O emissions result from agricultural activities, more than 50 % are produced during microbial N-turnover processes in soils. Especially soils with high N-input (N-fertilizer and high amount of N in plant residues) like vegetable cropped soils are assumed to cause high N2O losses. The aims of the study presented were (i) to quantify the N2O loss from a vegetable field (lettuce-cauliflower crop rotation), (ii) to calculate an emission factor for the study site in Southwest Germany and to compare this factor with the default value provided by the IPCC (2006) and (iii) to test the emission reduction potential (Ammonium Sulfate Nitrate fertilizer, ASN either by reduced N-fertilization) in comparison with common N doses used for good agricultural practice or by the use of a nitrification inhibitor (DMPP), a banded N-application (lettuce) or a depot fertilization measure (pseudo-CULTAN in order to suppress nitrification). N2O fluxes determined with the closed chamber method were highly variable in time with strongly increased flux rates after N-fertilization in combination with rainfall or irrigation measures and after the incorporation of cauliflower crop residues. Using the mean soil nitrate contents of the top soil of our investigated treatments (0-25 cm depth), we could explain approximately 60 % of the variability of the cumulative N2O losses during the vegetation period of lettuce and cauliflower. The cumulative N2O emissions ranged between 0,99 kg N2O-N ha-1 from the unfertilized control plots (vegetation period) and 6,81 kg N2O-N ha-1 from the plots with the highest N-dose. Based on the guidelines of the IPCC (2006), we calculated an emission factor around 0,9 % for the cropping season. This value is in good agreement with the default value of the

  5. N2O emission from organic barley cultivation as affected by green manure management

    Directory of Open Access Journals (Sweden)

    P. Dörsch

    2012-07-01

    Full Text Available Legumes are an important source of nitrogen in stockless organic cereal production. However, substantial amounts of N can be lost from legume-grass leys prior to or after incorporation as green manure (GM. Here we report N2O emissions from a field experiment in SE Norway exploring different green manure management strategies: mulching versus removal of grass-clover herbage during a whole growing season and return as biogas residue to a subsequent barley crop. Grass-clover ley had small but significantly higher N2O emissions as compared with a non-fertilised cereal reference during the year of green manure (GM production in 2009. Mulching of herbage induced significantly more N2O emission (+0.37 kg N2O-N ha−1 throughout the growing season than removing herbage. In spring 2010, all plots were ploughed (with and without GM and sown with barley, resulting in generally higher N2O emissions than during the previous year. Application of biogas residue (60 kg NH4+-N + 50 kg organic N ha−1 before sowing did not increase emissions neither when applied to previous ley plots nor when applied to previously unfertilised cereal plots. Ley management (mulching vs. removing biomass in 2009 had no effect on N2O emissions during barley production in 2010. In general, GM ley (mulched or harvested increased N2O emissions relative to a cereal reference with low mineral N fertilisation (80 kg N ha−1. Based on measurements covering the growing season 2010, organic cereal production emitted 95 g N2O-N kg−1 N yield in barley grain, which was substantially higher than in the cereal reference treatment with 80 kg mineral N fertilisation (47 g N2O-N kg−1 N yield in barley grain.

  6. Effects of calcining temperature on photocatalysis of g-C{sub 3}N{sub 4}/TiO{sub 2} composites for hydrogen evolution from water

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ailan, E-mail: elainqal@163.com; Xu, Xinmei; Xie, Haolong; Zhang, Yangyu; Li, Yuyu; Wang, Junxian

    2016-08-15

    Highlights: • TiO{sub 2} promotes melon to form at 400 °C, whereas it forms at 500 °C for only melamine. • The highest photocatalytic activity was achieved when calcination was performed at 400 °C. • Coordinated N−Ti−N bonds were formed in MA/TiO{sub 2} (400) and disappeared at high temperature. • The surface area decreased and the pore size increased with increasing of temperature. • Only MA/TiO{sub 2} (400) has a narrower band gap than pure g-C{sub 3}N{sub 4}. - Abstract: A composite of graphitic carbon nitride and TiO{sub 2} (g-C{sub 3}N{sub 4}/TiO{sub 2}) with enhanced photocatalytic hydrogen evolution capacity was achieved by calcining melamine and TiO{sub 2} sol-gel precursor. Characterization results reveal that heating temperature had a great influence on the structure, surface area and properties of the composites. Compared with the polycondensation of pure melamine, the presence of TiO{sub 2} precursor can promote the formation of melon at a low temperature. The highest photocatalytic activity of g-C{sub 3}N{sub 4}/TiO{sub 2}(400) was achieved when the calcination was performed at 400 °C, exhibiting H{sub 2} production rate of 76.25 μmol/h under UV–vis light irradiation (λ > 320 nm) and 35.44 μmol/h under visible light irradiation (λ > 420 nm). The highest photocatalytic performance of g-C{sub 3}N{sub 4}/TiO{sub 2}(400) can be attributed to: (1) the strong UV–vis light absorption due to the narrow bandgap caused by synergic effect of TiO{sub 2} and g-C{sub 3}N{sub 4}, (2) high surface area and porosity, (3) the effective separation of photo-generated electron-holes owing to the favorable heterojunction between TiO{sub 2} and g-C{sub 3}N{sub 4}.

  7. Stability analysis and structural rules of titanium dioxide clusters (TiO2)n with n = 1-9

    International Nuclear Information System (INIS)

    Zhang Weiwei; Han Ye; Yao Shuyu; Sun Haiqing

    2011-01-01

    Highlights: · We investigated the structure and stability of (TiO 2 ) n clusters with n = 1-9. · Some initial structures are introduced and proved to be the real global minimum. · We summarized the structural rules for small (TiO 2 ) n clusters. · The bonding features for the energy increment or decrement of the clusters are investigated. · A general shift of stability and reactivity with size for (TiO 2 ) n clusters. - Abstract: Atomic clusters have been considered as models for fundamental mechanistic insight into complex surfaces and catalysts. The structure and stability of (TiO 2 ) n clusters with n = 1-9 are investigated using the b3lyp hybrid density functional method in this paper. Some of the clusters are proposed initially and proved to be the real global minima. The stability and band gap of the clusters as a function of size are also investigated. The structural rules of the clusters are first summarized. The lowest-lying (TiO 2 ) n isomers tend to form some compact rather than quasi-linear or circular structures. The oxygen atom in 4-fold coordination and the titanium atom in 4-fold coordination favor the cluster stability. The 5-fold coordinated Ti-atom, the Ti-Ti bond and the terminal Ti-O bond lead to stability penalty for the clusters. No evidence for a regular variation in stability or reactivity with size of the clusters has shown. The structural rules can serve as guiding factors for formation research and structure design of (TiO 2 ) n and other transition metal oxide clusters.

  8. Design of Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4} nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Piyong; Wang, Tingting; Zeng, Heping, E-mail: hpzeng@scut.edu.cn

    2017-01-01

    Highlights: • A novel photocatalyst Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4} was designed, synthesized and characterized. • Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4} was sensitized by Erythrosin B and a significant enhancement of H{sub 2} evolution rate was achieved. • Electrochemical properties were measured and a possible mechanism of H{sub 2} evolution was proposed. - Abstract: Cu-Cu{sub 2}O nanoparticles (NPs) decorated porous graphitic carbon nitride (g-C{sub 3}N{sub 4}) (Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4}) photocatalysts were prepared. When investment of copper source materials in the experiment increased to 7 wt%, the highest H{sub 2} evolution rate (400 μmol g{sup −1} h{sup −1}) was obtained under visible light irradiation in triethanolamine solution. This is about triple of pure g-C{sub 3}N{sub 4} (140 μmol g{sup −1} h{sup −1}). Moreover, various amount of Erythrosin B dye was added into Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4} photoreaction solution and a significant enhancement of H{sub 2} production rate was achieved. The highest H{sub 2} production rate was 5000 μmol g{sup −1} h{sup −1} with 5 mg Erythrosin B in photoreaction system. Erythrosin B dye sensitized Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4} presented stable photocatalytic H{sub 2} evolution ability and no noticeable degradation or change of photocatalyst were detected after six recycles. A possible photocatalytic mechanism of Erythrosin B dye sensitized Cu-Cu{sub 2}O/g-C{sub 3}N{sub 4} for the enhancement of photocatalytic H{sub 2} evolution is proposed.

  9. Higher spin currents in the critical O(N) vector model at 1/N{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Manashov, A.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Skvortsov, E.D. [Munich Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Lebedev Institute of Physics, Moscow (Russian Federation); Strohmaier, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik

    2017-06-15

    We calculate the anomalous dimensions of higher spin singlet currents in the critical O(N) vector model at order 1/N{sup 2}. The results are shown to be in agreement with the four-loop perturbative computation in φ{sup 4} theory in 4-2ε dimensions. It is known that the order 1/N anomalous dimensions of higher-spin currents happen to be the same in the Gross-Neveu and the critical vector model. On the contrary, the order 1/N{sup 2} corrections are different. The results can also be interpreted as a prediction for the two-loop computation in the dual higher-spin gravity.

  10. Variability of N{sub 2}O emissions during the production of poplar and rye

    Energy Technology Data Exchange (ETDEWEB)

    Kern, Juergen; Hellebrand, Hans Juergen; Scholz, Volkhard [ATB Potsdam (Germany)], E-mail: jkern@atb-potsdam.de

    2008-07-01

    The emission of N{sub 2}O from the soil has a significant impact on the greenhouse gas balance of energy crops. Soil type, temperature, precipitation, tillage practice and level of fertilization may affect the source strength of N{sub 2}O emissions and fertilizer-induced N{sub 2}O emissions. The N{sub 2}O-fluxes from different sites of an experimental field were measured by the flux chamber method over a period of four years (2003-2006). Poplar and rye as one perennial and one annual crop were fertilized at levels of 0 kg N ha{sup -1} yr{sup -1}, 75 kg N ha{sup -1} yr{sup -1} and 150 kg N ha{sup -1} yr{sup -1}. Enhanced N{sub 2}O emission spots with maxima of up to 1653 {mu}g N{sub 2}O m{sup -2} h{sup -1} were observed at fertilized sites for several weeks. The emissions ranged between 0.4 kg N{sub 2}O-N ha{sup -1} yr{sup -1} and 2.7 kg N{sub 2}O-N ha{sup -1} yr{sup -1} depending on fertilization level, crop variety and year. The mean conversion factor was 2.1% for poplar and 0.9% for rye. The CO{sub 2}-advantage of energy crops is reduced by N{sub 2}O emissions by up to 10%. (author)

  11. Liquid-exfoliation of layered MoS{sub 2} for enhancing photocatalytic activity of TiO{sub 2}/g-C{sub 3}N{sub 4} photocatalyst and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiping; Xiao, Xinyan, E-mail: cexyxiao@scut.edu.cn; Li, Yang; Zeng, Xingye; Zheng, Lili; Wan, Caixia

    2016-12-15

    Highlights: • MoS{sub 2} nano-sheets were obtained by Liquid-Exfoliation technique. • TiO{sub 2}/g-C{sub 3}N{sub 4}/MoS{sub 2} composites were synthesized by solvothermal method. • The formation mechanism of TiO{sub 2}/g-C{sub 3}N{sub 4}/MoS{sub 2} was studied by DFT method. • The electron-transfer of photocatalyst was discussed at a molecular cluster level. - Abstract: A new combined method of liquid-exfoliation and solvothermal process was employed for synthesizing TiO{sub 2}/g-C{sub 3}N{sub 4}/MoS{sub 2} photocatalysts. In this typical process, the MoS{sub 2}/g-C{sub 3}N{sub 4} nano-sheets was prepared by liquid-exfoliation method from the bulk MoS{sub 2} and bulk carbon nitride in the alcohol system, and then the TiO{sub 2} nanoparticles (NPs) were grown on the MoS{sub 2}/g-C{sub 3}N{sub 4} nano-sheets by in-situ synthesis technique. The evaluation of photocatalytic degradation reaction showed that the as-prepared TiO{sub 2}/g-C{sub 3}N{sub 4}/MoS{sub 2} photocatalysts exhibited higher photocatalytic activity as compared to the pure TiO{sub 2}, pure g-C{sub 3}N{sub 4} and TiO{sub 2}/g-C{sub 3}N{sub 4} composite. The enhanced photocatalytic activities of TiO{sub 2}/g-C{sub 3}N{sub 4}/MoS{sub 2} photocatalysts are attributed to positive synergetic effect of heterostructure between g-C{sub 3}N{sub 4}/MoS{sub 2} hybrid and TiO{sub 2} nano-structure, which not only enlarged spectral response and also enhanced the utilization rate of photons. Furthermore, DFT (Density Functional Theory) was employed to investigate the formation mechanism of the interfaces between TiO{sub 2} NPs and g-C{sub 3}N{sub 4}/MoS{sub 2} nano-sheets, which would be of great importance in revealing the electron-transfer at the interfaces of composites and the mechanism for the great improvement for the activity of TiO{sub 2}/g-C{sub 3}N{sub 4}/MoS{sub 2} photocatalysts.

  12. Associação de níveis plasmáticos de PAI-1 e polimorfismo 4G/5G em pacientes com doença arterial coronariana

    Directory of Open Access Journals (Sweden)

    Luciana Moreira Lima

    2011-12-01

    Full Text Available FUNDAMENTO: O polimorfismo 4G/5G do inibidor ativador do plasminogênio tipo 1 (PAI-1 pode influenciar a expressão do PAI-1. Níveis plasmáticos elevados de PAI-1 estão associados com Doença Arterial Coronariana (DAC. OBJETIVO: O presente estudo investigou a influência do polimorfismo 4G/5G do PAI-1 nos níveis plasmáticos de PAI-1 e sua associação com DAC avaliada por angiografia coronária. MÉTODOS: Foi avaliada amostra de sangue de 35 indivíduos com artérias coronárias angiograficamente normais, 31 indivíduos apresentando ateromatose leve/moderada, 57 indivíduos apresentando ateromatose grave e 38 indivíduos saudáveis (controles. Em pacientes e controles, o polimorfismo 4G/5G do PAI-1 foi determinado por amplificação da proteína-C reativa utilizando primers específicos de alelo. Os níveis plasmáticos de PAI-1 foram quantificados pelo ensaio ELISA (American Diagnostica. RESULTADOS: Não houve diferença entre os grupos quanto a sexo, idade e índice de massa corporal. Níveis plasmáticos de PAI-1 e frequência do genótipo 4G/4G mostravam-se significativamente maiores no grupo com ateromatose grave em comparação com os outros grupos (p 70% (p < 0,001. CONCLUSÃO: O achado mais importante deste estudo foi a associação entre o genótipo 4G/4G, elevados níveis plasmáticos de PAI-1 e estenose coronariana superior a 70% em indivíduos brasileiros. Ainda não foi estabelecido se elevados níveis plasmáticos de PAI-1o um fator decisivo para o agravamento da aterosclerose ou se são uma consequência.

  13. Epitaxial growth of mixed conducting layered Ruddlesden–Popper Lan+1NinO3n+1 (n = 1, 2 and 3) phases by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wu, Kuan-Ting; Soh, Yeong-Ah; Skinner, Stephen J.

    2013-01-01

    Graphical abstract: - Highlights: • High quality epitaxial thin films of layered Ruddlesden–Popper nickelates were prepared. • For the first time this has been achieved by the PLD process. • n = 1, 2 and 3 films were successfully deposited on SrTiO 3 and NdGaO 3 substrates. • c-Axis oriented films were confirmed by XRD analysis. • In-plane and out-of-plane strain effects on lattice are discussed. - Abstract: Layered Ruddlesden–Popper phases of composition La n+1 Ni n O 3n+1 (n = 1, 2 and 3) have been epitaxially grown on SrTiO 3 (0 0 1) or NdGaO 3 (1 1 0) single crystal substrates using the pulsed laser deposition technique. X-ray diffraction analyses (θ/2θ, rocking curves, and φ-scans) and atomic force microscopy confirms the high-quality growth of the series of films with low surface roughness values (less than 1 nm). In particular, epitaxial growth of the higher order phases (n = 2 and 3) of lanthanum nickelate have been demonstrated for the first time

  14. Oxide, interface, and border traps in thermal, N2O, and N2O-nitrided oxides

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Saks, N.S.

    1996-01-01

    We have combined thermally stimulated-current (TSC) and capacitance endash voltage (C endash V) measurements to estimate oxide, interface, and effective border trap densities in 6 endash 23 nm thermal, N 2 O, and N 2 O-nitrided oxides exposed to ionizing radiation or high-field electron injection. Defect densities depend strongly on oxide processing, but radiation exposure and moderate high-field stress lead to similar trapped hole peak thermal energy distributions (between ∼1.7 and ∼2.0 eV) for all processes. This suggests that similar defects dominate the oxide charge trapping properties in these devices. Radiation-induced hole and interface trap generation efficiencies (0.1%endash 1%) in the best N 2 O and N 2 O-nitrided oxides are comparable to the best radiation hardened oxides in the literature. After ∼10 Mrad(SiO 2 ) x-ray irradiation or ∼10 mC/cm 2 constant current Fowler endash Nordheim injection, effective border trap densities as high as ∼5x10 11 cm -2 are inferred from C endash V hysteresis. These measurements suggest irradiation and high-field stress cause similar border trap energy distributions. In each case, even higher densities of compensating trapped electrons in the oxides (up to 2x10 12 cm -2 ) are inferred from combined TSC and C endash V measurements. These trapped electrons prevent conventional C endash V methods from providing accurate estimates of the total oxide trap charge density in many irradiation or high-field stress studies. Fewer compensating electrons per trapped hole (∼26%±5%) are found for irradiation of N 2 O and N 2 O-nitrided oxides than for thermal oxides (∼46%±7%). (Abstract Truncated)

  15. Soil and vegetation-atmosphere exchange of NO, NH3, and N2O from field measurements in a semi arid grazed ecosystem in Senegal

    Science.gov (United States)

    Delon, C.; Galy-Lacaux, C.; Serça, D.; Loubet, B.; Camara, N.; Gardrat, E.; Saneh, I.; Fensholt, R.; Tagesson, T.; Le Dantec, V.; Sambou, B.; Diop, C.; Mougin, E.

    2017-05-01

    The alternating between dry and wet seasons and the consecutive microbial responses to soil water content in semiarid ecosystems has significant consequences on nitrogen exchanges with the atmosphere. Three field campaigns were carried out in a semi arid sahelian rangeland in Dahra (Ferlo, Senegal), two at the beginning of the wet season in July 2012 and July 2013, and the third one in November 2013 at the end of the wet season. The ammonia emission potentials of the soil ranged from 271 to 6628, indicating the soil capacity to emit NH3. The ammonia compensation point in the soil ranged between 7 and 150 ppb, with soil temperatures between 32 and 37 °C. Ammonia exchange fluctuated between emission and deposition (from -0.1-1.3 ng N.m-2 s-1), depending on meteorology, ambient NH3 concentration (5-11 ppb) and compensation point mixing ratios. N2O fluxes are supposed to be lower than NO fluxes in semi arid ecosystems, but in Dahra N2O fluxes (5.5 ± 1.3 ng N m-2 s-1 in July 2013, and 3.2 ± 1.7 ng N m-2 s-1 in November 2013) were similar to NO fluxes (5.7 ± 3.1 ng N m-2 s-1 in July 2012, 5.1 ± 2.1 ng N m-2 s-1 in July 2013, and 4.0 ± 2.2 ngN m-2 s-1 in November 2013). Possible reasons are the influence of soil moisture below the surface (where N2O is produced) after the beginning of the wet season, the potential aerobic denitrification in microsites, the nitrifier denitrification, and nitrification processes. The presence of litter and standing straw, and their decomposition dominated N compounds emissions in November 2013, whereas emissions in July 2012 and 2013, when the herbaceous strata was sparse, were dominated by microbial processes in the soil. CO2 respiration fluxes were high in the beginning (107 ± 26 mg m-2 h-1 in July 2013) and low in the end of the wet season (32 ± 5 mg m-2 h-1 in November 2013), when autotrophic and heterotrophic activity is reduced due to low soil moisture conditions These results confirm that contrasted ecosystem conditions due

  16. Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study

    CSIR Research Space (South Africa)

    Opoku, F

    2018-01-01

    Full Text Available Graphite-like carbon nitride (g-C3N4)-based heterostructures have received much attention due to their prominent photocatalytic activity. The g-C3N4/Bi2WO6 and g-C3N4/Bi2MoO6 heterostructures, which follow a typical hetero-junction charge transfer...

  17. A Cost-Effective Solid-State Approach to Synthesize g-C3N4 Coated TiO2 Nanocomposites with Enhanced Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Min Fu

    2013-01-01

    Full Text Available Novel graphitic carbon nitride (g-C3N4 coated TiO2 nanocomposites were prepared by a facile and cost-effective solid-state method by thermal treatment of the mixture of urea and commercial TiO2. Because the C3N4 was dispersed and coated on the TiO2 nanoparticles, the as-prepared g-C3N4/TiO2 nanocomposites showed enhanced absorption and photocatalytic properties in visible light region. The as-prepared g-C3N4 coated TiO2 nanocomposites under 450°C exhibited efficient visible light photocatalytic activity for degradation of aqueous MB due to the increased visible light absorption and enhanced MB adsorption. The g-C3N4 coated TiO2 nanocomposites would have wide applications in both environmental remediation and solar energy conversion.

  18. N-point g-loop vertex for a free fermionic theory with arbitrary spin

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Pezzella, F.; Frau, M.; Hornfeck, K.

    1990-01-01

    We use the sewing procedure of the operator formalism to construct explicitly the N-point g-loop vertex V N;g for a free fermionic (b, c)-system with conformal weight (λ, 1-λ). We show that this vertex has the structure we expect from geometrical arguments. We obtain also several geometrical objects, e.g. the holomorphic λ-differentials on an arbitrary Riemann surface, which turn out to be expressed as a Poincare θ-series over all elements of the Schottky group. From V N;g we compute explicitly correlation functions for our system, finding agreement with the geometrical procedure. (orig.)

  19. N-point g-loop vertex for a free fermionic theory with arbitrary spin

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Pezzella, F.; Frau, M.; Hornfeck, K.

    1989-07-01

    We use the sewing procedure of the operator fomalism to construct explicitly the N-Point g-Loop Vertex V N;g for a free fermionic (b, c)-system with conformal weight (λ, 1-λ). We show that this Vertex has the structure we expect from geometrical arguments. We obtain also several geometrical objects, e.g. the holomorphic λ differentials on an arbitrary Riemann surface, which turn out to be expressed as a Poincare θ series over all elements of the Schottky group. From V N;g we compute explicitly correlation functions for our system, finding agreement with the geometrical procedure. (orig.)

  20. Analysis of SAW properties in ZnO/AlxGa1-xN/c-Al2O3 structures.

    Science.gov (United States)

    Chen, Ying; Emanetoglu, Nuri William; Saraf, Gaurav; Wu, Pan; Lu, Yicheng; Parekh, Aniruddh; Merai, Vinod; Udovich, Eric; Lu, Dong; Lee, Dong S; Armour, Eric A; Pophristic, Milan

    2005-07-01

    Piezoelectric thin films on high acoustic velocity nonpiezoelectric substrates, such as ZnO, AlN, or GaN deposited on diamond or sapphire substrates, are attractive for high frequency and low-loss surface acoustic wave devices. In this work, ZnO films are deposited on AlxGa1-xN/c-Al2O3 (0 structure provides several advantages, including higher order wave modes with higher velocity and larger electromechanical coupling coefficient (K2). The surface acoustic wave (SAW) velocities and coupling coefficients of the ZnO/AlxGa1-xN/c-Al2O3 structure are tailored as a function of the Al mole percentage in AlxGa1-xN films, and as a function of the ZnO (h1) to AlxGa1-xN (h2) thickness ratio. It is found that a wide thickness-frequency product (hf) region in which coupling is close to its maximum value, K(2)max, can be obtained. The K(2)max of the second order wave mode (h1 = h2) is estimated to be 4.3% for ZnO/GaN/c-Al2O3, and 3.8% for ZnO/AlN/c-Al2O3. The bandwidth of second and third order wave modes, in which the coupling coefficient is within +/- 0.3% of K(2)max, is calculated to be 820 hf for ZnO/GaN/c-Al2O3, and 3620 hf for ZnO/AlN/c-Al2O3. Thus, the hf region in which the coupling coefficient is close to the maximum value broadens with increasing Al content, while K(2)max decreases slightly. When the thickness ratio of AlN to ZnO increases, the K(2)max and hf bandwidth of the second and third higher wave modes increases. The SAW test devices are fabricated and tested. The theoretical and experimental results of velocity dispersion in the ZnO/AlxGa1-xN/c-Al2O3 structures are found to be well matched.

  1. Tillage effects on N2O emissions as influenced by a winter cover crop

    DEFF Research Database (Denmark)

    Petersen, Søren O; Mutegi, James; Hansen, Elly Møller

    2011-01-01

    emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RT) and direct drilling (DD), all with (+CC) or without (−CC) fodder radish as a winter cover...... application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250–400 μg N m−2 h−1 except in the CT + CC treatment, where emissions peaked at 900 μg N m−2 h−1. Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha−1. A strong positive interaction between cover crop......Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O...

  2. Efecto de las nanopartículas industriales TiO 2 , SiO 2 y ZnO sobre la viabilidad celular y expresión génica en médula ósea roja de mus musculus

    Directory of Open Access Journals (Sweden)

    Jacquelyne Zarria-Romero

    Full Text Available RESUMEN Objetivos Evaluar el efecto de las nanopartículas de ZnO, TiO2 y SiO2 sobre la viabilidad celular y la expresión génica de las interleuquinas 7 y 3 y del factor estimulante de colonias de granulocito - macrófago (GM-CSF en Mus musculus. Materiales y métodos Se extrajo médula ósea roja de cinco roedores (Balb/c para el estudio de viabilidad celular mediante la prueba de MTT. Por otro lado, grupos cinco roedores fueron inoculados vía intraperitoneal con dosis de 0,5; 1; 2,5; 5 y 10 mg/kg de nanopartículas de ZnO y SiO2 y de 5; 10; 15; 20 y 25 mg/kg de nanopartículas de TiO2, 30 h después, se obtuvo el ARN a partir de la médula ósea roja para los análisis de expresión génica empleando las técnicas de PCR y RT-PCR cuantitativa. Resultados Las nanopartículas de ZnO y SiO2 redujeron la viabilidad celular de una manera dosis-dependiente en un 37 y 26%, respectivamente, a partir de una dosis de 1 mg/kg. En cuanto al efecto sobre la expresión génica, a las dosis 5 y 10 mg/kg, las nanopartículas de TiO2 redujeron en mayor porcentaje la expresión de las interleuquinas 7 y 3 (55,3 y 70,2% respectivamente, con respecto a la expresión del GM-CSF, el mayor porcentaje de reducción lo produjo las nanopartículas de SiO2 (91%. Las nanopartículas de ZnO redujeron a partir de las dosis de 20 y 25 mg/kg. Conclusiones Las nanopartículas de ZnO, SiO2 y TiO2 alteran la viabilidad celular y la expresión génica en la médula ósea de ratón.

  3. In Situ Growth of MnO2 Nanosheets on N-Doped Carbon Nanotubes Derived from Polypyrrole Tubes for Supercapacitors.

    Science.gov (United States)

    Ou, Xu; Li, Qi; Xu, Dan; Guo, Jiangna; Yan, Feng

    2018-03-02

    Nitrogen-doped porous carbon nanotubes@MnO 2 (N-CNTs@MnO 2 ) nanocomposites are prepared through the in situ growth of MnO 2 nanosheets on N-CNTs derived from polypyrrole nanotubes (PNTs). Benefiting from the synergistic effects between N-CNTs (high conductivity and N doping level) and MnO 2 nanosheets (high theoretical capacity), the as-prepared N-CNTs@MnO 2 -800 nanocomposites show a specific capacitance of 219 F g -1 at a current density of 1.0 A g -1 , which is higher than that of pure MnO 2 nanosheets (128 F g -1 ) and PNTs (42 F g -1 ) in 0.5 m Na 2 SO 4 solution. Meanwhile, the capacitance retention of 86.8 % (after 1000 cycles at 10 A g -1 ) indicates an excellent electrochemical performance of N-CNTs@MnO 2 prepared in this work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 2D-2D stacking of graphene-like g-C{sub 3}N{sub 4}/Ultrathin Bi{sub 4}O{sub 5}Br{sub 2} with matched energy band structure towards antibiotic removal

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Mengxia; Di, Jun; Ge, Yuping; Xia, Jiexiang, E-mail: xjx@ujs.edu.cn; Li, Huaming, E-mail: lhm@ujs.edu.cn

    2017-08-15

    Highlights: • 2D-2D graphene-like g-C{sub 3}N{sub 4}/ultrathin Bi{sub 4}O{sub 5}Br{sub 2} materials have been prepared. • With matched energy band structure, the effective charge separation can be achieved. • The holes and O{sub 2}{sup −} are determined to be the main active species. - Abstract: A novel visible-light-driven 2D-2D graphene-like g-C{sub 3}N{sub 4}/ultrathin Bi{sub 4}O{sub 5}Br{sub 2} photocatalyst was prepared via a facile solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br) for the first time. FT-IR, XPS and TEM analysis results demonstrated the successful introduction of the 2D graphene-like g-C{sub 3}N{sub 4} material to the Bi{sub 4}O{sub 5}Br{sub 2} system. DRS and BET analysis results indicated the existence of the g-C{sub 3}N{sub 4} could lead to the broaden absorption edge and larger surface area of the ultrathin Bi{sub 4}O{sub 5}Br{sub 2} nanosheets. The electrochemical analysis implied a fast transfer of the interfacial electrons and low recombination rate of photogenerated charge carriers in g-C{sub 3}N{sub 4}/Bi{sub 4}O{sub 5}Br{sub 2}, which could be assigned to the sufficient and tight contact between ultrathin Bi{sub 4}O{sub 5}Br{sub 2} and graphene-like g-C{sub 3}N{sub 4}. The quinolone antibiotic ciprofloxacin (CIP) was chosen as the target pollutant to evaluate the photocatalytic performance of the as-prepared samples under visible light irradiation. 1 wt% g-C{sub 3}N{sub 4}/Bi{sub 4}O{sub 5}Br{sub 2} composite exhibited the highest photocatalytic degradation performance among all of the as-prepared photocatalysts. The enhancement of photocatalytic activity was attributed to the maximum contact between graphene-like g-C{sub 3}N{sub 4} and ultrathin Bi{sub 4}O{sub 5}Br{sub 2} material with matched energy band structure, which enable the efficient charge seperation. A possible photocatalytic mechanism also was proposed.

  5. N2O Emission from energy crop fields

    International Nuclear Information System (INIS)

    Joergensen, B.J.; Nyholm Joergensen, R.

    1996-03-01

    The interest in N 2 O emissions from soils with energy crops is a results of its properties as a greenhouse gas, since the global warming potential of N 2 O per unit mass is about 320 times greater than CO 2 . The contribution of N 2 O from the soil to the atmosphere may increase due to agricultural management. Consequently, large N 2 O emissions can lower the reduction of the greenhouse effect achieved by the substitution of fossil fuels by energy crops. For this reason it is crucial to find the crops for combustion with the lowest potential for emission of N 2 O from the soil per produced energy unit. The aims of this study were to assess the annual N 2 O flux from a Miscanthus 'Giganteus' (M. 'Giganteus') and winter rye (Secale cereale) field, and to investigate the factors affecting the N 2 O emission. To obtain these aims a method was developed for measurements in tall crops. The thesis contains a literature review on the N 2 O emission from the soils, a section with development of the technique for N 2 O flux measurements, and an experimental section. Finally, the thesis contains a section where the results are discussed in relation to the use of energy crops. In all the filed studies, the N 2 O emission was measured by using a new developed closed-chamber technique. The main advantages of the chamber method were the ability to contain growing plants up to a height of 3 m, and the relatively large area (2X2m) covered by each other. Soils with annual and perennial crops can be expected to emit less then 3 kg N 2 O ha -1 yr -1 . This amount corresponds to 960 kg CO 2 ha -1 yr -1 compared to a total CO 2 reduction of 10 to 19 tons CO 2 ha -1 yr -1 using the energy crops as substitution for fossil fuels. An efficient way to reduce the N 2 O emission is to exclude use of fertiliser but this also reduces the dry matter yield and consequently also the CO 2 reduction per unit dry matter. Following the guidelines for good agricultural practice concerning the

  6. An automated GC-C-GC-IRMS setup to measure palaeoatmospheric δ13C-CH4, δ15N-N2O and δ18O-N2O in one ice core sample

    Directory of Open Access Journals (Sweden)

    P. Sperlich

    2013-08-01

    Full Text Available Air bubbles in ice core samples represent the only opportunity to study the mixing ratio and isotopic variability of palaeoatmospheric CH4 and N2O. The highest possible precision in isotope measurements is required to maximize the resolving power for CH4 and N2O sink and source reconstructions. We present a new setup to measure δ13C-CH4, δ15N-N2O and δ18O-N2O isotope ratios in one ice core sample and with one single IRMS instrument, with a precision of 0.09, 0.6 and 0.7‰, respectively, as determined on 0.6–1.6 nmol CH4 and 0.25–0.6 nmol N2O. The isotope ratios are referenced to the VPDB scale (δ13C-CH4, the N2-air scale (δ15N-N2O and the VSMOW scale (δ18O-N2O. Ice core samples of 200–500 g are melted while the air is constantly extracted to minimize gas dissolution. A helium carrier gas flow transports the sample through the analytical system. We introduce a new gold catalyst to oxidize CO to CO2 in the air sample. CH4 and N2O are then separated from N2, O2, Ar and CO2 before they get pre-concentrated and separated by gas chromatography. A combustion unit is required for δ13C-CH4 analysis, which is equipped with a constant oxygen supply as well as a post-combustion trap and a post-combustion GC column (GC-C-GC-IRMS. The post-combustion trap and the second GC column in the GC-C-GC-IRMS combination prevent Kr and N2O interferences during the isotopic analysis of CH4-derived CO2. These steps increase the time for δ13C-CH4 measurements, which is used to measure δ15N-N2O and δ18O-N2O first and then δ13C-CH4. The analytical time is adjusted to ensure stable conditions in the ion source before each sample gas enters the IRMS, thereby improving the precision achieved for measurements of CH4 and N2O on the same IRMS. The precision of our measurements is comparable to or better than that of recently published systems. Our setup is calibrated by analysing multiple reference gases that were injected over bubble-free ice samples. We show

  7. Effect of COD/N ratio on N2O production during nitrogen removal by aerobic granular sludge.

    Science.gov (United States)

    Velho, V F; Magnus, B S; Daudt, G C; Xavier, J A; Guimarães, L B; Costa, R H R

    2017-12-01

    N 2 O-production was investigated during nitrogen removal using aerobic granular sludge (AGS) technology. A pilot sequencing batch reactor (SBR) with AGS achieved an effluent in accordance with national discharge limits, although presented a nitrite accumulation rate of 95.79% with no simultaneous nitrification-denitrification. N 2 O production was 2.06 mg L -1 during the anoxic phase, with N 2 O emission during air pulses and the aeration phase of 1.6% of the nitrogen loading rate. Batch tests with AGS from the pilot reactor verified that at the greatest COD/N ratio (1.55), the N 2 O production (1.08 mgN 2 O-N L -1 ) and consumption (up to 0.05 mgN 2 O-N L -1 ), resulted in the lowest remaining dissolved N 2 O (0.03 mgN 2 O-N L -1 ), stripping the minimum N 2 O gas (0.018 mgN 2 O-N L -1 ). Conversely, the carbon supply shortage, under low C/N ratios, increased N 2 O emission (0.040 mgN 2 O-N L -1 ), due to incomplete denitrification. High abundance of ammonia-oxidizing and low abundance of nitrite-oxidizing bacteria were found, corroborating the fact of partial nitrification. A denitrifying heterotrophic community, represented mainly by Pseudoxanthomonas, was predominant in the AGS. Overall, the AGS showed stable partial nitrification ability representing capital and operating cost savings. The SBR operation flexibility could be advantageous for controlling N 2 O emissions, and extending the anoxic phase would benefit complete denitrification in cases of low C/N influents.

  8. Enhanced performance of dye-sensitized solar cells based on organic dopant incorporated PVDF-HFP/PEO polymer blend electrolyte with g-C3N4/TiO2 photoanode

    International Nuclear Information System (INIS)

    Senthil, R.A.; Theerthagiri, J.; Madhavan, J.; Murugan, K.; Arunachalam, Prabhakarn; Arof, A.K.

    2016-01-01

    This work describes the effect of 2-aminopyrimidine (2-APY) on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) blend polymer electrolyte along with binary iodide salts (tetrabutylammonium iodide (TBAI) and potassium iodide (KI)) and iodine (I 2 ) were studied for enhancing the efficiency of the dye-sensitized solar cells (DSSCs) consisting of g-C 3 N 4 /TiO 2 composite as photoanode. The g-C 3 N 4 was synthesized from low cost urea by thermal condensation method. It was used as a precursor to synthesize the various weight percentage ratios (5%, 10% and 15%) of g-C 3 N 4 /TiO 2 composites by wet-impregnation method. The pure and 2-APY incorporated PVDF-HFP/PEO polymer blend electrolytes were arranged by wet chemical process (casting method) using DMF as a solvent. The synthesized g-C 3 N 4 /TiO 2 composites and polymer blend electrolytes were studied and analyzed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The ionic conductivity values of the pure and 2-APY incorporated PVDF-HFP/PEO blend electrolytes were estimated to be 4.53×10 −5 and 1.87×10 −4 Scm −1 respectively. The UV–vis absorption spectroscopy was carried out for the pure and different wt% of g-C 3 N 4 /TiO 2 composites coated FTO films after N3 dye-sensitization. The 10 wt% g-C 3 N 4 /TiO 2 composite film showed a maximum absorption compared to the others. The DSSC assembled with 10 wt% g-C 3 N 4 /TiO 2 as photoanode using the pure polymer blend electrolyte exhibited a power conversion efficiency (PCE) of 3.17% , which was superior than that of DSSC based pure TiO 2 (2.46%). However, the PCE was increased to 4.73% for the DSSC assembled using 10 wt% g-C 3 N 4 /TiO 2 as photoanode with 2-APY incorporated polymer blend electrolyte. Hence, the present study is a successful attempt to provide a new pathway to enhance the performance of DSSCs. - Graphical abstract: In this study, the g-C 3 N

  9. Thermal expansion of superconducting phases Bi2Sr2Can-1CunO2n+2+δ with n=1,2,3

    International Nuclear Information System (INIS)

    Zhurov, V.V.; Ivanov, S.A.; Bush, A.A.; Romanov, B.N.

    1990-01-01

    Consideration is given to results of X-ray diffraction studies of temperature dependences of a 0 ,c 0 sublattice parameters of Bi 2 Sr 2 Ca n-1 Cu n O 2n+2+ δ superconducting phases with n=1,2,3 (2201, 2212, 2223) in 90-1000 K range. The obtained dependences are composed of some temperature linear sections, where values of thermal coefficients of linear expansion α a , α c were determined for all examined phases. During first heating of samples of 2212 phase a 0 (T), c 0 (T) dependences deviate in ≅500-700 K range from linear ones till the occurence of a section with negative a c . After heating of 2212 phase up to T>≅700 K and cooling down to 300 K, a 0 ,c 0 parameters decrease by ≅0.006 and 0.08 A respectively. Data on the effect of preparation method and thermal prehistory of 2212 samples and on relative content of calcium atoms in them for these anomalies were obtained. Some possible reasons of their occurence were analyzed

  10. Magnetic properties of Aurivillius lanthanide-bismuth (LnFeO3nBi4Ti3O12 (n = 1,2 layered titanates

    Directory of Open Access Journals (Sweden)

    Tartaj, J.

    2008-06-01

    Full Text Available Bismuth titanates of Aurivillius layer-structure (BiFeO3nBi4Ti3O12, are of great technological interest because of their applications as non-volatile ferroelectric memories and high-temperature piezoelectric materials. The synthesis and crystallographic characterization of a new family of compounds (LnFeO3nBi4Ti3O12 was recently reported, in which the layers consist of LnFeO3 perovskites with a lanthanide Ln3+ substituting diamagnetic Bi3+. We report herein the magnetic properties of bulk samples, with Ln = Nd, Eu, Gd and Tb, and n = 1 and 2. Single-layer materials are paramagnetic, similar to non-substituted bismuth titanate Bi5FeTi3O15, and show crystal field effects due to the crystallographic environment of Eu3+ and Tb3+. Several anomalies are detected in the magnetization M(T of double-layer (LnFeO32Bi4Ti3O12 compounds, related to the strong magnetism of Tb and Gd, since they weakly appear for Nd and they are absent in the VanVleck Eu3+ ion and in the parent Bi6Fe2Ti3O18 compound.Los titanatos de hierro y bismuto con estructura laminar tipo Aurivillius, (BiFeO3nBi4Ti3O12, tienen un gran interés tecnológico debido a sus aplicaciones como memorias ferroeléctricas no volátiles y como piezoeléctrico cerámico de alta temperatura. La síntesis y la caracterización cristalina de una nueva familia de compuestos (LnFeO3nBi4Ti3O12 han sido recientemente reportadas, en la que el catión diamagnético Bi3+ ha sido sustituido por los paramagnéticos Ln3+ en los bloques de perovskita. Se estudian las propiedades magnéticas de muestras cerámicas en volumen con Ln = Nd, Eu, Gd y Tb, y n = 1 y 2. Los materiales con n=1 son paramagnéticos y similares al no sustituido Bi5FeTi3O15, y muestran efectos de campo cristalino debido al entorno cristalino de Eu3+ y Tb3+. Se han detectado algunas anomalías en la magnetización M(T de los compuestos n=2 (LnFeO32Bi4Ti3O12 que están relacionadas con el fuerte magnetismo de Tb y Gd, que aparecen d

  11. Improved performance of AlGaN/GaN HEMT by N2O plasma pre-treatment

    International Nuclear Information System (INIS)

    Mi Min-Han; Zhang Kai; Zhao Sheng-Lei; Wang Chong; Zhang Jin-Cheng; Ma Xiao-Hua; Hao Yue

    2015-01-01

    The influence of an N 2 O plasma pre-treatment technique on characteristics of AlGaN/GaN high electron mobility transistor (HEMT) prepared by using a plasma-enhanced chemical vapor deposition (PECVD) system is presented. After the plasma treatment, the peak transconductance (g m ) increases from 209 mS/mm to 293 mS/mm. Moreover, it is observed that the reverse gate leakage current is lowered by one order of magnitude and the drain current dispersion is improved in the plasma-treated device. From the analysis of frequency-dependent conductance, it can be seen that the trap state density (D T ) and time constant (τ T ) of the N 2 O-treated device are smaller than those of a non-treated device. The results indicate that the N 2 O plasma pre-pretreatment before the gate metal deposition could be a promising approach to enhancing the performance of the device. (paper)

  12. Investigation of nitrous oxide (N2O) abatement technologies. 2; Asanka chisso (N2O) no teigen taisaku ni kansuru chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Emission amount of nitrous oxide (N2O) from anthropogenic sources is analyzed, and reduction effects by the abatement technologies are evaluated. The concentration of nitrous oxide in the atmosphere continues to increase and emissions from agricultural and ecosystem sources are drawing particular attention. For the emission of N2O in Japan, 8.28 Gg-N2O per year is emitted from fossil fuel combustion facilities, 6.95 from waste incineration facilities, 22.5 from transportation vehicles including automobiles, 26.7 from the chemical industry including establishments engaged in adipic acid production, 2.1 from sewage treatment facilities including septic tanks, 6.3 from farmland, and 7.1 from livestock excrement. For the N2O abatement technologies for different sources, fuel improvement, high temperature combustion, acceleration of reduction decomposition reaction, and development of catalysts are significant for the combustion technologies. In connection with N2O discharged in the process of adipic acid production, major businesses have internationally committed to up to 99% abatement of the N2O emissions by 1998. With regard to wastewater and sewage treatment facilities and septic tanks, improvement in COD/NO-N ratio, retention period, pH level, and reduction process is pointed out. 204 refs., 70 figs., 53 tabs.

  13. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n = 1-3) complexes.

    Science.gov (United States)

    Dai, Yumei; Wang, Yuhua; Huang, Zhengguo; Wang, Hongke; Yu, Lei

    2012-01-01

    The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H(2)O)(n) (n = 1-3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H(2)O)(n) (n = 1-3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1-3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H(2)O)(3) complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.

  14. Pyrrolic-N-doped graphene oxide/Fe2O3 mesocrystal nanocomposite: Efficient charge transfer and enhanced photo-Fenton catalytic activity

    Science.gov (United States)

    Liu, Bing; Tian, Lihong; Wang, Ran; Yang, Jinfeng; Guan, Rong; Chen, Xiaobo

    2017-11-01

    Though α-Fe2O3 has attracted much attention in photocatalytic or Fenton-catalytic degradation of organic contaminants, its performance is still unsatisfactory due to fast recombination of electrons and holes in photocatalytic process and the difficult conversion of Fe(II) and Fe(III) in Fenton reaction. Herein, a pyrrolic N-doped graphene oxide/Fe2O3 mesocrystal (NG-Fe2O3) nanocomposite with good distribution is synthesized by a simple solvothermal method and adjusting the oxygen-containing groups on graphene oxide. The morphology of NG-Fe2O3 contributes to a relatively large BET surface area and an intimate contact between NG and Fe2O3. These two important factors along with the excellent electro-conductivity of pyrrolic-N doped GO result in the efficient separation of electron-hole pairs and fast conversion of Fe(II)and Fe(III) in photo-Fenton synergistic reaction. Thus, a remarkably improved photo-Fenton catalytic activity of NG-Fe2O3 is obtained. The degrading rate on methyl blue increases by 1.5 times and the conversion rate of glyphosate increases by 2.3 times under visible light irradiation, compared to pristine α-Fe2O3 mesocrystals.

  15. Ethanol oxidation reactions catalyzed by water molecules: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2)

    Science.gov (United States)

    Takahashi, H.; Hisaoka, S.; Nitta, T.

    2002-09-01

    Ab initio density functional theory calculations have been performed to investigate the catalytic role of water molecules in the oxidation reaction of ethanol: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2) . The results show that the potential energy barrier for the reaction is 88.0 kcal/mol in case of n=0, while it is reduced by ˜34 kcal/mol when two water molecules are involved ( n=2) in the reaction. As a result, the rate constant increases to 3.31×10 -4 s-1, which shows a significant catalytic role of water molecules in the ethanol oxidation reactions.

  16. Production of N{sub 2}O in grass-clover pastures

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.S.

    2005-09-01

    Agricultural soils are known to be a considerable source of the strong greenhouse gas nitrous oxide (N{sub 2}O), and in soil N{sub 2}O is mainly produced by nitrifying and denitrifying bacteria. In Denmark, grass-clover pastures are an important component of the cropping system in organic as well as conventional dairy farming, and on a European scale grass-clover mixtures represent a large part of the grazed grasslands. Biological dinitrogen (N{sub 2}) fixation in clover provides a major N input to these systems, but knowledge is sparse regarding the amount of fixed N{sub 2} lost from the grasslands as N2O. Furthermore, urine patches deposited by grazing cattle are known to be hot-spots of N{sub 2}O emission, but the mechanisms involved in the N{sub 2}O production in urine-affected soil are very complex and not well understood. The aim of this Ph.D. project was to increase the knowledge of the biological and physical-chemical mechanisms, which control the production of N2O in grazed grass-clover pastures. Three experimental studies were conducted with the objectives of: 1: assessing the contribution of recently fixed N{sub 2} as a source of N{sub 2}O. 2: examining the link between N{sub 2}O emission and carbon mineralization in urine patches. 3: investigating the effect of urine on the rates and N{sub 2}O loss ratios of nitrification and denitrification, and evaluating the impact of the chemical conditions that arise in urine affected soil. The results revealed that only 3.2 {+-} 0.5 ppm of the recently fixed N{sub 2} was emitted as N2O on a daily basis. Thus, recently fixed N released via easily degradable clover residues appears to be a minor source of N2O. Furthermore, increased N{sub 2}O emission following urine application at rates up to 5.5 g N m{sup -2} was not caused by enhanced denitrification stimulated by labile compounds released from scorched plant roots. Finally, the increase of soil pH and ammonium following urine application led to raised

  17. SnO2 nanocrystals anchored on N-doped graphene for high-performance lithium storage.

    Science.gov (United States)

    Zhou, Wei; Wang, Jinxian; Zhang, Feifei; Liu, Shumin; Wang, Jianwei; Yin, Dongming; Wang, Limin

    2015-02-28

    A SnO2-N-doped graphene (SnO2-NG) composite is synthesized by a rapid, facile, one-step microwave-assisted solvothermal method. The composite exhibits excellent lithium storage capability and high durability, and is a promising anode material for lithium ion batteries.

  18. Vibrational spectroscopy of NO^+(H_2O)_n: Evidence for the intracluster reaction NO^+(H_2O)_n→H_3O^+(H_2O)_(n-2)(HONO) at n≥4

    OpenAIRE

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-01-01

    Infrared spectra of mass‐selected clusters NO^+(H_2O)_n for n=1 to 5 were recorded from 2700 to 3800 cm^(−1) by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second‐order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H_2O...

  19. Rational construction of Z-scheme Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composites with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jin, E-mail: lj328520504@126.com; Zhou, Xiaosong; Ma, Lin; Xu, Xuyao

    2016-12-30

    Highlights: • Novel visible-light driven Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composites were synthesized. • Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} exhibited enhanced visible-light photocatalytic activity. • The reasons for the enhanced photocatalytic activity were revealed. - Abstract: Novel visible-light driven Z-scheme Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composites with different contents of Ag{sub 2}CrO{sub 4} were fabricated by a facile chemical precipitation method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL) spectroscopy and photoelectrochemical measurements. Compared with individual g-C{sub 3}N{sub 4} and Ag{sub 2}CrO{sub 4}, the Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composites displayed much larger photocatalytic activities for the photocatalytic degradation of methyl orange (MO) solution at room temperature under visible light irradiation (λ > 420 nm). Importantly, the optimum photodegradation rate constant of the Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composite at a theoretical weight content of 8.0% Ag{sub 2}CrO{sub 4} for the photodegradation of MO was 0.0068 min{sup −1}, which was 5.7 and 4.3 times higher than that of pure g-C{sub 3}N{sub 4} and Ag{sub 2}CrO{sub 4}, respectively. Such enormous enhancement in photocatalytic performance was predominantly ascribed to the efficient separation and transfer of photogenerated electrons and holes at the Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} interface imparted through the Z-scheme electron transfer. Furthermore, radical trap experiments depicted that both the holes and superoxide radical anions were thought to dominate oxidative species of the Ag{sub 2}CrO{sub 4}/g-C{sub 3}N{sub 4} composite for MO degradation under visible light irradiation. Ultimately, a tentative Z-scheme photodegradation mechanism

  20. O{sub 2} adsorption and dissociation on the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) tri-metallic nanoparticles: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sha; Yang, Yongpeng; Huang, Shiping, E-mail: huangsp@mail.buct.edu.cn

    2017-07-15

    Highlights: • O{sub 2} adsorption and dissociation on Pd{sub 13-n}Ni{sub n}@Pt{sub 42} NPs are performed by DFT. • Adsorption energies of O{sub 2} and O are strongly affected by the coordination number. • Adsorption energy and d-band center displays the opposite change tendency. • Ni{sub 13}@Pt{sub 42} is the most active catalyst among Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) NPs. - Abstract: Density functional theory calculations are performed to investigate O{sub 2} adsorption and dissociation on the icosahedral Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) tri-metallic nanoparticles. The parallel adsorption of O{sub 2} on Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) is stronger than the vertical adsorption. The adsorption of O{sub 2} on the bridge site (B1) is favorable in the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) nanoparticles, while the adsorption of O atom on the hollow site (H1) is preferred. The adsorption energies of O{sub 2} and O are strongly affected by the coordination number. Low coordination site shows strong adsorption of O{sub 2} and O on the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) nanoparticles. The adsorption energies of O{sub 2} and O atoms are found to be correlated well with the d-band center of surface Pt. For the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and13) nanoparticles catalysts, the ORR activity follows the order of Ni{sub 13}@Pt{sub 42} > Pd{sub 13}@Pt{sub 42} > Pd{sub 12}Ni{sub 1}@Pt{sub 42} > Pd{sub 1}Ni{sub 12}@Pt{sub 42}, illustrating that the Ni{sub 13}@Pt{sub 42} is the strongest ORR activity among the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and13) nanoparticles catalysts. Our results have important significance to understand the mechanism of O{sub 2} dissociation on the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) tri-metallic nanoparticles.

  1. Broadband sensitized white light emission of g-C_3N_4/Y_2MoO_6:Eu"3"+ composite phosphor under near ultraviolet excitation

    International Nuclear Information System (INIS)

    Han, Bing; Xue, Yongfei; Li, Pengju; Zhang, Jingtao; Zhang, Jie; Shi, Hengzhen

    2015-01-01

    The g-C_3N_4/Y_2MoO_6:Eu"3"+ composite phosphors were synthesized and characterized by X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet visible diffuse reflection spectra, photoluminescence spectra and luminescence decay curves. Under the excitation of 360 nm near ultraviolet light, these composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained in term of appropriate quality proportion of Y_2MoO_6:Eu"3"+ relative to g-C_3N_4/Y_2MoO_6:Eu"3"+. In addition, the emission color can be also dependent on the excitation wavelength in g-C_3N_4/Y_2MoO_6:Eu"3"+ composite phosphor. - Graphical abstract: Under the excitation of 360 nm near ultraviolet light, the g-C_3N_4/Y_2MoO_6:Eu"3"+ composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained. - Highlights: • The g-C3N4/Y2MoO6:Eu"3"+ composite phosphors were synthesized and characterized. • White light emission was realized in the g-C3N4/Y2MoO6:Eu"3"+ composites under UV excitation. • A novel idea to realize the broadband sensitized white light emission in phosphors was provided.

  2. Bis[μ-2-(2,4-difluorophenyl-1,3-bis(1,2,4-triazol-1-ylpropan-2-olato-κ4N2,O:O,N2′]bis[(acetato-κ2O,O′nickel(II] methanol hemisolvate

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2010-01-01

    Full Text Available In the title complex, [Ni2(C13H11F2N6O2(C2H3O22]·0.5CH3OH, there are two half-molecules in the asymmetric unit. The two centrosymmetrically related NiII atoms, each attached to an acetate ligand, are linked by two fluconazole ligands. Each NiII atom is six-coordinated in a distorted octahedral geometry by two N atoms of the triazole groups and two bridging O atoms from two different fluconazole ligands and two O atoms from a chelating acetate ligand. In the crystal structure, the half-occupied methanol solvent molecule is linked to a triazole group via an O—H...N hydrogen bond.

  3. Effects of Carbon and Cover Crop Residues on N2O and N2 Emissions

    Science.gov (United States)

    Burger, M.; Cooperman, Y.; Horwath, W. R.

    2016-12-01

    In Mediterranean climate, nitrous oxide emissions occurring with the first rainfall after the dry summer season can contribute up to 50% of agricultural systems' total annual emissions, but the drivers of these emissions have not been clearly identified, and there are only few measurements of atmospheric nitrogen (N2) production (denitrification) during these events. In lab incubations, we investigated N2O and N2 production, gross ammonification and nitrification, and microbial N immobilization with wet-up in soil from a vineyard that was previously fallow or where cover crop residue had been incorporated the previous spring. Before the first rainfall, we measured 120 mg dissolved organic carbon (DOC-C) kg-1 soil in the 0-5 cm layer of this vineyard, and after the rain 10 mg DOC-C kg-1, while nitrate levels before the rain were cover cropped soil. The N2O/N2 production was 2, 7, 9, and 86% in fallow, legume-grass mixture, rye, and legume cover cropped soil. The N2O/N2 ratio tended to increase with lower DOC (post-rain) levels in the soil. The results suggest that accumulated carbon in dry surface soil is the main driving factor of N2O and N2 emissions through denitrification with the first rainfall after prolonged dry periods.

  4. [(Nitrato-κO,O')(nitrito-κO,O')(0.25/1.75)]bis-(1,10-phenanthroline-κN,N')cadmium(II).

    Science.gov (United States)

    Najafi, Ezzatollah; Amini, Mostafa M; Ng, Seik Weng

    2011-01-22

    The reaction of cadmium nitrate and sodium nitrite in the presence of 1,10-phenanthroline yields the mixed nitrate-nitrite title complex, [Cd(NO(2))(1.75)(NO(3))(0.25)(C(12)H(8)N(2))(2)]. The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions in a distorted dodeca-hedral CdN(4)O(4) coordination environment. One nitrite group is ordered; the other is disordered with respect to a nitrate group (ratio 0.75:0.25) concerning the O atom that is not involved in bonding to the metal ion.

  5. Synthesis and properties of Ag/ZnO/g-C3N4 ternary micro/nano composites by microwave-assisted method

    Science.gov (United States)

    Zhang, Zijie; Li, Xuexue; Chen, Haitao; Shao, Gang; Zhang, Rui; Lu, Hongxia

    2018-01-01

    Ag/ZnO/g-C3N4 ternary micro/nanocomposites, as novel visible-light-driven photocatalysts, were prepared by a simple and convenient microwave-assisted method. The resulting ternary structure micro/nano composites were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy and infrared radiation techniques to examine its phase structure, valence state, morphological, thermal and optical properties. Well crystallized Ag/ZnO/g-C3N4 ternary micro/nano composites were synthesized under microwave-radiation for 15 min with the output of 240 W. Further experiments indicated Ag(5.0mol%)/ZnO/g-C3N4 photocatalyst in degradation of methylene blue exhibited an outstanding photocatalytic activity and its reaction rate constant (k, 0.0084 min-1) is 7.5, 2.4 2.9 and 3.5 times higher than that of monolithic ZnO (k, 0.0011 min-1), ZnO/g-C3N4(k, 0.0035 min-1), Ag(5 mol%)/ZnO(k, 0.0029 min-1) and Ag(5mol%)/g-C3N4 (k, 0.0024 min-1) respectively. Finally, a possible photocatalytic mechanism of Ag/ZnO/g-C3N4 photocatalyst in degradation process was proposed. This work provides a feasible strategy to synthesize an efficient ZnO-based photocatalyst which combines structure and properties of different dimensional components and made this ternary system an exciting candidate for sunlight-driven photocatalytic water treatment.

  6. Study of epitaxial lateral overgrowth of semipolar (1 12 2) GaN by using different SiO2 pattern sizes

    International Nuclear Information System (INIS)

    Song, Ki-Ryong; Lee, Jae-Hwan; Han, Sang-Hyun; Yi, Hye-Rin; Lee, Sung-Nam

    2013-01-01

    Graphical abstract: - Highlights: • We examine comparative studies of semipolar ELO-GaN film. • Semipolar ELO-GaN film was grown by three step growth method. • The achievement of smooth surface morphology of semipolar ELO-GaN. • The crystal and optical properties was significantly improved by ELO process. - Abstract: We investigated the growth mode and the crystal properties of lateral epitaxial overgrowth (LEO) semipolar (1 12 2) GaN by using the various SiO 2 pattern sizes of 6, 8, 10 and 12 μm with the window width of 4.0 μm. By using three-step growth technique, we successfully obtained the fully-coalescenced semipolar (1 12 2) LEO-GaN films regardless of the SiO 2 pattern sizes. However, the coalescence thickness of LEO-GaN film was decreased with decreasing SiO 2 pattern size, indicating that the coalescence of semipolar (1 12 2) GaN was easily formed by decreasing the pattern size of SiO 2 mask. The full width at half maximums (FWHMs) of X-ray rocking curves (XRCs) of LEO-GaN films decreased with increasing SiO 2 pattern size. In the pattern size of 4 × 10 μm, we achieved the minimum XRCs FWHM of 537 and 368 arc s with two different X-ray incident beam directions of [1 12 − 3] and [11 0 0], respectively. Moreover, the photoluminescence bandedge emission of semipolar (1 12 2) GaN was 45 times increased by LEO process. Based on these results, we concluded that the LEO pattern size of 4 × 10 μm would effectively decrease crystal defects of semipolar (1 12 2) GaN epilayer, resulting in an improvement of the optical properties

  7. Kinetic study of Ca({sup 1}S) + N{sub 2}O and Sr({sup 1}S) + N{sub 2}O reactions in the temperature ranges of, respectively, 303--1015 and 303--999 K

    Energy Technology Data Exchange (ETDEWEB)

    Vinckier, C.; Helaers, J.; Remeysen, J. [K.U. Leuven, Heverlee (Belgium). Dept. of Chemistry

    1999-07-08

    Metal/N{sub 2}O reactions in incinerators may reduce the emission of the greenhouse gas N{sub 2}O. The study of metal atom/N{sub 2}O reactions allows metal atom/N{sub 2}O reactions in the gas phase to be very exothermic, leading to product molecules being formed in an electronic excited state. When the metal oxides fall back to lower lying states, an intense chemiluminescence can occur. In this way such reactions can be suitable candidates for the development of chemical lasers in which the population inversion is obtained by means of a pure chemical reaction. A kinetic study of the second-order reactions Ca({sup 1}S) + N{sub 2}O(X{sup 1}{Sigma}{sup +}) {yields} CaO + N{sub 2} and Sr({sup 1}S) + N{sub 2}O(X{sup 1}{Sigma}{sup +}) {yields} SrO + N{sub 2} has been carried out in a fast-flow reactor in the temperature ranges of, respectively, 303--1015 and 303--999 K. The alkaline earth metal atoms were thermally generated from the solid metal pellets. Their decays as a function of the added N{sub 2}O concentration were followed by means of atomic absorption spectroscopy (AAS) at 422.7 nm for calcium and 460.7 nm for strontium atoms. Both reactions showed a non-Arrhenius behavior that can best be explained by the presence of two reaction product channels, resulting in a rate constant expressed as the sum of two exponential functions. The best fits over the entire temperature range are given by polynomial expressions. The results will be discussed in view of the literature data on the alkaline earth metal atom + N{sub 2}O reactions. The experimentally derived energy barriers will be compared with the calculated values on the basis of the semiempirical configuration interaction theory (SECI). Reasonably good correlations were obtained between the barrier heights of the reaction and the promotion energy of the metals involved.

  8. Growth of epitaxial (Sr, Ba){sub n+1}Ru{sub n}O{sub 3n}P+{sub 1}films

    Energy Technology Data Exchange (ETDEWEB)

    Schlom, D.G.; Knapp, S.B.; Wozniak, S. [Department of Materials Science and Engineering, Penn State University, University Park, PA (United States); Zou, L.N.; Park, J.; Liu, Y. [Department of Physics, Penn State University, University Park, PA (United States); Hawley, M.E.; Brown, G.W. [Center for Materials Science, Los Alamos National Laboratory, Los Alamos, NM (United States); Dabkowski, A.; Dabkowska, H.A. [Institute of Materials Research, McMaster University, Hamilton, Ontario (Canada); Uecker, R.; Reiche, P. [Institute of Crystal Growth, Berlin (Germany)

    1997-12-01

    We have grown epitaxial (Sr,Ba){sub n+1}Ru{sub n}O{sub 3n+1} films, n = 1, 2 and {infinity}, by pulsed laser deposition (PLD) and controlled their orientation by choosing appropriate substrates. The growth conditions yielding phase-pure films have been mapped out. Resistivity versus temperature measurements show that both a-axis and c-axis films of Sr{sub 2}RuO{sub 4} are metallic, but not superconducting. The latter is probably due to the presence of low-level impurities that are difficult to avoid given the target preparation process involved in growing these films by PLD. (author)

  9. Enhancement of acid treated g-C3N4sbnd Cu2O photocatalytic activity by PEG under visible light irradiation

    Science.gov (United States)

    Zuo, Shiyu; Xu, Haiming; Liao, Wei; Sun, Lei; Li, Qiang; Zan, Jie; Zhang, Binyang; Li, Dongya; Xia, Dongsheng

    2018-05-01

    In this study, g-C3N4sbnd Cu2O was successfully synthesized in the presence of PEG-400 surfactant via an acid treatment hydrothermal method and a high-temperature calcination method. The structures and properties of as-synthesized samples were characterized using a range of techniques, such as XPS, TEM, PL and BET. The g-C3N4sbnd Cu2O heterojunction exhibits the enhanced photocatalytic performance and high stability. It is revealed that the addition of PEG can promote the heterojunction effect of g-C3N4sbnd Cu2O, effectively improving the crystallinity and specific surface area of the photocatalyst, separation efficiency of photocarriers, and light absorption, thus enhancing the photocatalytic performance.

  10. UV-light-assisted ethanol sensing characteristics of g-C3N4/ZnO composites at room temperature

    Science.gov (United States)

    Zhai, Jiali; Wang, Tao; Wang, Chuang; Liu, Dechen

    2018-05-01

    A highly efficient UV-light-assisted room temperature sensor based on g-C3N4/ZnO composites were prepared by an in situ precipitation method. The thermostability, composition, structure, and morphology properties of the as-prepared g-C3N4/ZnO composites were characterized by TGA, XRD, FT-IR, TEM, and XPS, respectively. And then, we studied the ethanol (C2H5OH) sensing performance of the g-C3N4/ZnO composites at the room temperature. Compared with pure ZnO and g-C3N4, the gas sensing activity of g-C3N4/ZnO composites was greatly improved at room temperature, for example, the g-C3N4/ZnO-8% composites showed an obvious response of 121-40 ppm C2H5OH at room temperature, which was 60 times higher than the pure ZnO based on the sensors under the same condition. The great enhancement of the C2H5OH sensing properties of composites can be understood by the efficient separation of photogenerated charge carriers of g-C3N4/ZnO heterogeneous and the UV-light catalytic effect. Finally, a possible mechanism for the gas sensing activity was proposed.

  11. Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C{sub 3}N{sub 4}-RGO-TiO{sub 2} nanoheterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fangjun [College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Li, Xin [College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Institute of New Energy and New Materials, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642 (China); College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642 (China); Liu, Wei, E-mail: wlscau@163.com [College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Zhang, Shuting [College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China)

    2017-05-31

    Highlights: • The indirect Z-scheme g-C{sub 3}N{sub 4}-RGO-TiO{sub 2} photocatalysts were successfully fabricated. • A 3.2-fold activity enhancement was achieved by inserting RGO into g-C{sub 3}N{sub 4}- TiO{sub 2}. • The indirect Z-scheme mechanism was verified by PL spectra and radical trapping. • The multi-functional roles of RGO in enhancing photodegradation were revealed. - Abstract: In the present research work, the ternary indirect all-solid-state Z-scheme nanoheterojunctions, graphitic-C{sub 3}N{sub 4}/reduced graphene oxide/anatase TiO{sub 2} (g-C{sub 3}N{sub 4}-RGO-TiO{sub 2}) with highly enhanced photocatalytic performance were successfully prepared via a simple liquid-precipitation strategy. The photocatalytic activities of indirect all-solid-state Z-scheme g-C{sub 3}N{sub 4}-RGO-TiO{sub 2} nanoheterojunctions were evaluated by the degradation of methylene blue (MB). The results showed that the introduction of RGO as an interfacial mediator into direct Z-scheme g-C{sub 3}N{sub 4}-TiO{sub 2} nanocomposites can remarkably enhance their photocatalytic activities. The as-obtained indirect all-solid-state Z-scheme g-C{sub 3}N{sub 4}-RGO-TiO{sub 2} nanoheterojunctions, with the optimal loading amount of 10 wt% RGO, exhibited the highest rate towards the photocatalytic degradation of MB under simulated solar light irradiation. The degradation kinetics of MB can be described by the apparent first-order kinetics model. The highest degradation rate constant of 0.0137 min{sup −1} is about 4.7 and 3.2 times greater than those of the pure g-C{sub 3}N{sub 4} (0.0029 min{sup −1}) and direct Z-scheme g-C{sub 3}N{sub 4}-TiO{sub 2} (0.0043 min{sup −1}), respectively. An indirect all-solid-state Z-scheme charge-separation mechanism was proposed based on the photoluminescence spectra and the trapping experiment procedure of the photo-generated active species. It was believed that the indirect all-solid-state Z-scheme charge separation mechanism in g-C{sub 3}N

  12. Aquachlorido{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilodimethylidyne]diphenolato-κ2O1,N,N′,O1′}cobalt(III monohydrate

    Directory of Open Access Journals (Sweden)

    Jianxin Xing

    2009-04-01

    Full Text Available The title compound, [Co(C18H18N2O4Cl(H2O]·H2O, contains a distorted octahedral cobalt(III complex with a 6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilodimethylidyne]diphenolate ligand, a chloride and an aqua ligand, and also a disordered water solvent molecule (half-occupancy. The CoIII ion is coordinated in an N2O3Cl manner. Weak O—H...O hydrogen bonds may help to stabilize the crystal packing.

  13. Compaction stimulates denitrification in an urban park soil using 15N tracing technique

    DEFF Research Database (Denmark)

    Li, Shun; Deng, Huan; Rensing, Christopher Günther T

    2014-01-01

    Soils in urban areas are subjected to compaction with accelerating urbanization. The effects of anthropogenic compaction on urban soil denitrification are largely unknown. We conducted a study on an urban park soil to investigate how compaction impacts denitrification. By using 15N labeling method...... and acetylene inhibition technique, we performed three coherent incubation experiments to quantify denitrification in compacted soil under both aerobic and anaerobic conditions. Uncompacted soil was set as the control treatment. When monitoring soil incubation without extra substrate, higher nitrous oxide (N2O......) flux and denitrification enzyme activity were observed in the compacted soil than in the uncompacted soil. In aerobic incubation with the addition of K15NO3, N2O production in the compacted soil reached 10.11 ng N h-1 g-1 as compared to 0.02 ng N h-1 g-1 in the uncompacted soil. Denitrification...

  14. Continuous Eddy Covariance Measurements of N2O Emissions and Controls from an Intensively Grazed Dairy Farm

    Science.gov (United States)

    Schipper, L. A.; Liang, L. L.; Wall, A.; Campbell, D.

    2017-12-01

    New Zealand's greenhouse gas (GHG) inventory is disproportionally dominated by methane and nitrous oxide which account for 54% of emissions. These GHGs are derived from pastoral agriculture that supports dairying and meat production. To date, most studies on quantifying or mitigating agricultural N2O emissions have used flux chamber measurements. Recent advances in detector technology now means that routine field-to-farm scale measurements of N2O emissions might be possible using the eddy covariance technique. In late 2016, we established an eddy covariance tower that measured N2O emissions from a dairy farm under year-round grazing. An Aerodyne quantum cascade laser (QCL) was used to measure N2O, CH4 and H2O concentration at 10 Hz and housed in a weatherproof and insulated enclosure (0.9 m ´ 1.2 m) and powered by mains power (240 VAC). The enclosure maintained a stable setpoint temperature (30±0.2°C) by using underground cooling pipes, fans and recirculating instrument heat. QCL (true 10 Hz digital) and CSAT3B sonic anemometer high frequency data are aligned using Network Time Protocol and EddyPro covariance maximisation during flux processing. Fluxes generally integrated over about 6-8 ha. Stable summertime baseline N2O fluxes (FN2O) were around 12-24 g N2O-N ha-1 d-1 (0.5-1.0 nmol N2O m-2 s-1). Grazing by cows during dry summer resulted in only modest increases in FN2O to 24-48 g N2O-N ha-1 d-1 (1.0-2.0 nmol N2O m-2 s-1). However, the first rain events after grazing resulted in large, short-lived (1-3 days) FN2O pulses reaching peaks of 144-192 g N2O-N ha-1 d-1 (6-8 nmol N2O m-2 s-1). During these elevated N2O emissions, FN2O displayed a significant diurnal signal, with peak fluxes mid-afternoon which was best explained by variation in shallow soil temperature in summer. In winter (both cooler and wetter) FN2O were not as easily explained on a daily basis but were generally greater than summer. Throughout the year, FN2O was strongly dependent on water filled

  15. In situ hydrothermal synthesis of g-C{sub 3}N{sub 4}/TiO{sub 2} heterojunction photocatalysts with high specific surface area for Rhodamine B degradation

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ruirui [Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Institute for Advanced Materials, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002 (China); Wang, Guohong, E-mail: wanggh2003@163.com [Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Institute for Advanced Materials, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002 (China); Jiang, Chuanjia [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 (China); Tang, Hua [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 (China); Xu, Qingchuan [Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Institute for Advanced Materials, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002 (China)

    2017-07-31

    Highlights: • High surface area g-C{sub 3}N4/TiO{sub 2} is obtained by combined hydrothermal-calcination method. • HCl formation from Ti precursor changed the structural properties of the composite. • Composite exhibited visible light photocatalytic performance for RhB degradation. • A 3 g of melamine for 0.5 mL TiCl{sub 4} was found to be the optimum content. - Abstract: Semiconductor-based photocatalysis is a promising method for degradation of environmental pollutants, but the activity of most widely used photocatalysts such as titania (TiO{sub 2}) is still unsatisfactory under visible light. Herein, we synthesized a highly efficient visible-light-responsive heterojunction catalysts based on graphitic carbon nitride (g-C{sub 3}N{sub 4}) and TiO{sub 2}. The g-C{sub 3}N{sub 4}/TiO{sub 2} heterojunction composites with high specific surface area were prepared via in situ hydrothermal synthesis followed by calcination, using titanium tetrachloride (TiCl{sub 4}) and melamine as precursors. Interesting, HCl from the hydrolysis of TiCl{sub 4} served as the proton source to acidify the melamine. The g-C{sub 3}N{sub 4}/TiO{sub 2} heterojunction composites exhibited higher photocatalytic performance for decomposition of Rhodamine B (RhB) than pure g-C{sub 3}N{sub 4} or TiO{sub 2} under visible light irradiation. The high activity can be ascribed to the high specific surface area (up to 115.6 m{sup 2} g{sup −1}) of the g-C{sub 3}N{sub 4}/TiO{sub 2} composites and a synergistic heterojunction structure between TiO{sub 2} and g-C{sub 3}N{sub 4}. Moreover, the photocatalytic performances of the g-C{sub 3}N{sub 4}/TiO{sub 2} composites rely on the content of melamine in the synthesis precursors: with an optimum melamine content (3 g for 0.5 mL of TiCl{sub 4}), the sample showed the highest photocatalytic performance, which is superior to pure TiO{sub 2} and g-C{sub 3}N{sub 4} by a factor of 18.7 and 3.5, respectively. Active species trapping experiments revealed that

  16. Thin-barrier enhancement-mode AlGaN/GaN MIS-HEMT using ALD Al2O3 as gate insulator

    International Nuclear Information System (INIS)

    Wang Zheli; Zhou Jianjun; Kong Yuechan; Kong Cen; Dong Xun; Yang Yang; Chen Tangsheng

    2015-01-01

    A high-performance enhancement-mode (E-mode) gallium nitride (GaN)-based metal–insulator–semiconductor high electron mobility transistor (MIS-HEMT) that employs a 5-nm-thick aluminum gallium nitride (Al 0.3 Ga 0.7 N) as a barrier layer and relies on silicon nitride (SiN) passivation to control the 2DEG density is presented. Unlike the SiN passivation, aluminum oxide (Al 2 O 3 ) by atomic layer deposition (ALD) on AlGaN surface would not increase the 2DEG density in the heterointerface. ALD Al 2 O 3 was used as gate insulator after the depletion by etching of the SiN in the gate region. The E-mode MIS-HEMT with gate length (L G ) of 1 μm showed a maximum drain current density (I DS ) of 657 mA/mm, a maximum extrinsic transconductance (g m ) of 187 mS/mm and a threshold voltage (V th ) of 1 V. Comparing with the corresponding E-mode HEMT, the device performances had been greatly improved due to the insertion of Al 2 O 3 gate insulator. This provided an excellent way to realize E-mode AlGaN/GaN MIS-HEMTs with both high V th and I DS . (paper)

  17. Difluorophosphoryl nitrene F2P(O)N: matrix isolation and unexpected rearrangement to F2PNO.

    Science.gov (United States)

    Zeng, Xiaoqing; Beckers, Helmut; Willner, Helge; Neuhaus, Patrik; Grote, Dirk; Sander, Wolfram

    2009-12-14

    Triplet difluorophosphoryl nitrene F(2)P(O)N (X(3)A'') was generated on ArF excimer laser irradiation (lambda=193 nm) of F(2)P(O)N(3) in solid argon matrix at 16 K, and characterized by its matrix IR, UV/Vis, and EPR spectra, in combination with DFT and CBS-QB3 calculations. On visible light irradiation (lambda>420 nm) at 16 K F(2)P(O)N reacts with molecular nitrogen and some of the azide is regenerated. UV irradiation (lambda=255 nm) of F(2)P(O)N (X(3)A'') induced a Curtius-type rearrangement, but instead of a 1,3-fluorine shift, nitrogen migration to give F(2)PON is proposed to be the first step of the photoisomerization of F(2)P(O)N into F(2)PNO (difluoronitrosophosphine). Formation of novel F(2)PNO was confirmed with (15)N- and (18)O-enriched isotopomers by IR spectroscopy and DFT calculations. Theoretical calculations predict a rather long P-N bond of 1.922 A [B3LYP/6-311+G(3df)] and low bond-dissociation energy of 76.3 kJ mol(-1) (CBS-QB3) for F(2)PNO.

  18. Construction of g-C{sub 3}N{sub 4}/Al{sub 2}O{sub 3} hybrids via in-situ acidification and exfoliation with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-jing [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Liu, Chao [College of Gemmology and Material Technics, Hebei GEO University, Shijiazhuang 050031 (China); Li, Xu-li [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); Li, Fa-tang, E-mail: lifatang@126.com [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); Li, Yu-pei [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); Zhao, Jun [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Liu, Rui-hong [College of Science, Hebei University of Science and Technology, Shijiazhuang 050018 (China)

    2017-02-01

    Highlights: • Ultrathin g-C{sub 3}N{sub 4}/Al{sub 2}O{sub 3} hybrids are prepared via in-situ reaction. • The structure modification role of in-situ formed HNO{sub 3} for g-C{sub 3}N{sub 4} is found. • The ultrathin g-C{sub 3}N{sub 4} nanosheets are formed by the acidified melamine and Al(OH){sub 3}. • In-situ calcination of melamine and Al(OH){sub 3} benefits the contact of C{sub 3}N{sub 4} and Al{sub 2}O{sub 3}. • The activity of g-C{sub 3}N{sub 4}/Al{sub 2}O{sub 3} is 16.6 times that of pristine g-C{sub 3}N{sub 4} in degrading RhB. - Abstract: Homogeneous ultrathin g-C{sub 3}N{sub 4} nanosheets/Al{sub 2}O{sub 3} heterojunctions are synthesized using melamine and Al(NO{sub 3}){sub 3} via in-situ reaction and the following thermal polymerization approach. The in-situ reaction between melamine and Al(NO{sub 3}){sub 3} results in the existence of HNO{sub 3}-acidified melamine and Al(OH){sub 3} aggregates via the hydrolysis of Al(NO{sub 3}){sub 3}. After thermal polymerization, the aggregates are converted to g-C{sub 3}N{sub 4}/Al{sub 2}O{sub 3} composites. The thermal polymerization of acidified melamine and the support effect of aluminum hydroxide for g-C{sub 3}N{sub 4} during the calcination process lead to highly dispersed amrophous Al{sub 2}O{sub 3} on ultrathin g-C{sub 3}N{sub 4} nanosheets, which is beneficial for the separation of photogenerated electron-hole pairs in the heterojunction. The degradation rate for Rhodamine B (RhB) over the most activie sample is 16.6 times than that of pristine g-C{sub 3}N{sub 4} under visible light irradiation, which can be attributed to the high specific surface area, highly dispersion of amorphous Al{sub 2}O{sub 3} on ultrathin g-C{sub 3}N{sub 4} nanosheet, and the effective electrons transfer from g-C{sub 3}N{sub 4} to the amorphous Al{sub 2}O{sub 3}.

  19. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O

    Directory of Open Access Journals (Sweden)

    K. Pilegaard

    2006-01-01

    Full Text Available Soil emissions of NO and N2O were measured continuously at high frequency for more than one year at 15 European forest sites as part of the EU-funded project NOFRETETE. The locations represent different forest types (coniferous/deciduous and different nitrogen loads. Geographically they range from Finland in the north to Italy in the south and from Hungary in the east to Scotland in the west. The highest NO emissions were observed from coniferous forests, whereas the lowest NO emissions were observed from deciduous forests. The NO emissions from coniferous forests were highly correlated with N-deposition. The site with the highest average annual emission (82 μg NO-N m−2 h−1 was a spruce forest in South-Germany (Höglwald receiving an annual N-deposition of 2.9 g m−2. NO emissions close to the detection limit were observed from a pine forest in Finland where the N-deposition was 0.2 g N m−2 a−1. No significant correlation between N2O emission and N-deposition was found. The highest average annual N2O emission (20 μg N2O-N m−2 h−1 was found in an oak forest in the Mátra mountains (Hungary receiving an annual N-deposition of 1.6 g m−2. N2O emission was significantly negatively correlated with the C/N ratio. The difference in N-oxide emissions from soils of coniferous and deciduous forests may partly be explained by differences in N-deposition rates and partly by differences in characteristics of the litter layer and soil. NO was mainly derived from nitrification whereas N2O was mainly derived from denitrification. In general, soil moisture is lower at coniferous sites (at least during spring time and the litter layer of coniferous forests is thick and well aerated favouring nitrification and thus release of NO. Conversely, the higher rates of denitrification in deciduous forests due to a compact and moist litter layer lead to N2O production and NO consumption in the soil. The two factors soil moisture and soil temperature are

  20. Diferencias según género en la intención de emigración en médicos recién egresados

    Directory of Open Access Journals (Sweden)

    Reneé Pereyra-Elías

    2013-07-01

    Full Text Available Introducción: La emigración médica en el Perú supone un importante problema en la búsqueda de la consolidación de un sistema de salud sostenible. Objetivos: Estimar la prevalencia de intención de emigración y sus factores asociados según género en médicos peruanos recién egresados. Diseño y lugar de estudio: Estudio analítico de corte transversal llevado a cabo en Lima, Perú, durante el año 2010. Participantes: Se incluyó a 289 médicos egresados de universidades de peruanas. Intervenciones: Se aplicó una encuesta anónima y autoadministrada que evaluaba la intención de emigración para laborar y sus factores asociados. Los datos fueron analizados con el paquete estadístico STATA 11.2; se utilizó un modelo lineal generalizado log-binomial como método de regresión de múltiples variables. Principales medidas de resultados: Intención de emigración autorreportada. Resultados: La prevalencia de intención de emigración fue de 42,1%; esta fue mayor en el género masculino (50,0% versus 36,4%; p<0,01. Un manejo intermedio/avanzado del idioma inglés (RP: 1,77; IC95%: 1,04 a 2,98 y expectativas de ingreso económico mayor o igual a 3 600 dólares americanos mensuales en los siguientes cinco años (RP: 1,55; IC95%: 1,09 a 2,21 se encontraron asociados con la intención de emigrar en varones. En mujeres, estuvieron asociados el haber culminado la carrera sin retraso (RP: 1,66; IC95%: 1,02 a 2,71 y proyectarse a ganar 3 600 dólares o más (RP: 1,71; IC95%: 1,14 a 2,57. Conclusiones: Existe una alta prevalencia de intención en emigración médica; el factor económico se asocia independientemente; los idiomas y la regularidad académica difieren según género.

  1. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity

    Science.gov (United States)

    He, Rongan; Zhou, Jiaqian; Fu, Huiqing; Zhang, Shiying; Jiang, Chuanjia

    2018-02-01

    Constructing direct Z-scheme heterojunction is an effective approach to separating photogenerated charge carriers and improving the activity of semiconductor photocatalysts. Herein, a composite of bismuth(III) oxide (Bi2O3) and graphitic carbon nitride (g-C3N4) was in situ fabricated at room temperature by photoreductive deposition of Bi3+ and subsequent air-oxidation of the resultant metallic Bi. Quantum-sized ω-Bi2O3 nanoparticles approximately 6 nm in diameter were uniformly distributed on the surface of mesoporous g-C3N4. The as-prepared Bi2O3/g-C3N4 composite exhibited higher photocatalytic activity than pure Bi2O3 and g-C3N4 for photocatalytic degradation of phenol under visible light. Reactive species trapping experiments revealed that superoxide radicals and photogenerated holes played important roles in the photocatalytic degradation of phenol. The enhanced photocatalytic activity, identification of reactive species and higher rate of charge carrier recombination (as indicated by stronger photoluminescence intensity) collectively suggest that the charge migration within the Bi2O3/g-C3N4 composite followed a Z-scheme mechanism. Photogenerated electrons on the conduction band of Bi2O3 migrate to the valence band of g-C3N4 and combine with photogenerated holes therein. At the cost of these less reactive charge carriers, the Z-scheme heterojunction enables efficient charge separation, while preserving the photogenerated electrons and holes with stronger redox abilities, which is beneficial for enhanced photocatalytic activity.

  2. Energy level alignments at the interface of N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB)/Ag-doped In{sub 2}O{sub 3} and NPB/Sn-doped In{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kwanwook; Park, Soohyung; Lee, Younjoo; Youn, Yungsik [Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722 (Korea, Republic of); Shin, Hae-In; Kim, Han-Ki [Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104 (Korea, Republic of); Lee, Hyunbok, E-mail: hyunbok@kangwon.ac.kr [Department of Physics, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341 (Korea, Republic of); Yi, Yeonjin, E-mail: yeonjin@yonsei.ac.kr [Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul, 03722 (Korea, Republic of)

    2016-11-30

    Highlights: • The electronic structures of IAgO and its energy level alignment with a NPB HTL were investigated using in situ UPS and XPS. • As compared to ITO, IAgO has less oxygen vacancies leading to a high work function. • The hole injection barrier at the NPB/IAgO interface (0.87 eV) is significantly lower than that at the NPB/ITO interface (1.11 eV). • IAgO could be an efficient anode material for high performance optoelectronic devices. - Abstract: The electronic structures of Ag-doped In{sub 2}O{sub 3} (IAgO) and its energy level alignments with a N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) hole transport layer (HTL) were investigated using in situ ultraviolet and X-ray photoelectron spectroscopies (UPS and XPS). As compared to the conventional Sn-doped In{sub 2}O{sub 3} (ITO), IAgO has less oxygen vacancies leading to a higher work function (WF). The lower hole injection barrier (Φ{sub h}) from IAgO to a NPB HTL is observed, which is attributed mainly to its higher WF and interface dipoles. The UPS measurements reveal that the Φ{sub h} is 0.87 eV at NPB/IAgO while 1.11 eV is at NPB/ITO. Therefore, IAgO could be an alternative transparent anode in organic optoelectronics.

  3. N,N′-(Ethane-1,2-diyldi-o-phenylenebis(pyridine-2-carboxamide

    Directory of Open Access Journals (Sweden)

    Shuranjan Sarkar

    2011-11-01

    Full Text Available The title molecule, C26H22N4O2, is centrosymmetric and adopts an anti conformation. Two intramolecular hydrogen bonds, viz. amide–pyridine N—H...N and phenyl–amide C—H...O, stabilize the trans conformation of the (pyridine-2-carboxamidophenyl group about the amide plane. In the crystal, the presence of weak intermolecular C—H...O hydrogen bonds results in the formation of a three-dimensional network.

  4. A detailed study of the dehydration process in synthetic strelkinite, Na[(UO2)(VO4)] . nH2O (n = 0, 1, 2)

    International Nuclear Information System (INIS)

    Suleimanov, Evgeny V.; Somov, Nikolay V.; Chuprunov, Evgeny V.; Mayatskikh, Ekaterina F.; Depmeier, Wulf

    2012-01-01

    Synthetic strelkinite Na[(UO 2 )(VO 4 )] . nH 2 O (n = 0, 1, 2) was systematically investigated by single crystal X-ray diffraction and thermoanalytical methods. The anhydrous form and two hydrates were isolated as single crystals and the structures of these phases solved: Na[(UO 2 )(VO 4 )], monoclinic, P2 1 /c, a = 6.0205(1) Aa, b = 8.3365(1) Aa, c = 10.4164(2) Aa, β = 100.466(2) , V = 514.10(1) Aa 3 , R 1 = 0.0337; Na[(UO 2 )(VO 4 )] . H 2 O, monoclinic, P2 1 /c, a = 7.722(2) Aa, b = 8.512(1) Aa, c = 10.480(4) Aa, β = 113.18(3) , V = 633.3(3) Aa 3 , R 1 = 0.1658; Na[(UO 2 )(VO 4 )] . 2 H 2 O, monoclinic, P2 1 /n, a = 16.2399(5) Aa, b = 8.2844(2) Aa, c = 10.5011(2) Aa, β = 97.644(2) , V = 1400.24(6) Aa 3 , R 1 = 0.0776. A possible mechanism of the structural transformation processes during dehydration is proposed based on the structures of the anhydrous phase and the hydrates. (orig.)

  5. Tetrakis(6-methyl-2,2′-bipyridine-1κ2N,N′;2κ2N,N′;3κ2N,N′;4κ2N,N′-tetra-μ-nitrato-1:2κ2O:O′;2:3κ3O:O′,O′′;2:3κ3O,O′:O′′;3:4κ2O:O′-tetranitrato-1κ4O,O′;4κ2O,O′-tetralead(II

    Directory of Open Access Journals (Sweden)

    Roya Ahmadi

    2009-10-01

    Full Text Available In the tetranuclear centrosymmetric title compound, [Pb4(NO38(C11H10N24], irregular PbN2O5 and PbN2O4 coordination polyhedra occur. The heptacoordinated lead(II ion is bonded to two bidentate and one monodentate nitrate ion and one bidentate 6-methyl-2,2′-bipyridine (mbpy ligand. The six-coordinate lead(II ion is bonded to one bidentate and two monodentate nitrate anions and one mbpy ligand. In the crystal, bridging nitrate anions lead to infinite chains propagating in [111]. A number of C—H...O hydrogen bonds may stabilize the structure.

  6. Dissolution and Release of Gaseous Nitrogen (N2, N2O) in the Source Region of the Yellow River

    Science.gov (United States)

    Zhang, L.; Xia, X.; Wang, J.

    2017-12-01

    Nitrogen is an important biogenic element. The migration and transformation of nitrogen in rivers is an important process affecting global nitrogen cycling and greenhouse gas emissions. However, there is a lack of research on nitrogen removal and greenhouse gas emission characteristics of high altitude rivers. In this work, the spatial and temporal variations of dissolved nitrogen (N2 and N2O) concentrations, saturation, and release flux as well as their responses to environmental factors were studied in the Yellow River source area, a typical high altitude river. The results showed that the dissolved concentrations of N2 and N2O in the rivers were 8.24-137.75 μmol.L-1 and 2.57-31.94 nmol.L-1, respectively. N2 and N2O saturation were greater than 100% for all the sampling sites, indicating that the river is a release source for atmosphere N2 and N2O. Correspondingly, the fluxes of N2 and N2O from river water to atmosphere were 24.12-1606.57 mmol (m2.d) -1 and 12.96-276.81 μmol (m2.d) -1, respectively. Generally, the dissolution concentration and release flux of N2 and N2O in July were larger than that in May. The concentrations of N2 and N2O in river water were related to the environmental factors, and the dissolved concentration of N2 in the surface water was significantly positively correlated with water temperature, NH4+-N and total inorganic nitrogen (DIN) (p<0.01). The dissolved concentration of N2O was significantly positively correlated with the content of suspended particulates, DO, and DIN (p<0.01). Thus, DIN is a key factor in the process of N2 and N2O formation. This study can help to understand the nitrogen cycling in high-altitude rivers and provide basic data for a comprehensive assessment of global river nitrogen loss. Key Words: Source Region of the Yellow River; Gaseous Nitrogen; Nitrogen loss; High altitude river

  7. Nitrous oxide (N(2)O) reduces postoperative opioid-induced hyperalgesia after remifentanil-propofol anaesthesia in humans.

    Science.gov (United States)

    Echevarría, G; Elgueta, F; Fierro, C; Bugedo, D; Faba, G; Iñiguez-Cuadra, R; Muñoz, H R; Cortínez, L I

    2011-12-01

    The aim of this study was to test if intraoperative administration of N(2)O during propofol-remifentanil anaesthesia prevented the onset of postoperative opioid-induced hyperalgesia (OIH). Fifty adult ASA I-II patients undergoing elective open septorhinoplasty under general anaesthesia were studied. Anaesthesia was with propofol, adjusted to bispectral index (40-50), and remifentanil (0.30 μg kg(-1) min(-1)). Patients were assigned to one of the two groups: with N(2)O (70%) and without N(2)O (100% oxygen). Mechanical pain thresholds were measured before surgery and 2 and 12-18 h after surgery. Pain measurements were performed on the arm using hand-held von Frey filaments. A non-parametric analysis of variance was used in the von Frey data analysis. P<0.05 was considered statistically significant. Baseline pain thresholds to mechanical stimuli were similar in both groups, with mean values of 69 [95% confidence interval (CI): 50.2, 95.1] g in the group without N(2)O and 71 (95% CI: 45.7, 112.1) g in the group with N(2)O. Postoperative pain scores and cumulative morphine consumption were similar between the groups. The analysis revealed a decrease in the threshold value in both groups. However, post hoc comparisons showed that at 12-18 h after surgery, the decrease in mechanical threshold was greater in the group without N(2)O than the group with N(2)O (post hoc analysis with Bonferroni's correction, P<0.05). Intraoperative 70% N(2)O administration significantly reduced postoperative OIH in patients receiving propofol-remifentanil anaesthesia.

  8. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules

    Science.gov (United States)

    Buchen, Caroline; Well, Reinhard; Flessa, Heinz; Fuß, Roland; Helfrich, Mirjam; Lewicka-Szczebak, Dominika

    2017-04-01

    Grassland break-up due to grassland renewal and grassland conversion to cropland can lead to a flush of mineral nitrogen from decomposition of the old grass sward and the decomposition of soil organic matter. Moreover, increased carbon and nitrogen mineralisation can result in enhanced nitrous oxide (N2O) emissions. As N2O is known to be an important greenhouse gas and a major precursor for ozone depletion, its emissions need to be mitigated by adjusting agricultural management practices. Therefore, it is necessary to understand the N2O processes involved, as well as the contribution of N2O reduction to N2. Apart from the widely used 15N gas flux method, natural abundance isotopic analysis of the four most abundant isotopocules of N2O species is a promising alternative to assess N2O production pathways. We used stable isotope analyses of soil-emitted N2O (δ18ON2O, δ15NN2Obulk and δ15NN2OSP= intramolecular distribution of 15N within the linear N2O molecule) with an isotopocule mapping approach to simultaneously estimate the magnitude of N2O reduction to N2 and the fraction of N2O originating from the bacterial denitrification pathway or fungal denitrification and/or nitrification. This approach is based on endmember areas of isotopic values for the N2O produced from different sources reported in the literature. For this purpose, we calculated two main scenarios with different assumptions for N2O produced: N2O is reduced to N2 before residual N2O is mixed with N2O of various sources (Scenario a) and vice versa (Scenario b). Based on this, we applied seven different scenario variations, where we evaluated the range of possible values for the potential N2O production pathways (heterotrophic bacterial denitrification and/or nitrifier denitrification and fungal denitrification and/or nitrification). This was done by using a range of isotopic endmember values and assuming different fractionation factors of N2O reduction in order to find the most reliable scenario

  9. Improved photoelectrochemical performance of Z-scheme g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4} heterostructure and degradation property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junqi, E-mail: sfmlab@163.com; Yuan, Huan; Zhu, Zhenfeng

    2016-11-01

    Highlights: • A novel Z-scheme g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4} composite was synthesized. • The Z-scheme system we made can remain the strong reducibility and oxidizability of the photocatalysts. • The solar light was made the utmost use both the ultraviolet and visible region light through the g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4} composite. - Abstract: In g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4}, the p–n junction between p-type Bi{sub 2}O{sub 3} and n-type BiPO{sub 4} was encapsulated by g-C{sub 3}N{sub 4} and a direct Z-scheme was built between g-C{sub 3}N{sub 4} and Bi{sub 2}O{sub 3}. The optical, morphological and photoelectrochemical (PEC) properties of BiPO{sub 4}, g-C{sub 3}N{sub 4}/BiPO{sub 4}, Bi{sub 2}O{sub 3}/BiPO{sub 4} and g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4} hierarchical Z-scheme system were studied. More than 90% photodegradation of methyl orange (MO) with the exposure of simulated solar light was achieved within 160 min with the g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4}, which displayed remarkably promoted photocatalytic activities than other samples. The electrochemical impedance spectra and photocurrent results also proved that efficient charge separation and better electron transport properties were achieved by g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4}. In general, the addition of g-C{sub 3}N{sub 4} can guide the residual electrons on p-type Bi{sub 2}O{sub 3} to recombine with photoholes of g-C{sub 3}N{sub 4} and make sure the left carries exhibit stronger oxidation and reduction ability to boost the production of active groups.

  10. Fabrication of novel ternary Au/CeO2@g-C3N4 nanocomposite: kinetics and mechanism investigation of 4-nitrophenol reduction, and benzyl alcohol oxidation

    Science.gov (United States)

    Kohantorabi, Mona; Gholami, Mohammad Reza

    2018-06-01

    Au nanoparticles supported on cerium oxide/graphitic carbon nitride (CeO2@g-C3N4) was synthesized and used as heterogeneous catalyst in redox reaction. The catalyst was characterized by different techniques such as FT-IR, XRD, FE-SEM, EDS, TEM, BET, TGA, and ICP. The as-prepared ternary nanocomposite was used as an effective catalyst for the reduction of toxic 4-nitrophenol to useful 4-aminophenol by NaBH4. The rate constant value of reduction reaction reached up to 0.106 s-1 by Au/CeO2@g-C3N4, which was 3.8, and 8.8 times higher than that of Au@CeO2 (0.028 s-1), and Au@g-C3N4 (0.012 s-1) nanocomposites, respectively. The superior catalytic performance of as-prepared catalyst in 4-NP reduction can be attributed to synergistic effect between Au nanoparticles and CeO2@g-C3N4 support, and efficient electron transfer. The reduction reaction was carried out at different temperatures, and the energy of activation ({Ea}), and thermodynamic parameters including, activation of entropy (Δ S^ ≠), enthalpy (Δ H^ ≠), and Gibbs free energy (Δ G^ ≠) were determined. Additionally, the mechanism of reaction was studied in details, and equilibrium constants of 4-NP ( K 4-NP), and {BH}4^{ - } ({K_{{BH}4^{{ - }} }}) were calculated using Langmuir-Hinshelwood model. Furthermore, this nanocomposite exhibited excellent catalytic activity in oxidation of benzyl alcohol by molecular oxygen as a green oxidant. This study revealed that the ternary Au/CeO2@g-C3N4 nanocomposite is an attractive candidate for catalytic applications.

  11. Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture.

    Science.gov (United States)

    Conthe, Monica; Wittorf, Lea; Kuenen, J Gijs; Kleerebezem, Robbert; van Loosdrecht, Mark C M; Hallin, Sara

    2018-04-01

    Reduction of the greenhouse gas N 2 O to N 2 is a trait among denitrifying and non-denitrifying microorganisms having an N 2 O reductase, encoded by nosZ. The nosZ phylogeny has two major clades, I and II, and physiological differences among organisms within the clades may affect N 2 O emissions from ecosystems. To increase our understanding of the ecophysiology of N 2 O reducers, we determined the thermodynamic growth efficiency of N 2 O reduction and the selection of N 2 O reducers under N 2 O- or acetate-limiting conditions in a continuous culture enriched from a natural community with N 2 O as electron acceptor and acetate as electron donor. The biomass yields were higher during N 2 O limitation, irrespective of dilution rate and community composition. The former was corroborated in a continuous culture of Pseudomonas stutzeri and was potentially due to cytotoxic effects of surplus N 2 O. Denitrifiers were favored over non-denitrifying N 2 O reducers under all conditions and Proteobacteria harboring clade I nosZ dominated. The abundance of nosZ clade II increased when allowing for lower growth rates, but bacteria with nosZ clade I had a higher affinity for N 2 O, as defined by μ max /K s . Thus, the specific growth rate is likely a key factor determining the composition of communities living on N 2 O respiration under growth-limited conditions.

  12. Automated online measurement of N2, N2O, NO, CO2, and CH4 emissions based on a gas-flow-soil-core technique.

    Science.gov (United States)

    Liao, Tingting; Wang, Rui; Zheng, Xunhua; Sun, Yang; Butterbach-Bahl, Klaus; Chen, Nuo

    2013-11-01

    The gas-flow-soil-core (GFSC) technique allows to directly measure emission rates of denitrification gases of incubated soil cores. However, the technique was still suffering some drawbacks such as inadequate accuracy due to asynchronous detection of dinitrogen (N2) and other gases and low measurement frequency. Furthermore, its application was limited due to intensive manual operation. To overcome these drawbacks, we updated the GFSC system as described by Wang et al. (2011) by (a) using both a chemiluminescent detector and a gas chromatograph detector to measure nitric oxide (NO), (b) synchronizing the measurements of N2, NO, nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), and (c) fully automating the sampling/analysis of all the gases. These technical modifications significantly reduced labor demands by at least a factor of two, increased the measurement frequency from 3 to 6 times per day and resulted in remarkable improvements in measurement accuracy (with detection limits of 0.5, 0.01, 0.05, 2.3 and 0.2μgN or Ch(-1)kg(-1)ds, or 17, 0.3, 1.8, 82, and 6μgN or Cm(-2)h(-1), for N2, N2O, NO, CO2, and CH4, respectively). In some circumstances, the modified system measured significantly more N2 and CO2 and less N2O and NO because of the enhanced measurement frequency. The modified system distinguished the differences in emissions of the denitrification gases and CO2 due to a 20% change in initial carbon supplies. It also remarkably recovered approximately 90% of consumed nitrate during incubation. These performances validate the technical improvement, and indicate that the improved GFSC system may provide a powerful research tool for obtaining deeper insights into the processes of soil carbon and nitrogen transformation during denitrification. Copyright © 2013. Published by Elsevier Ltd.

  13. Atmospheric chemistry of CH3O(CF2CF2O)(n)CH3 (n=1-3): Kinetics and mechanism of oxidation initiated by Cl atoms and OH radicals, IR spectra, and global warmin potentials

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Hurley, MD; Wallington, TJ

    2004-01-01

    Smog chambers equipped with FTIR spectrometers were used to study the Cl atom and OH radical initiated oxidation of CH3O(CF2CF2O)(n)CH3 (n = 1-3) in 720 +/- 20 Torr of air at 296 +/- 3 K. Relative rate techniques were used to measure k(Cl + CH3O(CF2CF2O)(n)CH3) (3.7 +/- 10.7) x 10(-13) and k......(OH + CH3O(CF2CF2O)(n)CH3) = (2.9 +/- 0.5) x 10(-11) cm(3) molecule(-1) s(-1) leading to an estimated atmospheric lifetime of 2 years for CH3O(CF2CF2O),CH3. The Cl initiated oxidation of CH3O(CF2CF2O),CH3 in air diluent gives CH3O(CF2CF2O)(n)C(O)H in a yield which is indistinguishable from 100 Further...... oxidation leads to the diformate, H(O)CO(CF2CF2O)(n)C(O)H. A rate constant of k(Cl + CH3O(CF2CF2O)(n)CHO) = (1.81 +/- 0.36) x 10(-13) cm(3) molecule(-1) s-1 was determined. Quantitative infrared spectra for CH3O(CF2CF2O)(n)CH3 (n = 1-3) were recorded and used to estimate halocarbon global warming potentials...

  14. Bis[2-(2-aminoethyl-1H-benzimidazole-κ2N2,N3](nitrato-κ2O,O′cobalt(II chloride trihydrate

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2012-06-01

    Full Text Available In the title compound, [Co(NO3(C9H11N32]Cl·3H2O, the CoII atom is coordinated by four N atoms from two chelating 2-(2-aminoethyl-1H-benzimidazole ligands and two O atoms from one nitrate anion in a distorted octahedral coordination environment. In the crystal, N—H...Cl, N—H...O, O—H...Cl and O—H...O hydrogen bonds link the complex cations, chloride anions and solvent water molecules into a three-dimensional network. π–π interactions between the imidazole and benzene rings and between the benzene rings are observed [centroid–centroid distances = 3.903 (3, 3.720 (3, 3.774 (3 and 3.926 (3 Å].

  15. {2-[(2-Acetylhydrazin-1-ylidenemethyl-κ2N1,O]-6-methoxyphenolato-κO1}(nitrato-κOcopper(II monohydrate

    Directory of Open Access Journals (Sweden)

    Ibrahima Elhadj Thiam

    2010-02-01

    Full Text Available In the title complex, [Cu(C10H11N2O3(NO3]·H2O, prepared from the Schiff base N′-(3-methoxy-2-oxidobenzylideneacetohydrazide, the CuII atom is coordinated by two O atoms and one N atom from the ligand and one O atom from a nitrate group in a distorted square-planar geometry. The CuII atom has a weak interaction with another O atom of the nitrate group. The two O atoms of the tridentate Schiff base ligand are in a trans arrangement. O—H...O and N—H...O hydrogen bonds involving the uncoordinated water molecule are observed.

  16. Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples.

    Science.gov (United States)

    Wang, Man; Cui, Shihai; Yang, Xiaodi; Bi, Wentao

    2015-01-01

    An easy preparation of g-C3N4/Fe3O4 nanocomposites by chemical co-precipitation has been demonstrated. The as-prepared materials were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The high affinity of g-C3N4 toward polycyclic aromatic hydrocarbons and the magnetic behavior of Fe3O4 were combined to provide an efficient and simple magnetic solid phase extraction (MSPE). The adsorption and desorption of polycyclic aromatic hydrocarbons on g-C3N4/Fe3O4 were examined. Different factors affecting the magnetic solid phase extraction of polycyclic aromatic hydrocarbons were assessed in terms of adsorption, desorption, and recovery. Under the optimized conditions, the proposed method showed good limits of detection (LOD, S/N=3) in the range of 0.05-0.1 ng mL(-1) and precision in the range of 1.8-5.3% (RSDs, n=3). This method was also successfully applied to the analysis of real water samples; good spiked recoveries over the range of 80.0-99.8% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Poly[(μ3-benzene-1,3,5-tricarboxylato-κ3O1:O3:O5(μ2-2-methylimidazolato-κ2N:N′tris(2-methylimidazole-κNdizinc(II

    Directory of Open Access Journals (Sweden)

    Palanikumar Maniam

    2011-06-01

    Full Text Available Hydrothermal reaction involving zinc nitrate hexahydrate, trisodium benzene-1,3,5-tricarboxylate (Na3BTC and 2-methylimidazole (2-MeImH yielded the title compound, [Zn2(C9H3O6(C4H5N2(C4H6N23]. In this mixed-ligand metal-organic compound, Zn2+ ions are coordinated by N atoms from 2-MeImH molecules and (2-MeIm− ions, as well as by O atoms from (BTC3− ions. This results in two different distorted tetrahedra, viz. ZnN3O and ZnN2O2. These tetrahedra are interconnected via (BTC3− ions and N:N′-bridging (2-MeIm− ions, thus forming a layered structure in the bc plane. Hydrogen bonds between the O atoms of carboxylate ions and NH groups of 2-MeImH ligands link the layers into a three-dimensional structure.

  18. cyclo-Tetrakis(μ-3-acetyl-4-methyl-1H-pyrazole-5-carboxylato-κ4N2,O3:N1,O5tetrakis[aquacopper(II] tetradecahydrate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2011-09-01

    Full Text Available The title compound, [Cu4(C7H6N2O34(H2O4]·14H2O, a tetranuclear [2 × 2] grid-type complex with S4 symmetry, contains four CuII atoms which are bridged by four pyrazolecarboxylate ligand anions and are additionally bonded to a water molecule. Each CuII atom is coordinated by two O atoms of the carboxylate and acetyl groups, two pyrazole N atoms of doubly deprotonated 3-acetyl-4-methyl-1H-pyrazole-5-carboxylic acid and one O atom of a water molecule. The geometry at each CuII atom is distorted square-pyramidal, with the two N and two O atoms in the equatorial plane and O atoms in the axial positions. O—H...O hydrogen-bonding interactions additionally stabilize the structure. One of the uncoordinated water molecules shows half-occupancy.

  19. In situ synthesis of g-C3N4/TiO2 heterojunction nanocomposites as a highly active photocatalyst for the degradation of Orange II under visible light irradiation.

    Science.gov (United States)

    Ren, Bin; Wang, Tiecheng; Qu, Guangzhou; Deng, Fang; Liang, Dongli; Yang, Wenli; Liu, Meishan

    2018-05-04

    As a highly active photocatalyst, g-C 3 N 4 /TiO 2 heterojunction nanocomposites were in situ synthesized by simple ultrasonic mixing and calcination by using TiO 2 and melamine as precursors. The morphology and structure of the prepared photocatalysts were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, UV-Vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activities of g-C 3 N 4 /TiO 2 nanocomposites to degrade Orange II (AO7) under visible light irradiation were evaluated. Results showed that the photocatalytic rate of the prepared g-C 3 N 4 /TiO 2 photocatalyst to degrade AO7 was about three times than that of pristine TiO 2 and g-C 3 N 4 . The g-C 3 N 4 /TiO 2 composite with a ratio of 1:4 had the highest degradation efficiency for AO7 solution. Its degradation efficiency under acidic conditions was significantly higher than that under alkaline conditions. The enhancement of photocatalytic activity can be attributed to the formation of heterojunctions between g-C 3 N 4 and TiO 2 , which leads to rapid charge transfer and the efficient separation of photogenerated electron-hole pairs. The recycling experiment indicated that the photocatalyst of g-C 3 N 4 /TiO 2 nanocomposites still maintained good photochemical stability and recyclability after five cycles; this finding was important for its practical applications. A series of free radical trapping experiments showed that •O 2 - played a crucial role in the degradation of AO7. Graphical Abstract ᅟ.

  20. Spectroscopic Studies of Semiconductor Materials for Aggressive-scaled Micro- and Opto-electronic Devices: nc-SiO2, GeO2; ng-Si, Ge and ng-Transition metal (TM) oxides

    Science.gov (United States)

    Cheng, Cheng

    transitions. Intra-d states are observed in all high-K dielectrics regardless of morphology, e.g. ng-TiO2, nc- Ti silicate , c-LaTiO3, nc-HfSiON334. This dissertation also discussed spectroscopic studies of: (i) nc-SiO 2, nc-GeO2 and (ii) nc-(SiO2)x(GeO2) 1-x pseudo-binary alloys. These studies, and the interpretation of these spectra and those in Chapter 3 in the This dissertation also discussed spectroscopic studies of: (i) nc-SiO2, nc-GeO2 and (ii) nc-(SiO 2)x(GeO2)1-x pseudo-binary alloys. These studies, and the interpretation of these spectra and those in Chapter 3 in the context of ab-initio theory provide a science base for the implementation of nc-oxides onto Germaniumsubstrates for aggressively scaled CMOS FETs, imaging devices as well as photovoltaics. X-Ray photoelectron spectroscopy(XPS) and Auger electron spectroscopy(AES) were used to determine SiO2 and GeO2 concentration in (SiO2)x(GeO2)1-x alloys. A linear trend in chemical shifts with compositions is observed and explained with charge-potential model, which incorporates the results of calculated partial charge from an empirical model for ionicity. The compositional linear relationships between binding energies nc-SiO 2, nc-GeO2, and (SiO2)x(GeO2)1-x alloy concentration agrees with the calculated results in charge potential model. SE and XAS spectral results show relatively strong O-vacancy in nc-GeO 2. O-vacancy defects in c-SiO2 are weaker. This is due to differences between Ge-O and Si-O bond (657.5kJ/mol and 799.6kJ/mol respectively). SE data shows a strong defect feature in GeO2, while SiO2 has no significant and distinct defect signature. Percolation theory describes the interconnection of bonds, e.g. Si-O and Ge-O in an otherwise nc-material, a (SiO2)x(GeO2)1-x pseudo-binary alloy. Changes in the band-gap energy of binary Si-Ge alloys occur at 0%Si (or 100% Ge), and the band gap energy increases from ˜ 0.6 eV to ˜0.87 eV as the Si concentration increases. A inflection point is at the percolation

  1. Epitaxial Gd2O3 on GaN and AlGaN: a potential candidate for metal oxide semiconductor based transistors on Si for high power application

    Science.gov (United States)

    Ghosh, Kankat; Das, S.; Khiangte, K. R.; Choudhury, N.; Laha, Apurba

    2017-11-01

    We report structural and electrical properties of hexagonal Gd2O3 grown epitaxially on GaN/Si (111) and AlGaN/GaN/Si(111) virtual substrates. GaN and AlGaN/GaN heterostructures were grown on Si(111) substrates by plasma assisted molecular beam epitaxy (PA-MBE), whereas the Gd2O3 layer was grown by the pulsed laser ablation (PLA) technique. Initial structural characterizations show that Gd2O3 grown on III-nitride layers by PLA, exhibit a hexagonal structure with an epitaxial relationship as {{≤ft[ 0 0 0 1 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 0 0 0 1 \\right]}GaN} and {{≤ft[ 1 \\bar{1} 0 0 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 1 \\bar{1} 0 0 \\right]}GaN} . X-ray photoelectron measurements of the valence bands revealed that Gd2O3 exhibits band offsets of 0.97 eV and 0.4 eV, for GaN and Al0.3Ga0.7N, respectively. Electrical measurements such as capacitance-voltage and leakage current characteristics further confirm that epi-Gd2O3 on III-nitrides could be a potential candidate for future metal-oxide-semiconductor (MOS)-based transistors also for high power applications in radio frequency range.

  2. Two years monitoring of soil N_{2}O emissions on durum wheat in a Mediterranean area: the effect of tillage intensity and N-fertilizer rate.

    Science.gov (United States)

    Volpi, Iride; Bosco, Simona; Triana, Federico; Di Nasso, Nicoletta Nassi o.; Laville, Patricia; Virgili, Giorgio; Bonari, Enrico

    2016-04-01

    Evaluating the magnitude and the key factors affecting N2O emissions from agriculture has a scientific and practical relevance, in fact emissions from agricultural and natural soils account for 56-70% of all global N2O sources (Syakila and Kroeze, 2011). Moreover, the necessity to increase the food production rate minimizing greenhouse gas emissions require a deeper understanding of the effect of the agricultural practices on direct soil emissions. Therefore, the aim of this work is to assess the effect of tillage intensity and nitrogen rate on soil N2O emissions on durum wheat. A two years monitoring campaign was carried out using a high-sensibility transportable instrument developed within the LIFE+ "Improved flux Prototypes for N2O emission from Agriculture" IPNOA project (Bosco et al., 2015; Laville et al., 2015). The project aims at improving the measurement technique of N2O flux directly in field using the flow-through non-steady state chamber technique. The monitoring campaign on durum wheat lasted for two growing seasons and two fallow periods (2013-14 and 2014-15). Treatment on the main plot was tillage intensity with two levels, ploughing and minimum tillage, and three different nitrogen rates were distributed to the subplots (N0: 0 kg ha-1, N1: 110 kg ha-1, N2: 170 kg ha-1). Ancillary measurements concerned meteorological data, soil temperature and moisture, NO3-, NH4+ soil concentration. Main results of the two years highlighted N rate as the main driver for both N2O daily flux and cumulative emissions during the growing season, while in the fallow period treatments did not affect the emission magnitude. Tillage intensity was not a key factor for N2O emissions. N2O emissions were significantly different in the two years. In particular, cumulative emissions of 2013-14 were about five times higher than in 2014-15, respectively on average 2885±260 g N-N2O ha-1 and 534±53 g N-N2O ha-1 for a similar monitoring period of about 300 days. Differences could be

  3. (2,4-Dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylato-κ2O4,O5(4-oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylato-κ2O4,O5bis(1,10-phenanthroline-κ2N,N′yttrium(III dihydrate

    Directory of Open Access Journals (Sweden)

    Zilu Chen

    2008-09-01

    Full Text Available In the title compound, [Y(C5H2N2O4(C5H3N2O4(C12H8N22]·2H2O, the YIII ion lies on a twofold rotation axis and exhibits a distorted square-antiprismatic coordination geometry. It is chelated by two 1,10-phenanthroline ligands, a 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate monoanion and a 4-oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylate dianion. The H atom involved in an N—H...N hydrogen bond between the 1,2-dihydropyrimidine units has half occupancy and is disordered around a twofold rotation axis.

  4. Water-containing derivative phases of the Srn+1FenO3n+1 series

    International Nuclear Information System (INIS)

    Lehtimaeki, M.; Hirasa, A.; Matvejeff, M.; Yamauchi, H.; Karppinen, M.

    2007-01-01

    The n=1, 2, 3 and ∞ members of the homologous series Sr n+1 Fe n O 3n+1 of layered iron oxides are investigated for their tendency to accept additional layers of water in their crystals. The phases possess a Ruddlesden-Popper-type SrO-(SrO-FeO 2 ) n crystal structure, where the n=∞ limit is nothing but the perovskite structure. It is revealed that the n=1, 2 and 3 phases readily accommodate one or two layers of water between adjacent SrO layers, whereas the n=∞ member which lacks the SrO-SrO double-layer unit remains intact in the presence of water. The speed of the water intercalation process is found to decrease with increasing n. Among the layered water derivatives, the n=2 phase with two water molecules per formula unit, i.e. Sr 3 Fe 2 O 7 .2H 2 O, was found to be most stable. - Graphical abstract: Water-containing derivative phases obtained from the homologous series of Sr n+1 Fe n O 3n+1 Ruddlesden-Popper phases through topotactic water intercalation

  5. N{sub 2}O Emission from energy crop fields

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, B.J. [The Royal Veterinary and Agricultural Univ., Dept. of Agricultural Sciences, Section of Soil, Water and Plant Nutrition (Denmark); Nyholm Joergensen, R. [Research Centre Foulum, The Danish Inst. of Plant and Soil Science, Dept. of Soil Science (Denmark)

    1996-03-01

    The interest in N{sub 2}O emissions from soils with energy crops is a results of its properties as a greenhouse gas, since the global warming potential of N{sub 2}O per unit mass is about 320 times greater than CO{sub 2}. The contribution of N{sub 2}O from the soil to the atmosphere may increase due to agricultural management. Consequently, large N{sub 2}O emissions can lower the reduction of the greenhouse effect achieved by the substitution of fossil fuels by energy crops. For this reason it is crucial to find the crops for combustion with the lowest potential for emission of N{sub 2}O from the soil per produced energy unit. The aims of this study were to assess the annual N{sub 2}O flux from a Miscanthus 'Giganteus' (M. 'Giganteus') and winter rye (Secale cereale) field, and to investigate the factors affecting the N{sub 2}O emission. To obtain these aims a method was developed for measurements in tall crops. The thesis contains a literature review on the N{sub 2}O emission from the soils, a section with development of the technique for N{sub 2}O flux measurements, and an experimental section. Finally, the thesis contains a section where the results are discussed in relation to the use of energy crops. In all the filed studies, the N{sub 2}O emission was measured by using a new developed closed-chamber technique. The main advantages of the chamber method were the ability to contain growing plants up to a height of 3 m, and the relatively large area (2X2m) covered by each other. Soils with annual and perennial crops can be expected to emit less then 3 kg N{sub 2}O ha{sup -1} yr{sup -1}. This amount corresponds to 960 kg CO{sub 2} ha{sup -1} yr{sup -1} compared to a total CO{sub 2} reduction of 10 to 19 tons CO{sub 2} ha{sup -1} yr{sup -1} using the energy crops as substitution for fossil fuels. An efficient way to reduce the N{sub 2}O emission is to exclude use of fertiliser but this also reduces the dry matter yield and consequently also the

  6. N{sub 2}O Emission from energy crop fields

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, B.J. [The Royal Veterinary and Agricultural Univ., Dept. of Agricultural Sciences, Section of Soil, Water and Plant Nutrition (Denmark); Nyholm Joergensen, R. [Research Centre Foulum, The Danish Inst. of Plant and Soil Science, Dept. of Soil Science (Denmark)

    1996-03-01

    The interest in N{sub 2}O emissions from soils with energy crops is a results of its properties as a greenhouse gas, since the global warming potential of N{sub 2}O per unit mass is about 320 times greater than CO{sub 2}. The contribution of N{sub 2}O from the soil to the atmosphere may increase due to agricultural management. Consequently, large N{sub 2}O emissions can lower the reduction of the greenhouse effect achieved by the substitution of fossil fuels by energy crops. For this reason it is crucial to find the crops for combustion with the lowest potential for emission of N{sub 2}O from the soil per produced energy unit. The aims of this study were to assess the annual N{sub 2}O flux from a Miscanthus `Giganteus` (M. `Giganteus`) and winter rye (Secale cereale) field, and to investigate the factors affecting the N{sub 2}O emission. To obtain these aims a method was developed for measurements in tall crops. The thesis contains a literature review on the N{sub 2}O emission from the soils, a section with development of the technique for N{sub 2}O flux measurements, and an experimental section. Finally, the thesis contains a section where the results are discussed in relation to the use of energy crops. In all the filed studies, the N{sub 2}O emission was measured by using a new developed closed-chamber technique. The main advantages of the chamber method were the ability to contain growing plants up to a height of 3 m, and the relatively large area (2X2m) covered by each other. Soils with annual and perennial crops can be expected to emit less then 3 kg N{sub 2}O ha{sup -1} yr{sup -1}. This amount corresponds to 960 kg CO{sub 2} ha{sup -1} yr{sup -1} compared to a total CO{sub 2} reduction of 10 to 19 tons CO{sub 2} ha{sup -1} yr{sup -1} using the energy crops as substituion for fossil fuels. An efficient way to reduce the N{sub 2}O emission is to exclude use of fertiliser but this also reduces the dry matter yield and consequently also the CO{sub 2} reduction

  7. Comparative analysis of the effects of tantalum doping and annealing on atomic layer deposited (Ta2O5)x(Al2O3)1−x as potential gate dielectrics for GaN/AlxGa1−xN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Partida-Manzanera, T.; Roberts, J. W.; Sedghi, N.; Potter, R. J.; Bhat, T. N.; Zhang, Z.; Tan, H. R.; Dolmanan, S. B.; Tripathy, S.

    2016-01-01

    This paper describes a method to optimally combine wide band gap Al 2 O 3 with high dielectric constant (high-κ) Ta 2 O 5 for gate dielectric applications. (Ta 2 O 5 ) x (Al 2 O 3 ) 1−x thin films deposited by thermal atomic layer deposition (ALD) on GaN-capped Al x Ga 1−x N/GaN high electron mobility transistor (HEMT) structures have been studied as a function of the Ta 2 O 5 molar fraction. X-ray photoelectron spectroscopy shows that the bandgap of the oxide films linearly decreases from 6.5 eV for pure Al 2 O 3 to 4.6 eV for pure Ta 2 O 5 . The dielectric constant calculated from capacitance-voltage measurements also increases linearly from 7.8 for Al 2 O 3 up to 25.6 for Ta 2 O 5 . The effect of post-deposition annealing in N 2 at 600 °C on the interfacial properties of undoped Al 2 O 3 and Ta-doped (Ta 2 O 5 ) 0.12 (Al 2 O 3 ) 0.88 films grown on GaN-HEMTs has been investigated. These conditions are analogous to the conditions used for source/drain contact formation in gate-first HEMT technology. A reduction of the Ga-O to Ga-N bond ratios at the oxide/HEMT interfaces is observed after annealing, which is attributed to a reduction of interstitial oxygen-related defects. As a result, the conduction band offsets (CBOs) of the Al 2 O 3 /GaN-HEMT and (Ta 2 O 5 ) 0.16 (Al 2 O 3 ) 0.84 /GaN-HEMT samples increased by ∼1.1 eV to 2.8 eV and 2.6 eV, respectively, which is advantageous for n-type HEMTs. The results demonstrate that ALD of Ta-doped Al 2 O 3 can be used to control the properties of the gate dielectric, allowing the κ-value to be increased, while still maintaining a sufficient CBO to the GaN-HEMT structure for low leakage currents

  8. Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2013-01-01

    The influence of inserting a Ga 2 O 3 thin film as an n-type semiconductor layer on the obtainable photovoltaic properties in Cu 2 O-based heterojunction solar cells was investigated with a transparent conductive Al-doped ZnO (AZO) thin film/n-Ga 2 O 3 thin film/p-Cu 2 O sheet structure. It was found that this Ga 2 O 3 thin film can greatly improve the performance of Cu 2 O-based heterojunction solar cells fabricated using polycrystalline Cu 2 O sheets that had been prepared by a thermal oxidization of copper sheets. The obtained photovoltaic properties in the AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells were strongly dependent on the deposition conditions of the Ga 2 O 3 films. The external quantum efficiency obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells was found to be greater at wavelengths below approximately 500 nm than that obtained in AZO/Cu 2 O heterojunction solar cells (i.e., prepared without a Ga 2 O 3 layer) at equivalent wavelengths. This improvement of photovoltaic properties is mainly attributed to a decrease in the level of defects at the interface between the Ga 2 O 3 thin film and the Cu 2 O sheet. Conversion efficiencies over 5% were obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells fabricated using an n-Ga 2 O 3 thin-film layer prepared with a thickness of 40–80 nm at an O 2 gas pressure of approximately 1.7 Pa by a pulsed laser deposition. - Highlights: • We demonstrate high-efficiency Cu 2 O-based p-n heterojunction solar cells. • A non-doped Ga 2 O 3 thin film was used as an n-type semiconductor layer. • The Ga 2 O 3 thin film was prepared at a low temperature by a low damage deposition. • p-type Cu 2 O sheets prepared by thermal oxidization of copper sheets were used. • Conversion efficiencies over 5% were obtained in AZO/n-Ga 2 O 3 /p-Cu 2 O solar cells

  9. UV-induced N2O emission from plants

    Science.gov (United States)

    Bruhn, Dan; Albert, Kristian R.; Mikkelsen, Teis N.; Ambus, Per

    2014-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone-depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2h-1, mostly due to the UV component. The emission response to UV-A is of the same magnitude as that to UV-B. Therefore, UV-A is more important than UV-B given the natural UV-spectrum at Earth's surface. Plants also emitted N2O in darkness, although at reduced rates. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  10. Ab initio studies of O2-(H2O)n and O3-(H2O)n anionic molecular clusters, n≤12

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurtén, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    that anionic O2−(H2O)n and O3−(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding. Although...... clustering up to 12 H2O, we find that the O2 and O3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O2− and O3− speicies are thus accessible for further reactions. Finally, the thermodynamics of a few relevant cluster reactions are considered....

  11. Diaqua[N,N′-bis(2-pyridylmethylenepropane-1,3-diamine]manganese(II dibromide–aquabromido[N,N′-bis(2-pyridylmethylenepropane-1,3-diamine]manganese(II bromide–dibromido[N,N′-bis(2-pyridylmethylenepropane-1,3-diamine]manganese(II (1/2/1

    Directory of Open Access Journals (Sweden)

    In-Chul Hwang

    2009-01-01

    Full Text Available There are three different MnII complexes in the asymmetric unit of the title compound, [Mn(C15H16N4(H2O2]Br2·2{[MnBr(C15H16N4(H2O]Br}·[MnBr2(C15H16N4]. In the neutral complex, the Mn2+ ion is six-coordinated in a distorted octahedral environment by four N atoms of the tetradentate ligand N,N′-bis(2-pyridylmethylenepropane-1,3-diamine (bppd and two bromide ligands. In the two cationic complexes, the Mn2+ ions are also six-coordinated in similar environments, but one Mn ion is coordinated by four N atoms of bppd, one Br atom and one O atom of a coordinating water molecule, whereas the other Mn ion is coordinated by four N atoms of bppd and two O atoms of water ligands. The complexes with two coordinated Br atoms or two H2O ligands are disposed about a twofold axis through Mn and C atoms with the special positions ({script{1over 2}}, y, 0 and (0, y, {script{1over 2}}, respectively. The compound displays intermolecular O—H...Br hydrogen bonding. There are intermolecular π–π interactions between adjacent pyridine rings, with centroid–centroid distances of 3.822 and 3.833 Å, and a C—H...O interaction is also present.

  12. Potassium (2,2'-bipyridine-κN,N')bis-(carbonato-κO,O')cobaltate(III) dihydrate.

    Science.gov (United States)

    Wang, Jian-Fei; Lin, Jian-Li

    2010-09-30

    In the title compound, K[Co(CO(3))(2)(C(10)H(8)N(2))]·2H(2)O, the Co(III) atom is coordinated by two bipyridine N atoms and four O atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octa-hedral N(2)O(4) environment. The [Co(bipy)(CO(3))(2)](-) (bipy is 2,2'-bipyridine) -units are stacked along [100] via π-π stacking inter-actions, with inter-planar distances between the bipyridine rings of 3.36 (4) and 3.44 (6) Å, forming chains. Classical O-H⋯O hydrogen-bonding inter-actions link the chains, forming channels along (100) in which the K(+) ions reside and leading to a three-dimensional supra-molecular architecture.

  13. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils

    Science.gov (United States)

    Qu, Zhi; Wang, Jingguo; Almøy, Trygve; Bakken, Lars R

    2014-01-01

    China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long-term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 mM, we measured oxic respiration (R), potential denitrification (D), substrate-induced denitrification, and the denitrification product stoichiometry (NO, N2O, N2). Soils with a history of high fertilizer N levels had high N2O/(N2O+N2) ratios, but only in those field experiments where soil pH had been lowered by N fertilization. By comparing all soils, we found a strong negative correlation between pH and the N2O/(N2O+N2) product ratio (r2 = 0.759, P soil pH. The immediate effect of liming acidified soils was lowered N2O/(N2O+N2) ratios. The results provide evidence that soil pH has a marginal direct effect on potential denitrification, but that it is the master variable controlling the percentage of denitrified N emitted as N2O. It has been known for long that low pH may result in high N2O/(N2O+N2) product ratios of denitrification, but our documentation of a pervasive pH-control of this ratio across soil types and management practices is new. The results are in good agreement with new understanding of how pH may interfere with the expression of N2O reductase. We argue that the management of soil pH should be high on the agenda for mitigating N2O emissions in the future, particularly for countries where ongoing intensification of plant production is likely to acidify the soils. PMID:24249526

  14. Oriented growth of Sr n+1Ti n O3n+1 Ruddlesden-Popper phases in chemical solution deposited thin films

    International Nuclear Information System (INIS)

    Gutmann, Emanuel; Levin, Alexandr A.; Reibold, Marianne; Mueller, Jan; Paufler, Peter; Meyer, Dirk C.

    2006-01-01

    Oriented thin films of perovskite-related Sr n +1 Ti n O 3 n +1 Ruddlesden-Popper phases (n=1, 2, 3) were grown on (001) single-crystalline SrTiO 3 substrates. Preparation of the films was carried out by wet chemical deposition from metalorganic Sr-Ti solutions (rich in Sr) and subsequent conversion into the crystalline state by thermal treatment in air atmosphere at a maximum temperature of 700 deg. C. Solutions were prepared by a modified Pechini method. The films were investigated by wide-angle X-ray scattering and high-resolution transmission electron microscopy. The phase content of powders prepared from the dried solutions and annealed under similar conditions differed from that present in the films, i.e. only polycrystalline SrTiO 3 was detected together with oxides of Ti and Sr. - Graphical abstract: Cross-sectional image of an oriented chemical solution deposited thin film obtained by high-resolution transmission electron microscopy. Periodical spacings corresponding to SrTiO 3 substrate (right) and Sr 2 TiO 4 Ruddlesden-Popper phase (n=1) film region (left) are marked

  15. FLAT TIME-LIKE SUBMANIFOLDS IN ANTI-DE SITTER SPACE H12n-1(-1)

    Institute of Scientific and Technical Information of China (English)

    ZUO DAFENG; CHEN QING; CHENG YI

    2005-01-01

    By using dressing actions of the Gn-1 1,1,n-1-system, the authors study geometric transformations for flat time-like n-submanifolds with flat, non-degenerate normal bun dle in anti-de Sitter space H1 2n-1(-1), where G1,1 n-1,n-1= O(2n - 2, 2)/O(n - 1, 1) ×O(n - 1, 1).

  16. Fabrication, characterization, and photocatalytic performance of exfoliated g-C{sub 3}N{sub 4}–TiO{sub 2} hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Fei, E-mail: feichang@usst.edu.cn [School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Zhang, Jian; Xie, Yunchao; Chen, Juan; Li, Chenlu; Wang, Jie; Luo, Jieru; Deng, Baoqing [School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Hu, Xuefeng, E-mail: xfhu@yic.ac.cn [Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong (China)

    2014-08-30

    Highlights: • Synthesis of TiO{sub 2} hybrids with exfoliated g-C{sub 3}N{sub 4} was provided. • Heterojunction structures were formed and identified by several analytic techniques. • Newly prepared CNs–TiO{sub 2} hybrids showed obviously enhanced photocatalytic ability toward degradation of dye RhB. • Photoinduced holes made an important role on photocatalytic process. - Abstract: A series of TiO{sub 2} hybrids composited with exfoliated g-C{sub 3}N{sub 4} nanosheets (CNs) were successfully synthesized through a facile sol–gel method and fully characterized by X-ray diffraction patterns (XRD), Fourier transform-infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV–vis diffuse reflectance spectra (UV–vis DRS). The CNs–TiO{sub 2} hybrids were exposed to visible light irradiation and showed much higher catalytic capability toward degrading dye rhodamine B (RhB) comparing with bare TiO{sub 2} and N-TiO{sub 2}. The sample CNs–TiO{sub 2}-0.05 exhibited the largest apparent reaction rate constant among all CNs–TiO{sub 2} hybrids, which was 2.4 times and 7.0 times as high as bare TiO{sub 2} and N-TiO{sub 2}, respectively. The enhanced catalytic efficiency could be mainly attributed to the well-matched band gap structure with heterojunction interface, suitable specific surface area, and favorable optical property. In addition, active species trapping experiments were conducted, revealing that photoinduced holes (h{sup +}) had a severe influence on catalytic outcome, through which a possible catalytic mechanism was finally realized and proposed.

  17. Air-Sea Interactions of Natural Long-Lived Greenhouse Gases (CO2, N2O, CH4) in a Changing Climate

    Digital Repository Service at National Institute of Oceanography (India)

    Bakker, D.C.E.; Bange, H.W.; Gruber, N.; Johannessen, T.; Upstill-Goddard, R.C.; Borges, A.V.; Delille, B.; Loscher, C.R.; Naqvi, S.W.A.; Omar, A.M.; Santana-Casiano, J.M.

    at m o sp h er ic li fe ti m es G as R o le in at m o sp h er ic ch em is tr y O ce an ic co n tr ib u ti o n to co n te m p o ra ry at m o sp h er ic b u d g et Im p ac t o f en v ir o n m en ta l ch an g e o n ai r- se a g as ex ch an g e in th e tw... en ty -fi rs t ce n tu ry G lo b al w ar m in g O ce an ac id ifi ca ti o n O p en o ce an d eo x y g en at io n C o as ta l eu tr o p h ic at io n an d h y p o x ia C O 2 In er t N et o ce an si n k fo r ab o u t 3 0 % o f C O 2 em is si o n s fr o m...

  18. Spatial and temporal variability of N2O emissions in a subtropical forest catchment in China

    Directory of Open Access Journals (Sweden)

    J. Zhu

    2013-03-01

    Full Text Available Subtropical forests in southern China have received chronically large amounts of atmogenic nitrogen (N, causing N saturation. Recent studies suggest that a significant proportion of the N input is returned to the atmosphere, in part as nitrous oxide (N2O. We measured N2O emission fluxes by closed chamber technique throughout two years in a Masson pine-dominated headwater catchment with acrisols (pH ~ 4 at Tieshanping (Chongqing, SW China and assessed the spatial and temporal variability in two landscape elements typical for this region: a mesic forested hillslope (HS and a hydrologically connected, terraced groundwater discharge zone (GDZ in the valley bottom. High emission rates of up to 1800 μg N2O-N m−2 h−1 were recorded on the HS shortly after rain storms during monsoonal summer, whereas emission fluxes during the dry winter season were generally low. Overall, N2O emission was lower in GDZ than on HS, rendering the mesic HS the dominant source of N2O in this landscape. Temporal variability of N2O emissions on HS was largely explained by soil temperature (ST and moisture, pointing at denitrification as a major process for N removal and N2O production. The concentration of nitrate (NO3− in pore water on HS was high even in the rainy season, apparently never limiting denitrification and N2O production. The concentration of NO3− decreased along the terraced GDZ, indicating efficient N removal, but with moderate N2O-N loss. The extrapolated annual N2O fluxes from soils on HS (0.54 and 0.43 g N2O-N m−2 yr−1 for a year with a wet and a dry summer, respectively are among the highest N2O fluxes reported from subtropical forests so far. Annual N2O-N emissions amounted to 8–10% of the annual atmogenic N deposition, suggesting that forests on acid soils in southern China are an important, hitherto overlooked component of the anthropogenic N2O budget.

  19. Bis[N,N-bis(1-allyl-1H-benzimidazol-2-ylmethyl-κN3benzylamine-κN]cadmium dipicrate

    Directory of Open Access Journals (Sweden)

    Jing-Kun Yuan

    2011-06-01

    Full Text Available The crystal structure of the title compound, [Cd(C29H29N52](C6H2N3O72, consists of CdII complex cations and picrate anions. In the complex cation, the CdII ion is chelated by two bis(1-allylbenzimidazol-2-ylmethylbenzylamine (babb ligands in a distorted octahedral geometry. Extensive C—H...O hydrogen bonding occurs between cations and anions in the crystal structure.

  20. Poly[[[diaquacobalt(II]-bis[μ2-1,1′-(butane-1,4-diyldiimidazole-κ2N3:N3′

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available In the title compound, {[Co(C10H14N42(H2O2](NO32}n, the CoII ion lies on an inversion center and is six-coordinated in an octahedral environment by four N atoms from four different 1,1′-butane-1,4-diyldiimidazole ligands and two O atoms from the two water molecules. The CoII atoms are bridged by ligands, generating a two-dimensional (4,4-network. Adjacent fishnet planes are linked to the nitrate anions via O—H...O hydrogen bonds, forming a three-dimensional supramolecular structure.

  1. Crystal structure of 2-(thiophen-2-yl)-1-(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl) ethenyl]benzamide: N,N-dimethylformamide (1 : 1)

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P. [University of Jammu, X-ray Crystallography Laboratory, Department of Physics (India); Subbulakshmi, K. N.; Narayana, B. [Mangalore University, Department of Chemistry (India); Sarojini, B. K. [Mangalore University, Industrial Chemistry Division, Department of Studies in Chemistry (India); Kant, R., E-mail: rkant.ju@gmail.com [University of Jammu, X-ray Crystallography Laboratory, Department of Physics (India)

    2016-03-15

    The title compound, 2-(thiophen-2-yl)-1-(5-thioxo-4,5-dihydro-1,3,4-oxadiazol-2-yl)ethenyl] benzamide:N,N-dimethylformamide (1: 1), (C{sub 15}H{sub 11}N{sub 3}O{sub 2}S{sub 2} · C{sub 3}H{sub 7}NO), was synthesized, and its structure was established by spectral analysis and X-ray diffraction studies. The compound crystallizes in the monoclinic space group P2{sub 1}/n with a = 10.8714(7), b = 9.0497(5), c = 19.8347(13) Å, β = 91.093(5)°, Z = 4. The crystal structure is stabilized by N–H···S, C–H···O and N–H···O hydrogen bonds. The π···π interactions are also observed between the rings.

  2. Atmospheric chemistry of n-CxF2x+1CHO (x = 1, 2, 3, 4)

    DEFF Research Database (Denmark)

    Hurley, M. D.; Ball, J. C.; Wallington, T. J.

    2006-01-01

    Smog chamber/FTIR techniques were used to study the atmospheric fate of n-C(x)F(2)(x)(+1)C(O) (x = 1, 2, 3, 4) radicals in 700 Torr O(2)/N(2) diluent at 298 +/- 3 K. A competition is observed between reaction with O(2) to form n-C(x)()F(2)(x)()(+1)C(O)O(2) radicals and decomposition to form n-C(x...... to the atmospheric chemistry of n-C(x)F(2)(x)(+1)C(O) radicals and their possible role in contributing to the formation of perfluorocarboxylic acids in the environment....

  3. Continuous measurements of N2O emissions from arable fields

    Science.gov (United States)

    Wallman, Magdalena; Lammirato, Carlo; Rütting, Tobias; Delin, Sofia; Weslien, Per; Klemedtsson, Leif

    2017-04-01

    Agriculture represents 59 % of the anthropogenic nitrous oxide (N2O) emissions, according to the IPCC (Ciais et al. 2013). N2O emissions are typically irregular and vary widely in time and space, which makes it difficult to get a good representation of the emissions (Henault et al. 2012), particularly if measurements have low frequency and/or cover only a short time period. Manual measurements are, for practical reasons, often short-term and low-frequent, or restricted to periods where emissions are expected to be high, e.g. after fertilizing. However, the nature of N2O emissions, being largely unpredictable, calls for continuous or near-continuous measurements over long time periods. So far, rather few long-term, high resolution measurements of N2O emissions from arable fields are reported; among them are Flessa et al. (2002) and Senapati et al. (2016). In this study, we have a two-year data set (2015-2017) with hourly measurements from ten automatic chambers, covering unfertilized controls as well as different nitrogen fertilizer treatments. Grain was produced on the field, and effects of tillage, harvest and other cropping measures were covered. What we can see from the experiment is that (a) the unfertilized control plots seem to follow the same emission pattern as the fertilized plots, at a level similar to the standard mineral fertilized plots (120 kg N ha-1 yr-1) and (b) freeze/thaw emissions are comparable in size to emissions after fertilizing. These two findings imply that the importance of fertilizing to the overall N2O emissions from arable soils may be smaller than previously expected. References: Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell et al. 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et

  4. Greenhouse gas (N2O emission from Portuguese estuaries

    Directory of Open Access Journals (Sweden)

    Célia Gonçalves

    2014-07-01

    Tagus, Minho and Lima estuaries are source of N2O to the atmosphere. Particularly, in Lima estuary anthropogenic N input seems to play an important role on N2O emission. However, in a global perspective N2O attained emissions represent a reduced fraction (2O yr-1, Barnes and Upstill-Goddard, 2011. Values are comparable with those registered in some Portuguese estuaries and other European less eutrophic estuaries. However, it is known that higher N2O emissions in estuaries may occur during winter and spring (Sun et al., 2014. Thus, these systems may represent on an annual basis a larger source of N2O, which can only be clarified in future studies. Only a full comprehension of the global estuarine nitrogen cycle will provide an efficient basis of scientific knowledge for sustainably management of such ecosystems and ultimately reduce N2O emissions.

  5. Synthesis, crystal structure and magnetic properties of (acetato-κ²O,O')bis(5,5'-dimethyl-2,2'-bipyridine-κ²N,N')nickel(II) perchlorate monohydrate.

    Science.gov (United States)

    Farkašová, Nela; Černák, Juraj; Falvello, Larry R; Orendáč, Martin; Boča, Roman

    2015-04-01

    The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5'-dmbpy)2]ClO4·H2O (where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate-5,5'-dmbpy-KClO4 system. Within the complex cation, the Ni(II) atom is hexacoordinated by two chelating 5,5'-dmbpy ligands and one chelating ac ligand. The mean Ni-N and Ni-O bond lengths are 2.0628 (17) and 2.1341 (15) Å, respectively. The water solvent molecule is disordered over two partially occupied positions and links two complex cations and two perchlorate anions into hydrogen-bonded centrosymmetric dimers, which are further connected by π-π interactions. The magnetic properties of (1) at low temperatures are governed by the action of single-ion anisotropy, D, which arises from the reduced local symmetry of the cis-NiO2N4 chromophore. The fitting of the variable-temperature magnetic data (2-300 K) gives g(iso) = 2.134 and D/hc = 3.13 cm(-1).

  6. A Family of Bipartite |Cardinality Matching Problems Solvable in O(n\\^2) Time

    DEFF Research Database (Denmark)

    Clausen, Jens; Krarup, J.

    1995-01-01

    For a given, unweighted bipartite graph G with 2n non isolated vertices, we consider the so called bipartite cardinality matching problem (BCMP) for which the time complexity of the fastest exact algorithm available is O(n/sup 5/2/ ). We devise a greedy algorithm which either finds a perfect...... matching in O(n/sup 2/ ) time or identifies cycle of length 4 in the complement G of G...

  7. Poly[[(μ4-benzene-1,3,5-tricarboxylato-κ4O1:O1′:O2:O3bis(2,2-bipyridine-κ2N,N′(μ2-hydroxidodicopper(II] trihydrate

    Directory of Open Access Journals (Sweden)

    Mohamed N. El-kaheli

    2014-07-01

    Full Text Available In the title two-dimensional coordination polymer, {[Cu2(C9H3O6(OH(C10H8N22]·3H2O}n, each of the two independent CuII atoms is coordinated by a bridging OH group, two O atoms from two benzene-1,3,5-tricarboxylate (L ligands and two N atoms from a 2,2- bipyridine (bipy ligand in a distorted square-pyramidal geometry. Each L ligand coordinates four CuII atoms, thus forming a polymeric layer parallel to the bc plane with bipy molecules protruding up and down. The lattice water molecules involved in O—H...· O hydrogen bonding are situated in the inner part of each layer. The crystal packing is consolidated by π–π interactions between the aromatic rings of bipy ligands from neigbouring layers [intercentroid distance = 3.762 (3 Å].

  8. Hydrogen bonded networks in formamide [HCONH2]n (n = 1 – 10 ...

    Indian Academy of Sciences (India)

    gns

    Table S1: Comparison of interaction energy (I.E) in kcal/mol in four arrangements of formamide n=1-10 at B3LYP/D95** level of theory. n = #monomers. Table S2: O---H bond length (in Å) for formamide clusters n = (2-10). Table S3: N-H bond stretching frequency (in cm-1) for four arrangements of formamide clusters n.

  9. Probing the Electronic Structure and Band Gap Evolution of Titanium Oxide Clusters (TiO2)n- (n=1-10) Using Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Zhai, Hua-jin; Wang, Lai S.

    2007-01-01

    TiO2 is a wide-band gap semiconductor and it is an important material for photocatalysis. Here we report an experimental investigation of the electronic structure of (TiO2)n clusters and how their band gap evolves as a function of size using anion photoelectron spectroscopy (PES). PES spectra of (TiO2)n- clusters for n = 1-10 have been obtained at 193 (6.424 eV) and 157 nm (7.866 eV). The high photon energy at 157 nm allows the band gap of the TiO2 clusters to be clearly revealed up to n = 10. The band gap is observed to be strongly size-dependent for n 1 appears to be localized in a tricoordinated Ti atom, creating a single Ti3+ site and making these clusters ideal molecular models for mechanistic understanding of TiO2 surface defects and photocatalytic properties

  10. Enhanced performance of dye-sensitized solar cells based on organic dopant incorporated PVDF-HFP/PEO polymer blend electrolyte with g-C{sub 3}N{sub 4}/TiO{sub 2} photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Senthil, R.A.; Theerthagiri, J. [Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632115 (India); Madhavan, J., E-mail: jagan.madhavan@gmail.com [Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632115 (India); Murugan, K. [Department of Zoology, Bharathiar University, Coimbatore 641046 (India); Arunachalam, Prabhakarn [Electrochemistry Research Group, Chemistry Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Arof, A.K. [Centre for Ionics University Malaya, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-10-15

    This work describes the effect of 2-aminopyrimidine (2-APY) on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) blend polymer electrolyte along with binary iodide salts (tetrabutylammonium iodide (TBAI) and potassium iodide (KI)) and iodine (I{sub 2}) were studied for enhancing the efficiency of the dye-sensitized solar cells (DSSCs) consisting of g-C{sub 3}N{sub 4}/TiO{sub 2} composite as photoanode. The g-C{sub 3}N{sub 4} was synthesized from low cost urea by thermal condensation method. It was used as a precursor to synthesize the various weight percentage ratios (5%, 10% and 15%) of g-C{sub 3}N{sub 4}/TiO{sub 2} composites by wet-impregnation method. The pure and 2-APY incorporated PVDF-HFP/PEO polymer blend electrolytes were arranged by wet chemical process (casting method) using DMF as a solvent. The synthesized g-C{sub 3}N{sub 4}/TiO{sub 2} composites and polymer blend electrolytes were studied and analyzed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The ionic conductivity values of the pure and 2-APY incorporated PVDF-HFP/PEO blend electrolytes were estimated to be 4.53×10{sup −5} and 1.87×10{sup −4} Scm{sup −1} respectively. The UV–vis absorption spectroscopy was carried out for the pure and different wt% of g-C{sub 3}N{sub 4}/TiO{sub 2} composites coated FTO films after N3 dye-sensitization. The 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} composite film showed a maximum absorption compared to the others. The DSSC assembled with 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} as photoanode using the pure polymer blend electrolyte exhibited a power conversion efficiency (PCE) of 3.17% , which was superior than that of DSSC based pure TiO{sub 2} (2.46%). However, the PCE was increased to 4.73% for the DSSC assembled using 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} as photoanode with 2-APY incorporated polymer blend electrolyte. Hence, the present study is a

  11. Closed-loop 15N measurement of N2O and its isotopomers for real-time greenhouse gas tracing

    Science.gov (United States)

    Slaets, Johanna; Mayr, Leopold; Heiling, Maria; Zaman, Mohammad; Resch, Christian; Weltin, Georg; Gruber, Roman; Dercon, Gerd

    2016-04-01

    Quantifying sources of nitrous oxide is essential to improve understanding of the global N cycle and to develop climate-smart agriculture, as N2O has a global warming potential 300 times higher than CO2. The isotopic signature and the intramolecular distribution (site preference) of 15N are powerful tools to trace N2O, but the application of these methods is limited as conventional methods cannot provide continuous and in situ data. Here we present a method for closed-loop, real time monitoring of the N2O flux, the isotopic signature and the intramolecular distribution of 15N by using off-axis integrated cavity output spectroscopy (ICOS, Los Gatos Research). The developed method was applied to a fertilizer inhibitor experiment, in which N2O emissions were measured on undisturbed soil cores for three weeks. The treatments consisted of enriched urea-N (100 kg urea-N/ha), the same fertilizer combined with the nitrification inhibitor nitrapyrin (375 g/100 kg urea), and control cores. Monitoring the isotopic signature makes it possible to distinguish emissions from soil and fertilizer. Characterization of site preference could additionally provide a tool to identify different microbial processes leading to N2O emissions. Furthermore, the closed-loop approach enables direct measurement on site and does not require removal of CO2 and H2O. Results showed that 75% of total N2O emissions (total=11 346 μg N2O-N/m2) in the fertilized cores originated from fertilizer, while only 55% of total emissions (total=2 450 μg N2ON/m2) stemmed from fertilizer for the cores treated with nitrapyrin. In the controls, N2O derived from soil was only 40% of the size of the corresponding pool from the fertilized cores, pointing towards a priming effect on the microbial community from the fertilizer and demonstrating the bias that could be introduced by relying on non-treated cores to estimate soil emission rates, rather than using the isotopic signature. The site preference increased linearly

  12. Emissions of N2O from peat soils under different cropping systems

    Science.gov (United States)

    Norberg, Lisbet; Berglund, Örjan; Berglund, Kerstin

    2016-04-01

    Drainage of peatlands for agriculture use leads to an increase in nitrogen turnover rate causing emissions of N2O to the atmosphere. Agriculture contributes to a substantial part of the anthropogenic emissions of N2O therefore mitigation options for the farmers are important. Here we present a field study with the aim to investigate if the choice of cropping system can mitigate the emission of N2O from cultivated organic soils. The sites used in the study represent fen peat soils with a range of different soil properties located in different parts of southern Sweden. All sites are on active farms with good drainage. N2O emissions from the soil under two different crops grown on the same field, with the same soil type, drainage intensity and weather conditions, are compared by gas sampling. The crops included are oat, barley, carrot, potato and grassland. Three or four sampling occasions during the growing season in 2010 were carried out with static chambers. The N2O emission is calculated from the linear increase of gas concentration in the chamber headspace during the incubation time of 40 minutes. Parallel to the gas sampling soil temperature and soil moisture are measured and some soil properties determined. The result from the gas sampling and measurements show no significant difference in seasonal average N2O emission between the compared crops at any site. There are significant differences in N2O emissions between the compared crops at some of the single sampling occasions but the result vary and no crop can be pointed out as a mitigation option. The seasonal average N2O emissions varies from 16±17 to 1319±1971 μg N2O/m2/h with peaks up to 3317 μg N2O/m2/h. The N2O emission rate from peat soils are determined by other factors than the type of crops grown on the field. The emission rates vary during the season and especially between sites. Although all sites are fen peat soil the soil properties are different, e.g. carbon content varies between 27-43% and

  13. Elu kui näitemäng / Helju Koger

    Index Scriptorium Estoniae

    Koger, Helju, 1943-

    2007-01-01

    VI kihelkonnapäevadest Juurus. Juuru Mihkli kirikus esines ansambel Resonabilis. Konverentsil räägiti Järlepa mõisast, Anu Allikvee pidas ettekande "August von Kotzebue elu nagu näitemäng" jm. Näitemängu "Pärmi Jaagu unenägu" nägi kohalike asjaarmastajate esituses

  14. Explaining the doubling of N2 O emissions under elevated CO2 in the Giessen FACE via in-field 15 N tracing.

    Science.gov (United States)

    Moser, Gerald; Gorenflo, André; Brenzinger, Kristof; Keidel, Lisa; Braker, Gesche; Marhan, Sven; Clough, Tim J; Müller, Christoph

    2018-03-23

    Rising atmospheric CO 2 concentrations are expected to increase nitrous oxide (N 2 O) emissions from soils via changes in microbial nitrogen (N) transformations. Several studies have shown that N 2 O emission increases under elevated atmospheric CO 2 (eCO 2 ), but the underlying processes are not yet fully understood. Here, we present results showing changes in soil N transformation dynamics from the Giessen Free Air CO 2 Enrichment (GiFACE): a permanent grassland that has been exposed to eCO 2 , +20% relative to ambient concentrations (aCO 2 ), for 15 years. We applied in the field an ammonium-nitrate fertilizer solution, in which either ammonium (NH4+) or nitrate (NO3-) was labelled with 15 N. The simultaneous gross N transformation rates were analysed with a 15 N tracing model and a solver method. The results confirmed that after 15 years of eCO 2 the N 2 O emissions under eCO 2 were still more than twofold higher than under aCO 2 . The tracing model results indicated that plant uptake of NH4+ did not differ between treatments, but uptake of NO3- was significantly reduced under eCO 2 . However, the NH4+ and NO3- availability increased slightly under eCO 2 . The N 2 O isotopic signature indicated that under eCO 2 the sources of the additional emissions, 8,407 μg N 2 O-N/m 2 during the first 58 days after labelling, were associated with NO3- reduction (+2.0%), NH4+ oxidation (+11.1%) and organic N oxidation (+86.9%). We presume that increased plant growth and root exudation under eCO 2 provided an additional source of bioavailable supply of energy that triggered as a priming effect the stimulation of microbial soil organic matter (SOM) mineralization and fostered the activity of the bacterial nitrite reductase. The resulting increase in incomplete denitrification and therefore an increased N 2 O:N 2 emission ratio, explains the doubling of N 2 O emissions. If this occurs over a wide area of grasslands in the future, this positive feedback reaction may

  15. Octa­akis(4-amino­pyridine)-1κ4 N 1,2κ4 N 1-aqua-2κO-μ-carbonato-1:2κ3 O,O′:O′′-dinickel(II) dichloride penta­hydrate

    Science.gov (United States)

    Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B.; Alfred Cecil Raj, S.

    2008-01-01

    In the title compound, [Ni2(CO3)(C5H6N2)8(H2O)]Cl2·5H2O, one of the the NiII ions is six-coordinated in a distorted octa­hedral geometry, with the equatorial plane defined by four pyridine N atoms from four amino­pyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other NiII ion is also six-coordinated, by four other pyridine N atoms from four other amino­pyridine ligands and two carbonate O atoms to complete a distorted octa­hedral geometry. In the crystal structure, mol­ecules are linked into an infinite three-dimensional network by O—H⋯O, N—H⋯Cl, N—H⋯O, O—H⋯N, C—H⋯O, C—H⋯N and C/N—H⋯π inter­actions involving the pyridine rings. PMID:21580879

  16. A new series of oxycarbonate superconductors (Cu{sub 0.5}C{sub 0.5}){sub m}Ba{sub m+1}Ca{sub n-1}Cu{sub n}O{sub 2}({sub m+n})+1

    Energy Technology Data Exchange (ETDEWEB)

    Takayama-Muromachi, E.; Kawashima, T.; Matsui, Y. [National Institute for Research in Inorganic Materials, Ibaraki (Japan)

    1994-12-31

    We found a new series of oxycarbonate superconductors in the Ba-Ca-Cu-C-O system under high pressure of 5 GPa. Their ideal formula is (Cu{sub 0.5}C{sub 0.5}){sub m}Ba{sub m+1}Ca{sub n-1}Cu{sub n}O{sub 2}({sub m+n})+1 ((Cu,C)-m(m+1)(n-1)n). Thus far, n=3, 4 members of the m=1 series, (Cu,C)-1223 and (Cu,C)-1234, have been prepared in bulk while n=4, 5 members, (Cu,C)-2334 and (Cu,C)-2345, have been prepared for the m=2 series. (Cu,C)-1223 shows superconductivity below 67 K while T{sub c}`s of other compounds are above 110 K. In particular, (Cu,C)=1234 has the highest T{sub c} of 117 K.

  17. The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system.

    Science.gov (United States)

    Domeignoz-Horta, Luiz A; Spor, Aymé; Bru, David; Breuil, Marie-Christine; Bizouard, Florian; Léonard, Joël; Philippot, Laurent

    2015-01-01

    Agriculture is the main source of terrestrial emissions of N2O, a potent greenhouse gas and the main cause of ozone layer depletion. The reduction of N2O into N2 by microorganisms carrying the nitrous oxide reductase gene (nosZ) is the only biological process known to eliminate this greenhouse gas. Recent studies showed that a previously unknown clade of N2O-reducers was related to the capacity of the soil to act as an N2O sink, opening the way for new strategies to mitigate emissions. Here, we investigated whether the agricultural practices could differently influence the two N2O reducer clades with consequences for denitrification end-products. The abundance of N2O-reducers and producers was quantified by real-time PCR, and the diversity of both nosZ clades was determined by 454 pyrosequencing. Potential N2O production and potential denitrification activity were used to calculate the denitrification gaseous end-product ratio. Overall, the results showed limited differences between management practices but there were significant differences between cropping systems in both the abundance and structure of the nosZII community, as well as in the [rN2O/r(N2O+N2)] ratio. More limited differences were observed in the nosZI community, suggesting that the newly identified nosZII clade is more sensitive than nosZI to environmental changes. Potential denitrification activity and potential N2O production were explained mainly by the soil properties while the diversity of the nosZII clade on its own explained 26% of the denitrification end-product ratio, which highlights the importance of understanding the ecology of this newly identified clade of N2O reducers for mitigation strategies.

  18. Propuesta de clasificación técnica de los sistemas de explotación de las BN1G de producción (núcleos

    Directory of Open Access Journals (Sweden)

    Nuria Castañeda Clemente

    1999-01-01

    Full Text Available Se propone una clasificación de los sistemas de explotación de las BN1G de producción a partir de las relaciones entre los distintos atributos que caracterizan a los núcleos. Esta clasificación se estructura en tres niveles. El primero discrimina los sistemas de explotación según su número de superficies de talla. En el segundo nivel, la característica jerarquizadora es la relación geométrica entre superficie /plataforma o entre superficies de talla. El tercer y último nivel atiende a la dirección en la que se explotan estas superficies. This work consists in a classification of the production BN1G (cores exploitation systems, based on tlie reiatlonsfíip between ttie different cíiaracteristic core forms features. Tfiere are tfiree levéis of classification.The first one discrimínate between exploitation systems by tlieir number of debitage surfaces. On the second level the hierarchical feature is the geomethcai relationship between the debitage surface and striking platform or between debitage surfaces. Third level is the direction on exploitation of surfaces.

  19. N2O, NO and CH4 exchange, and microbial N turnover over a Mediterranean pine forest soil

    Directory of Open Access Journals (Sweden)

    P. Rosenkranz

    2006-01-01

    Full Text Available Trace gas exchange of N2O, NO/NO2 and CH4 between soil and the atmosphere was measured in a typical Mediterranean pine (Pinus pinaster forest during two intensive field campaigns in spring and autumn 2003. Furthermore, gross and net turnover rates of N mineralization and nitrification as well as soil profiles of N2O and CH4 concentrations were determined. For both seasons a weak but significant N2O uptake from the atmosphere into the soil was observed. During the unusually dry and hot spring mean N2O uptake was −4.32 µg N m-2 h-1, whereas during the wet and mild autumn mean N2O uptake was −7.85 µg N m-2 h-1. The observed N2O uptake into the soil was linked to the very low availability of inorganic nitrogen at the study site. Organic layer gross N mineralization decreased from 5.06 mg N kg-1 SDW d-1 in springtime to 2.68 mg N kg-1 SDW d-1 in autumn. Mean NO emission rates were significantly higher in springtime (9.94 µg N m-2 h-1 than in autumn (1.43 µg N m-2 h-1. A significant positive correlation between NO emission rates and gross N mineralization as well as nitrification rates was found. The negative correlation between NO emissions and soil moisture was explained with a stimulation of aerobic NO uptake under N limiting conditions. Since NO2 deposition was continuously higher than NO emission rates the examined forest soil functioned as a net NOx sink. Observed mean net CH4 uptake rates were in spring significantly higher (−73.34 µg C m-2 h-1 than in autumn (−59.67 µg C m-2 h-1. Changes in CH4 uptake rates were strongly negatively correlated with changes in soil moisture. The N2O and CH4 concentrations in different soil depths revealed the organic layer and the upper 0.1 m of mineral soil as the most important soil horizons for N2O and CH4 consumption.

  20. Structural and spectral analyses of N,N'-(2,2'-dithiodi-o-phenylene)bis-(furan-2-carboxamide)

    Science.gov (United States)

    Yıldırım, Sema Öztürk; Büyükmumcu, Zeki; Pekdur, Özlem Savaş; Butcher, Ray J.; Doǧan, Şengül Dilem

    2018-02-01

    In this study we report structure determination of N,N'-(2,2'-dithiodi-o-phenylene)bis-(furan-2-carboxamide). 2,2'-Dithiobis(benzamide) derivatives have been reported to possess important biological properties such as antibacterial, antifungal activities and inhibition of blood platelet aggregation and redeterrmined at 100(2)K from the data published by Raftery, Lallbeeharry, Bhowon, Laulloo & Joulea [Acta Cryst. 2009, E65, o16]. 2,2'-Dithiobis(N-butyl-benzamide) has been reported to be useful as an antiseptic for cosmetics. The structural properties of the compound have been characterized by using 1H NMR and the structure were determined by single-crystal X-ray diffraction. Molecular structure crystallizes in triclinic form, space group with a = 9.6396(7) Å, b = 9.9115(7) Å, c = 12.0026(8) Å, α = 109.743(6)°, β = 103.653(6)°, γ = 104.633(6)° and V = 977.15(13) Å3. In the solid state of the molecular structure N-H…S, N-H…O and C-H…O, type interactions provide for stabilization. The geometries of the title compound have been optimized using density functional theory (DFT) method. The calculated values were found to be in agreement with the experimental data.

  1. Synthesis, characterization and crystal structure of the new pentahydrate of bis(2,2'-bipyridine-κ(2)N,N')(oxalato-κ(2)O(1),O(2))nickel(II).

    Science.gov (United States)

    Farkašová, Nela; Cernák, Juraj; Tomás, Milagros; Falvello, Larry R

    2014-05-01

    The reaction of NiCl2, K2C2O4·H2O and 2,2'-bipyridine (bpy) in water-ethanol solution at 281 K yields light-purple needles of the new pentahydrate of bis(2,2'-bipyridine)oxalatonickel(II), [Ni(C2O4)(C10H8N2)2]·5H2O or [Ni(ox)(bpy)2]·5H2O, while at room temperature, deep-pink prisms of the previously reported tetrahydrate [Ni(ox)(bpy)2]·4H2O [Román, Luque, Guzmán-Miralles & Beitia (1995), Polyhedron, 14, 2863-2869] were gathered. The asymmetric unit in the crystal structure of the new pentahydrate incorporates the discrete molecular complex [Ni(ox)(bpy)2] and five solvent water molecules. Within the complex molecule, all three ligands are bonded as chelates. The complex molecules are involved in an extended system of hydrogen bonds with the solvent water molecules. Additionally, π-π interactions also contribute to the stabilization of the extended structure. The dehydration of the pentahydrate starts at 323 K and proceeds in at least two steps as determined by thermal analysis.

  2. Modified g-C3N4/TiO2 nanosheets/ZnO ternary facet coupled heterojunction for photocatalytic degradation of p-toluenesulfonic acid (p-TSA) under visible light

    Science.gov (United States)

    Jiang, Dong; Yu, Han; Yu, Hongbing

    2017-01-01

    Novel ternary nanocomposites with facet coupled structure were synthesized by using modified g-C3N4, TiO2 nanosheets and nano-ZnO. Nanosheet/nanosheet heterojunction structure was investigated by TEM, XPS and XRD. FT-IR and Nitrogen adsorption were illustrated for chemical/physical structure analyses. Solution of p-Toluenesulfonic acid (p-TSA) was chosen as target pollutant for visible light photodegradation and the excellent removal efficiency was achieved by this structurally modified g-C3N4/TiO2/ZnO hybrid. The visible light absorption improvement and quantum efficiency enhancement, which were testified by UV-vis DRS, PL and p-TSA photodegradation measurements, due to the facet coupled structure and appropriate quantity of modified g-C3N4 in the nanocomposites.

  3. Poly[aqua-μ-bromido-(μ2-5-methylpyrazine-2-carboxylato-κ4N1,O2:O2,O2′lead(II

    Directory of Open Access Journals (Sweden)

    Pan Yang

    2012-09-01

    Full Text Available In the title coordination polymer, [PbBr(C6H5N2O2(H2O]n, the PbII atom is coordinated by one pyrazine N atom, two bridging Br atoms, a water molecule and three carboxylate O atoms. Bridging by the two anions generates a layer structure parallel to (001; the layers are linked by O—H...N and O—H...Br hydrogen bonds, forming a three-dimensional network. The lone pair is stereochemically active, resulting in a Ψ-dodecahedral coordination environment for PbII.

  4. Construction of Z-scheme Ag{sub 2}CO{sub 3}/N-doped graphene photocatalysts with enhanced visible-light photocatalytic activity by tuning the nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shaoqing [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Nanchang, Jiangxi Province 330013 (China); Meng, Aiyun [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Jiang, Shujuan [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Nanchang, Jiangxi Province 330013 (China); Cheng, Bei [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Jiang, Chuanjia, E-mail: jiangcj2016@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2017-02-28

    Highlights: • Z-scheme photocatalyst composed of Ag{sub 2}CO{sub 3} and N-doped graphene (NG). • Pyridinic nitrogen species of NG spontaneously promoted plasmonic Ag formation. • Graphitic N of NG facilitated the Z-scheme transfer option and O{sub 2} adsorption. • Z-scheme Ag{sub 2}CO{sub 3}-NG showed high photocatalytic performance. - Abstract: Semiconductor-based photocatalysis has great potential in various environmental and energy applications, and Z-scheme photocatalysts have many advantages over single-component photocatalysts. The construction of a highly efficient Z-scheme photocatalytic system depends on the geometric structure arrangement, microscopic and crystalline form of the stoichiometric species, and it has not been elucidated whether the Z-scheme photocatalysts can be designed by tuning the electronic structures of cocatalysts alone. Here, using N-doped graphene (NG) as cocatalyst, we successfully constructed Z-scheme Ag{sub 2}CO{sub 3}-NG photocatalysts with enhanced activity for the photooxidative degradation of phenol pollutant. It was found that the pyridinic nitrogen species (N{sub p}) of NG could spontaneously reduce Ag{sup +} to produce plasmonic Ag nanoparticles on Ag{sub 2}CO{sub 3}-NG, while the efficiency of the photogenerated charge separation, Z-scheme transfer option, and O{sub 2} adsorption were promoted by the graphitic nitrogen species (N{sub g}). Therefore, the as-designed Z-scheme Ag{sub 2}CO{sub 3}-NG photocatalysts showed much higher activity than Ag{sub 2}CO{sub 3} and its composites with graphene oxide (GO) or reduced GO as cocatalysts in the photocatalytic degradation of phenol. Hence, our results provide a new strategy for exploring advanced Z-scheme photocatalysts with NG as cocatalyst by rationally tuning the N{sub p} and N{sub g} species.

  5. [2-(Dimethylaminoethanol-κ2N,O][2-(dimethylaminoethanolato-κ2N,O]iodidocopper(II

    Directory of Open Access Journals (Sweden)

    Elena A. Buvaylo

    2012-04-01

    Full Text Available The title compound, [Cu(C4H10NOI(C4H11NO], was obtained unintentionally as the product of an attempted synthesis of a Cu/Zn mixed-metal complex using zerovalent copper, zinc(II oxide and ammonium iodide in pure 2-(dimethylaminoethanol, in air. The molecular complex has no crystallographically imposed symmetry. The coordination geometry around the metal atom is distorted square-pyramidal. The equatorial coordination around copper involves donor atoms of the bidentate chelating 2-(dimethylaminoethanol ligand and the 2-(dimethylaminoethanolate group, which are mutually trans to each other, with four approximately equal short Cu—O/N bond distances. The axial Cu—I bond is substantially elongated. Intermolecular hydrogen-bonding interactions involving the –OH group of the neutral 2-(dimethylaminoethanol ligand to the O atom of the monodeprotonated 2-(dimethylaminoethanolate group of the molecule related by the n-glide plane, as indicated by the O...O distance of 2.482 (12 Å, form chains of molecules propagating along [101].

  6. Bis{μ-2,2′-[1,1′-(ethane-1,2-diyldinitrilodiethylidyne]diphenolato-κ5O,N,N′,O′:O}bis[chloridomanganese(III

    Directory of Open Access Journals (Sweden)

    Robert D. Pike

    2008-02-01

    Full Text Available The title compound, [Mn2(C18H18N2O22Cl2], was synthesized by the reaction between manganese(II o-chlorobenzoate and the Schiff base generated in situ by the condensation of ethane-1,2-diamine and o-hydroxyacetophenone. The centrosymmetric dimer contains two Jahn–Teller-distorted manganese(III ions, each in an octahedral geometry, connected through two phenoxy bridges from two ligands.

  7. Production of N2O5 and ClNO2 through Nocturnal Processing of Biomass-Burning Aerosol.

    Science.gov (United States)

    Ahern, Adam T; Goldberger, Lexie; Jahl, Lydia; Thornton, Joel; Sullivan, Ryan C

    2018-01-16

    Biomass burning is a source of both particulate chloride and nitrogen oxides, two important precursors for the formation of nitryl chloride (ClNO 2 ), a source of atmospheric oxidants that is poorly prescribed in atmospheric models. We investigated the ability of biomass burning to produce N 2 O 5 (g) and ClNO 2 (g) through nocturnal chemistry using authentic biomass-burning emissions in a smog chamber. There was a positive relationship between the amount of ClNO 2 formed and the total amount of particulate chloride emitted and with the chloride fraction of nonrefractory particle mass. In every fuel tested, dinitrogen pentoxide (N 2 O 5 ) formed quickly, following the addition of ozone to the smoke aerosol, and ClNO 2 (g) production promptly followed. At atmospherically relevant relative humidities, the particulate chloride in the biomass-burning aerosol was rapidly but incompletely displaced, likely by the nitric acid produced largely by the heterogeneous uptake of N 2 O 5 (g). Despite this chloride acid displacement, the biomass-burning aerosol still converted on the order of 10% of reacted N 2 O 5 (g) into ClNO 2 (g). These experiments directly confirm that biomass burning is a potentially significant source of atmospheric N 2 O 5 and ClNO 2 to the atmosphere.

  8. A consilience model to describe N2O production during biological N removal

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Smets, Barth F.

    2016-01-01

    Nitrous oxide (N2O), a potent greenhouse gas, is produced during biological nitrogen conversion in wastewater treatment operations. Complex mechanisms underlie N2O production by autotrophic and heterotrophic organisms, which continue to be unravelled. Mathematical models that describe nitric oxide...... (NO) and N2O dynamics have been proposed. Here, a first comprehensive model that considers all relevant NO and N2O production and consumption mechanisms is proposed. The model describes autotrophic NO production by ammonia oxidizing bacteria associated with ammonia oxidation and with nitrite reduction......, followed by NO reduction to N2O. It also considers NO and N2O as intermediates in heterotrophic denitrification in a 4-step model. Three biological NO and N2O production pathways are accounted for, improving the capabilities of existing models while not increasing their complexity. Abiotic contributions...

  9. Crystal structure of tetraaqua[2-(pyridin-2-yl-1H-imidazole-κ2N2,N3]iron(II sulfate

    Directory of Open Access Journals (Sweden)

    Zouaoui Setifi

    2015-04-01

    Full Text Available In the title compound, [Fe(C8H7N3(H2O4]SO4, the central FeII ion is octahedrally coordinated by two N atoms from the bidentate 2-(pyridin-2-yl-1H-imidazole ligand and by four O atoms of the aqua ligands. The largest deviation from the ideal octahedral geometry is reflected by the small N—Fe—N bite angle of 76.0 (1°. The Fe—N coordination bonds have markedly different lengths [2.1361 (17 and 2.243 (2 Å], with the shorter one to the pyrimidine N atom. The four Fe—O coordination bond lengths vary from 2.1191 (18 to 2.1340 (17 Å. In the crystal, the cations and anions are arranged by means of medium-strength O—H...O hydrogen bonds into layers parallel to the ab plane. Neighbouring layers further interconnect by N—H...O hydrogen bonds involving the imidazole fragment as donor group to one sulfate O atom as an acceptor. The resulting three-dimensional network is consolidated by C—H...O, C—H...π and π–π interactions.

  10. (Dimethylformamide-κO(2-hydroxybenzoato-κ2O1,O1′[tris(1-methyl-1H-benzimidazol-2-ylmethyl-κN3amine-κN]manganese(II perchlorate dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    Baoliang Qi

    2010-10-01

    Full Text Available In the title complex, [Mn(C7H5O3(C27H27N7(C3H7NO]ClO4·C3H7NO, the MnII ion is coordinated in a slightly distorted monocapped trigonal-prismatic geometry. The tris(1-methyl-1H-benzimidazol-2-ylmethylamine (Mentb ligand coordinates in a tetradentate mode and the coordination is completed by a bis-chelating salicylate ligand and a dimethylformamide ligand. The hydroxy group and the ortho H atoms of the salicylate ligand were refined as disordered over two sites with occupancies of 0.581 (8 and 0.419 (8. Both disorder components of the hydroxy group form intramolecular O—H...O hydrogen bonds.

  11. Bis(2,6-dihydroxybenzoato-κ2O1,O1′(nitrato-κ2O,O′bis(1,10-phenanthroline-κ2N,N′cerium(III

    Directory of Open Access Journals (Sweden)

    Hongxiao Jin

    2011-01-01

    Full Text Available The mononuclear title complex, [Ce(C7H5O32(NO3(C12H8N22], is isostructural to other related lanthanide structures. The Ce atom is in a pseudo-bicapped square-antiprismatic geometry formed by four N atoms from two chelating 1,10-phenanthroline (phen ligands and by six O atoms, four from two 2,6-dihydroxybenzoate (DHB ligands and the other two from a nitrate anion. π–π stacking interactions between phen and DHB ligands [centroid–centroid distances = 3.513 (3 and 3.762 (2 Å] and phen and phen ligands [face-to-face separation = 3.423 (7 Å] of adjacent complexes stabilize the crystal structure. Intramolecular O—H...O hydrogen bonds are observed in the DHB ligands.

  12. Fabrication of Heterostructured g-C{sub 3}N{sub 4}/Ag-TiO{sub 2} Hybrid Photocatalyst with Enhanced Performance in Photocatalytic Conversion of CO{sub 2} Under Simulated Sunlight Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hailong [School of Energy Science and Engineering, Central South University, Changsha, 410083 (China); Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Gao, Yan; Wu, Xianying [School of Energy Science and Engineering, Central South University, Changsha, 410083 (China); Lee, Po-Heng [Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region (Hong Kong); Shih, Kaimin, E-mail: kshih@hku.hk [Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong)

    2017-04-30

    Highlights: • Combination of g-C{sub 3}N{sub 4} and Ag-TiO{sub 2} resulted in significant synergy for CO{sub 2} reduction. • The optimal electron consumption rate for CN/AgTi was 12.7 times higher than that for TiO{sub 2}. • CN/AgTi was superior than g-C{sub 3}N{sub 4} and Ag-TiO{sub 2} in use of sunlight for CO{sub 2} conversion. - Abstract: Heterostructured g-C{sub 3}N{sub 4}/Ag-TiO{sub 2} (CN/AgTi) hybrid catalysts were fabricated through a facile solvent evaporation followed by a calcination process, using graphitic carbon nitride (g-C{sub 3}N{sub 4}) and Ag-TiO{sub 2} (AgTi) as precursors. The phase compositions, optical properties, and morphologies of the catalysts were systematically characterized. The heterostructured combination of g-C{sub 3}N{sub 4}, titania (TiO{sub 2}) and silver nanoparticles (Ag NPs) resulted in significant synergy for catalytic conversion of CO{sub 2} in the presence of water vapor under simulated sunlight irradiation. The optimal CN/AgTi composite with a g-C{sub 3}N{sub 4} to AgTi mass ratio of 8% exhibited the maximum CO{sub 2} photoreduction activity, achieving a CO{sub 2} conversion of 47 μmol, CH{sub 4} yield of 28 μmol, and CO yield of 19 μmol per gram of catalyst during a 3 h simulated sunlight irradiation. Under the experimental conditions, the rate of electron consumption was calculated to be 87.3 μmol/g·h, which was 12.7 times, 7.9 times, and 2.0 times higher than those for TiO{sub 2}, g-C{sub 3}N{sub 4} and AgTi, respectively. The combination of g-C{sub 3}N{sub 4} and AgTi resulted in more sunlight harvesting for electron and hole generations. Photoinduced electrons transferred through the heterjunction between g-C{sub 3}N{sub 4} and TiO{sub 2}, and further from TiO{sub 2} to Ag NPs with lower Fermi level greatly suppressed the recombination of electron-hole pairs, and hence resulted in electron accumulation on Ag NPs deposited on the TiO{sub 2} surface in the CN/AgTi. Abundant electrons accumulated on the Ag

  13. Crystal structure of diaquabis(N,N-diethylnicotinamide-κN1bis(2,4,6-trimethylbenzoato-κO1cobalt(II

    Directory of Open Access Journals (Sweden)

    Gülçin Şefiye Aşkın

    2016-04-01

    Full Text Available The centrosymmetric molecule in the monomeric title cobalt complex, [Co(C10H11O22(C10H14N2O2(H2O2], contains two water molecules, two 2,4,6-trimethylbenzoate (TMB ligands and two diethylnicotinamide (DENA ligands. All ligands coordinate to the CoII atom in a monodentate fashion. The four O atoms around the CoII atom form a slightly distorted square-planar arrangement, with the distorted octahedral coordination sphere completed by two pyridine N atoms of the DENA ligands. The dihedral angle between the planar carboxylate group and the adjacent benzene ring is 84.2 (4°, while the benzene and pyridine rings are oriented at a dihedral angle of 38.87 (10°. The water molecules exhibit both intramolecular (to the non-coordinating carboxylate O atom and intermolecular (to the amide carbonyl O atom O—H...O hydrogen bonds. The latter lead to the formation of layers parallel to (100, enclosing R44(32 ring motifs. These layers are further linked via weak C—H...O hydrogen bonds, resulting in a three-dimensional network. One of the two ethyl groups of the DENA ligand is disordered over two sets of sites with an occupancy ratio of 0.490 (13:0.510 (13.

  14. Crystal and Molecular Structure of Bis(2,2-diphenyl-N-(di-n-propylcarbamothioyl acetamidocopper(II Complex

    Directory of Open Access Journals (Sweden)

    Hakan Arslan

    2011-01-01

    Full Text Available Bis(2,2-diphenyl-N-(di-n-propylcarbamothioyl acetamidocopper(II complex has been synthesized and characterized by elemental analysis and FT-IR spectroscopy. The crystal and molecular structure of the title compound has been determined from single crystal X-ray diffraction data. It crystallizes in the triclinic space group P-1, with a = 13.046(2 Å, b = 13.135(2 Å, c = 13.179(2 Å, α= 67.083(4°, β= 67.968(4°, γ = 84.756(4° and Dcalc =1.330 g/cm3 for Z = 2. The crystal structure confirms that the complex is a mononuclear copper(II complex and the 2,2-diphenyl-N-(di-n-propyl-carbamothioylacetamide ligand is a bidentate chelating ligand, coordinating to the copper atom through the thiocarbonyl and carbonyl groups. This coordination has a slightly distorted square-planar geometry (O1-Cu1-O2: 86.48(11°, O1-Cu1-S1: 93.85(9°, O2-Cu1-S2: 94.20(9° and S1-Cu1-S2: 91.21(4°. The title molecule shows a cis-arrangement and C–O, C–S and C–N bond lengths of the complex suggest considerable electronic delocalization in the chelate rings.

  15. Ab initio electron correlated studies on the intracluster reaction of NO+ (H2O)(n) → H3O+ (H2O)(n-2) (HONO) (n = 4 and 5).

    Science.gov (United States)

    Asada, Toshio; Nagaoka, Masataka; Koseki, Shiro

    2011-01-28

    Hydrated nitrosonium ion clusters NO(+)(H(2)O)(n) (n = 4 and 5) were investigated by using MP2/aug-cc-pVTZ level of theory to clarify isomeric reaction pathways for formation of HONO and fully hydrated hydride ions. We found some new isomers and transition state structures in each hydration number, whose lowest activation energies of the intracluster reactions were found to be 4.1 and 3.4 kcal mol(-1) for n = 4 and n = 5, respectively. These thermodynamic properties and full quantum mechanical molecular dynamics simulation suggest that product isomers with HONO and fully hydrated hydride ions can be obtained at n = 4 and n = 5 in terms of excess hydration binding energies which can overcome these activation barriers.

  16. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals: [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)] and [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n).

    Science.gov (United States)

    Freire, Eleonora; Vega, Daniel R; Baggio, Ricardo

    2010-06-01

    Diaquabis[dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato-kappa(2)O,O']magnesium(II), [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The Mg(II) cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1-) [or dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena-Poly[[aquacalcium(II)]-mu(3)-[hydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato]-kappa(5)O:O,O':O',O''], [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n), consists instead of a Ca(II) cation in a general position, a zwitterionic zoledronate(2-) anion and a coordinated water molecule. The geometry around the Ca(II) atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the Ca(II) atom displaced by 0.19 A out of the equatorial plane. These Ca(II) coordination polyhedra are ;threaded' by the 2(1) axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca(2)-O(2) chain which runs along [010]. These chains are in turn linked by an apical O atom from a -PO(3) group in a neighbouring chain. This O-atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three-dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.

  17. Controlling factors of nitrous oxide (N2O) emissions at the field-scale in an agricultural slope

    Science.gov (United States)

    Vilain, Guillaume; Garnier, Josette; Tallec, Gaëlle; Tournebize, Julien; Cellier, Pierre; Flipo, Nicolas

    2010-05-01

    short period of one month. Landscape position strongly affected cumulative N2O emissions which were more than three times higher in footslope position (annual budget of 4 kg N-N2O ha-1 yr-1) than in shoulder (1.1 kg N-N2O ha-1 yr-1) or slope positions (1.1 and 1.2 kg N-N2O ha-1 yr-1), where soil water contents were higher (mean 68.4% WFPS in footslope position whereas mean WFPS were 50.4 and 60.5% in slope positions and 58% in shoulder position). N2O emissions were relatively low (0.5 kg N-N2O ha-1 yr-1) and did not show much annual variation in unfertilized riparian buffer. Garnier, J., Billen, G., Vilain, G., Martinez, A., Silvestre, M., Mounier, E., & Toche, F., 2009. Nitrous oxide (N2O) in the Seine river and basin: Observations and budgets. Agriculture, Ecosystems & Environment 133, 223-233. IPCC, 2007. Climate change 2007: the physical science basis. Summary for Policy Makers, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Izaurralde, R. C., Lemke, R. L., Goddard, T. W., McConkey, B., & Zhang, Z., 2004. Nitrous Oxide Emissions from Agricultural Toposequences in Alberta and Saskatchewan. Soil Sci Soc Am J 68, 1285-1294.

  18. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2O production

    DEFF Research Database (Denmark)

    Blum, Jan-Michael; Su, Qingxian; Ma, Yunjie

    2018-01-01

    causing steric changes in catalytic sites or proton/electron transfer routes that alter the enzymes' overall activity. Augmenting molecular information with, e.g., nitritation or denitrification rates yields explanations of changes in net N2 O production with pH. Ammonia oxidizing bacteria are of highest...... relevance for N2 O production, while heterotrophic denitrifiers are relevant for N2 O consumption at pH > 7.5. Net N2 O production in N-cycling water engineering systems is predicted to display a 'bell-shaped' curve in the range of pH 6.0-9.0 with a maximum at pH 7.0-7.5. Net N2 O production at acidic p...

  19. Accelerated Rates of Nitrogen Cycling and N2O Production in Salt Marsh Sediments due to Long-Term Fertilization

    Science.gov (United States)

    Peng, X.; Ji, Q.; Angell, J.; Kearns, P.; Bowen, J. L.; Ward, B. B.

    2014-12-01

    Intensified sedimentary production of nitrous oxide (N2O), one of the most potent greenhouse gases, is one of the many possible environmental consequences of elevated nitrogen (N) loading into estuarine ecosystems. This study investigates the response to over 40 years of fertilization of nitrogen removal processes in the sediments of the Great Sippewissett Marsh in Falmouth, MA. Sediment slurries were incubated (1.5 hr) with trace amounts (fertilized sediments (0.89 nmol hr-1 g-1 wet weight) was 30-fold higher than in unfertilized sediments. The ratio of N2O to N2 production was also significantly higher in fertilized sediments (2.9%) than in unfertilized sediments (1.2%). This highlights the disproportionally large effect of long-term fertilization on N2O production in salt marsh sediments. The reduced oxygen level and higher ammonium concentrations in situ probably contributed to the significant rise in N2O production as a result of long-term fertilization. When detected, anammox and coupled nitrification-denitrification accounted for 10% and 14% of the total N2 production in fertilized sediments (30.5 nmol hr-1 g-1 wet weight), respectively, whereas neither was detected in unfertilized sediments. Thus these experiments indicate that N loading has important effects on multiple N cycle processes that result in N loss and N2O production.

  20. [μ-1,1′-(Butane-1,4-diyldi-1H-benzimidazole-κ2N3:N3′]bis{[N,N′-bis(carboxymethylethylenediamine-N,N′-diacetato-κ5O,O′,O′′,N,N′]mercury(II} methanol disolvate

    Directory of Open Access Journals (Sweden)

    Gang-Sen Li

    2009-08-01

    Full Text Available The binuclear title complex, [Hg2(C10H14N2O82(C18H18N4]·2CH3OH, lies on an inversion center with the unique HgII ion coordinated in a disorted octahedral environment with one Hg—N bond significantly shorter than the other two. In the crystal structure, intermolecular O—H...O hydrogen bonds link complex and solvent molecules into a three-dimensional network.

  1. Effects of N2-O2 and CO2-O2 Tensions on Growth of Fungi Isolated from Damaged Flue-Cured Tobacco 1

    Science.gov (United States)

    Yang, H.; Lucas, G. B.

    1970-01-01

    Ten fungi, Aspergillus niger, A. flavus, A. ochraceus, A. ruber, A. repens, A. amstelodami, Alternaria tenuis, Penicillium brevi-compactum, Cladosporium herbarum, and Chaetomium dolicotrichum, were isolated from moldy flue-cured tobacco and grown in various mixtures of N2-O2 or CO2-O2. A 1 to 5% concentration of O2 in an N2 atmosphere caused the greatest change in growth of the nine species, and a 10 to 20% concentration of O2 for A. flavus. All species, except A. amstelodami and A. ruber, grew faster in air than in mixtures containing 10% O2. High O2 concentrations generally inhibited furrow production in the mycelial mats. In an atmosphere of 5 to 40% O2 in the N2 atmosphere, furrows formed in mycelial mats between 5 and 40% O2 in the species except for A. ruber, A. repens, and A. amstelodami, which produced none in any concentration. As O2 decreased below 20%, spore production was progressively decreased, colony color faded to white, and cleistothecia formation was suppressed. In CO2-O2 mixtures radial growth of all species increased with each quantitative decrease of CO2. All species except A. niger grew faster in air than in 10% CO2. In contrast to N2-O2 mixtures, the fungi formed furrows, sporulation and cleistothecial formation were suppressed, and colony color changed to white in higher O2 concentrations. PMID:5461786

  2. [(Nitrato-κ2 O,O′)(nitrito-κ2 O,O′)(0.25/1.75)]bis­(1,10-phenanthroline-κ2 N,N′)cadmium(II)

    Science.gov (United States)

    Najafi, Ezzatollah; Amini, Mostafa M.; Ng, Seik Weng

    2011-01-01

    The reaction of cadmium nitrate and sodium nitrite in the presence of 1,10-phenanthroline yields the mixed nitrate–nitrite title complex, [Cd(NO2)1.75(NO3)0.25(C12H8N2)2]. The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions in a distorted dodeca­hedral CdN4O4 coordination environment. One nitrite group is ordered; the other is disordered with respect to a nitrate group (ratio 0.75:0.25) concerning the O atom that is not involved in bonding to the metal ion. PMID:21522904

  3. Temporal trends in N2O flux dynamics in a Danish wetland – effects of plant-mediated gas transport of N2O and O2 following changes in water level and soil mineral-N availability

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Struwe, Sten; Elberling, Bo

    2012-01-01

    in subsurface N2O and O2 concentrations, water level (WL), light intensity as well as mineral-N availability. Weekly concentration profiles showed that seasonal variations in N2O concentrations were directly linked to the position of the WL and O2 availability at the capillary fringe above the WL. N2O flux....... Complex interactions between seasonal changes in O2 and mineral-N availability following near-surface WL fluctuations in combination with plant-mediated gas transport by P. arundinacea controlled the subsurface N2O concentrations and gas transport mechanisms responsible for N2O fluxes across the soil......–atmosphere interface. Results demonstrate the necessity for addressing this high temporal variability and potential plant transport of N2O in future studies of net N2O exchange across the soil–atmosphere interface....

  4. [Characteristics of N2, N2O, NO, CO2 and CH4 Emissions in Anaerobic Condition from Sandy Loam Paddy Soil].

    Science.gov (United States)

    Cao, Na; Wang, Rui; Liao, Ting-ting; Chen, Nuo; Zheng, Xun-hua; Yao, Zhi-sheng; Zhang, Hai; Butterbach-Bahl, Klaus

    2015-09-01

    Understanding the characteristics of the production of nitrogen gases (N2, N2O and NO), CO2 and CH4 in anaerobic paddy soils is not only a prerequisite for an improved mechanistic understanding of key microbial processes involved in the production of atmospheric greenhouse gases (GHG), but might also provide the basis for designing greenhouse gas mitigation strategies. Moreover, quantifying the composition fractions of denitrification gaseous products is of key importance for improving parameterization schemes of microbial processes in process-oriented models which are increasingly used for assessing soil GHG emissions at site and national scales. In our experiments we investigated two sandy loam soils from two paddy fields. The initial concentrations of soil nitrate and dissolved organic carbon (DOC) were set at approximately 50 mg.kg-1 and mg.kg-1, respectively, by adding a mixture solution of KNO3 and glucose. The emissions of N2, N2O NO, CO2 and CH4, as well as concentrations of carbon and nitrogen substrates for each soil sample were measured simultaneously, using a gas-flow-soil-core technique and a paralleling substrate monitoring system. The results showed that the accumulative emissions of N2, N2O and NO of the two soil samples for the entire incubation period were 6 - 8, 20, and 15 - 18 mg.kg-1, respectively. By measuring the cumulative emissions of denitrification gases (N, = N2 + N2O + NO) we were able to explain 95% to 98% of observed changes in s1ifr nilrate concentrations. The mass fractions of N2, N2O and NO emissions to Nt were approximately 15% -19%, 47% -49%, and 34% -36%, respectively. Thus, in our experiments N2O and NO were the main products of denitrification for the entire incubation period. However, as the temporal courses of hourly or daily production of the denitrification gases showed, NO production dominated and peaked firstly, and then N2O, before finally N2 became the dominant product. Our results show the high temporal dynamic of

  5. Effects of dicyandiamide and dolomite application on N2O emission from an acidic soil.

    Science.gov (United States)

    Shaaban, Muhammad; Wu, Yupeng; Peng, Qi-an; Lin, Shan; Mo, Yongliang; Wu, Lei; Hu, Ronggui; Zhou, Wei

    2016-04-01

    Soil acidification is a major problem for sustainable agriculture since it limits productivity of several crops. Liming is usually adopted to ameliorate soil acidity that can trigger soil processes such as nitrification, denitrification, and loss of nitrogen (N) as nitrous oxide (N2O) emissions. The loss of N following liming of acidic soils can be controlled by nitrification inhibitors (such as dicyandiamide). However, effects of nitrification inhibitors following liming of acidic soils are not well understood so far. Here, we conducted a laboratory study using an acidic soil to examine the effects of dolomite and dicyandiamide (DCD) application on N2O emissions. Three levels of DCD (0, 10, and 20 mg kg(-1); DCD0, DCD10, and DCD20, respectively) were applied to the acidic soil under two levels of dolomite (0 and 1 g kg(-1)) which were further treated with two levels of N fertilizer (0 and 200 mg N kg(-1)). Results showed that N2O emissions were highest at low soil pH levels in fertilizer-treated soil without application of DCD and dolomite. Application of DCD and dolomite significantly (P ≤ 0.001) reduced N2O emissions through decreasing rates of NH4 (+)-N oxidation and increasing soil pH, respectively. Total N2O emissions were reduced by 44 and 13% in DCD20 and dolomite alone treatments, respectively, while DCD20 + dolomite reduced N2O emissions by 54% when compared with DCD0 treatment. The present study suggests that application of DCD and dolomite to acidic soils can mitigate N2O emissions.

  6. Hexaaquabis[3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanido-κ2N3,O4]barium tetrahydrate

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Do

    2013-11-01

    Full Text Available In the title compound, [Ba(C7H5N2O52(H2O6]·4H2O, the Ba2+ cation lies on a twofold rotation axis and is ten-coordinated by two 3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanide oxo O atoms [Ba—O = 2.8715 (17 Å], two hydroxyimino N atoms [Ba—N = 3.036 (2 Å], and six water molecules [Ba—O = 2.847 (2, 2.848 (2, and 2.880 (2 Å]. The 3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanide monoanions act in a bidentate chelating manner, coordinating through an N atom of the non-deprotonated hydroxyimino group and an O atom of the neighboring oxo group. Two lattice water molecules are located in the cavities of the framework and are involved in hydrogen bonding to O atoms of one of the coordinating water molecules and the O atom of a keto group of the ligand. As a result, a three-dimensional network is formed.

  7. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles

    Science.gov (United States)

    D'Amelio, M. T. S.; Gatti, L. V.; Miller, J. B.; Tans, P.

    2009-11-01

    Nitrous oxide (N2O) is the third most important anthropogenic greenhouse gas. Globally, the main sources of N2O are nitrification and denitrification in soils. About two thirds of the soil emissions occur in the tropics and approximately 20% originate in wet rainforest ecosystems, like the Amazon forest. The work presented here involves aircraft vertical profiles of N2O from the surface to 4 km over two sites in the Eastern and Central Amazon: Tapajós National Forest (SAN) and Cuieiras Biologic Reserve (MAN), and the estimation of N2O fluxes for regions upwind of these sites. To our knowledge, these regional scale N2O measurements in Amazonia are unique and represent a new approach to looking regional scale emissions. The fluxes upwind of MAN exhibited little seasonality, and the annual mean was 2.1±1.0 mg N2O m-2 day-1, higher than that for fluxes upwind of SAN, which averaged 1.5±1.6 mg N2O m-2 day-1. The higher rainfall around the MAN site could explain the higher N2O emissions, as a result of increased soil moisture accelerating microbial nitrification and denitrification processes. For fluxes from the coast to SAN seasonality is present for all years, with high fluxes in the months of March through May, and in November through December. The first peak of N2O flux is strongly associated with the wet season. The second peak of high N2O flux recorded at SAN occurs during the dry season and can not be easily explained. However, about half of the dry season profiles exhibit significant correlations with CO, indicating a larger than expected source of N2O from biomass burning. The average CO:N2O ratio for all profiles sampled during the dry season is 94±77 mol CO:mol N2O and suggests a larger biomass burning contribution to the global N2O budget than previously reported.

  8. Etendatakse 10-aastase kirjamehe näitemäng

    Index Scriptorium Estoniae

    2003-01-01

    Tartu katoliku kooli 3. klassi poisi Mario Raitari näitemäng "Kristoph Silvester von Tenderi lugu", mis on esimene lugu sarjast "Mario Raitari kroonika". Näidendit etendab Linnupuu Lastepereteatri trupp

  9. Determination of the 54Fe(n, 2n)53gFe and 54Fe(n, 2n)53mFe cross sections averaged over a 235U fission neutron spectrum

    International Nuclear Information System (INIS)

    Ribeiro Guevara, S.; Arribere, M.; Kestelman, A.J.

    2002-01-01

    The reaction cross sections averaged over a 235 U fission neutron spectrum have been measured for the 54 Fe(n, 2n) 53g Fe and 54 Fe(n, 2n) 53m Fe threshold reactions. The values found are, respectively: (1.14 ± 0.13) μb, and (0.52 ± 0.16) μb. The measured cross sections are referred to the (111± 3) mb standard cross section of the 58 Ni(n, p) 58m+g Co reaction. The (81.7 ± 2.2) mb standard cross section value for the 54 Fe(n, p) 54 Mn reaction, was also used as a monitor to check the results obtained with the Ni standard, leading to an excellent agreement. (author)

  10. Sintering of undoped SnO2 Sinterização de SnO2 não dopado

    Directory of Open Access Journals (Sweden)

    E. R. Leite

    2003-04-01

    Full Text Available Pure SnO2 sintering was studied by constant heating rate and isothermal sintering. The constant heating rate study showed no macroscopic shrinkage during the sintering process up to 1500 ºC. Pore size distribution measurements, using gas desorption, and grain size and crystallite size measurements of isothermally sintered samples showed no formation of non-densifying microstructures during the sintering process. These results are a strong indication that densification was prevented by thermodynamic factors, mainly the high ratio of gammaGB/gSV. An explanation, based on the nature of covalent bonding and the balance between attractive and repulsive forces, was proposed to explain the high gammaGB/gammaSV ratio in SnO2.A sinterização de SnO2 puro foi estudado por taxa constante de aquecimento e por sinterização isotérmica. O estudo de taxa constante de aquecimento mostrou que não ocorre retração macroscópica durante o processo de sinterização até temperaturas de 1500 ºC. Medidas de distribuição de tamanho de poros, usando adsorção de gás, tamanho de grão e tamanho de cristalito para amostras sinterizadas isotermicamente mostrou a não formação de uma microestrutura não-densificante durante o processo de sinterização. Estes resultados são um forte indicativo que a densificação foi inibida por fatores termodinâmicos, principalmente o alto valor da razão de gamaGB/gSV. Uma explicação, baseada na natureza covalente da ligação química e no balanço entre forças atrativas e repulsivas, é apresentada para explicar o alto valor da razão gamaGB/gamaSV no SnO2.

  11. Mannose-binding lectin contributes to deleterious inflammatory response in pandemic H1N1 and avian H9N2 infection.

    Science.gov (United States)

    Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K W; Peiris, J S Malik; Takahashi, K; Lau, Yu Lung

    2012-01-01

    Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response.

  12. A combinatorial interpretation of the $κ^{\\star}_{g}(n)$ coefficients

    DEFF Research Database (Denmark)

    Li, Thomas Jiaxian; M. Reidys, Christian

    2014-01-01

    Studying the virtual Euler characteristic of the moduli space of curves, Harer and Zagier compute the generating function $C_g(z)$ of unicellular maps of genus $g$. They furthermore identify coefficients, $\\kappa^{\\star}_{g}(n)$, which fully determine the series $C_g(z)$. The main result of this ......Studying the virtual Euler characteristic of the moduli space of curves, Harer and Zagier compute the generating function $C_g(z)$ of unicellular maps of genus $g$. They furthermore identify coefficients, $\\kappa^{\\star}_{g}(n)$, which fully determine the series $C_g(z)$. The main result...... of this paper is a combinatorial interpretation of $\\kappa^{\\star}_{g}(n)$. We show that these enumerate a class of unicellular maps, which correspond $1$-to-$2^{2g}$ to a specific type of trees, referred to as O-trees. We furthermore prove a two term recursion for $\\kappa^{\\star}_{g}(n)$ and that for any fixed...

  13. Determination of N-methylsuccinimide and 2-hydroxy-N-methylsuccinimide in human urine and plasma.

    Science.gov (United States)

    Jönsson, B A; Akesson, B

    1997-12-19

    A method for determination of N-methylsuccinimide (MSI) and 2-hydroxy-N-methylsuccinimide (2-HMSI) in human urine and of MSI in human plasma was developed. MSI and 2-HMSI are metabolites of the widely used organic solvent N-methyl-2-pyrrolidone (NMP). MSI and 2-HMSI were purified from urine and plasma by C8 solid-phase extraction and analysed by gas chromatography-mass spectrometry in the negative-ion chemical ionisation mode. The intra-day precisions in urine were 2-6% for MSI (50 and 400 ng/ml) and 3-5% for 2-HMSI (1000 and 8000 ng/ml). For MSI in plasma it was 2% (60 and 1200 ng/ml). The between-day precisions in urine were 3-4% for MSI (100 and 1000 ng/ml) and 2-4% for 2-HMSI (10,000 and 18,000 ng/ml) and 3-4% for MSI in plasma (100 and 900 ng/ml). The recoveries from urine were 109-117% for MSI (50 and 400 ng/ml) and 81-89% for 2-HMSI (1000 and 8000 ng/ml). The recovery of MSI from plasma was 91-101% (50 and 500 ng/ml). The detection limits for MSI were 3 ng/ml in urine and 1 ng/ml in plasma and that of 2-HMSI in urine was 200 ng/ml. The method is applicable for analysis of urine and plasma samples from workers exposed to NMP.

  14. Top-down holographic G-structure glueball spectroscopy at (N)LO in N and finite coupling

    International Nuclear Information System (INIS)

    Sil, Karunava; Yadav, Vikas; Misra, Aalok

    2017-01-01

    The top-down type IIB holographic dual of large-N thermal QCD as constructed in Mia et al. (Nucl Phys B 839:187, 2010) involving a fluxed resolved warped deformed conifold, its delocalized type IIA Strominger-Yau-Zaslow-mirror (SYZ-mirror) as well as its M-theory uplift constructed in Dhuria and Misra (JHEP 1311:001, 2013) - both in the finite coupling g s 1/'MQGP' limit of Dhuria and Misra (JHEP 1311:001, 2013) - were shown explicitly to possess a local SU(3)/G 2 -structure in Sil and Misra (Nucl Phys B 910:754, 2016). Glueballs spectra in the finite-gauge-coupling limit (and not just large 't Hooft coupling limit) - a limit expected to be directly relevant to strongly coupled systems at finite temperature such as QGP (Natsuume in String theory and quark-gluon plasma, 2007) - has thus far been missing in the literature. In this paper, we fill this gap by calculating the masses of the 0 ++ , 0 -+ , 0 -- , 1 ++ , 2 ++ ('glueball') states (which correspond to fluctuations in the dilaton or complexified two-forms or appropriate metric components) in the aforementioned backgrounds of G-structure in the 'MQGP' limit of Dhuria and Misra (JHEP 1311:001, 2013). We use WKB quantization conditions on one hand and impose Neumann/Dirichlet boundary conditions at an IR cut-off ('r 0 ')/horizon radius ('r h ') on the solutions to the equations of motion on the other hand. We find that the former technique produces results closer to the lattice results. We also discuss the r h = 0 limits of all calculations. In this context we also calculate the 0 ++ , 0 -- , 1 ++ , 2 ++ glueball masses up to Next to Leading Order (NLO) in N and find a (g s M 2 )/(N)(g s N f )-suppression similar to and further validating semi-universality of NLO corrections to transport coefficients, observed in Sil and Misra (Eur Phys J C 76(11):618, 2016). (orig.)

  15. Thermal expansion and magnetostriction in Pr(n+2)(n+1)Nin(n-1)+2Sin(n+1) compounds

    International Nuclear Information System (INIS)

    Jiles, D.C.; Song, S.H.; Snyder, J.E.; Pecharsky, V.K.; Lograsso, T.A.; Wu, D.; Pecharsky, A.O.; Mudryk, Ya.; Dennis, K.W.; McCallum, R.W.

    2006-01-01

    Thermal expansion and magnetostriction of members of a homologous series of compounds based on the alloy series Pr (n+2)(n+1) Ni n(n-1)+2 Si n(n+1) have been measured. The crystal structures of these compounds are closely interrelated because they form trigonal prismatic columns in which the number of trigonal prisms that form the base of the trigonal columns is determined by the value of n in the chemical formula. Two compositions were investigated, Pr 5 Ni 2 Si 3 and Pr 15 Ni 7 Si 10 , corresponding to n=3 and n=4, respectively. The results were analyzed and used to determine the location of magnetic phase transitions by calculating the magnetic contribution to thermal expansion using the Gruneisen-Debye theory. This allowed more precise determination of the magnetic transition temperatures than could be achieved using the total thermal expansion. The results show two phase transitions in each material, one corresponding to the Curie temperature and the other at a lower temperature exhibiting characteristics of a spin reorientation transition

  16. Managed grassland alters soil N dynamics and N2O emissions in temperate steppe.

    Science.gov (United States)

    Xu, Lijun; Xu, Xingliang; Tang, Xuejuan; Xin, Xiaoping; Ye, Liming; Yang, Guixia; Tang, Huajun; Lv, Shijie; Xu, Dawei; Zhang, Zhao

    2018-04-01

    Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen (N) dynamics and nitrous oxide (N 2 O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil (0-10cm), nitrate (NO 3 - ), ammonium (NH 4 + ), and microbial N were measured in plots in a temperate steppe (Leymus chinensis grassland) and two managed grasslands (Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M. sativa or B. inermis grasslands decreased concentrations of NO 3 - -N, but did not change NH 4 + -N. Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M. sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa (i.e., a legume grass) increased N 2 O emissions by 26.2%, while the conversion to the B. inermis (i.e., a non-legume grass) reduced N 2 O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO 3 - -N and NH 4 + -N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N 2 O emissions. Copyright © 2017. Published by Elsevier B.V.

  17. Theoretical study for the reduction of N2O with CO Mediated by alkaline-earth metal oxide cations 2MO+(M=Ca, Sr, Ba)

    International Nuclear Information System (INIS)

    Zhang Jianhui; Leng Yanli; Wang Yongcheng

    2013-01-01

    The reaction mechanism of the reaction N 2 O( 0 Σ + ) + CO ( 1 Σ + )→N 2 ( 1 Σ g + ) + CO 2 ( 1 Σ g + ) mediated by alkaline-earth metal oxide cations 2 MO + (m=Ca, Sr, Ba) have been investigated by using the UB3LYP and CCSD (T) levels of theory. The O-atom affinities (OA) testified that only the 2 CaO + can capture O from N 2 O and transfer O to CO is thermodynamically allowed in three ions. The processes can be expressed as channels l and 2 for the reaction of N 2 O and CO mediated by 2 MO + (M=Ca, Sr, Ba). For the former, the main reaction processes in a two-step manner to products, the 2 MO + , as a catalyzer, transports an oxygen atom from N 2 O to CO. For the latter, firstly, the N 2 O interact with the 2 MO + to form IM1, then IM1 interact with the CO to form IM2', along the reaction pathway the intermediate species convert into products 2 1MO + , N 2 and CO 2 . From above results, the following conclusion was drawn. The channel 2 is kinetically and thermodynamically feasible. Our calculated results show the title reactions are accord with the experiment. (authors)

  18. Tris(2,2′-bipyridine-κ2N,N′cobalt(III bis[bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6cobaltate(III] perchlorate dimethylformamide hemisolvate 1.3-hydrate

    Directory of Open Access Journals (Sweden)

    Irina A. Golenya

    2012-10-01

    Full Text Available In the title compound, [Co(C10H8N23][Co(C7H3NO42]2(ClO4·0.5C3H7NO·1.3H2O, the CoIII atom in the complex cation is pseudooctahedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atom in the complex anion is coordinated by two pyridine N atoms and four carboxylate O atoms of two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry. One dimethylformamide solvent molecule and two water molecules are half-occupied and one water molecule is 0.3-occupied. O—H...O hydrogen bonds link the water molecules, the perchlorate anions and the complex anions. π–π interactions between the pyridine rings of the complex anions are also observed [centroid–centroid distance = 3.804 (3 Å].

  19. Uncertainties in United States agricultural N2O emissions: comparing forward model simulations to atmospheric N2O data.

    Science.gov (United States)

    Nevison, C. D.; Saikawa, E.; Dlugokencky, E. J.; Andrews, A. E.; Sweeney, C.

    2014-12-01

    Atmospheric N2O concentrations have increased from 275 ppb in the preindustrial to about 325 ppb in recent years, a ~20% increase with important implications for both anthropogenic greenhouse forcing and stratospheric ozone recovery. This increase has been driven largely by synthetic fertilizer production and other perturbations to the global nitrogen cycle associated with human agriculture. Several recent regional atmospheric inversion studies have quantified North American agricultural N2O emissions using top-down constraints based on atmospheric N2O data from the National Oceanic and Atmospheric Administration (NOAA) Global Greenhouse Gas Reference Network, including surface, aircraft and tall tower platforms. These studies have concluded that global N2O inventories such as EDGAR may be underestimating the true U.S. anthropogenic N2O source by a factor of 3 or more. However, simple back-of-the-envelope calculations show that emissions of this magnitude are difficult to reconcile with the basic constraints of the global N2O budget. Here, we explore some possible reasons why regional atmospheric inversions might overestimate the U.S. agricultural N2O source. First, the seasonality of N2O agricultural sources is not well known, but can have an important influence on inversion results, particularly when the inversions are based on data that are concentrated in the spring/summer growing season. Second, boundary conditions can strongly influence regional inversions but the boundary conditions used may not adequately account for remote influences on surface data such as the seasonal stratospheric influx of N2O-depleted air. We will present a set of forward model simulations, using the Community Land Model (CLM) and two atmospheric chemistry tracer transport models, MOZART and the Whole Atmosphere Community Climate Model (WACCM), that examine the influence of terrestrial emissions and atmospheric chemistry and dynamics on atmospheric variability in N2O at U.S. and

  20. Effect of sulfation on the surface activity of CaO for N2O decomposition

    International Nuclear Information System (INIS)

    Wu, Lingnan; Hu, Xiaoying; Qin, Wu; Dong, Changqing; Yang, Yongping

    2015-01-01

    Graphical abstract: - Highlights: • Sulfation of CaO (1 0 0) surface greatly deactivates its surface activity for N 2 O decomposition. • An increase of sulfation degree leads to a decrease of CaO surface activity for N 2 O decomposition. • Sulfation from CaSO 3 into CaSO 4 is the crucial step for deactivating the surface activity for N 2 O decomposition. • The electronic interaction CaO (1 0 0)/CaSO 4 (0 0 1) interface is limited to the bottom layer of CaSO 4 (0 0 1) and the top layer of CaO (1 0 0). • CaSO 4 (0 0 1) and (0 1 0) surfaces show negligible catalytic ability for N 2 O decomposition. - Abstract: Limestone addition to circulating fluidized bed boilers for sulfur removal affects nitrous oxide (N 2 O) emission at the same time, but mechanism of how sulfation process influences the surface activity of CaO for N 2 O decomposition remains unclear. In this paper, we investigated the effect of sulfation on the surface properties and catalytic activity of CaO for N 2 O decomposition using density functional theory calculations. Sulfation of CaO (1 0 0) surface by the adsorption of a single gaseous SO 2 or SO 3 molecule forms stable local CaSO 3 or CaSO 4 on the CaO (1 0 0) surface with strong hybridization between the S atom of SO x and the surface O anion. The formed local CaSO 3 increases the barrier energy of N 2 O decomposition from 0.989 eV (on the CaO (1 0 0) surface) to 1.340 eV, and further sulfation into local CaSO 4 remarkably increases the barrier energy to 2.967 eV. Sulfation from CaSO 3 into CaSO 4 is therefore the crucial step for deactivating the surface activity for N 2 O decomposition. Completely sulfated CaSO 4 (0 0 1) and (0 1 0) surfaces further validate the negligible catalytic ability of CaSO 4 for N 2 O decomposition.

  1. Greenhouse Gas (CO2 AND N2O Emissions from Soils: A Review Emisión de Gases invernadero (CO2 y N2O desde Suelos

    Directory of Open Access Journals (Sweden)

    Cristina Muñoz

    2010-09-01

    Full Text Available In agricultural activities, the main greenhouse gases (GHG are those related to C and N global cycles. The impact of agriculture on GHG emissions has become a key issue, especially when considering that natural C and N cycles are influenced by agricultural development. This review focuses on CO2 and N2O soil emissions in terrestrial ecosystems, with emphasis in Chilean and similar agro-ecosystems around the world. The influence of land use and crop management practices on CO2 and N2O emissions is analyzed; some mitigation measures to reduce such emissions are also discussed here. More knowledge on the biological processes that promote of GHG emissions from soil will allow creating opportunities for agricultural development under friendly-environmental conditions, where soil can act as a reservoir and/or emitter of GHG, depending on the balance of inputs and outputs.En actividades agrícolas los principales gases de efecto invernadero (GHG son los relacionados con los ciclos globales de C y N. El impacto de la agricultura sobre las emisiones GHG se ha convertido en una cuestión clave, especialmente si se considera que los ciclos naturales C y N se ven influidos por el desarrollo agrícola. Esta revisión se centra en emisiones de CO2 y N2O del suelo en los ecosistemas terrestres, con énfasis en agro-ecosistemas de Chile y similares alrededor del mundo. Se analiza la influencia del uso del suelo y las prácticas de manejo del cultivo sobre emisiones de CO2 y N2O, se discuten medidas de mitigación para reducir estas emisiones. Un mayor conocimiento sobre los procesos biológicos que promueven las emisiones GHG del suelo permitirá la creación de oportunidades para el desarrollo agrícola en condiciones ambientalmente amigables, donde el suelo puede actuar como un reservorio y/o emisor de GHG, dependiendo del balance de entradas y salidas.

  2. On textual and contextual position of the ophthalmological treatise of bodhisattva nāgārjuna.

    Science.gov (United States)

    Kim, Seongsu; Kang, Sungyong

    2013-04-01

    Medical knowledge in India began to be introduced to China in earliest from the Later Han Dynasty period to the times of Wei-Qin and South & North Dynasties. This is proved by many Buddhist medical books appeared in those days. Of the contents of Indian medicine, the theory of four major elements affected Chinese medicine more than did the theory of body fluids. Based on the theory of four major elements that was began to be introduced in Fú shuō fú yī jīng, an attempt to establish a new medical system was made in Zhŏu hòu băi yīfāng written by Táong-jĭng and Sūn Sī-miăo who tried to develop etiology further but could not achieve any great outcomes. Unlike the foregoing situation, Indian medicine aroused a large echo in China in the field of ophthalmology with ophthalmological knowledge mentioned in Suśrutasa hitā and 'Jīnzhēn-shù'(cataract couching) introduced as a surgical treatment of cataract. The Suśrutasa hitā which is one of the three major texts of Indian medicine contains additional information on surgical operations not introduced in the Carakasa hitā. The technique of cataract surgery was particularly popular in the Tang and Song dynasty periods in China under the name Lóng shù pú sà yănn(The Ophthalmological Treatise of Bodhisattva Nāgārjuna) or Lóng shù lùn and was even designated as a subject to educate medical officers. While the original text of Lóng shù pú sà yănn was not handed down, the first testimony that show the trace of the introduction of this text into China was the Tiān zhú jīngnn mentioned in Wài tái mì yào(Arcane Essential from the Imperial Library) written by Wang Tao. Long shàngo ren who was mentioned as the compiler of the book is assumed to be Lóng shù. Although Tiān zhú jīngnn introduced anatomical knowledge about the eyeball that could have not been in the traditional Chinese medicine, this book has only limited quantity of information in this

  3. Crystal structure of an unknown solvate of bis(tetra-n-butylammonium [N,N′-(4-trifluoromethyl-1,2-phenylenebis(oxamato-κ4O,N,N′,O′]nickelate(II

    Directory of Open Access Journals (Sweden)

    François Eya'ane Meva

    2015-06-01

    Full Text Available In the title compound, [N(C4H94]2[Ni(C11H3F3N2O6] or [N(n-Bu4]2[Ni(topbo] [n-Bu = n-butyl and topbo = 4-trifluoromethyl-1,2-phenylenebis(oxamate], the Ni2+ cation is coordinated by two deprotonated amido N atoms and two carboxylate O atoms, setting up a slightly distorted square-planar coordination environment. The [Ni(topbo]2− anion lies on a twofold rotation axis. Due to an incompatibility with the point-group symmetry of the complete molecule, orientational disorder of the CF3 group is observed. The tetrahedral ammonium cations and the anion are linked by weak intermolecular C—H...O and C—H...F hydrogen-bonding interactions into a three-dimensional network. A region of electron density was treated with the SQUEEZE procedure in PLATON [Spek (2015. Acta Cryst. C71, 9–18] following unsuccessful attempts to model it as plausible solvent molecule(s. The given chemical formula and other crystal data do not take into account the unknown solvent molecule.

  4. Ti{sub 2}Al(O,N) formation by solid-state reaction between substoichiometric TiN thin films and Al{sub 2}O{sub 3} (0001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Persson, P.O.A., E-mail: perpe@ifm.liu.se; Hoeglund, C.; Birch, J.; Hultman, L.

    2011-02-01

    Titanium nitride TiN{sub x} (0.1 {<=} x {<=} 1) thin films were deposited onto Al{sub 2}O{sub 3}(0001) substrates using reactive magnetron sputtering at substrate temperatures (T{sub s}) ranging from 800 to 1000 {sup o}C and N{sub 2} partial pressures (pN{sub 2}) between 13.3 and 133 mPa. It is found that Al and O from the substrates diffuse into the substoichiometric TiN{sub x} films during deposition. Solid-state reactions between the film and substrate result in the formation of Ti{sub 2}O and Ti{sub 3}Al domains at low N{sub 2} partial pressures, while for increasing pN{sub 2}, the Ti{sub 2}AlN MAX phase nucleates and grows together with TiN{sub x}. Depositions at increasingly stoichiometric conditions result in a decreasing incorporation of substrate species into the growing film. Eventually, a stoichiometric deposition gives a stable TiN(111) || Al{sub 2}O{sub 3}(0001) structure without the incorporation of substrate species. Growth at T{sub s} 1000 {sup o}C yields Ti{sub 2}AlN(0001), leading to a reduced incorporation of substrate species compared to films grown at 900 {sup o}C, which contain also Ti{sub 2}AlN(101-bar3) grains. Finally, the Ti{sub 2}AlN domains incorporate O, likely on the N site, such that a MAX phase oxynitride Ti{sub 2}Al(O,N) is formed. The results were obtained by a combination of structural methods, including X-ray diffraction and (scanning) transmission electron microscopy, together with spectroscopy methods, which comprise elastic recoil detection analysis, energy dispersive X-ray spectroscopy, and electron energy loss spectroscopy.

  5. Oceanic N2O emissions in the 21st century

    Science.gov (United States)

    Martinez-Rey, J.; Bopp, L.; Gehlen, M.; Tagliabue, A.; Gruber, N.

    2014-12-01

    The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known on how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. We implemented two different parameterizations of N2O production, which differ primarily at low oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12% in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 Tg N yr-1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the Oxygen Minimum Zones (OMZs), i.e., in the Eastern Tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production associated primarily with denitrification. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around -0.009 W m-2 K-1, which is comparable to the potential increase from terrestrial N2O sources. However, the assesment for a compensation between the terrestrial and marine feedbacks calls for an improved representation of N2O production terms in fully coupled next generation of Earth System Models.

  6. Diaquabis[5-(2-pyridyltetrazolato-κ2N1,N5]iron(II

    Directory of Open Access Journals (Sweden)

    Min Hu

    2009-04-01

    Full Text Available The title complex, [Fe(C6H4N52(H2O2], was synthesized by the reaction of ferrous sulfate with 5-(2-pyridyl-2H-tetrazole (HL. The FeII atom, located on a crystallographic center of inversion, is coordinated by four N-atom donors from two planar trans-related deprotonated L ligands and two O atoms from two axial water molecules in a distorted octahedral geometry. The FeII mononuclear units are further connected by intermolecular O—H...N and C—H...O hydrogen-bonding interactions, forming a three-dimensional framework.

  7. Controlled carrier screening in p-n NiO/GaN piezoelectric generators by an Al2O3 insertion layer

    Science.gov (United States)

    Johar, Muhammad Ali; Jeong, Dae Kyung; Afifi Hassan, Mostafa; Kang, Jin-Ho; Ha, Jun-Seok; Key Lee, June; Ryu, Sang-Wan

    2017-12-01

    The performance of a piezoelectric generator (PG) depends significantly on the internal screening process inside the device. As piezoelectric charges appear on both ends of the piezoelectric crystal, internal screening starts to decrease the piezoelectric bias. Therefore, the piezoelectric energy generated by external stress is not fully utilized by external circuit, which is the most challenging aspect of high-efficiency PGs. In this work, the internal screening effect of a NiO/GaN p-n PG was analyzed and controlled with an Al2O3 insertion layer. Internal screening in the p-n diode PG was categorized into free-carrier screening in neutral regions and junction screening due to charge drift across the junction. It was observed that junction screening could be significantly suppressed by inserting an Al2O3 layer and that effect was dominant in a leaky diode PG. With this implementation, the piezoelectric bias of the NiO/GaN PG was improved by a factor of ~100 for high-leakage diodes and a factor of ~1.6 for low-leakage diodes. Consequently, NiO/Al2O3/GaN PGs under a stress of 5 MPa provided a piezoelectric bias of 12.1 V and a current density of 2.25 µA cm-2. The incorporation of a highly resistive Al2O3 layer between p-NiO and n-GaN layers in NiO/GaN heterojunctions provides an efficient means of improving the piezoelectric performance by controlling the internal screening of the piezoelectric field.

  8. Structure of (Ga2O3)2(ZnO)13 and a unified description of the homologous series (Ga2O3)2(ZnO)(2n + 1).

    Science.gov (United States)

    Michiue, Yuichi; Kimizuka, Noboru; Kanke, Yasushi; Mori, Takao

    2012-06-01

    The structure of (Ga(2)O(3))(2)(ZnO)(13) has been determined by a single-crystal X-ray diffraction technique. In the monoclinic structure of the space group C2/m with cell parameters a = 19.66 (4), b = 3.2487 (5), c = 27.31 (2) Å, and β = 105.9 (1)°, a unit cell is constructed by combining the halves of the unit cell of Ga(2)O(3)(ZnO)(6) and Ga(2)O(3)(ZnO)(7) in the homologous series Ga(2)O(3)(ZnO)(m). The homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) is derived and a unified description for structures in the series is presented using the (3+1)-dimensional superspace formalism. The phases are treated as compositely modulated structures consisting of two subsystems. One is constructed by metal ions and another is by O ions. In the (3 + 1)-dimensional model, displacive modulations of ions are described by the asymmetric zigzag function with large amplitudes, which was replaced by a combination of the sawtooth function in refinements. Similarities and differences between the two homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) and Ga(2)O(3)(ZnO)(m) are clarified in (3 + 1)-dimensional superspace. The validity of the (3 + 1)-dimensional model is confirmed by the refinements of (Ga(2)O(3))(2)(ZnO)(13), while a few complex phenomena in the real structure are taken into account by modifying the model.

  9. Spatial distribution of hydroxylamine and its role in aerobic N2O formation in a Norway spruce forest soil

    Science.gov (United States)

    Liu, S.; Weymann, D.; Gottselig, N.; Wiekenkamp, I.; Vereecken, H.; Brueggemann, N.

    2014-12-01

    Hydroxylamine (HA) as a crucial intermediate in the microbial oxidation of ammonium to nitrite (nitrification) is a potential precursor of abiotic N2O formation in the soil. However, the determination of HA concentration in natural soil samples has not been reported until now. Here, we determined the HA concentrations in organic (Oh) and mineral (Ah) layers of 135 soil samples collected from a spruce forest (Wüstebach, Eifel National Park, Germany) using a novel approach, based on the fast extraction of HA from the soil at a pH of 1.7, the oxidation of HA to N2O with Fe3+, and the analysis of produced N2O using gas chromatography (GC). Meanwhile, N2O emission rates were determined by means of aerobic laboratory incubations of 3-g soil in 22-mL vials. Subsequently, the spatial distribution of soil HA concentrations and N2O emission rates in the Oh and Ah layers of the whole sampling area were analyzed using a geostatistical approach. The correlations among soil HA, N2O emission rate, pH, soil C, N, Fe, Mn and soil water content (SWC) were further explored. The HA concentrations ranged from 0.3-44.6 μg N kg-1 dry soil and 0.02-16.2 μg N kg-1 dry soil in the Oh and the Ah layer, respectively. The spatial distribution of HA was similar in both layers, with substantial spatial variability dependent on soil type, tree density and distance to a stream. For example, HA concentration was greater at locations with a thick litter layer or at locations close to the stream. The average N2O emission rate in the Oh layer was 0.38 μg N kg-1 dry soil h-1, 10-fold larger than in the Ah layer. Interestingly, N2O emission rate exhibited high correlation with soil HA content in the Oh (R2 = 0.65, p < 0.01) and Ah (R2 = 0.45, p < 0.05) layer. The results demonstrated that HA is a crucial component for aerobic N2O formation and emission in spruce forest soils. Moreover, HA concentration was negatively correlated with pH and positively correlated with SWC in the Oh layer, while

  10. Facile one-pot construction of α-Fe_2O_3/g-C_3N_4 heterojunction for arsenic removal by synchronous visible light catalysis oxidation and adsorption

    International Nuclear Information System (INIS)

    Sun, Suwen; Ji, Chunnuan; Wu, Lingling; Chi, Shenghua; Qu, Rongjun; Li, Yan; Lu, Yangxiao; Sun, Changmei; Xue, Zhongxin

    2017-01-01

    α-Fe_2O_3/g-C_3N_4 composites with heterojunction were prepared by facile one-pot synthesis using ferric chloride and dicyandiamide as precursors. The newly formed composites were applied to remove arsenic from aqueous solution for the first time through synchronous visible light catalysis oxidation and adsorption. α-Fe_2O_3/g-C_3N_4 composites were characterized by wide-angle X-ray powder diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectroscopy, and BET surface analysis. Under visible light irradiation, As(III) was oxidized to As(V) efficiently on the surface of α-Fe_2O_3/g-C_3N_4. In addition, the oxidized arsenic could be adsorbed in situ, resulting in the effective arsenic removal. The enhancement of photocatalytic activity the composites was attributed to the construction of heterojunction between α-Fe_2O_3 and g-C_3N_4. A possible oxidation mechanism of the as-composites for As(III) under visible light irradiation was also elucidated. - Highlights: • α-Fe_2O_3/g-C_3N_4 composites with heterojunction was prepared by facile one-pot synthesis. • The photocatalytic activity of α-Fe_2O_3/g-C_3N_4 composites under visible light irradiation for As(III) was evaluated. • Synchronous visible light catalysis oxidation and adsorption were achieved for the removal of arsenic. • The reasonable oxidation mechanism of the composites for As(III) under visible light irradiation was investigated.

  11. The topotactic dehydration of monoclinic {[Co(pht)(bpy)(H2O)22H2O}n into orthorhombic [Co(pht)(bpy)(H2O)2]n (pht is phthalate and bpy is 4,4'-bipyridine).

    Science.gov (United States)

    Harvey, Miguel Angel; Suarez, Sebastián; Cukiernik, Fabio D; Baggio, Ricardo

    2014-10-01

    Controlled heating of single crystals of the previously reported [Köferstein & Robl (2007). Z. Anorg. Allg. Chem. 633, 1127-1130] dihydrate {[Co(pht)(bpy)(H2O)22H2O}n, (II) [where pht is phthalate (C8H4O4) and bpy is 4,4'-bipyridine (C10H8N2)], produced a topotactic transformation into an unreported diaqua anhydrate, namely poly[diaqua(μ2-benzene-1,2-dicarboxylato-κ(2)O(1):O(2))(μ2-4,4'-bipyridine-κ(2)N:N')cobalt(II)], [Co(C8H4O4)(C10H8N2)(H2O)2]n, (IIa). The structural change consists of the loss of the two solvent water molecules linking the original two-dimensional covalent substructures which are the `main frame' of the monoclinic P2/n hydrate (strictly preserved during the transformation), with further reaccommodation of the latter. The anhydrate organizes itself in the orthorhombic system (space group Pmn2(1)) in a disordered fashion, where the space-group-symmetry restrictions are achieved only in a statistical sense, with mirror-related two-dimensional planar substructures, mirrored in a plane perpendicular to [100]. Thus, the asymmetric unit in the refined model is composed of two superimposed mirror-related `ghosts' of half-occupancy each. Similarities and differences with the parent dihydrate and some other related structures in the literature are discussed.

  12. Electrical characteristics and interface properties of ALD-HfO2/AlGaN/GaN MIS-HEMTs fabricated with post-deposition annealing

    Science.gov (United States)

    Kubo, Toshiharu; Egawa, Takashi

    2017-12-01

    HfO2/AlGaN/GaN metal-insulator-semiconductor (MIS)-type high electron mobility transistors (HEMTs) on Si substrates were fabricated by atomic layer deposition of HfO2 layers and post-deposition annealing (PDA). The current-voltage characteristics of the MIS-HEMTs with as-deposited HfO2 layers showed a low gate leakage current (I g) despite the relatively low band gap of HfO2, and a dynamic threshold voltage shift (ΔV th) was observed. After PDA above 500 °C, ΔV th was reduced from 2.9 to 0.7 V with an increase in I g from 2.2 × 10-7 to 4.8 × 10-2 mA mm-1. Effects of the PDA on the HfO2 layer and the HfO2/AlGaN interface were investigated by x-ray photoelectron spectroscopy (XPS) using synchrotron radiation. XPS data showed that oxygen vacancies exist in the as-deposited HfO2 layers and they disappeared with an increase in the PDA temperature. These results indicate that the deep electron traps that cause ΔV th are related to the oxygen vacancies in the HfO2 layers.

  13. O{sub 2}(X{sup 3}Σ{sub g}{sup −}) and O{sub 2}(a{sup 1}Δ{sub g}) charge exchange with simple ions

    Energy Technology Data Exchange (ETDEWEB)

    Ziółkowski, Marcin; Schatz, George C., E-mail: schatz@chem.northwestern.edu [Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113 (United States); Viggiano, A. A.; Midey, Anthony [Air Force Research Laboratory, Space Vehicles Directorate, 3500 Aberdeen Ave, Kirtland AFB, New Mexico 87117 (United States); Dotan, Itzhak [Air Force Research Laboratory, Space Vehicles Directorate, 3500 Aberdeen Ave, Kirtland AFB, New Mexico 87117 (United States); Open University of Israel, 108 Ravutski St., Raanana 43107 (Israel)

    2014-06-07

    We present theory and experiments which describe charge transfer from the X{sup 3}Σ{sub g}{sup −} and a{sup 1}Δ{sub g} states of molecular oxygen and atomic and molecular cations. Included in this work are new experimental results for O{sub 2}(a{sup 1}Δ{sub g}) and the cations O{sup +}, CO{sup +}, Ar{sup +}, and N{sub 2}{sup +}, and new theory based on complete active space self-consistent field method calculations and an extended Langevin model to calculate rate constants for ground and excited O{sub 2} reacting with the atomic ions Ar{sup +}, Kr{sup +}, Xe{sup +}, Cl{sup +}, and Br{sup +}. The T-shaped orientation of the (X − O{sub 2}){sup +} potential surface is used for the calculations, including all the low lying states up to the second singlet state of the oxygen molecule b{sup 1}Σ{sub g}{sup +}. The calculated rate constants for both O{sub 2}(X{sup 3}Σ{sub g}{sup −}) and O{sub 2}(a{sup 1}Δ{sub g}) show consistent trends with the experimental results, with a significant dependence of rate constant on charge transfer exothermicity that does not depend strongly on the nature of the cation. The comparisons with theory show that partners with exothermicities of about 1 eV have stronger interactions with O{sub 2}, leading to larger Langevin radii, and also that more of the electronic states are attractive rather than repulsive, leading to larger rate constants. Rate constants for charge transfer involving O{sub 2}(a{sup 1}Δ{sub g}) are similar to those for O{sub 2}(X{sup 3}Σ{sub g}{sup −}) for a given exothermicity ignoring the electronic excitation of the O{sub 2}(a{sup 1}Δ{sub g}) state. This means (and the electronic structure calculations support) that the ground and excited states of O{sub 2} have about the same attractive interactions with ions.

  14. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    Zhang, Dan; Li, Guangshe; Yu, Meijie; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-01

    Iron nitrides are considered as highly promising anode materials for lithium-ion batteries because of their nontoxicity, high abundance, low cost, and higher electrical conductivity. Unfortunately, their limited synthesis routes are available and practical application is still hindered by their fast capacity decay. Herein, a facile and green route is developed to synthesize Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet composite. The size of Fe4N/Fe2O3/Fe particles is small (10-40 nm) and they are confined in porous N-doped carbon nanosheet. These features are conducive to accommodate volume change well, shorten the diffusion distance and further elevate electrical conductivity. When tested as anode material for lithium-ion batteries, a high discharge capacity of 554 mA h g-1 after 100 cycles at 100 mA g-1 and 389 mA h g-1 after 300 cycles at 1000 mA g-1 are retained. Even at 2000 mA g-1, a high capacity of 330 mA h g-1 can be achieved, demonstrating superior cycling stability and rate performance. New prospects will be brought by this work for the synthesis and the potential application of iron nitrides materials as an anode for LIBs.

  15. N2O Decomposition over Cu–Zn/γ–Al2O3 Catalysts

    Directory of Open Access Journals (Sweden)

    Runhu Zhang

    2016-12-01

    Full Text Available Cu–Zn/γ–Al2O3 catalysts were prepared by the impregnation method. Catalytic activity was evaluated for N2O decomposition in a fixed bed reactor. The fresh and used catalysts were characterized by several techniques such as BET surface area, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The Cu–Zn/γ–Al2O3 catalysts exhibit high activity and stability for N2O decomposition in mixtures simulating real gas from adipic acid production, containing N2O, O2, NO, CO2, and CO. Over the Cu–Zn/γ–Al2O3 catalysts, 100% of N2O conversion was obtained at about 601 °C at a gas hourly space velocity (GHSV of 7200 h−1. Cu–Zn/γ–Al2O3 catalysts also exhibited considerably good durability, and no obvious activity loss was observed in the 100 h stability test. The Cu–Zn/γ–Al2O3 catalysts are promising for the abatement of this powerful greenhouse gas in the chemical industry, particularly in adipic acid production.

  16. Fourier transform infrared studies of the N2-O2 binary system

    International Nuclear Information System (INIS)

    Minenko, M.; Jodi, H.-J.

    2006-01-01

    Solid solutions (N 2 ) x (O 2 ) 1-x have been investigated by infrared absorption measurements mainly in the O 2 and N 2 stretching regions, between 60-10 K, completing former similar studies by Raman scattering. We produced thermodynamically stable samples by a careful thermal treatment, followed by cooling/heating cycles over weeks, during which we took spectra. From fingerprints in the infrared spectra we deduce phase-transition and solubility lines and suggest a refined, improved T-x % phase diagram in respect to the inconsistencies between those in the literature. The spectra of N 2 -O 2 mixtures are pretty complex, but by referring to known spectra of the pure systems N 2 or O 2 we were able to assign and interpret broad (∼100 cm - 1 ) phonon side bands to fundamentals and an electronic transition (O 2 ), depending on actual temperature and concentration. Narrow features in the spectra ( -1 ) were attributed to the vibron DOS of N 2 or O 2 , whose bandwidth, band shape, and intensity are different and characteristic for each phase. Differences between pure and mixed systems are pointed out. The matrix isolation technique (2 ppm of CO) was used to probe our mixture

  17. Nanosecond pulsed discharges in N2 and N2/H2O mixtures

    NARCIS (Netherlands)

    Joosten, R.M.; Verreycken, T.; Veldhuizen, van E.M.; Bruggeman, P.J.

    2011-01-01

    Nanosecond pulsed discharges in N2 and N2/H2O at atmospheric pressure between two pin-shaped electrodes are studied. The evolution of the discharge is investigated with time-resolved imaging and optical emission spectroscopy. The discharge consists of three phases, the ignition (mainly molecular

  18. Validation of a station-prototype designed to integrate temporally soil N2O fluxes: IPNOA Station prototype.

    Science.gov (United States)

    Laville, Patricia; Volpi, Iride; Bosco, Simona; Virgili, Giorgio; Neri, Simone; Continanza, Davide; Bonari, Enrico

    2016-04-01

    Nitrous oxide (N2O) flux measurements from agricultural soil surface still accounts for the scientific community as major challenge. The evaluations of integrated soil N2O fluxes are difficult because these emissions are lower than for the other greenhouse gases sources (CO2, CH4). They are also sporadic, because highly dependent on few environmental conditions acting as limiting factors. Within a LIFE project (IPNOA: LIFE11 ENV/IT/00032) a station prototype was developed to integrate annually N2O and CO2 emissions using automatically chamber technique. Main challenge was to develop a device enough durable to be able of measuring in continuous way CO2 and N2O fluxes with sufficient sensitivity to allow make reliable assessments of soil GHG measurements with minimal technical field interventions. The IPNOA station prototype was developed by West System SRL and was set up during 2 years (2014 -2015) in an experimental maize field in Tuscan. The prototype involved six automatic chambers; the complete measurement cycle was of 2 hours. Each chamber was closing during 20 min and biogas accumulations were monitoring in line with IR spectrometers. Auxiliary's measurements including soil temperatures and water contents as weather data were also monitoring. All data were managed remotely with the same acquisition software installed in the prototype control unit. The operation of the prototype during the two cropping years allowed testing its major features: its ability to evaluate the temporal variation of N2O soil fluxes during a long period with weather conditions and agricultural managements and to prove the interest to have continuous measurements of fluxes. The temporal distribution of N2O fluxes indicated that emissions can be very large and discontinuous over short periods less ten days and that during about 70% of the time N2O fluxes were around detection limit of the instrumentation, evaluated to 2 ng N ha-1 day-1. N2O emission factor assessments were 1.9% in 2014

  19. μ-Oxalato-κ4O1,O2:O1′,O2′-bis[aqua(2,2′-bipyridine-κN(nitrato-κ2O,O′lead(II

    Directory of Open Access Journals (Sweden)

    Gang-Hong Pan

    2012-10-01

    Full Text Available The title compound, [Pb2(C2O4(NO32(C10H8N22(H2O2], was synthesized hydrothermally. The binuclear complex molecule is centrosymmetric, the inversion centre being located at the mid-point of the oxalate C—C bond. The PbII ion is heptacoordinated by the O atom of one water molecule, two oxalate O atoms, two nitrate O atoms and two 2,2′-bipyridine N atoms, forming an irregular coordination environemnt. Intermolecular O—H...O hydrogen bonds between water molecules and oxalate and nitrate ions result in the formation of layers parallel to (010. π–π interactions between pyridine rings in adjacent layers, with centroid–centroid distances of 3.584 (2 Å, stabilize the structural set-up.

  20. Thermal stability of polyoxometalate compound of Keggin K8[2-SiW11O39]∙nH2O supported with SiO2

    Directory of Open Access Journals (Sweden)

    Yunita Sari M A

    2017-06-01

    Full Text Available Synthesis through sol-gel method and characterization of polyoxometalate compound of K8[b2-SiW11O39]∙nH2O supported with SiO2 have been done. The functional groups of polyoxometalate compound  was characterized by FT-IR spectrophotometer for the fungtional groups and the degree’s of crystalinity  using XRD. The acidity of K8[b2-SiW11O39]∙nH2O/SiO2 was determined qualitative analysis using ammonia and pyridine adsorption and the quantitative analysis using potentiometric titration method. The results of FT-IR spectrum of K8[b2-SiW11O39]∙nH2O appeared at  wavenumber 987.55 cm-1 (W=O, 864.11 cm-1 (W-Oe-W, 756.1 cm-1 (W-Oc-W, 3425.58 cm-1 (O-H, respectively and spectrum of  K8[b2-SiW11O39]SiO2 appeared at wavenumber  956.69 cm-1 (W=O, 864.11 cm-1 (W-Oe-W, 3448.72 cm-1 (O-H, respectively. The diffraction of XRD pattern of K8[b2-SiW11O39]∙nH2O and K8[b2-SiW11O39]∙nH2O/SiO2 compounds show high crystalinity. The acidic properties showed K8[b2-SiW11O39]∙nH2O/SiO2 more acidic compared to K8[b2-The SiW11O39]∙nH2O. The qualitative analysis showed pyridine compound adsorbed more of polyoxometalate compound of K8[b2-SiW11O39]∙nH2O/SiO2. Analysis of stability showed that the K8[b2-SiW11O39]∙nH2O/SiO2 at temperature 500°C has structural changes compare to 200-400oC which was indicated from vibration at wavenumber 800-1000 cm-1. Keywords : K8[b2-SiW11O39]∙nH2O, polyoxometalate, SiO2.

  1. Total scattering cross-sections for the systems nH2 + nH2, pH2 + pH2, nD2 + nD2, oD2 + oD2 and HD + HD for relative energies below ten milli-electron volts

    International Nuclear Information System (INIS)

    Johnson, D.L.

    1979-01-01

    Relative total scattering cross sections for nH 2 + nH 2 , pH 2 + pH 2 , nD 2 + nD 2 , oD 2 + oD 2 , and HD + HD were measured with inclined nozzle beams derived from nozzle sources and intersecting at 21 0 . Both nozzles could be varied in temperature from 4.2K to 300K to provide the velocity range for the cross sections. The use of a parahydrogen converter allowed the measurement of the pH 2 + pH 2 and oD 2 + oD 2 cross sections. Cross sections for the H 2 + H 2 were measured over a relative velocity range of 200 m/s to 1450 m/s. The nH 2 + nH 2 results show an undulation in the velocity range between 350 m/s and 400 m/s that corresponds to a l = 3 orbiting resonance. Analysis of the pH 2 + pH 2 cross section indicates a l = 4 orbiting resonance near 586 m/s. This resonance has a peak energy of 1.79 meV and a measured energy width of 1.05 meV, both which agree well with theoretical predictions. The D 2 + D 2 cross sections have been measured in the velocity range between 190 m/s and 1000 m/s. No orbiting resonances have been observed, but in the oD 2 + oD 2 cross section a deep minimum between the l = 4 and the l = 5 resonances at low velocities is clearly suggested. Initial measurements of the HD + HD cross section suggests the presence of the l = 4 orbiting resonance near a relative velocity of 300 m/s. The experimental results for each system were normalized to the total cross sections, which were convoluted to account for experimental velocity and angular dispersions. Three different potentials were considered, but a chi-square fit of the data indicates that the Schaefer and Meyer potential, which has been theoretically obtained from first principles, provides the best overall description of the hydrogen systems in the low collisional energy range

  2. Mechanosynthesis and mechanical activation processes to the preparation of the Sr2[Srn-1TinO3n+1] Ruddlesden-Popper family

    International Nuclear Information System (INIS)

    Hungria, Teresa; Hungria, A.-B.; Castro, Alicia

    2004-01-01

    A novel mechanochemical activation route has been applied in order to obtain the n=1-4 and ∞ members of the Sr 2 [Sr n-1 Ti n O 3n+1 ] Ruddlesden-Popper series. The evolution of the (n+1)SrO:nTiO 2 powder mixtures during mechanical treatment was followed by X-ray powder diffraction in all cases. Except for the 2SrO:TiO 2 composition, SrTiO 3 was always mechanosynthesized. High-energy milling of 2SrO:TiO 2 sample resulted in the formation of nanosized Sr 2 TiO 4 , which is the only K 2 NiF 4 -type oxide prepared by mechanical treatment until now. The mechanical treatment was followed by annealing at different temperatures to establish the optimized protocol for synthesis of each member of the series. SrTiO 3 , Sr 2 TiO 4 and Sr 3 Ti 2 O 7 were obtained with very important decreases in the formation temperatures and reaction times as compared with the traditional ceramic method. Final and milled products were studied by X-ray powder diffraction at room and increasing temperatures, and by thermal analysis and scanning and high resolution transmission electron microscopy

  3. Carbonyl(N-nitroso-N-oxido-1-naphtylamine-κ2O,O′(triphenylphosphine-κPrhodium(I acetone solvate

    Directory of Open Access Journals (Sweden)

    T. J. Muller

    2009-12-01

    Full Text Available The title compound, [Rh(C10H7N2O2(C18H15P(CO]·(CH32CO, is the second structural report of a metal complex formed with the O,O′-C10H7N2O2 (neocupferrate ligand. In the crystal structure, the metal centre is surrounded by one carbonyl ligand, one triphenylphosphine ligand and the bidentate neocupferrate ligand, forming a distorted square-planar RhCO2P coordination set which is best illustrated by the small O—Rh—O bite angle of 77.74 (10°. There are no classical hydrogen-bond interactions observed for this complex.

  4. Optimization of α-Fe{sub 2}O{sub 3}@Fe{sub 3}O{sub 4} incorporated N-TiO{sub 2} as super effective photocatalysts under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Mohamed Mokhtar, E-mail: mohmok2000@yahoo.com [Benha University, Faculty of Science, Chemistry Department, Benha (Egypt); Bayoumy, W.A. [Benha University, Faculty of Science, Chemistry Department, Benha (Egypt); Goher, M.E. [National Institute of Oceanography & Fisheries, Environmental Chemistry, Cairo (Egypt); Abdo, M.H., E-mail: mh_omr@yahoo.com [National Institute of Oceanography & Fisheries, Environmental Chemistry, Cairo (Egypt); Mansour El-Ashkar, T.Y. [National Institute of Oceanography & Fisheries, Environmental Chemistry, Cairo (Egypt)

    2017-08-01

    Highlights: • The α-Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} doped n-TiO{sub 2} was synthesized via deposition-self assembly technique. • The photocatalyst 1%α-Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4}/n-TiO{sub 2} show a remarkable performance while MB degradation. • The strong interaction between α-Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} and n-TiO{sub 2} plays an important role. • It exhibits a unique textural, optical and charge transfer properties. - Abstract: Well dispersed α-Fe{sub 2}O{sub 3}@Fe{sub 3}O{sub 4} nanoparticles (7 nm) supported on mesoporous nitrogen doped titanium dioxide (N-TiO{sub 2}) are synthesized by deposition self-assembly route and their performances as photocatalysts toward methylene blue (MB) degradation are evaluated. The results illustrate that the spherical yolk-shell structure of α-Fe{sub 2}O{sub 3}@Fe{sub 3}O{sub 4}@N-TiO{sub 2} at the loading of 1%; of excellent S{sub BET} (187 m{sup 2} g{sup −1}) and pore volume (0.50 cm{sup 3} g{sup −1}), achieved high photocatalytic performance for the MB degradation (20 ppm, λ > 420 nm, lamp power = 160 W) under visible light illumination (k = 0.059 min{sup −1}). The influence of the interface formation between α-Fe{sub 2}O{sub 3}@Fe{sub 3}O{sub 4} and n-TiO{sub 2} affects severely the charges separation efficiency and enhances the electron transfer to keep on the existence of Fe{sup 3+}/Fe{sup 2+} moieties; those take significant role in the reaction mechanism. The existence of the latter junction is affirmed via XRD, TEM-SAED, Raman and FTIR techniques whereas, the photogenerated charges, their separation together with their transport and recombination rates are depicted via photoluminescence, electrical conductivity, incident photon to current efficiency (IPCE), cyclic voltammetry (CV) and impedance (EIS) measurements. The catalyst loading, zero point charge, pH variation, total organic carbon (TOC%) and the effect of lamps power are thoroughly investigated. The 1%α-Fe{sub 2}O{sub 3

  5. N loss to drain flow and N2O emissions from a corn-soybean rotation with winter rye.

    Science.gov (United States)

    Gillette, K; Malone, R W; Kaspar, T C; Ma, L; Parkin, T B; Jaynes, D B; Fang, Q X; Hatfield, J L; Feyereisen, G W; Kersebaum, K C

    2018-03-15

    Anthropogenic perturbation of the global nitrogen cycle and its effects on the environment such as hypoxia in coastal regions and increased N 2 O emissions is of increasing, multi-disciplinary, worldwide concern, and agricultural production is a major contributor. Only limited studies, however, have simultaneously investigated NO 3 - losses to subsurface drain flow and N 2 O emissions under corn-soybean production. We used the Root Zone Water Quality Model (RZWQM) to evaluate NO 3 - losses to drain flow and N 2 O emissions in a corn-soybean system with a winter rye cover crop (CC) in central Iowa over a nine year period. The observed and simulated average drain flow N concentration reductions from CC were 60% and 54% compared to the no cover crop system (NCC). Average annual April through October cumulative observed and simulated N 2 O emissions (2004-2010) were 6.7 and 6.0kgN 2 O-Nha -1 yr -1 for NCC, and 6.2 and 7.2kgNha -1 for CC. In contrast to previous research, monthly N 2 O emissions were generally greatest when N loss to leaching were greatest, mostly because relatively high rainfall occurred during the months fertilizer was applied. N 2 O emission factors of 0.032 and 0.041 were estimated for NCC and CC using the tested model, which are similar to field results in the region. A local sensitivity analysis suggests that lower soil field capacity affects RZWQM simulations, which includes increased drain flow nitrate concentrations, increased N mineralization, and reduced soil water content. The results suggest that 1) RZWQM is a promising tool to estimate N 2 O emissions from subsurface drained corn-soybean rotations and to estimate the relative effects of a winter rye cover crop over a nine year period on nitrate loss to drain flow and 2) soil field capacity is an important parameter to model N mineralization and N loss to drain flow. Published by Elsevier B.V.

  6. Nitrification and N2O production processes in soil incubations after ammonium fertilizer application at high concentrations

    Science.gov (United States)

    Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Flessa, Heinz

    2016-04-01

    High concentrations of ammonium as they occur, e.g., after point-injection of ammonium fertilizer solution according to the CULTAN fertilization technique may retard nitrification. Potential advantages in comparison to conventional fertilization include a higher N efficiency of crops, reduced nitrate leaching, and lower N2O and N2 emissions. Dynamics of nitrification due to plant uptake and dilution processes, leading to decreasing ammonium concentrations in fertilizer depots, has only poorly been studied before. Furthermore, there is little information about the relative contribution of different N2O production processes under these conditions. To elucidate the process dynamics a laboratory incubation study was conducted. After fertilization with ammonium sulfate at 5 levels (from 0 to 5000 mg NH4+-N kg-1; 20mg NO3--N kg-1 each), sandy loam soil was incubated in dynamic soil microcosms for 21 days. N2O, CH4 and CO2 fluxes as well as isotope signatures of N2O and, at three dates, NO3- and NH4+ were measured. To identify N2O production processes, acetylene inhibition (0.01 vol.%), 15N tracer approaches, and isotopomer data (15N site preference and δ18O) were used. N2O emissions were highest at 450mg NH4+-N kg-1 and declined with further increasing concentrations. At 5000 mg NH4+-N kg-1 nitrification was completely inhibited. However, approximately 90% of N2O production was inhibited by acetylene application, and there was no change in the relative contribution of nitrification and denitrification to N2O production with N level. Applying the non-equilibrium technique to our 15N tracer data revealed heterogeneous distribution of denitrification in soil, with at least two distinct NO3- pools, and spatial separation of NO3- formation and consumption. In comparison with the acetylene inhibition and 15N tracer approaches the results of the isotopomer approach were reasonable and indicated substantial contribution of nitrifier-denitrification (10-40%) to total N2O

  7. (3-Benzoyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-olato-κ2O,Obis[2-(2-pyridylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Kaijun Luo

    2011-11-01

    Full Text Available The title compound, [Ir(C11H8N2(C17H19O2], has an octahedral coordination geometry around the IrIII atom, retaining the cis-C,C,trans–N,N chelate disposition of the two 2-phenylpyridine ligands. The chelate rings are nearly mutually perpendicular [the interplanar angles range from 85.48 (17 to 89.17 (19°]. The two 2-(2-pyridylphenyl ligands are approximately planar, with the plane of the phenyl ring being inclined to that of the pyridine ring by 2.3 (3 and 5.1 (3° in the two ligands. The interplanar angle between the phenyl ring in 3-benzoyl-camphor and the IrO2C3 chelate ring is 35.5 (2°.

  8. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage

    Science.gov (United States)

    Watahiki, Tatsuro; Yuda, Yohei; Furukawa, Akihiko; Yamamuka, Mikio; Takiguchi, Yuki; Miyajima, Shinsuke

    2017-11-01

    Heterojunction p-Cu2O/n-β-Ga2O3 diodes were fabricated on an epitaxially grown β-Ga2O3(001) layer. The reverse breakdown voltage of these p-n diodes reached 1.49 kV with a specific on-resistance of 8.2 mΩ cm2. The leakage current of the p-n diodes was lower than that of the Schottky barrier diode due to the higher barrier height against the electron. The ideality factor of the p-n diode was 1.31. It indicated that some portion of the recombination current at the interface contributed to the forward current, but the diffusion current was the dominant. The forward current more than 100 A/cm2 indicated the lower conduction band offset at the hetero-interface between Cu2O and Ga2O3 layers than that predicted from the bulk properties, resulting in such a high forward current without limitation. These results open the possibility of advanced device structures for wide bandgap Ga2O3 to achieve higher breakdown voltage and lower on-resistance.

  9. Hexa-μ-acetato-1:2κ4O,O′;1:2κ2O:O;2:3κ4O,O′;2:3κ2O:O-bis(4,4′-dimethyl-2,2′-bipyridine-1κ2N,N′;3κ2N,N′-2-calcium-1,3-dizinc

    Directory of Open Access Journals (Sweden)

    Md. Alamgir Hossain

    2013-12-01

    Full Text Available In the centrosymmetric trinuclear ZnII...CaII...ZnII title complex, [CaZn2(CH3COO6(C12H12N22], the CaII ion lies on an inversion centre and is octahedrally coordinated by six acetate O atoms. The ZnII ion is coordinated by two N atoms from a bidentate dimethylbipyridine ligand and three O atoms from acetate ligands bridging to the CaII ion, leading to a distorted square-pyramidal coordination sphere. The Zn...Ca distance is 3.4668 (5 Å.

  10. Elucidating source processes of N2O fluxes following grassland-to-field-conversion using isotopologue signatures of soil-emitted N2O

    Science.gov (United States)

    Roth, G.; Giesemann, A.; Well, R.; Flessa, H.

    2012-04-01

    Conversion of grassland to arable land often causes enhanced nitrous oxide (N2O) emissions to the atmosphere. This is due to the tillage of the sward and subsequent decomposition of organic matter. Prediction of such effects is uncertain so far because emissions may differ depending on site and soil conditions. The processes of N2O turnover (nitrification, production by bacterial or fungal denitrifiers, bacterial reduction to N2) are difficult to identify, however. Isotopologue signatures of N2O such as δ18O, average δ15N (δ15Nbulk) and 15N site preference (SP = difference in δ15N between the central and peripheral N positions of the asymmetric N2O molecule) can be used to characterize N2O turnover processes using the known ranges of isotope effects of the various N2O pathways. We aim to evaluate the impact of grassland-to-field-conversion on N2O fluxes and the governing processes using isotopic signatures of emitted N2O. At two sites, in Kleve (North Rhine-Westphalia, Germany, conventional farming) and Trenthorst (Schleswig-Holstein, Germany, organic farming), a four times replicated plot experiment with (i) mechanical conversion (ploughing, maize), (ii) chemical conversion (broadband herbicide, maize per direct seed) and (iii) continuous grassland as reference was started in April 2010. In Trenthorst we additionally established a (iv) field with continuous maize cultivation as further reference. Over a period of two years, mineral nitrogen (Nmin) content was measured weekly on soil samples taken from 0-10 cm and 10-30 cm depth. Soil water content and N2O emissions were measured weekly as well. Gas samples were collected using a closed chamber system. Isotope ratio mass spectrometry was carried out on gas samples from selected high flux events to determine δ18O, δ15Nbulk and SP of N2O. δ18O and SP of N2O exhibited a relatively large range (32 to 72 ‰ and 6 to 34 ‰, respectively) indicating highly variable process dynamics. The data-set is grouped

  11. Constraining a complex biogeochemical model for CO2 and N2O emission simulations from various land uses by model-data fusion

    Science.gov (United States)

    Houska, Tobias; Kraus, David; Kiese, Ralf; Breuer, Lutz

    2017-07-01

    This study presents the results of a combined measurement and modelling strategy to analyse N2O and CO2 emissions from adjacent arable land, forest and grassland sites in Hesse, Germany. The measured emissions reveal seasonal patterns and management effects, including fertilizer application, tillage, harvest and grazing. The measured annual N2O fluxes are 4.5, 0.4 and 0.1 kg N ha-1 a-1, and the CO2 fluxes are 20.0, 12.2 and 3.0 t C ha-1 a-1 for the arable land, grassland and forest sites, respectively. An innovative model-data fusion concept based on a multicriteria evaluation (soil moisture at different depths, yield, CO2 and N2O emissions) is used to rigorously test the LandscapeDNDC biogeochemical model. The model is run in a Latin-hypercube-based uncertainty analysis framework to constrain model parameter uncertainty and derive behavioural model runs. The results indicate that the model is generally capable of predicting trace gas emissions, as evaluated with RMSE as the objective function. The model shows a reasonable performance in simulating the ecosystem C and N balances. The model-data fusion concept helps to detect remaining model errors, such as missing (e.g. freeze-thaw cycling) or incomplete model processes (e.g. respiration rates after harvest). This concept further elucidates the identification of missing model input sources (e.g. the uptake of N through shallow groundwater on grassland during the vegetation period) and uncertainty in the measured validation data (e.g. forest N2O emissions in winter months). Guidance is provided to improve the model structure and field measurements to further advance landscape-scale model predictions.

  12. Ammonia-evaporation-induced construction of three-dimensional NiO/g-C3N4 composite with enhanced adsorption and visible light-driven photocatalytic performance

    Science.gov (United States)

    Tzvetkov, George; Tsvetkov, Martin; Spassov, Tony

    2018-07-01

    Novel visible light-driven heterostructured NiO/g-C3N4 photocatalyst has been designed and successfully prepared via ammonia-evaporation-induced method. The synthetic strategy consists of grafting the surface of g-C3N4 with Ni(NH3)62+ complex followed by its hydrolysis at lower pH to form nano-wrinkled thin film of α-Ni(OH)2. The final NiO/g-C3N4 hybrid was obtained after calcination of the Ni(OH)2/g-C3N4 precursor at 350 °C. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, FTIR, N2 adsorption/desorption, UV-vis diffuse reflectance and photoluminescence spectroscopy were used to characterize the resulting material. Our results revealed the formation of meso-/macroporous three-dimensional hierarchical honeycomb-like structure with high BET surface area (141 m2 g-1). The photocatalytic performance of the composite under visible light (λ > 400 nm) irradiation was evaluated through degradation of Malachite Green (MG) from aqueous medium at room temperature (25 °C). For the sake of comparison, the physico-chemical and photocatalytic properties of the pristine g-C3N4 and nanostructured NiO were also examined. Results indicated that NiO/g-C3N4 is much more active than pristine g-C3N4 and NiO in the photodegradation of MG. The enhanced photocatalytic performance of the composite was mainly attributed to the combination of high adsorption capacity which facilitates the direct redox reactions of dye and the efficient inhibition of photo-generated electron-hole pair recombination. Superoxide radicals (•O2-) and photo-generated holes (h+) were found to be the main active species in the process.

  13. p-Cu2O-shell/n-TiO2-nanowire-core heterostucture photodiodes

    Directory of Open Access Journals (Sweden)

    Hsueh Ting-Jen

    2011-01-01

    Full Text Available Abstract This study reports the deposition of cuprous oxide [Cu2O] onto titanium dioxide [TiO2] nanowires [NWs] prepared on TiO2/glass templates. The average length and average diameter of these thermally oxidized and evaporated TiO2 NWs are 0.1 to 0.4 μm and 30 to 100 nm, respectively. The deposited Cu2O fills gaps between the TiO2 NWs with good step coverage to form nanoshells surrounding the TiO2 cores. The p-Cu2O/n-TiO2 NW heterostructure exhibits a rectifying behavior with a sharp turn-on at approximately 0.9 V. Furthermore, the fabricated p-Cu2O-shell/n-TiO2-nanowire-core photodiodes exhibit reasonably large photocurrent-to-dark-current contrast ratios and fast responses.

  14. Photocatalytic Removal of Phenol under Natural Sunlight over N-TiO2-SiO2 Catalyst: The Effect of Nitrogen Composition in TiO2-SiO2

    Directory of Open Access Journals (Sweden)

    Viet-Cuong Nguyen

    2009-01-01

    Full Text Available In this present work, high specific surface area and strong visible light absorption nitrogen doped TiO2-SiO2 photocatalyst was synthesized by using sol-gel coupled with hydrothermal treatment method. Nitrogen was found to improve the specific surface area while it also distorted the crystal phase of the resulting N-TiO2-SiO2 catalyst. As the N/ (TiO2-SiO2 molar ratio was more than 10%, the derived catalyst presented the superior specific surface area up to 260 m2/g. Nevertheless, its photoactivity towards phenol removal was observed to significantly decrease, which could results from the too low crystallinity. The nitrogen content in N-TiO2-SiO2 catalyst was therefore necessary to be optimized in terms of phenol removal efficiency and found at ca. 5%. Under UVA light and natural sunlight irradiation of 80 min, N(5%-TiO2-SiO2 catalyst presented the phenol decomposition efficiencies of 68 and 100%, respectively. It was also interestingly found in this study that the reaction rate was successfully expressed using a Langmuir-Hinshelwood (L-H model, indicating the L-H nature of photocatalytic phenol decomposition reaction on the N-TiO2-SiO2 catalyst.

  15. Statistical modeling of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2.

    Science.gov (United States)

    Ushakov, Vladimir G; Troe, Jürgen; Johnson, Ryan S; Guo, Hua; Ard, Shaun G; Melko, Joshua J; Shuman, Nicholas S; Viggiano, Albert A

    2015-08-14

    The rates of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2 are modeled by statistical rate theory accounting for energy- and angular momentum-specific rate constants for formation of the primary and secondary cationic adducts and their backward and forward reactions. The reactions are both suggested to proceed on sextet and quartet potential energy surfaces with efficient, but probably not complete, equilibration by spin-inversion of the populations of the sextet and quartet adducts. The influence of spin-inversion on the overall reaction rate is investigated. The differences of the two reaction rates mostly are due to different numbers of entrance states (atom + linear rotor or linear rotor + linear rotor, respectively). The reaction Fe(+) + N2O was studied either with (6)Fe(+) or with (4)Fe(+) reactants. Differences in the rate constants of (6)Fe(+) and (4)Fe(+) reacting with N2O are attributed to different contributions from electronically excited potential energy surfaces, such as they originate from the open-electronic shell reactants.

  16. (4-Chloroacetanilido-κ2N,Obis[2-(pyridin-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Lijun Sun

    2013-02-01

    Full Text Available In the neutral mononuclear iridium(III title compound, [Ir(C8H7ClNO(C11H8N2], the IrIII atom adopts an octahedral geometry, and is coordinated by two 2-phenylpyridyl ligands and one anionic 4-chloroacetanilide ligand. The 2-phenylpyridyl ligands are arranged in a cis-C,C′ and cis-N,N′ fashion. Each 2-phenylpyridyl ligand forms a five-membered ring with the IrIII atom. The 2-phenylpyridyl planes are perpendicular to each other [dihedral angle = 89.9 (1°]. The Ir—C and Ir—N bond lengths are comparable to those reported for related iridium(III 2-phenylpyridyl complexes. The remaining two coordination sites are occupied by the amidate N and O atoms, which form a four-membered ring with the iridium atom (Ir—N—C—O. The amidate plane is nearly perpendicular to both 2-phenylpyridyl ligands [dihedral angles = 87.8 (2 and 88.3 (2°].

  17. Cocrystals of 6-propyl-2-thiouracil: N-H···O versus N-H···S hydrogen bonds.

    Science.gov (United States)

    Tutughamiarso, Maya; Egert, Ernst

    2011-11-01

    In order to investigate the relative stability of N-H···O and N-H···S hydrogen bonds, we cocrystallized the antithyroid drug 6-propyl-2-thiouracil with two complementary heterocycles. In the cocrystal pyrimidin-2-amine-6-propyl-2-thiouracil (1/2), C(4)H(5)N(3)·2C(7)H(10)N(2)OS, (I), the `base pair' is connected by one N-H···S and one N-H···N hydrogen bond. Homodimers of 6-propyl-2-thiouracil linked by two N-H···S hydrogen bonds are observed in the cocrystal N-(6-acetamidopyridin-2-yl)acetamide-6-propyl-2-thiouracil (1/2), C(9)H(11)N(3)O(22C(7)H(10)N(2)OS, (II). The crystal structure of 6-propyl-2-thiouracil itself, C(7)H(10)N(2)OS, (III), is stabilized by pairwise N-H···O and N-H···S hydrogen bonds. In all three structures, N-H···S hydrogen bonds occur only within R(2)(2)(8) patterns, whereas N-H···O hydrogen bonds tend to connect the homo- and heterodimers into extended networks. In agreement with related structures, the hydrogen-bonding capability of C=O and C=S groups seems to be comparable.

  18. Structures and Spectroscopic Properties of F-(H2O) n with n = 1-10 Clusters from a Global Search Based On Density Functional Theory.

    Science.gov (United States)

    Shi, Ruili; Wang, Pengju; Tang, Lingli; Huang, Xiaoming; Chen, Yonggang; Su, Yan; Zhao, Jijun

    2018-04-05

    Using a genetic algorithm incorporated in density functional theory, we explore the ground state structures of fluoride anion-water clusters F - (H 2 O) n with n = 1-10. The F - (H 2 O) n clusters prefer structures in which the F - anion remains at the surface of the structure and coordinates with four water molecules, as the F - (H 2 O) n clusters have strong F - -H 2 O interactions as well as strong hydrogen bonds between H 2 O molecules. The strong interaction between the F - anion and adjacent H 2 O molecule leads to a longer O-H distance in the adjacent molecule than in an individual water molecule. The simulated infrared (IR) spectra of the F - (H 2 O) 1-5 clusters obtained via second-order vibrational perturbation theory (VPT2) and including anharmonic effects reproduce the experimental results quite well. The strong interaction between the F - anion and water molecules results in a large redshift (600-2300 cm -1 ) of the adjacent O-H stretching mode. Natural bond orbital (NBO) analysis of the lowest-energy structures of the F - (H 2 O) 1-10 clusters illustrates that charge transfer from the lone pair electron orbital of F - to the antibonding orbital of the adjacent O-H is mainly responsible for the strong interaction between the F - anion and water molecules, which leads to distinctly different geometric and vibrational properties compared with neutral water clusters.

  19. [Pr2(pdc3(Hpdc(H2O4]n·n(H3hp·8n(H2O, a One-Dimensional Coordination Polymer Containing PrO6N3 Tri-Capped Trigonal Prisms and PrO8N Mono-Capped Square Anti-Prisms (H2pdc = Pyridine 2,6-Dicarboxylic Acid, C7H5NO4; 3hp = 3-Hydroxy Pyridine, C5H5NO

    Directory of Open Access Journals (Sweden)

    Shahzad Sharif

    2012-08-01

    Full Text Available The synthesis, structure and some properties of the one-dimensional coordination polymer, [Pr2(pdc3(Hpdc]n·n(H3hp·8n(H2O, (H2pdc = pyridine 2,6-dicarboxylic acid, C7H5NO4; 3hp = 3-hydroxypyridine, C5H5NO are described. One of the Pr3+ ions is coordinated by two O,N,O-tridentate pdc2− ligands and one tridentate Hpdc− anion to generate a fairly regular PrO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The second Pr3+ ion is coordinated by one tridentate pdc2− dianion, four water molecules and two monodentate bridging pdc2− ligands to result in a PrO8N coordination polyhedron that approximates to a mono-capped square-anti-prism. The ligands bridge the metal-atom nodes into a chain, which extends in the [100] direction. The H3hp+ cation and uncoordinated water molecules occupy the inter-chain regions and an N–HLO and numerous O–HLO hydrogen bonds consolidate the structure. The H3hp+ species appears to intercalate between pendant pdc rings to consolidate the polymeric structure. Crystal data: 1 (C33H43N5O29Pr2, Mr = 1255.54, triclinic,  (No. 2, Z = 2, a = 13.2567(1 Å, b = 13.6304(2 Å, c = 13.6409(2 Å, α = 89.695(1°, β = 63.049(1°, γ = 86.105(1°, V = 2191.16(5 Å3, R(F = 0.033, wR(F2 = 0.084.

  20. Origin of visible-light sensitivity in N-doped TiO2 films

    International Nuclear Information System (INIS)

    Nakano, Yoshitaka; Morikawa, Takeshi; Ohwaki, Takeshi; Taga, Yasunori

    2007-01-01

    We report on visible-light sensitivity in N-doped TiO 2 (TiO 2 :N) films that were deposited on n + -GaN/Al 2 O 3 substrates by reactive magnetron sputtering and subsequently crystallized by annealing at 550 deg. C in flowing N 2 gas. The N-doping concentration was ∼8.8%, as determined by X-ray photoelectron spectroscopy measurements. From transmission electron microscopic observations and optical absorption measurements, yellow-colored TiO 2 :N samples showed an enhanced granular structure and strong absorption in the visible-light region. Photoelectron spectroscopy in air measurements showed a noticeable decrease in ionization energy of TiO 2 by the N doping. Deep-level optical spectroscopy measurements revealed two characteristic deep levels located at ∼1.18 and ∼2.48 eV below the conduction band. The 1.18 eV level is probably attributable to the O vacancy state and can be active as an efficient generation-recombination center. The pronounced 2.48 eV band is newly introduced by the N doping and contributes to band-gap narrowing of TiO 2 by mixing with the O 2p valence band. Therefore, this localized intraband is probably one origin of visible-light sensitivity in TiO 2 :N

  1. Nitrous Oxide (N2O production in axenic Chlorella vulgaris microalgae cultures: evidence, putative pathways, and potential environmental impacts

    Directory of Open Access Journals (Sweden)

    B. Guieysse

    2013-10-01

    Full Text Available Using antibiotic assays and genomic analysis, this study demonstrates nitrous oxide (N2O is generated from axenic Chlorella vulgaris cultures. In batch assays, this production is magnified under conditions favouring intracellular nitrite accumulation, but repressed when nitrate reductase (NR activity is inhibited. These observations suggest N2O formation in C. vulgaris might proceed via NR-mediated nitrite reduction into nitric oxide (NO acting as N2O precursor via a pathway similar to N2O formation in bacterial denitrifiers, although NO reduction to N2O under oxia remains unproven in plant cells. Alternatively, NR may reduce nitrite to nitroxyl (HNO, the latter being known to dimerize to N2O under oxia. Regardless of the precursor considered, an NR-mediated nitrite reduction pathway provides a unifying explanation for correlations reported between N2O emissions from algae-based ecosystems and NR activity, nitrate concentration, nitrite concentration, and photosynthesis repression. Moreover, these results indicate microalgae-mediated N2O formation might significantly contribute to N2O emissions in algae-based ecosystems (e.g. 1.38–10.1 kg N2O-N ha−1 yr−1 in a 0.25 m deep raceway pond operated under Mediterranean climatic conditions. These findings have profound implications for the life cycle analysis of algae biotechnologies and our understanding of the global biogeochemical nitrogen cycle.

  2. Crystal structure and optical property of complex perovskite oxynitrides ALi0.2Nb0.8O2.8N0.2, ANa0.2Nb0.8O2.8N0.2, and AMg0.2Nb0.8O2.6N0.4 (A = Sr, Ba)

    Science.gov (United States)

    Moon, Keon Ho; Avdeev, Maxim; Kim, Young-Il

    2017-10-01

    Oxynitride type complex perovskites AM0.2Nb0.8O3-xNx (A = Sr, Ba; M = Li, Na, Mg) were newly synthesized by the solid state diffusion of Li+, Na+, or Mg2+ into the layered oxide, A5Nb4O15, with concurrent O/N substitution. Neutron and synchrotron X-ray Rietveld refinement showed that SrLi0.2Nb0.8O2.8N0.2, SrNa0.2Nb0.8O2.8N0.2, and SrMg0.2Nb0.8O2.6N0.4 had body-centered tetragonal symmetry (I4/mcm), while those with A = Ba had simple cubic symmetry (Pm 3 ̅ m). In the tetragonal Sr-compounds, the nitrogen atoms were localized on the c-axial 4a site. However, the octahedral cations, M/Nb (M = Li, Na, Mg) were distributed randomly in all six compounds. The lattice volume of AM0.2Nb0.8O3-xNx was dependent on various factors including the type of A and the electronegativity of M. Compared to the simple perovskites, ANbO2N (A = Sr, Ba), AM0.2Nb0.8O3-xNx had wider band gaps (1.76-2.15 eV for A = Sr and 1.65-2.10 eV for A = Ba), but significantly lower sub-gap absorption.

  3. Chlorine activation by N2O5: simultaneous, in situ detection of ClNO2 and N2O5 by chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. A. Thornton

    2009-05-01

    Full Text Available We report a new method for the simultaneous in situ detection of nitryl chloride (ClNO2 and dinitrogen pentoxide (N2O5 using chemical ionization mass spectrometry (CIMS. The technique relies on the formation and detection of iodide ion-molecule clusters, I(ClNO2− and I(N2O5−. The novel N2O5 detection scheme is direct. It does not suffer from high and variable chemical interferences, which are associated with the typical method of nitrate anion detection. We address the role of water vapor, CDC electric field strength, and instrument zero determinations, which influence the overall sensitivity and detection limit of this method. For both species, the method demonstrates high sensitivity (>1 Hz/pptv, precision (~10% for 100 pptv in 1 s, and accuracy (~20%, the latter ultimately determined by the nitrogen dioxide (NO2 cylinder calibration standard and characterization of inlet effects. For the typically low background signals (S/N ratios of 2 for 1 pptv in 60 s averages, but uncertainty associated with the instrumental zero currently leads to an ultimate detection limit of ~5 pptv for both species. We validate our approach for the simultaneous in situ measurement of ClNO2 and N2O5 while on board the R/V Knorr as part of the ICEALOT 2008 Field Campaign.

  4. Quantification of nitrous oxide (N2O) emissions and soluble microbial product (SMP) production by a modified AOB-NOB-N2O-SMP model.

    Science.gov (United States)

    Kim, MinJeong; Wu, Guangxue; Yoo, ChangKyoo

    2017-03-01

    A modified AOB-NOB-N 2 O-SMP model able to quantify nitrous oxide (N 2 O) emissions and soluble microbial product (SMP) production during wastewater treatment is proposed. The modified AOB-NOB-N 2 O-SMP model takes into account: (1) two-step nitrification by ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), (2) N 2 O production by AOB denitrification under oxygen-limited conditions and (3) SMP production by microbial growth and endogenous respiration. Validity of the modified model is demonstrated by comparing the simulation results with experimental data from lab-scale sequencing batch reactors (SBRs). To reliably implement the modified model, a model calibration that adjusts model parameters to fit the model outputs to the experimental data is conducted. The results of this study showed that the modeling accuracy of the modified AOB-NOB-N 2 O-SMP model increases by 19.7% (NH 4 ), 51.0% (NO 2 ), 57.8% (N 2 O) and 16.7% (SMP) compared to the conventional model which does not consider the two-step nitrification and SMP production by microbial endogenous respiration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Microbial CH4 and N2O consumption in acidic wetlands

    Directory of Open Access Journals (Sweden)

    Steffen eKolb

    2012-03-01

    Full Text Available Acidic wetlands are global sources of the atmospheric greenhouse gases methane (CH4, and nitrous oxide (N2O. Consumption of both atmospheric gases has been observed in various acidic wetlands, but information on the microbial mechanisms underlying these phenomena is scarce. A substantial amount of CH4 is consumed in sub soil by aerobic methanotrophs at anoxic–oxic interfaces (e.g., tissues of Sphagnum mosses, rhizosphere of vascular plant roots. Methylocystis-related species are likely candidates that are involved in the consumption of atmospheric CH4 in acidic wetlands. Oxygen availability regulates the activity of methanotrophs of acidic wetlands. Other parameters impacting on the methanotroph-mediated CH4 consumption have not been systematically evaluated. N2O is produced and consumed by microbial denitrification, thus rendering acidic wetlands as temporary sources or sinks for N2O. Denitrifier communities in such ecosystems are diverse, and largely uncultured and/or new, and environmental factors that control their consumption activity are unresolved. Analyses of the composition of N2O reductase genes in acidic wetlands suggest that acid-tolerant Proteobacteria have the potential to mediate N2O consumption in such soils. Thus, the fragmented current state of knowledge raises open questions concerning methanotrophs and dentrifiers that consume atmospheric CH4 and N2O in acidic wetlands.

  6. Relationship between interlayer hydration and photocatalytic water splitting of A'1-xNaxCa2Ta3O10.nH2O (A'=K and Li)

    International Nuclear Information System (INIS)

    Mitsuyama, Tomohiro; Tsutsumi, Akiko; Sato, Sakiko; Ikeue, Keita; Machida, Masato

    2008-01-01

    Partial replacement of alkaline metals in anhydrous KCa 2 Ta 3 O 10 and LiCa 2 Ta 3 O 10 was studied to control interlayer hydration and photocatalytic activity for water splitting under UV irradiation. A' 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O (A'=K and Li) samples were synthesized by ion exchange of CsCa 2 Ta 3 O 10 in mixed molten nitrates at 400 deg. C. In K 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O, two phases with the orthorhombic (C222) and tetragonal (I4/mmm) structures were formed at x≤0.7 and x≥0.5, respectively. Upon replacement by Na + having a larger enthalpy of hydration (ΔH h 0 ), the interlayer hydration occurred at x≥0.3 and the hydration number (n) was increased monotonically with an increase of x. Li 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O showed a similar hydration behavior, but the phase was changed from I4/mmm (x 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O exhibited the activity increasing in consistent with n, whereas Li 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O exhibited the activity maximum at x=0.77, where the rates of H 2 /O 2 evolution were nearly doubled compared with those for end-member compositions (x=0 and 1). - Graphical abstract: The partial substitution of Na in the interlayer of anhydrous-layered perovskite has been found as useful structural modification toward highly active hydrated photocatalysts

  7. Crystal structure of triaqua(1,10-phenanthroline-κ2N,N′(2,4,5-trifluoro-3-methoxybenzoato-κO1cobalt(II 2,4,5-trifluoro-3-methoxybenzoate

    Directory of Open Access Journals (Sweden)

    Junshan Sun

    2014-11-01

    Full Text Available The title salt, [Co(C8H4F3O3(C12H8N2(H2O3](C8H4F3O3, was obtained under solvothermal conditions by the reaction of 2,4,5-trifluoro-3-methoxybenzoic acid with CoCl2 in the presence of 1,10-phenanthroline (phen. The CoII ion is octahedrally coordinated by two N atoms [Co—N = 2.165 (2 and 2.129 (2 Å] from the phen ligand, by one carboxylate O atom [Co—O = 2.107 (1 Å] and by three O atoms from water molecules [Co—O = 2.093 (1, 2.102 (1 and 2.114 (1 Å]. The equatorial positions of the slightly distorted octahedron are occupied by the N atoms, the carboxylate O and one water O atom. An intra- and intermolecular O—H...O hydrogen-bonding network between the water-containing complex cation and the organic anion leads to the formation of ribbons parallel to [010].

  8. Bis(1,10-phenanthroline-κ2N,N′(sulfato-κ2O,O′cobalt(II propane-1,3-diol solvate

    Directory of Open Access Journals (Sweden)

    Kai-Long Zhong

    2010-03-01

    Full Text Available The title compound, [Co(SO4(C12H8N22]·C3H8O2, was obtained unexpectedly as a by-product during an attempt to synthesize a mixed-ligand complex of CoII with 1,10-phenanthroline (phen and melamine via a solvothermal reaction. The CoII metal ions are in a distorted octahedral coordination environment formed by four N atoms from two chelating phen ligands and two O atoms from a bidentate sulfate ligand. The two chelating N2C2 groups are almost perpendicular to each other [dihedral angle = 80.06 (8°]. A twofold rotation axis passes through the Co and S atoms, and also through the central C atom of the propane-1,3-diol solvent molecule. Intermolecular O—H...O hydrogen bonds help to stabilize the structure.

  9. Broadband sensitized white light emission of g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphor under near ultraviolet excitation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bing, E-mail: hanbing@zzuli.edu.cn [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Xue, Yongfei; Li, Pengju [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Zhang, Jingtao [School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Zhang, Jie [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Shi, Hengzhen, E-mail: shihz@zzuli.edu.cn [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China)

    2015-12-15

    The g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphors were synthesized and characterized by X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet visible diffuse reflection spectra, photoluminescence spectra and luminescence decay curves. Under the excitation of 360 nm near ultraviolet light, these composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained in term of appropriate quality proportion of Y{sub 2}MoO{sub 6}:Eu{sup 3+} relative to g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+}. In addition, the emission color can be also dependent on the excitation wavelength in g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphor. - Graphical abstract: Under the excitation of 360 nm near ultraviolet light, the g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained. - Highlights: • The g-C3N4/Y2MoO6:Eu{sup 3+} composite phosphors were synthesized and characterized. • White light emission was realized in the g-C3N4/Y2MoO6:Eu{sup 3+} composites under UV excitation. • A novel idea to realize the broadband sensitized white light emission in phosphors was provided.

  10. An experimental technique for the direct measurement of N2O5 reactivity on ambient particles

    Directory of Open Access Journals (Sweden)

    T. H. Bertram

    2009-06-01

    Full Text Available An experimental approach for the direct measurement of trace gas reactivity on ambient aerosol particles has been developed. The method utilizes a newly designed entrained aerosol flow reactor coupled to a custom-built chemical ionization mass spectrometer. The experimental method is described via application to the measurement of the N2O5 reaction probability, γ (N2O5. Laboratory investigations on well characterized aerosol particles show that measurements of γ (N2O5 observed with this technique are in agreement with previous observations, using conventional flow tube methods, to within ±20% at atmospherically relevant particle surface area concentrations (0–1000 μm2 cm−3. Uncertainty in the measured γ (N2O5 is discussed in the context of fluctuations in potential ambient biases (e.g., temperature, relative humidity and trace gas loadings. Under ambient operating conditions we estimate a single-point uncertainty in γ (N2O5 that ranges between ± (1.3×10-2 + 0.2×γ (N2O5, and ± (1.3×10-3 + 0.2×γ (N2O5 for particle surface area concentrations of 100 to 1000 μm2 cm−3, respectively. Examples from both laboratory investigations and field observations are included alongside discussion of future applications for the reactivity measurement and optimal deployment locations and conditions.

  11. Vertical segregation among pathways mediating nitrogen loss (N2 and N2O production) across the oxygen gradient in a coastal upwelling ecosystem

    Science.gov (United States)

    Galán, Alexander; Thamdrup, Bo; Saldías, Gonzalo S.; Farías, Laura

    2017-10-01

    The upwelling system off central Chile (36.5° S) is seasonally subjected to oxygen (O2)-deficient waters, with a strong vertical gradient in O2 (from oxic to anoxic conditions) that spans a few metres (30-50 m interval) over the shelf. This condition inhibits and/or stimulates processes involved in nitrogen (N) removal (e.g. anammox, denitrification, and nitrification). During austral spring (September 2013) and summer (January 2014), the main pathways involved in N loss and its speciation, in the form of N2 and/or N2O, were studied using 15N-tracer incubations, inhibitor assays, and the natural abundance of nitrate isotopes along with hydrographic information. Incubations were developed using water retrieved from the oxycline (25 m depth) and bottom waters (85 m depth) over the continental shelf off Concepción, Chile. Results of 15N-labelled incubations revealed higher N removal activity during the austral summer, with denitrification as the dominant N2-producing pathway, which occurred together with anammox at all times. Interestingly, in both spring and summer maximum potential N removal rates were observed in the oxycline, where a greater availability of oxygen was observed (maximum O2 fluctuation between 270 and 40 µmol L-1) relative to the hypoxic bottom waters ( multiple N-cycling processes are modulating the isotopic nitrate composition over the shelf off central Chile during spring and summer. N removal processes in this coastal system appear to be related to the availability and distribution of oxygen and particles, which are a source of organic matter and the fuel for the production of other electron donors (i.e. ammonium) and acceptors (i.e. nitrate and nitrite) after its remineralization. These results highlight the links between several pathways involved in N loss. They also establish that different mechanisms supported by alternative N substrates are responsible for substantial accumulation of N2O, which are frequently observed as hotspots in the

  12. (Acetato-κO(aqua-κO(2-{bis[(3,5-dimethyl-1H-pyrazol-1-yl-κN2methyl]amino-κN}ethanol-κOnickel(II perchlorate monohydrate

    Directory of Open Access Journals (Sweden)

    Jia Zhou

    2012-04-01

    Full Text Available In the structure of the title complex, [Ni(CH3CO2(C14H23N5O(H2O]ClO4·H2O, the NiII centre has a distorted octahedral environment defined by one O and three N atoms derived from the tetradentate ligand, and two O atoms, one from a water molecule and the other from an acetate anion. The molecules are connected into a three-dimensional architecture by O—H...O hydrogen bonds. The perchlorate anion is disordered over two positions; the major component has a site-occupancy factor of 0.525 (19.

  13. Bis(2,2'-bipyridyl-κN,N')(carbonato-κO,O')cobalt(III) bromide trihydrate.

    Science.gov (United States)

    Ma, Peng-Tao; Wang, Yu-Xia; Zhang, Guo-Qian; Li, Ming-Xue

    2007-12-06

    The title complex, [Co(CO(3))(C(10)H(8)N(2))(2)]Br·3H(2)O, is isostructural with the chloride analogue. The six-coordinated octahedral [Co(2,2'-bipy)(2)CO(3)](+) cation (2,2'-bipy is 2,2'-bipyrid-yl), bromide ion and water mol-ecules are linked together via O-H⋯Br and O-H⋯O hydrogen bonds, generating a one-dimensional chain.

  14. Highly luminescent S,N co-doped carbon quantum dots-sensitized chemiluminescence on luminol-H2 O2 system for the determination of ranitidine.

    Science.gov (United States)

    Chen, Jianqiu; Shu, Juan; Chen, Jiao; Cao, Zhiran; Xiao, An; Yan, Zhengyu

    2017-05-01

    S,N co-doped carbon quantum dots (N,S-CQDs) with super high quantum yield (79%) were prepared by the hydrothermal method and characterized by transmission electron microscopy, photoluminescence, UV-Vis spectroscopy and Fourier transformed infrared spectroscopy. N,S-CQDs can enhance the chemiluminescence intensity of a luminol-H 2 O 2 system. The possible mechanism of the luminol-H 2 O 2 -(N,S-CQDs) was illustrated by using chemiluminescence, photoluminescence and ultraviolet analysis. Ranitidine can quench the chemiluminescence intensity of a luminol-H 2 O 2 -N,S-CQDs system. So, a novel flow-injection chemiluminescence method was designed to determine ranitidine within a linear range of 0.5-50 μg ml -1 and a detection limit of 0.12 μg ml -1 . The method shows promising application prospects. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce, Nd

    International Nuclear Information System (INIS)

    De Almeida, Lucie; Grandjean, Stephane; Abraham, Francis; Rivenet, Murielle; Patisson, Fabrice

    2014-01-01

    New hydrazinium lanthanide oxalates N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce (Ce-H_yO_x) and Nd (Nd- H_yO_x), were synthesized by hydrothermal reaction at 150 C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2_1/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Angstroms, β = 116.638(4) degrees, V = 2021.4(7) Angstroems"3, Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO_9 and NdO_8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm"-"1 confirms the coordination of N_2H_5"+ to the metal. These polyhedra are connected through μ"2 and μ"3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-H_yO_x) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO_2 and Ce_0_._5Nd_0_._5O_1_._7_5 are formed at low temperature from Ce-H_yO_x and CeNd-H_yO_x, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxy-mono-cyanamides Ln_2O_2CN_2 are formed. (authors)

  16. (Pyridine-2-aldoximato-κ2N,N′bis[2-(pyridin-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Bimal Chandra Singh

    2013-03-01

    Full Text Available In the title complex, [Ir(C11H8N2(C6H5N2O], the octahedrally coordinated IrIII atom is bonded to two 2-(pyridin-2-ylphenyl ligands, through two phenyl C and two pydidine N atoms, and to one pyridine-2-aldoxime ligand through a pyridine N and an oxime N atom. The oxime O atom of the aldoxime unit forms intermolecular C—H...O hydrogen bonds, which result in a two-dimensional hydrogen-bonded polymeric network parallel to (100. C—H...π interactions are also observed.

  17. Band-gap narrowing of TiO2 films induced by N-doping

    International Nuclear Information System (INIS)

    Nakano, Y.; Morikawa, T.; Ohwaki, T.; Taga, Y.

    2006-01-01

    N-doped TiO 2 films were deposited on n + -GaN/Al 2 O 3 substrates by reactive magnetron sputtering and subsequently crystallized by annealing at 550 o C in flowing N 2 gas. The N-doping concentration was ∼8.8%, as determined from X-ray photoelectron spectroscopy measurements. Deep-level optical spectroscopy measurements revealed two characteristic deep levels located at 1.18 and 2.48 eV below the conduction band. The 1.18 eV level is probably attributable to the O vacancy state and can be active as an efficient generation-recombination center. Additionally, the 2.48 eV band is newly introduced by the N-doping and contributes to band-gap narrowing by mixing with the O 2p valence band

  18. Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment in an aerobic bioreactor packed with carbon fibers.

    Science.gov (United States)

    Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko; Yokoyama, Hiroshi; Kawahara, Hirofumi; Ogino, Akifumi; Osada, Takashi

    2015-03-01

    Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment was demonstrated in an aerobic bioreactor packed with carbon fibers (CF reactor). The CF reactor had a demonstrated advantage in mitigating N2 O emission and avoiding NOx (NO3  + NO2 ) accumulation. The N2 O emission factor was 0.0003 g N2 O-N/gTN-load in the CF bioreactor compared to 0.03 gN2 O-N/gTN-load in an activated sludge reactor (AS reactor). N2 O and CH4 emissions from the CF reactor were 42 g-CO2 eq/m(3) /day, while those from the AS reactor were 725 g-CO2 eq/m(3) /day. The dissolved inorganic nitrogen (DIN) in the CF reactor removed an average of 156 mg/L of the NH4 -N, and accumulated an average of 14 mg/L of the NO3 -N. In contrast, the DIN in the AS reactor removed an average 144 mg/L of the NH4 -N and accumulated an average 183 mg/L of the NO3 -N. NO2 -N was almost undetectable in both reactors. © 2014 Japanese Society of Animal Science.

  19. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn_2S_4/g-C_3N_4 photocatalyst

    International Nuclear Information System (INIS)

    Qiu, Pengxiang; Yao, Jinhua; Chen, Huan; Jiang, Fang; Xie, Xianchuan

    2016-01-01

    Highlights: • A novel flower-on-sheet ZnIn_2S_4/g-C_3N_4 nanocomposite was synthesized. • ZnIn_2S_4/g-C_3N_4 showed high visible light catalytic activity for 2,4-D degradation. • The photocatalytic degradation pathway of 2,4-D was investigated. - Abstract: ZnIn_2S_4/g-C_3N_4 heterojunction photocatalyst was successfully synthesized via a simple hydrothermal method and applied to visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous phase. The flower-like ZnIn_2S_4 particles were dispersed on the surface of g-C_3N_4 nanosheets in the ZnIn_2S_4/g-C_3N_4 composite. The composite showed higher separation rate of electron-hole pairs as compared to ZnIn_2S_4 and g-C_3N_4. Consequently, the ZnIn_2S_4/g-C_3N_4 composite exhibited enhanced visible light photocatalytic decomposition efficiency of 2,4-D, within 20% ZnIn_2S_4/g-C_3N_4 composite owning the highest photocatalytic efficiency and initial rate. The initial rates of 2,4-D degradation on g-C_3N_4, ZnIn_2S_4, and 20% ZnIn_2S_4/g-C_3N_4 were 1.23, 0.57 and 3.69 mmol/(g_c_a_t h), respectively. The h"+ and O_2"·"− were found to be the dominant active species for 2,4-D decomposition. The photocatalytic degradation pathways of 2,4-D by ZnIn_2S_4/g-C_3N_4 under visible light irradiation were explored. The ZnIn_2S_4/g-C_3N_4 composite displayed high photostability in recycling tests, reflecting its promising potential as an effective visible light photocatalyst for 2,4-D treatment.

  20. HIDROGENACIÓN DE CROTONALDEHÍDO SOBRE CATALIZADORES Ir/TiO2-SiO2

    Directory of Open Access Journals (Sweden)

    HUGO ROJAS

    2009-01-01

    Full Text Available Se estudió la hidrogenación de crotonaldehído en fase líquida, sobre catalizadores Ir/TiO2-SiO2; este aldehído es altamente contaminante y proviene de fuentes tan diversas como humo de tabaco, gases de escape de motores de gasolina o diesel y humo de combustión de madera [1]. El objetivo principal de esta investigación fue la obtención del alcohol insaturado (crotil alcohol. A partir de los estudios realizados logró demostrarse que un aumento en el contenido de TiO2, lo mismo que la reducción de los catalizadores a altas temperaturas favorece parámetros como selectividad hacia el producto de interés, actividad catalítica y en general se logró mejorar de manera notable los niveles de conversión. El comportamiento observado se atribuyó principalmente a la fuerte influencia del efecto SMSI (Strong Metal Support Interaction, presente a altas temperaturas en óxidos parcialmente reducibles.

  1. Bis(1,10-phenanthroline-κ2N,N′(sulfato-κ2O,O′cobalt(II butane-2,3-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Shi-Juan Wang

    2011-04-01

    Full Text Available In the title compound, [Co(SO4(C12H8N22]·C4H10O2, the Co2+ ion has a distorted octahedral coordination environment composed of four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from an O,O′-bidentate sulfate anion. The dihedral angle between the two chelating N2C2 groups is 83.48 (1°. The Co2+ ion, the S atom and the mid-point of the central C—C bond of the butane-2,3-diol solvent molecule are situated on twofold rotation axes. The molecules of the complex and the solvent molecules are held together by pairs of symmetry-related O—H...O hydrogen bonds with the uncoordinated O atoms of the sulfate ions as acceptors. The solvent molecule is disordered over two sets of sites with site occupancies of 0.40 and 0.60.

  2. Measuring CO 2 and N 2 O Mass Transfer into GAP-1 CO 2 –Capture Solvents at Varied Water Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, Greg A.; Zwoster, Andy; Zheng, Feng; Perry, Robert J.; Wood, Benjamin R.; Spiry, Irina; Freeman, Charles J.; Heldebrant, David J.

    2017-04-12

    This paper investigates the CO2 and N2 O absorption behavior in the water-lean gamma amino propyl (GAP)-1/TEG solvent system using a wetted-wall contactor. Testing was performed on a blend of GAP-1 aminosilicone in triethylene glycol at varied water loadings in the solvent. Measurements were made with CO2 and N2 O at representative lean (0.04 mol CO2/mol alkalinity), middle (0.13 mol CO2 /mol alkalinity) and rich (0.46 mol CO2 /mol alkalinity) solvent loadings at 0, 5, 10 and 15 wt% water loadings at 40, 60 and 80C° and N2 O at (0.08-0.09 mol CO2 /mol alkalinity) at 5 wt% water at 40, 60 and 80C°. CO2 flux was found to be non-linear with respect to log mean pressure driving force (LMPD). Liquid-film mass transfer coefficients (k'g) were calculated by subtracting the gas film resistance (determined from a correlation from literature) from the overall mass transfer measurement. The resulting k'g values for CO2 and N2 O in GAP-1/TEG mixtures were found to be higher than that of 5M aqueous monoethanolamine under comparable driving force albeit at higher solvent viscosities. The k'g values for CO2 were also found to decrease with increasing solvent water content and increase with a decrease in temperature. These observations indicate that mass transfer of CO2 in GAP-1/TEG is linked to the physical solubility of CO2 , which is higher in organic solvents compared to water. This paper expands on the understanding of the unique mass transfer behavior and kinetics of CO2 capture in water-lean solvents.

  3. Iodide, azide, and cyanide complexes of (N,C), (N,N), and (N,O) metallacycles of tetra- and pentavalent uranium

    International Nuclear Information System (INIS)

    Benaud, Olivier; Berthet, Jean-Claude; Thuery, Pierre; Ephritikhine, Michel

    2011-01-01

    In contrast to the neutral macrocycle [UN* 2 (N,C)] (1) [N* = N(SiMe 3 ) 3 ; N,C = CH 2 SiMe 2 N-(SiMe 3 )] which was quite inert toward I 2 , the anionic bismetallacycle [NaUN*(N,C) 2 ] (2) was readily transformed into the enlarged monometallacycle [UN*(N,N)I] (4) [N,N = (Me 3 Si)NSiMe 2 CH 2 CH 2 SiMe 2 N(SiMe 3 )] resulting from C-C coupling of the two CH 2 groups, and [NaUN*(N,O) 2 ] (3) [N,O = OC(=CH 2 )SiMe 2 N(SiMe 3 )], which is devoid of any U-C bond, was oxidized into the UV bismetallacycle [Na{UN*(N,O) 2 }2(μ-I)] (5). Sodium amalgam reduction of 4 gave the U(III) compound [UN*(N,N)] (6). Addition of MN 3 or MCN to the (N,C), (N,N), and (N,O) metallacycles 1, 4, and 5 led to the formation of the anionic azide or cyanide derivatives M[UN* 2 (N,C)(N 3 )] [M = Na, 7a or Na(15-crown-5), 7b], M[UN* 2 (N,C)(CN)] [M = NEt 4 , 8a or Na(15-crown-5), 8b or K(18-crown-6), 8c], M[UN*(N,N)(N 3 ) 2 ] [M = Na, 9a or Na(THF)4, 9b], [NEt 4 ][UN*(N,N)(CN) 2 ] (10), M[UN*(N,O) 2 (N 3 )] [M = Na, 11a or Na(15-crown-5), 11b], M[UN*(N,O) 2 (CN)] [M = NEt 4 , 12a or Na(15-crown-5), 12b]. In the presence of excess iodine in THF, the cyanide 12a was converted back into the iodide 5, while the azide 11a was transformed into the neutral UV complex [U(N{SiMe 3 }-SiMe 2 C{CHI}O) 2 I(THF)] (13). The X-ray crystal structures of 4, 7b, 8a-c, 9b, 10, 12b, and 13 were determined. (authors)

  4. Upland Trees Contribute to Exchange of Nitrous Oxide (N2O) in Forest Ecosystems

    Science.gov (United States)

    Tian, H.; Thompson, R.; Canadell, J.; Winiwarter, W.; Machacova, K.; Maier, M.; Halmeenmäki, E.; Svobodova, K.; Lang, F.; Pihlatie, M.; Urban, O.

    2017-12-01

    The increase in atmospheric nitrous oxide (N2O) concentration contributes to the acceleration of the greenhouse effect. However, the role of trees in the N2O exchange of forest ecosystems is still an open question. While the soils of temperate and boreal forests were shown to be a natural source of N2O, trees have been so far overlooked in the forest N2O inventories. We determined N2O fluxes in common tree species of boreal and temperate forests: Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy and silver birch (Betula pubescens, B. pendula), and European beech (Fagus sylvatica). We investigated (1) whether these tree species exchange N2O with the atmosphere under natural field conditions, (2) how the tree N2O fluxes contribute to the forest N2O balance, and (3) whether these fluxes show seasonal dynamics. The studies were performed in a boreal forest (SMEAR II station, Finland; June 2014 - May 2015) and two temperate mountain forests (White Carpathians, Czech Republic; Black Forest, Germany; June and July 2015). Fluxes of N2O in mature tree stems and forest floor were measured using static chamber systems followed by chromatographic and photo-acoustic analyses of N2O concentration changes. Pine, spruce and birch trees were identified as net annual N2O sources. Spruce was found the strongest emitter (0.27 mg ha-1 h-1) amounting thus up to 2.5% of forest floor N2O emissions. All tree species showed a substantial seasonality in stem N2O flux that was related to their physiological activity and climatic variables. In contrast, stems of beech trees growing at soils consuming N2O may act as a substantial sink of N2O from the atmosphere. Consistent N2O consumption by tree stems ranging between -12.1 and -35.2 mg ha-1 h-1 and contributing by up to 3.4% to the forest floor N2O uptake is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with

  5. Fluxes of CH4 and N2O in aspen stands grown under ambient and twice-ambient CO2

    DEFF Research Database (Denmark)

    Ambus, P.; Robertson, G.P.

    1999-01-01

    Elevated atmospheric CO2 has the potential to change below-ground nutrient cycling and thereby alter the soil-atmosphere exchange of biogenic trace gases. We measured fluxes of CH4 and N2O in trembling aspen (Populus tremuloides Michx.) stands grown in open-top chambers under ambient and twice......-ambient CO2 concentrations crossed with `high' and low soil-N conditions. Flux measurements with small static chambers indicated net CH4 oxidation in the open-top chambers. Across dates, CH4 oxidation activity was significantly (P CO2 (8.7 mu g CH4-C m(-2) h(-1)) than...... with elevated CO2 (6.5 mu g CH4-C m(-2) h(-1)) in the low N soil. Likewise, across dates and soil N treatments CH4 was oxidized more rapidly (P CO2 (9.5 mu g CH4-C m(-2) h(-1)) than in chambers with elevated CO2 (8.8 mu g CH4-C m(-2) h(-1)). Methane oxidation in soils incubated...

  6. Frozen cropland soil in northeast China as source of N2O and CO2 emissions.

    Science.gov (United States)

    Miao, Shujie; Qiao, Yunfa; Han, Xiaozeng; Brancher Franco, Roberta; Burger, Martin

    2014-01-01

    Agricultural soils are important sources of atmospheric N2O and CO2. However, in boreal agro-ecosystems the contribution of the winter season to annual emissions of these gases has rarely been determined. In this study, soil N2O and CO2 fluxes were measured for 6 years in a corn-soybean-wheat rotation in northeast China to quantify the contribution of wintertime N2O and CO2 fluxes to annual emissions. The treatments were chemical fertilizer (NPK), chemical fertilizer plus composted pig manure (NPKOM), and control (Cont.). Mean soil N2O fluxes among all three treatments in the winter (November-March), when soil temperatures are below -7°C for extended periods, were 0.89-3.01 µg N m(-2) h(-1), and in between the growing season and winter (October and April), when freeze-thaw events occur, 1.73-5.48 µg N m(-2) h(-1). The cumulative N2O emissions were on average 0.27-1.39, 0.03-0.08 and 0.03-0.11 kg N2O_N ha(-1) during the growing season, October and April, and winter, respectively. The average contributions of winter N2O efflux to annual emissions were 6.3-12.1%. In all three seasons, the highest N2O emissions occurred in NPKOM, while NPK and Cont. emissions were similar. Cumulative CO2 emissions were 2.73-4.94, 0.13-0.20 and 0.07-0.11 Mg CO2-C ha(-1) during growing season, October and April, and winter, respectively. The contribution of winter CO2 to total annual emissions was 2.0-2.4%. Our results indicate that in boreal agricultural systems in northeast China, CO2 and N2O emissions continue throughout the winter.

  7. Binary Oxide p-n Heterojunction Piezoelectric Nanogenerators with an Electrochemically Deposited High p-Type Cu2O Layer.

    Science.gov (United States)

    Baek, Seung Ki; Kwak, Sung Soo; Kim, Joo Sung; Kim, Sang Woo; Cho, Hyung Koun

    2016-08-31

    The high performance of ZnO-based piezoelectric nanogenerators (NGs) has been limited due to the potential screening from intrinsic electron carriers in ZnO. We have demonstrated a novel approach to greatly improve piezoelectric power generation by electrodepositing a high-quality p-type Cu2O layer between the piezoelectric semiconducting film and the metal electrode. The p-n heterojunction using only oxides suppresses the screening effect by forming an intrinsic depletion region, and thus sufficiently enhances the piezoelectric potential, compared to the pristine ZnO piezoelectric NG. Interestingly, a Sb-doped Cu2O layer has high mobility and low surface trap states. Thus, this doped layer is an attractive p-type material to significantly improve piezoelectric performance. Our results revealed that p-n junction NGs consisting of Au/ZnO/Cu2O/indium tin oxide with a Cu2O:Sb (cuprous oxide with a small amount of antimony) layer of sufficient thickness (3 μm) exhibit an extraordinarily high piezoelectric potential of 0.9 V and a maximum output current density of 3.1 μA/cm(2).

  8. Effects of Dăoyĭngōng in postpolio syndrome patients with cold intolerance

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Ramos

    2012-09-01

    Full Text Available Postpolio syndrome (PPS is characterized by progressive muscle weakness due to former infection with poliomyelitis and can be associated with other symptoms such as cold intolerance (CI. Dăoyĭngōng (DQ is a technique in Traditional Chinese Medicine that impacts the circulation of energy and blood. OBJECTIVE: It was to verify the effects of DQ in PPS patients complaining of cold intolerance. METHODS: Ten PPS patients were assessed using the visual analogue scale (VAS adapted for CI before and after intervention with DQ; patients practiced it in a sitting position for 40 minutes, 3 times per week over 3 consecutive months. Patients were reassessed three months after ceasing DQ. RESULTS: There was a statistically significant difference in local and systemic VAS-Cold both at the end of DQ training and three months past the end of this. CONCLUSION: The DQ technique ameliorated CI complaints in patients with PPS.

  9. N2O production, a widespread trait in fungi

    Science.gov (United States)

    Maeda, Koki; Spor, Aymé; Edel-Hermann, Véronique; Heraud, Cécile; Breuil, Marie-Christine; Bizouard, Florian; Toyoda, Sakae; Yoshida, Naohiro; Steinberg, Christian; Philippot, Laurent

    2015-04-01

    N2O is a powerful greenhouse gas contributing both to global warming and ozone depletion. While fungi have been identified as a putative source of N2O, little is known about their production of this greenhouse gas. Here we investigated the N2O-producing ability of a collection of 207 fungal isolates. Seventy strains producing N2O in pure culture were identified. They were mostly species from the order Hypocreales order--particularly Fusarium oxysporum and Trichoderma spp.--and to a lesser extent species from the orders Eurotiales, Sordariales, and Chaetosphaeriales. The N2O 15N site preference (SP) values of the fungal strains ranged from 15.8‰ to 36.7‰, and we observed a significant taxa effect, with Penicillium strains displaying lower SP values than the other fungal genera. Inoculation of 15 N2O-producing strains into pre-sterilized arable, forest and grassland soils confirmed the ability of the strains to produce N2O in soil with a significant strain-by-soil effect. The copper-containing nitrite reductase gene (nirK) was amplified from 45 N2O-producing strains, and its genetic variability showed a strong congruence with the ITS phylogeny, indicating vertical inheritance of this trait. Taken together, this comprehensive set of findings should enhance our knowledge of fungi as a source of N2O in the environment.

  10. Effect of sulfation on the surface activity of CaO for N{sub 2}O decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lingnan, E-mail: wulingnan@126.com [School of Energy, Power and Mechanical Engineering, North China Electric Power University, 102206 Beijing (China); National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 102206 Beijing (China); Hu, Xiaoying, E-mail: huxy@ncepu.edu.cn [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 102206 Beijing (China); Qin, Wu, E-mail: qinwugx@126.com [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 102206 Beijing (China); Dong, Changqing, E-mail: cqdong1@163.com [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, 102206 Beijing (China); Yang, Yongping, E-mail: yypncepu@163.com [School of Energy, Power and Mechanical Engineering, North China Electric Power University, 102206 Beijing (China)

    2015-12-01

    Graphical abstract: - Highlights: • Sulfation of CaO (1 0 0) surface greatly deactivates its surface activity for N{sub 2}O decomposition. • An increase of sulfation degree leads to a decrease of CaO surface activity for N{sub 2}O decomposition. • Sulfation from CaSO{sub 3} into CaSO{sub 4} is the crucial step for deactivating the surface activity for N{sub 2}O decomposition. • The electronic interaction CaO (1 0 0)/CaSO{sub 4} (0 0 1) interface is limited to the bottom layer of CaSO{sub 4} (0 0 1) and the top layer of CaO (1 0 0). • CaSO{sub 4} (0 0 1) and (0 1 0) surfaces show negligible catalytic ability for N{sub 2}O decomposition. - Abstract: Limestone addition to circulating fluidized bed boilers for sulfur removal affects nitrous oxide (N{sub 2}O) emission at the same time, but mechanism of how sulfation process influences the surface activity of CaO for N{sub 2}O decomposition remains unclear. In this paper, we investigated the effect of sulfation on the surface properties and catalytic activity of CaO for N{sub 2}O decomposition using density functional theory calculations. Sulfation of CaO (1 0 0) surface by the adsorption of a single gaseous SO{sub 2} or SO{sub 3} molecule forms stable local CaSO{sub 3} or CaSO{sub 4} on the CaO (1 0 0) surface with strong hybridization between the S atom of SO{sub x} and the surface O anion. The formed local CaSO{sub 3} increases the barrier energy of N{sub 2}O decomposition from 0.989 eV (on the CaO (1 0 0) surface) to 1.340 eV, and further sulfation into local CaSO{sub 4} remarkably increases the barrier energy to 2.967 eV. Sulfation from CaSO{sub 3} into CaSO{sub 4} is therefore the crucial step for deactivating the surface activity for N{sub 2}O decomposition. Completely sulfated CaSO{sub 4} (0 0 1) and (0 1 0) surfaces further validate the negligible catalytic ability of CaSO{sub 4} for N{sub 2}O decomposition.

  11. Effects of cover crops incorporation and nitrogen fertilization on N2O and CO2 emissions

    Science.gov (United States)

    Kandel, T. P.; Gowda, P. H.; Northup, B. K.; DuPont, J.; Somenahally, A. C.; Rocateli, A.

    2017-12-01

    In this study, we measured N2O and CO2 fluxes from plots planted to hairy vetch (winter cover crop) and broadleaf vetch (spring cover crop) as N sources for the following crabgrass (summer forage crop) in El Reno, Oklahoma, USA. Comparisons also included 0 and 60 kg ha-1 mineral N fertilizer supplied as dry urea. No significant N2O fluxes were observed during rapid growing periods of cover crops (March-April, 2017), however, large fluxes were observed after hairy vetch incorporation. Immediately after the hairy vetch biomass incorporation, large rainfall events were recorded. The fluxes subsided gradually with drying soil condition but were enhanced after every consecutive rainfall events. A rainfall induced flux measuring up to 8.2 kg N2O ha-1 day-1 was observed after 26 days of biomass incorporation. In total, 29 kg N2O ha-1 (18 kg N ha-1) was emitted within a month after biomass incorporation from hairy vetch plots. Growth of broadleaf vetch was poor and N2O fluxes were also lower. Similarly, plots fertilized with 60 kg N ha-1 had significant fluxes of N2O but the magnitude was much lower than the hairy vetch plots. Dynamics of N2O and CO fluxes correlated strongly. The results thus indicated that although cover crops may provide many environmental/agronomic benefits such as N fixation, soil carbon built-up, weed suppression and erosion control, high N2O emissions may dwarf these benefits.

  12. Impact of raw pig slurry and pig farming practices on physicochemical parameters and on atmospheric N2O and CH 4 emissions of tropical soils, Uvéa Island (South Pacific).

    Science.gov (United States)

    Roth, E; Gunkel-Grillon, P; Joly, L; Thomas, X; Decarpenterie, T; Mappe-Fogaing, I; Laporte-Magoni, C; Dumelié, N; Durry, G

    2014-09-01

    Emissions of CH4 and N2O related to private pig farming under a tropical climate in Uvéa Island were studied in this paper. Physicochemical soil parameters such as nitrate, nitrite, ammonium, Kjeldahl nitrogen, total organic carbon, pH and moisture were measured. Gaseous soil emissions as well as physicochemical parameters were compared in two private pig farming strategies encountered on this island on two different soils (calcareous and ferralitic) in order to determine the best pig farming management: in small concrete pens or in large land pens. Ammonium levels were higher in control areas while nitrate and nitrite levels were higher in soils with pig slurry inputs, indicating that nitrification was the predominant process related to N2O emissions. Nitrate contents in soils near concrete pens were important (≥ 55 μg N/g) and can thus be a threat for the groundwater. For both pig farming strategies, N2O and CH4 fluxes can reach high levels up to 1 mg N/m(2)/h and 1 mg C/m(2)/h, respectively. CH4 emissions near concrete pens were very high (≥ 10.4 mg C/m(2)/h). Former land pens converted into agricultural land recover low N2O emission rates (≤ 0.03 mg N/m(2)/h), and methane uptake dominates. N2O emissions were related to nitrate content whereas CH4 emissions were found to be moisture dependent. As a result relating to the physicochemical parameters as well as to the gaseous emissions, we demonstrate that pig farming in large land pens is the best strategy for sustainable family pig breeding in Uvéa Islands and therefore in similar small tropical islands.

  13. N2O production pathways in the subtropical acid forest soils in China

    International Nuclear Information System (INIS)

    Zhang Jinbo; Cai Zucong; Zhu Tongbin

    2011-01-01

    To date, N 2 O production pathways are poorly understood in the humid subtropical and tropical forest soils. A 15 N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N 2 O production in four subtropical acid forest soils (pH 2 O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N 2 O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N 2 O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N 2 O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N 2 O product ratios from nitrification. The ratio of N 2 O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget. - Highlights: → We studied N 2 O production pathways in subtropical acid forest soil under aerobic conditions. → Denitrification was the main source of N 2 O production in subtropical acid forest soils. → Heterotrophic nitrification accounted for 27.3%-41.8% of N 2 O production. → While, contribution of autotrophic nitrification to N 2 O production was little. → Ratios of N 2 O-N emission from nitrification were higher than those in most previous references.

  14. Effects of flooding-induced N2O production, consumption and emission dynamics on the annual N2O emission budget in wetland soil

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Elberling, Bo

    2012-01-01

    during mid-summer when the WL was at its seasonally lowest counterbalancing ~6.4% of the total annual net N2O emission budget. Main surface emission periods of N2O were observed when the water level and associated peaks in subsurface N2O concentrations were gradually decreasing to soil depths down to 40...... production and consumption capacities where >500 nmol N2O cm-3 were sequentially produced and consumed in less than 24 hrs. It is concluded that a higher future frequency of flooding induced N2O emissions will have a very limited effect on the net annual N2O emission budget as long as NO3- availability...

  15. Market Analysis DeN2O. Market potential for reduction of N2O emissions at nitric acid facilities

    International Nuclear Information System (INIS)

    Smit, A.W.; Gent, M.M.C.; Van den Brink, R.W.

    2001-05-01

    ECN has developed a technique for the removal of nitrous oxide (N2O) from the tail gases of a nitric acid plant. The aim of this project was to make an assessment of the market opportunities of this technique. To this end a study was made of the relevant international regulations and agreements on the field of climate policy. The formulation of an international greenhouse gas policy and concomitant flexible mechanisms is a prerequisite for the market introduction of any N2O abatement technique. The available techniques and techniques in development for N2O abatement in the nitric acid industry are described and the strengths and weaknesses are given. Furthermore, the costs per ton CO2 equivalents removed are estimated. Direct decomposition of N2O (either in the NH3 combustion reactor or downstream the absorber) are the most cost efficient techniques. Finally, the number and sizes of nitric acid plants in Europe and the developments in the fertiliser market are described. The current difficult fertiliser market makes the nitric acid producers reluctant to invest in N2O abatement technologies

  16. Structure and high photocatalytic activity of (N, Ta)-doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Le, N. T. H.; Lam, V. D.; Manh, D. H.; Hong, L. V. [Institute of Materials Science, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi (Viet Nam); Thanh, T. D., E-mail: thanhxraylab@yahoo.com, E-mail: scyu@cbnu.ac.kr [Institute of Materials Science, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi (Viet Nam); Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Pham, V.-T. [Center for Quantum Electronics, Institute of Physics, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Synchrotron SOLEIL, L' Orme des Merisiers, Boîte Postale, 48, 91192 Gif-sur-Yvette Cedex (France); Phan, T. L.; Yu, S. C., E-mail: thanhxraylab@yahoo.com, E-mail: scyu@cbnu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Anh, T. X. [Center for Quantum Electronics, Institute of Physics, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Le, T. K. C. [Institut des Sciences Moleculaires d' Orsay, CNRS, Univ Paris-Sud, 91405 Orsay Cedex (France); Thammajak, N. [Synchrotron Light Research Institute, 111 University Avenue, Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-10-14

    A hydrothermal method was used to prepare three nano-crystalline samples of TiO{sub 2} (S1), N-doped TiO{sub 2} (S2), and (N, Ta)-codoped TiO{sub 2} (S3) with average crystallite sizes (D) of 13–25 nm. X-ray diffraction studies confirmed a single phase of the samples with a tetragonal/anatase structure. A slight increase in the lattice parameters was observed when N and/or Ta dopants were doped into the TiO{sub 2} host lattice. Detailed analyses of extended X-ray absorption spectra indicated that N- and/or Ta-doping into TiO{sub 2} nanoparticles influenced the co-ordination number and radial distance (R) of Ti ions in the anatase structure. Concerning their absorption spectra, (N, Ta)-doping narrowed the band gap (E{sub g}) of TiO{sub 2} from 3.03 eV for S1 through 2.94 eV for S2 to 2.85 eV for S3. Such results revealed the applicability of these nanoparticles in the photocatalytic field working in the ultraviolet (UV)-visible region. Among these, photocatalytic activity of S3 was the strongest. By using S3 as a catalyst powder, the degradation efficiency of methylene blue solution was about 99% and 93% after irradiation of UV-visible light for 75 min and visible-light for 180 min, respectively.

  17. High Resolution Measurements of Nitrous Oxide (N2O in the Elbe Estuary

    Directory of Open Access Journals (Sweden)

    Lisa Brase

    2017-05-01

    Full Text Available Nitrous oxide (N2O is one of the most important greenhouse gases and a major sink for stratospheric ozone. Estuaries are sites of intense biological production and N2O emissions. We aimed to identify hot spots of N2O production and potential pathways contributing to N2O concentrations in the surface water of the tidal Elbe estuary. During two research cruises in April and June 2015, surface water N2O concentrations were measured along the salinity gradient of the Elbe estuary by using a laser-based on-line analyzer coupled to an equilibrator. Based on these high-resolution N2O profiles, N2O saturations, and fluxes across the surface water/atmosphere interface were calculated. Additional measurements of DIN concentrations, oxygen concentration, and salinity were performed. Highest N2O concentrations were determined in the Hamburg port region reaching maximum values of 32.3 nM in April 2015 and 52.2 nM in June 2015. These results identify the Hamburg port region as a significant hot spot of N2O production, where linear correlations of AOU-N2Oxs indicate nitrification as an important contributor to N2O production in the freshwater part. However, in the region with lowest oxygen saturation, sediment denitrification obviously affected water column N2O saturation. The average N2O saturation over the entire estuary was 201% (SD: ±94%, with an average estuarine N2O flux density of 48 μmol m−2 d−1 and an overall emission of 0.18 Gg N2O y−1. In comparison to previous studies, our data indicate that N2O production pathways over the whole estuarine freshwater part have changed from predominant denitrification in the 1980s toward significant production from nitrification in the present estuary. Despite a significant reduction in N2O saturation compared to the 1980s, N2O concentrations nowadays remain on a high level, comparable to the mid-90s, although a steady decrease of DIN inputs occurred over the last decades. Hence, the Elbe estuary still

  18. Effects of carbon sources and COD/N ratio on N2O emissions in subsurface flow constructed wetlands.

    Science.gov (United States)

    Lyu, Wanlin; Huang, Lei; Xiao, Guangquan; Chen, Yucheng

    2017-12-01

    A set of constructed wetlands under two different carbon sources, namely, glucose (CW) and sodium acetate (YW), was established at a laboratory scale with influent COD/N ratios of 20:1, 10:1, 7:1, 4:1, and 0 to analyze the influence of carbon supply on nitrous oxide emissions. Results showed that the glucose systems generated higher N 2 O emissions than those of the sodium acetate systems. The higher amount of N 2 O-releasing fluxes in the CWs than in the YWs was consistent with the higher NO 2 - -N accumulation in the former than in the latter. Moreover, electron competition was tighter in the CWs and contributed to the incomplete denitrification with poor N 2 O production performance. Illumina MiSeq sequencing demonstrated that some denitrifying bacteria, such as Denitratisoma, Bacillus, and Zoogloea, were higher in the YWs than in the CWs. This result indicated that the carbon source is important in controlling N 2 O emissions in microbial communities. Copyright © 2017. Published by Elsevier Ltd.

  19. Photocatalytic Decomposition of N2O on Ag-TiO2

    Czech Academy of Sciences Publication Activity Database

    Kočí, K.; Krejčíková, Simona; Šolcová, Olga; Obalová, L.

    2012-01-01

    Roč. 191, č. 1 (2012), s. 134-137 ISSN 0920-5861. [International Symposium on Nitrogen Oxides Emission Abatement. Zakopane, 04.09.2011-07.09.2011] R&D Projects: GA ČR GA104/09/0694 Institutional support: RVO:67985858 Keywords : photocatalytic decomposition * N2O * Ag doping * TiO2 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.980, year: 2012

  20. (Carbonato-κO,O')bis-(di-2-pyridyl-amine-κN,N')cobalt(III) bromide.

    Science.gov (United States)

    Czapik, Agnieszka; Papadopoulos, Christos; Lalia-Kantouri, Maria; Gdaniec, Maria

    2011-04-01

    In the title compound, [Co(CO(3))(C(10)H(9)N(3))(2)]Br, a distorted octa-hedral coordination of the Co(III) atom is completed by four N atoms of the two chelating di-2-pyridyl-amine ligands and two O atoms of the chelating carbonate anion. The di-2-pyridyl-amine ligands are nonplanar and the dihedral angles between the 2-pyridyl groups are 29.11 (9) and 37.15 (12)°. The coordination cation, which has approximate C(2) symmetry, is connected to the bromide ion via an N-H⋯Br(-) hydrogen bond. The ionic pair thus formed is further assembled into a dimer via N-H⋯O inter-actions about an inversion centre. A set of weaker C-H⋯O and C-H⋯Br(-) inter-actions connect the dimers into a three-dimensional network.

  1. Chemical stabilization and high pressure synthesis of Ba-free Hg-based superconductors, (Hg,M)Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub y}(N=1{approximately}3)

    Energy Technology Data Exchange (ETDEWEB)

    Kishio, K. [Univ. of Tokyo (Japan)]|[Kyoto Univ. (Japan); Shimoyama, J.; Hahakura, S. [Univ. of Tokyo (Japan)] [and others

    1994-12-31

    A homologous series of new Hg-based HTSC compounds, (Hg,M)Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub y} with n=1 to 3, have been synthesized. The stabilization of the pure phases have been accomplished by chemical doping of third elements such as M=Cr, Mo and Re. While the Hg1201(n=1) phase was readily obtained in this way, it was necessary to simultaneously dope Y into the Ca site to stabilize the Hg1212(n=2) phase. On the other hand, single-phase Y-free Hg1212(n=2) and Hg1223(n=3) samples were synthesized only under a high pressure of 6 GPa. In sharp contrast to the Ba-containing compounds, all the samples prepared in the present study have been quite stable during the synthesis and no deterioration in air has been observed after the preparation.

  2. {6,6′-Dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne]diphenolato-1κ4O1,O1′,O6,O6′:2κ4O1,N,N′,O1′}(ethanol-1κO-μ-nitrato-1:2κ2O:O′-dinitrato-1κ4O,O′-samarium(IIIzinc(II

    Directory of Open Access Journals (Sweden)

    Qiang Huang

    2009-10-01

    Full Text Available In the title heteronuclear ZnII–SmIII complex, [SmZn(C18H18N2O4(NO33(CH3CH2OH], with the hexadentate Schiff base compartmental ligand N,N′-bis(3-methoxysalicylideneethylenediamine (H2L, the SmIII and ZnII ions are triply bridged by two phenolate O atoms from the Schiff base ligand and one nitrate anion. The five-coordinate ZnII ion is in a square-pyramidal geometry formed by the donor centers of two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The SmIII center is in a ten-fold coordination of O atoms, involving the phenolate O atoms, two methoxy O atoms, one ethanol O atom, and two O atoms from two nitrate anions and one from the bridging nitrate anion. In the crystal, intermolecular O—H...O and C—H...O interactions generate a layer structure extending parallel to (101.

  3. Investigation of the N2O emission strength in the U. S. Corn Belt

    Science.gov (United States)

    Fu, Congsheng; Lee, Xuhui; Griffis, Timothy J.; Dlugokencky, Edward J.; Andrews, Arlyn E.

    2017-09-01

    Nitrous oxide (N2O) has a high global warming potential and depletes stratospheric ozone. The U. S. Corn Belt plays an important role in the global anthropogenic N2O budget. To date, studies on local surface N2O emissions and the atmospheric N2O budget have commonly used Lagrangian models. In the present study, we used an Eulerian model - Weather Research and Forecasting Chemistry (WRF-Chem) model to investigate the relationships between N2O emissions in the Corn Belt and observed atmospheric N2O mixing ratios. We derived a simple equation to relate the emission strengths to atmospheric N2O mixing ratios, and used the derived equation and hourly atmospheric N2O measurements at the KCMP tall tower in Minnesota to constrain agricultural N2O emissions. The modeled spatial patterns of atmospheric N2O were evaluated against discrete observations at multiple tall towers in the NOAA flask network. After optimization of the surface flux, the model reproduced reasonably well the hourly N2O mixing ratios monitored at the KCMP tower. Agricultural N2O emissions in the EDGAR42 database needed to be scaled up by 19.0 to 28.1 fold to represent the true emissions in the Corn Belt for June 1-20, 2010 - a peak emission period. Optimized mean N2O emissions were 3.00-4.38, 1.52-2.08, 0.61-0.81 and 0.56-0.75 nmol m- 2 s- 1 for June 1-20, August 1-20, October 1-20 and December 1-20, 2010, respectively. The simulated spatial patterns of atmospheric N2O mixing ratios after optimization were in good agreement with the NOAA discrete observations during the strong emission peak in June. Such spatial patterns suggest that the underestimate of emissions using IPCC (Inter-governmental Panel on Climate Change) inventory methodology is not dependent on tower measurement location.

  4. Butane-1,4-diammonium bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6cadmate(II dihydrate

    Directory of Open Access Journals (Sweden)

    Najmeh Firoozi

    2008-10-01

    Full Text Available In the title compound, (C4H14N2[Cd(C7H3NO42]·2H2O, the CdII ion is coordinated by four O atoms [Cd—O = 2.2399 (17–2.2493 (17 Å] and two N atoms [Cd—N = 2.3113 (15 and 2.3917 (15 Å] from two tridentate pyridine-2,6-dicarboxylato ligands in a distorted octahedral geometry. The uncoordinated water molecules are involved in O—H...O and N—H...O hydrogen bonds, which contribute to the formation of a three-dimensional supramolecular structure, along with π–π stacking interactions [centroid–centroid distances of 3.5313 (13 and 3.6028 (11 Å between the pyridine rings of neighbouring dianions].

  5. Propane-1,2-diammonium bis(pyridine-2,6-dicarboxylato-κ3O,N,O′nickelate(II tetrahydrate

    Directory of Open Access Journals (Sweden)

    Mohammad Ghadermazi

    2008-07-01

    Full Text Available The reaction of nickel(II nitrate hexahydrate, propane-1,2-diamine and pyridine-2,6-dicarboxylic acid in a 1:2:2 molar ratio in aqueous solution resulted in the formation of the title compound, (C3H12N2[Ni(C7H3NO42]·4H2O or (p-1,2-daH2[Ni(pydc2]·4H2O (where p-1,2-da is propane-1,2-diamine and pydcH2 is pyridine-2,6-dicarboxylic acid. The geometry of the resulting NiN2O4 coordination can be described as distorted octahedral. Considerable C=O...π stacking interactions are observed between the carboxylate C=O groups and the pyridine rings of the (pydc2− fragments, with O...π distances of 3.1563 (12 and 3.2523 (12 Å and C=O...π angles of 95.14 (8 and 94.64 (8°. In the crystal structure, a wide range of non-covalent interactions, consisting of hydrogen bonding [O—H...O, N—H...O and C—H...O, with D...A distances ranging from 2.712 (2 to 3.484 (2 Å], ion pairing, π–π [centroid-to-centroid distance = 3.4825 (8 Å] and C=O...π stacking, connect the various components to form a supramolecular structure.

  6. Computational study on the half-metallicity in transition metal—oxide-incorporated 2D g-C3N4 nanosheets

    Science.gov (United States)

    Gao, Qian; Wang, Hui-Li; Zhang, Li-Fu; Hu, Shuang-Lin; Hu, Zhen-Peng

    2018-06-01

    In this study, based on the first-principles calculations, we systematically investigated the electronic and magnetic properties of the transition metal-oxide-incorporated 2D g-C3N4 nanosheet (labeled C3N4-TM-O, TM = Sc-Mn). The results suggest that the TM-O binds to g-C3N4 nanosheets strongly for all systems. We found that the 2D C3N4-TM-O framework is ferromagnetic for TM = Sc, Ti, V, Cr, while it is antiferromagnetic for TM = Mn. All the ferromagnetic systems exhibit the half-metallic property. Furthermore, Monte Carlo simulations based on the Heisenberg model suggest that the Curie temperatures ( T c ) of the C3N4-TM-O (TM = Sc, Ti, V, Cr) framework are 169 K, 68 K, 203 K, and 190 K, respectively. Based on Bader charge analysis, we found that the origin of the half-metallicity at Fermi energy can be partially attributed to the transfer of electrons from TM atoms to the g-C3N4 nanosheet. In addition, we found that not only electrons but also holes can induce half-metallicity for 2D g-C3N4 nanosheets, which may help to understand the origin of half-metallicity for graphitic carbon nitride.

  7. Isotopologue fractionation during N(2)O production by fungal denitrification.

    Science.gov (United States)

    Sutka, Robin L; Adams, Gerard C; Ostrom, Nathaniel E; Ostrom, Peggy H

    2008-12-01

    Identifying the importance of fungi to nitrous oxide (N2O) production requires a non-intrusive method for differentiating between fungal and bacterial N2O production such as natural abundance stable isotopes. We compare the isotopologue composition of N2O produced during nitrite reduction by the fungal denitrifiers Fusarium oxysporum and Cylindrocarpon tonkinense with published data for N2O production during bacterial nitrification and denitrification. The fractionation factors for bulk nitrogen isotope values for fungal denitrification were in the range -74.7 to -6.6 per thousand. There was an inverse relationship between the absolute value of the fractionation factors and the reaction rate constant. We interpret this in terms of variation in the relative importance of the rate constants for diffusion and enzymatic reduction in controlling the net isotope effect for N2O production during fungal denitrification. Over the course of nitrite reduction, the delta(18)O values for N2O remained constant and did not exhibit a relationship with the concentration characteristic of an isotope effect. This probably reflects isotopic exchange with water. Similar to the delta(18)O data, the site preference (SP; the difference in delta(15)N between the central and outer N atoms in N2O) was unrelated to concentration during nitrite reduction and, therefore, has the potential to act as a conservative tracer of production from fungal denitrification. The SP values of N2O produced by F. oxysporum and C. tonkinense were 37.1 +/- 2.5 per thousand and 36.9 +/- 2.8 per thousand, respectively. These SP values are similar to those obtained in pure culture studies of bacterial nitrification but quite distinct from SP values for bacterial denitrification. The large magnitude of the bulk nitrogen isotope fractionation and the delta(18)O values associated with fungal denitrification are distinct from bacterial production pathways; thus multiple isotopologue data holds much promise for

  8. Integral Representation of the Pictorial Proof of Sum of [superscript n][subscript k=1]k[superscript 2] = 1/6n(n+1)(2n+1)

    Science.gov (United States)

    Kobayashi, Yukio

    2011-01-01

    The pictorial proof of the sum of [superscript n][subscript k=1] k[superscript 2] = 1/6n(n+1)(2n+1) is represented in the form of an integral. The integral representations are also applicable to the sum of [superscript n][subscript k-1] k[superscript m] (m greater than or equal to 3). These representations reveal that the sum of [superscript…

  9. Enhanced photocatalytic ozonation of organics by g-C3N4 under visible light irradiation

    International Nuclear Information System (INIS)

    Liao, Gaozu; Zhu, Dongyun; Li, Laisheng; Lan, Bingyan

    2014-01-01

    Highlights: • g-C 3 N 4 is employed as active catalyst in the photocatalytic ozonation system. • The more negative conduction band of g-C 3 N 4 benefits the transfer of electrons. • The synergistic effect between photocatalysis and ozonation is promoted by g-C 3 N 4 . • Enhanced degradation of oxalic acid and biphenol A is achieved via g-C 3 N 4 /Vis/O 3 . - Abstract: Graphitic carbon nitride (g-C 3 N 4 ) was employed as the active photocatalyst in the photocatalytic ozonation coupling system in the present study. g-C 3 N 4 was prepared by directly heating thiourea in air at 550 °C. XRD, FT-IR, UV–vis was used to characterize the structure and optical property. Oxalic acid and bisphenol A were selected as model substances for photocatalytic ozonation reactions to evaluate the catalytic ability of g-C 3 N 4 (g-C 3 N 4 /Vis/O 3 ). The results showed that the degradation ratio of oxalic acid with g-C 3 N 4 /Vis/O 3 was 65.2% higher than the sum of ratio when it was individually decomposed by g-C 3 N 4 /Vis and O 3 . The TOC removal of biphenol A with g-C 3 N 4 /Vis/O 3 was 2.17 times as great as the sum of the ratio when using g-C 3 N 4 /Vis and O 3 . This improvement was attributed to the enhanced synergistic effect between photocatalysis and ozonation by g-C 3 N 4 . Under visible light irradiation, the photo-generated electrons produced on g-C 3 N 4 facilitated the electrons transfer owing to the more negative conduction band potential (−1.3 V versus NHE). It meant that the photo-generated electrons could be trapped by ozone and reaction with it more easily. Subsequently, the yield of hydroxyl radicals was improved so as to enhance the organics degradation efficiency. This work indicated that metal-free g-C 3 N 4 could be an excellent catalyst for mineralization of organic compounds in waste control

  10. A limit for large R-charge correlators in N = 2 theories

    Science.gov (United States)

    Bourget, Antoine; Rodriguez-Gomez, Diego; Russo, Jorge G.

    2018-05-01

    Using supersymmetric localization, we study the sector of chiral primary operators (Tr ϕ 2) n with large R-charge 4 n in N = 2 four-dimensional superconformal theories in the weak coupling regime g → 0, where λ ≡ g 2 n is kept fixed as n → ∞, g representing the gauge theory coupling(s). In this limit, correlation functions G 2 n of these operators behave in a simple way, with an asymptotic behavior of the form {G}_{2n}≈ {F}_{∞}(λ){(λ/2π e)}^{2n} n α , modulo O(1 /n) corrections, with α =1/2 \\dim (g) for a gauge algebra g and a universal function F ∞(λ). As a by-product we find several new formulas both for the partition function as well as for perturbative correlators in N=2 su(N) gauge theory with 2 N fundamental hypermultiplets.

  11. Poly[[aqua(μ2-4,4′-bipyridine-κ2N:N′[μ3-3-bromo-2-(carboxylatomethylbenzoato-κ3O1:O1′:O2]cadmium] monohydrate

    Directory of Open Access Journals (Sweden)

    Yangmei Liu

    2012-08-01

    Full Text Available In the title compound, {[Cd(C9H5BrO4(C10H8N2(H2O]·H2O}n, the CdII atom has a distorted octahedral coordination geometry. Two N atoms from two 4,4′-bipyridine (bipy ligands occupy the axial positions, while the equatorial positions are furnished by three carboxylate O atoms from three 3-bromo-2-(carboxylatomethylbenzoate (bcb ligands and one O atom from a water molecule. The bipy and bcb ligands link the CdII atoms into a three-dimensional network. O—H...O hydrogen bonds and π–π interactions between the pyridine and benzene rings [centroid–centroid distance = 3.736 (4 Å] are present in the crystal.

  12. Diet effects on urine composition of cattle and N2O emissions.

    Science.gov (United States)

    Dijkstra, J; Oenema, O; van Groenigen, J W; Spek, J W; van Vuuren, A M; Bannink, A

    2013-06-01

    Ruminant production contributes to emissions of nitrogen (N) to the environment, principally ammonia (NH3), nitrous oxide (N2O) and di-nitrogen (N2) to air, nitrate (NO3 -) to groundwater and particulate N to surface waters. Variation in dietary N intake will particularly affect excretion of urinary N, which is much more vulnerable to losses than is faecal N. Our objective is to review dietary effects on the level and form of N excreted in cattle urine, as well as its consequences for emissions of N2O. The quantity of N excreted in urine varies widely. Urinary N excretion, in particular that of urea N, is decreased upon reduction of dietary N intake or an increase in the supply of energy to the rumen microorganisms and to the host animal itself. Most of the N in urine (from 50% to well over 90%) is present in the form of urea. Other nitrogenous components include purine derivatives (PD), hippuric acid, creatine and creatinine. Excretion of PD is related to rumen microbial protein synthesis, and that of hippuric acid to dietary concentration of degradable phenolic acids. The N concentration of cattle urine ranges from 3 to 20 g/l. High-dietary mineral levels increase urine volume and lead to reduced urinary N concentration as well as reduced urea concentration in plasma and milk. In lactating dairy cattle, variation in urine volume affects the relationship between milk urea and urinary N excretion, which hampers the use of milk urea as an accurate indicator of urinary N excretion. Following its deposition in pastures or in animal houses, ubiquitous microorganisms in soil and waters transform urinary N components into ammonium (NH4 +), and thereafter into NO3 - and ultimately in N2 accompanied with the release of N2O. Urinary hippuric acid, creatine and creatinine decompose more slowly than urea. Hippuric acid may act as a natural inhibitor of N2O emissions, but inhibition conditions have not been defined properly yet. Environmental and soil conditions at the site of

  13. Soil invertebrate fauna affect N2 O emissions from soil.

    Science.gov (United States)

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. © 2013 John Wiley & Sons Ltd.

  14. Binding water to a PEG-linked flexible bichromophore: IR spectra of diphenoxyethane-(H{sub 2}O){sub n} clusters, n = 2-4

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Patrick S.; Buchanan, Evan G.; Gord, Joseph R.; Zwier, Timothy S., E-mail: zwier@purdue.edu [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084 (United States)

    2015-04-21

    The single-conformation infrared (IR) and ultraviolet (UV) spectroscopies of neutral 1,2-diphenoxyethane-(H{sub 2}O){sub n} clusters with n = 2-4 (labeled henceforth as 1:n) have been studied in a molecular beam using a combination of resonant two-photon ionization, IR-UV holeburning, and resonant ion-dip infrared (RIDIR) spectroscopies. Ground state RIDIR spectra in the OH and CH stretch regions were used to provide firm assignments for the structures of the clusters by comparing the experimental spectra with the predictions of calculations carried out at the density functional M05-2X/6-31+G(d) level of theory. At all sizes in this range, the water molecules form water clusters in which all water molecules engage in a single H-bonded network. Selective binding to the tgt monomer conformer of 1,2-diphenoxyethane (C{sub 6}H{sub 5}-O-CH{sub 2}-CH{sub 2}-O-C{sub 6}H{sub 5}, DPOE) occurs, since this conformer provides a binding pocket in which the two ether oxygens and two phenyl ring π clouds can be involved in stabilizing the water cluster. The 1:2 cluster incorporates a water dimer “chain” bound to DPOE much as it is in the 1:1 complex [E. G. Buchanan et al., J. Phys. Chem. Lett. 4, 1644 (2013)], with primary attachment via a double-donor water that bridges the ether oxygen of one phenoxy group and the π cloud of the other. Two conformers of the 1:3 cluster are observed and characterized, one that extends the water chain to a third molecule (1:3 chain) and the other incorporating a water trimer cycle (1:3 cycle). A cyclic water structure is also observed for the 1:4 cluster. These structural characterizations provide a necessary foundation for studies of the perturbations imposed on the two close-lying S{sub 1}/S{sub 2} excited states of DPOE considered in the adjoining paper [P. S. Walsh et al., J. Chem. Phys. 142, 154304 (2015)].

  15. In vitro characterization of gE negative bovine herpesvirus types 1.1 (BHV-1.1 and 1.2a (BHV-1.2a Caracterização in vitro de herpes vírus bovino tipos 1.1 (BHV-1.1 e 1.2a (BHV-1.2a gE negativos

    Directory of Open Access Journals (Sweden)

    Fernando R. Spilki

    2004-09-01

    Full Text Available This study aimed the in vitro growth characterization of a previously constructed Brazilian bovine herpesvirus 1.2a with a deletion in the glycoprotein E gene (BHV-1.2a gE-. The plaque sizes, penetration and growth kinetics of the Brazilian BHV-1.2a gE- were studied and compared with the parental virus, as well as with a BHV-1.1 gE- recombinant derived from an European BHV-1.1 strain. No statistical differences were observed between the gE- recombinants and the respective parental viruses penetration assays were performed. When single step growth curves were studied, no statistical differences were observed between gE- and parental viruses. However, it was observed that both gE- viruses were excreted from cells in significantly higher titres at 11 hours post infection in comparison with parental viruses. No statistical differences were observed when plaque sizes of parental viruses or gE- viruses we analyzed separately in each cell type. However, both gE- recombinants displayed a significantly reduced plaque areas on three different cell cultures, in comparison with parental viruses, indicating that the lack of gE had the same effect on both BHV-1 subtypes, manifested by a restricted cell-to-cell spread in infected cells.O presente estudo teve como objetivo a caracterização das propriedades de crescimento in vitro de uma amostra brasileira de herpesvírus bovino tipo 1.2a que apresenta uma deleção no gene que codifica a glicoproteína E (BHV-1.2a gE-. Os tamanhos de placa, cinética de penetração e cinética de multiplicação do vírus BHV-1.2a gE- foram estudados e comparados com o vírus parental, bem como com um vírus BHV-1.1 gE- recombinante, o qual é derivado de uma amostra européia de BHV-1.1. Em termos de cinética de penetração, não foram observadas diferenças significativas quando comparados os vírus gE- com os parentais. A determinação da cinética de multiplicação não demonstrou diferenças significativas entre os

  16. (Acetonitrile{2-[bis(pyridin-2-ylmethyl-κ2Namino-κN]-N-(2,6-dimethylphenylacetamide-κO}(perchlorato-κOzinc (acetonitrile{2-[bis(pyridin-2-ylmethyl-κ2Namino-κN]-N-(2,6-dimethylphenylacetamide-κO}zinc tris(perchlorate

    Directory of Open Access Journals (Sweden)

    Ove Alexander Høgmoen Åstrand

    2013-02-01

    Full Text Available In the title salt, [Zn(C22H24N4O(CH3CN][Zn(ClO4(C22H24N4O(CH3CN](ClO43, two differently coordinated zinc cations occur. In the first complex, the metal ion is coordinated by the N,N′,N′′,O-tetradentate acetamide ligand and an acetonitrile N atom, generating an approximate trigonal–bipyramidal coordination geometry, with the O atom in an equatorial site and the acetonitrile N atom in an axial site. In the second complex ion, a perchlorate ion is also bonded to the zinc ion, generating a distorted trans-ZnO2N4 octahedron. Of the uncoordinating perchlorate ions, one lies on a crystallographic twofold axis and one lies close to a twofold axis and has a site occupancy of 0.5. N—H...O and N—H...(O,O hydrogen bonds are observed in the crystal. Disordered solvent molecules occupy about 11% of the unit-cell volume; their contribution to the scattering was removed with the SQUEEZE routine of the PLATON program [Spek (2009. Acta Cryst. D65, 148–155.].

  17. Visible Light Photoelectrochemical Properties of N-Doped TiO2 Nanorod Arrays from TiN

    Directory of Open Access Journals (Sweden)

    Zheng Xie

    2013-01-01

    Full Text Available N-doped TiO2 nanorod arrays (NRAs were prepared by annealing the TiN nanorod arrays (NRAs which were deposited by using oblique angle deposition (OAD technique. The TiN NRAs were annealed at 330°C for different times (5, 15, 30, 60, and 120 min. The band gaps of annealed TiN NRAs (i.e., N-doped TiO2 NRAs show a significant variance with annealing time, and can be controlled readily by varying annealing time. All of the N-doped TiO2 NRAs exhibit an enhancement in photocurrent intensity in visible light compared with that of pure TiO2 and TiN, and the one annealed for 15 min shows the maximum photocurrent intensity owning to the optimal N dopant concentration. The results show that the N-doped TiO2 NRAs, of which the band gap can be tuned easily, are a very promising material for application in photocatalysis.

  18. Constraints on global oceanic emissions of N2O from observations and models

    Science.gov (United States)

    Buitenhuis, Erik T.; Suntharalingam, Parvadha; Le Quéré, Corinne

    2018-04-01

    We