WorldWideScience

Sample records for nf kappa b-dependent

  1. EWS-FLI1 inhibits TNF{alpha}-induced NF{kappa}B-dependent transcription in Ewing sarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lagirand-Cantaloube, Julie, E-mail: julie.cantaloube@crbm.cnrs.fr [UMR8113 CNRS, LBPA, Ecole Normale Superieure, Cachan (France); Laud, Karine, E-mail: karine.laud@curie.fr [U830 INSERM, Institut Curie, Paris (France); Institut Curie, Genetique et biologie des cancers, Paris (France); Lilienbaum, Alain, E-mail: alain.lilienbaum@univ-paris-diderot.fr [EA300 Universite Paris 7, Stress et pathologies du cytosquelette, Paris (France); Tirode, Franck, E-mail: franck.tirode@curie.fr [U830 INSERM, Institut Curie, Paris (France); Institut Curie, Genetique et biologie des cancers, Paris (France); Delattre, Olivier, E-mail: olivier.delattre@curie.fr [U830 INSERM, Institut Curie, Paris (France); Institut Curie, Genetique et biologie des cancers, Paris (France); Auclair, Christian, E-mail: auclair@lbpa.ens-cachan.fr [UMR8113 CNRS, LBPA, Ecole Normale Superieure, Cachan (France); Kryszke, Marie-Helene, E-mail: kryszke@lbpa.ens-cachan.fr [UMR8113 CNRS, LBPA, Ecole Normale Superieure, Cachan (France)

    2010-09-03

    Research highlights: {yields} EWS-FLI1 interferes with TNF-induced activation of NF{kappa}B in Ewing sarcoma cells. {yields} EWS-FLI1 knockdown in Ewing sarcoma cells increases TNF-induced NF{kappa}B binding to DNA. {yields} EWS-FLI1 reduces TNF-stimulated NF{kappa}B-dependent transcriptional activation. {yields} Constitutive NF{kappa}B activity is not affected by EWS-FLI1. {yields} EWS-FLI1 physically interacts with NF{kappa}B p65 in vivo. -- Abstract: Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NF{kappa}B) is a tightly regulated transcription factor controlling cell survival, proliferation and differentiation, as well as tumorigenesis. NF{kappa}B activity is very low in unstimulated Ewing sarcoma cells, but can be induced in response to tumor necrosis factor (TNF). We wondered whether NF{kappa}B activity could be modulated by EWS-FLI1 in Ewing sarcoma. Using a knockdown approach in Ewing sarcoma cells, we demonstrated that EWS-FLI1 has no influence on NF{kappa}B basal activity, but impairs TNF-induced NF{kappa}B-driven transcription, at least in part through inhibition of NF{kappa}B binding to DNA. We detected an in vivo physical interaction between the fusion protein and NF{kappa}B p65, which could mediate these effects. Our findings suggest that, besides directly controlling the activity of its primary target promoters, EWS-FLI1 can also indirectly influence gene expression in tumor cells by modulating the activity of key transcription factors such as NF{kappa}B.

  2. Denbinobin, a naturally occurring 1,4-phenanthrenequinone, inhibits HIV-1 replication through an NF-kappaB-dependent pathway.

    Science.gov (United States)

    Sánchez-Duffhues, Gonzalo; Calzado, Marco A; de Vinuesa, Amaya García; Caballero, Francisco J; Ech-Chahad, Abdellah; Appendino, Giovanni; Krohn, Karsten; Fiebich, Bernd L; Muñoz, Eduardo

    2008-11-15

    Anthraquinones and structurally related compounds have been recently shown to exert antiviral activities and thus exhibit a therapeutic potential. In this study we report the isolation of the 1,4-phenanthrenequinone, denbinobin, from a variety of Cannabis sativa. Denbinobin does not affect the reverse transcription and integration steps of the viral cycle but prevents HIV-1 reactivation in Jurkat T cells activated by TNFalpha, mAbs anti-CD3/CD28 or PMA. In addition, denbinobin inhibits HIV-1-LTR activity at the level of transcription elongation and also TNFalpha-induced HIV-1-LTR transcriptional activity. We found that denbinobin prevents the binding of NF-kappaB to DNA and the phosphorylation and degradation of NF-kappaB inhibitory protein, IkappaBalpha, and inhibits the phosphorylation of the NF-kappaB p65 subunit in TNFalpha-stimulated cells. These results highlight the potential of the NF-kappaB transcription factor as a target for natural anti-HIV-1 compounds such as 1,4-phenanthrenequinones, which could serve as lead compounds for the development of an alternative therapeutic approach against AIDS.

  3. Influenza A virus inhibits type I IFN signaling via NF-kappaB-dependent induction of SOCS-3 expression.

    Directory of Open Access Journals (Sweden)

    Eva-K Pauli

    2008-11-01

    Full Text Available The type I interferon (IFN system is a first line of defense against viral infections. Viruses have developed various mechanisms to counteract this response. So far, the interferon antagonistic activity of influenza A viruses was mainly observed on the level of IFNbeta gene induction via action of the viral non-structural protein 1 (NS1. Here we present data indicating that influenza A viruses not only suppress IFNbeta gene induction but also inhibit type I IFN signaling through a mechanism involving induction of the suppressor of cytokine signaling-3 (SOCS-3 protein. Our study was based on the observation that in cells that were infected with influenza A virus and subsequently stimulated with IFNalpha/beta, phosphorylation of the signal transducer and activator of transcription protein 1 (STAT1 was strongly reduced. This impaired STAT1 activation was not due to the action of viral proteins but rather appeared to be induced by accumulation of viral 5' triphosphate RNA in the cell. SOCS proteins are potent endogenous inhibitors of Janus kinase (JAK/STAT signaling. Closer examination revealed that SOCS-3 but not SOCS-1 mRNA levels increase in an RNA- and nuclear factor kappa B (NF-kappaB-dependent but type I IFN-independent manner early in the viral replication cycle. This direct viral induction of SOCS-3 mRNA and protein expression appears to be relevant for suppression of the antiviral response since in SOCS-3 deficient cells a sustained phosphorylation of STAT1 correlated with elevated expression of type I IFN-dependent genes. As a consequence, progeny virus titers were reduced in SOCS-3 deficient cells or in cells were SOCS-3 expression was knocked-down by siRNA. These data provide the first evidence that influenza A viruses suppress type I IFN signaling on the level of JAK/STAT activation. The inhibitory effect is at least in part due to the induction of SOCS-3 gene expression, which results in an impaired antiviral response.

  4. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    LENUS (Irish Health Repository)

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  5. IL-20 gene expression is induced by IL-1beta through mitogen-activated protein kinase and NF-kappaB-dependent mechanisms

    DEFF Research Database (Denmark)

    Otkjaer, Kristian; Kragballe, Knud; Johansen, Claus

    2007-01-01

    IL-20 is a novel member of the IL-10 cytokine family with pleiotropic effects. Current knowledge of what triggers and regulates IL-20 gene expression is sparse. The aim of this study was to investigate the regulation of IL-20 expression in cultured normal human keratinocytes. The expression of IL...... the p38 MAPK, MSK1, and NF-kappaB may be important new molecular targets for the modulation of IL-20 expression in these diseases. Udgivelsesdato: 2007-Jun...... activation of the downstream kinase mitogen- and stress-activated kinase 1 (MSK1), indicating transactivation of NF-kappaB driven IL-20 messenger RNA transcription as an important mechanism of action. IL-20 is assumed to be a key cytokine in the pathogenesis of psoriasis and possibly cancer, and therefore...

  6. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-kappaB-dependent mechanisms.

    Science.gov (United States)

    Cho, Hyun-Ji; Jeong, Yun-Jeong; Park, Kwan-Kyu; Park, Yoon-Yub; Chung, Il-Kyung; Lee, Kwang-Gill; Yeo, Joo-Hong; Han, Sang-Mi; Bae, Young-Seuk; Chang, Young-Chae

    2010-02-17

    Bee venom has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and for the relief of pain in traditional oriental medicine. The purpose of this study is to elucidate the effects of bee venom on MMP-9 expression and determine possible mechanisms by which bee venom relieves or prevents the expression of MMP-9 during invasion and metastasis of breast cancer cells. We examined the expression and activity of MMP-9 and possible signaling pathway affected in PMA-induced MCF-7 cells. Bee venom was obtained from the National Institute of Agricultural Science and Technology of Korea. Matrigel invasion assay, wound-healing assay, zymography assay, western blot assay, electrophoretic mobility shift assay and luciferase gene assay were used for assessment. Bee venom inhibited cell invasion and migration, and also suppressed MMP-9 activity and expression, processes related to tumor invasion and metastasis, in PMA-induced MCF-7 cells. Bee venom specifically suppressed the phosphorylation of p38/JNK and at the same time, suppressed the protein expression, DNA binding and promoter activity of NF-kappaB. The levels of phosphorylated ERK1/2 and c-Jun did not change. We also investigated MMP-9 inhibition by melittin, apamin and PLA(2), representative single component of bee venom. We confirmed that PMA-induced MMP-9 activity was significantly decreased by melittin, but not by apamin and phospholipase A(2). These data demonstrated that the expression of MMP-9 was abolished by melittin, the main component of bee venom. Bee venom inhibits PMA-induced MMP-9 expression and activity by inhibition of NF-kappaB via p38 MAPK and JNK signaling pathways in MCF-7 cells. These results indicate that bee venom can be a potential anti-metastatic and anti-invasive agent. This useful effect may lead to future clinical research on the anti-cancer properties of bee venom. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-κB-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Susan F.; Fábián, Zsolt; Schaible, Bettina; Lenihan, Colin R.; Schwarzl, Thomas [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Rodriguez, Javier [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Zheng, Xingnan; Li, Zongwei [Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC (United States); Tambuwala, Murtaza M. [School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland (United Kingdom); Higgins, Desmond G.; O' Meara, Yvonne [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Slattery, Craig [School of Biomolecular and Biomedical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Manresa, Mario C. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); Fraisl, Peter; Bruning, Ulrike [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Baes, Myriam [Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven (Belgium); Carmeliet, Peter; Doherty, Glen [Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Vesalius Research Center, VIB, B-3000 (Belgium); Kriegsheim, Alex von [Systems Biology Ireland, University College Dublin, Dublin 4 (Ireland); Cummins, Eoin P. [School of Medicine and Medical Science, The Conway Institute, University College Dublin, Belfield, Dublin 4 Ireland (Ireland); and others

    2016-06-03

    Hepatocyte death is an important contributing factor in a number of diseases of the liver. PHD1 confers hypoxic sensitivity upon transcription factors including the hypoxia inducible factor (HIF) and nuclear factor-kappaB (NF-κB). Reduced PHD1 activity is linked to decreased apoptosis. Here, we investigated the underlying mechanism(s) in hepatocytes. Basal NF-κB activity was elevated in PHD1{sup −/−} hepatocytes compared to wild type controls. ChIP-seq analysis confirmed enhanced binding of NF-κB to chromatin in regions proximal to the promoters of genes involved in the regulation of apoptosis. Inhibition of NF-κB (but not knock-out of HIF-1 or HIF-2) reversed the anti-apoptotic effects of pharmacologic hydroxylase inhibition. We hypothesize that PHD1 inhibition leads to altered expression of NF-κB-dependent genes resulting in reduced apoptosis. This study provides new information relating to the possible mechanism of therapeutic action of hydroxylase inhibitors that has been reported in pre-clinical models of intestinal and hepatic disease. -- Highlights: •Genetic ablation of PHD1 upregulates NF-kappaB (NF-κB) in hepatocytes. •Activation of NF-κB leads to differential DNA-binding of p50/p65 and results in differential regulation of apoptotic genes. •We identified proline 191 in the beta subunit of the I-kappaB kinase as a target for PHD1-mediated hydroxylation. •Blockade of prolyl-4-hydroxylases has been found cytoprotective in liver cells.

  8. NF-kappaB-driven STAT2 and CCL2 expression in astrocytes in response to brain injury

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Babcock, Alicia A; Owens, Trevor

    2008-01-01

    -regulation and phosphorylation were NF-kappaB -dependent since they did not occur in the lesion-reactive hippocampus of transgenic mice with specific inhibition of NF-kappaB activation in astrocytes. We further showed that lack of NF-kappaB signaling significantly reduced injury-induced CCL2 expression as well as leukocyte...... infiltration. Our results suggest that NF-kappaB signaling in astrocytes controls expression of both STAT2 and CCL2, and thus regulates infiltration of leukocytes into lesion-reactive hippocampus after axonal injury. Taken together, these findings indicate a central role for astrocytes in directing immune...

  9. Mustard NPR1, a mammalian I{kappa}B homologue inhibits NF-{kappa}B activation in human GBM cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Kesanakurti, Divya [Department of Plant Sciences, University of Hyderabad, Hyderabad (India); Sareddy, Gangadhara Reddy [Department of Bio-technology and Animal Sciences, University of Hyderabad, Hyderabad (India); Babu, Phanithi Prakash, E-mail: ppbsl@uohyd.ernet.in [Department of Bio-technology and Animal Sciences, University of Hyderabad, Hyderabad (India); Kirti, Pulugurtha Bharadwaja, E-mail: pbksl@uohyd.ernet.in [Department of Plant Sciences, University of Hyderabad, Hyderabad (India)

    2009-12-18

    NF-{kappa}B activity is tightly regulated by I{kappa}B class of proteins. I{kappa}B proteins possess ankyrin repeats for binding to and inhibiting NF-{kappa}B. The regulatory protein, NPR1 from Brassica juncea possesses ankyrin repeats with sequence similarity to I{kappa}B{alpha} subgroup. Therefore, we examined whether stably expressed BjNPR1 could function as I{kappa}B in inhibiting NF-{kappa}B in human glioblastoma cell lines. We observed that BjNPR1 bound to NF-{kappa}B and inhibited its nuclear translocation. Further, BjNPR1 expression down-regulated the NF-{kappa}B target genes iNOS, Cox-2, c-Myc and cyclin D1 and reduced the proliferation rate of U373 cells. Finally, BjNPR1 decreased the levels of pERK, pJNK and PKC{alpha} and increased the Caspase-3 and Caspase-8 activities. These results suggested that inhibition of NF-{kappa}B activation by BjNPR1 can be a promising therapy in NF-{kappa}B dependent pathologies.

  10. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    Science.gov (United States)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  11. Asterias rubens: Evidence of NF-kappa B genes.

    Science.gov (United States)

    Leclerc, Michel; Kresdorn, Nicolas; Horres, Ralf

    2016-06-01

    In the present paper we show a survey of the Asterias rubens sea star genome for genes associated with NF-kappa-B proteins implied in the immune response. The NF-kappa B gene, into 2 subunits, was found in this invertebrate.

  12. NF-kappaB-driven STAT2 and CCL2 expression in astrocytes in response to brain injury

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Babcock, Alicia A; Owens, Trevor

    2008-01-01

    -regulation and phosphorylation were NF-kappaB -dependent since they did not occur in the lesion-reactive hippocampus of transgenic mice with specific inhibition of NF-kappaB activation in astrocytes. We further showed that lack of NF-kappaB signaling significantly reduced injury-induced CCL2 expression as well as leukocyte...... infiltration. Our results suggest that NF-kappaB signaling in astrocytes controls expression of both STAT2 and CCL2, and thus regulates infiltration of leukocytes into lesion-reactive hippocampus after axonal injury. Taken together, these findings indicate a central role for astrocytes in directing immune...... induces glial response. Astrocytes are the major glial population in the CNS. We examined expression of STATs and the chemokine CCL2 and their relationship to astroglial NF-kappaB signaling in the CNS following axonal transection. Double labeling with Mac-1/CD11b and glial fibrillary acidic protein...

  13. Uncaria tomentosa acts as a potent TNF-alpha inhibitor through NF-kappaB.

    Science.gov (United States)

    Allen-Hall, Lisa; Arnason, John T; Cano, Pablo; Lafrenie, Robert M

    2010-02-17

    Uncaria tomentosa, commonly known as Cat's Claw or Uña de gato, is a medicinal plant that has been shown to have effective anti-inflammatory activities. We have previously shown that treatment of monocyte-like THP-1 cells with Uncaria tomentosa inhibits the production of the pro-inflammatory cytokine TNF-alpha while augmenting the production of IL-1beta. Since TNF-alpha and IL-1beta are usually regulated similarly and share a number of common promoter elements, including NF-kappaB and AP-1, the ability of Uncaria tomentosa to differentially regulate these inflammatory cytokines is of particular interest. To determine the mechanism of action of Uncaria tomentosa, we investigated the effects of specific inhibitors of NF-kappaB on cellular responses including transcription factor activation using TransAM assays, the expression of cytokines as measured by ELISA, and cell survival as measured by changes in cell number following treatment. Treatment with Uncaria tomentosa inhibited the LPS-dependent activation of specific NF-kappaB and AP-1 components. In addition, treatment with Uncaria tomentosa enhanced cell death when NF-kappaB was inhibited. The ability of Uncaria tomentosa to inhibit TNF-alpha production was diminished when NF-kappaB activation was prevented by drugs that mask NF-kappaB subunit nuclear localization signals, while IL-1beta expression was unchanged. These results demonstrate that Uncaria tomentosa is able to elicit a response via an NF-kappaB-dependent mechanism. Further studies to characterize the mechanism by which Uncaria tomentosa can affect this pathway could provide a means to develop anti-TNF-alpha therapies. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  14. Dynamic protein complexes regulate NF-kappaB signaling.

    Science.gov (United States)

    Wegener, E; Krappmann, D

    2008-01-01

    NF-kappaB is a major regulator of the first-line defense against invading pathogens, antigen-specific adaptive immune responses or chemical stress. Stimulation either by extracellular ligands (e.g., inflammatory cytokines, microbial pathogens, peptide antigens) or by intracellular Stressors (e.g., genotoxic drugs) initiates signal-specific pathways that all converge at the IkappaB kinase (IKK) complex, the gatekeeper for NF-kappaB activation. During recent years, considerable progress has been made in understanding the function of NF-kappaB in the regulation of cell growth, survival and apoptosis. In this review, we will focus on the regulation of large signaling complexes on the route to NF-kappaB. Recently published data demonstrate that the assembly, maintenance and activity of the IKK complex determine downstream activation of NF-kappaB. In addition, dynamic complexes upstream of IKK are formed in response to tumor necrosis factor (TNF), antigenic peptides or DNA-damaging agents. Clustering of signaling adaptors promotes the association and activation of ubiquitin ligases that trigger the conjugation of regulatory ubiquitin to target proteins. Ubiquitination serves as a platform to recruit the IKK complex and potentially other protein kinases to trigger IKK activation. These findings support a concept whereby protein complex assembly induces regulatory ubiquitination, which in turn recruits and activates protein kinases. Notably, the great interest in a detailed description of the mechanisms that regulate NF-kappaB activity stems from many observations that link dysregulated NF-kappaB signaling with the onset or progression of various diseases, including cancer, chronic inflammation, cardiovascular disorders and neurodegenerative diseases. Thus, the formation of large signaling clusters and regulatory ubiquitin chains represents promising targets for pharmacological intervention to modulate NF-kappaB signal transduction in disease.

  15. Picroside II Shows Protective Functions for Severe Acute Pancreatitis in Rats by Preventing NF-κB-Dependent Autophagy

    Directory of Open Access Journals (Sweden)

    Xuehua Piao

    2017-01-01

    Full Text Available Picroside II, from the herb Picrorhiza scrophulariiflora Pennell, has antioxidant and anti-inflammatory activities. However, its function on severe acute pancreatitis (SAP and molecular mechanism remains unknown. The effects of picroside II on the SAP induced by cerulean were investigated. SAP rats were treated with picroside II (25 mg/kg. The severity of SAP was evaluated by using biochemical and histological analyses. Pancreatic cancer cell PANC-1 was transfected with ptfLC3 (an indicator of autophagic activity, pcDNA3.1-NF-κB (nuclear factor kappa B, and pTZU6+1-NF-κB-shRNA and then treated with picroside II. Relative molecules related with NF-κB-dependent autophagy were detected by using Western blot. Autophagic activities were observed by phase-contrast and fluorescent microscopes. Acetylated LC3 was detected by immunoprecipitation. The results showed that picroside II treatment reduced the level of ALT, AST, NF-κB, IL-1β, IL-6, TNF-α, and SIRT1 (NAD+-dependent deacetylase and increased the level of SOD and GSH. The autophagic activity was reduced when NF-κB was silenced, and the levels of TNF-α and SIRT1 were reduced. In contrast, the overexpression of NF-κB increased autophagic activity and the level of TNF-α, which activated SIRT1. SIRT1 deacetylated LC3 and increased autophagic activities. Picroside II ameliorates SAP by improving antioxidant and anti-inflammtory activities of SAP models via NF-κB-dependent autophagy.

  16. Regulation of development and function of different T cell subtypes by Rel/NF-{kappa}B family members

    Energy Technology Data Exchange (ETDEWEB)

    Vallabhapurapu, S.

    2004-09-01

    This study reveals the requirement of distinct members of the Rel/NF-{kappa}B family in both hematopoietic and non-hematopoietic cells for the development of thymic NKT cells. Activation of NF-{kappa}B via the classical I{kappa}B{alpha}-regulated pathway is required within the NKT precursors for their efficient maturation from NK1.1{sup -} precursors to mature NK1.1{sup +} NKT cells. The Rel/NF-{kappa}B family member RelB, on the other hand, is required in thymic stromal cells for the generation of very early NK1.1{sup -} precursors. NF-{kappa}B-inducing kinase (NIK) has also been shown to be required in thymic stromal cells for NKT cell development and this study demonstrates that NIK specifically regulates both constitutive and signal-induced DNA binding of RelB, but not RelA. Moreover, NIK-induced DNA binding of RelB depends on the processing of inhibitory p100 to p52, revealing an alternate pathway of NF-{kappa}B induction. Thus, Rel/NF-{kappa}B complexes activated by the classical I{kappa}B{alpha}-regulated pathway in NKT precursors and an alternate NIK/p100/RelB pathway in thymic stromal cells regulate different stages of NKT cell development. (orig.)

  17. IKKε modulates RSV-induced NF-κB-dependent gene transcription

    International Nuclear Information System (INIS)

    Bao Xiaoyong; Indukuri, Hemalatha; Liu Tianshuang; Liao Suiling; Tian, Bing; Brasier, Allan R.; Garofalo, Roberto P.; Casola, Antonella

    2010-01-01

    Respiratory syncytial virus (RSV), a negative-strand RNA virus, is the most common cause of epidemic respiratory disease in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-κB (NF-κB). In this study we have investigated the role of the non canonical IκB kinase (IKK)ε in modulating RSV-induced NF-κB activation. Our results show that inhibition of IKKε activation results in significant impairment of viral-induced NF-κB-dependent gene expression, through a reduction in NF-κB transcriptional activity, without changes in nuclear translocation or DNA-binding activity. Absence of IKKε results in a significant decrease of RSV-induced NF-κB phosphorylation on serine 536, a post-translational modification important for RSV-induced NF-κB-dependent gene expression, known to regulate NF-κB transcriptional activity without affecting nuclear translocation. This study identifies a novel mechanism by which IKKε regulates viral-induced cellular signaling.

  18. Interactions among oscillatory pathways in NF-kappa B signaling

    Directory of Open Access Journals (Sweden)

    White Michael RH

    2011-02-01

    Full Text Available Abstract Background Sustained stimulation with tumour necrosis factor alpha (TNF-alpha induces substantial oscillations—observed at both the single cell and population levels—in the nuclear factor kappa B (NF-kappa B system. Although the mechanism has not yet been elucidated fully, a core system has been identified consisting of a negative feedback loop involving NF-kappa B (RelA:p50 hetero-dimer and its inhibitor I-kappa B-alpha. Many authors have suggested that this core oscillator should couple to other oscillatory pathways. Results First we analyse single-cell data from experiments in which the NF-kappa B system is forced by short trains of strong pulses of TNF-alpha. Power spectra of the ratio of nuclear-to-cytoplasmic concentration of NF-kappa B suggest that the cells' responses are entrained by the pulsing frequency. Using a recent model of the NF-kappa B system due to Caroline Horton, we carried out extensive numerical simulations to analyze the response frequencies induced by trains of pulses of TNF-alpha stimulation having a wide range of frequencies and amplitudes. These studies suggest that for sufficiently weak stimulation, various nonlinear resonances should be observable. To explore further the possibility of probing alternative feedback mechanisms, we also coupled the model to sinusoidal signals with a wide range of strengths and frequencies. Our results show that, at least in simulation, frequencies other than those of the forcing and the main NF-kappa B oscillator can be excited via sub- and superharmonic resonance, producing quasiperiodic and even chaotic dynamics. Conclusions Our numerical results suggest that the entrainment phenomena observed in pulse-stimulated experiments is a consequence of the high intensity of the stimulation. Computational studies based on current models suggest that resonant interactions between periodic pulsatile forcing and the system's natural frequencies may become evident for sufficiently

  19. DMPD: New insights into NF-kappaB regulation and function. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18775672 New insights into NF-kappaB regulation and function. Sun SC, Ley SC. Trend...s Immunol. 2008 Oct;29(10):469-78. Epub 2008 Sep 3. (.png) (.svg) (.html) (.csml) Show New insights into NF-...kappaB regulation and function. PubmedID 18775672 Title New insights into NF-kappaB regulation and function.

  20. NF-kappaB activity marks cells engaged in receptor editing.

    Science.gov (United States)

    Cadera, Emily J; Wan, Fengyi; Amin, Rupesh H; Nolla, Hector; Lenardo, Michael J; Schlissel, Mark S

    2009-08-03

    Because of the extreme diversity in immunoglobulin genes, tolerance mechanisms are necessary to ensure that B cells do not respond to self-antigens. One such tolerance mechanism is called receptor editing. If the B cell receptor (BCR) on an immature B cell recognizes self-antigen, it is down-regulated from the cell surface, and light chain gene rearrangement continues in an attempt to edit the autoreactive specificity. Analysis of a heterozygous mutant mouse in which the NF-kappaB-dependent IkappaB alpha gene was replaced with a lacZ (beta-gal) reporter complementary DNA (cDNA; IkappaB alpha(+/lacZ)) suggests a potential role for NF-kappaB in receptor editing. Sorted beta-gal(+) pre-B cells showed increased levels of various markers of receptor editing. In IkappaB alpha(+/lacZ) reporter mice expressing either innocuous or self-specific knocked in BCRs, beta-gal was preferentially expressed in pre-B cells from the mice with self-specific BCRs. Retroviral-mediated expression of a cDNA encoding an IkappaB alpha superrepressor in primary bone marrow cultures resulted in diminished germline kappa and rearranged lambda transcripts but similar levels of RAG expression as compared with controls. We found that IRF4 transcripts were up-regulated in beta-gal(+) pre-B cells. Because IRF4 is a target of NF-kappaB and is required for receptor editing, we suggest that NF-kappaB could be acting through IRF4 to regulate receptor editing.

  1. Mycobacterium leprae induces NF-κB-dependent transcription repression in human Schwann cells

    International Nuclear Information System (INIS)

    Pereira, Renata M.S.; Calegari-Silva, Teresa Cristina; Hernandez, Maristela O.; Saliba, Alessandra M.; Redner, Paulo; Pessolani, Maria Cristina V.; Sarno, Euzenir N.; Sampaio, Elizabeth P.; Lopes, Ulisses G.

    2005-01-01

    Mycobacterium leprae, the causative agent of leprosy, invades peripheral nerve Schwann cells, resulting in deformities associated with this disease. NF-κB is an important transcription factor involved in the regulation of host immune antimicrobial responses. We aimed in this work to investigate NF-κB signaling pathways in the human ST88-14 Schwannoma cell line infected with M. leprae. Gel shift and supershift assays indicate that two NF-κB dimers, p65/p50 and p50/p50, translocate to the nucleus in Schwann cells treated with lethally irradiated M. leprae. Consistent with p65/p50 and p50/p50 activation, we observed IκB-α degradation and reduction of p105 levels. The nuclear translocation of p50/p50 complex due to M. leprae treatment correlated with repression of NF-κB-driven transcription induced by TNF-α. Moreover, thalidomide inhibited p50 homodimer nuclear translocation induced by M. leprae and consequently rescues Schwann cells from NF-κB-dependent transcriptional repression. Here, we report for the first time that M. leprae induces NF-κB activation in Schwann cells and thalidomide is able to modulate this activation

  2. NF-kappa B activity in T cells stably expressing the Tax protein of human T cell lymphotropic virus type I

    International Nuclear Information System (INIS)

    Lacoste, J.; Cohen, L.; Hiscott, J.

    1991-01-01

    The effect of constitutive Tax expression on the interaction of NF-κ B with its recognition sequence and on NFB-dependent gene expression was examined in T lymphoid Jurkat cell lines (19D and 9J) stably transformed with a Tax expression vector. Tax expressing T cell lines contained a constitutive level of NF-κ B binding activity, detectable by mobility shift assay and uv cross-linking using a palindromic NF-κ B probe homologous to the interferon beta PRDII site. In Jurkat and NC2.10 induction with phorbol esters resulted in the appearance of new DNA binding proteins of 85, 75, and 54 kDa, whereas in Tax expressing cells the 85-kDa protein and a 92-kDa DNA binding protein were constitutively induced. Expression of Tax protein in 19D and 9J resulted in transcription of the endogenous NF-kappa B-dependent granulocyte-macrophage colony stimulating factor gene and increased basal level expression of transfected NF-kappa B-regulated promoters. Nonetheless transcription of both the endogenous and the transfected gene was inducible by PMA treatment. Tax expression in Jurkat T cells may alter the stoichiometry of NF-kappa B DNA binding proteins and thus change the expression of NF-kappa B-regulated promoters

  3. Sequestration of NF-kappaB signaling complexes in lipid rafts contributes to repression of NF-kappaB in T lymphocytes under hyperthermia stress.

    Science.gov (United States)

    Yan, Guang; Huang, Jiannan; Jarbadan, Nancy Ruth; Jiang, Yixing; Cheng, Hua

    2008-05-02

    Sepsis causes extensive apoptosis of lymphocytes, a pathological condition that is frequently associated with hyperthermia. Heat stress has been implicated to repress the activation of an inflammatory mediator, nuclear factor of kappaB (NF-kappaB), which sensitizes cells to apoptosis mediated by inflammatory cytokine, tumor necrosis factor alpha. However, the molecular mechanism of hyperthermia-associated loss of T cells remains unclear. We show that hyperthermia causes rapid translocation of IkappaB kinase (IKK) and NF-kappaB complexes into the plasma membrane-associated lipid rafts in T cells. Heat stress induces aggregation of Carma1 in lipid rafts, which in turn recruits protein kinase C theta (PKC theta) and Bcl10 to the microdomains, causing subsequent membrane translocation of the IKK and NF-kappaB signalosomes. Depletion of Carma1 and inhibition of PKC theta impair accumulation of NF-kappaB complexes in lipid rafts. Heat stress prohibits IkappaB kinase activity by sequestrating the IKK and NF-kappaB complexes in lipid rafts and by segregating the chaperone protein Hsp90, an essential cofactor for IKK, from the IKK complex. This process ultimately results in functional deficiency of NF-kappaB and renders T cells resistant to tumor necrosis factor alpha-induced activation of IKK, thereby contributing to the apoptotic loss of T lymphocytes in sepsis-associated hyperthermia.

  4. NF-kappaB signaling: a tale of two pathways in skeletal myogenesis.

    Science.gov (United States)

    Bakkar, Nadine; Guttridge, Denis C

    2010-04-01

    NF-kappaB is a ubiquitiously expressed transcription factor that plays vital roles in innate immunity and other processes involving cellular survival, proliferation, and differentiation. Activation of NF-kappaB is controlled by an IkappaB kinase (IKK) complex that can direct either canonical (classical) NF-kappaB signaling by degrading the IkappaB inhibitor and releasing p65/p50 dimers to the nucleus, or causes p100 processing and nuclear translocation of RelB/p52 via a noncanonical (alternative) pathway. Under physiological conditions, NF-kappaB activity is transiently regulated, whereas constitutive activation of this transcription factor typically in the classical pathway is associated with a multitude of disease conditions, including those related to skeletal muscle. How NF-kappaB functions in muscle diseases is currently under intense investigation. Insight into this role of NF-kappaB may be gained by understanding at a more basic level how this transcription factor contributes to skeletal muscle cell differentiation. Recent data from knockout mice support that the classical NF-kappaB pathway functions as an inhibitor of skeletal myogenesis and muscle regeneration acting through multiple mechanisms. In contrast, alternative NF-kappaB signaling does not appear to be required for myofiber conversion, but instead functions in myotube homeostasis by regulating mitochondrial biogenesis. Additional knowledge of these signaling pathways in skeletal myogenesis should aid in the development of specific inhibitors that may be useful in treatments of muscle disorders.

  5. RPAP3 enhances cytotoxicity of doxorubicin by impairing NF-kappa B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Kana [Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka (Japan); Department of Oral and Maxillofacial Surgery II, Osaka University (Japan); Saeki, Makio, E-mail: msaeki@dent.osaka-u.ac.jp [Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka (Japan); Egusa, Hiroshi; Fukuyasu, Sho [Department of Fixed Prosthodontics, Osaka University (Japan); Yura, Yoshiaki [Department of Oral and Maxillofacial Surgery II, Osaka University (Japan); Iwai, Kazuhiro [Department of Biophysics and Biochemistry, Graduate School of Medicine and Cell Biology and Metabolism Group, Graduate School of Frontier Biosciences, Osaka University (Japan); Kamisaki, Yoshinori [Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka (Japan)

    2011-01-28

    Research highlights: {yields} RNA polymerase II-associated protein 3 (RPAP3) possesses an activity to bind with NEMO and to inhibit the ubiquitination of NEMO. {yields} RPAP3 enhances doxorubicin-induced cell death in breast cancer cell line T-47D through the marked impairment of NF-{kappa}B pathway. {yields} RPAP3 is a novel modulator of NF-{kappa}B pathway in apoptosis induced by anti-cancer chemotherapeutic agents. -- Abstract: Activation of anti-apoptotic gene transcription by NF-{kappa}B (nuclear factor-kappa B) has been reported to be linked with a resistance of cancer cells against chemotherapy. NEMO (NF-{kappa}B essential modulator) interacts with a number of proteins and modulates the activity of NF-{kappa}B pathway. In this study, we revealed that RPAP3 (RNA polymerase II-associated protein 3) possesses an activity to bind with NEMO and to inhibit the ubiquitination of NEMO and that RPAP3 enhances doxorubicin-induced cell death in breast cancer cell line T-47D through the marked impairment of NF-{kappa}B pathway. These results indicate that RPAP3 may be a novel modulator of NF-{kappa}B pathway in apoptosis induced by anti-cancer chemotherapeutic agents.

  6. DMPD: Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16982211 Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Wullaer...vg) (.html) (.csml) Show Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. PubmedID 16982211 Title Ubiq

  7. Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NF-κB-dependent transcription.

    Science.gov (United States)

    Ding, Deqiang; Xi, Peng; Zhou, Junzhi; Wang, Miao; Cong, Yu-Sheng

    2013-11-01

    Telomerase plays a pivotal role in the pathology of aging and cancer by controlling telomere length and integrity. However, accumulating evidence indicates that telomerase reverse transcriptase may have fundamental biological functions independent of its enzymatic activity in telomere maintenance. In this study, the ectopic expression of human telomerase reverse transcriptase (hTERT) and its catalytic mutant hTERT K626A induced cancer cell invasion accompanied by the up-regulation of the metalloproteinases (MMPs) MMP1, -3, -9, and -10. Both hTERT and hTERT K626A induced MMP9 mRNA expression and promoter activity in an NF-κB-dependent manner. hTERT and hTERT K626A also regulated the expression of several NF-κB target genes in cancer cell lines. Furthermore, both hTERT and hTERT K626A interacted with NF-κB p65 and increased NF-κB p65 nuclear accumulation and DNA binding. A mammalian 1-hybrid assay showed a functional interplay between hTERT and NF-κB p65 that may mediate NF-κB-dependent transcription activation in cells. Together, these data reveal a telomere-independent role for telomerase as a transcriptional modulator of the NF-κB signaling pathway and a possible contributor to cancer development and progression.

  8. DMPD: NF-kappaB activation by reactive oxygen species: fifteen years later. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16723122 NF-kappaB activation by reactive oxygen species: fifteen years later. Gloi...svg) (.html) (.csml) Show NF-kappaB activation by reactive oxygen species: fifteen years later. PubmedID 167...23122 Title NF-kappaB activation by reactive oxygen species: fifteen years later.

  9. NF-kappaB modulation and ionizing radiation: mechanisms and future directions for cancer treatment.

    Science.gov (United States)

    Magné, Nicolas; Toillon, Robert-Alain; Bottero, Virginie; Didelot, Céline; Houtte, Paul Van; Gérard, Jean-Pierre; Peyron, Jean-François

    2006-01-18

    NF-kappaB transcription factor regulates important cellular processes ranging from establishment of the immune and inflammatory responses to regulation of cell proliferation or apoptosis, through the induction of a large array of target genes. NF-kappaB is now considered as an important actor in the tumorigenic process mainly because it exerts strong anti-apoptotic functions in cancer cells. NF-kappaB is triggered by chimio- and radio-therapeutic strategies that are intended to eliminate cancerous cells through induction of apoptosis. Numerous studies have demonstrated that inhibition of NF-kappaB by different means increased sensitivity of cancer cells to the apoptotic action of diverses effectors such as TNFalpha or chemo- or radio-therapies. From these studies as emerged the concept that NF-kappaB blockade could be associated to conventional therapies in order to increase their efficiency. This review focuses on the current knowledge on NF-kappaB regulation and discusses the therapeutic potential of targeting NF-kappaB in cancer in particular during radiotherapy.

  10. Modulation of the NF-kappaB pathway by Bordetella pertussis filamentous hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Tzvia Abramson

    Full Text Available Filamentous hemagglutinin (FHA is a cell-associated and secreted adhesin produced by Bordetella pertussis with pro-apoptotic and pro-inflammatory activity in host cells. Given the importance of the NF-kappaB transcription factor family in these host cell responses, we examined the effect of FHA on NF-kappaB activation in macrophages and bronchial epithelial cells, both of which are relevant cell types during natural infection.Exposure to FHA of primary human monocytes and transformed U-937 macrophages, but not BEAS-2B epithelial cells, resulted in early activation of the NF-kappaB pathway, as manifested by the degradation of cytosolic IkappaB alpha, by NF-kappaB DNA binding, and by the subsequent secretion of NF-kappaB-regulated inflammatory cytokines. However, exposure of macrophages and human monocytes to FHA for two hours or more resulted in the accumulation of cytosolic IkappaB alpha, and the failure of TNF-alpha to activate NF-kappaB. Proteasome activity was attenuated following exposure of cells to FHA for 2 hours, as was the nuclear translocation of RelA in BEAS-2B cells.These results reveal a complex temporal dynamic, and suggest that despite short term effects to the contrary, longer exposures of host cells to this secreted adhesin may block NF-kappaB activation, and perhaps lead to a compromised immune response to this bacterial pathogen.

  11. Colorectal cancer: can nutrients modulate NF-kappaB and apoptosis?

    Science.gov (United States)

    Ravasco, Paula; Aranha, Márcia M; Borralho, Pedro M; Moreira da Silva, Isabel B; Correia, Luís; Fernandes, Afonso; Rodrigues, Cecília M P; Camilo, Maria

    2010-02-01

    NF-kappaB may promote carcinogenesis by altering cell cycle, inflammatory responses and apoptosis-related gene expression, though cell mechanisms relating diet and colorectal cancer (CRC) remain unveiled in humans. This study in patients with CRC aimed to explore potential interactions between the dietary pattern, nutrient intake, expression of NF-kappaB, apoptosis and tumour histological aggressiveness. Usual diet was assessed by diet history; nutrient composition was determined by DIETPLAN software. Histologically classified patient tissue samples (adenoma, adenocarcinoma and normal surrounding mucosa) were obtained via biopsies during colonoscopy (n=16) or surgery (n=8). NF-kappaB expression was determined by immunohistochemistry and apoptosis by TUNEL assay. NF-kappaB expression and apoptosis were higher in tumours (p<0.01), greater along with histological aggressiveness (p<0.01). Highest intake terciles of animal protein, refined carbohydrates, saturated fat, n-6 fatty acids and alcohol were associated with higher NF-kappaB, apoptosis and histological aggressiveness (p<0.01); the opposite tissue characteristics were associated with highest intake terciles of n-3 fatty acids, fibre, vitamin E, flavonoids, isoflavones, beta-carotene and selenium (p<0.002). Additionally, higher n-6:n-3 fatty acids ratio (median 26:1) was associated with higher NF-kappaB (p<0.006) and apoptosis (p<0.01), and more aggressive histology (p<0.01). Conversely, lower n-6:n-3 fatty acids ratio (median 6:1) was associated with lower NF-kappaB (p<0.002) and apoptosis (p<0.002), and less aggressive histology (p<0.002). NF-kappaB expression and apoptosis increased from adenoma to poorly differentiated adenocarcinoma. This degenerative transition, recognized as key in carcinogenesis, appear to have been influenced by a diet promoting a pro-inflammatory milieu that can trigger NF-kappaB. Copyright 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Effects of protein-energy malnutrition on NF-kappaB signalling in murine peritoneal macrophages.

    Science.gov (United States)

    Fock, Ricardo Ambrósio; Rogero, Marcelo Macedo; Vinolo, Marco Aurélio Ramirez; Curi, Rui; Borges, Maria Carolina; Borelli, Primavera

    2010-04-01

    Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. PEM decreases resistance to infection, impairing a number of physiological processes. In unstimulated cells, NF-kappaB is kept from binding to its consensus sequence by the inhibitor I kappaB alpha, which retains NF-kappaB in the cytoplasm. Upon various signals, such as lipopolysaccharide (LPS), I kappaB alpha is rapidly degraded and NF-kappaB is induced to translocate into the nucleus, where it activates expression of various genes that participate in the inflammatory response, including those involved in the synthesis of TNF-alpha. TRAF-6 is a cytoplasmic adapter protein that links the stimulatory signal from Toll like receptor-4 to NF-kappaB. The aim of this study was to evaluate the effect of malnutrition on induction of TNF-alpha by LPS in murine peritoneal macrophages. We evaluated peritoneal cellularity, the expression of MyD88, TRAF-6, IKK, I kappaB alpha and NF-kappaB, NF-kappaB activation and TNF-alpha mRNA and protein synthesis in macrophages. Two-month-old male BALB/C mice were submitted to PEM with a low-protein diet that contained 2% protein, compared to 12% protein in the control diet. When the experimental group had lost about 20% of the original body weight, it was used in the subsequent experiments. Malnourished animals presented anemia, leucopenia and severe reduction in peritoneal cavity cellularity. TNF-alpha mRNA and protein levels of macrophages stimulated with LPS were significantly lower in malnourished animals. PEM also decreased TRAF-6 expression and NF-kappaB activation after LPS stimulation. These results led us to conclude that PEM changes NF-kB signalling pathway in macrophages to LPS stimulus.

  13. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    International Nuclear Information System (INIS)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai; Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong; Sun, Ren-Hua; Mo, Shi-Jing

    2016-01-01

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF-κB-dependent

  14. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Dong [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Xu, Liang [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Tang, Kan-Kai [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Sun, Ren-Hua, E-mail: jqin168@hotmail.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Mo, Shi-Jing, E-mail: msj860307@163.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China)

    2016-09-10

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF-κB-dependent

  15. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  16. Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis

    NARCIS (Netherlands)

    Gareus, Ralph; Kotsaki, Elena; Xanthoulea, Sofia; van der Made, Ingeborg; Gijbels, Marion J. J.; Kardakaris, Rozina; Polykratis, Apostolos; Kollias, George; de Winther, Menno P. J.; Pasparakis, Manolis

    2008-01-01

    Atherosclerosis is a progressive disorder of the arterial wall and the underlying cause of cardiovascular diseases such as heart attack and stroke. Today, atherosclerosis is recognized as a complex disease with a strong inflammatory component. The nuclear factor-kappaB (NF-kappaB) signaling pathway

  17. Development of immunoglobulin lambda-chain-positive B cells, but not editing of immunoglobulin kappa-chain, depends on NF-kappaB signals.

    Science.gov (United States)

    Derudder, Emmanuel; Cadera, Emily J; Vahl, J Christoph; Wang, Jing; Fox, Casey J; Zha, Shan; van Loo, Geert; Pasparakis, Manolis; Schlissel, Mark S; Schmidt-Supprian, Marc; Rajewsky, Klaus

    2009-06-01

    By genetically ablating IkappaB kinase (IKK)-mediated activation of the transcription factor NF-kappaB in the B cell lineage and by analyzing a mouse mutant in which immunoglobulin lambda-chain-positive B cells are generated in the absence of rearrangements in the locus encoding immunoglobulin kappa-chain, we define here two distinct, consecutive phases of early B cell development that differ in their dependence on IKK-mediated NF-kappaB signaling. During the first phase, in which NF-kappaB signaling is dispensable, predominantly kappa-chain-positive B cells are generated, which undergo efficient receptor editing. In the second phase, predominantly lambda-chain-positive B cells are generated whose development is ontogenetically timed to occur after rearrangements of the locus encoding kappa-chain. This second phase of development is dependent on NF-kappaB signals, which can be substituted by transgenic expression of the prosurvival factor Bcl-2.

  18. TLR4 activates NF-{kappa}B in human ovarian granulosa tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Dori C., E-mail: dwoods2@partners.org [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); White, Yvonne A.R. [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); Dau, Caroline [University of California, San Francisco, School of Dentistry, San Francisco, CA 94143 (United States); Johnson, A.L. [Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802 (United States)

    2011-06-17

    Highlights: {yields} TLR4 is expressed in human ovarian granulosa tumor cells. {yields} Acting through TLR4, LPS and HSP60 induce a NF{kappa}B signaling cascade in human ovarian granulosa tumor cells. {yields} NF{kappa}B activation or inhibition did not alter chemosensitivity to TRAIL or cisplatin. -- Abstract: Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-{kappa}B) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to I{kappa}B degradation and activation of NF-{kappa}B. NF-{kappa}B activation was confirmed by nuclear localization of NF-{kappa}B p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-{kappa}B signaling attenuated LPS-induced TNF{alpha} plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-{kappa}B signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-{kappa}B does not sensitize GCTs to TRAIL or cisplatin.

  19. Effect of proteasome inhibitors on monocytic IkappaB-alpha and -beta depletion, NF-kappaB activation, and cytokine production.

    Science.gov (United States)

    Haas, M; Page, S; Page, M; Neumann, F J; Marx, N; Adam, M; Ziegler-Heitbrock, H W; Neumeier, D; Brand, K

    1998-03-01

    We investigated the effect of proteasome inhibitors on the lipopolysaccharide (LPS)-induced expression of several monocytic cytokines, which may be dependent on the transcription factor, nuclear factor-kappaB (NF-kappaB). Exposure of human monocytic THP-1 cells to ALLN and Mu873 prevented the LPS-induced degradation of IkappaB-alpha and -beta, as did the more potent proteasome inhibitor, PSI, whereas several calpain inhibitors were ineffective. This was accompanied by the inhibition of nuclear NF-kappaB binding activity and NF-kappaB transcriptional activation. At the mRNA level, the inhibitors blocked the expression of tumor necrosis factor (TNF) and interleukin-1beta (IL-1beta), whereas IL-8 remained unaffected by ALLN and was only partially reduced by the highest dose of PSI. The latter effect appears to be due to an increase in IL-8 mRNA stability in the presence of proteasome inhibitors. Furthermore, the production of TNF was efficiently suppressed by ALLN and PSI, less by Mu873, and not at all by calpain inhibitors. In primary human blood monocytes ALLN also prevented the LPS-induced degradation of IkappaB-alpha and -beta, efficiently blocked the production of TNF and, to a lesser extent, IL-1beta, whereas that of IL-8 was not inhibited. The expression of NF-kappaB-dependent monocytic cytokines may be selectively controlled by the proteasome, offering a potential therapeutic target in inflammatory disease.

  20. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Chih [Department of Research, Taichung Veterans General Hospital, Taichung, Taiwan (China); Hsueh, Chi-Mei [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chen, Chiu-Yuan [Graduate Institute of Natural Healing Sciences, Nanhua University, Chiayi, Taiwan (China); Chen, Tzu-Hsiu, E-mail: hsiu@mail.chna.edu.tw [Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan (China); Hsu, Shih-Lan, E-mail: h2326@vghtc.gov.tw [Department of Research, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan (China)

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.

  1. NF-{kappa}B p65 represses {beta}-catenin-activated transcription of cyclin D1

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Injoo; Choi, Yong Seok; Jeon, Mi-Ya [National Research Lab for RNA Cell Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology and Department of Molecular Biology, Dankook University, Gyeonggi-do 448-701 (Korea, Republic of); Jeong, Sunjoo, E-mail: sjsj@dankook.ac.kr [National Research Lab for RNA Cell Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology and Department of Molecular Biology, Dankook University, Gyeonggi-do 448-701 (Korea, Republic of)

    2010-12-03

    Research highlights: {yields} Cyclin D1 transcription is directly activated by {beta}-catenin; however, {beta}-catenin-induced cyclin D1 transcription is reduced by NF-{kappa}B p65. {yields} Protein-protein interaction between NF-{kappa}B p65 and {beta}-catenin might be responsible for p65-mediated repression of cyclin D1. {yields} One of five putative binding sites, located further upstream of other sites, is the major {beta}-catenin binding site in the cyclin D1 promoter. {yields} NF-{kappa}B binding site in cyclin D1 is occupied not only by p65 but also by {beta}-catenin, which is dynamically regulated by the signal. -- Abstract: Signaling crosstalk between the {beta}-catenin and NF-{kappa}B pathways represents a functional network. To test whether the crosstalk also occurs on their common target genes, the cyclin D1 promoter was used as a model because it contains binding sites for both proteins. {beta}-catenin activated transcription from the cyclin D1 promoter, while co-expression of NF-{kappa}B p65 reduced {beta}-catenin-induced transcription. Chromatin immunoprecipitation revealed lithium chloride-induced binding of {beta}-catenin on one of the T-cell activating factor binding sites. More interestingly, {beta}-catenin binding was greatly reduced by NF-{kappa}B p65, possibly by the protein-protein interaction between the two proteins. Such a dynamic and complex binding of {beta}-catenin and NF-{kappa}B on promoters might contribute to the regulated expression of their target genes.

  2. Memory extinction entails the inhibition of the transcription factor NF-kappaB.

    Directory of Open Access Journals (Sweden)

    Emiliano Merlo

    Full Text Available In contextual memories, an association between a positive or negative reinforcement and the contextual cues where the reinforcement occurs is formed. The re-exposure to the context without reinforcement can lead to memory extinction or reconsolidation, depending on the number of events or duration of a single event of context re-exposure. Extinction involves the temporary waning of the previously acquired conditioned response. The molecular processes underlying extinction and the mechanisms which determine if memory will reconsolidate or extinguish after retrieval are not well characterized, particularly the role of transcription factors and gene expression. Here we studied the participation of a transcription factor, NF-kappaB, in memory extinction. In the crab context-signal memory, the activation of NF-kappaB plays a critical role in consolidation and reconsolidation, memory processes that are well characterized in this model. The administration of a NF-kappaB inhibitor, sulfasalazine prior to extinction session impeded spontaneous recovery. Moreover, reinstatement experiments showed that the original memory was not affected and that NF-kappaB inhibition by sulfasalazine impaired spontaneous recovery strengthening the ongoing memory extinction process. Interestingly, in animals with fully consolidated memory, a brief re-exposure to the training context induced neuronal NF-kappaB activation and reconsolidation, while prolonged re-exposure induced NF-kappaB inhibition and memory extinction. These data constitutes a novel insight into the molecular mechanisms involved in the switch between memory reconsolidation and extinction. Moreover, we propose the inhibition of NF-kappaB as the engaged mechanism underlying extinction, supporting a novel approach for the pharmacological enhancement of this memory process. The accurate description of the molecular mechanisms that support memory extinction is potentially useful for developing new strategies

  3. Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Genetos, Damian C., E-mail: dgenetos@ucdavis.edu [Department of Anatomy, Cell Biology, and Physiology, School of Veterinary Medicine, University of California, Davis, CA (United States); Karin, Norman J. [Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland, WA (United States); Geist, Derik J. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States); Donahue, Henry J. [Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Pennsylvania State College of Medicine, Hershey, PA (United States); Duncan, Randall L. [Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that the P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.

  4. NF-kappaB regulates the transcription of protein tyrosine kinase Tec.

    Science.gov (United States)

    Yu, Liang; Simonson, Oscar E; Mohamed, Abdalla J; Smith, C I Edvard

    2009-11-01

    The tyrosine kinase expressed in hepatocellular carcinoma (Tec) is a non-receptor protein tyrosine kinase (PTK) that is expressed in hematopoietic cells, such as B and T lymphocytes, myeloid lineage cells and neutrophils. Mutations in the human Btk gene cause X-linked agammaglobulinemia (XLA), but the corresponding mutation in mice results in a much milder defect. However, the combined inactivation of Btk and Tec genes in mice cause a severe phenotype resembling XLA. Tec is involved in the regulation of both B and T lymphocytes, fine-tuning of TCR/BCR signaling, and also activation of the nuclear factor of activated T cells. Previous work has shown that the transcription factors Sp1 and PU.1 can bind and regulate the Tec promoter. In this study, we demonstrate that NF-kappaB is an essential transcription factor for optimal expression of the Tec gene, and identify a unique functionally active NF-kappaB binding site in its promoter. The NF-kappaB subunit p65/RelA directly induced transcriptional activity of the Tec promoter. Moreover, we also found that proteasome inhibitors, including Bortezomib, repress Tec transcription through inactivation of the NF-kappaB signaling pathway. This study, together with our previous findings on the transcriptional regulation of Btk (Bruton's tyrosine kinase) by proteasome inhibitors, provides important insight into the molecular mechanism(s) underlying the role of NF-kappaB in Tec family kinase signaling and lymphocyte development.

  5. NF-kappaB activity decreases in basal forebrain of young and aged rats after hyperoxia.

    Science.gov (United States)

    Toliver-Kinsky, Tracy; Rassin, David; Perez-Polo, J Regino

    2002-01-01

    Hyperoxia is an oxidative stressor that triggers signaling cascades via changes in promoter activation by transcription factors. The transcription factor NF-kappaB has been shown to regulate transcription of many genes that play a role in inflammation and recovery from acute or chronic trauma. Here we describe the effects of hyperoxia on basal levels of NF-kappaB activity in young and aged rat forebrain. The results would suggest that chronic stress may have different effects on NF-kappaB basal activity levels as compared to the effects of an acute stress such as hyperoxia and that there is a diminished response to hyperoxia in the aged basal forebrain. Copyright 2002 Elsevier Science Inc.

  6. A novel HIV-1 isolate containing alterations affecting the NF-kappa B element.

    Science.gov (United States)

    Englund, G; Hoggan, M D; Theodore, T S; Martin, M A

    1991-03-01

    Three molecular clones of HIV-1, derived from a single isolate (AL1), exhibited distinct replicative and cytopathic properties during propagation in a human T cell line. The phenotypic differences observed were attributable, in large part, to changes affecting the viral LTR. Nucleotide sequence and PCR analyses demonstrated the presence of novel duplications or deletions involving the NF-kappa B motif. These changes in the enhancer element were identified in the original AL1 virus stock. Subcloning of the variant NF-kappa B segments into LTR-driven CAT expression vectors confirmed a correlation between promoter activity and replicative/cytopathic capacity.

  7. The Role of the Noncanonical NF-KappaB Pathway in Colon Cancer

    Science.gov (United States)

    2016-08-01

    AWARD NUMBER: W81XWH-13-1-0321 TITLE: The Role of the Noncanonical NF-KappaB Pathway in Colon Cancer PRINCIPAL INVESTIGATOR: Yatrik Shah...2013 - 29 May 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0321 The Role of the Noncanonical NF-KappaB Pathway in Colon Cancer 5b...Inflammation is an essential mechanism leading to progression of colon cancer . We have found that in mouse models of colonic intestinal inflammation and in

  8. Induction of oncogene addiction shift to NF-{kappa}B by camptothecin in solid tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Togano, Tomiteru; Sasaki, Masataka; Watanabe, Mariko; Nakashima, Makoto [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Tsuruo, Takashi [Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Umezawa, Kazuo [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-0061 (Japan); Higashihara, Masaaki [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Watanabe, Toshiki [Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Horie, Ryouichi, E-mail: rhorie@med.kitasato-u.ac.jp [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan)

    2009-12-04

    The biological basis of the resistance of solid tumor cells to chemotherapy is not well understood. While addressing this problem, we found that gastric cancer cell line St-4/CPT, lung cancer cell line A549/CPT, and colon cancer cell line HT-29/CPT, all of which are resistant to camptothecin (CPT), showed strong and constitutive nuclear factor (NF)-{kappa}B activity driven by I{kappa}B kinase compared with their parental cell lines St-4, A549, and HT-29. A new NF-{kappa}B inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced viability and induced apoptosis in St-4/CPT, A549/CPT, and HT-29/CPT cell lines, while their parental cell lines were resistant to DHMEQ. The results in this study present an example of the shift in signals that support the survival of solid tumor cells to NF-{kappa}B during the acquisition of resistance to CPT. The results also indicate that solid tumor cells that become resistant to chemotherapy may be more easily treated by NF-{kappa}B inhibitors.

  9. Bee venom ameliorates lipopolysaccharide-induced memory loss by preventing NF-kappaB pathway

    OpenAIRE

    Gu, Sun Mi; Park, Mi Hee; Hwang, Chul Ju; Song, Ho Sueb; Lee, Ung Soo; Han, Sang Bae; Oh, Ki Wan; Ham, Young Wan; Song, Min Jong; Son, Dong Ju; Hong, Jin Tae

    2015-01-01

    Background Accumulation of beta-amyloid and neuroinflammation trigger Alzheimer?s disease. We previously found that lipopolysaccharide (LPS) caused neuroinflammation with concomitant accumulation of beta-amyloid peptides leading to memory loss. A variety of anti-inflammatory compounds inhibiting nuclear factor kappaB (NF-?B) activation have showed efficacy to hinder neuroinflammation and amyloidogenesis. We also found that bee venom (BV) inhibits NF-?B. Methods A mouse model of LPS-induced me...

  10. 25-Hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tomohiro [Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Sugiura, Hisatoshi, E-mail: sugiura@rm.med.tohoku.ac.jp [Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 (Japan); Koarai, Akira; Kikuchi, Takashi; Hiramatsu, Masataka; Kawabata, Hiroki; Akamatsu, Keiichiro; Hirano, Tsunahiko; Nakanishi, Masanori; Matsunaga, Kazuto; Minakata, Yoshiaki [Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Ichinose, Masakazu [Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 (Japan)

    2013-05-01

    Abnormal structural alterations termed remodeling, including fibrosis and alveolar wall destruction, are important features of the pathophysiology of chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase (CH25H) in macrophages and is reported to be involved in the formation of arteriosclerosis. We previously demonstrated that the expression of CH25H and production of 25HC were increased in the lungs of COPD. However, the role of 25-HC in lung tissue remodeling is unknown. In this study, we investigated the effect of 25-HC on fibroblast-mediated tissue remodeling using human fetal lung fibroblasts (HFL-1) in vitro. 25-HC significantly augmented α-smooth muscle actin (SMA) (P<0.001) and collagen I (P<0.001) expression in HFL-1. 25-HC also significantly enhanced the release and activation of matrix metallaoproteinase (MMP)-2 (P<0.001) and MMP-9 (P<0.001) without any significant effect on the production of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. 25-HC stimulated transforming growth factor (TGF)-β{sub 1} production (P<0.01) and a neutralizing anti-TGF-β antibody restored these 25-HC-augmented pro-fibrotic responses. 25-HC significantly promoted the translocation of nuclear factor (NF)-κB p65 into the nuclei (P<0.01), but not phospholylated-c-jun, a complex of activator protein-1. Pharmacological inhibition of NF-κB restored the 25-HC-augmented pro-fibrotic responses and TGF-β{sub 1} release. These results suggest that 25-HC could contribute to fibroblast-mediated lung tissue remodeling by promoting myofibroblast differentiation and the excessive release of extracellular matrix protein and MMPs via an NF-κB-TGF-β dependent pathway.

  11. Mitochondrial permeabilisation engages NF-κB dependent anti-tumour activity under caspase deficiency

    Science.gov (United States)

    Giampazolias, Evangelos; Bock, Florian; Cloix, Catherine; Cao, Kai; Roca, Alba; Lopez, Jonathan; Ichim, Gabriel; Proïcs, Emma; Rubio-Patiño, Camila; Fort, Loic; Yatim, Nader; Woodham, Emma; Orozco, Susana; Taraborrelli, Lucia; Peltzer, Nieves; Lecis, Daniele; Machesky, Laura; Walczak, Henning; Albert, Matthew L.; Milling, Simon; Oberst, Andrew; Ricci, Jean-Ehrland; Ryan, Kevin M.; Blyth, Karen; Tait, Stephen W.G.

    2017-01-01

    Apoptosis represents a key anti-cancer therapeutic effector mechanism. During apoptosis, mitochondrial outer membrane permeabilisation (MOMP) typically kills cells even in the absence of caspase activity. Caspase activity can also have a variety of unwanted consequences that include DNA-damage. We therefore investigated whether MOMP-induced caspase-independent cell death (CICD) might be a better way to kill cancer cells. We find that cells undergoing CICD display potent pro-inflammatory effects relative to apoptosis. Underlying this, MOMP was found to stimulate NF-κB activity through the down-regulation of inhibitor of apoptosis (IAP) proteins. Strikingly, engagement of CICD displays potent anti-tumorigenic effects, often promoting complete tumour regression in a manner dependent on intact immunity. Our data demonstrate that by activating NF-κB, MOMP can exert additional signalling functions besides triggering cell death. Moreover, they support a rationale for engaging caspase-independent cell death in cell-killing anti-cancer therapies. PMID:28846096

  12. Calcium/calcineurin synergizes with prostratin to promote NF-κB dependent activation of latent HIV.

    Directory of Open Access Journals (Sweden)

    Jonathan K Chan

    Full Text Available Attempts to eradicate HIV have been thwarted by the persistence of a small pool of quiescent memory CD4 T cells that harbor a transcriptionally silent, integrated form of the virus that can produce infectious virions following an anamnestic immune response. Transcription factors downstream of T-cell receptor activation, such as NF-κB/Rel and nuclear factor of activated T cells (NFAT transcription members, are considered important regulators of HIV transcription during acute HIV infection. We now report studies exploring their precise role as antagonists of HIV latency using cell and primary CD4 T cell models of HIV-1 latency. Surprisingly, RNA interference studies performed in J-Lat CD4 T cells suggested that none of the NFATs, including NFATc1, NFATc2, NFATc3, and NFAT5, played a key role in the reactivation of latent HIV. However, cyclosporin A markedly inhibited the reactivation response. These results were reconciled when calcium signaling through calcineurin was shown to potentiate prostratin induced activation of NF-κB that in turn stimulated the latent HIV long terminal repeat (LTR. Similar effects of calcineurin were confirmed in a primary CD4 T cell model of HIV latency. These findings highlight an important role for calcineurin in NF-κB-dependent induction of latent HIV transcription. Innovative approaches exploiting the synergistic actions of calcineurin and prostratin in the absence of generalized T-cell activation merit exploration as a means to attack the latent viral reservoir.

  13. Calcium/calcineurin synergizes with prostratin to promote NF-κB dependent activation of latent HIV.

    Science.gov (United States)

    Chan, Jonathan K; Bhattacharyya, Darshana; Lassen, Kara G; Ruelas, Debbie; Greene, Warner C

    2013-01-01

    Attempts to eradicate HIV have been thwarted by the persistence of a small pool of quiescent memory CD4 T cells that harbor a transcriptionally silent, integrated form of the virus that can produce infectious virions following an anamnestic immune response. Transcription factors downstream of T-cell receptor activation, such as NF-κB/Rel and nuclear factor of activated T cells (NFAT) transcription members, are considered important regulators of HIV transcription during acute HIV infection. We now report studies exploring their precise role as antagonists of HIV latency using cell and primary CD4 T cell models of HIV-1 latency. Surprisingly, RNA interference studies performed in J-Lat CD4 T cells suggested that none of the NFATs, including NFATc1, NFATc2, NFATc3, and NFAT5, played a key role in the reactivation of latent HIV. However, cyclosporin A markedly inhibited the reactivation response. These results were reconciled when calcium signaling through calcineurin was shown to potentiate prostratin induced activation of NF-κB that in turn stimulated the latent HIV long terminal repeat (LTR). Similar effects of calcineurin were confirmed in a primary CD4 T cell model of HIV latency. These findings highlight an important role for calcineurin in NF-κB-dependent induction of latent HIV transcription. Innovative approaches exploiting the synergistic actions of calcineurin and prostratin in the absence of generalized T-cell activation merit exploration as a means to attack the latent viral reservoir.

  14. NF-kappaΒ-inducing kinase regulates stem cell phenotype in breast cancer

    OpenAIRE

    Karla Vazquez-Santillan; Jorge Melendez-Zajgla; Luis Enrique Jimenez-Hernandez; Javier Gaytan-Cervantes; Laura Muñoz-Galindo; Patricia Piña-Sanchez; Gustavo Martinez-Ruiz; Javier Torres; Patricia Garcia-Lopez; Carolina Gonzalez-Torres; Victor Ruiz; Federico Avila-Moreno; Marco Velasco-Velazquez; Mayra Perez-Tapia; Vilma Maldonado

    2016-01-01

    Breast cancer stem cells (BCSCs) overexpress components of the Nuclear factor-kappa B (NF-?B) signaling cascade and consequently display high NF-?B activity levels. Breast cancer cell lines with high proportion of CSCs exhibit high NF-?B-inducing kinase (NIK) expression. The role of NIK in the phenotype of cancer stem cell regulation is poorly understood. Expression of NIK was analyzed by quantitative RT-PCR in BCSCs. NIK levels were manipulated through transfection of specific shRNAs or an e...

  15. Pim-2 activates API-5 to inhibit the apoptosis of hepatocellular carcinoma cells through NF-kappaB pathway.

    Science.gov (United States)

    Ren, Ke; Zhang, Wei; Shi, Yujun; Gong, Jianping

    2010-06-01

    Pim-2 is proved to be relevant to the tumorigenesis of hepatocellular carcinoma (HCC), but the mechanism is unclear. We studied the relationship among Pim-2, NF-kappaB and API-5. In our experiment, expression level of the three factors and phosphorylation level of API-5, as well as NF-kappaB activity, were detected in HCC tissues and the nontumorous controls. Then Pim-2 gene was transfected into nontumorous liver cells L02, and Pim-2 SiRNA was transfected into hepatoblastoma cell line HepG2. Parthenolide was added as NF-kappaB inhibitor. The same detections as above were repeated in the cells, along with the apoptosis analysis. We found the levels of Pim-2, NF-kappaB and API-5, as well as NF-kappaB activity, were significantly higher in HCC tissues. Pim-2 level was increased in L02 cells after the transfection of Pim-2 gene, but decreased in HepG2 cells after the transfection of Pim-2 SiRNA. The levels of NF-kappaB and API-5, as well as NF-kappaB activity and API-5 phosphorylation level, were in accordance with Pim-2 level, but could be reversed by Parthenolide. Cell apoptosis rates were negatively correlated with API-5 phosphorylation level. Therefore, we infer that Pim-2 could activate API-5 to inhibit the apoptosis of liver cells, and NF-kappaB is the key regulator.

  16. Effects of radiation on tumor hemodynamics and NF-kappaB in breast tumors

    Science.gov (United States)

    Stantz, Keith M.; Cao, Ning; Liu, Bo; Cao, Minsong; Chin-Sinex, Helen; Mendonca, Marc; Li, Jian Jian

    2010-02-01

    Purpose: The purpose of this study is to monitor in vivo the IR dose dependent response of NF-κB and tumor hemodynamics as a function of time. Material and Methods: An MDA-231 breast cancer cell line was stably transfected with a firefly luciferase gene within the NF-kappaB promoter. Tumors on the right flank irradiated with a single fractionated dose of 5Gy or 10Gy. Over two weeks, photoacoustic spectroscopy (PCT-S), bioluminescence imaging (BLI), and dynamic contrast enhanced CT (DCE-CT) was used to monitor hemoglobin status, NF-kappaB expression, and physiology, respectively. Results: From the BLI, an increase in NF-kappaB expression was observed in both the right (irradiation) and left (nonirradiated) tumors, which peaked at 8-12 hours, returned to basal levels after 24 hours, and increased a second time from 3 to 7 days. This data identifies both a radiation-induced bystander effect and a bimodal longitudinal response associated with NF-κB-controlled luciferase promoter. The physiological results from DCE-CT measured an increase in perfusion (26%) two days after radiation and both a decrease in perfusion and an increase in fp by week 1 (10Gy cohort). PCT-S measured increased levels of oxygen saturation two days post IR, which did not change after 1 week. Initially, NF-κB would modify hemodynamics to increase oxygen delivery after IR insult. The secondary response appears to modulate tumor angiogenesis. Conclusions: A bimodal response to radiation was detected with NF-kappaB-controlled luciferase reporter with a concomitant hemodynamic response associated with tumor hypoxia. Experiments are being performed to increase statistics.

  17. Tumor marker nucleoporin 88 kDa regulates nucleocytoplasmic transport of NF-kappa B

    NARCIS (Netherlands)

    Takahashi, Nozomi; van Kilsdonk, Jeroen W. J.; Ostendorf, Benedikt; Smeets, Ruben; Bruggeman, Sophia W. M.; Alonso, Angel; van de Loo, Fons; Schneider, Matthias; van den Berg, Wim B.; Swart, Guido W. M.

    2008-01-01

    Nucleoporin 88 kDa (Nup88) is a tumor marker, overexpressed in various types of cancer. In Drosophila Nup88 (mbo) was reported to selectively mediate the nucleocytoplasmic transport of NF-kappa B, an Ubiquitous transcription factor involved in immune responses, apoptosis, and cancer. We addressed

  18. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhuqin; Yu, Fengxiang; Gong, Ping; Qiu, Yu; Zhou, Wei; Cui, Yongyao; Li, Juan, E-mail: lijuanpharm@gmail.com; Chen, Hongzhuan, E-mail: yaoli@shsmu.edu.cn

    2014-04-15

    Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxic concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation

  19. DMPD: IRAK-4--a shared NF-kappaB activator in innate and acquired immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17046325 IRAK-4--a shared NF-kappaB activator in innate and acquired immunity. Suzu...F-kappaB activator in innate and acquired immunity. PubmedID 17046325 Title IRAK-4--a shared NF-kappaB activ...ki N, Saito T. Trends Immunol. 2006 Dec;27(12):566-72. (.png) (.svg) (.html) (.csml) Show IRAK-4--a shared N

  20. Insights into iron and nuclear factor-kappa B (NF-kappaB) involvement in chronic inflammatory processes in peritoneal endometriosis.

    Science.gov (United States)

    Defrère, Sylvie; González-Ramos, Reinaldo; Lousse, Jean-Christophe; Colette, Sébastien; Donnez, Olivier; Donnez, Jacques; Van Langendonckt, Anne

    2011-08-01

    Endometriosis is a chronic pelvic inflammatory process. Local inflammation is known to play a role in pain and infertility associated with the disease, and may be extensively involved in molecular and cellular processes leading to endometriosis development. In this review, we focus on two inflammatory mediators clearly implicated in the pathogenesis of endometriosis, iron and NF-kappaB, and their potential association. Iron is essential for all living organisms, but excess iron results in toxicity and is linked to pathological disorders. In endometriosis patients, iron overload has been demonstrated in the different compartments of the peritoneal cavity (peritoneal fluid, endometriotic lesions, peritoneum and macrophages). This iron overload affects numerous mechanisms involved in endometriosis development. Moreover, iron can generate free radical species able to react with a wide range of cellular constituents, inducing cellular damage. Overproduction of reactive oxygen species also impairs cellular function by altering gene expression via regulation of redox-sensitive transcription factors such as NF-kappaB, which is clearly implicated in endometriosis. Indeed, NF-kappaB is activated in endometriotic lesions and peritoneal macrophages of endometriosis patients, which stimulates synthesis of proinflammatory cytokines, generating a positive feedback loop in the NF-kappaB pathway. NF-kappaB-mediated gene transcription promotes a variety of processes, including endometriotic lesion establishment, maintenance and development. In conclusion, iron and NF-kappaB appear to be linked and both are clearly involved in endometriosis development, making these pathways an attractive target for future treatment and prevention of this disease.

  1. IKK/NF-κB-dependent satellite glia activation induces spinal cord microglia activation and neuropathic pain after nerve injury.

    Science.gov (United States)

    Lim, Hyoungsub; Lee, Hyunkyoung; Noh, Kyungchul; Lee, Sung Joong

    2017-09-01

    Increasing evidence indicates that both microglia and satellite glial cell (SGC) activation play causal roles in neuropathic pain development after peripheral nerve injury; however, the activation mechanisms and their contribution to neuropathic pain remain elusive. To address this issue, we generated Ikkβ conditional knockout mice (Cnp-Cre/Ikkβ; cIkkβ) in which IKK/NF-κB-dependent proinflammatory SGC activation was abrogated. In these mice, nerve injury-induced spinal cord microglia activation and pain hypersensitivity were significantly attenuated compared to those in control mice. In addition, nerve injury-induced proinflammatory gene expression and macrophage infiltration into the dorsal root ganglion (DRG) were severely compromised. However, macrophages recruited into the DRG had minimal effects on spinal cord microglia activation, suggesting a causal effect for SGC activation on spinal cord microglia activation. In an effort to elucidate the molecular mechanisms, we measured Csf1 expression in the DRG, which is implicated in spinal cord microglia activation after nerve injury. In cIkkβ mice, nerve injury-induced Csf1 upregulation was ameliorated indicating that IKK/NF-κΒ-dependent SGC activation induced Csf1 expression in sensory neurons. Taken together, our data suggest that nerve injury-induced SGC activation triggers Csf1 induction in sensory neurons, spinal cord microglia activation, and subsequent central pain sensitization.

  2. C26 cancer-induced muscle wasting is IKKβ-dependent and NF-kappaB-independent.

    Directory of Open Access Journals (Sweden)

    Evangeline W Cornwell

    Full Text Available Existing data suggest that NF-kappaB signaling is a key regulator of cancer-induced skeletal muscle wasting. However, identification of the components of this signaling pathway and of the NF-κB transcription factors that regulate wasting is far from complete. In muscles of C26 tumor bearing mice, overexpression of dominant negative (d.n. IKKβ blocked muscle wasting by 69% and the IκBα-super repressor blocked wasting by 41%. In contrast, overexpression of d.n. IKKα or d.n. NIK did not block C26-induced wasting. Surprisingly, overexpression of d.n. p65 or d.n. c-Rel did not significantly affect muscle wasting. Genome-wide mRNA expression arrays showed upregulation of many genes previously implicated in muscle atrophy. To test if these upregulated genes were direct targets of NF-κB transcription factors, we compared genome-wide p65 binding to DNA in control and cachectic muscle using ChIP-sequencing. Bioinformatic analysis of ChIP-sequencing data from control and C26 muscles showed very little p65 binding to genes in cachexia and little to suggest that upregulated p65 binding influences the gene expression associated with muscle based cachexia. The p65 ChIP-seq data are consistent with our finding of no significant change in protein binding to an NF-κB oligonucleotide in a gel shift assay, no activation of a NF-κB-dependent reporter, and no effect of d.n.p65 overexpression in muscles of tumor bearing mice. Taken together, these data support the idea that although inhibition of IκBα, and particularly IKKβ, blocks cancer-induced wasting, the alternative NF-κB signaling pathway is not required. In addition, the downstream NF-κB transcription factors, p65 and c-Rel do not appear to regulate the transcriptional changes induced by the C26 tumor. These data are consistent with the growing body of literature showing that there are NF-κB-independent substrates of IKKβ and IκBα that regulate physiological processes.

  3. Experimental autoimmune encephalomyelitis: Association with mutual regulation of RelA (p65)/NF-{kappa}B and phospho-I{kappa}B in the CNS

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Insun; Ha, Danbee [College of Veterinary Medicine and Applied Radiological Science Institute, Jeju National University, Jeju 690-756 (Korea, Republic of); Ahn, Ginnae [Department of Marine Life Science, Jeju National University, Jeju 690-756 (Korea, Republic of); Park, Eunjin; Joo, Haejin [College of Veterinary Medicine and Applied Radiological Science Institute, Jeju National University, Jeju 690-756 (Korea, Republic of); Jee, Youngheun, E-mail: yhjee@jejunu.ac.kr [College of Veterinary Medicine and Applied Radiological Science Institute, Jeju National University, Jeju 690-756 (Korea, Republic of)

    2011-07-29

    Highlights: {yields} The phosphorylation of RelA's inhibitory factor I{kappa}B and subsequent RelA activation are important to the disease process of EAE. {yields} The expression of RelA and phospho-I{kappa}B was markedly increased in the initiation and during the progression of EAE. {yields} TPCK-treated EAE mice showed lower incidence of EAE with less severe symptoms and quicker recovery than vehicle-treated EAE mice. {yields} TPCK significantly suppressed the MOG{sub 35-55}-specific T cell proliferation by reducing the production of IFN-{gamma} and IL-17 cytokines in EAE. {yields} The NF-{kappa}B cascade's activity increased gradually with the development of symptoms and brain pathology of EAE. -- Abstract: Recently emerging evidence that the NF-{kappa}B family plays an important role in autoimmune disease has produced very broad and sometimes paradoxical conclusions. In the present study, we elucidated that the activation of RelA (p65) of NF-{kappa}B and I{kappa}B dissociation assumes a distinct role in experimental autoimmune encephalomyelitis (EAE) progression by altering I{kappa}B phosphorylation and/or degradation. In the present study of factors that govern EAE, the presence and immunoreactivity of nuclear RelA and phospho-I{kappa}B were recorded at the initiation and peak stage, and degradation of I{kappa}B{alpha} progressed rapidly at an early stage then stabilized during recovery. The immunoreactivity to RelA and phospho-I{kappa}B occurred mainly in inflammatory cells and microglial cells but only slightly in astrocytes. Subsequently, the blockade of I{kappa}B dissociation from NF-{kappa}B reduced the severity of disease by decreasing antigen-specific T cell response and production of IL-17 in EAE. Thus, blocking the dissociation of I{kappa}B from NF-{kappa}B can be utilized as a strategy to inhibit the NF-{kappa}B signal pathway thereby to reduce the initiation, progression, and severity of EAE.

  4. Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling.

    Science.gov (United States)

    Kallifatidis, G; Rausch, V; Baumann, B; Apel, A; Beckermann, B M; Groth, A; Mattern, J; Li, Z; Kolb, A; Moldenhauer, G; Altevogt, P; Wirth, T; Werner, J; Schemmer, P; Büchler, M W; Salnikov, A V; Herr, I

    2009-07-01

    Emerging evidence suggests that highly treatment-resistant tumour-initiating cells (TICs) play a central role in the pathogenesis of pancreatic cancer. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered to be a novel anticancer agent; however, recent studies have shown that many pancreatic cancer cells are resistant to apoptosis induction by TRAIL due to TRAIL-activated nuclear factor-kappaB (NF-kappaB) signalling. Several chemopreventive agents are able to inhibit NF-kappaB, and favourable results have been obtained--for example, for the broccoli compound sulforaphane-in preventing metastasis in clinical studies. The aim of the study was to identify TICs in pancreatic carcinoma for analysis of resistance mechanisms and for definition of sensitising agents. TICs were defined by expression patterns of a CD44(+)/CD24(-), CD44(+)/CD24(+) or CD44(+)/CD133(+) phenotype and correlation to growth in immunodeficient mice, differentiation grade, clonogenic growth, sphere formation, aldehyde dehydrogenase (ALDH) activity and therapy resistance. Mechanistically, specific binding of transcriptionally active cRel-containing NF-kappaB complexes in TICs was observed. Sulforaphane prevented NF-kappaB binding, downregulated apoptosis inhibitors and induced apoptosis, together with prevention of clonogenicity. Gemcitabine, the chemopreventive agents resveratrol and wogonin, and the death ligand TRAIL were less effective. In a xenograft model, sulforaphane strongly blocked tumour growth and angiogenesis, while combination with TRAIL had an additive effect without obvious cytotoxicity in normal cells. Freshly isolated patient tumour cells expressing markers for TICs could be sensitised by sulforaphane for TRAIL-induced cytotoxicity. The data provide new insights into resistance mechanisms of TICs and suggest the combination of sulforaphane with TRAIL as a promising strategy for targeting of pancreatic TICs.

  5. BHT blocks NF-kappaB activation and ethanol-induced brain damage.

    Science.gov (United States)

    Crews, Fulton; Nixon, Kimberly; Kim, Daniel; Joseph, James; Shukitt-Hale, Barbara; Qin, Liya; Zou, Jian

    2006-11-01

    Binge ethanol administration causes corticolimbic brain damage that models alcoholic neurodegeneration. The mechanism of binge ethanol-induced degeneration is unknown, but is not simple glutamate-N-methyl-D-aspartate (NMDA) excitotoxicity. To test the hypothesis that oxidative stress and inflammation are mechanisms of binge ethanol-induced brain damage, we administered 4 antioxidants, e.g., butylated hydroxytoluene (BHT), ebselen (Eb), vitamin E (VE), and blueberry (BB) extract, during binge ethanol treatment and assessed various measures of neurodegeneration. Adult Sprague-Dawley rats were treated with intragastric ethanol 3 times per day (8-12 g/kg/d) alone or in combination with antioxidants or isocaloric diet for 4 days. Animals were killed, and brains were perfused and extracted for histochemical silver stain determination of brain damage, markers of neurogenesis, or other immunohistochemistry. Some animals were used for determination of nuclear factor kappa B (NF-kappaB)-DNA binding by electrophoretic mobility shift assay (EMSA) or for reverse transcription-polymerase chain reaction (RT-PCR) of cyclooxygenase 2 (COX2). Binge ethanol induced corticolimbic brain damage and reduced neurogenesis. Treatment with BHT reversed binge induced brain damage and blocked ethanol inhibition of neurogenesis in all regions studied. Interestingly, the other antioxidants studied, e.g., Eb, VE, and BB, did not protect against binge-induced brain damage. Binge ethanol treatment also caused microglia activation, increased NF-kappaB-DNA binding and COX2 expression. Butylated hydroxytoluene reduced binge-induced NF-kappaB-DNA binding and COX2 expression. Binge-induced brain damage and activation of NF-kappaB-DNA binding are blocked by BHT. These studies support a neuroinflammatory mechanism of binge ethanol-induced brain damage.

  6. RPAP3 enhances cytotoxicity of doxorubicin by impairing NF-kappa B pathway

    International Nuclear Information System (INIS)

    Shimada, Kana; Saeki, Makio; Egusa, Hiroshi; Fukuyasu, Sho; Yura, Yoshiaki; Iwai, Kazuhiro; Kamisaki, Yoshinori

    2011-01-01

    Research highlights: → RNA polymerase II-associated protein 3 (RPAP3) possesses an activity to bind with NEMO and to inhibit the ubiquitination of NEMO. → RPAP3 enhances doxorubicin-induced cell death in breast cancer cell line T-47D through the marked impairment of NF-κB pathway. → RPAP3 is a novel modulator of NF-κB pathway in apoptosis induced by anti-cancer chemotherapeutic agents. -- Abstract: Activation of anti-apoptotic gene transcription by NF-κB (nuclear factor-kappa B) has been reported to be linked with a resistance of cancer cells against chemotherapy. NEMO (NF-κB essential modulator) interacts with a number of proteins and modulates the activity of NF-κB pathway. In this study, we revealed that RPAP3 (RNA polymerase II-associated protein 3) possesses an activity to bind with NEMO and to inhibit the ubiquitination of NEMO and that RPAP3 enhances doxorubicin-induced cell death in breast cancer cell line T-47D through the marked impairment of NF-κB pathway. These results indicate that RPAP3 may be a novel modulator of NF-κB pathway in apoptosis induced by anti-cancer chemotherapeutic agents.

  7. Spironolactone induces apoptosis and inhibits NF-kappaB independent of the mineralocorticoid receptor

    DEFF Research Database (Denmark)

    Sønder, Søren Ulrik Salling; Woetmann, Anders; Odum, Niels

    2006-01-01

    mononuclear cells (MNC). To elucidate the mechanism behind SPIR's apoptotic effect, we investigated the relation between apoptosis and cytokine suppression for SPIR along with the apoptosis-inducing and antiinflammatory drug sulfasalazine (SFZ). Using human MNC, we found that SPIR and SFZ, at concentrations...... 10 and 1000 muM, respectively, significantly increased both apoptosis and cell death. Production of inflammatory cytokines was significantly reduced by 3 to 30 muM SPIR and by 300 to 1000 muM SFZ. We also found that 0.4 muM SPIR and 300 muM SFZ significantly reduced the activity of NF......-kappaB, a transcription factor involved in both apoptosis and immunoinflammation. ALDO, the MR antagonist, eplerenone, and the SPIR metabolite, 7alpha-thiomethyl-spironolactone, slightly reduced NF-kappaB activity, but they did not interfere with SPIR's effect, showing that MR binding is not involved in SPIR...

  8. Regulation of NF-{kappa}B activity in astrocytes: effects of flavonoids at dietary-relevant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Spilsbury, Alison [Reading School of Pharmacy, University of Reading, Reading RG6 6UB (United Kingdom); Vauzour, David; Spencer, Jeremy P.E. [Molecular Nutrition Group, Centre for Integrative Neuroscience and Neurodynamics, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP (United Kingdom); Rattray, Marcus, E-mail: m.a.n.rattray@reading.ac.uk [Reading School of Pharmacy, University of Reading, Reading RG6 6UB (United Kingdom)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer We tested the hypothesis that low concentrations of flavonoids inhibit NF-{kappa}B in astrocytes. Black-Right-Pointing-Pointer Primary cultured astrocytes possess a functional {kappa}B-system, measured using luciferase assays. Black-Right-Pointing-Pointer Seven flavonoids (100 nM-1 {mu}M) failed to reduce NF-{kappa}B activity in astrocytes. Black-Right-Pointing-Pointer Four flavonoids (100 nM-1 {mu}M) failed to reduce TNFa-stimulated NF-{kappa}B activity in astrocytes. Black-Right-Pointing-Pointer (-)-Epicatechin did not regulate nuclear translocation of the NF-{kappa}B subunit, p65. -- Abstract: Neuroinflammation plays an important role in the progression of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Sustained activation of nuclear transcription factor {kappa}B (NF-{kappa}B) is thought to play an important role in the pathogenesis of neurodegenerative disorders. Flavonoids have been shown to possess antioxidant and anti-inflammatory properties and we investigated whether flavonoids, at submicromolar concentrations relevant to their bioavailability from the diet, were able to modulate NF-{kappa}B signalling in astrocytes. Using luciferase reporter assays, we found that tumour necrosis factor (TNF{alpha}, 150 ng/ml) increased NF-{kappa}B-mediated transcription in primary cultures of mouse cortical astrocytes, which was abolished on co-transfection of a dominant-negative I{kappa}B{alpha} construct. In addition, TNF{alpha} increased nuclear localisation of p65 as shown by immunocytochemistry. To investigate potential flavonoid modulation of NF-{kappa}B activity, astrocytes were treated with flavonoids from different classes; flavan-3-ols ((-)-epicatechin and (+)-catechin), flavones (luteolin and chrysin), a flavonol (kaempferol) or the flavanones (naringenin and hesperetin) at dietary-relevant concentrations (0.1-1 {mu}M) for 18 h. None of the flavonoids modulated constitutive or

  9. Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway

    International Nuclear Information System (INIS)

    Jiang, Lili; Wu, Jueheng; Yang, Yi; Liu, Liping; Song, Libing; Li, Jun; Li, Mengfeng

    2012-01-01

    The prognosis of human glioma is poor, and the highly invasive nature of the disease represents a major impediment to current therapeutic modalities. The oncoprotein B-cell-specific Moloney murine leukemia virus integration site 1 protein (Bmi-1) has been linked to the development and progression of glioma; however, the biological role of Bmi-1 in the invasion of glioma remains unclear. A172 and LN229 glioma cells were engineered to overexpress Bmi-1 via stable transfection or to be silenced for Bmi-1 expression using RNA interfering method. Migration and invasiveness of the engineered cells were assessed using wound healing assay, Transwell migration assay, Transwell matrix penetration assay and 3-D spheroid invasion assay. MMP-9 expression and activity were measured using real-time PCR, ELISA and the gelatin zymography methods. Expression of NF-kappaB target genes was quantified using real-time PCR. NF-kappaB transcriptional activity was assessed using an NF-kappaB luciferase reporter system. Expression of Bmi-1 and MMP-9 in clinical specimens was analyzed using immunohistochemical assay. Ectopic overexpression of Bmi-1 dramatically increased, whereas knockdown of endogenous Bmi-1 reduced, the invasiveness and migration of glioma cells. NF-kappaB transcriptional activity and MMP-9 expression and activity were significantly increased in Bmi-1-overexpressing but reduced in Bmi-1-silenced cells. The reporter luciferase activity driven by MMP-9 promoter in Bmi-1-overexpressing cells was dependent on the presence of a functional NF-kappaB binding site, and blockade of NF-kappaB signaling inhibited the upregulation of MMP-9 in Bmi-1 overexpressing cells. Furthermore, expression of Bmi-1 correlated with NF-kappaB nuclear translocation as well as MMP-9 expression in clinical glioma samples. Bmi-1 may play an important role in the development of aggressive phenotype of glioma via activating the NF-kappaB/MMP-9 pathway and therefore might represent a novel therapeutic

  10. Persistent activation of NF-kappaB related to IkappaB's degradation profiles during early chemical hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    García-Román Rebeca

    2007-04-01

    Full Text Available Abstract Background To define the NF-kappaB activation in early stages of hepatocarcinogenesis and its IkappaB's degradation profiles in comparison to sole liver regeneration. Methods Western-blot and EMSA analyses were performed for the NF-kappaB activation. The transcriptional activity of NF-kappaB was determined by RT-PCR of the IkappaB-α mRNA. The IkappaB's degradation proteins were determined by Western-blot assay. Results We demonstrated the persistent activation of NF-kappaB during early stages of hepatocarcinogenesis, which reached maximal level 30 min after partial hepatectomy. The DNA binding and transcriptional activity of NF-kappaB, were sustained during early steps of hepatocarcinogenesis in comparison to only partial hepatectomy, which displayed a transitory NF-kappaB activation. In early stages of hepatocarconogenesis, the IkappaB-α degradation turned out to be acute and transitory, but the low levels of IkappaB-β persisted even 15 days after partial hepatectomy. Interestingly, IkappaB-β degradation is not induced after sole partial hepatectomy. Conclusion We propose that during liver regeneration, the transitory stimulation of the transcription factor response, assures blockade of NF-kappaB until recovery of the total mass of the liver and the persistent NF-kappaB activation in early hepatocarcinogenesis may be due to IkappaB-β and IkappaB-α degradation, mainly IkappaB-β degradation, which contributes to gene transcription related to proliferation required for neoplasic progression.

  11. NF-kappaB signaling mediates vascular smooth muscle endothelin type B receptor expression in resistance arteries

    DEFF Research Database (Denmark)

    Zheng, Jian-Pu; Zhang, Yaping; Edvinsson, Lars

    2010-01-01

    Vascular smooth muscle cells (SMC) endothelin type B (ET(B)) receptor upregulation results in strong vasoconstriction and reduction of local blood flow. We hypothesizes that the underlying molecular mechanisms involve transcriptional factor nuclear factor-kappaB (NF-kappaB) pathway. ET(B) recepto...

  12. JNK pathway is involved in the inhibition of inflammatory target gene expression and NF-kappaB activation by melittin

    Directory of Open Access Journals (Sweden)

    Han Sang

    2008-05-01

    Full Text Available Abstract Background Bee venom therapy has been used to treat inflammatory diseases including rheumatoid arthritis in humans and in experimental animals. We previously found that bee venom and melittin (a major component of bee venom have anti-inflammatory effect by reacting with the sulfhydryl group of p50 of nuclear factor-kappa B (NF-κB and IκB kinases (IKKs. Since mitogen activated protein (MAP kinase family is implicated in the NF-κB activation and inflammatory reaction, we further investigated whether activation of MAP kinase may be also involved in the anti-inflammatory effect of melittin and bee venom. Methods The anti-inflammatory effects of melittin and bee venom were investigated in cultured Raw 264.7 cells, THP-1 human monocytic cells and Synoviocytes. The activation of NF-κB was investigated by electrophoretic mobility shift assay. Nitric oxide (NO and prostaglandin E2 (PGE2 were determined either by Enzyme Linked Immuno Sorbent Assay or by biochemical assay. Expression of IκB, p50, p65, inducible nitric oxide synthetase (iNOS, cyclooxygenase-2 (COX-2 as well as phosphorylation of MAP kinase family was determined by Western blot. Results Melittin (0.5–5 μg/ml and bee venom (5 and 10 μg/ml inhibited lipopolysaccharide (LPS, 1 μg/ml and sodium nitroprusside (SNP, 200 μM-induced activation of c-Jun NH2-terminal kinase (JNK in RAW 264.7 cells in a dose dependent manner. However, JNK inhibitor, anthra [1,9-cd]pyrazole-6 (2H-one (SP600215, 10–50 μM dose dependently suppressed the inhibitory effects of melittin and bee venom on NF-κB dependent luciferase and DNA binding activity via suppression of the inhibitory effect of melittin and bee venom on the LPS and SNP-induced translocation of p65 and p50 into nucleus as well as cytosolic release of IκB. Moreover, JNK inhibitor suppressed the inhibitory effects of melittin and bee venom on iNOS and COX-2 expression, and on NO and PGE2 generation. Conclusion These data show that

  13. Activation of NF-{kappa}B in human skin fibroblasts by the oxidative stress generated by UVA radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vile, G.F.; Tanew-Iliitschew, Adrian; Tyrrell, R.M. [Institut Suisse de Recherches Experimentales sur le Cancer, Lausanne (Switzerland)

    1995-09-01

    We have examined the role of the nucleus and the membrane in the activation of nuclear factor (NF)-kB by oxidant stress generated via the UVA (320-380 nm) component of solar radiation. Nuclear extracts from human skin fibroblasts that had been irradiated with UVA at doses that caused little DNA damage contained activated NF-{kappa}B that bound to its recognition sequence in DNA. The UVA radiation-dependent activation of NF-{kappa}B in enucleated cells confirmed that the nucleus was not involved. On the other hand, UVA radiation-dependent activation of NF-{kappa}B appeared to be correlated with membrane damage, and activation could be prevented by {alpha}-tocopherol and butylated hydroxytoluene, agents that inhibited UVA radiation-dependent peroxidation of cell membrane lipids. The activation of NF-{kappa}B by the DNA damaging agents UVC (200-290 nm) and UVB (290-320 nm) radiation also only occurred at doses where significant membrane damage was induced, and, overall, activation was not correlated with the relative levels of DNA damage induced by UVC/UVB and UVA radiations. We conclude that the oxidative modification of membrane components may be an important factor to consider in the UV radiation-dependent activation of NF-{kappa}B over all wavelength ranges examined. (Author).

  14. ERK1/2/p53 and NF-κB dependent-PUMA activation involves in doxorubicin-induced cardiomyocyte apoptosis.

    Science.gov (United States)

    Zhang, D-X; Ma, D-Y; Yao, Z-Q; Fu, C-Y; Shi, Y-X; Wang, Q-L; Tang, Q-Q

    2016-06-01

    Numerous studies have demonstrated that Doxorubicin (DOX) induces cardiomyocyte apoptosis, which is associated with DOX-induced acute and chronic cardiotoxicity. DOX activated ERP1/2 and NF-KB signals has been linked to DOX-induced apoptosis and cardiotoxicity. However, the underlying mechanisms responsible for DOX-induced apoptosis have not been completely elucidated. In this study, we determine whether both ERK1/2/p53-dependent and NF-κB dependent-PUMA activation was related to DOX-induced apoptosis in H9c2 cells. H9c2 cells were treated with DOX (1 μM) for 2-48 hours. To explore the effect of ERK1/2, NF-KB, P53 and PUMA on DOX-induced apoptosis in H9c2 cells, H9c2 cells were transfected with PUMA siRNA or p65 siRNA, or treated with PFT-α (a chemical inhibitor of p53), or PD98059 (ERK inhibitor) before DOX treatment. MTT, Flow cytometry, TUNEL, Western blot and EMSA assay was used to detect cell survival, apoptosis, protein expression and NF-KB activity. DOX induced apoptosis and inhibited growth of H9c2 cells in a time-dependent manner. DOX activated ERK1/2, NF-KB, p53 and PUMA. Knockdown of PUMA completely blocked DOX-induced cell apoptosis and survival inhibition. Knockdown of NF-KB or ERK1/2 alone could partly block DOX-induced PUMA upregulation and cell apoptosis. However, knockdown of NF-KB and ERK1/2 together completely blocked DOX-induced cell apoptosis and PUMA upregulation. In addition, knockdown of ERK1/2 blocked p53-dependent PUMA upregulation. DOX induced apoptosis and inhibited growth of H9c2 cells by activation of ERK1/2/p53 and NF-κB dependent-PUMA signaling pathway.

  15. Short communication: molecular characterization of dog and cat p65 subunits of NF-kappaB.

    Science.gov (United States)

    Ishikawa, Shingo; Takemitsu, Hiroshi; Li, Gebin; Mori, Nobuko; Yamamoto, Ichiro; Arai, Toshiro

    2015-04-01

    Nuclear factor kappa B (NF-κB) plays an important role in the immune system. The p65 subunit is an important part of NF-κB unit, and studies of dog and cat p65 subunits of NF-κB (dp65 and cp65) are important in understanding their immune function. In this study, we described the molecular characterization of dp65 and cp65. The dp65 and cp65 complementary DNA encoded 542 and 555 amino acids, respectively, showing a high sequence homology with the mammalian p65 subunit (>87.5%). Quantitative polymerase chain reaction revealed that the p65 messenger RNA is highly expressed in the dog stomach and cat heart and adipose tissue. Functional NF-κB promoter-luciferase reporter vectors revealed that our isolated dp65 and cp65 cDNA encodes a functionally active protein. Transiently expressed dp65 and cp65 up-regulated pro-inflammatory cytokine expression levels in dog and cat, respectively. These findings suggest that dp65 and cp65 play important roles in regulating immune function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. NF-kappaΒ-inducing kinase regulates stem cell phenotype in breast cancer

    Science.gov (United States)

    Vazquez-Santillan, Karla; Melendez-Zajgla, Jorge; Jimenez-Hernandez, Luis Enrique; Gaytan-Cervantes, Javier; Muñoz-Galindo, Laura; Piña-Sanchez, Patricia; Martinez-Ruiz, Gustavo; Torres, Javier; Garcia-Lopez, Patricia; Gonzalez-Torres, Carolina; Ruiz, Victor; Avila-Moreno, Federico; Velasco-Velazquez, Marco; Perez-Tapia, Mayra; Maldonado, Vilma

    2016-01-01

    Breast cancer stem cells (BCSCs) overexpress components of the Nuclear factor-kappa B (NF-κB) signaling cascade and consequently display high NF-κB activity levels. Breast cancer cell lines with high proportion of CSCs exhibit high NF-κB-inducing kinase (NIK) expression. The role of NIK in the phenotype of cancer stem cell regulation is poorly understood. Expression of NIK was analyzed by quantitative RT-PCR in BCSCs. NIK levels were manipulated through transfection of specific shRNAs or an expression vector. The effect of NIK in the cancer stem cell properties was assessed by mammosphere formation, mice xenografts and stem markers expression. BCSCs expressed higher levels of NIK and its inhibition through small hairpin (shRNA), reduced the expression of CSC markers and impaired clonogenicity and tumorigenesis. Genome-wide expression analyses suggested that NIK acts on ERK1/2 pathway to exert its activity. In addition, forced expression of NIK increased the BCSC population and enhanced breast cancer cell tumorigenicity. The in vivo relevance of these results is further supported by a tissue microarray of breast cancer samples in which we observed correlated expression of Aldehyde dehydrogenase (ALDH) and NIK protein. Our results support the essential involvement of NIK in BCSC phenotypic regulation via ERK1/2 and NF-κB. PMID:27876836

  17. Ganoderma lucidum suppresses growth of breast cancer cells through the inhibition of Akt/NF-kappaB signaling.

    Science.gov (United States)

    Jiang, Jiahua; Slivova, Veronika; Harvey, Kevin; Valachovicova, Tatiana; Sliva, Daniel

    2004-01-01

    Ganoderma lucidum (Reishi, Lingzhi) is a popular Asian mushroom that has been used for more than 2 millennia for the general promotion of health and was therefore called the "Mushroom of Immortality." Ganoderma lucidum was also used in traditional Chinese medicine to prevent or treat a variety of diseases, including cancer. We previously demonstrated that Ganoderma lucidum suppresses the invasive behavior of breast cancer cells by inhibiting the transcription factor NF-kappaB. However, the molecular mechanisms responsible for the inhibitory effects of Ganoderma lucidum on the growth of highly invasive and metastatic breast cancer cells has not been fully elucidated. Here, we show that Ganoderma lucidum inhibits proliferation of breast cancer MDA-MB-231 cells by downregulating Akt/NF-kappaB signaling. Ganoderma lucidum suppresses phosphorylation of Akt on Ser473 and downregulates the expression of Akt, which results in the inhibition of NF-kappaB activity in MDA-MB-231 cells. The biological effect of Ganoderma lucidum was demonstrated by cell cycle arrest at G0/G1, which was the result of the downregulation of expression of NF-kappaB-regulated cyclin D1, followed by the inhibition of cdk4. Our results suggest that Ganoderma lucidum inhibits the growth of MDA-MB-231 breast cancer cells by modulating Akt/NF-kappaB signaling and could have potential therapeutic use for the treatment of breast cancer.

  18. The role of Rel/NF-kappa B proteins in viral oncogenesis and the regulation of viral transcription.

    Science.gov (United States)

    Mosialos, G

    1997-04-01

    Rel/NF-kappa B is a ubiquitous transcription factor that consists of multiple polypeptide subunits, and is subject to complex regulatory mechanisms that involve protein-protein interactions, phosphorylation, ubiquitination, proteolytic degradation, and nucleocytoplasmic translocation. The sophisticated control of Rel/NF-kappa B activity is not surprising since this transcription factor is involved in a wide array of cellular responses to extracellular cues, associated with growth, development, apoptosis, and pathogen invasion. Thus, it is not unexpected that this versatile cellular homeostatic switch would be affected by a variety of viral pathogens, which have evolved mechanisms to utilize various aspects of Rel/NF-kappa B activity to facilitate their replication, cell survival and possibly evasion of immune responses. This review will cover the molecular mechanisms that are utilized by mammalian oncogenic viruses to affect the activity of Rel/NF-kappa B transcription factors and the role of Rel/NF-kappa B in the regulation of viral gene expression and replication.

  19. Polymorphisms in NF-kappa B, PXR, LXR, PPAR gamma and risk of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Christensen, Jane; Ernst, Anja

    2011-01-01

    AIM: To investigate the contribution of polymorphisms in nuclear receptors to risk of inflammatory bowel disease (IBD). METHODS: Genotypes of nuclear factor (NF)-kappa B (NFKB1) NF kappa B -94ins/del (rs28362491); peroxisome proliferator-activated receptor (PPAR)-gamma (PPAR gamma) PPAR gamma Pro12......Ala (rs 1801282) and C1431T (rs 3856806); pregnane X receptor (PXR) (NR1I2) PXR A-24381C (rs1523127), C8055T (2276707), and A7635G (rs 6785049); and liver X receptor (LXR) (NR1H2) LXR T-rs1405655-C and T-rs2695121-C were assessed in a Danish case-control study of 327 Crohn's disease patients, 495...... and with a higher risk of extensive disease (OR: 1.34, 95% CI: 1.03-1.75 and OR: 2.49, 95% CI: 1.24-5.03, respectively). CONCLUSION: Common PXR and LXR polymorphisms may contribute to risk of IBD, especially among never smokers. (C) 2011 Baishideng. All rights reserved....

  20. Introducing spatial information into predictive NF-kappaB modelling--an agent-based approach.

    Directory of Open Access Journals (Sweden)

    Mark Pogson

    2008-06-01

    Full Text Available Nature is governed by local interactions among lower-level sub-units, whether at the cell, organ, organism, or colony level. Adaptive system behaviour emerges via these interactions, which integrate the activity of the sub-units. To understand the system level it is necessary to understand the underlying local interactions. Successful models of local interactions at different levels of biological organisation, including epithelial tissue and ant colonies, have demonstrated the benefits of such 'agent-based' modelling. Here we present an agent-based approach to modelling a crucial biological system--the intracellular NF-kappaB signalling pathway. The pathway is vital to immune response regulation, and is fundamental to basic survival in a range of species. Alterations in pathway regulation underlie a variety of diseases, including atherosclerosis and arthritis. Our modelling of individual molecules, receptors and genes provides a more comprehensive outline of regulatory network mechanisms than previously possible with equation-based approaches. The method also permits consideration of structural parameters in pathway regulation; here we predict that inhibition of NF-kappaB is directly affected by actin filaments of the cytoskeleton sequestering excess inhibitors, therefore regulating steady-state and feedback behaviour.

  1. Cirhin up-regulates a canonical NF-{kappa}B element through strong interaction with Cirip/HIVEP1

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bin; Mitchell, Grant A. [Genetique Medicale, Centre de Recherche CHU Sainte-Justine, Departement de Pediatrie, Universite de Montreal, Montreal, QC (Canada); Richter, Andrea, E-mail: andrea.richter@umontreal.ca [Genetique Medicale, Centre de Recherche CHU Sainte-Justine, Departement de Pediatrie, Universite de Montreal, Montreal, QC (Canada)

    2009-11-01

    North American Indian childhood cirrhosis (NAIC/CIRH1A) is a severe autosomal recessive intrahepatic cholestasis. All NAIC patients have a homozygous mutation in CIRH1A that changes conserved Arg565 to Trp (R565W) in Cirhin, a nucleolar protein of unknown function. Subcellular localization is unaffected by the mutation. Yeast two-hybrid screening identified Cirip (Cirhin interaction protein) and found that interaction between Cirip and R565W-Cirhin was weakened. Co-immunoprecipitation of the two proteins from nuclear extracts of HeLa cells strongly supports the yeast two hybrid results. Cirip has essentially the same sequence as the C-terminal of HIVEP1, a regulator of a canonical NF-{kappa}B sequence. Since Cirip has the zinc fingers required for this interaction, we developed an in vitro assay based on this element in mammalian cells to demonstrate functional Cirhin-Cirip interaction. The strong positive effect of Cirip on the NF-{kappa}B sequence was further increased by both Cirhin and R565W-Cirhin. Importantly, the effect of R565W-Cirhin was weaker than that of the wild type protein. We observed increased levels of Cirhin-Cirip complex in nuclear extracts in the presence of this NF-{kappa}B sequence. Our hypothesis is that Cirhin is a transcriptional regulatory factor of this NF-{kappa}B sequence and could be a participant in the regulation of other genes with NF-{kappa}B responsive elements. Since the activities of genes regulated through NF-{kappa}B responsive elements are especially important during development, this interaction may be a key to explain the perinatal appearance of NAIC.

  2. CARMA3 is overexpressed in colon cancer and regulates NF-{kappa}B activity and cyclin D1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning; Xu, Yingying; Song, Yongxi; Wu, Jianhua [Department of General Surgery, First Affiliated Hospital of China Medical University, Shenyang (China); Xu, Huimian, E-mail: xuhuimianpaper@yahoo.com.cn [Department of General Surgery, First Affiliated Hospital of China Medical University, Shenyang (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer CARMA3 expression is elevated in colon cancers. Black-Right-Pointing-Pointer CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. Black-Right-Pointing-Pointer CARMA3 upregulates cyclinD1 through NF-{kappa}B activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-I{kappa}B levels and NF-{kappa}B activity and its overexpression increased p-I{kappa}B expression and NF-{kappa}B activity. NF-{kappa}B inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-{kappa}B mediated upregulation of cyclin D1.

  3. Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway

    Directory of Open Access Journals (Sweden)

    Jiang Lili

    2012-09-01

    Full Text Available Abstract Background The prognosis of human glioma is poor, and the highly invasive nature of the disease represents a major impediment to current therapeutic modalities. The oncoprotein B-cell-specific Moloney murine leukemia virus integration site 1 protein (Bmi-1 has been linked to the development and progression of glioma; however, the biological role of Bmi-1 in the invasion of glioma remains unclear. Methods A172 and LN229 glioma cells were engineered to overexpress Bmi-1 via stable transfection or to be silenced for Bmi-1 expression using RNA interfering method. Migration and invasiveness of the engineered cells were assessed using wound healing assay, Transwell migration assay, Transwell matrix penetration assay and 3-D spheroid invasion assay. MMP-9 expression and activity were measured using real-time PCR, ELISA and the gelatin zymography methods. Expression of NF-kappaB target genes was quantified using real-time PCR. NF-kappaB transcriptional activity was assessed using an NF-kappaB luciferase reporter system. Expression of Bmi-1 and MMP-9 in clinical specimens was analyzed using immunohistochemical assay. Results Ectopic overexpression of Bmi-1 dramatically increased, whereas knockdown of endogenous Bmi-1 reduced, the invasiveness and migration of glioma cells. NF-kappaB transcriptional activity and MMP-9 expression and activity were significantly increased in Bmi-1-overexpressing but reduced in Bmi-1-silenced cells. The reporter luciferase activity driven by MMP-9 promoter in Bmi-1-overexpressing cells was dependent on the presence of a functional NF-kappaB binding site, and blockade of NF-kappaB signaling inhibited the upregulation of MMP-9 in Bmi-1 overexpressing cells. Furthermore, expression of Bmi-1 correlated with NF-kappaB nuclear translocation as well as MMP-9 expression in clinical glioma samples. Conclusions Bmi-1 may play an important role in the development of aggressive phenotype of glioma via activating the NF-kappa

  4. New treatment of periodontal diseases by using NF-kappaB decoy oligodeoxynucleotides via prevention of bone resorption and promotion of wound healing.

    Science.gov (United States)

    Shimizu, Hideo; Nakagami, Hironori; Morita, Shosuke; Tsukamoto, Ikuyo; Osako, Mariana Kiomy; Nakagami, Futoshi; Shimosato, Takashi; Minobe, Noriko; Morishita, Ryuichi

    2009-09-01

    Nuclear factor-kappa B (NF-kappaB) is involved in osteoclast differentiation and activation. Thus, the blockade of the NF-kappaB pathway might be a novel therapeutic strategy for treating bone metabolic diseases. Periodontitis is subgingival inflammation caused by bacterial infection; this disease also is thought to be a chronic focal point responsible for systemic diseases. In this study, NF-kappaB decoy oligodeoxynucleotides (ODNs) were topically applied for experimental periodontitis in a debris-accumulation model and wound healing in a bone-defect model of beagle dogs to investigate the effect of decoy ODN on bone metabolism. Application of NF-kappaB decoy ODN significantly reduced interleukin-6 activity in crevicular fluid and improved alveolar bone loss in the analysis of dental radiographs and DEXA. Direct measurement of exposed root that lost alveolar bone support revealed that NF-kappaB decoy treatment dramatically protected bone from loss. In a bone-defect model, NF-kappaB decoy ODN promoted the healing process as compared with control scrambled decoy in micro-CT analysis. Overall, inhibition of NF-kappaB by decoy strategy prevented the progression of bone loss in periodontitis and promoted the wound healing in bone defects through the inhibition of osteoclastic bone resorption. Targeting of NF-kappaB might be a potential therapy in various bone metabolic diseases.

  5. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages.

    Directory of Open Access Journals (Sweden)

    James Witham

    Full Text Available The transcriptional activation of the chicken lysozyme gene (cLys by lipopolysaccharide (LPS in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR triggering eviction of the CCCTC-binding factor (CTCF from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE. In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3' end of the gene.

  6. Effects of NF-kappaB oligonucleotide "decoys" on gene expression in P7 rat hippocampus after hypoxia/ischemia.

    Science.gov (United States)

    Qiu, Jingxin; Hu, Xiaoming; Nesic, Olivera; Grafe, Marjorie R; Rassin, David K; Wood, Thomas G; Perez-Polo, J Regino

    2004-07-01

    "Decoy" oligonucleotides can be used as gene-specific nuclear factor (NF-kappaB) inhibitors to regulate gene expression. We applied two different decoy oligonucleotides that contained the NF-kappaB binding consensus sequences present in the immunoglobulin G (IgG)-kappaB and Bcl-x promoter into 7-day-old (P7) rat lateral ventricles before hypoxia/ischemia (HI) and compared their effects on gene expression in hippocampi to saline-treated, scrambled decoy-treated, or untreated hippocampi exposed to HI. Left hippocampi were collected at 12 hr after HI. Electrophoretic mobility shift assays (EMSAs) showed that the two decoy treatments had different effects on NF-kappaB binding to the IgG-kappaB and Bcl-x promoter-specific consensus sequences, respectively. We assessed the decoys' effects on gene expression 12 hr after HI using ribonuclease protection assays (RPAs) and Affymetrix DNA microarrays. RPAs showed that both decoys significantly decreased interleukin (IL)-1alpha mRNA levels but had no impact on IL-1beta, IL-6, and IL-10 mRNA levels. IgG-kappaB decoys significantly decreased tumor necrosis factor (TNF)-alpha and TNF-beta mRNA levels compared to minimal changes after treatment with Bcl-x decoys. DNA microarray analyses showed that Bcl-x decoy treatment significantly decreased Bcl-x(L) mRNA levels. The decreased Bcl-x(L) mRNA levels after Bcl-x decoy treatment was confirmed by RPA analysis. DNA microarray data also indicated that several other genes were affected by both decoys. Our results suggest that different NF-kappaB decoy treatments could differentially regulate transcriptional responses to central nervous system trauma. Careful design of decoy sequences, however, is essential to acquire selective effects on cell death outcome. Copyright 2004 Wiley-Liss, Inc.

  7. NF-κB dependent and independent mechanisms of quartz-induced proinflammatory activation of lung epithelial cells

    Science.gov (United States)

    2010-01-01

    In the initiation and progression of pulmonary inflammation, macrophages have classically been considered as a crucial cell type. However, evidence for the role of epithelial type II cells in pulmonary inflammation has been accumulating. In the current study, a combined in vivo and in vitro approach has been employed to investigate the mechanisms of quartz-induced proinflammatory activation of lung epithelial cells. In vivo, enhanced expression of the inflammation- and oxidative stress-related genes HO-1 and iNOS was found on the mRNA level in rat lungs after instillation with DQ12 respirable quartz. Activation of the classical NF-κB pathway in macrophages and type II pneumocytes was indicated by enhanced immunostaining of phospho-IκBα in these specific lung cell types. In vitro, the direct, particle-mediated effect on proinflammatory signalling in a rat lung epithelial (RLE) cell line was compared to the indirect, macrophage product-mediated effect. Treatment with quartz particles induced HO-1 and COX-2 mRNA expression in RLE cells in an NF-κB independent manner. Supernatant from quartz-treated macrophages rapidly activated the NF-κB signalling pathway in RLE cells and markedly induced iNOS mRNA expression up to 2000-fold compared to non-treated control cells. Neutralisation of TNFα and IL-1β in macrophage supernatant did not reduce its ability to elicit NF-κB activation of RLE cells. In addition the effect was not modified by depletion or supplementation of intracellular glutathione. The results from the current work suggest that although both oxidative stress and NF-κB are likely involved in the inflammatory effects of toxic respirable particles, these phenomena can operate independently on the cellular level. This might have consequences for in vitro particle hazard testing, since by focusing on NF-κB signalling one might neglect alternative inflammatory pathways. PMID:20492675

  8. NF-κB dependent and independent mechanisms of quartz-induced proinflammatory activation of lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2010-05-01

    Full Text Available Abstract In the initiation and progression of pulmonary inflammation, macrophages have classically been considered as a crucial cell type. However, evidence for the role of epithelial type II cells in pulmonary inflammation has been accumulating. In the current study, a combined in vivo and in vitro approach has been employed to investigate the mechanisms of quartz-induced proinflammatory activation of lung epithelial cells. In vivo, enhanced expression of the inflammation- and oxidative stress-related genes HO-1 and iNOS was found on the mRNA level in rat lungs after instillation with DQ12 respirable quartz. Activation of the classical NF-κB pathway in macrophages and type II pneumocytes was indicated by enhanced immunostaining of phospho-IκBα in these specific lung cell types. In vitro, the direct, particle-mediated effect on proinflammatory signalling in a rat lung epithelial (RLE cell line was compared to the indirect, macrophage product-mediated effect. Treatment with quartz particles induced HO-1 and COX-2 mRNA expression in RLE cells in an NF-κB independent manner. Supernatant from quartz-treated macrophages rapidly activated the NF-κB signalling pathway in RLE cells and markedly induced iNOS mRNA expression up to 2000-fold compared to non-treated control cells. Neutralisation of TNFα and IL-1β in macrophage supernatant did not reduce its ability to elicit NF-κB activation of RLE cells. In addition the effect was not modified by depletion or supplementation of intracellular glutathione. The results from the current work suggest that although both oxidative stress and NF-κB are likely involved in the inflammatory effects of toxic respirable particles, these phenomena can operate independently on the cellular level. This might have consequences for in vitro particle hazard testing, since by focusing on NF-κB signalling one might neglect alternative inflammatory pathways.

  9. DMPD: TLR signalling and activation of IRFs: revisiting old friends from the NF-kappaBpathway. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16006187 TLR signalling and activation of IRFs: revisiting old friends from the NF-...kappaBpathway. Moynagh PN. Trends Immunol. 2005 Sep;26(9):469-76. (.png) (.svg) (.html) (.csml) Show TLR sign...alling and activation of IRFs: revisiting old friends from the NF-kappaBpathway. PubmedID 16006187 Title TLR sign

  10. Cytokine regulation of pro- and anti-apoptotic genes in rat hepatocytes: NF-kappaB-regulated inhibitor of apoptosis protein 2 (cIAP2) prevents apoptosis

    NARCIS (Netherlands)

    Schoemaker, Marieke H.; Ros, Jenny E.; Homan, Manon; Trautwein, Christian; Liston, Peter; Poelstra, Klaas; van Goor, Harry; Jansen, Peter L. M.; Moshage, Han

    2002-01-01

    BACKGROUND/AIMS: In acute liver failure, hepatocytes are exposed to various cytokines that activate both cell survival and apoptotic pathways. NF-kappaB is a central transcription factor in these responses. Recent studies indicate that blocking NF-kappaB causes apoptosis, indicating the existence of

  11. DMPD: Turning NF-kappaB and IRFs on and off in DC. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18534908 Turning NF-kappaB and IRFs on and off in DC. Kaisho T, Tanaka T. Trends Immunol. 2008 Jul...naka T. Publication Trends Immunol. 2008 Jul;29(7):329-36. Epub 2008 Jun 3. Pathw

  12. Reduced resting potentials in dystrophic (mdx) muscle fibers are secondary to NF-κB-dependent negative modulation of ouabain sensitive Na+-K+ pump activity.

    Science.gov (United States)

    Miles, M T; Cottey, E; Cottey, A; Stefanski, C; Carlson, C G

    2011-04-15

    To examine potential mechanisms for the reduced resting membrane potentials (RPs) of mature dystrophic (mdx) muscle fibers, the Na(+)-K(+) pump inhibitor ouabain was added to freshly isolated nondystrophic and mdx fibers. Ouabain produced a 71% smaller depolarization in mdx fibers than in nondystrophic fibers, increased the [Na(+)](i) in nondystrophic fibers by 40%, but had no significant effect on the [Na(+)](i) of mdx fibers, which was approximately double that observed in untreated nondystrophic fibers. Western blots indicated no difference in total and phosphorylated Na(+)-K(+) ATPase catalytic α1 subunit between nondystrophic and mdx muscle. Examination of the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) indicated that direct application of the drug slowly hyperpolarized mdx fibers (7 mV in 90 min) but had no effect on nondystrophic fibers. Pretreatment with ouabain abolished this hyperpolarization, and pretreatment with PDTC restored ouabain-induced depolarization and reduced [Na(+)](i). Administration of an NF-κB inhibitor that utilizes a different mechanism for reducing nuclear NF-κB activation, ursodeoxycholic acid (UDCA), also hyperpolarized mdx fibers. These results suggest that in situ Na(+)-K(+) pump activity is depressed in mature dystrophic fibers by NF-κB dependent modulators, and that this reduced pump activity contributes to the weakness characteristic of dystrophic muscle. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappaB activation.

    Directory of Open Access Journals (Sweden)

    Caitlin O'Mahony

    Full Text Available Host defence against infection requires a range of innate and adaptive immune responses that may lead to tissue damage. Such immune-mediated pathologies can be controlled with appropriate T regulatory (Treg activity. The aim of the present study was to determine the influence of gut microbiota composition on Treg cellular activity and NF-kappaB activation associated with infection. Mice consumed the commensal microbe Bifidobacterium infantis 35624 followed by infection with Salmonella typhimurium or injection with LPS. In vivo NF-kappaB activation was quantified using biophotonic imaging. CD4+CD25+Foxp3+ T cell phenotypes and cytokine levels were assessed using flow cytometry while CD4+ T cells were isolated using magnetic beads for adoptive transfer to naïve animals. In vivo imaging revealed profound inhibition of infection and LPS induced NF-kappaB activity that preceded a reduction in S. typhimurium numbers and murine sickness behaviour scores in B. infantis-fed mice. In addition, pro-inflammatory cytokine secretion, T cell proliferation, and dendritic cell co-stimulatory molecule expression were significantly reduced. In contrast, CD4+CD25+Foxp3+ T cell numbers were significantly increased in the mucosa and spleen of mice fed B. infantis. Adoptive transfer of CD4+CD25+ T cells transferred the NF-kappaB inhibitory activity. Consumption of a single commensal micro-organism drives the generation and function of Treg cells which control excessive NF-kappaB activation in vivo. These cellular interactions provide the basis for a more complete understanding of the commensal-host-pathogen trilogue that contribute to host homeostatic mechanisms underpinning protection against aberrant activation of the innate immune system in response to a translocating pathogen or systemic LPS.

  14. 1,8-Cineol inhibits nuclear translocation of NF-κB p65 and NF-κB-dependent transcriptional activity.

    Science.gov (United States)

    Greiner, Johannes F-W; Müller, Janine; Zeuner, Marie-Theres; Hauser, Stefan; Seidel, Thorsten; Klenke, Christin; Grunwald, Lena-Marie; Schomann, Timo; Widera, Darius; Sudhoff, Holger; Kaltschmidt, Barbara; Kaltschmidt, Christian

    2013-12-01

    Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear. Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 and IκBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells. Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases. © 2013.

  15. NF-κB-dependent role for cold-inducible RNA binding protein in regulating interleukin 1β.

    Directory of Open Access Journals (Sweden)

    Christian Brochu

    Full Text Available The cold inducible RNA binding protein (CIRBP responds to a wide array of cellular stresses, including short wavelength ultraviolet light (UVC, at the transcriptional and post-translational level. CIRBP can bind the 3'untranslated region of specific transcripts to stabilize them and facilitate their transport to ribosomes for translation. Here we used RNA interference and oligonucleotide microarrays to identify potential downstream targets of CIRBP induced in response to UVC. Twenty eight transcripts were statistically increased in response to UVC and these exhibited a typical UVC response. Only 5 of the 28 UVC-induced transcripts exhibited a CIRBP-dependent pattern of expression. Surprisingly, 3 of the 5 transcripts (IL1B, IL8 and TNFAIP6 encoded proteins important in inflammation with IL-1β apparently contributing to IL8 and TNFAIP6 expression in an autocrine fashion. UVC-induced IL1B expression could be inhibited by pharmacological inhibition of NFκB suggesting that CIRBP was affecting NF-κB signaling as opposed to IL1B mRNA stability directly. Bacterial lipopolysaccharide (LPS was used as an activator of NF-κB to further study the potential link between CIRBP and NFκB. Transfection of siRNAs against CIRBP reduced the extent of the LPS-induced phosphorylation of IκBα, NF-κB DNA binding activity and IL-1β expression. The present work firmly establishes a novel link between CIRBP and NF-κB signaling in response to agents with diverse modes of action. These results have potential implications for disease states associated with inflammation.

  16. 20-Hydroxycholecalciferol, product of vitamin D3 hydroxylation by P450scc, decreases NF-kappaB activity by increasing IkappaB alpha levels in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Zorica Janjetovic

    Full Text Available The side chain of vitamin D3 is hydroxylated in a sequential manner by cytochrome P450scc (CYP11A1 to form 20-hydroxycholecalciferol, which can induce growth arrest and differentiation of both primary and immortalized epidermal keratinocytes. Since nuclear factor-kappaB (NF-kappaB plays a pivotal role in the regulation of cell proliferation, differentiation and apoptosis, we examined the capability of 20-hydroxycholecalciferol to modulate the activity of NF-kappaB, using 1,25-dihydroxycholecalciferol (calcitriol as a positive control. 20-hydroxycholecalciferol inhibits the activation of NFkappaB DNA binding activity as well as NF-kappaB-driven reporter gene activity in keratinocytes. Also, 20-hydroxycholecalciferol induced significant increases in the mRNA and protein levels of the NF-kappaB inhibitor protein, IkappaB alpha, in a time dependent manner, while no changes in total NF-kappaB-p65 mRNA or protein levels were observed. Another measure of NF-kappaB activity, p65 translocation from the cytoplasm into the nucleus was also inhibited in extracts of 20-hydroxycholecalciferol treated keratinocytes. Increased IkappaB alpha was concomitantly observed in cytosolic extracts of 20-hydroxycholecalciferol treated keratinocytes, as determined by immunoblotting and immunofluorescent staining. In keratinocytes lacking vitamin D receptor (VDR, 20-hydroxycholecalciferol did not affect IkappaB alpha mRNA levels, indicating that it requires VDR for its action on NF-kappaB activity. Comparison of the effects of calcitrol, hormonally active form of vitamin D3, with 20-hydrocholecalciferol show that both agents have a similar potency in inhibiting NF-kappaB. Since NF-kappaB is a major transcription factor for the induction of inflammatory mediators, our findings indicate that 20-hydroxycholecalciferol may be an effective therapeutic agent for inflammatory and hyperproliferative skin diseases.

  17. Bilberry juice modulates plasma concentration of NF-kappaB related inflammatory markers in subjects at increased risk of CVD.

    Science.gov (United States)

    Karlsen, Anette; Paur, Ingvild; Bøhn, Siv K; Sakhi, Amrit K; Borge, Grethe I; Serafini, Mauro; Erlund, Iris; Laake, Petter; Tonstad, Serena; Blomhoff, Rune

    2010-09-01

    Bilberries are abundant in polyphenols. Dietary polyphenols have been associated with strategies for prevention and treatment of chronic inflammatory diseases. We investigated the effect of bilberry juice on serum and plasma biomarkers of inflammation and antioxidant status in subjects with elevated levels of at least one risk factor for cardiovascular disease (CVD). In a randomized controlled trial, participants consumed either bilberry juice (n = 31) or water (n = 31) for 4 weeks. Supplementation with bilberry juice resulted in significant decreases in plasma concentrations of C-reactive protein (CRP), interleukin (IL)-6, IL-15, and monokine induced by INF-gamma (MIG). Unexpectedly, an increase in the plasma concentration of tumor nuclear factor-alpha (TNF-alpha) was observed in the bilberry group. CRP, IL-6, IL15, MIG, and TNF-alpha are all target genes of nuclear factor- kappa B (NF-kappaB), -a transcription factor that is crucial in orchestrating inflammatory responses. Plasma quercetin and p-coumaric acid increased in the bilberry group, otherwise no differences were observed for clinical parameters, oxidative stress or antioxidant status. Furthermore, we studied the effect of polyphenols from bilberries on lipopolysaccharide (LPS)-induced NF-kappaB activation in a monocytic cell line. We observed that quercetin, epicatechin, and resveratrol inhibited NF-kappaB activation. These findings suggest that supplementation with bilberry polyphenols may modulate the inflammation processes. Further testing of bilberry supplementation as a potential strategy in prevention and treatment of chronic inflammatory diseases is warranted.

  18. Cigarette smoke extract promotes human vascular smooth muscle cell proliferation and survival through ERK1/2- and NF-κB-dependent pathways

    DEFF Research Database (Denmark)

    Chen, Qing-Wen; Edvinsson, Lars; Xu, Cang-Bao

    2010-01-01

    cell proliferation in a concentration-dependent manner from 0.05 to 0.2 µl/ml. Activation of ERK1/2 and NF-¿B was seen after exposure to DSPs. This occurred in parallel with the increase in cell population, bromodeoxyuridine incorporation, and cyclinD1/cyclin-dependent kinase 4 expression. Blocking...... aortic smooth muscle cell (HASMC) cultures, and to explore the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) and nuclear factor-kappaB (NF-¿B) signal mechanisms involved. Serum-starved HASMCs were treated with DSPs for up to 48 h. DSPs promoted...... phosphorylation of ERK1/2 by MAPK inhibitors U0126 and PD98059, and inhibiting activation of NF-¿B by IkappaB (I¿B) kinase inhibitors wedelolactone or IMD-0354, abolished the DSP effects. However, either a p38 inhibitor (SB203580) or an inhibitor of lipopolysaccharide (polymyxin B), or nicotinic receptor blockers...

  19. Depletion of the cellular levels of Bag-1 proteins attenuates phorbol ester-induced downregulation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Jana V., E-mail: Jana.maier@kit.edu [Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Volz, Yvonne [Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Berger, Caroline [Joint Research Division Vascular Biology of the Medical Faculty Mannheim, University of Heidelberg, and the German Cancer Research Center, Ludolf-Krehl-Str. 13-17, D-68167 Mannheim (Germany); Schneider, Sandra; Cato, Andrew C.B. [Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2010-10-22

    Research highlights: {yields}Bag-1 depletion only marginally affects the action of the glucocorticoid receptor but strongly regulates the activity of NF-{kappa}B. {yields}Bag-1 depletion attenuates phosphorylation and degradation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B p65 and p50. {yields}Bag-1 interacts with I{kappa}B{alpha} and partially restores I{kappa}B{alpha} and NF-{kappa}B activation in Bag-1 depleted cells. -- Abstract: Bag-1 consists in humans of four isoforms generated from the same RNA by alternative translation. Overexpression of single Bag-1 isoforms has identified Bag-1 as a negative regulator of action of many proteins including the glucocorticoid receptor (GR). Here we have analysed the ability of Bag-1 to regulate the transrepression function of the GR. Silencing Bag-1 expression only marginally affects the transrepression action of the GR but decreased the action of the transcription factor NF-{kappa}B. Furthermore phosphorylation and degradation of the inhibitor protein I{kappa}B{alpha} and nuclear accumulation of p65 and p50 NF-{kappa}B proteins in response to phorbol ester was attenuated following Bag-1 depletion in HeLa cells. Reconstitution of Bag-1 in depleted cells partially restored I{kappa}B{alpha} and NF-{kappa}B activation. Knock-down of Bag-1 expression also did not significantly alter GR-mediated transactivation but affected the basal transcription of some of the target genes. Thus Bag-1 proteins function as regulators of the action of selective transcription factors.

  20. Lung-Derived Mediators Induce Cytokine Production in Downstream Organs via an NF-κB-Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    E. K. Patterson

    2013-01-01

    Full Text Available In the setting of acute lung injury, levels of circulating inflammatory mediators have been correlated with adverse outcomes. Previous studies have demonstrated that injured, mechanically ventilated lungs represent the origin of the host inflammatory response; however, mechanisms which perpetuate systemic inflammation remain uncharacterized. We hypothesized that lung-derived mediators generated by mechanical ventilation (MV are amplified by peripheral organs in a “feed forward” mechanism of systemic inflammation. Herein, lung-derived mediators were collected from 129X1/SVJ mice after 2 hours of MV while connected to the isolated perfused mouse lung model setup. Exposure of liver endothelial cells to lung-derived mediators resulted in a significant increase in G-CSF, IL-6, CXCL-1, CXCL-2, and MCP-1 production compared to noncirculated control perfusate media (P<0.05. Furthermore, inhibition of the NF-κB pathway significantly mitigated this response. Changes in gene transcription were confirmed using qPCR for IL-6, CXCL-1, and CXCL-2. Additionally, liver tissue obtained from mice subjected to 2 hours of in vivo MV demonstrated significant increases in hepatic gene transcription of IL-6, CXCL-1, and CXCL-2 compared to nonventilated controls. Collectively, this data demonstrates that lung-derived mediators, generated in the setting of MV, are amplified by downstream organs in a feed forward mechanism of systemic inflammation.

  1. The effect of intracellular delivery of catalase and antisense oligonucleotides to NF-kappaB using albumin microcapsules in the endotoxic shock model.

    Science.gov (United States)

    Siwale, Rodney C; Oettinger, Carl W; Addo, Richard; Siddig, Aladin; D'Souza, Martin J

    2009-11-01

    Microencapsulated (MC) catalase has been shown to inhibit H(2)O(2) and tumor necrosis factor (TNF) in vitro after endotoxin stimulation. It is the purpose of this study to determine whether MC catalase improves pro-inflammatory cytokine inhibition and mortality in an endotoxic shock model in vivo. We also examined whether MC catalase and antisense oligonucleotides (ASO) to nuclear factor kappaB (NF-kappaB) together improved survival by inhibiting pro-inflammatory cytokines using different mechanisms. Albumin microcapsules containing catalase and ASO to NF-kappaB were prepared 2-7 microm in size by using a Büchi spray dryer. Progressively increasing doses of MC catalase, MC ASO to NF-kappaB, and the combination were given to rats before the administration of Escherichia coli endotoxin. Results demonstrated 60% survival in rats given 15 mg/kg MC catalase, 70% survival with 20 mg/kg MC ASO NF-kappaB, and 80% survival with the combination. TNF was inhibited by 53% in the MC catalase group 4 h after endotoxin administration, 43% in the ASO NF-kappaB group, and 78% in the combination group compared to controls. In conclusion, this study demonstrates the effectiveness of MC intracellular delivery of the naturally occurring antioxidant catalase in improving animal survival. The addition of ASO to NF-kappaB improved both cytokine inhibition and animal survival in endotoxic shock.

  2. Induction of cyclooxygenase-2 in macrophages by catalase: role of NF-kappaB and PI3K signaling pathways.

    Science.gov (United States)

    Jang, Byeong-Churl; Kim, Do-Hyun; Park, Jong-Wook; Kwon, Taeg Kyu; Kim, Sang-Pyo; Song, Dae-Kyu; Park, Jong-Gu; Bae, Jae-Hoon; Mun, Kyo-Chul; Baek, Won-Ki; Suh, Min-Ho; Hla, Timothy; Suh, Seong-Il

    2004-04-02

    Induction of COX-2 by catalase in smooth muscle cells, endothelial cells, and neuronal cells has been previously reported. However, the mechanism by which catalase up-regulates COX-2 remains poorly understood. In this study, we investigated the effect of catalase on induction of COX-2 in macrophages. The addition of catalase into Raw 264.7 macrophages induced COX-2 expression that was correlated with increased COX-2 transcription and mRNA stability. Catalase also induced activation of NF-kappaB, PI3K, ERKs, p38s, or JNKs. Catalase-induced COX-2 expression was abrogated by treatment of MG-132 (a NF-kappaB inhibitor) or LY294002 (a PI3K inhibitor), but not by treatment of PD98059 (an ERK inhibitor), SB203580 (a p38 inhibitor), or SP600125 (a JNK inhibitor). Moreover, inhibition of PI3K by LY294002 caused partial decrease of catalase-induced COX-2 transcription and steady-state COX-2 transcript levels, but not COX-2 mRNA stability. Together, these results suggest that catalase induces the expression of COX-2 in Raw 264.7 macrophages, and the induction is related with activation of NF-kappaB transcription factor and PI3K signaling pathway.

  3. NF-kappa B binding mechanism: a nuclear magnetic resonance and modeling study of a GGG --> CTC mutation.

    Science.gov (United States)

    Tisné, C; Hartmann, B; Delepierre, M

    1999-03-30

    We present the solution structure of the nonpalindromic 16 bp DNA 5'd(CTGCTCACTTTCCAGG)3'. 5'd(CCTGGAAAGTGAGCAG)3' containing a mutated kappaB site for which the mutation of a highly conserved GGG tract of the native kappaB HIV-1 site to CTC abolishes NF-kappaB binding. 1H and 31P NMR spectroscopies have been used together with molecular modeling to determine the fine structure of the duplex. NMR data show evidence for a BI-BII equilibrium of the CpA.TpG steps at the 3'-end of the oligomer. Models for the extreme conformations reached by the mutated duplex (denoted 16M) are proposed in agreement with the NMR data. Since the distribution of BII sites is changed in the mutated duplex compared to that of the native duplex (denoted 16N), large differences are induced in the intrinsic structural properties of both duplexes. In particular, in BII structures, 16M shows a kink located at the 3'-end of the duplex, and in contrast, 16N exhibits an intrinsic global curvature toward the major groove. Whereas 16N can reach a conformation very favorable for the interaction with NF-kappaB, 16M cannot mimic such a conformation and, moreover, its deeper and narrower major groove could hinder the DNA-protein interactions.

  4. Differential effect of covalent protein modification and glutathione depletion on the transcriptional response of Nrf2 and NF-kappaB.

    Science.gov (United States)

    Chia, Alvin J L; Goldring, Christopher E; Kitteringham, Neil R; Wong, Shi Quan; Morgan, Paul; Park, B Kevin

    2010-08-01

    Liver injury associated with exposure to therapeutic agents that undergo hepatic metabolism can involve the formation of reactive metabolites. These may cause redox perturbation which can result in oxidative stress as well as protein modification leading to activation or inhibition of cellular transcriptional responses. Nevertheless, the effects of these challenges on more than one transcriptional pathway simultaneously remain unclear. We have investigated two transcription factors known to be sensitive to electrophilic stress and redox perturbation, Nrf2 and NF-kappaB, in mouse liver cells. Cellular stress was induced by the probes: N-acetyl-p-benzoquinineimine (NAPQI), the reactive metabolite of acetaminophen; dinitrochlorobenzene (DNCB), a model electrophile; and buthionine (S,R)-sulfoximine (BSO), an inhibitor of glutamate-cysteine ligase. NAPQI, DNCB and BSO can all cause glutathione (GSH) depletion; however only NAPQI and DNCB can covalently bind proteins. We also employed RNAi to manipulate Keap1 (the inhibitor of Nrf2), Nrf2 itself and NF-kappaB-p65, to understand their roles in the response to drug stress. All three chemicals induced Nrf2, but NF-kappaB binding activity was only increased after BSO treatment. In fact, NF-kappaB binding activity decreased after exposure to NAPQI and DNCB. While RNAi depletion of Keap1 led to reduced toxicity following exposure to DNCB, depletion of Nrf2 and NF-kappaB augmented toxicity. Interestingly, increased Nrf2 caused by Keap1 depletion was reversed by co-depletion of NF-kappaB. We demonstrate that Keap1/Nrf2 and NF-kappaB respond differently to electrophiles that bind proteins covalently and the redox perturbation associated with glutathione depletion, and that crosstalk may enable NF-kappaB to partly influence Nrf2 expression during cellular stress. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. A triacylated lipoprotein from Mycoplasma genitalium activates NF-kappaB through Toll-like receptor 1 (TLR1) and TLR2.

    Science.gov (United States)

    Shimizu, Takashi; Kida, Yutaka; Kuwano, Koichi

    2008-08-01

    Mycoplasma genitalium is a sexually transmitted bacterial pathogen that causes nongonococcal chlamydia-negative urethritis, mucopurulent cervicitis, endometritis, pelvic inflammatory disease, and tubal factor infertility in humans. However, pathogenic agents that induce inflammatory responses have not been identified in M. genitalium. In this study, we examined the involvement of Toll-like receptors (TLRs) in activation of the immune response by a lipoprotein from M. genitalium and their active component responsible for NF-kappaB activation. The Triton X-114 detergent phase of M. genitalium was found to induce NF-kappaB through TLR2. The active component of the Triton X-114 detergent phase was a lipoprotein precursor, MG149. The activation of NF-kappaB by MG149 was inhibited by a dominant negative (DN) construct of TLR1 but not by a DN construct of TLR6. These results indicate that the activation of NF-kappaB by MG149 is dependent on TLR1 and TLR2. A synthetic lipopeptide derived from MG149 containing three acyl chains also induced NF-kappaB through TLR1 and TLR2. Thus, the results show that MG149, a triacylated lipoprotein from M. genitalium, activates NF-kappaB through TLR1 and TLR2.

  6. 1,6-O,O-diacetylbritannilactones inhibits IkappaB kinase beta-dependent NF-kappaB activation.

    Science.gov (United States)

    Liu, Yue-Ping; Wen, Jin-Kun; Wu, Yi-Bing; Zhang, Jia; Zheng, Bin; Zhang, Di-Qun; Han, Mei

    2009-03-01

    To determine the chemical constituents responsible for pharmacological effects of Inula britannica-F., three specific sesquiterpene lactones in Inula britannica were isolated from chloroform extract and identified, including britannilactone (BL), 1-O-acetylbritannilactone (ABLO), and 1,6-O,O-diacetylbritannilactone (ABLOO). Electrophoretic mobility shift assay (EMSA) was performed to detect the nuclear translocation of nuclear factor-kappaB (NF-kappaB) p65. The expressions of IkappaBalpha, pIkappaBalpha, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IkappaB kinase alpha/beta (IKKalpha/beta) and NF-kappaB kinase (NIK) were detected by Western blot and RT-PCR. We found that acetyl side groups enhanced the inhibitory action of the agents on LPS/IFN-gamma-induced iNOS and COX-2 expression. Their inhibiting activity was positive correlation with the acetyl side group number. The effects of LPS/IFN-gamma were reversed by ABLOO, and BL without acetyl side groups showed only a weak inhibitory action. Further study indicated that ABLOO markedly inhibited the phosphorylation of IKKbeta down to based level, but not IKKalpha, corresponding with decreased in IkappaBalpha degradation and phosphorylation induced by LPS/IFN-gamma, resulting in the suppression of NF-kappaB nuclear translocation and activity. These results suggest that the acetyl moieties add to the lipophilicity, and consequently enhance cellular penetration, so that ABLOO possess the most anti-inflammatory effect and may be a potent lead structure for the development of therapeutic and cytokine-suppressing remedies valuable for the treatment of various inflammatory diseases.

  7. NF kappaB expression increases and CFTR and MUC1 expression decreases in the endometrium of infertile patients with hydrosalpinx: a comparative study

    Directory of Open Access Journals (Sweden)

    Song Yong

    2012-10-01

    Full Text Available Abstract Background Hydrosalpinx are associated with infertility, due to reduced rates of implantation and increased abortion rates. The aims of this study were to investigate the expression of cystic fibrosis transmembrane conductance regulator (CFTR, nuclear factor kappa B (NF KappaB and mucin-1 (MUC-1, and analyze the correlation between the expression of CFTR and NF KappaB or MUC1, in the endometrium of infertile women with and without hydrosalpinx. Methods Thirty-one infertile women with laparoscopy-confirmed unilateral or bilateral hydrosalpinx and 20 infertile women without hydrosalpinx or pelvic inflammatory disease (control group were recruited. Endometrial biopsy samples were collected and the expression of CFTR, NF KappaB and MUC1 were analyzed using immunohistochemistry and quantitative real-time PCR. Results CFTR, NF KappaB and MUC1 mRNA and protein expression tended to increase in the secretory phase compared to the proliferative phase in both groups; however, these differences were not significantly different. The endometrium of infertile patients with hydrosalpinx had significantly higher NF KappaB mRNA and protein expression, and significantly lower CFTR and MUC1 mRNA and protein expression, compared to control infertile patients. A positive correlation was observed between CFTR and MUC1 mRNA expression (r = 0.65, P CFTR mRNA and NF KappaB mRNA expression (r = −0.59, P Conclusions Increased NF KappaB expression and decreased CFTR and MUC1 expression in the endometrium of infertile patients with hydrosalpinx reinforce the involvement of a molecular mechanism in the regulation of endometrial receptivity.

  8. The circular RNA ciRS-7 promotes APP and BACE1 degradation in an NF-κB-dependent manner.

    Science.gov (United States)

    Shi, Zhemin; Chen, Ting; Yao, Qingbin; Zheng, Lina; Zhang, Zhen; Wang, Jingzhao; Hu, Zhimei; Cui, Hongmei; Han, Yawei; Han, Xiaohui; Zhang, Kun; Hong, Wei

    2017-04-01

    The aberrant accumulation of β-amyloid peptide (Aβ) in the brain is a key feature of Alzheimer's disease (AD), and enhanced cleavage of β-amyloid precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) has a major causative role in AD. Despite their prominence in AD pathogenesis, the regulation of BACE1 and APP is incompletely understood. In this study, we report that the circular RNA circular RNA sponge for miR-7 (ciRS-7) has an important role in regulating BACE1 and APP protein levels. Previous studies have shown that ciRS-7, which is highly expressed in the human brain, is down-regulated in the brain of people with AD but the relevance of this finding was not clear. We have found that ciRS-7 is not involved in the regulation of APP and BACE1 gene expression, but instead reduces the protein levels of APP and BACE1 by promoting their degradation via the proteasome and lysosome. Consequently, overexpression of ciRS-7 reduces the generation of Aβ, indicating a potential neuroprotective role of ciRS-7. Our data also suggest that ciRS-7 modulates APP and BACE1 levels in a nuclear factor-κB (NF-κB)-dependent manner: ciRS-7 expression inhibits translation of NF-κB and induces its cytoplasmic localization, thus derepressing expression of UCHL1, which promotes APP and BACE1 degradation. Additionally, we demonstrated that APP reduces the level of ciRS-7, revealing a mutual regulation of ciRS-7 and APP. Taken together, our data provide a molecular mechanism implicating reduced ciRS-7 expression in AD, suggesting that ciRS-7 may represent a useful target in the development of therapeutic strategies for AD. © 2017 Federation of European Biochemical Societies.

  9. A Block to Efficient Replication of Simian Immunodeficiency Virus in C8166 Cells Can Be Overcome by Duplication of the NF-kappaB Binding Site.

    Science.gov (United States)

    Bellas, R.E.; Li, Y.

    1996-01-01

    Sequence analysis of the acutely lethal pbj14 strain of simian immunodeficiency virus (SIVpbj14) clone revealed among other differences from its less pathogenic counterparts a duplication of its binding site for nuclear factor kappa B (NF-kappaB) in its long terminal repeats (LTR). We have investigated whether introducing a similar duplication into the pathogenic molecular clone SIV mac239 would alter its biological properties. We compared an SIV which possessed 2 NF-kappaB sites to the wild type, a single NF-kappaB site virus, with respect to its ability to replicate in vitro in established CD4+ T cell lines, primary peripheral blood mononuclear cells (PBMCs), and primary alveolar macrophages. The virus containing 2 NF-kappaB sites exhibited no apparent difference from wild type in established cell lines 174xCEM, MT-2 and MT-4, or in primary PBMC or tissue macrophage cultures. However, the 2 kappaB virus replicated well in the established cell line C8166, while the wild type, 1 kappaB virus replicated very poorly in this cell type, suggesting that duplication of the NF-kappaB site is capable of overcoming a block to efficient replication of SIVmac239 in C8166 cells. Interestingly, Em*, a macrophage tropic SIVmac that differs from SIVmac239 by 9 amino acids in the envelope region yet possesses only one NK-kappaB binding sites, also replicates well in C8166. The data suggest that the replication of wild type SIVmac239 is restricted in C8166 cells, but that this restriction can be overcome either by changes in the LTR or by changes in the envelope region. Copyright 1996 S. Karger AG, Basel

  10. Characterization of a SUMO Ligase that is Essential for DNA Damage-Induced NF-Kappa B Activation

    Science.gov (United States)

    2008-03-01

    from pcDNA3.1(+) 2×HA–NEMO template. pcDNA3 2×HA–NEMO K277A and K309A mutants were generated through subcloning of pcDNA3 6×Myc–NEMO K277A and K309A...cloning are available on request. All constructs were verified by DNA sequencing. Xenopus pET28a–PIASy was subcloned into the pcDNA3–Myc3 vector...overexpression of Ubc9 or SUMO-1 inhibited NF-kB transcriptional activity induced by TNFa, IL-1 and okadaic acid as measured by an NF-kB- dependent HIV -LTR

  11. miR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene.

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    Full Text Available The signaling pathways associated with the Toll-like receptors (TLRs and nuclear factor-kappaB (NF-κB are essential to pro-inflammatory cytokine and chemokine expression, as well as initiating innate epithelial immune responses. The TLR/NF-κB signaling pathways must be stringently controlled through an intricate network of positive and negative regulatory elements. MicroRNAs (miRNAs are non-coding small RNAs that regulate the stability and/or translation of protein-coding mRNAs. Herein we report that miR-16 promotes NF-κB-regulated transactivation of the IL-8 gene by suppression of the silencing mediator for retinoid and thyroid hormone receptor (SMRT. LPS stimulation activated miR-16 gene transcription in human monocytes (U937 and biliary epithelial cells (H69 through MAPK-dependent mechanisms. Transfection of cells with the miR-16 precursor promoted LPS-induced production of IL-8, IL-6, and IL-1α, without a significant effect on their RNA stability. Instead, an increase in NF-κB-regulated transactivation of the IL-8 gene was confirmed in cells following transfection of miR-16 precursor. Importantly, miR-16 targeted the 3'-untranslated region of SMRT and caused translational suppression of SMRT. LPS decreased SMRT expression via upregulation of miR-16. Moreover, functional manipulation of SMRT altered NF-κB-regulated transactivation of LPS-induced IL-8 expression. These data suggest that miR-16 targets SMRT and modulates NF-κB-regulated transactivation of the IL-8 gene.

  12. The NF-kappa B inhibitor, celastrol, could enhance the anti-cancer effect of gambogic acid on oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    He, Di; Chen, Wantao; Xu, Qin; Yan, Ming; Zhang, Ping; Zhou, Xiaojian; Zhang, Zhiyuan; Duan, Wenhu; Zhong, Laiping; Ye, Dongxia

    2009-01-01

    Gambogic acid (GA) is a major active ingredient of gamboge, a widely used traditional Chinese medicine that has been reported to be a potent cytotoxic agent against some malignant tumors. Many studies have shown that the NF-kappa B signaling pathway plays an important role in anti-apoptosis and the drug resistance of tumor cells during chemotherapy. In this study, the effects and mechanisms of GA and the NF-kappa B inhibitor celastrol on oral cancer cells were investigated. Three human oral squamous cell carcinoma cell lines, Tca8113, TSCC and NT, were treated with GA alone, celastrol alone or GA plus celastrol. Cytotoxicity was assessed by MTT assay. The rate of apoptosis was examined with annexin V/PI staining as well as transmission electronic microscopy in Tca8113 cells. The level of constitutive NF-kappa B activity in oral squamous cell carcinoma cell lines was determined by immunofluorescence assays and nuclear extracts and electrophoretic mobility shift assays (EMSAs) in vitro. To further investigate the role of NF-kappa B activity in GA and celastrol treatment in oral squamous cell carcinoma, we used the dominant negative mutant SR-IκBα to inhibit NF-kappa B activity and to observe its influence on the effect of GA. The results showed that GA could inhibit the proliferation and induce the apoptosis of the oral squamous cell carcinoma cell lines and that the NF-kappa B pathway was simultaneously activated by GA treatment. The minimal cytotoxic dose of celastrol was able to effectively suppress the GA-induced NF-kappa B pathway activation. Following the combined treatment with GA and the minimal cytotoxic dose of celastrol or the dominant negative mutant SR-IκBα, proliferation was significantly inhibited, and the apoptotic rate of Tca8113 cells was significantly increased. The combination of GA and celastrol has a synergistic antitumor effect. The effect can be primarily attributed to apoptosis induced by a decrease in NF-kappa B pathway activation. The

  13. Requirement of NF-kappa B Activation in Different Mice Brain Areas during Long-Term Memory Consolidation in Two Contextual One-Trial Tasks with Opposing Valences

    Science.gov (United States)

    Salles, Angeles; Krawczyk, Maria del C.; Blake, Mariano; Romano, Arturo; Boccia, Mariano M.; Freudenthal, Ramiro

    2017-01-01

    NF-kappa B is a transcription factor whose activation has been shown to be necessary for long-term memory consolidation in several species. NF-kappa B is activated and translocates to the nucleus of cells in a specific temporal window during consolidation. Our work focuses on a one trial learning tasks associated to the inhibitory avoidance (IA) setting. Mice were trained either receiving or not a footshock when entering a dark compartment (aversive vs. appetitive learning). Regardless of training condition (appetitive or aversive), latencies to step-through during testing were significantly different to those measured during training. Additionally, these testing latencies were also different from those of a control group that only received a shock unrelated to context. Moreover, nuclear NF-kappa B DNA-binding activity was augmented in the aversive and the appetitive tasks when compared with control and naïve animals. NF-kappa B inhibition by Sulfasalazine injected either in the Hippocampus, Amygdala or Nucleus accumbens immediately after training was able to impair retention in both training versions. Our results suggest that NF-kappa B is a critical molecular step, in different brain areas on memory consolidation. This was the case for both the IA task and also the modified version of the same task where the footshock was omitted during training. This work aims to further investigate how appetitive and aversive memories are consolidated. PMID:28439227

  14. Ischaemia/reperfusion induced cardiac stem cell homing to the injured myocardium by stimulating stem cell factor expression via NF-kappaB pathway.

    Science.gov (United States)

    Guo, Junli; Jie, Wei; Kuang, Dong; Ni, Juan; Chen, Duoen; Ao, Qilin; Wang, Guoping

    2009-06-01

    Ischaemia/reperfusion (I/R) is a major cause of heart failure. Recently cardiac stem cells (CSCs) were proposed as the most appropriate cell type for heart disease therapy. However, it is still unclear whether I/R can stimulate the CSCs homing to the injured myocardium. Male Sprague-Dawley rats were subjected to a 30-min ischaemia followed by reperfusion of different intervals. RT-PCR, western blotting and immunohistochemistry were performed to detect stem cell factor (SCF) expression at mRNA and protein levels respectively. Activation of nuclear factor-kappaB (NF-kappaB) was determined by electrophoretic mobility shift assay. To assess the homing of CSCs in vivo, BrdU-labelled CSCs were injected into AV-groove before induction of ischaemia and examined by immunofluorescent staining in the injured myocardium after I/R. From day 3 to day 6 after reperfusion, the accumulation of CSCs was significantly elevated in the injured area, which was matched with the increased SCF expression during I/R. Pretreatment of rats with NF-kappaB inhibitor, N-acetyl-L-cysteine (NAC) not only suppressed NF-kappaB activation induced by I/R but also attenuated SCF expression. Further analysis revealed that I/R induced phosphorylation of IkappaBalpha after 15 min of reperfusion, and the raised phosphor-IkappaBalpha returned to the basal level at 2 h of reperfusion. In simulated I/R(SI/R) in vitro, it enhanced NF-kappaB activation and SCF expression in cultured neonatal rat cardiomyocytes, which was markedly inhibited by NF-kappaB decoy oligodeoxynucleotide or NAC. Taken together, our results demonstrated that I/R induced CSCs homing to the injured myocardium by stimulating myocardial SCF expression via activation of NF-kappaB.

  15. HOIL-1L interacting protein (HOIP as an NF-kappaB regulating component of the CD40 signaling complex.

    Directory of Open Access Journals (Sweden)

    Bruce S Hostager

    2010-06-01

    Full Text Available The tumor necrosis factor receptor (TNFR superfamily mediates signals critical for regulation of the immune system. One family member, CD40, is important for the efficient activation of antibody-producing B cells and other antigen-presenting cells. The molecules and mechanisms that mediate CD40 signaling are only partially characterized. Proteins known to interact with the cytoplasmic domain of CD40 include members of the TNF receptor-associated factor (TRAF family, which regulate signaling and serve as links to other signaling molecules. To identify additional proteins important for CD40 signaling, we used a combined stimulation/immunoprecipitation procedure to isolate CD40 signaling complexes from B cells and characterized the associated proteins by mass spectrometry. In addition to known CD40-interacting proteins, we detected SMAC/DIABLO, HTRA2/Omi, and HOIP/RNF31/PAUL/ZIBRA. We found that these previously unknown CD40-interacting partners were recruited in a TRAF2-dependent manner. HOIP is a ubiquitin ligase capable of mediating NF-kappaB activation through the ubiquitin-dependent activation of IKKgamma. We found that a mutant HOIP molecule engineered to lack ubiquitin ligase activity inhibited the CD40-mediated activation of NF-kappaB. Together, our results demonstrate a powerful approach for the identification of signaling molecules associated with cell surface receptors and indicate an important role for the ubiquitin ligase activity of HOIP in proximal CD40 signaling.

  16. Anti-inflammatory mechanisms of resveratrol in activated HMC-1 cells: pivotal roles of NF-kappaB and MAPK.

    Science.gov (United States)

    Kang, Ok-Hwa; Jang, Hye-Jin; Chae, Hee-Sung; Oh, You-Chang; Choi, Jang-Gi; Lee, Young-Seob; Kim, Jong-Hak; Kim, Youn Chul; Sohn, Dong Hwan; Park, Hyun; Kwon, Dong-Yeul

    2009-05-01

    Resveratrol is a phytoalexin polyphenolic compound found in various plants, including grapes, berries, and peanuts. Recently, studies have documented various health benefits of resveratrol including cardiovascular and cancer-chemopreventive properties. The aim of the present study was to demonstrate the effects of resveratrol on the expression of pro-inflammatory cytokines, as well as to elucidate its mechanism of action in the human mast cell line (HMC-1). Cells were stimulated with phorbol 12-myristate 13-acetate (PMA) plus A23187 in the presence or absence of resveratrol. To study the possible effects of resveratrol, ELISA, RT-PCR, real-time RT-PCR, Western blot analysis, fluorescence, and luciferase activity assays were used in this study. Resveratrol significantly inhibited the PMA plus A23187-induction of inflammatory cytokines such as tumour necrosis factor (TNF)-alpha, interleukin (IL)-6 and IL-8. Moreover, resveratrol attenuated cyclooxygenase (COX)-2 expression and intracellular Ca2+ levels. In activated HMC-1 cells, phosphorylation of extra-signal response kinase (ERK) 1/2 decreased after treatment with resveratrol. Resveratrol inhibited PMA plus A23187-induced nuclear factor (NF)-kappaB activation, IkappaB degradation, and luciferase activity. Resveratrol suppressed the expression of TNF-alpha, IL-6, IL-8 and COX-2 through a decrease in the intracellular levels of Ca2+ and ERK 1/2, as well as activation of NF-kappaB. These results indicated that resveratrol exerted a regulatory effect on inflammatory reactions mediated by mast cells.

  17. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Sang Yong [Department of Diagnostic Radiology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Han, Myung Kwan [Department of Microbiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Duk Hoon [Division of Forensic Medicine, National Forensic Service, Seoul (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  18. The WxxxE effector EspT triggers expression of immune mediators in an Erk/JNK and NF-κB-dependent manner.

    Science.gov (United States)

    Raymond, Benoit; Crepin, Valerie F; Collins, James W; Frankel, Gad

    2011-12-01

    Enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli (EHEC) and Citrobacter rodentium colonize their respective hosts while forming attaching and effacing lesions. Their infection strategy relies on translocation of a battery of type III secretion system effectors, including Map, EspM and EspT, which belong to the WxxxE/SopE family of guanine nucleotide exchange factors. Using the C. rodentium mouse model we found that EspT triggers expression of KC and TNFα in vivo. Indeed, a growing body of evidence suggests that, in addition to subversion of actin dynamics, the SopE and the WxxxE effectors activate signalling pathways involved in immune responses. In this study we found that EspT induces expression of the pro-inflammatory mediators cyclooxygenase-2 (COX-2) an enzyme involved in production of prostaglandin E(2) (PGE2), interleukin (Il)-8 and Il-1β in U937 human macrophages by activating the nuclear factor kappa-B (NF-κB), the extracellular signal-regulated kinases 1 and 2 (Erk1/2) and c-Jun N-terminal kinase (JNK) pathways. Since EspT modulates the activation of Cdc42 and Rac1, which mediates bacterial invasion into epithelial cells, we investigated the involvement of these Rho GTPases and bacterial invasion on pro-inflammatory responses and found that (i) Rac1, but not Cdc42, is involved in EspT-induced Il-8 and Il-1β secretion and (ii) cytochalasin D inhibits EspT-induced EPEC invasion into U937 but not Il-8 or Il-1β secretion. These results suggest that while EPEC translocates a number of effectors (i.e. NleC, NleD, NleE, NleH) that inhibit inflammation, a subset of strains, which encode EspT, employ an infection strategy that also involves upregulation of immune mediators. © 2011 Blackwell Publishing Ltd.

  19. Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma

    Directory of Open Access Journals (Sweden)

    Kahl Brad S

    2008-05-01

    Full Text Available Abstract Background The proteasome inhibitor bortezomib can inhibit activation of the transcription factor NF-κB, a mechanism implicated in its anti-neoplastic effects observed in mantle cell lymphoma (MCL. However, NF-κB can be activated through many distinct mechanisms, including proteasome independent pathways. While MCL cells have been shown to harbor constitutive NF-κB activity, what fraction of this activity in primary MCL samples is sensitive or resistant to inhibition by bortezomib remains unclear. Results Proteasome activity in the EBV-negative MCL cell lines Jeko-1 and Rec-1 is inhibited by greater than 80% after exposure to 20 nM bortezomib for 4 hours. This treatment decreased NF-κB activity in Jeko-1 cells, but failed to do so in Rec-1 cells when assessed by electrophoretic mobility shift assay (EMSA. Concurrently, Rec-1 cells were more resistant to the cytotoxic effects of bortezomib than Jeko-1 cells. Consistent with a proteasome inhibitor resistant pathway of activation described in mouse B-lymphoma cells (WEHI231 and a breast carcinoma cell line (MDA-MB-468, the bortezomib-resistant NF-κB activity in Rec-1 cells is inhibited by calcium chelators, calmodulin inhibitors, and perillyl alcohol, a monoterpene capable of blocking L-type calcium channels. Importantly, the combination of perillyl alcohol and bortezomib is synergistic in eliciting Rec-1 cell cytotoxicity. The relevance of these results is illuminated by the additional finding that a considerable fraction of primary MCL samples (8 out of 10 displayed bortezomib-resistant constitutive NF-κB activity. Conclusion Our findings show that bortezomib-resistant NF-κB activity is frequently observed in MCL samples and suggest that this activity may be relevant to MCL biology as well as serve as a potential therapeutic target.

  20. Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-kappaB p50/p65.

    Science.gov (United States)

    Masuhara, Masaaki; Sato, Takuya; Hada, Naoto; Hakeda, Yoshiyuki

    2009-01-01

    Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.

  1. Angiotensin II modulates interleukin-1{beta}-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-{kappa}B crosstalk

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shanqin [Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (United States); Zhi, Hui [Cardiovascular Division, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Hou, Xiuyun [Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (United States); Jiang, Bingbing, E-mail: bjiang1@rics.bwh.harvard.edu [Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (United States); Cardiovascular Division, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2011-07-08

    Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin

  2. Inhibitory effects of curcumin and capsaicin on phorbol ester-induced activation of eukaryotic transcription factors, NF-kappaB and AP-1.

    Science.gov (United States)

    Surh, Y J; Han, S S; Keum, Y S; Seo, H J; Lee, S S

    2000-01-01

    Recently, considerable attention has been focused on identifying dietary and medicinal phytochemicals that can inhibit, retard or reverse the multi-stage carcinogenesis. Spices and herbs contain phenolic substances with potent antioxidative and chemopreventive properties. Curcumin, a yellow colouring agent from turmeric and capsaicin, a pungent principle of red pepper exhibit profound anticarcinogenic and antimutagenic activities. Two well-defined eukaryotic transcription factors, nuclear factor-kappa B (NF-kappaB) and activator protein 1 (AP-1) have been implicated in pathogenesis of many human diseases including cancer. These transcription factors are known to be activated by a wide array of external stimuli, such as tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), tumor necrosis factor, reactive oxygen species, bacterial lipopolysaccharide, and ultraviolet. In the present study, we found that topical application of TPA onto dorsal skin of female ICR mice resulted in marked activation of epidermal NF-kappaB and AP-1. Curcumin and capsaicin, when topically applied prior to TPA, significantly attenuated TPA-induced activation of each transcription factor in mouse skin. Likewise, both compounds inhibited NF-kappaB and AP-1 activation in cultured human promyelocytic leukemia (HL-60) cells stimulated with TPA. Based on these findings, it is likely that curcumin and capsaicin exert anti-tumor promotional effects through suppression of the tumor promoter-induced activation of transcription factors, NF-kappaB and AP-1.

  3. NF-kappaB is involved in SHetA2 circumvention of TNF-alpha resistance, but not induction of intrinsic apoptosis.

    Science.gov (United States)

    Chengedza, Shylet; Benbrook, Doris Mangiaracina

    2010-03-01

    Treatment of cancer with tumor necrosis factor-alpha (TNF-alpha) is hindered by resistance and toxicity. The flexible heteroarotinoid, SHetA2, sensitizes resistant ovarian cancer cells to TNF-alpha-induced extrinsic apoptosis, and also induces intrinsic apoptosis as a single agent. This study tested the hypothesis that nuclear factor-kappaB (NF-kappaB) is involved in SHetA2-regulated intrinsic and extrinsic apoptosis. SHetA2 inhibited basal and TNF-alpha-induced or hydrogen peroxide-induced NF-kappaB activity through counter-regulation of upstream kinase (IkappaB kinase) activity, inhibitor protein (IkappaB-alpha) phosphorylation, and p-65 NF-kappaB subunit nuclear translocation, but independently of reactive oxygen species generation. Ectopic over-expression of p-65, or treatment with TNF-alpha receptor 1 (TNFR1) small interfering RNA or a caspase-8 inhibitor, each attenuated synergistic apoptosis by SHetA2 and TNF-alpha, but did not affect intrinsic apoptosis caused by SHetA2. In conclusion, NF-kappaB repression is involved in SHetA2 circumvention of resistance to TNF-alpha-induced extrinsic apoptosis, but not in SHetA2 induction of intrinsic apoptosis.

  4. Induction of apoptosis in murine clonal osteoblasts expressed by human T-cell leukemia virus type I tax by NF-kappa B and TNF-alpha.

    Science.gov (United States)

    Kitajima, I; Nakajima, T; Imamura, T; Takasaki, I; Kawahara, K; Okano, T; Tokioka, T; Soejima, Y; Abeyama, K; Maruyama, I

    1996-02-01

    We investigated the effects of various cytokines in the presence of human T-cell leukemia virus type I (HTLV-I) tax protein in murine clonal osteoblasts, MC3T3-E1 cells. Skeletal remodeling by osteoclasts and osteoblasts is coordinated by cytokines, which are activated by HTLV-I tax protein via nuclear factor-kappa B (NF-kappa B). MC3T3-E1 cells were cocultured with an irradiated HTLV-I-producing lymphocyte cell line, MT-2. After coculture, the tumor necrosis factor-alpha (TNF-alpha) level in the medium was markedly elevated during the 7 days of culture, and MC3T3-E1 cells underwent apoptotic cell death. Marked apoptosis was also observed in MC3T3-E1 cells treated with MT-2 culture medium and in HTLV-I tax-expressing MC3T3-E1 clones, which both expressed high levels of TNF-alpha. This apoptosis was prevented by treatment with neutralizing anti-TNF-alpha antibody (alpha TNF). HTLV-I tax protein and TNF-alpha induced activation of NF-kappa B in apoptotic MC3T3-E1 cells. Decreased NF-kappa B activation was observed in HTLV-I tax-expressing MC3T3-E1 cells treated with alpha TNF. Our results suggest that HTLV-I tax activated NF-kappa B and subsequently TNF-alpha, leading to apoptosis of osteoblasts.

  5. Manipulation of Nf-KappaB Activity in the Macrophage Lineage as a Novel Therapeutic Approach

    Science.gov (United States)

    2008-05-01

    bioluminescence detection of NF-B driven transgene expression. Together, these studies indicate that endotoxemia induces NF-B activation in a variety of... endotoxemia -induced acute lung injury. Am. J. Physiol. 279: L1137–L1145. 17. Sadikot, R. T., H. Zeng, F. E. Yull, B. Li, D. S. Cheng, D. S. Kernodle, E. D...donation of CC-10 rtTA-expressing transgenic mice used in these studies. We also thank the Vanderbilt University Mouse Metabolic Phenotyping Core, the

  6. Neuropeptide FF activates ERK and NF kappa B signal pathways in differentiated SH-SY5Y cells.

    Science.gov (United States)

    Sun, Yu-long; Zhang, Xiao-yuan; He, Ning; Sun, Tao; Zhuang, Yan; Fang, Quan; Wang, Kai-rong; Wang, Rui

    2012-11-01

    Neuropeptide FF (NPFF) has been reported to play important roles in regulating diverse biological processes. However, little attention has been focused on the downstream signal transduction pathway of NPFF. Here, we used the differentiated neuroblastoma cell line, dSH-SY5Y, which endogenously expresses hNPFF2 receptor, to investigate the signal transduction downstream of NPFF. In particular we investigated the regulation of the extracellular signal-regulated protein kinase (ERK) and the nuclear factor kappa B (NF-κB) pathways by NPFF in these cells. NPFF rapidly and transiently stimulated ERK. H89, a selective inhibitor of cyclic AMP-dependent protein kinase A (PKA), inhibited the NPFF-activated ERK pathway, indicating the involvement of PKA in the NPFF-induced ERK activation. Down-regulation of nitric oxide synthases also attenuated NPFF-induced ERK activation, suggesting that a nitric oxide synthase-dependent pathway is involved. Moreover, the core upstream components of the NF-κB pathway were also significantly activated in response to NPFF, suggesting that the NF-κB pathway is involved in the signal transduction pathway of NPFF. Collectively, these data demonstrate that nitric oxide synthases are involved in the signal transduction pathway of NPFF, and provide the first evidence for the interaction between NPFF and the NF-κB pathway. These advances in our interpretation of the NPFF pathway mechanism will aid the comprehensive understanding of its function and provide novel molecular insight for further study of the NPFF system. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. MAML1 regulates cell viability via the NF-{kappa}B pathway in cervical cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Kuncharin, Yanin [Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Sangphech, Naunpun [Biotechnology Program, Faculty of Science, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Kueanjinda, Patipark [Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Bhattarakosol, Parvapan [Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Palaga, Tanapat, E-mail: tanapat.p@chula.ac.th [Department of Microbiology, Faculty of Science, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand)

    2011-08-01

    The Notch signaling pathway plays important roles in tumorigenesis in a context-dependent manner. In human cervical cancer, alterations in Notch signaling have been reported, and both tumor-suppressing and tumor-promoting roles of Notch signaling have been proposed; however, the precise molecular mechanisms governing these roles in cervical cancer remain controversial. MAML is a transcriptional co-activator originally identified by its role in Notch signaling. Recent evidence suggests that it also plays a role in other signaling pathways, such as the p53 and {beta}-catenin pathways. MAML is required for stable formation of Notch transcriptional complexes at the promoters of Notch target genes. Chromosomal translocations affecting MAML have been shown to promote tumorigenesis. In this study, we used a truncated dominant-negative MAML1 (DN-MAML) to investigate the role of MAML in HPV-positive cervical cancer cell lines. Three human cervical cancer cell lines (HeLa, SiHa and CaSki) expressed all Notch receptors and the Notch target genes Hes1 and MAML1. Among these 3 cell lines, constitutive appearance of cleaved Notch1 was found only in CaSki cells, which suggests that Notch1 is constitutively activated in this cell line. Gamma secretase inhibitor (GSI) treatment, which suppresses Notch receptor activation, completely abrogated this form of Notch1 but had no effect on cell viability. Overexpression of DN-MAML by retroviral transduction in CaSki cells resulted in significant decreases in the mRNA levels of Hes1 and Notch1 but had no effects on the levels of MAML1, p53 or HPV E6/E7. DN-MAML expression induced increased viability of CaSki cells without any effect on cell cycle progression or cell proliferation. In addition, clonogenic assay experiments revealed that overexpression of DN-MAML resulted in increased colony formation compared to the overexpression of the control vector. When the status of the NF-{kappa}B pathway was investigated, CaSki cells overexpressing

  8. Copine-I: Modulator of NF-kappa B Transcription and Prostate Cancer Survival

    Science.gov (United States)

    2008-01-01

    Cambridge, MA, USA). Copine-I anti- body was generated using the unique C-terminal peptide coupled to keyhole limpet hemocyanin antigen. Polyclonal...metalloproteinase family. Blood 98: 1662–1666. Hayden MS, Ghosh S. (2004). Signaling to NF-kB. Genes Dev 18: 2195–2224. Hoberg JE, Popko AE, Ramsey CS...et al. 4 Copper Metabolism Murr1 Domain-containing (COMMD) proteins are a group of evolutionarily conserved factors present in a wide range of

  9. An extract of Uncaria tomentosa inhibiting cell division and NF-kappa B activity without inducing cell death.

    Science.gov (United States)

    Akesson, Christina; Lindgren, Hanna; Pero, Ronald W; Leanderson, Tomas; Ivars, Fredrik

    2003-12-01

    Previous reports have demonstrated that extracts of the plant Uncaria tomentosa inhibit tumor cell proliferation and inflammatory responses. We have confirmed that C-Med 100, a hot water extract of this plant, inhibits tumor cell proliferation albeit with variable efficiency. We extend these findings by showing that this extract also inhibits proliferation of normal mouse T and B lymphocytes and that the inhibition is not caused by toxicity or by induction of apoptosis. Further, the extract did not interfere with IL-2 production nor IL-2 receptor signaling. Since there was no discrete cell cycle block in C-Med 100-treated cells, we propose that retarded cell cycle progression caused the inhibition of proliferation. Collectively, these data suggested interference with a common pathway controlling cell growth and cell cycle progression. Indeed, we provide direct evidence that C-Med 100 inhibits nuclear factor kappa B (NF-kappa B) activity and propose that this at least partially causes the inhibition of proliferation.

  10. Transient metals enhance cytotoxicity of curcumin: potential involvement of the NF-kappaB and mTOR signaling pathways.

    Science.gov (United States)

    Lou, Jessica R; Zhang, Xiao-Xi; Zheng, Jie; Ding, Wei-Qun

    2010-09-01

    Curcumin has been recognized as a metal-binding compound and an anticancer agent, yet the involvement of metals in the anticancer action of curcumin remains unclear. The present study examined the role of transient metals in curcumin-induced cytotoxicity in cancer cells. Metal-binding activity and cytotoxicity of curcumin were examined in human cancer lines with cell viability assay, confocal microscopy, Western blot, and measurement of hydrogen peroxide generation. It was found that Cu (II) most significantly potentiated the cytotoxicity of curcumin among the metals tested. The combination of curcumin and Cu (II) did not generate reactive oxygen species and vitamin E did not block the cytotoxicity. Curcumin plus Cu (II) enhanced intracellular copper levels and potentiated curcumin-induced suppression of the nuclear factor kappa B (NF-κB) pathway, as well as alterations of mammalian target of rapamycin-raptor (mTOR) signaling. Transient metals enhance the cytotoxicity of curcumin, likely through targeting of the NF-κB and mTOR signaling pathways.

  11. A new assay format for NF-kappaB based on a DNA triple helix and a fluorescence resonance energy transfer.

    Science.gov (United States)

    Altevogt, Dominik; Hrenn, Andrea; Kern, Claudia; Clima, Lilia; Bannwarth, Willi; Merfort, Irmgard

    2009-10-07

    Herein we report a feasibility study for a new concept to detect DNA binding protein NF-kappaB based on a DNA triple helix formation in combination with a fluorescence resonance energy transfer (FRET). The new principle avoids expensive antibodies and radioactivity and might have implications for assays of other DNA binding proteins.

  12. NF-kappaB is not directly responsible for photoresistance induced by fractionated light delivery in HT-29 colon adenocarcinoma cells

    Czech Academy of Sciences Publication Activity Database

    Kuliková, L.; Mikeš, J.; Hýžďalová, Martina; Palumbo, G.; Fedoročko, P.

    2010-01-01

    Roč. 86, č. 6 (2010), s. 1285-1293 ISSN 0031-8655 R&D Projects: GA ČR(CZ) GA301/07/1557 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : photodynamic therapy * hypericin * NF-kappaB Subject RIV: BO - Biophysics Impact factor: 2.679, year: 2010

  13. Turkish Scorzonera Species Extracts Attenuate Cytokine Secretion via Inhibition of NF-kappa B Activation, Showing Anti-Inflammatory Effect in Vitro

    Czech Academy of Sciences Publication Activity Database

    Acikara, O. B.; Hošek, J.; Babula, P.; Cvačka, Josef; Buděšínský, Miloš; Dračínský, Martin; Iscan, G. S.; Kadlecová, D.; Ballová, L.; Šmejkal, K.

    2016-01-01

    Roč. 21, č. 1 (2016), č. článku 43. ISSN 1420-3049 Institutional support: RVO:61388963 Keywords : anti-inflammatory activity * IL-1 beta * NF-kappa B * Scorzonera * phenolic * TNF-alpha * triterpen Subject RIV: CC - Organic Chemistry Impact factor: 2.861, year: 2016 http://www.mdpi.com/1420-3049/21/1/43/htm

  14. Bortezomib sensitivity of acute myeloid leukemia CD34(+) cells can be enhanced by targeting the persisting activity of NF-kappa B and the accumulation of MCL-1

    NARCIS (Netherlands)

    Bosman, Matthieu Cornelis Johannes; Schuringa, Jan Jacob; Quax, Wilhelmus Johannes; Vellenga, Edo

    Sustained NF-kappa B activation is often observed in acute myeloid leukemia (AML); therefore, proteasome inhibition has been proposed to efficiently target AML cells. In this study, we questioned whether leukemic stem cell-enriched CD34(+) cells are sensitive to the proteasome inhibitor bortezomib.

  15. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis

    DEFF Research Database (Denmark)

    Gyrd-Hansen, Mads; Darding, Maurice; Miasari, Maria

    2008-01-01

    The covalent attachment of ubiquitin to target proteins influences various cellular processes, including DNA repair, NF-kappaB signalling and cell survival. The most common mode of regulation by ubiquitin-conjugation involves specialized ubiquitin-binding proteins that bind to ubiquitylated prote...

  16. c-Rel, an NF-[kappa]B Family Transcription Factor, Is Required for Hippocampal Long-Term Synaptic Plasticity and Memory Formation

    Science.gov (United States)

    Ahn, Hyung Jin; Hernandez, Caterina M.; Levenson, Jonathan M.; Lubin, Farah D.; Liou, Hsiou-Chi; Sweatt, J. David

    2008-01-01

    Transcription is a critical component for consolidation of long-term memory. However, relatively few transcriptional mechanisms have been identified for the regulation of gene expression in memory formation. In the current study, we investigated the activity of one specific member of the NF-[kappa]B transcription factor family, c-Rel, during…

  17. Lactobacillus rhamnosus GR-1 enhances NF-kappaB activation in Escherichia coli-stimulated urinary bladder cells through TLR4

    Directory of Open Access Journals (Sweden)

    Karlsson Mattias

    2012-01-01

    Full Text Available Abstract Background Epithelial cells of the urinary tract recognize pathogenic bacteria through pattern recognition receptors on their surface, such as toll-like receptors (TLRs, and mount an immune response through the activation of the NF-kappaB pathway. Some uropathogenic bacteria can subvert these cellular responses, creating problems with how the host eliminates pathogens. Lactobacillus is a genus of lactic acid bacteria that are part of the microbiota and consist of many probiotic strains, some specifically for urogenital infections. Immunomodulation has emerged as an important mode of action of probiotic and commensal lactobacilli and given the importance of epithelial cells, we evaluated the effect of the urogenital probiotic Lactobacillus rhamnosus GR-1 on epithelial immune activation. Results Immune activation through the NF-kappaB pathway was initiated by stimulation of T24 urothelial cells with heat-killed Escherichia coli and this was further potentiated when cells were co-cultured with live L. rhamnosus GR-1. Heat-killed lactobacilli were poor activators of NF-kappaB. Concomitant stimulation of bladder cells with E. coli and L. rhamnosus GR-1 increased the levels of the pro-inflammatory cytokine TNF, whereas IL-6 and CXCL8 levels were reduced. Another probiotic, L. rhamnosus GG, was also able to potentiate NF-kappaB in these cells although at a significantly reduced level compared to the GR-1 strain. The transcript numbers and protein levels of the lipopolysaccharide receptor TLR4 were significantly increased after co-stimulation with E. coli and lactobacilli compared to controls. Furthermore, inhibition of TLR4 activation by polymixin B completely blocked the lactobacilli potentiation of NF-kappaB. Conclusions The immunological outcome of E. coli challenge of bladder cells was influenced by probiotic L. rhamnosus GR-1, by enhancing the activation of NF-kappaB and TNF release. Thus the urogenital probiotic L. rhamnosus GR-1

  18. Bifidobacterium animalis AHC7 protects against pathogen-induced NF-kappaB activation in vivo

    LENUS (Irish Health Repository)

    O'Mahony, David

    2010-12-22

    Abstract Background Bifidobacteria and lactobacilli are among the early and important colonizers of the gastrointestinal tract and are generally considered to be part of a normal, healthy microbiota. It is believed that specific strains within the microbiota can influence host immune-reactivity and may play a role in protection from infection and aberrant inflammatory activity. One such strain, Bifidobacterium animalis AHC7, has been previously shown to protect against Salmonella typhimurium infection in mice and helps resolve acute idiopathic diarrhea in dogs. The aim of this study was to investigate the potential molecular and cellular mechanisms underpinning the Bifidobacterium animalis AHC7 protective effect. Results Following 4 hours of infection with Salmonella typhimurium, NF-κB activation was significantly elevated in vivo in placebo and Enterococcus faecium-fed animals while Bifidobacterium animalis AHC7 consumption significantly attenuated the NF-κB response. In vitro anti-CD3\\/CD28 stimulated Peyer\\'s patch cells secreted significantly less TNF-α and IFN-γ following Bifidobacterium animalis AHC7 consumption. Stimulated cells released more IL-12p70 but this difference did not reach statistical significance. No alteration in mucosal IL-6, IL-10 or MCP-1 levels were observed. No statistically significant change in the cytokine profile of mesenteric lymph node cells was noted. In vitro, Bifidobacterium animalis AHC7 was bound by dendritic cells and induced secretion of both IL-10 and IL-12p70. In addition, co-culture of CD4+ T cells with Bifidobacterium animalis AHC7-stimulated dendritic cells resulted in a significant increase in CD25+Foxp3+ T cell numbers. Conclusion Bifidobacterium animalis AHC7 exerts an anti-inflammatory effect via the attenuation of pro-inflammatory transcription factor activation in response to an infectious insult associated with modulation of pro-inflammatory cytokine production within the mucosa. The cellular mechanism

  19. Rare and Common Variants in CARD14, Encoding an Epidermal Regulator of NF-kappaB, in Psoriasis

    Science.gov (United States)

    Jordan, Catherine T.; Cao, Li; Roberson, Elisha D.O.; Duan, Shenghui; Helms, Cynthia A.; Nair, Rajan P.; Duffin, Kristina Callis; Stuart, Philip E.; Goldgar, David; Hayashi, Genki; Olfson, Emily H.; Feng, Bing-Jian; Pullinger, Clive R.; Kane, John P.; Wise, Carol A.; Goldbach-Mansky, Raphaela; Lowes, Michelle A.; Peddle, Lynette; Chandran, Vinod; Liao, Wilson; Rahman, Proton; Krueger, Gerald G.; Gladman, Dafna; Elder, James T.; Menter, Alan; Bowcock, Anne M.

    2012-01-01

    Psoriasis is a common inflammatory disorder of the skin and other organs. We have determined that mutations in CARD14, encoding a nuclear factor of kappa light chain enhancer in B cells (NF-kB) activator within skin epidermis, account for PSORS2. Here, we describe fifteen additional rare missense variants in CARD14, their distribution in seven psoriasis cohorts (>6,000 cases and >4,000 controls), and their effects on NF-kB activation and the transcriptome of keratinocytes. There were more CARD14 rare variants in cases than in controls (burden test p value = 0.0015). Some variants were only seen in a single case, and these included putative pathogenic mutations (c.424G>A [p.Glu142Lys] and c.425A>G [p.Glu142Gly]) and the generalized-pustular-psoriasis mutation, c.413A>C (p.Glu138Ala); these three mutations lie within the coiled-coil domain of CARD14. The c.349G>A (p.Gly117Ser) familial-psoriasis mutation was present at a frequency of 0.0005 in cases of European ancestry. CARD14 variants led to a range of NF-kB activities; in particular, putative pathogenic variants led to levels >2.5× higher than did wild-type CARD14. Two variants (c.511C>A [p.His171Asn] and c.536G>A [p.Arg179His]) required stimulation with tumor necrosis factor alpha (TNF-α) to achieve significant increases in NF-kB levels. Transcriptome profiling of wild-type and variant CARD14 transfectants in keratinocytes differentiated probably pathogenic mutations from neutral variants such as polymorphisms. Over 20 CARD14 polymorphisms were also genotyped, and meta-analysis revealed an association between psoriasis and rs11652075 (c.2458C>T [p.Arg820Trp]; p value = 2.1 × 10−6). In the two largest psoriasis cohorts, evidence for association increased when rs11652075 was conditioned on HLA-Cw∗0602 (PSORS1). These studies contribute to our understanding of the genetic basis of psoriasis and illustrate the challenges faced in identifying pathogenic variants in common disease. PMID:22521419

  20. Sensitization of ovarian cancer cells to cisplatin by genistein: the role of NF-kappaB

    Directory of Open Access Journals (Sweden)

    Solomon Leigh A

    2008-11-01

    Full Text Available Abstract Background Platinum-resistance (PR continues to be a major problem in the management of epithelial ovarian cancer (EOC. Response to various chemotherapeutic agents is poor in patients deemed PR. Genistein, a soy isoflavone has been shown to enhance the effect of chemotherapy in prostate and pancreatic cancer cells in vitro and in vivo by reversing chemo-resistance phenotype. The goal of this study was to investigate the effects of combination therapy with genistein and cisplatin as well as other cytotoxic conventional chemotherapeutic agents in platinum-sensitive (PS and resistant EOC cells. Methods The PS human ovarian cancer cell line A2780 and its PR clone C200 cells were pretreated with genistein, followed by the combination of genistein and either cisplatin, taxotere or gemcitabine. Cell survival and apoptosis was assessed by MTT and histone-DNA ELISA. Electrophoretic mobility shift assay (EMSA was used to evaluate NF-κB DNA binding activity. Western blot analysis was performed with antibodies to Bcl-2, Bcl-xL, survivin, c-IAP and PARP. Results Reduction in cell viability, and corresponding induction of apoptosis was observed with genistein pretreatment followed by combination treatment with each of the drugs in both cell lines. The PS cell line was pretreated for 24 hours; in contrast, the PR cell line required 48 hours pretreatment to achieve a response. The anti-apoptotic genes c-IAP1, Bcl-2, Bcl-xL, survivin and NF-κB DNA binding activity were all found to be down-regulated in the combination groups. Conclusion This study convincingly demonstrated that the current strategy can be translated in a pre-clinical animal model, and thus it should stimulate future clinical trial for the treatment of drug-resistant ovarian cancer.

  1. Antroquinonol from Antrodia Camphorata suppresses breast tumor migration/invasion through inhibiting ERK-AP-1- and AKT-NF-κB-dependent MMP-9 and epithelial-mesenchymal transition expressions.

    Science.gov (United States)

    Lee, Wai-Theng; Lee, Tzong-Huei; Cheng, Chia-Hsiung; Chen, Ku-Chung; Chen, Yen-Chou; Lin, Cheng-Wei

    2015-04-01

    Antroquinonol (ANQ) is an ubiquinon derivative isolated from the mycelium of Antrodia camphorata. However, the effect of ANQ on breast cancer treatment is unknown. We found that ANQ significantly suppressed the migration and invasion of breast cancer MDA-MB-231 cells, and inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced invasiveness by MCF7 cells. ANQ inhibiting MMP-9 gene expression and enzymatic activity occurred at transcriptional regulation. Mechanistically, activation of ERK and AKT is crucial for MMP-9 gene expression, and the addition of ANQ suppressed phosphorylation of ERK and AKT. The induction of the AP-1 and NF-κB pathway participated in MMP-9 gene expression. Suppression of ERK inhibited AP-1, whereas blocking AKT diminished NF-κB activity, and treatment with ANQ suppressed both AP-1 and NF-κB signaling. Moreover, ANQ suppressed EMT protein expression, and inhibited TPA-induced EMT through downregulating the ERK-AP-1 and AKT-NF-κB signaling cascades. Together, our data showed for the first time that ANQ inhibited breast cancer invasiveness by suppressing ERK-AP-1- and AKT-NF-κB-dependent MMP-9 and EMT expressions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China); Li, Jianguo, E-mail: 2010lijianguo@sina.cn [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  3. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui; Han, Bing; Pan, Chunming; Zhao, Shuangxia; Song, Huaidong [State Key Laboratory of Medical Genomics, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Ma, Qinyun, E-mail: qinyunma@126.com [State Key Laboratory of Medical Genomics, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration of SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.

  4. Oligonol Ameliorates CCl4-Induced Liver Injury in Rats via the NF-Kappa B and MAPK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jeonghyeon Bak

    2016-01-01

    Full Text Available Oxidative stress is thought to be a key risk factor in the development of hepatic diseases. Blocking or retarding the reactions of oxidation and the inflammatory process by antioxidants could be a promising therapeutic intervention for prevention or treatment of liver injuries. Oligonol is a low molecular weight polyphenol containing catechin-type monomers and oligomers derived from lychee fruit. In this study, we investigated the anti-inflammatory effect of oligonol on carbon tetrachloride- (CCl4- induced acute hepatic injury in rats. Oral administration of oligonol (10 or 50 mg/kg reduced CCl4-induced abnormalities in liver histology and serum AST and serum ALT levels. Oligonol treatment attenuated the CCl4-induced production of inflammatory mediators, including TNF-α, IL-1β, cyclooxygenase-2 (COX-2, and inducible nitric oxide synthase (iNOS mRNA levels. Western blot analysis showed that oligonol suppressed proinflammatory nuclear factor-kappa B (NF-κB p65 activation, phosphorylation of extracellular signal-regulated kinase (ERK, c-Jun NH2-terminal kinase (JNK, and p38 mitogen-activated protein kinases (MAPKs as well as Akt. Oligonol exhibited strong antioxidative activity in vitro and in vivo, and hepatoprotective activity against t-butyl hydroperoxide-induced HepG2 cells. Taken together, oligonol showed antioxidative and anti-inflammatory effects in CCl4-intoxicated rats by inhibiting oxidative stress and NF-κB activation via blockade of the activation of upstream kinases including MAPKs and Akt.

  5. BCL10 aberations and NF-kappa B activation involving p65 are absent or rare in primary gastric MALT lymphoma.

    Science.gov (United States)

    Hajder, Jelena; Marisavljević, Dragomir; Stanisavljević, Natasa; Mihaljević, Biljana; Kovcin, Vladimir; Marković, Olivera; Zivković, Radmila

    2014-11-01

    Mucosa-associated lymphoid tissue (MALT) lymphoma accounts for 5-17% non-Hodgkin lymphomas (NHL). The molecular pathogenesis of MALT lymphomas is not well-established. The aim of this study was to evaluate immunohistochemically determined nuclear coexpression of BCL10 and NF-kappaB (NF-kappaB) in tumor cells of gastric MALT lymphoma and its impact on the patogenesis and outcome of the disease. Medical records of 35 patients with newly diagnosed gastric MALT lymphoma were analyzed and biopsy specimens were immunostained for BCL10 and NF-kappaB expression (p65 subunit). The median age of 35 patients diagnosed with gastric MALT lymphoma was 63.5 years (male/female = 21/14). Symptoms were present in 23/35 (65.7%) patients with the weight loss as the most common symptom. Gastric MALT lymphomas were usually localized in the stomach corpus and corpus and antrum (45.7% and 31.2%, respectively). H. pylon infection was confirmed in 20 out of 30 (66.7%) patients. Treatment options were as follows: immunochemotherapy in 10 (28.5%) patients, surgery in 9 (25.8%) patients, combined surgery and chemotherapy in 14 (40%) patients and supportive measures in 2 (5.7%) patients. Complete remission was achieved in 13 (37.10/) patients and partial remission in two (5.7%/) patients. Sixteen (45.7%/) patients had disease progression (p < 0.001). Cytoplasmatic expression of BCL10 in tumor cells was detected in 19 (54.3%) specimens. Nuclear expression was detected in no specimen. Cytoplasmic expression of NF-kappaB was present in 22 (65.7%) specimens, but nuclear expression was not detected in any specimens. Nuclear expressions (activation)of NF-kappaB p65 subunit and BCL10 were not detected in specimens of gastric MALT lymphoma. The correlation of nuclear coexpression of BCL10 and NF-kappaB in gastric MALT lymphoma was not established. These results indicate that other mechanisms and signal pathways are active in lymphogenesis of gastric MALT lymphoma, as that apoptotic inhibition is not

  6. 15-Deoxy-Δ12,14-prostaglandin J2 induces renal epithelial cell death through NF-κB-dependent and MAPK-independent mechanism

    International Nuclear Information System (INIS)

    Kang, Dae Sik; Kwon, Chae Hwa; Park, Ji Yeon; Kim, Jae Ho; Woo, Jae Suk; Jung, Jin Sup; Kim, Yong Keun

    2006-01-01

    The peroxisome proliferator-activated receptor-γ (PPARγ) ligand 15d-PGJ 2 induces cell death in renal proximal tubular cells. However, the underlying molecular mechanism(s) remains unidentified. The present study was undertaken to examine the roles of reactive oxygen species (ROS), mitogen-activated protein kinase, and NF-κB in opossum kidney (OK) cell death induced by 15d-PGJ 2 . Treatment of OK cells with 15d-PGJ 2 resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. 15d-PGJ 2 increased ROS production and the effect was inhibited by catalase and N-acetylcysteine. The 15d-PGJ 2 -induced cell death was also prevented by these antioxidants, suggesting that the cell death was associated with ROS generation. The PPARγ antagonist GW9662 did not prevent the 15d-PGJ 2 -induced cell death. 15d-PGJ 2 caused a transient activation of extracellular signal-regulated kinase (ERK). However, inhibitors (PD98059 and U0126) of MEK, an ERK upstream kinase, did not alter the 15d-PGJ 2 -induced cell death. Transfection with constitutively active MEK and dominant-negative MEK had no effect on the cell death. 15d-PGJ 2 inhibited the NF-κB transcriptional activity, which was accompanied by an inhibition of nuclear translocation of the NF-κB subunit p65 and impairment in DNA binding. Inhibition of NF-κB with a NF-κB specific inhibitor pyrrolidinecarbodithioate and transfection with IκBα (S32A/36A) caused cell death. These results suggest that the 5d-PGJ 2 -induced OK cell death was associated with ROS production and NF-κB inhibition, but not with MAPK activation

  7. Heterodimers of NF-kappaB transcription factors DIF and Relish regulate antimicrobial peptide genes in Drosophila.

    Science.gov (United States)

    Tanji, Takahiro; Yun, Eun-Young; Ip, Y Tony

    2010-08-17

    The innate immune response in Drosophila involves the inducible expression of antimicrobial peptide genes mediated by the Toll and IMD signaling pathways. Dorsal and DIF act downstream of Toll, whereas Relish acts downstream of IMD to regulate target gene expression. Dorsal, DIF, and Relish are NF-kappaB-related transcription factors and function as obligate dimers, but it is not clear how the various dimer combinations contribute to the innate immune response. We systematically examined the dimerization tendency of these proteins through the use of transgenic assays. The results show that all combinations of homo- and heterodimers are formed, but with varying degrees of efficiency. The formation of the DIF-Relish heterodimer is particularly interesting because it may mediate signaling for the seemingly independent Toll and IMD pathways. By incorporating a flexible peptide linker, we specifically tested the functions of the DIF;Relish (a ; sign represents the peptide linker) linked heterodimer. Our results demonstrate that the linked heterodimer can activate target genes of both the Toll and IMD pathways. The DIF and Relish complex is detectable in whole animal extracts, suggesting that this heterodimer may function in vivo to increase the spectrum and level of antimicrobial peptide production in response to different infections.

  8. IL-1 beta and TGF beta 2 synergistically induce endothelial to mesenchymal transition in an NF kappa B-dependent manner

    NARCIS (Netherlands)

    Maleszewska, Monika; Moonen, Jan-Renier A. J.; Huijkman, Nicolette; van de Sluis, Bart; Krenning, Guido; Harmsen, Martin C.

    Endothelial to mesenchymal transition (EndMT) contributes to fibrotic diseases. The main inducer of EndMT is TGF beta signaling. TGF beta 2 is the dominant isoform in the physiological embryonic EndMT, but its role in the pathological EndMT in the context of inflammatory co-stimulation is not known.

  9. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis--CREB and NF-kappaB as key regulators.

    Science.gov (United States)

    Park, Jin Mo; Greten, Florian R; Wong, Athena; Westrick, Randal J; Arthur, J Simon C; Otsu, Kinya; Hoffmann, Alexander; Montminy, Marc; Karin, Michael

    2005-09-01

    Certain microbes evade host innate immunity by killing activated macrophages with the help of virulence factors that target prosurvival pathways. For instance, infection of macrophages with the TLR4-activating bacterium Bacillus anthracis triggers an apoptotic response due to inhibition of p38 MAP kinase activation by the bacterial-produced lethal toxin. Other pathogens induce macrophage apoptosis by preventing activation of NF-kappaB, which depends on IkappaB kinase beta (IKKbeta). To better understand how p38 and NF-kappaB maintain macrophage survival, we searched for target genes whose products prevent TLR4-induced apoptosis and a p38-dependent transcription factor required for their induction. Here we describe key roles for transcription factor CREB, a target for p38 signaling, and the plasminogen activator 2 (PAI-2) gene, a target for CREB, in maintenance of macrophage survival.

  10. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB

    International Nuclear Information System (INIS)

    Dai, Yao; Liu, Meilan; Tang, Wenhua; Li, Yongming; Lian, Jiqin; Lawrence, Theodore S; Xu, Liang

    2009-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for human cancer therapy, prostate cancer still remains resistant to TRAIL. Both X-linked inhibitor of apoptosis (XIAP) and nuclear factor-kappaB function as key negative regulators of TRAIL signaling. In this study, we evaluated the effect of SH122, a small molecule mimetic of the second mitochondria-derived activator of caspases (Smac), on TRAIL-induced apoptosis in prostate cancer cells. The potential of Smac-mimetics to bind XIAP or cIAP-1 was examined by pull-down assay. Cytotoxicity of TRAIL and/or Smac-mimetics was determined by a standard cell growth assay. Silencing of XIAP or cIAP-1 was achieved by transient transfection of short hairpin RNA. Apoptosis was detected by Annexin V-PI staining followed by flow cytometry and by Western Blot analysis of caspases, PARP and Bid. NF-kappaB activation was determined by subcellular fractionation, real time RT-PCR and reporter assay. SH122, but not its inactive analog, binds to XIAP and cIAP-1. SH122 significantly sensitized prostate cancer cells to TRAIL-mediated cell death. Moreover, SH122 enhanced TRAIL-induced apoptosis via both the death receptor and the mitochondrial pathway. Knockdown of both XIAP and cIAP-1 sensitized cellular response to TRAIL. XIAP-knockdown attenuated sensitivity of SH122 to TRAIL-induced cytotoxicity, confirming that XIAP is an important target for IAP-inhibitor-mediated TRAIL sensitization. SH122 also suppressed TRAIL-induced NF-kappaB activation by preventing cytosolic IkappaB-alpha degradation and RelA nuclear translocation, as well as by suppressing NF-kappaB target gene expression. These results demonstrate that SH122 sensitizes human prostate cancer cells to TRAIL-induced apoptosis by mimicking Smac and blocking both IAPs and NF-kappaB. Modulating IAPs may represent a promising approach to overcoming TRAIL-resistance in human prostate cancer with constitutively active NF-kappaB signaling

  11. Felodipine attenuates vascular inflammation in a fructose-induced rat model of metabolic syndrome via the inhibition of NF-kappaB activation.

    Science.gov (United States)

    Tan, Hong-wei; Xing, Shan-shan; Bi, Xiu-ping; Li, Li; Gong, Hui-ping; Zhong, Ming; Zhang, Yun; Zhang, Wei

    2008-09-01

    Metabolic syndrome is associated with an increased incidence of atherosclerosis. Clinical studies have shown that calcium channel blockers (CCB) inhibit the progression of atherosclerosis. However, the underlying mechanism is unclear. We investigated the inhibitory effect of felodipine on adhesion molecular expression and macrophage infiltration in the aorta of high fructose-fed rats (FFR). Male Wistar rats were given 10% fructose in drinking water. After 32 weeks of high fructose feeding, they were treated with felodipine (5 mg x kg(-1) x d(-1)) for 6 weeks. The control rats were given a normal diet and water. The aortic expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and the infiltration of macrophages were measured by real-time RT-PCR and/or immunohistochemistry. NF-kappaB activity was measured by electrophoretic mobility shift assay (EMSA). After 32 weeks of high fructose feeding, FFR displayed increased body weight, systolic blood pressure (SBP), serum insulin, and triglycerides when compared with the control rats. The aortic expressions of ICAM-1 and VCAM-1 were significantly increased in FFR than in the control rats and accompanied by the increased activity of NF-kappaB. FFR also showed significantly increased CD68- positive macrophages in the aortic wall. After treatment with felodipine, SBP, serum insulin, and the homeostasis model assessment decreased significantly. In addition to reducing ICAM-1 and VCAM-1, felodipine decreased macrophages in the aortic wall. EMSA revealed that felodipine inhibited NF-kappaB activation in FFR. Felodipine inhibited vessel wall inflammation. The inhibition of NF-kappaB may be involved in the modulation of vascular inflammatory response by CCB in metabolic syndrome.

  12. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Fen; Yang, Shuang; Zhao, Dan; Zhu, Shuyan; Wang, Yuxiang [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China); Li, Junying, E-mail: jyli04@nankai.edu.cn [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.

  13. Acrolein inhibits cytokine gene expression by alkylating cysteine and arginine residues in the NF-kappaB1 DNA binding domain.

    Science.gov (United States)

    Lambert, Cherie; Li, Jimei; Jonscher, Karen; Yang, Teng-Chieh; Reigan, Philip; Quintana, Megan; Harvey, Jean; Freed, Brian M

    2007-07-06

    Cigarette smoke is a potent inhibitor of pulmonary T cell responses, resulting in decreased immune surveillance and an increased incidence of respiratory tract infections. The alpha,beta-unsaturated aldehydes in cigarette smoke (acrolein and crotonaldehyde) inhibited production of interleukin-2 (IL-2), IL-10, granulocyte-macrophage colony-stimulating factor, interferon-gamma, and tumor necrosis factor-alpha by human T cells but did not inhibit production of IL-8. The saturated aldehydes (acetaldehyde, propionaldehyde, and butyraldehyde) in cigarette smoke were inactive. Acrolein inhibited induction of NF-kappaB DNA binding activity after mitogenic stimulation of T cells but had no effect on induction of NFAT or AP-1. Acrolein inhibited NF-kappaB1 (p50) binding to the IL-2 promoter in a chromatin immunoprecipitation assay by >99%. Using purified recombinant p50 in an electrophoretic mobility shift assay, we demonstrated that acrolein was 2000-fold more potent than crotonaldehyde in blocking DNA binding to an NF-kappaB consensus sequence. Matrix-assisted laser desorption/ionization time-of-flight and tandem mass spectrometry demonstrated that acrolein alkylated two amino acids (Cys-61 and Arg-307) in the DNA binding domain. Crotonaldehyde reacted with Cys-61, but not Arg-307, whereas the saturated aldehydes in cigarette smoke did not react with p50. These experiments demonstrate that aldehydes in cigarette smoke can regulate gene expression by direct modification of a transcription factor.

  14. Human xenospecific T suppressor cells inhibit T helper cell proliferation to porcine aortic endothelial cells, and NF-kappaB activity in porcine APC.

    Science.gov (United States)

    Ciubotariu, R; Li, J; Colovai, A I; Platt, J L; Cortesini, R; Suciu Foca Cortesini, N

    2001-05-01

    Human T suppressor cells (Ts), capable of preventing autologous T helper cells (Th) from reacting against xenogeneic pig endothelial cells and pig APC can be generated in vitro. Ts derive from a population of CD3(+)CD8(+)CD28(-) T lymphocytes and specifically recognize the MHC class I antigens of the APC used for in vitro immunization. To study the mechanism that underlies suppression, we investigated whether Ts inhibit the expression of costimulatory molecules in xenogeneic professional and semiprofessional APC. We found that Ts down-regulate Th-induced expression of CD86 in pig APC, and that this effect occurs at the level of transcription, as indicated by nuclear run-on and Northern blot assays. EMSA results revealed that inhibition of CD86 expression is mediated by inactivation of transcription factor NF-kappaB. Furthermore, transfection of pig APC with a vector expressing NF-kappaB p65 partially rescued Th-induced expression of the CD86 molecule. These results strongly support the concept that xenospecific Ts inhibit the APC function of xenogeneic cells by preventing activation of NF-kappaB.

  15. New sesquiterpene dimers from Inula britannica inhibit NF-kappaB activation and NO and TNF-alpha production in LPS-stimulated RAW264.7 cells.

    Science.gov (United States)

    Jin, Hui Zi; Lee, Dongho; Lee, Jeong Hyung; Lee, Kyeong; Hong, Young-Soo; Choung, Dong-Ho; Kim, Young Ho; Lee, Jung Joon

    2006-01-01

    A bioassay-guided isolation of an ethyl acetate-soluble extract of the aerial parts of Inula britannica var. chinensis (Rupr.) Regel, using an in vitro NF-kappaB reporter gene assay, led to the isolation of four new sesquiterpene dimers bearing a norbornene moiety, inulanolides A-D, and three known sesquiterpenes, 1,6alpha-dihydroxyeriolanolide, 1-acetoxy-6alpha-hydroxyeriolanolide, and eupatolide. The structures of the new compounds were elucidated by spectroscopic methods. Among these compounds, inulanolides B and D and eupatolide, exhibited potent inhibitory activity on the LPS-induced NF-kappaB activation with IC50 values of 0.49 microM, 0.48 microM, and 1.54 microM, respectively. Consistent with their inhibitory effect on NF-kappaB activation, compounds and also strongly inhibited the production of NO and TNF-alpha in the LPS-stimulated RAW264.7 cells with IC50 values in the range of 2 microM.

  16. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-{kappa}B acetylation in fibroblast-like synoviocyte MH7A cells

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Lee, Mee-Hee [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Lee, Yoo-Hyun [Department of Food Science and Nutrition, The University of Suwon, Kyunggi-do (Korea, Republic of); Lee, Jeongmin [Department of Medical Nutrition, Kyung Hee University, Kyunggi-do (Korea, Republic of); Jun, Woojin [Department of Food and Nutrition, Chonnam National University, Gwangju (Korea, Republic of); Kim, Sunoh, E-mail: sunoh@korea.ac.kr [Jeollanamdo Institute of Natural Resources Research, Jeonnam (Korea, Republic of); Yoon, Ho-Geun, E-mail: yhgeun@yuhs.ac [Department of Biochemistry and Molecular Biology, Center for Chronic Metabolic Disease Research, College of Medicine, Yonsei University, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2011-07-08

    Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.

  17. Lysophosphatidic Acid Is Associated with Atherosclerotic Plaque Instability by Regulating NF-κB Dependent Matrix Metalloproteinase-9 Expression via LPA2 in Macrophages

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2017-04-01

    Full Text Available Lysophosphatidic acid (LPA, one of the simplest phospholipid signaling molecules, participates in formation and disruption of atherosclerotic plaque. Matrix metalloproteinases (MMPs contribute to atherosclerotic plaque rupture by involving in extracellular matrix (ECM degradation and then thinning fibrous cap. Our previous study demonstrated that macrophage-derived MMP-9 was associated with coronary plaque instability, but the relationship between LPA and MMP-9 remains unclear. The present work therefore aimed at elucidating association between LPA and MMP-9 and the regulation mechanism of LPA on MMP-9 in macrophages. We found that plasma LPA and MMP-9 levels were correlated positively (r = 0.31, P < 0.05 and both elevated significantly in patients with acute myocardial infarct (AMI. Consistent with peripheral blood levels, histochemical staining indicated that autotaxin (ATX, LPA-producing ectoenzyme, and MMP-9 were expressed frequently in the necrotic core and fibrous cap of human unstable plaques, which might increase the instability of plaque. Experiments in vitro were done with THP-1-derived macrophages and showed that LPA enhanced the expression, secretion and activity of MMP-9 in a time- and dose-dependent manner. Induction of LPA on pro-MMP-9 and active-MMP-9 was confirmed in human peripheral blood monocyte-derived macrophages. PDTC, NF-κB inhibitor, but not inhibitor of AP-1 and PPARγ, effectively prevented LPA-induced MMP-9 expression and NF-κB p65 siRNA decreased MMP-9 transcription, confirming that LPA might induce MMP-9 elevation by activating NF-κB pathway. In addition, knockdown of LPA2 attenuated LPA-induced MMP-9 expression and nucleus p65 levels. These findings revealed that LPA upregulated the expression of MMP-9 through activating NF-κB pathway in the LPA2 dependent manner, hence blocking LPA receptors signaling may provide therapeutic strategy to target plaque destabilization.

  18. The Oct1 homolog Nubbin is a repressor of NF-κB-dependent immune gene expression that increases the tolerance to gut microbiota.

    Science.gov (United States)

    Dantoft, Widad; Davis, Monica M; Lindvall, Jessica M; Tang, Xiongzhuo; Uvell, Hanna; Junell, Anna; Beskow, Anne; Engström, Ylva

    2013-09-06

    Innate immune responses are evolutionarily conserved processes that provide crucial protection against invading organisms. Gene activation by potent NF-κB transcription factors is essential both in mammals and Drosophila during infection and stress challenges. If not strictly controlled, this potent defense system can activate autoimmune and inflammatory stress reactions, with deleterious consequences for the organism. Negative regulation to prevent gene activation in healthy organisms, in the presence of the commensal gut flora, is however not well understood. We show that the Drosophila homolog of mammalian Oct1/POU2F1 transcription factor, called Nubbin (Nub), is a repressor of NF-κB/Relish-driven antimicrobial peptide gene expression in flies. In nub1 mutants, which lack Nub-PD protein, excessive expression of antimicrobial peptide genes occurs in the absence of infection, leading to a significant reduction of the numbers of cultivatable gut commensal bacteria. This aberrant immune gene expression was effectively blocked by expression of Nub from a transgene. We have identified an upstream regulatory region, containing a cluster of octamer sites, which is required for repression of antimicrobial peptide gene expression in healthy flies. Chromatin immunoprecipitation experiments demonstrated that Nub binds to octamer-containing promoter fragments of several immune genes. Gene expression profiling revealed that Drosophila Nub negatively regulates many genes that are involved in immune and stress responses, while it is a positive regulator of genes involved in differentiation and metabolism. This study demonstrates that a large number of genes that are activated by NF-κB/Relish in response to infection are normally repressed by the evolutionarily conserved Oct/POU transcription factor Nub. This prevents uncontrolled gene activation and supports the existence of a normal gut flora. We suggest that Nub protein plays an ancient role, shared with mammalian Oct

  19. Cigarette smoke extract promotes human vascular smooth muscle cell proliferation and survival through ERK1/2- and NF-κB-dependent pathways

    DEFF Research Database (Denmark)

    Chen, Qing-Wen; Edvinsson, Lars; Xu, Cang-Bao

    2010-01-01

    Tobacco use is one of the major risk factors of cardiovascular disease. The underlying molecular mechanisms that link cigarette smoke to cardiovascular disease remain unclear. The present study was designed to examine the effects of dimethyl sulfoxide (DMSO)-soluble smoke particles (DSPs) on human...... and necrosis were found in serum-starved HASMCs. DSPs decreased cell death and increased B-cell leukemia/lymphoma 2 expression. Blocking phosphorylation of ERK1/2 or NF-¿B attenuated DSP-induced cell death inhibition. Cigarette smoke particles stimulate HASMC proliferation and inhibit cell death...

  20. Cigarette smoke extract promotes human vascular smooth muscle cell proliferation and survival through ERK1/2- and NF-κB-dependent pathways

    DEFF Research Database (Denmark)

    Chen, Qing-Wen; Edvinsson, Lars; Xu, Cang-Bao

    2010-01-01

    Tobacco use is one of the major risk factors of cardiovascular disease. The underlying molecular mechanisms that link cigarette smoke to cardiovascular disease remain unclear. The present study was designed to examine the effects of dimethyl sulfoxide (DMSO)-soluble smoke particles (DSPs) on human...... and necrosis were found in serum-starved HASMCs. DSPs decreased cell death and increased B-cell leukemia/lymphoma 2 expression. Blocking phosphorylation of ERK1/2 or NF-κB attenuated DSP-induced cell death inhibition. Cigarette smoke particles stimulate HASMC proliferation and inhibit cell death...

  1. Human resistin stimulates the pro-inflammatory cytokines TNF-α and IL-12 in macrophages by NF-κB-dependent pathway

    International Nuclear Information System (INIS)

    Silswal, Nirupama; Singh, Anil K.; Aruna, Battu; Mukhopadhyay, Sangita; Ghosh, Sudip; Ehtesham, Nasreen Z.

    2005-01-01

    Resistin, a recently discovered 92 amino acid protein involved in the development of insulin resistance, has been associated with obesity and type 2 diabetes. The elevated serum resistin in human diabetes is often associated with a pro-inflammatory milieu. However, the role of resistin in the development of inflammation is not well understood. Addition of recombinant human resistin protein (hResistin) to macrophages (both murine and human) resulted in enhanced secretion of pro-inflammatory cytokines, TNF-α and IL-12, similar to that obtained using 5 μg/ml lipopolysaccharide. Both oligomeric and dimeric forms of hResistin were able to activate these cytokines suggesting that the inflammatory action of resistin is independent of its conformation. Heat denatured hResistin abrogated cytokine induction while treatment of recombinant resistin with polymyxin B agarose beads had no effect thereby ruling out the role of endotoxin in the recombinant hResistin mediated cytokine induction. The pro-inflammatory nature of hResistin was further evident from the ability of this protein to induce the nuclear translocation of NF-κB transcription factor as seen from electrophoretic mobility shift assays. Induction of TNF-α in U937 cells by hResistin was markedly reduced in the presence of either dominant negative IκBα plasmid or PDTC, a pharmacological inhibitor of NF-κB. A protein involved in conferring insulin resistance is also a pro-inflammatory molecule that has important implications

  2. Resveratrol Attenuates Oxidative Stress Induced by Balloon Injury in the Rat Carotid Artery Through Actions on the ERK1/2 and NF-Kappa B Pathway

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2013-02-01

    Full Text Available Background/Aim: Oxidative stress plays a critical role in pathogenesis of the neointimal arterial hyperplasia. The aim of the study was to evaluate effects of resveratrol (RSV on the vascular hyperplasia stimulated by oxidative damage. Methods: Balloon vascular injury was induced in rats that were intraperitonealy exposed to resveratrol (1 mg/kg on 7 or 14 days after surgical procedure. Animals were euthanized on 7 or 14 days after operation. The blood level of 8-iso-prostaglandin F2α, arterial morphology as well as expression of monocyte chemotactic protein-1 and interleukin-6 in carotid wall were measured. Vascular smooth muscle cells (VSMCs were isolated from the thoracic aorta. Cellular proliferation and migration assays, reactive oxygen species (ROS, superoxide dismutase (SOD and NADPH oxidative activity, protein level of β-actin, histone H3, NF-ĸB p65, IĸB, ERK1/2, phospho-ERK1/2, phospho-p38 as well as NF-ĸB transcription activity were evaluated in-vitro after angiotensin II stimulation and resveratrol (50-200 µmol/L treatment. Results: Significant decreases in neointimal/medial area, serum prostaglandin level and genes expression were found in rats treated with resveratrol, when compared to the control group. Significant changes were also revealed for proliferation and migration rates, ROS level, as well as SOD, NADPH oxidase, ERK1/2 phosphorylation and NF-ĸB transcriptional activity in cell cultures exposed to highest dose of resveratrol. Insignificant changes were observed for NF-kappaB p65 translocation and IĸB degradation, p38 phosphorylation in MAPK pathway. Conclusion: Resveratrol significantly suppressed the neointimal hyperplasia after balloon injury through inhibition of oxidative stress and inflammation by blocking the ERK1/2/NF-kappa B pathway.

  3. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-{alpha} and NF-{kappa}B pathways in lipopolysaccharide-stimulated mouse macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzung-Yan, E-mail: joyamen@mail.cgu.edu.tw [Graduate Institute of Traditional Chinese Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan (China); Lee, Ko-Chen [School of Traditional Chinese Medicine, Chang Gung University, Taiwan (China); Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chen, Shih-Yuan [Graduate Institute of Traditional Chinese Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan (China); Chang, Hen-Hong [Graduate Institute of Traditional Chinese Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan Tao-Yuan 333, Taiwan (China); Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China)

    2009-04-24

    Inflammation is involved in numerous diseases, including chronic inflammatory diseases and the development of cancer. Many plants possess a variety of biological activities, including antifungal, antibacterial and anti-inflammatory activities. However, our understanding of the anti-inflammatory effects of 6-gingerol is very limited. We used lipopolysaccharide (LPS)-stimulated macrophages as a model of inflammation to investigate the anti-inflammatory effects of 6-gingerol, which contains phenolic structure. We found that 6-gingerol exhibited an anti-inflammatory effect. 6-Gingerol could decrease inducible nitric oxide synthase and TNF-{alpha} expression through suppression of I-{kappa}B{alpha} phosphorylation, NF-{kappa}B nuclear activation and PKC-{alpha} translocation, which in turn inhibits Ca{sup 2+} mobilization and disruption of mitochondrial membrane potential in LPS-stimulated macrophages. Here, we demonstrate that 6-gingerol acts as an anti-inflammatory agent by blocking NF-{kappa}B and PKC signaling, and may be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.

  4. TGF-{beta}1 increases invasiveness of SW1990 cells through Rac1/ROS/NF-{kappa}B/IL-6/MMP-2

    Energy Technology Data Exchange (ETDEWEB)

    Binker, Marcelo G. [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); CBRHC Research Center, Buenos Aires (Argentina); Binker-Cosen, Andres A. [CBRHC Research Center, Buenos Aires (Argentina); Gaisano, Herbert Y. [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); Cosen, Rodica H. de [CBRHC Research Center, Buenos Aires (Argentina); Cosen-Binker, Laura I., E-mail: laura.cosen.binker@utoronto.ca [Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 (Canada); CBRHC Research Center, Buenos Aires (Argentina)

    2011-02-04

    Research highlights: {yields} Rac1 mediates TGF-{beta}1-induced SW1990 invasion through MMP-2 secretion and activation. {yields} NADPH-generated ROS act downstream of Rac1 in TGF-{beta}1-challenged SW1990 cells. {yields} TGF-{beta}1-stimulated ROS activate NF-{kappa}B in SW1990 cells. {yields} NF{kappa}B-induced IL-6 release is required for secretion and activation of MMP-2 in SW1990 cells. -- Abstract: Human pancreatic cancer invasion and metastasis have been found to correlate with increased levels of active matrix metalloproteinase 2 (MMP-2). The multifunctional cytokine transforming growth factor beta 1 (TGF-{beta}1) has been shown to increase both secretion of MMP-2 and invasion by several pancreatic cancer cell types. In the present study, we investigated the signaling pathway involved in TGF-{beta}1-promoted MMP-2 secretion and invasion by human pancreatic cancer cells SW1990. Using specific inhibitors, we found that stimulation of these tumor cells with TGF-{beta}1 induced secretion and activation of the collagenase MMP-2, which was required for TGF-{beta}1-stimulated invasion. Our results also indicate that signaling events involved in TGF-{beta}1-enhanced SW1990 invasiveness comprehend activation of Rac1 followed by generation of reactive oxygen species through nicotinamide adenine dinucleotide phosphate-oxidase, activation of nuclear factor-kappa beta, release of interleukin-6, and secretion and activation of MMP-2.

  5. Evaluation of NF-kappaB subunit expression and signaling pathway activation demonstrates that p52 expression confers better outcome in germinal center B-cell-like diffuse large B-cell lymphoma in association with CD30 and BCL2 functions

    NARCIS (Netherlands)

    Ok, C.Y.; Xu-Monette, Z.Y.; Li, L; Manyam, G.C.; Montes-Moreno, S.; Tzankov, A.; Visco, C.; Dybkaer, K.; Routbort, M.J.; Zhang, L.; Chiu, A.; Orazi, A.; Zu, Y.; Bhagat, G.; Richards, K.L.; Hsi, E.D.; Choi, W.W.; Krieken, J.H.J.M. van; Huh, J.; Ponzoni, M.; Ferreri, A.J.; Parsons, B.M.; Rao, H.; Moller, M.B.; Winter, J.N.; Piris, M.A.; Wang, S.A.; Medeiros, L.J.; Young, K.H.

    2015-01-01

    Nuclear factor-kappaB (NF-kappaB) is a transcription factor with a well-described oncogenic role. Study for each of five NF-kappaB pathway subunits was only reported on small cohorts in diffuse large B-cell lymphoma (DLBCL). In this large cohort (n=533) of patients with de novo DLBCL, we evaluated

  6. Tetra-O-methyl nordihydroguaiaretic acid (Terameprocol inhibits the NF-κB-dependent transcription of TNF-α and MCP-1/CCL2 genes by preventing RelA from binding its cognate sites on DNA

    Directory of Open Access Journals (Sweden)

    Scholle Frank

    2010-12-01

    Full Text Available Abstract Background Tetra-O-methyl nordihydroguaiaretic acid, also known as terameprocol (TMP, is a naturally occurring phenolic compound found in the resin of the creosote bush. We have shown previously that TMP will suppress production of certain inflammatory cytokines, chemokines and lipids from macrophages following stimulation with LPS or infection with H1N1 influenza virus. In this study our goal was to elucidate the mechanism underlying TMP-mediated suppression of cytokine and chemokine production. We focused our investigations on the response to LPS and the NF-κB protein RelA, a transcription factor whose activity is critical to LPS-responsiveness. Methods Reporter assays were performed with HEK293 cells overexpressing either TLR-3, -4, or -8 and a plasmid containing the luciferase gene under control of an NF-κB response element. Cells were then treated with LPS, poly(I:C, or resiquimod, and/or TMP, and lysates measured for luciferase activity. RAW 264.7 cells treated with LPS and/or TMP were used in ChIP and EMSA assays. For ChIP assays, chromatin was prepared and complexes precipitated with anti-NF-κB RelA Ab. Cross-links were reversed, DNA purified, and sequence abundance determined by Q-PCR. For EMSA assays, nuclear extracts were incubated with radiolabeled probes, analyzed by non-denaturing PAGE and visualized by autoradiography. RAW 264.7 cells treated with LPS and/or TMP were also used in fluorescence microscopy and western blot experiments. Translocation experiments were performed using a primary Ab to NF-κB RelA and a fluorescein-conjugated secondary Ab. Western blots were performed using Abs to IκB-α and phospho-IκB-α. Bands were visualized by chemiluminescence. Results In reporter assays with TLR-3, -4, and -8 over-expressing cells, TMP caused strong inhibition of NF-κB-dependent transcription. ChIP assays showed TMP caused virtually complete inhibition of RelA binding in vivo to promoters for the genes for TNF

  7. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-{kappa}B and MAPK pathways

    Energy Technology Data Exchange (ETDEWEB)

    Wisutsitthiwong, Chonnaree; Buranaruk, Chayanit [Graduate Program in Industrial Microbiology, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand); Pudhom, Khanitha [Department of Chemistry, Faculty of Science and Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand); Palaga, Tanapat, E-mail: tanapat.p@chula.ac.th [Graduate Program in Industrial Microbiology, Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok 10330 (Thailand)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer A gedunin type limonoid from seeds of mangroves, 7-oxo-7-deacetoxygedunin, exhibits strong anti-osteoclastogenic activity. Black-Right-Pointing-Pointer Treatment with this limonoid results in significant decrease in expression of NFATc1 and osteoclast-related genes. Black-Right-Pointing-Pointer The mode of action of this limonoid is by inhibiting activation of the NF-{kappa}B and MAPK pathways which are activated by RANKL. -- Abstract: Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. Aberrations in osteoclast differentiation and activity contribute to osteopenic disease. Osteoclasts differentiate from monocyte/macrophage progenitors, a process that is initiated by the interaction between receptor activator of NF-{kappa}B (RANK) and its ligand, RANKL. In this study, we identified 7-oxo-7-deacetoxygedunin (7-OG), a gedunin type limonoid from seeds of the mangrove Xylocarpus moluccensis, as a potent inhibitor of osteoclastogenesis. Additionally, 7-OG showed strong anti-osteoclastogenic activity with low cytotoxicity against the monocyte/macrophage progenitor cell line, RAW264.7. The IC50 for anti-osteoclastogenic activity was 4.14 {mu}M. Treatment with 7-OG completely abolished the appearance of multinucleated giant cells with tartrate-resistant acid phosphatase activity in RAW264.7 cells stimulated with RANKL. When the expression of genes related to osteoclastogenesis was investigated, a complete downregulation of NFATc1 and cathepsin K and a delayed downregulation of irf8 were observed upon 7-OG treatment in the presence of RANKL. Furthermore, treatment with this limonoid suppressed RANKL-induced activation of p38, MAPK and Erk and nuclear localization of NF-{kappa}B p65. Taken together, we present evidence indicating a plant limonoid as a novel osteoclastogenic inhibitor that could be used for osteoporosis and related conditions.

  8. Endotoxin/lipopolysaccharide activates NF-kappa B and enhances tumor cell adhesion and invasion through a beta 1 integrin-dependent mechanism.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    Beta(1) integrins play a crucial role in supporting tumor cell attachment to and invasion into the extracellular matrix. Endotoxin\\/LPS introduced by surgery has been shown to enhance tumor metastasis in a murine model. Here we show the direct effect of LPS on tumor cell adhesion and invasion in extracellular matrix proteins through a beta(1) integrin-dependent pathway. The human colorectal tumor cell lines SW480 and SW620 constitutively expressed high levels of the beta(1) subunit, whereas various low levels of alpha(1), alpha(2), alpha(4), and alpha(6) expression were detected. SW480 and SW620 did not express membrane-bound CD14; however, LPS in the presence of soluble CD14 (sCD14) significantly up-regulated beta(1) integrin expression; enhanced tumor cell attachment to fibronectin, collagen I, and laminin; and strongly promoted tumor cell invasion through the Matrigel. Anti-beta(1) blocking mAbs (4B4 and 6S6) abrogated LPS- plus sCD14-induced tumor cell adhesion and invasion. Furthermore, LPS, when combined with sCD14, resulted in NF-kappaB activation in both SW480 and SW620 cells. Inhibition of the NF-kappaB pathway significantly attenuated LPS-induced up-regulation of beta(1) integrin expression and prevented tumor cell adhesion and invasion. These results provide direct evidence that although SW480 and SW620 cells do not express membrane-bound CD14, LPS in the presence of sCD14 can activate NF-kappaB, up-regulate beta(1) integrin expression, and subsequently promote tumor cell adhesion and invasion. Moreover, LPS-induced tumor cell attachment to and invasion through extracellular matrix proteins is beta(1) subunit-dependent.

  9. NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses.

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2009-12-01

    Full Text Available Cryptosporidium parvum is a protozoan parasite that infects the gastrointestinal epithelium and causes diarrheal disease worldwide. Innate epithelial immune responses are key mediators of the host's defense to C. parvum. MicroRNAs (miRNAs regulate gene expression at the posttranscriptional level and are involved in regulation of both innate and adaptive immune responses. Using an in vitro model of human cryptosporidiosis, we analyzed C. parvum-induced miRNA expression in biliary epithelial cells (i.e., cholangiocytes. Our results demonstrated differential alterations in the mature miRNA expression profile in cholangiocytes following C. parvum infection or lipopolysaccharide stimulation. Database analysis of C. parvum-upregulated miRNAs revealed potential NF-kappaB binding sites in the promoter elements of a subset of miRNA genes. We demonstrated that mir-125b-1, mir-21, mir-30b, and mir-23b-27b-24-1 cluster genes were transactivated through promoter binding of the NF-kappaB p65 subunit following C. parvum infection. In contrast, C. parvum transactivated mir-30c and mir-16 genes in cholangiocytes in a p65-independent manner. Importantly, functional inhibition of selected p65-dependent miRNAs in cholangiocytes increased C. parvum burden. Thus, we have identified a panel of miRNAs regulated through promoter binding of the NF-kappaB p65 subunit in human cholangiocytes in response to C. parvum infection, a process that may be relevant to the regulation of epithelial anti-microbial defense in general.

  10. Expression of cyclooxygenase-2 parallels expression of interleukin-1beta, interleukin-6 and NF-kappaB in human colorectal cancer.

    Science.gov (United States)

    Maihöfner, Christian; Charalambous, Michalis Panayiotou; Bhambra, Upinder; Lightfoot, Tracy; Geisslinger, Gerd; Gooderham, Nigel J

    2003-04-01

    Elevated expression of cyclooxygenase-2 (COX-2), the inducible isoform of prostaglandin H synthase, has been found in several human cancers, including colorectal cancer (CRC). This appears as a rationale for the chemopreventive effects of non-steroidal anti-inflammatory drugs in CRC. However, the reason for COX-2 overexpression is not fully understood. In cell culture experiments, COX-2 can be induced by proinflammatory cytokines, such as interleukin (IL)-1beta and IL-6. A crucial step in this signalling pathway is thought to be activation of transcription factor NF-kappaB. Based on these findings, we hypothesized an association between COX-2 overexpression and expression of IL-1beta, IL-6 and the NF-kappaB subunit p65 in human CRC. To test the hypothesis, we performed immunohistochemistry for the respective antigens on colorectal cancer specimens, obtained by surgical resections from 21 patients with CRC. Immunohistochemical results were confirmed by examination of protein levels in tissue lysates and nuclear extracts using western blotting. Non-neoplastic tissue specimens resected well outside the tumour border served as controls. COX-2 expression was found to be markedly enhanced in the neoplastic epithelium compared with controls. This was paralleled by a significantly higher expression of IL-1beta, IL-6 and p65. Serial sections revealed consistent cellular colocalizations of respective antigens in the neoplastic epithelium. Statistically, a significant correlation between expression of COX-2 and IL-1beta, IL-6 and p65 was found. Comparable results were obtained for stromal cells like macrophages and myofibroblasts. Further examination of nuclear extracts from CRC-specimens by western blotting confirmed a higher content of p65 protein compared with non-neoplastic control tissues. Therefore, our study provides evidence for an association between expression of COX-2 and IL-1beta, IL-6 and p65 in human CRC. The results are consistent with the thesis that

  11. Expression of TLR-2, TLR-4, NOD2 and pNF-kappaB in a neonatal rat model of necrotizing enterocolitis.

    Directory of Open Access Journals (Sweden)

    Aurelie Le Mandat Schultz

    Full Text Available BACKGROUND: The etiology of necrotizing enterocolitis (NEC results from a combination of several risk factors that act synergistically and occurs in the same circumstances as those which lead to innate immunity activation. Pattern recognition molecules could be an important player in the initiation of an exaggerated inflammatory response leading to intestinal injury in NEC. METHODOLOGY/PRINCIPAL FINDINGS: We specifically evaluated intestinal epithelial cell (IEC expression of Toll-like receptor 2 (TLR-2, TLR-4, NOD2 and phosphorylated NF-kappaB (pNF-kappaB after mucosal injury in a rat model of NEC induced by prematurity, systemic hypoxia, and a rich protein formula. In the control group (group 1, neonatal rats were full-term and breast-fed; in the experimental groups, rat pups were preterm at day 21 of gestation and rat-milk fed (group 2 or hand-gavaged with a protein rich formula after a hypoxia-reoxygenation procedure (group 3. Morphological mucosal changes in the small bowel were scored on hematoxylin- and eosin-stained sections. Immunohistochemistry was performed on frozen tissue sections using anti TLR-2 and active pNF-kappaB p65 antibodies. Real-time RT-PCR was performed to assess mRNA expression of NOD2, TLR-2 and TLR-4. Proliferation and apoptosis were studied in paraffin sections using anti Ki-67 and caspase-3 antibodies, respectively. The combination of immaturity, protein rich formula and a hypoxia-reoxygenation procedure induces pathological mucosal damage consistent with NEC. There was an overexpression of TLR-2, and pNF-kappaB in IECs that was correlated with the severity of mucosal damage, together with an increase of apoptotic IECs and markedly impaired proliferation. In addition, these immunological alterations appeared before severe mucosal damage. TLR-2 mRNA were also increased in NEC together with TLR-4 mRNA using real-time RT-PCR whereas NOD2 expression was unchanged. CONCLUSIONS/SIGNIFICANCE: These results show that this

  12. Pro-oxidant and antioxidant effects of N-acetylcysteine regulate doxorubicin-induced NF-kappa B activity in leukemic cells†

    Science.gov (United States)

    Finn, Nnenna Adimora

    2012-01-01

    Clinical debate has arisen over the consequences of antioxidant supplementation during cancer chemotherapy. While antioxidants may impede the efficacy of chemotherapy by scavenging reactive oxygen species and free radicals, it is also possible that antioxidants alleviate unwanted chemotherapy-induced toxicity, thus allowing for increased chemotherapy doses. These contradictory assertions suggest that antioxidant supplementation during chemotherapy treatment can have varied outcomes depending on the cellular context. To gain a more robust understanding of the role that antioxidants play in chemotherapy, we investigated the dose-dependent effects of the antioxidant, N-acetylcysteine (NAC), on the redox-mediated regulation of intracellular signaling. In this study, we systematically evaluated the effect of Dox-induced ROS on the NF-κB pathway in a pediatric acute lymphoblastic leukemia (ALL) cell line by measuring the thiol-based oxidative modifications of redox-sensitive proteins within the pathway. We report a functional consequence of NAC supplementation during doxorubicin (Dox) chemotherapy administration via the NF-kappa B (NF-κB) signal transduction pathway. The ability of NAC to alter Dox-induced NF-κB activity is contingent on the ROS-mediated S-glutathionylation of IKK-β. Moreover, the NAC-dependent alteration of intracellular glutathione redox balance, through pro-oxidant and antioxidant mechanisms, can be exploited to either promote or inhibit Dox-induced NF-κB activity in an NAC-concentration-dependent manner. We developed an electron-transfer-based computational model that predicts the effect of NAC pretreatment on Dox-induced NF-κB signaling for a range of NAC and Dox treatment combinations. PMID:22134636

  13. Cancer Cell Growth Inhibitory Effect of Bee Venom via Increase of Death Receptor 3 Expression and Inactivation of NF-kappa B in NSCLC Cells

    Directory of Open Access Journals (Sweden)

    Kyung Eun Choi

    2014-07-01

    Full Text Available Our previous findings have demonstrated that bee venom (BV has anti-cancer activity in several cancer cells. However, the effects of BV on lung cancer cell growth have not been reported. Cell viability was determined with trypan blue uptake, soft agar formation as well as DAPI and TUNEL assay. Cell death related protein expression was determined with Western blotting. An EMSA was used for nuclear factor kappaB (NF-κB activity assay. BV (1–5 μg/mL inhibited growth of lung cancer cells by induction of apoptosis in a dose dependent manner in lung cancer cell lines A549 and NCI-H460. Consistent with apoptotic cell death, expression of DR3 and DR6 was significantly increased. However, deletion of DRs by small interfering RNA significantly reversed BV induced cell growth inhibitory effects. Expression of pro-apoptotic proteins (caspase-3 and Bax was concomitantly increased, but the NF-κB activity and expression of Bcl-2 were inhibited. A combination treatment of tumor necrosis factor (TNF-like weak inducer of apoptosis, TNF-related apoptosis-inducing ligand, docetaxel and cisplatin, with BV synergistically inhibited both A549 and NCI-H460 lung cancer cell growth with further down regulation of NF-κB activity. These results show that BV induces apoptotic cell death in lung cancer cells through the enhancement of DR3 expression and inhibition of NF-κB pathway.

  14. 21-O-Angeloyltheasapogenol E3, a Novel Triterpenoid Saponin from the Seeds of Tea Plants, Inhibits Macrophage-Mediated Inflammatory Responses in a NF-κB-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Woo Seok Yang

    2014-01-01

    Full Text Available 21-O-Angeloyltheasapogenol E3 (ATS-E3 is a triterpenoid saponin recently isolated from the seeds of the tea tree Camellia sinensis (L. O. Kuntze. ATS-E3 has several beneficial properties including anti-inflammatory, antidiabetic, antiatherosclerotic, and anticancer effects. Unlike other phenolic compounds isolated from tea plants, there are no studies reporting the pharmacological action of ATS-E3. In this study, we therefore aimed to explore the cellular and molecular inhibitory activities of ATS-E3 in macrophage-mediated inflammatory responses. ATS-E3 remarkably diminished cellular responses of macrophages such as FITC-dextran-induced phagocytic uptake, sodium nitroprusside- (SNP- induced radical generation, and LPS-induced nitric oxide (NO production. Analysis of its molecular activity showed that this compound significantly suppressed the expression of inducible NO synthase (iNOS, nuclear translocation of nuclear factor- (NF- κB subunits (p50 and p65, phosphorylation of inhibitor of κB kinase (IKK, and the enzyme activity of AKT1. Taken together, the novel triterpenoid saponin compound ATS-E3 contributes to the beneficial effects of tea plants by exerting anti-inflammatory and antioxidative activities in an AKT/IKK/NF-κB-dependent manner.

  15. kappa B elements strongly activate gene expression in non-lymphoid cells and function synergistically with NF1 elements.

    OpenAIRE

    Hennighausen, L; Furth, P A; Pittius, C W

    1989-01-01

    kappa B elements have been described as lymphoid-specific transcriptional activators. Here we show that kappa B elements are able to stimulate expression from test promoters more than 100-fold in T47D and 3T3 non-lymphoid cells. We also demonstrate that nuclear proteins from T47D cells form two prominent complexes with HIV kappa B sites. Since the complexes formed in nuclear extracts from T47D and PHA/PMA stimulated Jurkat cells comigrate in polyacrylamide gels, we suggest that the respective...

  16. Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa β and toll-like receptor pathways.

    Science.gov (United States)

    Liu, Saixi; Shi, Wei; Guo, Cheng; Zhao, Xinguo; Han, Yu; Peng, Chao; Chai, Xueliang; Liu, Guangxu

    2016-07-01

    The impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.1, 7.8, and 7.4) on the total number of haemocyte cells (THC), phagocytosis status, blood cell types composition, and expression levels of twelve genes from the NF-kappa β signaling and toll-like receptor pathways of a typical bottom burrowing bivalve, blood clam (Tegillarca granosa), were investigated. The results obtained showed that while both THC number and phagocytosis frequency were significantly reduced, the percentage of red and basophil granulocytes were significantly decreased and increased, respectively, upon exposure to elevated pCO2. In addition, exposure to pCO2 acidified seawater generally led to a significant down-regulation in the inducer and key response genes of NF-kappa β signaling and toll-like receptor pathways. The results of the present study revealed that ocean acidification may hamper immune responses of the bivalve T. granosa which subsequently render individuals more susceptible to pathogens attacks such as those from virus and bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Epigallocatechin-3-gallate inhibits secretion of TNF-alpha, IL-6 and IL-8 through the attenuation of ERK and NF-kappaB in HMC-1 cells.

    Science.gov (United States)

    Shin, Hye-Young; Kim, Sang-Hyun; Jeong, Hyun-Ja; Kim, Sang-Yong; Shin, Tae-Yong; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min

    2007-01-01

    Epigallocatechin-3-gallate (EGCG) is a major form of tea catechin and has a variety of biological activities. In the present study, we investigated the effect of EGCG on the secretion of TNF-alpha, IL-6 and IL-8, as well as its possible mechanism of action by using the human mast cell line (HMC-1). EGCG was treated before the activation of HMC-1 cells with phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore (A23187). To investigate the effect of EGCG on PMA+A23187-stimulated HMC-1 cells, ELISA, Western blot analysis, electrophorectic mobility shift assay and luciferase assay were used in this study. EGCG (100 microM) inhibited PMA+A23187-induced TNF-alpha, IL-6 and IL-8 expression and production. EGCG inhibited the intracellular Ca(2+) level. EGCG attenuated PMA+A23187-induced NF-kappaB and extracellular signal-regulated kinase (ERK1/2) activation, but not that of c-Jun N-terminal kinase or p38 mitogen-activated protein kinase. EGCG inhibited the production of TNF-alpha, IL-6 and IL-8 through the inhibition of the intracellular Ca(2+) level, and of ERK1/2 and NF-kappaB activation. These results indicate that EGCG may be helpful in regulating mast-cell-mediated allergic inflammatory response.

  18. Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-kappaB and MAPKs activation pathways in HMC-1 cells.

    Science.gov (United States)

    Kang, Ok-Hwa; Choi, Jang-Gi; Lee, John-Hwa; Kwon, Dong-Yeul

    2010-01-18

    Luteolin (3',4',5,7-tetrahydroxylflavone) is a plant flavonoid and pharmacologically active agent that has been isolated from several plant species. In the present study, the effect of luteolin from the flowers of Lonicera japonica on phorbol 12-myristate 13-acetate (PMA) plus A23187-induced mast cell activation was examined. Luteolin significantly inhibited the induction of inflammatory cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-8, IL-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) by PMA plus A23187. Moreover, luteolin attenuated cyclooxygenase (COX)-2 expression and intracellular Ca2+ levels. In activated HMC-1 cells, the phosphorylation of extra-signal response kinase (ERK 1/2) and c-jun N-terminal Kinase (JNK 1/2), but not p38 mitogen-activated protein kinase (p38 MAPK) were decreased by treatment of the cells with luteolin. Luteolin inhibited PMA plus A23187-induced nuclear factor (NF)-kappaB activation, IkappaB degradation, and luciferase activity. Furthermore, luteolin suppressed the expression of TNF-alpha, IL-8, IL-6, GM-CSF, and COX-2 through a decrease in the intracellular Ca2+ levels, and also showed a suppression of the ERK 1/2, JNK 1/2, and NF-kappaB activation. These results indicated that luteolin from the flowers of Lonicera japonica exerted a regulatory effect on mast cell-mediated inflammatory diseases, such as RA, allergy disease and IBD.

  19. Ergolide, sesquiterpene lactone from Inula britannica, inhibits inducible nitric oxide synthase and cyclo-oxygenase-2 expression in RAW 264.7 macrophages through the inactivation of NF-kappaB.

    Science.gov (United States)

    Whan Han, J; Gon Lee, B; Kee Kim, Y; Woo Yoon, J; Kyoung Jin, H; Hong, S; Young Lee, H; Ro Lee, K; Woo Lee, H

    2001-06-01

    We investigated the mechanism of suppression of inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) by ergolide, sesquiterpene lactone from Inula britannica. iNOS activity in cell-free extract of LPS/IFN-gamma-stimulated RAW 264.7 macrophages was markedly attenuated by the treatment with ergolide. Its inhibitory effect on iNOS was paralleled by decrease in nitrite accumulation in culture medium of LPS/IFN-gamma-stimulated RAW 264.7 macrophages in a concentration-dependent manner. However, its inhibitory effect does not result from direct inhibition of the catalytic activity of NOS. Ergolide markedly decreased the production of prostaglandin E(2) (PGE(2)) in cell-free extract of LPS/IFN-gamma-stimulated RAW 264.7 macrophages in a concentration-dependent manner, without alteration of the catalytic activity of COX-2 itself. Ergolide decreased the level of iNOS and COX-2 protein, and iNOS mRNA caused by stimulation of LPS/IFN-gamma in a concentration-dependent manner, as measured by Western blot and Northern blot analysis, respectively. Ergolide inhibited nuclear factor-kappaB (NF-kappaB) activation, a transcription factor necessary for iNOS and COX-2 expression in response to LPS/IFN-gamma. This effect was accompanied by the parallel reduction of nuclear translocation of subunit p65 of NF-kappaB as well as IkappaB-alpha degradation. In addition, these effects were completely blocked by treatment of cysteine, indicating that this inhibitory effect of ergolide could be mediated by alkylation of NF-kappaB itself or an upstream molecule of NF-kappaB. Ergolide also directly inhibited the DNA-binding activity of active NF-kappaB in LPS/IFN-gamma-pretreated RAW 264.7 macrophages. These results demonstrate that the suppression of NF-kappaB activation by ergolide might be attributed to the inhibition of nuclear translocation of NF-kappaB resulted from blockade of the degradation of IkappaB and the direct modification of active NF-kappaB, leading to the

  20. Hexa-, hepta- and nonaprenylhydroquinones isolated from marine sponges Sarcotragus muscarum and Ircinia fasciculata inhibit NF-kappaB signalling in H4IIE cells.

    Science.gov (United States)

    Wätjen, Wim; Putz, Annika; Chovolou, Yvonni; Kampkötter, Andreas; Totzke, Frank; Kubbutat, Michael H G; Proksch, Peter; Konuklugil, Belma

    2009-07-01

    Marine organisms have proven to be a rich source of potent pharmacologically active compounds. Three polyprenyl-1,4-hydroquinone derivates (hexaprenyl-1,4-hydroquinone, heptaprenyl-1,4-hydroquinone and nonaprenyl-1,4-hydroquinone) were isolated from the Zoobenthos-inhabiting sponges Sarcotragus muscarum and Ircinia fasciculata from the Eastern Mediterranean Sea (phylum: Porifera; class: Demospongiae). Hexa-, hepta- and nonaprenylhydroquinone were identified by (1)H-NMR, H,H-COSY, heteronuclear multiple bond correlation, FAB-MS and UV spectroscopy. The effects of the compounds on cell viability was determined using the MTT assay; anti-oxidative potential was measured using the Trolox equivalent antioxidative capacity assay. Inhibition of nuclear factor-kappaB activity was detected by secreted alkaline phosphatase assay. Activity against an array of protein kinases was determined in 96-well FlashPlates. All compounds had prominent antioxidative activity, comparable to that of the synthetic vitamin E derivate Trolox. Hexaprenylhydroquinone showed the greatest cytotoxicity in H4IIE hepatoma cells (EC50 2.5 muM). All three compounds inhibited NF-kappaB signalling in this cell line, with heptaprenylhydroquinone being the most active. Screening of 23 kinases involved in signal transduction pathways (cell proliferation, survival, angiogenesis and metastasis) showed that hexaprenylhydroquinone and heptaprenylhydroquinone inhibited the activity of the epidermal growth factor receptor (IC50 1.6 and 1.4 mug/ml, respectively), and heptaprenylhydroquinone also inhibited the activity of other kinases (Src tyrosine kinase, vascular endothelial growth factor receptor 3 and insulin-like growth factor 1 receptor). The prenylated hydroquinones isolated from the marine sponges S. muscarum and I. fasciculata showed cytotoxic and antioxidative activities and inhibited NF-kappaB signalling in H4IIE hepatoma cells and protein kinases. These findings may result in the generation of new lead

  1. Orf virus 002 protein targets ovine protein S100A4 and inhibits NF-kappa B signaling

    Directory of Open Access Journals (Sweden)

    Daxiang Chen

    2016-09-01

    Full Text Available Orf virus (ORFV, a member of Parapoxvirus, has evolved various strategies to modulate the immune responses of host cells. The ORFV-encoded protein ORFV002, a regulator factor, has been found to inhibit the acetylation of NF-κB-p65 by blocking phosphorylation of NF-kB-p65 at Ser276 and also to disrupt the binding of NF-kB-p65 and p300. To explore the mechanism by which ORFV002 regulates NF-κB signaling, the understanding of ORFV002 potential binding partners in host cells is critical. In this study, ovine S100 calcium binding protein A4 (S100A4, prolylendopeptidase-like (PREPL and NADH dehydrogenase (ubiquinone 1 alpha subcomplex 8 (NDUFA8 were found to interact with ORFV002 based on the yeast two-hybrid (Y2H assay using a cDNA library derived from primary ovine fetal turbinate cells (OFTu. GST pull-down and bidirectional co-immunoprecipitation assay results demonstrate that ORFV002 interacts with S100A4 directly. Following the pEGFP-ORFV002 (p002GFP transfection, we found that cytoplasmic S100A4 translocates into the nucleus and co-localizes with ORFV002. Furthermore, the inhibitory effect of ORFV002 on NF-κB signaling was significantly restored by S100A4 knock-down phenotype, suggesting ovine S100A4 participating in the ORFV002-mediated NF-κB signaling. These data demonstrate that ORFV002 inhibits the NF-κB activation through its interaction with S100A4 along with its nucleus translocation.

  2. A natural xanthone increases catalase activity but decreases NF-kappa B and lipid peroxidation in U-937 and HepG2 cell lines.

    Science.gov (United States)

    Sahoo, Binay K; Zaidi, Adeel H; Gupta, Pankaj; Mokhamatam, Raveendra B; Raviprakash, Nune; Mahali, Sidhartha K; Manna, Sunil K

    2015-10-05

    Mangiferin, a C-glycosyl xanthone, has shown anti-inflammatory, antioxidant, and anti-tumorigenic activities. In the present study, we investigated the molecular mechanism for the antioxidant property of mangiferin. Considering the role of nuclear transcription factor kappa B (NF-κB) in inflammation and tumorigenesis, we hypothesized that modulating its activity will be a viable therapeutic target in regulating the redox-sensitive ailments. Our results show that mangiferin blocks several inducers, such as tumor necrosis factor (TNF), lypopolysaccharide (LPS), phorbol-12-myristate-13-acetate (PMA) or hydrogen peroxide (H2O2) mediated NF-κB activation via inhibition of reactive oxygen species generation. In silico docking studies predicted strong binding energy of mangiferin to the active site of catalase (-9.13 kcal/mol), but not with other oxidases such as myeloperoxidase, glutathione peroxidase, or inducible nitric oxide synthase. Mangiferin increased activity of catalase by 44%, but had no effect on myeloperoxidase activity in vitro. Fluorescence spectroscopy further revealed the binding of mangiferin to catalase at the single site with binding constant and binding affinity of 3.1×10(-7) M(-1) and 1.046 respectively. Mangiferin also inhibits TNF-induced lipid peroxidation and thereby protects apoptosis. Hence, mangiferin with its ability to inhibit NF-κB and increase the catalase activity may prove to be a potent therapeutic. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-kappaB p65.

    Directory of Open Access Journals (Sweden)

    Hayley J Newton

    2010-05-01

    Full Text Available Many bacterial pathogens utilize a type III secretion system to deliver multiple effector proteins into host cells. Here we found that the type III effectors, NleE from enteropathogenic E. coli (EPEC and OspZ from Shigella, blocked translocation of the p65 subunit of the transcription factor, NF-kappaB, to the host cell nucleus. NF-kappaB inhibition by NleE was associated with decreased IL-8 expression in EPEC-infected intestinal epithelial cells. Ectopically expressed NleE also blocked nuclear translocation of p65 and c-Rel, but not p50 or STAT1/2. NleE homologues from other attaching and effacing pathogens as well OspZ from Shigella flexneri 6 and Shigella boydii, also inhibited NF-kappaB activation and p65 nuclear import; however, a truncated form of OspZ from S. flexneri 2a that carries a 36 amino acid deletion at the C-terminus had no inhibitory activity. We determined that the C-termini of NleE and full length OspZ were functionally interchangeable and identified a six amino acid motif, IDSY(M/IK, that was important for both NleE- and OspZ-mediated inhibition of NF-kappaB activity. We also established that NleB, encoded directly upstream from NleE, suppressed NF-kappaB activation. Whereas NleE inhibited both TNFalpha and IL-1beta stimulated p65 nuclear translocation and IkappaB degradation, NleB inhibited the TNFalpha pathway only. Neither NleE nor NleB inhibited AP-1 activation, suggesting that the modulatory activity of the effectors was specific for NF-kappaB signaling. Overall our data show that EPEC and Shigella have evolved similar T3SS-dependent means to manipulate host inflammatory pathways by interfering with the activation of selected host transcriptional regulators.

  4. The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-kappaB p65.

    Science.gov (United States)

    Newton, Hayley J; Pearson, Jaclyn S; Badea, Luminita; Kelly, Michelle; Lucas, Mark; Holloway, Gavan; Wagstaff, Kylie M; Dunstone, Michelle A; Sloan, Joan; Whisstock, James C; Kaper, James B; Robins-Browne, Roy M; Jans, David A; Frankel, Gad; Phillips, Alan D; Coulson, Barbara S; Hartland, Elizabeth L

    2010-05-13

    Many bacterial pathogens utilize a type III secretion system to deliver multiple effector proteins into host cells. Here we found that the type III effectors, NleE from enteropathogenic E. coli (EPEC) and OspZ from Shigella, blocked translocation of the p65 subunit of the transcription factor, NF-kappaB, to the host cell nucleus. NF-kappaB inhibition by NleE was associated with decreased IL-8 expression in EPEC-infected intestinal epithelial cells. Ectopically expressed NleE also blocked nuclear translocation of p65 and c-Rel, but not p50 or STAT1/2. NleE homologues from other attaching and effacing pathogens as well OspZ from Shigella flexneri 6 and Shigella boydii, also inhibited NF-kappaB activation and p65 nuclear import; however, a truncated form of OspZ from S. flexneri 2a that carries a 36 amino acid deletion at the C-terminus had no inhibitory activity. We determined that the C-termini of NleE and full length OspZ were functionally interchangeable and identified a six amino acid motif, IDSY(M/I)K, that was important for both NleE- and OspZ-mediated inhibition of NF-kappaB activity. We also established that NleB, encoded directly upstream from NleE, suppressed NF-kappaB activation. Whereas NleE inhibited both TNFalpha and IL-1beta stimulated p65 nuclear translocation and IkappaB degradation, NleB inhibited the TNFalpha pathway only. Neither NleE nor NleB inhibited AP-1 activation, suggesting that the modulatory activity of the effectors was specific for NF-kappaB signaling. Overall our data show that EPEC and Shigella have evolved similar T3SS-dependent means to manipulate host inflammatory pathways by interfering with the activation of selected host transcriptional regulators.

  5. Logical network of genotoxic stress-induced NF-kappaB signal transduction predicts putative target structures for therapeutic intervention strategies

    Directory of Open Access Journals (Sweden)

    Rainer Poltz

    2009-12-01

    Full Text Available Rainer Poltz1, Raimo Franke1,#, Katrin Schweitzer1, Steffen Klamt2, Ernst-Dieter Gilles2, Michael Naumann11Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany; 2Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany; #Present address: Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, GermanyAbstract: Genotoxic stress is induced by a broad range of DNA-damaging agents and could lead to a variety of human diseases including cancer. DNA damage is also therapeutically induced for cancer treatment with the aim to eliminate tumor cells. However, the effectiveness of radio- and chemotherapy is strongly hampered by tumor cell resistance. A major reason for radio- and chemotherapeutic resistances is the simultaneous activation of cell survival pathways resulting in the activation of the transcription factor nuclear factor-kappa B (NF-κB. Here, we present a Boolean network model of the NF-κB signal transduction induced by genotoxic stress in epithelial cells. For the representation and analysis of the model, we used the formalism of logical interaction hypergraphs. Model reconstruction was based on a careful meta-analysis of published data. By calculating minimal intervention sets, we identified p53-induced protein with a death domain (PIDD, receptor-interacting protein 1 (RIP1, and protein inhibitor of activated STAT y (PIASy as putative therapeutic targets to abrogate NF-κB activation resulting in apoptosis. Targeting these structures therapeutically may potentiate the effectiveness of radio- and chemotherapy. Thus, the presented model allows a better understanding of the signal transduction in tumor cells and provides candidates as new therapeutic target structures.Keywords: apoptosis, Boolean network, cancer therapy, DNA-damage response, NF-κB

  6. Expression of an IKKgamma splice variant determines IRF3 and canonical NF-kappaB pathway utilization in ssRNA virus infection.

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2009-11-01

    Full Text Available Single stranded RNA (ssRNA virus infection activates the retinoic acid inducible gene I (RIG-I- mitochondrial antiviral signaling (MAVS complex, a complex that coordinates the host innate immune response via the NF-kappaB and IRF3 pathways. Recent work has shown that the IkappaB kinase (IKKgamma scaffolding protein is the final common adapter protein required by RIG-I.MAVS to activate divergent rate-limiting kinases downstream controlling the NF-kappaB and IRF3 pathways. Previously we discovered a ubiquitous IKKgamma splice-variant, IKKgammaDelta, that exhibits distinct signaling properties.We examined the regulation and function of IKKgamma splice forms in response to ssRNA virus infection, a condition that preferentially induces full length IKKgamma-WT mRNA expression. In IKKgammaDelta-expressing cells, we found increased viral translation and cytopathic effect compared to those expressing full length IKKgamma-WT. IKKgammaDelta fails to support viral-induced IRF3 activation in response to ssRNA infections; consequently type I IFN production and the induction of anti-viral interferon stimulated genes (ISGs are significantly attenuated. By contrast, ectopic RIG-I.MAVS or TNFalpha-induced canonical NF-kappaB activation is preserved in IKKgammaDelta expressing cells. Increasing relative levels of IKKgamma-WT to IKKgammaDelta (while keeping total IKKgamma constant results in increased type I IFN expression. Conversely, overexpressing IKKgammaDelta (in a background of constant IKKgamma-WT expression shows IKKgammaDelta functions as a dominant-negative IRF3 signaling inhibitor. IKKgammaDelta binds both IKK-alpha and beta, but not TANK and IKKepsilon, indicating that exon 5 encodes an essential TANK binding domain. Finally, IKKgammaDelta displaces IKKgammaWT from MAVS explaining its domainant negative effect.Relative endogenous IKKgammaDelta expression affects cellular selection of inflammatory/anti-viral pathway responses to ssRNA viral infection.

  7. BCL10 aberations and NF-kappa B activation involving p65 are absent or rare in primary gastric MALT lymphoma

    Directory of Open Access Journals (Sweden)

    Hajder Jelena

    2014-01-01

    Full Text Available Bacground/Aim. Mucosa-associated lymphoid tissue (MALT lymphoma accounts for 5-17% non-Hodgkin lymphomas (NHL. The molecular pathogenesis of MALT lymphomas is not well-established. The aim of this study was to evaluate immunohistochemically determined nuclear coexpression of BCL10 and NF-kappaB (NF-κB in tumor cells of gastric MALT lymphoma and its impact on the patogenesis and outcome of the disease. Methods. Medical records of 35 patients with newly diagnosed gastric MALT lymphoma were analyzed and biopsy specimens were immunostained for BCL10 and NF-kB expression (p65 subunit. Results. The median age of 35 patients diagnosed with gastric MALT lymphoma was 63.5 years (male/female = 21/14. Symptoms were present in 23/35 (65.7% patients with the weight loss as the most common symptom. Gastric MALT lymphomas were usually localized in the stomach corpus and corpus and antrum (45.7% and 31.2%, respectively. H. pylori infection was confirmed in 20 out of 30 (66.7% patients. Treatment options were as follows: immunochemotherapy in 10 (28.5% patients, surgery in 9 (25.8% patients, combined surgery and chemotherapy in 14 (40% patients and supportive measures in 2 (5.7% patients. Complete remission was achieved in 13 (37.1% patients and partial remission in two (5.7% patients. Sixteen (45.7% patients had disease progression (p < 0.001. Cytoplasmatic expression of BCL10 in tumor cells was detected in 19 (54.3% specimens. Nuclear expression was detected in no specimen. Cytoplasmic expression of NF-κB was present in 22 (65.7% specimens, but nuclear expression was not detected in any specimens. Conclusion. Nuclear expressions (activation of NF-κB p65 subunit and BCL10 were not detected in specimens of gastric MALT lymphoma. The correlation of nuclear coexpression of BCL10 and NF-κB in gastric MALT lymphoma was not established. These results indicate that other mechanisms and signal pathways are active in lymphogenesis of gastric MALT lymphoma, as that

  8. Role of NF-kappaB and PPAR-gamma in lung inflammation induced by monocyte-derived microparticles.

    Science.gov (United States)

    Neri, T; Armani, C; Pegoli, A; Cordazzo, C; Carmazzi, Y; Brunelleschi, S; Bardelli, C; Breschi, M C; Paggiaro, P; Celi, A

    2011-06-01

    Microparticles (MP) are phospholipid vesicles shed by cells upon activation or apoptosis. Monocyte-derived MP upregulate the synthesis of proinflammatory mediators by lung epithelial cells; the molecular bases of such activity are unknown. Peroxisome proliferator-activated receptors (PPAR) have been demonstrated to be involved in the modulation of nuclear factor (NF)-κB transcriptional activity and inflammation. We investigated whether the upregulation of the synthesis of proinflammatory cytokines by human lung epithelial cells induced by monocyte/macrophage-derived MP involves NF-κB activation and is modulated by PPAR-γ. MP were generated by stimulation of human monocytes/macrophages with the calcium ionophore, A23187. MP were incubated with human lung epithelial cells. NF-κB translocation was assessed by electrophoretic mobility shift assay. Interleukin (IL)-8 and monocyte chemotactic protein (MCP)-1 synthesis was assessed by ELISA and RT-PCR. Stimulation of A549 alveolar cells with monocyte/macrophage-derived MP caused an increase in NF-κB activation and IL-8 and MCP-1 synthesis that was inhibited by pre-incubation with the PPAR-γ agonists, rosiglitazone and 15-deoxy-Δ12,14-prostaglandin-J2. Parallel experiments with normal human bronchial epithelial cells largely confirmed the results. The effects of PPAR-γ agonists were reversed by the specific antagonist, GW9662. Upregulation of the synthesis of proinflammatory mediators by human lung epithelial cells induced by monocyte/macrophage-derived MP is mediated by NF-κB activation through a PPAR-γ dependent pathway.

  9. Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-kappaB and p38 MAPK in HMC-1 human mast cell line.

    Science.gov (United States)

    Min, Y-D; Choi, C-H; Bark, H; Son, H-Y; Park, H-H; Lee, S; Park, J-W; Park, E-K; Shin, H-I; Kim, S-H

    2007-05-01

    Mast cell-mediated allergic inflammation is involved in many diseases such as asthma, sinusitis, and rheumatoid arthritis. Mast cells induce production of pro-inflammatory cytokines with immune regulatory properties. We investigated the effect of quercetin on the expression of pro-inflammatory cytokines in human mast cell line, HMC-1. HMC-1 cells were stimulated with phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187 (PMACI). Quercetin decreased the gene expression and production of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6, and IL-8 in PMACI-stimulated HMC-1 cells. Quercetin attenuated PMACI-induced activation of NF-kappaB and p38 mitogen-activated protein kinase. Our study provides evidence that quercetin may suitable for the treatment of mast cell-derived allergic inflammatory diseases.

  10. Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB.

    Directory of Open Access Journals (Sweden)

    Yao Dai

    Full Text Available Celastrol is a natural proteasome inhibitor that exhibits promising anti-tumor effects in human malignancies, especially the androgen-independent prostate cancer (AIPC with constitutive NF-κB activation. Celastrol induces apoptosis by means of proteasome inhibition and suppresses prostate tumor growth. However, the detailed mechanism of action remains elusive. In the current study, we aim to test the hypothesis that celastrol suppresses AIPC progression via inhibiting the constitutive NF-κB activity as well as modulating the Bcl-2 family proteins.We examined the efficacy of celastrol both in vitro and in vivo, and evaluated the role of NF-κB in celastrol-mediated AIPC regression. We found that celastrol inhibited cell proliferation in all three AIPC cell lines (PC-3, DU145 and CL1, with IC₅₀ in the range of 1-2 µM. Celastrol also suppressed cell migration and invasion. Celastrol significantly induced apoptosis as evidenced by increased sub-G1 population, caspase activation and PARP cleavage. Moreover, celastrol promoted cleavage of the anti-apoptotic protein Mcl-1 and activated the pro-apoptotic protein Noxa. In addition, celastrol rapidly blocked cytosolic IκBα degradation and nuclear translocation of RelA. Likewise, celastrol inhibited the expression of multiple NF-κB target genes that are involved in proliferation, invasion and anti-apoptosis. Celastrol suppressed AIPC tumor progression by inhibiting proliferation, increasing apoptosis and decreasing angiogenesis, in PC-3 xenograft model in nude mouse. Furthermore, increased cellular IκBα and inhibited expression of various NF-κB target genes were observed in tumor tissues.Our data suggest that, via targeting the proteasome, celastrol suppresses proliferation, invasion and angiogenesis by inducing the apoptotic machinery and attenuating constitutive NF-κB activity in AIPC both in vitro and in vivo. Celastrol as an active ingredient of traditional herbal medicine could thus be

  11. Regulation of Neph3 gene in podocytes - key roles of transcription factors NF-kappaB and Sp1

    LENUS (Irish Health Repository)

    Ristola, Mervi

    2009-08-24

    Abstract Background Neph3 (filtrin) is expressed in the glomerular podocytes where it localizes at the specialized cell adhesion structures of the foot processes called slit diaphragms which form the outermost layer of the glomerular filtration barrier. Neph3 protein shows homology and structural similarity to Neph1, Neph2 and nephrin, which all are crucial for maintaining the normal glomerular ultrafiltration function. The exact function of Neph3 in the kidney is not known but we have previously shown that the level of Neph3 mRNA is decreased in proteinuric diseases. This suggests that Neph3 may play a role in the pathogenesis of kidney damage, and emphasizes the need to analyze the regulatory mechanisms of Neph3 gene. In this study we investigated the transcriptional regulation of Neph3 gene by identifying transcription factors that control Neph3 expression. Results We cloned and characterized approximately 5 kb fragment upstream of the Neph3 gene. Neph3 proximal promoter near the transcription start site was found to be devoid of TATA and CAAT boxes, but to contain a highly GC-rich area. Using promoter reporter gene constructs, we localized the main activating regulatory region of Neph3 gene in its proximal promoter region from -105 to -57. Within this region, putative transcription factor binding sites for NF-κB and Sp1 were found by computational analysis. Mutational screening indicated that NF-κB and Sp1 response elements are essential for the basal transcriptional activity of the Neph3 promoter. Co-transfection studies further showed that NF-κB and Sp1 regulate Neph3 promoter activity. In addition, overexpression of NF-κB increased endogenous Neph3 gene expression. Chromatin immunoprecipitation assay using cultured human podocytes demonstrated that both NF-κB and Sp1 interact with the Neph3 promoter. Conclusion Our results show that NF-κB and Sp1 are key regulators of Neph3 expression at the basal level in podocytes, therefore providing new insight

  12. Effects of Imatinib Mesylate (Gleevec) on Human Islet NF-kappaB Activation and Chemokine Production In Vitro

    Science.gov (United States)

    Mokhtari, Dariush; Li, Tingting; Lu, Tao; Welsh, Nils

    2011-01-01

    Purpose Imatinib Mesylate (Gleevec) is a drug that potently counteracts diabetes both in humans and in animal models for human diabetes. We have previously reported that this compound in human pancreatic islets stimulates NF-κB signaling and islet cell survival. The aim of this study was to investigate control of NF-κB post-translational modifications exerted by Imatinib and whether any such effects are associated with altered islet gene expression and chemokine production in vitro. Procedures Human islets were either left untreated or treated with Imatinib for different timepoints. IκB-α and NF-κB p65 phosphorylation and methylation were assessed by immunoblot analysis. Islet gene expression was assessed using a commercial Pathway Finder microarray kit and RT-PCR. Islet chemokine production was determined by flow cytometric bead array analysis. Findings Human islet IκB-α and Ser276-p65 phosphorylation were increased by a 20 minute Imatinib exposure. Methylation of p65 at position Lys221 was increased after 60 min of Imatinib exposure and persisted for 3 hours. Microarray analysis of islets exposed to Imatinib for 4 hours revealed increased expression of the inflammatory genes IL-4R, TCF5, DR5, I-TRAF, I-CAM, HSP27 and IL-8. The islet release of IL-8 was augmented in islets cultured over night in the presence of Imatinib. Following 30 hours of Imatinib exposure, the cytokine-induced IκB-α and STAT1 phosphorylation was abolished and diminished, respectively. The cytokine-induced release of the chemokines MIG and IP10 was lower in islets exposed to Imatinib for 30 hours. Conclusion Imatinib by itself promotes a modest activation of NF-κB. However, a prolonged exposure of human islets to Imatinib is associated with a dampened response to cytokines. It is possible that Imatinib induces NF-κB preconditioning of islet cells leading to lowered cytokine sensitivity and a mitigated islet inflammation. PMID:21935477

  13. Radiation response and regulation of apoptosis induced by a combination of TRAIL and CHX in cells lacking mitochondrial DNA: A role for NF-{kappa}B-STAT3-directed gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir N., E-mail: vni3@columbia.edu; Ghandhi, Shanaz A.; Zhou, Hongning; Huang, Sarah X.; Chai, Yunfei; Amundson, Sally A.; Hei, Tom K.

    2011-07-01

    Mitochondrial DNA depleted ({rho}{sup 0}) human skin fibroblasts (HSF) with suppressed oxidative phosphorylation were characterized by significant changes in the expression of 2100 nuclear genes, encoding numerous protein classes, in NF-{kappa}B and STAT3 signaling pathways, and by decreased activity of mitochondrial death pathway, compared to the parental {rho}{sup +} HSF. In contrast, the extrinsic TRAIL/TRAIL-Receptor mediated death pathway remained highly active, and exogenous TRAIL in a combination with cycloheximide (CHX) induced higher levels of apoptosis in {rho}{sup 0} cells compared to {rho}{sup +} HSF. Global gene expression analysis using microarray and qRT-PCR demonstrated that mRNA expression levels of many growth factors and their adaptor proteins (FGF13, HGF, IGFBP4, IGFBP6, and IGFL2), cytokines (IL6, {Oota}L17{Beta}, {Oota}L18, {Oota}L19, and {Oota}L28{Beta}) and cytokine receptors (IL1R1, IL21R, and IL31RA) were substantially decreased after mitochondrial DNA depletion. Some of these genes were targets of NF-{kappa}B and STAT3, and their protein products could regulate the STAT3 signaling pathway. Alpha-irradiation further induced expression of several NF-{kappa}B/STAT3 target genes, including IL1A, IL1B, IL6, PTGS2/COX2 and MMP12, in {rho}{sup +} HSF, but this response was substantially decreased in {rho}{sup 0} HSF. Suppression of the IKK-NF-{kappa}B pathway by the small molecular inhibitor BMS-345541 and of the JAK2-STAT3 pathway by AG490 dramatically increased TRAIL-induced apoptosis in the control and irradiated {rho}{sup +} HSF. Inhibitory antibodies against IL6, the main activator of JAK2-STAT3 pathway, added into the cell media, also increased TRAIL-induced apoptosis in HSF, especially after alpha-irradiation. Collectively, our results indicated that NF-{kappa}B activation was partially lost in {rho}{sup 0} HSF resulting in downregulation of the basal or radiation-induced expression of numerous NF-{kappa}B targets, further suppressing IL6

  14. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Essafi-Benkhadir, Khadija [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Refai, Amira [Laboratoire de Recherche sur la Transmission, le Controle et l' immunobiologie des Infections, Institut Pasteur de Tunis (Tunisia); Riahi, Ichrak [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Fattouch, Sami [Laboratory LIP-MB National Institute of Applied Sciences and Technology, Tunis (Tunisia); Karoui, Habib [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Essafi, Makram, E-mail: makram.essafi@pasteur.rns.tn [Laboratoire de Recherche sur la Transmission, le Controle et l' immunobiologie des Infections, Institut Pasteur de Tunis (Tunisia)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince

  15. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Cormac T. [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T. [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Pulmonary and Sleep Disorders Unit, St. Vincent’s University Hospital, Dublin (Ireland); Ryan, Silke, E-mail: silke.ryan@ucd.ie [School of Medicine and Medical Science, The Conway Institute, University College Dublin (Ireland); Pulmonary and Sleep Disorders Unit, St. Vincent’s University Hospital, Dublin (Ireland)

    2014-05-16

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  16. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    International Nuclear Information System (INIS)

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T.; Ryan, Silke

    2014-01-01

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  17. Apoptosis and the FLIP and NF-kappa B proteins as pharmacodynamic criteria for biosimilar TNF-alpha antagonists

    Directory of Open Access Journals (Sweden)

    Urbano PCM

    2014-07-01

    Full Text Available Paulo César Martins Urbano,1 Vanete Thomaz Soccol,1 Valderilio Feijó Azevedo2 1Biotechnology and Bioprocess Engineering Program, Federal University of Parana, Curitiba, Parana, Brazil; 2Hospital de Clínicas, Federal University of Parana, Curitiba, Parana, Brazil Abstract: Various criteria are necessary to assess the efficacy and safety of biological medications in order to grant companies the right to register these medications with the appropriate bodies that regulate their sale. The imminent expiration of the patents on reference biological products which block the cytokine TNF-α (tumor necrosis factor-α raises the possibility of bringing so-called biosimilars to the market (similar to the biologicals of reference products. This occurrence is inevitable, but criteria to adequately evaluate these medications are now needed. Even among controversy, there is a demand from publications correlating the pro-apoptotic mechanism of the original TNF-α antagonists (etanercept, infliximab, adalimumab, golimumab, and certolizumab pegol in the treatment of rheumatoid arthritis and other diseases. In this article, the authors discuss the possibility of utilizing the pro-apoptotic effect correlated with the regulation of the anti-apoptotic proteins FLIP and NF-κB as new criteria for analyzing the pharmacodynamics of possible biosimilar TNF-α antagonists which should be submitted to regulatory agencies for evaluation. Keywords: anti-TNF drugs, rheumatoid arthritis, apoptosis, NF-κB, FLIP

  18. Modulation of the nuclear factor-kappa B (NF-κB) signalling pathway by glutamine in peritoneal macrophages of a murine model of protein malnutrition.

    Science.gov (United States)

    da Silva Lima, Fabiana; Rogero, Marcelo Macedo; Ramos, Mayara Caldas; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-06-01

    Protein malnutrition affects resistance to infection by impairing the inflammatory response, modifying the function of effector cells, such as macrophages. Recent studies have revealed that glutamine-a non-essential amino acid, which could become conditionally essential in some situations like trauma, infection, post-surgery and sepsis-is able to modulate the synthesis of cytokines. The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappa B (NF-κB) signalling pathway of peritoneal macrophages from malnourished mice. Two-month-old male Balb/c mice were submitted to protein-energy malnutrition (n = 10) with a low-protein diet containing 2 % protein, whereas control mice (n = 10) were fed a 12 % protein-containing diet. The haemogram and analysis of plasma glutamine and corticosterone were evaluated. Peritoneal macrophages were pre-treated in vitro with glutamine (0, 0.6, 2 and 10 mmol/L) for 24 h and then stimulated with 1.25 μg LPS for 30 min, and the synthesis of TNF-α and IL-1α and the expression of proteins related to the NF-κB pathway were evaluated. Malnourished animals had anaemia, leucopoenia, lower plasma glutamine and increased corticosterone levels. TNF-α production of macrophages stimulated with LPS was significantly lower in cells from malnourished animals when cultivated in supraphysiological (2 and 10 mmol/L) concentrations of glutamine. Further, glutamine has a dose-dependent effect on the activation of macrophages, in both groups, when stimulated with LPS, inducing a decrease in TNF-α and IL-1α production and negatively modulating the NF-κB signalling pathway. These data lead us to infer that the protein malnutrition state interferes with the activation of macrophages and that higher glutamine concentrations, in vitro, have the capacity to act negatively in the NF-κB signalling pathway.

  19. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Suzuki, Hiroshi [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido (Japan); Kodama, Tatsuhiko [Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Mizuta, Hiroshi [Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  20. Escin, a pentacyclic triterpene, chemosensitizes human tumor cells through inhibition of nuclear factor-kappaB signaling pathway.

    Science.gov (United States)

    Harikumar, Kuzhuvelil B; Sung, Bokyung; Pandey, Manoj K; Guha, Sushovan; Krishnan, Sunil; Aggarwal, Bharat B

    2010-05-01

    Agents that can enhance tumor cell apoptosis and inhibit invasion have potential for the treatment of cancer. Here, we report the identification of escin, a pentacyclic triterpenoid from horse chestnut that exhibits antitumor potential against leukemia and multiple myeloma. Whether examined by esterase staining, phosphatidyl-serine staining, DNA breakage, or caspase-mediated poly(ADP-ribose) polymerase cleavage, escin potentiated tumor necrosis factor (TNF)-induced apoptosis but inhibited tumor cell invasion. This correlated with the down-regulation of bcl-2, cellular inhibitor of apoptosis protein-2, cyclin D1, cyclooxygenase-2, intercellular adhesion molecule-1, matrix metalloproteinase-9, and vascular endothelial growth factor, which are all regulated by the activation of the transcription factor NF-kappaB. When examined by electrophoretic mobility shift assay, the triterpenoid suppressed nuclear factor-kappaB (NF-kappaB) activation induced by TNF and other inflammatory agents, and this correlated with the inhibition of IkappaBalpha phosphorylation and degradation, inhibition of IkappaB kinase complex (IKK) activation, suppression of p65 phosphorylation and nuclear translocation, and abrogation of NF-kappaB-dependent reporter activity. Overall, our results demonstrate that escin inhibits activation of NF-kappaB through inhibition of IKK, leading to down-regulation of NF-kappaB-regulated cell survival and metastatic gene products and thus resulting in sensitization of cells to cytokines and chemotherapeutic agents.

  1. Angiotensin II activates MAP kinase and NF-kappaB through angiotensin II type I receptor in human pancreatic cancer cells.

    Science.gov (United States)

    Amaya, Koji; Ohta, Tetsuo; Kitagawa, Hirohisa; Kayahara, Masato; Takamura, Hiroyuki; Fujimura, Takashi; Nishimura, Gen-Ichi; Shimizu, Koichi; Miwa, Koichi

    2004-10-01

    Pancreatic ductal cancer has higher angiotensin II concentrations compared with normal pancreas or other solid tumors. This study examined angiotensin II type 1 (AT1) receptor expression and the role of angiotensin II in proliferation and survival of human pancreatic cancer cells. All three pancreatic cancer cell lines studied, from well to poorly-differentiated types, HPAF-II, AsPC-1, and Panc-1, showed strong expression of AT1 receptor. In contrast, HT-29 human colon cancer cells showed extremely weak expression. Angiotensin II stimulated the growth of pancreatic cancer cells through MAP kinase activation but had no significant effect on proliferation of HT-29 colon cancer cells. In addition, angiotensin II significantly prevented cisplatin (CDDP)-induced apoptosis through NF-kappaB activation and the subsequent production of anti-apoptotic molecules, including survivin and Bcl-XL, in pancreatic cancer cells. These findings suggest that angiotensin II plays a role in the growth and chemoresistance of AT1-positive pancreatic cancer cells through its action as a potent mitogen and anti-apoptotic molecule.

  2. TOP1 and 2, polysaccharides from Taraxacum officinale, attenuate CCl(4)-induced hepatic damage through the modulation of NF-kappaB and its regulatory mediators.

    Science.gov (United States)

    Park, Chung Mu; Youn, Hyun Joo; Chang, Hee Kyung; Song, Young Sun

    2010-05-01

    In this work, we estimate the inhibitory effect of two polysaccharides from Taraxacum officinale (TOP) on CCl(4)-induced oxidative stress and inflammation in Sprague-Dawley rats. TOP1 and 2 (304, 92 mg/kg bw) were administered for 7 days via a stomach sonde, and hepatitis was induced by a single dose of CCl(4) (50% CCl(4)/olive oil; 0.5 mL/kg bw) administration. CCl(4) significantly elevated serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. Histopathological observation further revealed that CCl(4)-induced moderate levels of inflammatory cell infiltration, centrilobular fatty change, apoptosis, and necrosis. However, TOPs pretreatment markedly decreased AST and ALT activities as well as hepatic lesions. TOPs also increased free radical scavenging activity, as exhibited by a lowered TBARS concentration. TOPs pretreatment also reversed other hepatitis-associated symptoms, including GSH depletion, inhibited anti-oxidative enzyme activities, up-regulation of NF-kappaB and increased expression of its regulatory inflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-alpha, and interleukin (IL)-1beta. These results suggest that TOPs have a hepatoprotective effect by modulating inflammatory responses and ameliorating oxidative stress. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Degraded carrageenan causing colitis in rats induces TNF secretion and ICAM-1 upregulation in monocytes through NF-kappaB activation.

    Directory of Open Access Journals (Sweden)

    Claudine Benard

    Full Text Available Carrageenan (CGN is a high molecular weight sulphated polysaccharide derived from red seaweeds. In rodents, its degraded forms (dCGN can induce intestinal inflammation associated with macrophage recruitment and activation. The aim of this study was: 1 to analyze the size-dependent effects of dCGN on colon inflammation in vivo, and 2 to correlate these effects with monocyte/macrophage proliferation, cytokine production and expression of various cell surface antigens including ICAM-1 adhesion molecule. Peripheral blood monocytes (PBM and THP-1 monocytic cells were cultured in the presence of either 10 or 40 kDa, dCGN. The 40 kDa, but not the 10 kDa dCGN, induced colitis in in vivo. Degraded CGN inhibited THP-1 cell proliferation in vitro, arresting the cells in G1 phase. In addition, dCGN increased ICAM-1 expression in both PBM and THP-1 cells with a major effect seen after 40 kDa dCGN exposure. Also, dCGN stimulated monocyte aggregation in vitro that was prevented by incubation with anti-ICAM-1 antibody. Finally, dCGN stimulated TNF-alpha expression and secretion by both PBM and THP-1 cells. All these effects were linked to NF-kappaB activation. These data strongly suggest that the degraded forms of CGN have a pronounced effect on monocytes, characteristic of an inflammatory phenotype.

  4. The bio-complex "reaction pattern in vertebrate cells" reduces cytokine-induced cellular adhesion molecule mRNA expression in human endothelial cells by attenuation of NF-kappaB translocation.

    Science.gov (United States)

    Rönnau, Cindy; Liebermann, Herbert E H; Helbig, Franz; Staudt, Alexander; Felix, Stephan B; Ewert, Ralf; Landsberger, Martin

    2009-02-28

    The bio-complex "reaction pattern in vertebrate cells" (RiV) is mainly represented by characteristic exosome-like particles--probably as reaction products of cells to specific stress. The transcription factor NF-kappaB plays a central role in inflammation. We tested the hypothesis that RiV particle preparations (RiV-PP) reduce cellular adhesion molecule (CAM) expression (ICAM-1, VCAM-1, E-selectin) by the attenuation of NF-kappaB translocation in human umbilical vein endothelial cells (HUVEC). After 4 hours, pre-incubation of HUVEC with RiV-PP before stimulation with TNF-alpha significantly reduced ICAM-1 (65.5+/-10.3%) and VCAM-1 (71.1+/-12.3%) mRNA expression compared to TNF-alpha-treated cells (100%, n=7). ICAM-1 surface expression was significantly albeit marginally reduced in RiV/TNF-alpha- treated cells (92.0+/-5.6%, n=4). No significant effect was observed on VCAM-1 surface expression. In RiV/TNF-alpha-treated cells (n=4), NF-kappaB subunits p50 (85.7+/-4.1%) and p65 (85.0+/-1.8%) nuclear translocation was significantly reduced. RiV-PP may exert an anti-inflammatory effect in HUVEC by reducing CAM mRNA expression via attenuation of p50 and p65 translocation.

  5. Sophora flavescens Aiton inhibits the production of pro-inflammatory cytokines through inhibition of the NF kappaB/IkappaB signal pathway in human mast cell line (HMC-1).

    Science.gov (United States)

    Hong, Myung Hee; Lee, Ji Young; Jung, Hee; Jin, Dong-Hoon; Go, Ho Yeon; Kim, Ji Hye; Jang, Bo-Hyoung; Shin, Yong-Cheol; Ko, Seong-Gyu

    2009-03-01

    The dried roots of Sophora flavescens Aiton (SFA) has been used in traditional medicine for treatment of inflammation, gastrointestinal hemorrhage, diarrhea, and asthma. In the present study, we investigated the effect of SFA on the inflammatory allergic reaction using human mast cell-1 (HMC-1). SFA (200mg/kg) inhibited the mast cell-mediated passive cutaneous anaphylaxis reaction in vivo and the release of histamine from rat peritoneal mast cells by compound 48/80. In addition, the expression levels of phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated TNF-alpha, IL-6, and IL-8 were also decreased by SFA treatment. In molecular mechanism level, this study showed that SFA inhibited the nuclear translocation of nuclear factor (NF) kappaB through inhibition of the phosphorylation and degradation of IkappaB-alpha, which is an inhibitor of NF kappaB. Moreover, SFA suppressed PMA plus A23187-induced phosphorylation of the mitogen-activated protein kinase p38 and c-jun N-terminal kinase. The inhibited induction of NF kappaB promoter by SFA was determined using luciferase activity. These results suggest that SFA could be used as a treatment for mast cell-derived allergic inflammatory diseases.

  6. Treatment of Jurkat acute T-lymphocytic leukemia cells by onconase (Ranpirnase) is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF-kappaB.

    Science.gov (United States)

    Tsai, Shwu Y; Ardelt, Barbara; Hsieh, Tze-Chen; Darzynkiewicz, Zbigniew; Shogen, Kuslima; Wu, Joseph M

    2004-12-01

    Onconase (Ranpirnase), a novel ribonuclease isolated from Rana pipiens oocytes, was reported to suppress cancer cell growth in vitro, reduce tumor size in animals, and augment cytotoxicity of several chemotherapeutic agents. Since onconase is currently in phase III clinical trials tested in treatment of mesothelioma, much emphasis has been placed on the mechanism of its anti-tumor activity. Previous studies have shown that onconase-responsive cells become arrested at the G1/S checkpoint of the cell cycle and also undergo apoptosis. A proposed mechanism for these effects is that the enzymatic activity of onconase targets cellular RNAs, in particular tRNA, with an accompanying inhibition of protein synthesis. In the present study, we have investigated the time- and dose-dependent effects of onconase on growth of Jurkat SN acute T-lymphocytic leukemia cells. Significant suppression of cell proliferation became evident after 72 and 96 h of treatment, and was most pronounced at the highest concentration (10 microg/ml; 8.3x10(-7) M) of onconase. This reduction of cell proliferation, however, was not accompanied by measurable changes in distribution of cells at different phases of the cell cycle, but was paralleled by the induction of apoptosis, as assayed by flow cytometry, and with a modest decrease in the expression of a cell cycle regulatory retinoblastoma protein (Rb). Further biochemical analysis revealed that growth suppression was closely coordinated with a down-regulation in the steady state and subcellular distribution of NF-kappaB, a transcription factor known to be functionally associated with cell survival. The reduction in expression of NF-kappaB by onconase appeared to coincide or even precede growth suppression, suggesting a causal relationship. To further test the hypothesis that cellular localization and expression of NF-kappaB may be critical to cellular response to onconase, we also studied the growth effects of onconase in Jurkat-BalphaM cells, which

  7. The NF-kappaB factor RelB and histone H3 lysine methyltransferase G9a directly interact to generate epigenetic silencing in endotoxin tolerance.

    Science.gov (United States)

    Chen, Xiaoping; El Gazzar, Mohamed; Yoza, Barbara K; McCall, Charles E

    2009-10-09

    The interplay of transcription factors, histone modifiers, and DNA modification can alter chromatin structure that epigenetically controls gene transcription. During severe systemic inflammatory (SSI), the generation of facultative heterochromatin from euchromatin reversibly silences transcription of a set of acute proinflammatory genes. This gene-specific silencing is a salient feature of the endotoxin tolerant phenotype that is found in blood leukocytes of SSI patients and in a human THP-1 cell model of SSI. We previously reported that de novo induction of the NF-kappaB transcription factor RelB by endotoxin activation is necessary and sufficient for silencing transcription of acute proinflammatory genes in the endotoxin tolerant SSI phenotype. Here, we examined how RelB silences gene expression and found that RelB induces facultative heterochromatin formation by directly interacting with the histone H3 lysine 9 methyltransferase G9a. We found that heterochromatin protein 1 (HP1) and G9a formed a complex at the interleukin-1beta promoter that is dependent on the Rel homology domain (RHD) of RelB. RelB knockdown disassociated the complex and reversed transcription silencing. We also observed that whereas RelB chromatin binding was independent of G9a, RelB transcriptional silencing required G9a accumulation at the silenced promoter. Binding between RelB and G9a was confirmed by glutathione S-transferase pulldown in vitro and coimmunoprecipitation in vivo. These data provide novel insight into how RelB is required to initiate silencing in the phenotype associated with severe systemic inflammation in humans, a disease with major morbidity and mortality.

  8. Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-{kappa}B ligand (RANKL) expression in rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Harunori [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Kitano, Masayasu, E-mail: mkitano6@hyo-med.ac.jp [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi [Department of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima Kobe, Hyogo 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sato, Chieri; Sekiguchi, Masahiro; Azuma, Naoto [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Miyazawa, Keiji [Discovery Research III, Research and Development, Kissei Pharmaceutical Company, 4365-1 Hodakakashiwara, Azumino, Nagano 399-8304 (Japan); Hla, Timothy [Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, 1300 York Avenue, Box 69, NY 10065 (United States); Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer MH7A cells and CD4{sup +} T cells expressed S1P1 and RANKL. Black-Right-Pointing-Pointer S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells. Black-Right-Pointing-Pointer The effect of S1P in MH7A cells was inhibited by specific Gi/Go inhibitors. -- Abstract: Sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1P1) signaling plays an important role in synovial cell proliferation and inflammatory gene expression by rheumatoid arthritis (RA) synoviocytes. The purpose of this study is to clarify the role of S1P/S1P1 signaling in the expression of receptor activator of NF-{kappa}B ligand (RANKL) in RA synoviocytes and CD4{sup +} T cells. We demonstrated MH7A cells, a human RA synovial cell line, and CD4{sup +} T cells expressed S1P1 and RANKL. Surprisingly, S1P increased RANKL expression in MH7A cells and CD4{sup +} T cells in a dose-dependent manner. Moreover, S1P enhanced RANKL expression induced by stimulation with TNF-{alpha} in MH7A cells and CD4{sup +} T cells. These effects of S1P in MH7A cells were inhibited by pretreatment with PTX, a specific Gi/Go inhibitor. These findings suggest that S1P/S1P1 signaling may play an important role in RANKL expression by MH7A cells and CD4{sup +} T cells. S1P/S1P1 signaling of RA synoviocytes is closely connected with synovial hyperplasia, inflammation, and RANKL-induced osteoclastogenesis in RA. Thus, regulation of S1P/S1P1 signaling may become a novel therapeutic target for RA.

  9. Receptor activator of NF(Kappa)B ligand/osteoprotegerin (RANKL/OPG) system and osteopontin (OPN) serum levels in a population of apulian postmenopausal women.

    Science.gov (United States)

    D'Amore, M; Fanelli, M; D'Amore, S; Fontana, A; Minenna, G

    2006-12-01

    Osteoporosis is a bone disease, characterized by a reduction of bone resistance; in postmenopausal period bone metabolism is imbalanced. Several parameters have been proposed as markers of bone metabolism; the attention have been recently placed on the receptor of activator of NF(Kappa)B ligand receptor (RANKL) and osteoprotegerin (OPG), namely RANKL/OPG system. The aim of this paper is to evaluate changes in postmenopausal women in serum concentration of OPG, RANKL, and their ratio (i.e. RANKL/OPG ratio), osteopontin (OPN), bone-type alcaline phosphatase (BAP), serum-N-Telopeptide of type I collagen (serum-NTX); and their correlations with bone mineral density (BMD). An Apulian population group of 163 native postmenopausal women were followed at the Osteoporosis Centre of Policlinico of Bari (Southenrn Italy). Patients were classified into 3 separate groups, according to T-score: osteoporotic, osteopenic and control group. Serum concentrations of OPG, RANKL, RANKL/OPG ratio, BAP and NTX have been calculated. No differences were found in OPG and BAP values. Significant correlations were found in the osteopenic group between OPG and RANKL (negative), and between RANKL and OPN or serum-NTX, OPN and serum-NTX or RANKL/OPG ratio, BAP and serum-NTX, serum-NTX and RANKL/OPG ratio (positive). In the other groups a significant correlation was observed between BAP and NTX. In postmenopausal women, important modifications of bone metabolism markers (i.e. RANKL, OPG and OPN) could be due to serious engagement of bone turnover, especially in the pre-osteoporotic phase. Low bone density in postmenopausal women should be identified as soon as possible, and urgent measures are needed to reverse the process. Parameters namely RANKL e OPG may become an important index for the evaluation of the activity of drugs against osteoporosis, old and new like AMG 162 (anti-RANKL action).

  10. Caractérisation des processus d'ubiquitination régulant le facteur de transcription NF-kappaB au cours de l’activation lymphocytaire Rôle de l’E3 ligase TRIM13 et de la déubiquitinase USP34

    OpenAIRE

    Hatchi , Emeline

    2014-01-01

    The transcription factor NF-KappaB plays a critical role in the development, homeostasis, the survival of the immune system, but also in the propagation of certain lymphomas. The optimal activation of NF-KappaB in response to the engagement of many immunoreceptors rely on the implementation of large signalosomes where specific adaptors are recruited and poly-Ubiquitinylated in a non-Degradative manner. In response to proinflammatory cytokines or activation of antigen receptors, these Ubiquiti...

  11. Ultraviolet B Radiation Stimulates the Interaction between Nuclear Factor of Activated T Cells 5 (NFAT5) and Nuclear Factor-Kappa B (NF-κB) in Human Lens Epithelial Cells.

    Science.gov (United States)

    Chung, Inyoung; Hah, Young-Sool; Ju, SunMi; Kim, Ji-Hye; Yoo, Woong-Sun; Cho, Hee-Young; Yoo, Ji-Myong; Seo, Seong-Wook; Choi, Wan-Sung; Kim, Seong-Jae

    2017-07-01

    Nuclear factor-kappa B (NF-κB) has been proposed as a therapeutic target for the treatment of cataracts. The authors investigated the relationship between nuclear factor of activated T cells 5 (NFAT5) and NF-κB in ultraviolet B (UVB)-irradiated human lens epithelial (HLE) cells. Human lens epithelial B-3 (HLE-B3) cells were exposed to UVB light at a dose of 10 mJ/cm 2 and then incubated for 24 h. Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) assay. Gene expression level of NFAT5 was determined using real-time quantitative polymerase chain reaction (qPCR). Protein expression levels of NFAT5, NF-κB p65, and α-smooth muscle actin (α-SMA) and the association of NFAT5 with the NF-κB p65 subunit were measured by Western blot analysis and a co-immunoprecipitation assay, respectively. The cellular distribution of NFAT5 and NF-κB p65 was examined by triple immunofluorescence staining. At 24 h after UVB exposure, cell viability significantly decreased in a dose-dependent manner, and UVB light (15 and 20 mJ/cm 2 ) significantly increased the ROS generation. UVB irradiation increased NFAT5 mRNA and protein levels and increased phosphorylation of NF-κB in HLE-B3 cells. α-SMA protein levels were increased in the irradiated cells. In addition, NFAT5 and NF-κB translocated from the cytoplasm to the nucleus, and binding between the p65 subunit and NFAT5 was increased. Exposure to UVB radiation induces nuclear translocation and stimulates binding between NFAT5 and NF-κB proteins in HLE-B3 cells. These interactions may form part of the biochemical mechanism of cataractogenesis in UVB-irradiated HLECs.

  12. Curcumin inhibits phorbol ester-induced up-regulation of cyclooxygenase-2 and matrix metalloproteinase-9 by blocking ERK1/2 phosphorylation and NF-kappaB transcriptional activity in MCF10A human breast epithelial cells.

    Science.gov (United States)

    Lee, Ki Won; Kim, Jung-Hwan; Lee, Hyong Joo; Surh, Young-Joon

    2005-01-01

    Elevated levels of cyclooxygenase-2 (COX-2) and matrix metalloproteinases (MMPs) are often observed in various types of cancerous and transformed cells, and hence recognized as potential molecular targets for the chemoprevention. In the present study, we investigated the possible inhibitory effects of curcumin on the expression of COX-2 and MMP-9 induced by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) in MCF10A human breast epithelial (MCF10A) cells and the underlying mechanisms. Curcumin inhibited the TPA-induced COX-2 expression at both transcriptional and post-transcriptional levels, and reduced the synthesis of prostaglandin E(2), one of the major products of COX-2. Likewise, curcumin attenuated invasiveness and motility of MCF10A cells stimulated with TPA through suppression of MMP expression. Curcumin blocked TPA-induced activation of extracellular signal-regulated protein kinase (ERK1/2) and nuclear factor kappaB (NF-kappaB) transcriptional activity. Overexpression of the dominant negative forms of ERK2 abrogated the TPA-induced NF-kappaB transcriptional activity. Treatment of MCF10A cells with U0126, which is a pharmacological inhibitor of ERK1/2, reduced TPA-induced up-regulation of COX-2 and MMP-9. Taken together, these findings suggest that curcumin inhibits the TPA-induced up-regulation of COX-2 and MMP-9 by suppressing ERK1/2 phosphorylation and NF-kappaB trans-activation in human breast epithelial cells, which may contribute to its chemopreventive potential. Antioxid. Redox Signal. 7, 1612-1620.

  13. MD-2 regulates LPS-induced NLRP3 inflammasome activation and IL-1beta secretion by a MyD88/NF-κB-dependent pathway in alveolar macrophages cell line.

    Science.gov (United States)

    Luo, Man; Hu, Lijuan; Li, Dandan; Wang, Yanying; He, Yuting; Zhu, Lei; Ren, Weiying

    2017-10-01

    Myeloid differentiation protein 2 (MD-2) is required in the recognition of lipopolysaccharide (LPS) by toll-like receptor 4 (TLR4), and participates in LPS-induced alveolar macrophage (AM) inflammation during acute lung injury (ALI). Activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome aggravates inflammation in LPS-induced ALI. However, there is currently little known about the relationship between MD-2 signaling and the NLRP3 inflammasome. This study showed that NLRP3 expression, IL-1beta (IL-1β) secretion, and pyroptosis were up-regulated after LPS stimulation in the NR8383 AM cell-line. MD-2 gene knock-down reduced LPS-induced mRNA and protein expression of NLRP3 and IL-1β secretion in NR8383 cells, and inhibited the MyD88/NF-κB signaling pathway. Conversely, over-expression of MD-2 not only heightened NLRP3, MyD88, and NF-κB p65 protein expression, it also aggravated the LPS-induced inflammatory response. Furthermore, the NF-κB inhibitor SN50 had a beneficial role in decreasing NLRP3 and caspase-1 mRNA and protein expression. The observations suggest that MD-2 helps to regulate LPS-induced NLRP3 inflammasome activation and the inflammatory response in NR8383 cells, and likely does so by affecting MyD88/NF-κB signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-{kappa}B.

    Science.gov (United States)

    Tafani, Marco; Schito, Luana; Pellegrini, Laura; Villanova, Lidia; Marfe, Gabriella; Anwar, Tahira; Rosa, Roberta; Indelicato, Manuela; Fini, Massimo; Pucci, Bruna; Russo, Matteo A

    2011-08-01

    The role of hypoxia in regulating tumor progression is still controversial. Here, we demonstrate that, similarly to what previously observed by us in human prostate and breast tumor samples, hypoxia increases expression of the receptor for advanced glycation end products (RAGE) and the purinergic receptor P2X7 (P2X7R). The role of hypoxia was shown by the fact that hypoxia-inducible factor (HIF)-1α silencing downregulated RAGE and P2X7R protein levels as well as nuclear factor-kappaB (NF-κB) expression. In contrast, NF-κB silencing reduced P2X7R expression without affecting RAGE protein levels or nuclear accumulation of HIF-1α. Treatment of hypoxic tumor cells with HMGB1 and BzATP ligands, respectively, of RAGE and P2X7R, activated a signaling pathway that, through Akt and Erk phosphorylation, determines nuclear accumulation of NF-κB and increases cell invasion. Inhibition of Akt by SH5 and Erk by INH1 prevented both nuclear translocation of NF-κB and cell invasion. Moreover, silencing RAGE and P2X7R abolished nuclear accumulation of NF-κB as well as cell invasion without affecting HIF-1α stabilization. Once in the nucleus, NF-κB would contribute to cell survival and invasion under hypoxia, by maintaining RAGE and P2X7R expression levels and matrix metalloproteinases 2 and 9 synthesis. These results show that, hypoxia can upregulate expression levels of membrane receptors that, by binding extracellular molecules eventually released by necrotic cells, contribute to the increased invasiveness of transformed tumor cells. Moreover, these observations strengthen our working hypothesis that upregulation of damage-associated molecular patterns receptors by HIF-1α represents the crucial event bridging hypoxia and inflammation in obtaining the malignant phenotype.

  15. Radiation induced nuclear factor kappa-B signaling cascade study in mammalian cells by improved detection systems

    Science.gov (United States)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Reitz, Guenther

    To enable long-term human space flight cellular radiation response to densely ionizing radiation needs to be better understood for developing appropriate countermeasures to mitigate acute effects and late radiation risks for the astronaut. The biological effectiveness of accelerated heavy ions with high linear energy transfer (LET) for effecting DNA damage response pathways as a gateway to cell death or survival is of major concern, not only for tumor radiotherapy but also for new regimes of space missions. Ionizing radiation modulates several signaling pathways resulting in transcription factor activation. NF-kappaB is one of the important transcription factors that respond to changes in the environment of a mammalian cell and plays a key role in many biological processes relevant to radiation response, such as apoptosis, inflammation and carcinogenesis. From medical and biological point of view it is important to understand radiation induced NF-kappaB signaling cascade. For studying NF-kappaB signaling, green fluorescent proteins EGFP and d2EGFP were used previously (Advances in Space Research, 36: 1673-1679, 2005). The current study aims to improve reporter assays by the use of a destabilized variant of red fluorescent protein tdTomato (DD-tdTomato) which gives high fluorescence signals and a better signal/noise ratio for NF-kappaB activation. The reporter system HEK-pNFkappaB-DD-tdTomato-C8 is a dual reporter system which can provide both discrete and cumulative signals after exposure to ionizing radiation (X-rays, heavy ions). In the presence of Shield-1, the fluorescent protein DD-tdTomato is not degraded but accumulated inside the cell which helps to quantify the fold induction of NF-kappaB-dependent gene expression. The minimum dose required to activate NF-kappaB is 6 Gy but accumulated signals data shows that NF-kappaB is activated after 3 Gy in the presence of Shield-1. Average dose and number of heavy ions’ hits per nucleus necessary to double the NF-kappaB

  16. Mechanism by which nuclear factor-kappa beta (NF-kB regulates ovine fetal pulmonary vascular smooth muscle cell proliferation

    Directory of Open Access Journals (Sweden)

    Uchenna D. Ogbozor

    2015-09-01

    Full Text Available Platelet activating factor (PAF modulates ovine fetal pulmonary hemodynamic. PAF acts through its receptors (PAFR in pulmonary vascular smooth muscle cells (PVSMC to phosphorylate and induce nuclear translocation of NF-kB p65 leading to PVSMC proliferation. However, the interaction of NF-kB p65 and PAF in the nuclear domain to effect PVSMC cell growth is not clearly defined. We used siRNA-dependent translation initiation arrest to study a mechanism by which NF-kB p65 regulates PAF stimulation of PVSMC proliferation. Our hypotheses are: (a PAF induces NF-kB p65 DNA binding and (b NF-kB p65 siRNA attenuates PAF stimulation of PVSMC proliferation. For DNA binding, cells were fed 10 nM PAF with and without PAFR antagonists WEB 2170, CV 3988 or BN 52021 and incubated for 12 h. DNA binding was measured by specific ELISA. For NF-kB p65 siRNA effect, starved cells transfected with the siRNA were incubated for 24 h with and without 10 nM PAF. Cell proliferation was measured by DNA synthesis while expression of NF-kB p65 and PAFR protein was measured by Western blotting. In both studies, the effect of 10% FBS alone was used as the positive control. In general, PAF stimulated DNA binding which was inhibited by PAFR antagonists. siRNAs to NF-kB p65 and PAFR significantly attenuated cell proliferation compared to 10% FBS and PAF effect. Inclusion of PAF in siRNA-treated cells did not reverse inhibitory effect of NF-kB p65 siRNA on DNA synthesis. PAFR expression was inhibited in siRNA-treated cells. These data show that PAF-stimulation of PVSMC proliferation occurs via a PAFR-NF-kB p65 linked pathway.

  17. Mechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation.

    Science.gov (United States)

    Ogbozor, Uchenna D; Opene, Michael; Renteria, Lissette S; McBride, Shaemion; Ibe, Basil O

    2015-09-01

    Platelet activating factor (PAF) modulates ovine fetal pulmonary hemodynamic. PAF acts through its receptors (PAFR) in pulmonary vascular smooth muscle cells (PVSMC) to phosphorylate and induce nuclear translocation of NF-kB p65 leading to PVSMC proliferation. However, the interaction of NF-kB p65 and PAF in the nuclear domain to effect PVSMC cell growth is not clearly defined. We used siRNA-dependent translation initiation arrest to study a mechanism by which NF-kB p65 regulates PAF stimulation of PVSMC proliferation. Our hypotheses are: (a) PAF induces NF-kB p65 DNA binding and (b) NF-kB p65 siRNA attenuates PAF stimulation of PVSMC proliferation. For DNA binding, cells were fed 10 nM PAF with and without PAFR antagonists WEB 2170, CV 3988 or BN 52021 and incubated for 12 h. DNA binding was measured by specific ELISA. For NF-kB p65 siRNA effect, starved cells transfected with the siRNA were incubated for 24 h with and without 10 nM PAF. Cell proliferation was measured by DNA synthesis while expression of NF-kB p65 and PAFR protein was measured by Western blotting. In both studies, the effect of 10% FBS alone was used as the positive control. In general, PAF stimulated DNA binding which was inhibited by PAFR antagonists. siRNAs to NF-kB p65 and PAFR significantly attenuated cell proliferation compared to 10% FBS and PAF effect. Inclusion of PAF in siRNA-treated cells did not reverse inhibitory effect of NF-kB p65 siRNA on DNA synthesis. PAFR expression was inhibited in siRNA-treated cells. These data show that PAF-stimulation of PVSMC proliferation occurs via a PAFR-NF-kB p65 linked pathway.

  18. HBx-induced MiR-1269b in NF-κB dependent manner upregulates cell division cycle 40 homolog (CDC40) to promote proliferation and migration in hepatoma cells.

    Science.gov (United States)

    Kong, Xiao-Xiao; Lv, Yan-Ru; Shao, Li-Ping; Nong, Xiang-Yang; Zhang, Guang-Ling; Zhang, Yi; Fan, Hong-Xia; Liu, Min; Li, Xin; Tang, Hua

    2016-06-27

    Occurrence and progression of hepatocellular carcinoma (HCC) are associated with hepatitis B virus (HBV) infection. miR-1269b is up-regulated in HCC cells and tissues. However, the regulation of miR-1269b expression by HBV and the mechanism underlying the oncogenic activity of miR-1269b in HCC are unclear. Reverse transcription quantitative PCR (RT-qPCR) was used to measure the expression of miR-1269b and target genes in HCC tissues and cell lines. Western blot analysis was used to assess the expression of miR-1269b target genes and related proteins. Using luciferase reporter assays and EMSA, we identified the factors regulating the transcriptional level of miR-1269b. Colony formation, flow cytometry and cell migration assays were performed to evaluate the phenotypic changes caused by miR-1269b and its target in HCC cells. We demonstrated that the expression levels of pre-miR-1269b and miR-1269b in HBV-positive HepG2.2.15 cells were dramatically increased compared with HBV-negative HepG2 cells. HBx was shown to facilitate translocation of NF-κB from the cytoplasm to the nucleus, and NF-κB binds to the promoter of miR-1269b to enhance its transcription. miR-1269b targets and up-regulates CDC40, a cell division cycle 40 homolog. CDC40 increases cell cycle progression, cell proliferation and migration. Rescue experiment indicated that CDC40 promotes malignancy induced by miR-1269b in HCC cells. We found that HBx activates NF-κB to promote the expression of miR1269b, which augments CDC40 expression, contributing to malignancy in HCC. Our findings provide insights into the mechanisms underlying HBV-induced hepatocarcinogenesis.

  19. Constitutive Activation of NF-kappaB in Prostate Carcinoma Cells Through a Positive Feedback Loop: Implication of Inducible IKK-Related Kinase (IKKi)

    National Research Council Canada - National Science Library

    Budunova, Irina V

    2004-01-01

    The overall goal of this project is to understand the role of inducible IKK-related kinase IKKi in constitutive activation of anti-apoptotic transcription factor NF-kB prostate carcinoma (PC) cells...

  20. In Vivo Multimodal Imaging of NF-kappaB (pB) Spatial and Temporal Activation Following Light Injury in the Mouse Retina

    Science.gov (United States)

    2014-01-15

    wet age-related macular degeneration (AMD), diabetic retinopathy , and other retinal disorders.1 There is a strong desire to find strate- gies to...the development of diabetic retinopathy .78 5 Conclusion Overall, we have introduced the cis-NF-κB-EGFP reporter mouse for in vivo studies of NF-κB... Predictive factors for visual acuity after intravitreal triamcinolone treatment for diabetic macular edema. Arch Ophthalmol 123, 1338–1343 (2005). 7

  1. Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells.

    Science.gov (United States)

    Tesoriere, L; Attanzio, A; Allegra, M; Gentile, C; Livrea, M A

    2014-02-01

    Dietary redox-active/antioxidant phytochemicals may help control or mitigate the inflammatory response in chronic inflammatory bowel disease (IBD). In the present study, the anti-inflammatory activity of indicaxanthin (Ind), a pigment from the edible fruit of cactus pear (Opuntia ficus-indica, L.), was shown in an IBD model consisting of a human intestinal epithelial cell line (Caco-2 cells) stimulated by IL-1β, a cytokine known to play a major role in the initiation and amplification of inflammatory activity in IBD. The exposure of Caco-2 cells to IL-1β brought about the activation of NADPH oxidase (NOX-1) and the generation of reactive oxygen species (ROS) to activate intracellular signalling leading to the activation of NF-κB, with the over-expression of inflammatory enzymes and release of pro-inflammatory mediators. The co-incubation of the cells with Ind, at a nutritionally relevant concentration (5-25 μM), and IL-1β prevented the release of the pro-inflammatory cytokines IL-6 and IL-8, PGE2 and NO, the formation of ROS and the loss of thiols in a dose-dependent manner. The co-incubation of the cells with Ind and IL-1β also prevented the IL-1β-induced increase of epithelial permeability. It was also shown that the activation of NOX-1 and NF-κB was prevented by Ind and the expression of COX-2 and inducible NO synthase was reduced. The uptake of Ind in Caco-2 cell monolayers appeared to be unaffected by the inflamed state of the cells. In conclusion, our findings suggest that the dietary pigment Ind may have the potential to modulate inflammatory processes at the intestinal level.

  2. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7)-Induced Nuclear Factor-Kappa B (NF-κB) Activation and NF-κB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC) Therapy.

    Science.gov (United States)

    Liu, Vincent Wing Sun; Yau, Wing Lung; Tam, Chun Wai; Yao, Kwok-Ming; Shiu, Stephen Yuen Wing

    2017-05-31

    A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7), nuclear factor-kappa B (NF-κB) was activated and could result in up-regulated interleukin ( IL ) -6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC) pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT₁ receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion.

  3. Molecular characterization of Helicobacter pylori VacA induction of IL-8 in U937 cells reveals a prominent role for p38MAPK in activating transcription factor-2, cAMP response element binding protein, and NF-kappaB activation

    DEFF Research Database (Denmark)

    Hisatsune, Junzo; Nakayama, Masaaki; Isomoto, Hajime

    2008-01-01

    Helicobacter pylori VacA induces multiple effects on susceptible cells, including vacuolation, mitochondrial damage, inhibition of cell growth, and enhanced cyclooxygenase-2 expression. To assess the ability of H. pylori to modulate the production of inflammatory mediators, we examined...... the mechanisms by which VacA enhanced IL-8 production by promonocytic U937 cells, which demonstrated the greatest VacA-induced IL-8 release of the cells tested. Inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), IkappaBalpha ((E)-3-(4-methylphenylsulfonyl)-2-propenenitrile), Ca(2+) entry (SKF96365......+) in mediating activation of MAPK and the canonical NF-kappaB pathway. VacA stimulated translocation of NF-kappaBp65 to the nucleus, consistent with enhancement of IL-8 expression by activation of the NF-kappaB pathway. In addition, small interfering RNA of activating transcription factor (ATF)-2 or CREB, which...

  4. Cadmium induces cytotoxicity in human bronchial epithelial cells through upregulation of eIF5A1 and NF-kappaB

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Ju; Xu, Yan-Ming; Du, Ji-Ying [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Huang, Dong-Yang [Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Lau, Andy T.Y., E-mail: andytylau@stu.edu.cn [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China)

    2014-02-28

    Highlights: • Normal human bronchial epithelial cells (BEAS-2B) were dosed with cadmium (Cd). • A low level (2 μM) of Cd treatment for 36 h elicited negligible cytotoxicity. • High levels (20 or 30 μM) of Cd treatment for 36 h induced cell death. • High levels of Cd can upregulate the protein levels of eIF5A1 and NF-κB p65. • We suggest that eIF5A1 level is possibly modulated by NF-κB. - Abstract: Cadmium (Cd) and Cd compounds are widely-distributed in the environment and well-known carcinogens. Here, we report that in CdCl{sub 2}-exposed human bronchial epithelial cells (BEAS-2B), the level of p53 is dramatically decreased in a time- and dose-dependent manner, suggesting that the observed Cd-induced cytotoxicity is not likely due to the pro-apoptotic function of p53. Therefore, this prompted us to further study the responsive pro-apoptotic factors by proteomic approaches. Interestingly, we identified that high levels (20 or 30 μM) of Cd can significantly upregulate the protein levels of eukaryotic translation initiation factor 5A1 (eIF5A1) and redox-sensitive transcription factor NF-κB p65. Moreover, there is an enhanced NF-κB nuclear translocation as well as chromatin-binding in Cd-treated BEAS-2B cells. We also show that small interfering RNA-specific knockdown of eIF5A1 in Cd-exposed cells attenuated the Cd cytotoxicity, indicating the potential role of eIF5A1 in Cd cytotoxicity. As eIF5A1 is reported to be related with cell apoptosis but little is known about its transcriptional control, we hypothesize that NF-κB might likely modulate eIF5A1 gene expression. Notably, by bioinformatic analysis, several potential NF-κB binding sites on the upstream promoter region of eIF5A1 gene can be found. Subsequent chromatin immunoprecipitation assay revealed that indeed there is enhanced NF-κB binding on eIF5A1 promoter region of Cd-treated BEAS-2B cells. Taken together, our findings suggest for the first time a regulatory mechanism for the pro

  5. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells

    Directory of Open Access Journals (Sweden)

    Chantong Boonrat

    2012-11-01

    Full Text Available Abstract Background Microglia, the resident macrophage-like cells in the brain, regulate innate immune responses in the CNS to protect neurons. However, excessive activation of microglia contributes to neurodegenerative diseases. Corticosteroids are potent modulators of inflammation and mediate their effects by binding to mineralocorticoid receptors (MR and glucocorticoid receptors (GR. Here, the coordinated activities of GR and MR on the modulation of the nuclear factor-κB (NF-κB pathway in murine BV-2 microglial cells were studied. Methods BV-2 cells were treated with different corticosteroids in the presence or absence of MR and GR antagonists. The impact of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 was determined by incubating cells with 11-dehydrocorticosterone, with or without selective inhibitors. Expression of interleukin-6 (IL-6, tumor necrosis factor receptor 2 (TNFR2, and 11β-HSD1 mRNA was analyzed by RT-PCR and IL-6 protein expression by ELISA. NF-κB activation and translocation upon treatment with various corticosteroids were visualized by western blotting, immunofluorescence microscopy, and translocation assays. Results GR and MR differentially regulate NF-κB activation and neuroinflammatory parameters in BV-2 cells. By converting inactive 11-dehydrocorticosterone to active corticosterone, 11β-HSD1 essentially modulates the coordinated action of GR and MR. Biphasic effects were observed for 11-dehydrocorticosterone and corticosterone, with an MR-dependent potentiation of IL-6 and tumor necrosis factor-α (TNF-α expression and NF-κB activation at low/moderate concentrations and a GR-dependent suppression at high concentrations. The respective effects were confirmed using the MR ligand aldosterone and the antagonist spironolactone as well as the GR ligand dexamethasone and the antagonist RU-486. NF-κB activation could be blocked by spironolactone and the inhibitor of NF

  6. CDA-2, a urinary preparation, inhibits lung cancer development through the suppression of NF-kappaB activation in myeloid cell.

    Directory of Open Access Journals (Sweden)

    Xuan Wang

    Full Text Available CDA-2 (cell differentiation agent 2, a urinary preparation, has potent anti- proliferative and pro-apoptotic properties in cancer cells. However, the mechanisms of tumor inhibitory action of CDA-2 are far from clear, and especially there was no report on lung cancer. Here we demonstrate that CDA-2 and its main component phenylacetylglutamine (PG reduce the metastatic lung tumor growth, and increases survival time after inoculation with Lewis lung carcinoma (LLC cells in a dose-dependent manner in C57BL6 mice. Proliferative program analysis in cancer cells revealed a fundamental impact of CDA-2 and PG on proliferation and apoptosis, including Bcl-2, Bcl-XL, cIAP1, Survivin, PCNA, Ki-67 proteins and TUNEL assays. CDA-2 and PG significantly reduced NF-κB DNA-binding activity in lung cancer cells and in alveolar macrophages of tumor bearing mice and especially decreased the release of inflammatory factors including TNFα, IL-6, and KC. Furthermore, CDA-2 and PG decrease the expressions of TLR2, TLR6, and CD14, but not TLR1, TLR3, TLR4, and TLR9 in bone-marrow-derived macrophages (BMDM of mice stimulated by LLC-conditioned medium (LLC-CM. Over-expressing TLR2 in BMDM prevented CDA-2 and PG from inhibiting NF-κB activation, as well as induction of TNFα and IL-6. TLR2:TLR6 complexes mediate the effect of NF-κB inactivation by CDA-2. In conclusion, CDA-2 potently inhibits lung tumor development by reduction of the inflammation in lung through suppression of NF-κB activation in myeloid cells, associating with modulation of TLR2 signaling.

  7. The MC160 Protein Expressed by the Dermatotropic Poxvirus Molluscum Contagiosum Virus Prevents Tumor Necrosis Factor Alpha-Induced NF-κB Activation via Inhibition of I Kappa Kinase Complex Formation

    Science.gov (United States)

    Nichols, Daniel Brian; Shisler, Joanna L.

    2006-01-01

    The pluripotent cytokine tumor necrosis factor alpha (TNF-α) binds to its cognate TNF receptor I (TNF-RI) to stimulate inflammation via activation of the NF-κB transcription factor. To prevent the detrimental effects of TNF-α in keratinocytes infected with the molluscum contagiosum virus (MCV), this poxvirus is expected to produce proteins that block at least one step of the TNF-RI signal transduction pathway. One such product, the MC160 protein, is predicted to interfere with this cellular response because of its homology to other proteins that regulate TNF-RI-mediated signaling. We report here that expression of MC160 molecules did significantly reduce TNF-α-mediated NF-κB activation in 293T cells, as measured by gene reporter and gel mobility shift assays. Since we observed that MC160 decreased other NF-κB activation pathways, namely those activated by receptor-interacting protein, TNF receptor-associated factor 2, NF-κB-inducing kinase, or MyD88, we hypothesized that the MC160 product interfered with I kappa kinase (IKK) activation, an event common to multiple signal transduction pathways. Indeed, MC160 protein expression was associated with a reduction in in vitro IKK kinase activity and IKK subunit phosphorylation. Further, IKK1-IKK2 interactions were not detected in MC160-expressing cells, under conditions demonstrated to induce IKK complex formation, but interactions between the MC160 protein and the major IKK subunits were undetectable. Surprisingly, MC160 expression correlated with a decrease in IKK1, but not IKK2 levels, suggesting a mechanism for MC160 disruption of IKK1-IKK2 interactions. MCV has probably retained its MC160 gene to inhibit NF-κB activation by interfering with signaling via multiple biological mediators. In the context of an MCV infection in vivo, MC160 protein expression may dampen the cellular production of proinflammatory molecules and enhance persistent infections in host keratinocytes. PMID:16378960

  8. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    International Nuclear Information System (INIS)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi; Rhim, Hyangshuk; Bae, Yong Soo; Choi, Soo Young; Park, Jinseu

    2014-01-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction

  9. Hexane fraction from Laminaria japonica exerts anti-inflammatory effects on lipopolysaccharide-stimulated RAW 264.7 macrophages via inhibiting NF-kappaB pathway.

    Science.gov (United States)

    Lee, Ji-Young; Lee, Min-Sup; Choi, Hee-Jeon; Choi, Ji-Woong; Shin, Taisun; Woo, Hee-Chul; Kim, Jae-Il; Kim, Hyeung-Rak

    2013-02-01

    Laminaria japonica is a representative marine brown alga used as a culinary item in East Asia. L. japonica extract was shown to exert various biological activities; however, its anti-inflammatory activity has not been reported. The aim of this study is to investigate the molecular mechanisms underlying its anti-inflammatory action. Anti-inflammatory mechanisms of L. japonica n-hexane fraction (LHF) were assessed using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. An anti-inflammatory compound isolated from LHF by reverse-phase chromatography was identified using nuclear magnetic resonance (NMR) spectroscopy. Our results indicate that LHF significantly inhibited LPS-stimulated nitric oxide (NO) and prostaglandin E(2) (PGE(2)) secretion in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) with no cytotoxicity. As results, levels of pro-inflammatory cytokines were significantly reduced by pretreatment of LHF in LPS-stimulated RAW 264.7 cells. Treatment of LHF strongly suppressed nuclear factor-κB (NF-κB) promoter-driven expression and nuclear translocation of NF-κB by preventing proteolytic degradation of inhibitor of κB (IκB)-α in LPS-stimulated RAW 264.7 cells. Moreover, LHF inhibited the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW 264.7 cells. One of the anti-inflammatory compounds was isolated from LHF and identified as fucoxanthin. These results indicate that the LHF-mediated inhibition of NO and PGE(2) secretion in LPS-stimulated macrophages is regulated by NF-κB inactivation through inhibition of IκB-α, MAPKs, and Akt phosphorylation. LHF may be considered as a functional food candidate for the prevention or treatment of inflammatory diseases.

  10. A hepatoprotective Lindera obtusiloba extract suppresses growth and attenuates insulin like growth factor-1 receptor signaling and NF-kappaB activity in human liver cancer cell lines

    Directory of Open Access Journals (Sweden)

    Stroh Thorsten

    2011-05-01

    Full Text Available Abstract Background In traditional Chinese and Korean medicine, an aqueous extract derived from wood and bark of the Japanese spice bush Lindera obtusiloba (L.obtusiloba is applied to treat inflammations and chronic liver diseases including hepatocellular carcinoma. We previously demonstrated anti-fibrotic effects of L.obtusiloba extract in hepatic stellate cells. Thus, we here consequently examine anti-neoplastic effects of L.obtusiloba extract on human hepatocellular carcinoma (HCC cell lines and the signaling pathways involved. Methods Four human HCC cell lines representing diverse stages of differentiation were treated with L.obtusiloba extract, standardized according to its known suppressive effects on proliferation and TGF-β-expression. Beside measurement of proliferation, invasion and apoptosis, effects on signal transduction and NF-κB-activity were determined. Results L.obtusiloba extract inhibited proliferation and induced apoptosis in all HCC cell lines and provoked a reduced basal and IGF-1-induced activation of the IGF-1R signaling cascade and a reduced transcriptional NF-κB-activity, particularly in the poorly differentiated SK-Hep1 cells. Pointing to anti-angiogenic effects, L.obtusiloba extract attenuated the basal and IGF-1-induced expression of hypoxia inducible factor-1α, vascular endothelial growth factor, peroxisome proliferator-activated receptor-γ, cyclooxygenase-2 and inducible nitric oxide synthase. Conclusions The traditional application of the extract is confirmed by our experimental data. Due to its potential to inhibit critical receptor tyrosine kinases involved in HCC progression via the IGF-1 signaling pathway and NF-κB, the standardized L.obtusiloba extract should be further analysed for its active compounds and explored as (complementary treatment option for HCC.

  11. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: jinpark@hallym.ac.kr [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  12. Two specific drugs, BMS-345541 and purvalanol A induce apoptosis of HTLV-1 infected cells through inhibition of the NF-kappaB and cell cycle pathways

    Directory of Open Access Journals (Sweden)

    Wu Weilin

    2008-06-01

    Full Text Available Abstract Human T-cell leukemia virus type-1 (HTLV-1 induces adult T-cell leukemia/lymphoma (ATL/L, a fatal lymphoproliferative disorder, and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP, a chronic progressive disease of the central nervous system after a long period of latent infection. Although the mechanism of transformation and leukemogenesis is not fully elucidated, there is evidence to suggest that the viral oncoprotein Tax plays a crucial role in these processes through the regulation of several pathways including NF-κB and the cell cycle pathways. The observation that NF-κB, which is strongly induced by Tax, is indispensable for the maintenance of the malignant phenotype of HTLV-1 by regulating the expression of various genes involved in cell cycle regulation and inhibition of apoptosis provides a possible molecular target for these infected cells. To develop potential new therapeutic strategies for HTLV-1 infected cells, in this present study, we initially screened a battery of NF-κB and CDK inhibitors (total of 35 compounds to examine their effects on the growth and survival of infected T-cell lines. Two drugs namely BMS-345541 and Purvalanol A exhibited higher levels of growth inhibition and apoptosis in infected cell as compared to uninfected cells. BMS-345541 inhibited IKKβ kinase activity from HTLV-1 infected cells with an IC50 (the 50% of inhibitory concentration value of 50 nM compared to 500 nM from control cells as measured by in vitro kinase assays. The effects of Purvalanol A were associated with suppression of CDK2/cyclin E complex activity as previously shown by us. Combination of both BMS-345541 and Purvalanol A showed a reduced level of HTLV-1 p19 Gag production in cell culture. The apparent apoptosis in these infected cells were associated with increased caspase-3 activity and PARP cleavage. The potent and selective apoptotic effects of these drugs suggest that both BMS-345541 and Purvalanol A

  13. Roles of Pannexin-1 Channels in Inflammatory Response through the TLRs/NF-Kappa B Signaling Pathway Following Experimental Subarachnoid Hemorrhage in Rats

    Directory of Open Access Journals (Sweden)

    Ling-Yun Wu

    2017-06-01

    Full Text Available Background: Accumulating evidence suggests that neuroinflammation plays a critical role in early brain injury after subarachnoid hemorrhage (SAH. Pannexin-1 channels, as a member of gap junction proteins located on the plasma membrane, releases ATP, ions, second messengers, neurotransmitters, and molecules up to 1 kD into the extracellular space, when activated. Previous studies identified that the opening of Pannexin-1 channels is essential for cellular migration, apoptosis and especially inflammation, but its effects on inflammatory response in SAH model have not been explored yet.Methods: Adult male Sprague-Dawley rats were divided into six groups: sham group (n = 20, SAH group (n = 20, SAH + LV-Scramble-ShRNA group (n = 20, SAH + LV-ShRNA-Panx1 group (n = 20, SAH + LV-NC group (n = 20, and SAH + LV-Panx1-EGFP group (n = 20. The rat SAH model was induced by injection of 0.3 ml fresh arterial, non-heparinized blood into the prechiasmatic cistern in 20 s. In SAH + LV-ShRNA-Panx1 group and SAH + LV-Panx1-EGFP group, lentivirus was administered via intracerebroventricular injection (i.c.v. at 72 h before the induction of SAH. The Quantitative real-time polymerase chain reaction, electrophoretic mobility shift assay, enzyme-linked immunosorbent assay, immunofluorescence staining, and western blotting were performed to explore the potential interactive mechanism between Pannexin-1 channels and TLR2/TLR4/NF-κB-mediated signaling pathway. Cognitive and memory changes were investigated by the Morris water maze test.Results: Administration with LV-ShRNA-Panx1 markedly decreased the expression levels of TLR2/4/NF-κB pathway-related agents in the brain cortex and significantly ameliorated neurological cognitive and memory deficits in this SAH model. On the contrary, administration of LV-Panx1-EGFP elevated the expressions of TLR2/4/NF-κB pathway-related agents, which correlated with augmented neuronal apoptosis.Conclusion: Pannexin-1 channels may

  14. Cell-intrinsic role for NF-kappa B-inducing kinase in peripheral maintenance but not thymic development of Foxp3+ regulatory T cells in mice.

    Directory of Open Access Journals (Sweden)

    Susan E Murray

    Full Text Available NF-κB inducing kinase (NIK, MAP3K14 is a key signaling molecule in non-canonical NF-κB activation, and NIK deficient mice have been instrumental in deciphering the immunologic role of this pathway. Global ablation of NIK prevents lymph node development, impairs thymic stromal development, and drastically reduces B cells. Despite altered thymic selection, T cell numbers are near normal in NIK deficient mice. The exception is CD4(+ regulatory T cells (Tregs, which are reduced in the thymus and periphery. Defects in thymic stroma are known to contribute to impaired Treg generation, but whether NIK also plays a cell intrinsic role in Tregs is unknown. Here, we compared intact mice with single and mixed BM chimeric mice to assess the intrinsic role of NIK in Treg generation and maintenance. We found that while NIK expression in stromal cells suffices for normal thymic Treg development, NIK is required cell-intrinsically to maintain peripheral Tregs. In addition, we unexpectedly discovered a cell-intrinsic role for NIK in memory phenotype conventional T cells that is masked in intact mice, but revealed in BM chimeras. These results demonstrate a novel role for NIK in peripheral regulatory and memory phenotype T cell homeostasis.

  15. α-Asarone attenuates microglia-mediated neuroinflammation by inhibiting NF kappa B activation and mitigates MPTP-induced behavioral deficits in a mouse model of Parkinson's disease.

    Science.gov (United States)

    Kim, Byung-Wook; Koppula, Sushruta; Kumar, Hemant; Park, Ju-Young; Kim, Il-Woung; More, Sandeep V; Kim, In-Su; Han, Sang-Don; Kim, Si-Kwan; Yoon, Sung-Hwa; Choi, Dong-Kug

    2015-10-01

    The selective loss of dopaminergic neurons in Parkinson's disease (PD) is associated with microglial activation. Therefore, the importance of early therapeutic intervention to inhibit microglial activation would be an effective strategy to alleviate the progression of PD. α-Asarone, an active compound found in Araceae and Annonaceae plant species has been used to improve various disease conditions including central nervous system disorders. In the present study the in vitro and in vivo therapeutic effects of α-asarone isolated from the rhizome of Acorus gramineus Solander was evaluated on microglia-mediated neuroinflammation and neuroprotection. Lipopolysaccharide (LPS)-stimulated BV-2 microglial cells were used to evaluate in vitro effects. 1-methyl-4 phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced mouse model of PD was developed to study the neuroprotective effects of α-asarone in vivo. The results indicated that α-asarone significantly attenuated the LPS-stimulated increase in neuroinflammatory responses and suppressed pro-inflammatory cytokine production in BV-2 cells. Mechanistic study revealed that α-asarone inhibited the LPS-stimulated activation via regulation of nuclear factor kappa-B by blocking degradation of inhibitor kappa B-alpha signaling in BV-2 microglial cells. In in vivo studies, MPTP intoxication to mice resulted in brain microglial activation and significant behavioral deficits. Prophylactic treatment with α-asarone suppressed microglial activation and attenuated PD-like behavioral impairments as assessed by the Y-maze and pole tests. Taken together, these data demonstrate that α-asarone is a promising neuroprotective agent that should be further evaluated and developed for future prevention and treatment of microglia-mediated neuroinflammatory conditions including PD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Association of Activation of Induced COX-2, iNOS and Cytokines with NF-kappa B Depression by Taiwan Wild Grape Ethanolic Extract in Mice.

    Science.gov (United States)

    Chang, Ching-Wen; Chen, Yi-Han; Lin, Yu-Chin; Peng, Wen-Huang

    2017-08-31

    Taiwan wild grape (Vitis thunbergii var. taiwaniana; VTT) is an important traditional herbal medicine used to treat muscle injuries and acute and chronic pain of the ligaments. Information on its bioactivity and the underlying mechanisms, which have not been elucidated thus far, is needed to demonstrate its value for pharmacological and clinical use. This study presents evidence to clarify the antinociceptive and anti-inflammatory activities of an ethanolic extract of VTT stem (VTTEtOH) and the possible molecular mechanisms involved in such biactivities. In the mice, VTTEtOH significantly reduced the acetic acid-induced writhing response (P < 0.01), formalin-induced licking time (P < 0.01), and edema paw volume at 4 and 5 h after λ-carrageenan injection. VTTEtOH obviously decreased the levels of tumor necrosis factor alpha (P < 0.01), interleukin (IL)-1β (P < 0.05), interleukin (IL)-6 (P < 0.001), nuclear factor-kappa B (P < 0.001), iNOS (P < 0.001), cyclooxygenase-2 (P < 0.001) and Nitric oxide (P < 0.001) in edema-paw tissue. The molecular mechanisms underlying these effects might involve significant inhibition of the activity of cyclooxygenase-2 through suppression of nuclear factor-kappa B and inducible nitric oxide synthase expression and reduction of the levels of various inflammatory mediators, including tumor necrosis factor alpha, interleukin (IL)-1β, IL-6, and nitric oxide. Our findings provided pharmacological and histopathological evidences that VTTEtOH alleviates inflammatory pain-related diseases.

  17. Galangin ameliorates cisplatin-induced nephrotoxicity by attenuating oxidative stress, inflammation and cell death in mice through inhibition of ERK and NF-kappaB signaling.

    Science.gov (United States)

    Huang, Yu-Ching; Tsai, Ming-Shiun; Hsieh, Pei-Chi; Shih, Jheng-Hong; Wang, Tsu-Shing; Wang, Yi-Chun; Lin, Ting-Hui; Wang, Sue-Hong

    2017-08-15

    Cisplatin is a chemotherapeutic agent widely used in the treatment of various cancers. However, cisplatin can induce nephrotoxicity and neurotoxicity, limiting its dosage and usage. Galangin, a natural flavonol, has been found to exhibit anti-oxidant and anti-inflammatory effects in vivo. Here, we investigated the effects of galangin on cisplatin-induced acute kidney injury (AKI) and its molecular mechanisms in mice. Galangin administration reduced the cisplatin-induced oxidative stress by decreasing renal MDA and 3-NT formations. Galangin administration also increased renal anti-oxidative enzyme activities (SOD, GPx, and CAT) and GSH levels depleted by cisplatin. Furthermore, galangin administration inactivated stress-induced Nrf2 protein and its downstream products, HO-1 and GCLC. In terms of the inflammatory response, galangin administration reduced IκBα phosphorylation, NF-κB phosphorylation and nuclear translocation, and then inhibited cisplatin-induced secretions of pro-inflammatory TNF-α, IL-1β and IL-6. In addition, cisplatin-induced ERK and p38 phosphorylations were inhibited by galangin administration. In terms of cell death, galangin administration reduced levels of p53, pro-apoptotic Bax and activated caspase-3 to inhibit the cisplatin-induced apoptosis. Galangin administration also reduced the expression levels of RIP1 and RIP3 to inhibit cisplatin-induced RIP1/RIP3-dependent necroptosis. Therefore, galangin administration significantly ameliorates cisplatin-induced nephrotoxicity by attenuating oxidative stress, inflammation, and cell death through inhibitions of ERK and NF-κB signaling pathways. Galangin might be a potential adjuvant for clinical cisplatin therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Up-regulation of microRNA-126 may contribute to pathogenesis of ulcerative colitis via regulating NF-kappaB inhibitor IκBα.

    Directory of Open Access Journals (Sweden)

    Xiao Feng

    Full Text Available MicroRNAs (miRNAs are important post-transcriptional regulators. Altered expression of miRNAs has recently demonstrated association with human ulcerative colitis (UC. In this study, we attempted to elucidate the roles of miR-126 in the pathogenesis of UC.Expression of miR-126, miR-21, miR-375 and the potential targets NF-κB inhibitor alpha (IκBα, IKBA or NFKBIA, Polo-like kinase 2 (PLK2 and v-Crk sarcoma virus CT10 oncogene homolog (CRK were assessed in 52 colonic biopsies from patients with active UC, inactive UC, irritable bowel syndrome (IBS and from healthy subjects by quantitative RT-PCR and immunofluorescence analyses. Regulation of gene expression by miR-126 was assessed using luciferase reporter construct assays and specific miRNA mimic transfection.We found that the expression of miR-126 and miR-21 were significantly increased in active UC group compared to the inactive UC, IBS and healthy control groups (P<0.05. In contrast, the expression of IKBA mRNA and protein was remarkably decreased in the active UC group compared with the other three groups (P<0.05. The expression of miR-126 and IKBA mRNA were inversely correlated in active UC patients (P<0.05. However the expression of miR-375, PLK2 and CRK showed no difference between each group. Furthermore, we demonstrate that endogenous miR-126 and exogenous miR-126 mimic can inhibit IκBα expression. Finally, mutating the miR-126 binding site of the IKBA 3'-UTR reporter construct restored reporter gene expression.miR-126 may play roles in UC inflammatory activity by down-regulating the expression of IKBA, an important inhibitor of NF-κB signaling pathway.

  19. Physalin F induces cell apoptosis in human renal carcinoma cells by targeting NF-kappaB and generating reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Szu-Ying Wu

    Full Text Available BACKGROUND: The aim of this study was to determine the molecular mechanisms of physalin F, an effective purified extract of Physalis angulata L. (Solanacae, in renal carcinoma A498 cells. METHODOLOGY/PRINCIPAL FINDINGS: Physalin F was observed to significantly induce cytotoxicity of three human renal carcinoma A498, ACHN, and UO-31 cells in a concentration-dependent manner; this was especially potent in A498 cells. The physalin F-induced cell apoptosis of A498 cells was characterized by MTT assay, nuclear DNA fragmentation and chromatin condensation. Using flow cytometry analysis, physalin F induced A498 cell apoptosis as demonstrated by the accumulation of the sub-G1 phase in a concentration- and time-dependent manner. Moreover, physalin F-mediated accumulation of reactive oxygen species (ROS caused Bcl-2 family proteins, Bcl-2, and Bcl-xL degradation, which led to disruption of mitochondrial membrane potential and release of cytochrome c from the mitochondria into the cytosol. These effects were associated with induction of caspase-3 and caspase-9 activity, which led to poly(ADP-ribose polymerase cleavage. However, the antioxidant N-acetyl-(L-cysteine (NAC and glutathione (GSH resulted in the inhibition of these events and reversed physalin F-induced cell apoptosis. In addition, physalin F suppressed NF-κB activity and nuclear translocation of p65 and p50, which was reversed by NAC and GSH. CONCLUSION: Physalin F induced cell apoptosis through the ROS-mediated mitochondrial pathway and suppressed NF-κB activation in human renal cancer A498 cells. Thus, physalin F appears to be a promising anti-cancer agent worthy of further clinical development.

  20. The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes - Implications for osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Imagawa, Kei, E-mail: k.Imagawa@soton.ac.uk [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom); Tohoku University School of Medicine, Sendai (Japan); Andres, MC de [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom); Hashimoto, Ko [Hospital for Special Surgery, NY (United States); Pitt, Dominic [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom); Itoi, Eiji [Tohoku University School of Medicine, Sendai (Japan); Goldring, Mary B. [Hospital for Special Surgery, NY (United States); Roach, Helmtrud I.; Oreffo, Richard O.C. [University of Southampton Medical School, Bone and Joint Research Group, Southampton (United Kingdom)

    2011-02-18

    Research highlights: {yields} Glucosamine and a NF-kB inhibitor reduce inflammation in OA. {yields} Cytokine induced demethylation of CpG site in IL1{beta} promoter prevented by glucosamine. {yields} Glucosamine and NF-kB inhibitor have epigenetic effects on human chondrocytes. -- Abstract: Objective: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OA is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1{beta}, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. Method: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1{beta} and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2 mM N

  1. The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes - Implications for osteoarthritis

    International Nuclear Information System (INIS)

    Imagawa, Kei; Andres, MC de; Hashimoto, Ko; Pitt, Dominic; Itoi, Eiji; Goldring, Mary B.; Roach, Helmtrud I.; Oreffo, Richard O.C.

    2011-01-01

    Research highlights: → Glucosamine and a NF-kB inhibitor reduce inflammation in OA. → Cytokine induced demethylation of CpG site in IL1β promoter prevented by glucosamine. → Glucosamine and NF-kB inhibitor have epigenetic effects on human chondrocytes. -- Abstract: Objective: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OA is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1β, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. Method: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1β and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2 mM N-acetyl GlcN (Sigma

  2. Pentoxifylline sensitizes human cervical tumor cells to cisplatin-induced apoptosis by suppressing NF-kappa B and decreased cell senescence

    International Nuclear Information System (INIS)

    Hernandez-Flores, Georgina; Bravo-Cuellar, Alejandro; Ortiz-Lazareno, Pablo C; Lerma-Diaz, Jose Manuel; Dominguez-Rodriguez, Jorge R; Jave-Suarez, Luis F; Aguilar-Lemarroy, Adriana del C; Celis-Carrillo, Ruth de; Toro-Arreola, Susana del; Castellanos-Esparza, Yessica C

    2011-01-01

    Worldwide, cervical cancer is the second most common causes of cancer in women and represents an important mortality rate. Cisplatin (CIS) is a very important antitumoral agent and can lead tumor cells toward two important cellular states: apoptosis and senescence. In some types of cancers pentoxifylline (PTX) sensitizes these cells to the toxic action of chemotherapeutics drugs such as adriamycin, inducing apoptosis. In the present work, we studied in vitro whether PTX alone or in combination with CIS induces apoptosis and/or senescence in cervix cancer HeLa and SiHa cell lines infected with HPV types 16 and 18, respectively, as well as in immortalized keratinocytyes HaCaT cells. HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, CIS or both. The cellular toxicity and survival fraction of PTX and CIS were determinate by WST-1 and clonogenic assays respectively. Apoptosis, caspase activation and phosphorylation of ERK1/2, p38, p65 (NF-κB), Bcl-2 and Bcl-XL anti-apoptotic proteins were determinated by flow cytometry. Senescence by microscopy. Phosphorylation of IκBα and IκB total were measured by ELISA. Pro-apoptotic, anti-apoptotic and senescence genes, as well as HPV-E6/7 mRNA expression, were detected by RT-PCR. Our results show that after 24 hours of incubation PTX per se is toxic for cancer cells affecting cell viability and inducing apoptosis. The toxicity in HaCaT cells was minimal. CIS induces apoptosis in HeLa and SiHa cells and its effect was significantly increases when the cells were treated with PTX + CIS. In all studies there was a direct correlation with levels of caspases (-3, -6, -7, -9 and -8) activity and apoptosis. CIS induces important levels of senescence and phosphorylation of ERK1/2, p38, p65/RELA, and IκBα, and decreased the expression of anti-apoptotic protein Bcl-XL. Surprisingly these levels were significantly reduced by PTX in tumor cells, and at the same

  3. Diabetes mellitus tipo 2: qual o papel da insulina na expressão de NF-kappaB, PPARγ e CD36?

    Directory of Open Access Journals (Sweden)

    Cristina de Oliveira SILVA

    2014-12-01

    Full Text Available No diabetes mellitus tipo 2 (DM2 e na síndrome de resistência à insulina, as complicações cardiovasculares resultam de um conjunto de processos aterogênicos envolvendo hiperglicemia crônica, excessiva glicação de proteínas (AGEs, ativação do fator nuclear kappa B (NKκB associada com o aumento da expressão de citocinas inflamatórias e estresse oxidativo, observando-se ainda alteração de LDL e expressão do receptor de scavenger CD36. A contribuição da hiperinsulinemia nesta sequência não é completamente elucidada. Nesta revisão, relata-se como a insulina pode modular a expressão proteica de NFκB, PPAR gama (PPARγ e CD36 em células da musculatura lisa vascular (CMLV da aorta de ratos estimuladas pelos AGE.

  4. Nuclear factor-kappa B regulates pain and COMT expression in a rodent model of inflammation.

    Science.gov (United States)

    Hartung, Jane E; Eskew, Olivia; Wong, Terrence; Tchivileva, Inna E; Oladosu, Folabomi A; O'Buckley, Sandra C; Nackley, Andrea G

    2015-11-01

    Nuclear factor-kappa B (NF-κB) is a ubiquitously expressed protein complex regulating the transcription of genes involved in inflammation and pain. Increased NF-κB activity in immune and nervous system cells is linked to several chronic pain conditions in humans as well as inflammation and nerve injury-evoked pain in animals. A recent in vitro study further demonstrates that increased NF-κB activity in astrocytes decreases transcription of catechol-o-methyltransferase (COMT), an enzyme that inactivates catecholamines that cause pain. The purpose of the present study was to examine the relationship between systemic and astrocytic NF-κB activity, pain, and COMT expression in an animal model of inflammation. Results demonstrated that administration of the inflammatory stimulant complete Freund's adjuvant (CFA) led to increased pain and decreased COMT protein expression in an NF-κB-dependent manner. Specifically, we found that rats and mice receiving intraplantar CFA exhibited increased behavioral responses to mechanical and thermal heat stimuli. CFA-evoked pain was blocked in rats receiving a pre-emptive systemic dose of the NF-κB inhibitor MG132 and exacerbated in IKKca mice with constitutive NF-κB activity in astrocytes. Furthermore, we observed NF-κB-linked reductions in COMT expression in midbrain at 6h and 1d following CFA in rats and at 1h and 1d in forebrain and midbrain following CFA in IKKca mice. Collectively, these results demonstrate that systemic and astrocytic NF-κB activity drive inflammatory pain and regulate the expression of COMT in forebrain and midbrain structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Porcine arterivirus activates the NF-κB pathway through IκB degradation

    International Nuclear Information System (INIS)

    Lee, Sang-Myeong; Kleiboeker, Steven B.

    2005-01-01

    Nuclear factor-kappaB (NF-κB) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-κB in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-κB activation was characterized by translocation of NF-κB from the cytoplasm to the nucleus, increased DNA binding activity, and NF-κB-regulated gene expression. NF-κB activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-κB activation. Degradation of IκB protein was detected late in PRRSV infection, and overexpression of the dominant negative form of IκBα (IκBαDN) significantly suppressed NF-κB activation induced by PRRSV. However, IκBαDN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-κB DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-κB was activated by PRRSV infection. Moreover, NF-κB-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-κB activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV

  6. Tetrahydroanthraquinone Derivative (±)-4-Deoxyaustrocortilutein Induces Cell Cycle Arrest and Apoptosis in Melanoma Cells via Upregulation of p21 and p53 and Downregulation of NF-kappaB.

    Science.gov (United States)

    Genov, Miroslav; Kreiseder, Birgit; Nagl, Michael; Drucker, Elisabeth; Wiederstein, Martina; Muellauer, Barbara; Krebs, Julia; Grohmann, Teresa; Pretsch, Dagmar; Baumann, Karl; Bacher, Markus; Pretsch, Alexander; Wiesner, Christoph

    2016-01-01

    Malignant melanoma is an aggressive type of skin cancer with high risk for metastasis and chemoresistance. Disruption of tightly regulated processes such as cell cycle, cell adhesion, cell differentiation and cell death are predominant in melanoma development. So far, conventional treatment options have been insufficient to treat metastatic melanoma and survival rates are poor. Anthraquinone compounds have been reported to have anti-tumorigenic potential by DNA-interaction, promotion of apoptosis and suppression of proliferation in various cancer cells. In the current study, the racemic tetrahydroanthraquinone derivative (±)-4-deoxyaustrocortilutein (4-DACL) was synthesized and the cytotoxic activity against melanoma cells and melanoma spheroids determined by CellTiter-Blue viability Assay and phase contrast microscopy. Generation of reactive oxygen species (ROS) was determined with CellROX Green and Deep Red Reagent kit and microplate-based fluorometry. Luciferase reporter gene assays for nuclear factor kappa B (NF-κB) and p53 activities and western blotting analysis were carried out to detect the expression of anti-proliferative or pro-apoptotic (p53, p21, p27, MDM2, and GADD45M) and anti-apoptotic (p65, IκB-α, IKK) proteins. Cell cycle distribution and apoptosis rate were detected by flow cytometry, the morphological changes visualized by fluorescence microscopy and the activation of different caspase cascades distinguished by Caspase Glo 3/7, 8 and 9 Assays. We demonstrated that 4-DACL displayed high activity against different malignant melanoma cells and melanoma spheroids and only low toxicity to melanocytes and other primary cells. In particular, 4-DACL treatment induced mitochondrial ROS, reduced NF-κB signaling activity and increased up-regulation of the cell cycle inhibitors cyclin-dependent kinase inhibitor p21 (p21(WAF1/Cip1)) and the tumor suppressor protein p53 in a dose-dependent manner, which was accompanied by decreased cell proliferation and

  7. Poly (I:C) impairs NO donor-induced relaxation by overexposure to NO via the NF-kappa B/iNOS pathway in rat superior mesenteric arteries.

    Science.gov (United States)

    Ando, Makoto; Matsumoto, Takayuki; Taguchi, Kumiko; Kobayashi, Tsuneo

    2017-11-01

    Recent studies have suggested a link between vascular dysfunction and innate immune activation including toll-like receptors (TLRs), but the detailed mechanism remains unclear. Here we investigated whether poly (I:C) [a synthetic double-strand RNA recognized by TLR3, melanoma differentiation-associated gene 5 (MDA5), and retinoic acid-inducible gene I (RIG-I)] affected nitric oxide (NO)/cGMP-related vascular relaxation, one of the major cascades of relaxation, in rat superior mesenteric arteries. Using organ-cultured arteries, we found that poly (I:C) (30μg/mL for approximately 1 day) markedly reduced sodium nitroprusside (SNP)-induced relaxation (vs. vehicle); this was prevented by co-treatment with a TLR3 inhibitor. Relaxation induced by 8-Br cGMP (a phosphodiesterase (PDE)-resistant cGMP analogue) and the expression of proteins related to NO/cGMP signaling did not differ between vehicle- and poly (I:C)-treated groups. When PDEs were inhibited by IBMX (a nonselective PDE inhibitor), the SNP-induced relaxation was still greatly reduced in poly (I:C)-treated arteries (vs. vehicle). Poly (I:C) reduced SNP-stimulated cGMP production, but increased NO production and iNOS expression (vs. vehicle). The impairment of SNP-induced relaxation by poly (I:C) was prevented by co-treatment with either iNOS or a nuclear factor-kappa B (NF-κB) inhibitor. This effect induced by poly (I:C) appeared to be independent of oxidative stress. The SNP-induced relaxation was reduced in freshly isolated arteries by pre-incubation with SNP in a concentration-dependent manner. Poly (I:C) did not alter protein levels of TLR3, TRIF/TICAM-1, or phospho-IRF3/IRF3, whereas RIG-I and MDA5 were significantly upregulated (vs. vehicle). These results suggest that poly (I:C) impairs NO donor-induced relaxation in rat superior mesenteric arteries via overexposure to NO produced by the NF-κB/iNOS pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Bio modulation of transcriptional factor NF-kB by ionizing radiation; Biomodulation du facteur de transcription NF-kB par les radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Magne, N.; Van Houtte, P. [Institut Jules-Bordet, Dept. de Radiotherapie, Bruxelles (Belgium); Mange, N.; Toillon, R.A. [Institut Jules-Bordet, Lab. de Cancerologie Mammaire, Bruxelles (Belgium); Didelot, C. [Universite Libre de Bruxelles, Lab. de Virologie Moleculaire (Belgium); Peyron, J.F. [Faculte de Medecine, INSERM U526, 06 - Nice (France)

    2004-10-01

    NF-{kappa}B (Nuclear Factor -{kappa}B) was described for the first time in 1986 as a nuclear protein binding to the kappa immunoglobulin-light chain enhancer. Since then, NF-{kappa}B has emerged as an ubiquitous factor involved in the regulation of numerous important processes as diverse as immune and inflammatory responses, apoptosis and cell proliferation. These last two properties explain the implication of NF-{kappa}B in the tumorigenic process as well as the promise of a targeted therapeutic intervention. This review focuses on the current knowledge on NF-{kappa}B regulation and discusses the therapeutic potential of targeting NF-{kappa}B in cancer in particular during radiotherapy. (authors)

  9. Inhibitor of nuclear factor kappaB kinase beta is a key regulator of synovial inflammation

    NARCIS (Netherlands)

    Tak, P. P.; Gerlag, D. M.; Aupperle, K. R.; van de Geest, D. A.; Overbeek, M.; Bennett, B. L.; Boyle, D. L.; Manning, A. M.; Firestein, G. S.

    2001-01-01

    Inhibitor of nuclear factor kappaB kinase beta (IkappaB kinase beta, or IKKbeta) has emerged as a key regulator of the transcription factor nuclear factor kappaB (NF-kappaB). Since IKKbeta could have both pro- and antiinflammatory activity, we examined whether its constitutive activation was

  10. Circumvention of nuclear factor kappaB-induced chemoresistance by cytoplasmic-targeted anthracyclines.

    Science.gov (United States)

    Bilyeu, Jennifer D; Panta, Ganesh R; Cavin, Lakita G; Barrett, Christina M; Turner, Eddie J; Sweatman, Trevor W; Israel, Mervyn; Lothstein, Leonard; Arsura, Marcello

    2004-04-01

    Nuclear factor kappaB (NF-kappaB) has been implicated in inducible chemoresistance against anthracyclines. In an effort to improve the cytotoxicity of anthracyclines while reducing their cardiotoxic effects, we have developed a novel class of extranuclear-localizing 14-O-acylanthracyclines that bind to the phorbol ester/diacylglycerol-binding C1b domain of conventional and novel protein kinase C (PKC) isoforms, thereby promoting an apoptotic response. Because PKCs have been shown to be involved in NF-kappaB activation, in this report, we determined the mechanism of NF-kappaB activation by N-benzyladriamycin-14-valerate (AD 198) and N-benzyladriamycin-14-pivalate (AD 445), two novel 14-O-acylanthracylines. We show that the induction of NF-kappaB activity in response to drug treatment relies on the activation of PKC-delta and NF-kappaB-activating kinase (NAK), independent of ataxia telengectasia mutated and p53 activities. In turn, NAK activates the IKK complex through phosphorylation of the IKK-2 subunit. We find that neither NF-kappaB activation nor ectopic expression of Bcl-X(L) confers protection from AD 198-induced cell killing. Overall, our data indicate that activation of novel PKC isoforms by cytoplasmic-targeted 14-O-acylanthracyclines promotes an apoptotic response independent of DNA damage, which is unimpeded by inducible activation of NF-kappaB.

  11. Therapeutic effect of methyl salicylate 2-O-β-d-lactoside on LPS-induced acute lung injury by inhibiting TAK1/NF-kappaB phosphorylation and NLRP3 expression.

    Science.gov (United States)

    Yang, Shengqian; Yu, Ziru; Yuan, Tianyi; Wang, Lin; Wang, Xue; Yang, Haiguang; Sun, Lan; Wang, Yuehua; Du, Guanhua

    2016-11-01

    Acute lung injury (ALI), characterized by pulmonary edema and inflammatory cell infiltration, is a common syndrome of acute hypoxemic respiratory failure. Methyl salicylate 2-O-β-d-lactoside (MSL), a natural derivative of salicylate extracted from Gaultheria yunnanensis (Franch.) Rehder, was reported to have potent anti-inflammatory effects on the progression of collagen or adjuvant-induced arthritis in vivo and in vitro. The aim of this study is to investigate the therapeutic effect of MSL on lipopolysaccharide (LPS)-induced acute lung injury and reveal underlying molecular mechanisms. Our results showed that MSL significantly ameliorated pulmonary edema and histological severities, and inhibited IL-6 and IL-1β production in LPS-induced ALI mice. MSL also reduced MPO activity in lung tissues and the number of inflammatory cells in BALF. Moreover, we found that MSL significantly inhibited LPS-induced TAK1 and NF-κB p65 phosphorylation, as well as the expression of NLRP3 protein in lung tissues. Furthermore, MSL significantly inhibited LPS-induced TAK1 and NF-κB p65 phosphorylation in Raw264.7 cells. In addition, MSL significantly inhibited nuclear translocation of NF-κB p65 in cells treated with LPS in vitro. Taken together, our results suggested that MSL exhibited a therapeutic effect on LPS-induced ALI by inhibiting TAK1/NF-κB phosphorylation and NLRP3 expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Chalepin: A Compound from Ruta angustifolia L. Pers Exhibits Cell Cycle Arrest at S phase, Suppresses Nuclear Factor-Kappa B (NF-κB) Pathway, Signal Transducer and Activation of Transcription 3 (STAT3) Phosphorylation and Extrinsic Apoptotic Pathway in Non-small Cell Lung Cancer Carcinoma (A549).

    Science.gov (United States)

    Richardson, Jaime Stella Moses; Aminudin, Norhaniza; Abd Malek, Sri Nurestri

    2017-10-01

    Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer. A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells. Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique. Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis. Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent. This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal

  13. NF-κB inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats

    International Nuclear Information System (INIS)

    Zhong Caiyun; Zhou Yamei; Pinkerton, Kent E.

    2008-01-01

    Apoptosis is a vital mechanism for the regulation of cell turnover and plays a critical role in tissue homeostasis and development of many disease processes. Previous studies have demonstrated the apoptotic effect of tobacco smoke; however, the molecular mechanisms by which tobacco smoke triggers apoptosis remain unclear. In the present study we investigated the effects of tobacco smoke on the induction of apoptosis in the lungs of rats and modulation of nuclear factor-kappa B (NF-κB) in this process. Exposure of rats to 80 mg/m 3 tobacco smoke significantly induced apoptosis in the lungs. Tobacco smoke resulted in inhibition of NF-κB activity, noted by suppression of inhibitor of κB (IκB) kinase (IKK), accumulation of IκBα, decrease of NF-κB DNA binding activity, and downregulation of NF-κB-dependent anti-apoptotic proteins, including Bcl-2, Bcl-xl, and inhibitors of apoptosis. Initiator caspases for the death receptor pathway (caspase 8) and the mitochondrial pathway (caspase 9) as well as effector caspase 3 were activated following tobacco smoke exposure. Tobacco smoke exposure did not alter the levels of p53 and Bax proteins. These findings suggest the role of NF-κB pathway in tobacco smoke-induced apoptosis

  14. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse.

    Science.gov (United States)

    Miraghazadeh, Bahar; Cook, Matthew C

    2018-01-01

    NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.

  15. Synergistic induction of CX3CL1 by TNF alpha and IFN gamma in osteoblasts from rheumatoid arthritis: involvement of NF-kappa B and STAT-1 signaling pathways

    Directory of Open Access Journals (Sweden)

    Kuninobu Wakabayashi

    2008-10-01

    Full Text Available Takeo Isozaki, Tsuyoshi Kasama, Ryo Takahashi, Tsuyoshi Odai, Kuninobu Wakabayashi, Hirohito Kanemitsu, Kyoko Nohtomi, Hiroko T Takeuchi, Satoshi Matsukura, Masakazu TezukaDivision of Rheumatology, Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan, and the Department of Orthopedics, Denencyofu Central Hospital, Tokyo, JapanAbstract: To explore the regulation of CX3CL1 in inflammatory bone diseases, CX3CL1 expression by osteoblasts (OB was examined. Human OB isolated from rheumatoid arthritis (RA patients, osteoarthritis patients, and normal individuals were incubated in the presence of cytokines. Soluble CX3CL1 levels were determined with an enzyme-linked immunosorbent assay. Expression of CX3CL1 mRNA was examined using quantitative real-time polymerase chain reaction. Although tumor necrosis factor (TNF-α or interferon (IFN-γ alone RA OB induced negligible CX3CL1 secretion, the combination of TNF-α and IFN-γ induced dramatic increases in both soluble CX3CL1 protein and mRNA transcripts. This synergistic effect was more pronounced in OB from RA than in OB from either osteoarthritis or normal individuals. The expression of CX3CL1 was markedly reduced by specific inhibitors of the nuclear factor-κB (NF-κB or STAT-1 transcription factor. These findings suggest that osteoblasts are an important cellular source of CX3CL1 and may play roles in inflammatory bone/joint diseases.Keywords: osteoblast, CX3CL1, chemokine, NF-κB, STAT-1

  16. Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways.

    Science.gov (United States)

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2008-07-01

    Blood vessel injury results in limited oxygen tension and diffusion leading to hypoxia, increased anaerobic metabolism, and elevated production of acidic metabolites that cannot be easily removed due to the reduced blood flow. Therefore, an acidic extracellular pH occurs in the local microenvironment of disrupted bone. The potential role of acidic pH and glu-leu-arg (ELR(+)) CXC chemokines in early events in bone repair was studied in human mesenchymal stem cells (hMSCs) treated with medium of decreasing pH (7.4, 7.0, 6.7, and 6.4). The cells showed a reciprocal increase in CXCL8 (interleukin-8, IL-8) mRNA levels as extracellular pH decreased. At pH 6.4, CXCL8 mRNA was induced >60x in comparison to levels at pH 7.4. hMSCs treated with osteogenic medium (OGM) also showed an increase in CXCL8 mRNA with decreasing pH; although, at a lower level than that seen in cells grown in non-OGM. CXCL8 protein was secreted into the medium at all pHs with maximal induction at pH 6.7. Inhibition of the G-protein-coupled receptor alpha, G(alphai), suppressed CXCL8 levels in response to acidic pH; whereas phospholipase C inhibition had no effect on CXCL8. The use of specific mitogen-activated protein kinase (MAPK) signal transduction inhibitors indicated that the pH-dependent increase in CXCL8 mRNA is due to activation of ERK and p38 pathways. The JNK pathway was not involved. NF-kappaB inhibition resulted in a decrease in CXCL8 levels in hMSCs grown in non-OGM. However, OGM-differentiated hMSCs showed an increase in CXCL8 levels when treated with the NF-kappaB inhibitor PDTC, a pyrrolidine derivative of dithiocarbamate. 2008 Wiley-Liss, Inc.

  17. Apple, Cherry, and Blackcurrant Increases Nuclear Factor Kappa B Activation in Liver of Transgenic Mice

    DEFF Research Database (Denmark)

    Balstad, Trude; Paur, Ingvild; Poulsen, Morten

    2010-01-01

    Nuclear factor kappa B (NF-B) is essential in normal physiology, and several human disorders involve inappropriate regulation of NF-B. Diets dominated by plant-based foods protect against chronic diseases, and several food derived compounds have been identified as promising NF-B modulators. We...... investigated the effects of diets supplemented with apple, blackcurrant, or cherries on lipopolysaccharide (LPS)-induced NF-B activation in transgenic NF-B-luciferase mice. Whole body and organ specific NF-B activities were determined. The mice had ad libitum access to the respective experimental diets for 7...... slightly higher whole-body NF-B activation at 4 h, and all 3 experimental groups had higher NF-B activation at 6 h. LPS-induced NF-B activation in liver was increased with all 3 experimental diets, but no effects were observed in other organs. Our findings indicate that high intakes of lyophilized fruits...

  18. Mycobacterium tuberculosis Rv3402c enhances mycobacterial survival within macrophages and modulates the host pro-inflammatory cytokines production via NF-kappa B/ERK/p38 signaling.

    Directory of Open Access Journals (Sweden)

    Wu Li

    Full Text Available Intracellular survival plays a central role in the pathogenesis of Mycobacterium tuberculosis, a process which depends on an array of virulence factors to colonize and replicate within the host. The M. tuberculosis iron regulated open reading frame (ORF rv3402c, encoding a conserved hypothetical protein, was shown to be up-regulated upon infection in both human and mice macrophages. To explore the function of this ORF, we heterologously expressed the rv3402c gene in the non-pathogenic fast-growing Mycobacterium smegmatis strain, and demonstrated that Rv3402c, a cell envelope-associated protein, was able to enhance the intracellular survival of recombinant M. smegmatis. Enhanced growth was not found to be the result of an increased resistance to intracellular stresses, as growth of the Rv3402c expressing strain was unaffected by iron depletion, H2O2 exposure, or acidic conditions. Colonization of macrophages by M. smegmatis expressing Rv3402c was associated with substantial cell death and significantly greater amount of TNF-α and IL-1β compared with controls. Rv3402c-induced TNF-α and IL-1β production was found to be mediated by NF-κB, ERK and p38 pathway in macrophages. In summary, our study suggests that Rv3402c delivered in a live M. smegmatis vehicle can modify the cytokines profile of macrophage, promote host cell death and enhance the persistence of mycobacterium within host cells.

  19. Chlamydia pneumoniae activates IKK/I kappa B-mediated signaling, which is inhibited by 4-HNE and following primary exposure.

    Science.gov (United States)

    Donath, Bernadette; Fischer, Claudia; Page, Sharon; Prebeck, Sigrid; Jilg, Nikolaus; Weber, Marion; da Costa, Clarissa; Neumeier, Dieter; Miethke, Thomas; Brand, Korbinian

    2002-11-01

    Chlamydia pneumoniae may be involved in atherosclerosis by inducing inflammation as well as LDL oxidation. The transcription factor NF-kappa B is found in an active state in atherosclerotic lesions. This study examined the effect of C. pneumoniae exposure on the NF-kappa B system in human monocytic lineage cells. Short exposure to C. pneumoniae as well as chlamydial heat shock protein 60 activated NF-kappa B, accompanied by increased cytokine production. Incubation with C. pneumoniae-induced depletion of I kappa B-alpha and later I kappa B-epsilon which was preceded by I kappa B kinase complex activation. 4-Hydroxynonenal, an aldehyde LDL oxidation product, was shown to inhibit C. pneumoniae induced NF-kappa B activation by preventing I kappa B phosphorylation/proteolysis. During long-term incubation with C. pneumoniae I kappa B-alpha returned to baseline, whereas the levels of I kappa B-epsilon and p65 were upregulated. Interestingly, long-term preincubation with C. pneumoniae selectively prevented restimulation by this microorganism, which appears to be at least partly facilitated by inhibition of I kappa B proteolysis. C. pneumoniae-induced NF-kappa B activation as well as the inhibition of that effect under certain conditions may contribute to chronic inflammation with potential relevance to vascular disease.

  20. Effects of intratracheal administration of nuclear factor-kappaB decoy oligodeoxynucleotides on long-term cigarette smoke-induced lung inflammation and pathology in mice.

    Science.gov (United States)

    Li, Yu-Tao; He, Bei; Wang, Yu-Zhu; Wang, Jing

    2009-08-25

    To determine if nuclear factor-kappaB (NF-kappaB) activation may be a key factor in lung inflammation and respiratory dysfunction, we investigated whether NF-kappaB can be blocked by intratracheal administration of NF-kappaB decoy oligodeoxynucleotides (ODNs), and whether decoy ODN-mediated NF-kappaB inhibition can prevent smoke-induced lung inflammation, respiratory dysfunction, and improve pathological alteration in the small airways and lung parenchyma in the long-term smoke-induced mouse model system. We also detected changes in transcriptional factors. In vivo, the transfection efficiency of NF-kappaB decoy ODNs to alveolar macrophages in BALF was measured by fluorescein isothiocyanate (FITC)-labeled NF-kappaB decoy ODNs and flow cytometry post intratracheal ODN administration. Pulmonary function was measured by pressure sensors, and pathological changes were assessed using histology and the pathological Mias software. NF-kappaB and activator protein 1(AP-1) activity was detected by the electrophoretic motility shift assay (EMSA). Mouse cytokine and chemokine pulmonary expression profiles were investigated by enzyme-linked immunosorbent assay (ELISA) in bronchoalveolar lavage fluid (BALF) and lung tissue homogenates, respectively, after repeated exposure to cigarette smoke. After 24 h, the percentage of transfected alveolar macrophages was 30.00 +/- 3.30%. Analysis of respiratory function indicated that transfection of NF-kappaB decoy ODNs significantly impacted peak expiratory flow (PEF), and bronchoalveolar lavage cytology displayed evidence of decreased macrophage infiltration in airways compared to normal saline-treated or scramble NF-kappaB decoy ODNs smoke exposed mice. NF-kappaB decoy ODNs inhibited significantly level of macrophage inflammatory protein (MIP) 1alpha and monocyte chemoattractant protein 1(MCP-1) in lung homogenates compared to normal saline-treated smoke exposed mice. In contrast, these NF-kappaB decoy ODNs-treated mice showed

  1. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chien-Sheng [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Division of Thoracic Surgery, Department of Surgery, Taipei-Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Kawamura, Tomohiro; Peng, Ximei [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Tochigi, Naobumi [Department of Pathology, University of Pittsburgh Medical Center, PA (United States); Shigemura, Norihisa [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Billiar, Timothy R. [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Nakao, Atsunori, E-mail: anakao@imap.pitt.edu [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Toyoda, Yoshiya [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2011-05-06

    Highlights: {yields} Hydrogen is a regulatory molecule with antiinflammatory and antiapoptotic protective effects. {yields} There is very limited information on the pathways regulated in vivo by the hydrogen. {yields} Antiapoptotic abilities of hydrogen were explained by upregulation of the antiapoptotic gene. {yields} NF{kappa}B activation during hydrogen treatment was correlated with elevated antiapoptotic protein. {yields} NF{kappa}B activation associated with increase Bcl-2 may contribute to cytoprotection of hydrogen. -- Abstract: We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NF{kappa}B) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NF{kappa}B activation, as indicated by NF{kappa}B DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NF{kappa}B DNA binding after 1 h of ventilation and decreased NF{kappa}B DNA binding after 2 h of ventilation, as compared with controls. The early activation of NF{kappa}B during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NF{kappa}B activation using SN50 reversed these protective effects. NF{kappa}B activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the

  2. Diarctigenin, a lignan constituent from Arctium lappa, down-regulated zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-kappaB in macrophages.

    Science.gov (United States)

    Kim, Byung Hak; Hong, Seong Su; Kwon, Soon Woo; Lee, Hwa Young; Sung, Hyeran; Lee, In-Jeong; Hwang, Bang Yeon; Song, Sukgil; Lee, Chong-Kil; Chung, Daehyun; Ahn, Byeongwoo; Nam, Sang-Yoon; Han, Sang-Bae; Kim, Youngsoo

    2008-11-01

    Diarctigenin was previously isolated as an inhibitor of nitric oxide (NO) production in macrophages from the seeds of Arctium lappa used as an alternative medicine for the treatment of inflammatory disorders. However, little is known about the molecular basis of these effects. Here, we demonstrated that diarctigenin inhibited the production of NO, prostaglandin E(2), tumor necrosis factor-alpha, and interleukin (IL)-1beta and IL-6 with IC(50) values of 6 to 12 miciroM in zymosan- or lipopolysaccharide-(LPS) activated macrophages. Diarctigenin attenuated zymosan-induced mRNA synthesis of inducible NO synthase (iNOS) and also inhibited promoter activities of iNOS and cytokine genes in the cells. Because nuclear factor (NF)-kappaB plays a pivotal role in inflammatory gene transcription, we next investigated the effect of diarctigenin on NF-kappaB activation. Diarctigenin inhibited the transcriptional activity and DNA binding ability of NF-kappaB in zymosan-activated macrophages but did not affect the degradation and phosphorylation of inhibitory kappaB (IkappaB) proteins. Moreover, diarctigenin suppressed expression vector NF-kappaB p65-elicited NF-kappaB activation and also iNOS promoter activity, indicating that the compound could directly target an NF-kappa-activating signal cascade downstream of IkappaB degradation and inhibit NF-kappaB-regulated iNOS expression. Diarctigenin also inhibited the in vitro DNA binding ability of NF-kappaB but did not affect the nuclear import of NF-kappaB p65 in the cells. Taken together, diarctigenin down-regulated zymosan- or LPS-induced inflammatory gene transcription in macrophages, which was due to direct inhibition of the DNA binding ability of NF-kappaB. Finally, this study provides a pharmacological potential of diarctigenin in the NF-kappaB-associated inflammatory disorders.

  3. The Rho Kappa Spirit

    Science.gov (United States)

    McCullagh, Mary T.

    2012-01-01

    Many years ago, Christopher Columbus High School opened a chapter of Rho Kappa, the Social Studies Honor Society developed through the Florida Council for the Social Studies (FCSS). As department chair and member of FCSS, the author was thrilled to be able to offer their students opportunities in the Honor Society for the Social Studies. They…

  4. TLR-mediated NF-kB-dependent cytokine production is differently affected by HIV therapeutics

    DEFF Research Database (Denmark)

    Melchjorsen, Jesper; Paludan, Søren Riis; Mogensen, Trine

      Pathogen-recognizing Toll-like receptors 2 (TLR2) and TLR4 are known to recognize a number of pathogens, including E.Coli, S. Pneumonia and N. Meningococcus. We have studied whether a number of HIV therapeutics affect immediate proinflammatory cytokine responses in cell cultures. Preliminary...

  5. Involvement of nuclear factor-kappaB in macrophage migration inhibitory factor gene transcription up-regulation induced by interleukin- 1 beta in ectopic endometrial cells.

    Science.gov (United States)

    Veillat, Véronique; Lavoie, Catherine Herrmann; Metz, Christine N; Roger, Thierry; Labelle, Yves; Akoum, Ali

    2009-05-01

    To investigate the involvement of the nuclear factor (NF)-kappaB in the interleukin (IL)-1 beta-mediated macrophage migration inhibitory factor (MIF) gene activation. Prospective study. Human reproduction research laboratory. Nine women with endometriotic lesions. Endometriotic lesions were obtained during laparoscopic surgery. The MIF protein secretion was analyzed by ELISA, MIF mRNA expression by quantitative real-time polymerase chain reaction (PCR), NF-kappaB translocation into the nucleus by electrophoresis mobility shift assay, I kappaB phosphorylation and degradation by Western blot, and human MIF promoter activity by transient cell transfection. This study showed a significant dose-dependent increase of MIF protein secretion and mRNA expression, the NF-kappaB translocation into the nucleus, I kappaB phosphorylation, I kappaB degradation, and human MIF promoter activity in endometriotic stromal cells in response to IL-1 beta. Curcumin (NF-kappaB inhibitor) significantly inhibited all these IL-1 beta-mediated effects. Analysis of the activity of deletion constructs of the human MIF promoter and a computer search localized two putative regulatory elements corresponding to NF-kappaB binding sites at positions -2538/-2528 bp and -1389/-1380 bp. This study suggests the involvement of the nuclear transcription factor NF-kappaB in MIF gene activation in ectopic endometrial cells in response to IL-1 beta and identifies a possible pathway of endometriosis-associated inflammation and ectopic cell growth.

  6. Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3',4',5'-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities.

    Science.gov (United States)

    Srinivasan, Balasubramanian; Johnson, Thomas E; Lad, Rahul; Xing, Chengguo

    2009-11-26

    Chalcone is a privileged structure, demonstrating promising anti-inflammatory and anticancer activities. One potential mechanism is to suppress nuclear factor kappa B (NF-kappaB) activation. The structures of chalcone-based NF-kappaB inhibitors vary significantly that there is minimum information about their structure-activity relationships (SAR). This study aims to establish SAR of chalcone-based compounds to NF-kappaB inhibition, to explore the feasibility of developing simple chalcone-based potent NF-kappaB inhibitors, and to evaluate their anticancer activities. Three series of chalcones were synthesized in one to three steps with the key step being aldol condensation. These candidates demonstrated a wide range of NF-kappaB inhibitory activities, some of low micromolar potency, establishing that structural complexity is not required for NF-kappaB inhibition. Lead compounds also demonstrate potent cytotoxicity against lung cancer cells. Their cytotoxicities correlate moderately well with their NF-kappaB inhibitory activities, suggesting that suppressing NF-kappaB activation is likely responsible for at least some of the cytotoxicities. One lead compound effectively inhibits lung tumor growth with no signs of adverse side effects.

  7. Kappa Coefficients for Circular Classifications

    NARCIS (Netherlands)

    Warrens, Matthijs J.; Pratiwi, Bunga C.

    2016-01-01

    Circular classifications are classification scales with categories that exhibit a certain periodicity. Since linear scales have endpoints, the standard weighted kappas used for linear scales are not appropriate for analyzing agreement between two circular classifications. A family of kappa

  8. Activation of nuclear factor-kappa B via endogenous tumor necrosis factor alpha regulates survival of axotomized adult sensory neurons

    NARCIS (Netherlands)

    Fernyhough, P; Smith, DR; Schapansky, J; Van Der Ploeg, R; Gardiner, NJ; Tweed, CW; Kontos, A; Freeman, L; Purves-Tyson, TD; Glazner, GW

    2005-01-01

    Embryonic dorsal root ganglion (DRG) neurons die after axonal damage in vivo, and cultured embryonic DRG neurons require exogenous neurotrophic factors that activate the neuroprotective transcription factor nuclear factor-kappaB(NF-kappaB) for survival. In contrast, adult DRG neurons survive

  9. Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats.

    Science.gov (United States)

    Goyarzu, Pilar; Malin, David H; Lau, Francis C; Taglialatela, Giulio; Moon, William D; Jennings, Ryan; Moy, Edward; Moy, Deborah; Lippold, Stephen; Shukitt-Hale, Barbara; Joseph, James A

    2004-04-01

    It has been reported that an antioxidant-rich, blueberry-supplemented rat diet may retard brain aging in the rat. The present study determined whether such supplementation could prevent impaired object recognition memory and elevated levels of the oxidative stress-responsive protein, nuclear factor-kappa B (NF-kappaB) in aged Fischer-344 rats. Twelve aged rats had been fed a 2% blueberry supplemented diet for 4 months prior to testing. Eleven aged rats and twelve young rats had been fed a control diet. The rats were tested for object recognition memory on the visual paired comparison task. With a 1-h delay between training and testing, aged control diet rats performed no better than chance. Young rats and aged blueberry diet rats performed similarly and significantly better than the aged control diet group. Levels of NF-kappaB in five brain regions of the above subjects were determined by western blotting assays. In four regions, aged control diet rats had significantly higher average NF-kappaB levels than young animals on the control diet. In four regions, aged blueberry diet rats had significantly lower levels of NF-kappaB than aged control diet rats. Normalized NF-kappaB levels (averaged across regions and in several individual regions) correlated negatively and significantly with the object memory scores.

  10. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor {kappa}B p65 activation

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xia [Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012 (China); Center for New Drugs Evaluation, Shandong University, Jinan 250012 (China); Qu, Xian-Jun [Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012 (China); Yang, Ying [School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355 (China); Sheng, Xie-Huang; Cheng, Fang; Jiang, E-Nang; Wang, Jian-hua; Bu, Wen [Center for New Drugs Evaluation, Shandong University, Jinan 250012 (China); Liu, Zhao-Ping, E-mail: liuzhaoping@sdu.edu.cn [Center for New Drugs Evaluation, Shandong University, Jinan 250012 (China)

    2010-12-17

    Research highlights: {yields} Permanent NF-{kappa}B p65 activation contributes to the infarction after ischemia-reperfusion injury in rats. {yields} Baicalin can markedly inhibit the nuclear NF-{kappa}B p65 expression and m RNA levels after ischemia-reperfusion injury in rats. {yields} Baicalin decreased the cerebral infarction area via inhibiting the activation of nuclear NF-{kappa}B p65. -- Abstract: Baicalin is a flavonoid compound purified from plant Scutellaria baicalensis Georgi. We aimed to evaluate the neuroprotective effects of baicalin against cerebral ischemic reperfusion injury. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. Baicalin at doses of 50, 100 and 200 mg/kg was intravenously injected after ischemia onset. Twenty-four hours after reperfusion, the neurological deficit was scored and infarct volume was measured. Hematoxylin and eosin (HE) staining was performed to analyze the histopathological changes of cortex and hippocampus neurons. We examined the levels of NF-{kappa}B p65 in ischemic cortexes by Western blot analysis and RT-PCR assay. The results showed that the neurological deficit scores were significantly decreased from 2.0 {+-} 0.7 to 1.2 {+-} 0.4 and the volume of infarction was reduced by 25% after baicalin injection. Histopathological examination showed that the increase of neurons with pycnotic shape and condensed nuclear in cortex and hippocampus were not observed in baicalin treated animals. Further examination showed that NF-{kappa}B p65 in cortex was increased after ischemia reperfusion injury, indicating the molecular mechanism of ischemia reperfusion injury. The level of NF-{kappa}B p65 was decreased by 73% after baicalin treatment. These results suggest that baicalin might be useful as a potential neuroprotective agent in stroke therapy. The neuroprotective effects of baicalin may relate to inhibition of NF-{kappa}B p65.

  11. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hachem, Ahmed [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Yacoub, Daniel [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1 (Canada); Zaid, Younes [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Mourad, Walid [Universite de Montreal, Department of Medicine, 2900 boul. Edouard-Montpetit, Montreal, Quebec, Canada H3T 1J4 (Canada); Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1 (Canada); Merhi, Yahye, E-mail: yahye.merhi@icm-mhi.org [Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, Quebec, Canada H1T 1C8 (Canada); Universite de Montreal, Department of Medicine, 2900 boul. Edouard-Montpetit, Montreal, Quebec, Canada H3T 1J4 (Canada)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Given that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo

  12. TNF-α expression, not iNOS expression, is correlated with NF-κB ...

    African Journals Online (AJOL)

    Jane

    2011-07-11

    Jul 11, 2011 ... Previous studies have shown that pro-inflammatory cytokines were involved in the genesis and persistence of neuropathic pain. Nuclear factor kappa B (NF-κB) plays a crucial role in regulating pro- inflammatory cytokine gene expression. In this study, we examined the hypothesis that NF-κB would regulate ...

  13. Inhibitors of nuclear factor kappa B cause apoptosis in cultured macrophages

    Directory of Open Access Journals (Sweden)

    E. E. Mannick

    1997-01-01

    Full Text Available The precise role of the transcription factor nuclear factor kappa B (NF- κB in the regulation of cell survival and cell death is still unresolved and may depend on cell type and position in the cell cycle. The aim of this study was to determine if three pharmacologic inhibitors of NF-κB, pyrrolidine dithiocarbamate, N-tosyl-L-lysl chloromethyl ketone and calpain I inhibitor, induce apoptosis in a murine macrophage cell line (RAW 264.7 at doses similar to those required for NF-κB inhibition. We found that each of the three inhibitors resulted in a dose- and time-dependent increase in morphologic indices of apoptosis in unstimulated, LPS-stimulated and TNF-stimulated cells. Lethal doses were consistent with those required for NF- κB inhibition. We conclude that nuclear NF-κB activation may represent an important survival mechanism in macrophages.

  14. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase

    Science.gov (United States)

    Kim, Ji Min; Lee, Eun Kyeong; Kim, Dae Hyun; Yu, Byung Pal

    2010-01-01

    Advanced glycation endproducts (AGE) are oxidative products formed from the reaction between carbohydrates and a free amino group of proteins that are provoked by reactive species (RS). It is also known that AGE enhance the generation of RS and that the binding of AGE to a specific AGE receptor (RAGE) induces the activation of the redox-sensitive, pro-inflammatory transcription factor, nuclear factor-kappa B (NF-ĸB). In this current study, we investigated the anti-oxidative effects of short-term kaempferol supplementation on the age-related formation of AGE and the binding activity of RAGE in aged rat kidney. We further investigated the suppressive action of kaempferol against AGE's ability to stimulate activation of pro-inflammatory NF-ĸB and its molecular mechanisms. For this study, we utilized young (6 months old), old (24 months old), and kaempferol-fed (2 and 4 mg/kg/day for 10 days) old rats. In addition, for the molecular work, the rat endothelial cell line, YPEN-1 was used. The results show that AGE and RAGE were increased during aging and that these increases were blunted by kaempferol. In addition, dietary kaempferol reduced age-related increases in NF-κB activity and NF-ĸB-dependant pro-inflammatory gene activity. The most significant new finding from this study is that kaempferol supplementation prevented age-related NF-κB activation by suppressing AGE-induced nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Taken together, our results demonstrated that dietary kaempferol exerts its anti-oxidative and anti-inflammatory actions by modulating the age-related NF-κB signaling cascade and its pro-inflammatory genes by suppressing AGE-induced NADPH oxidase activation. Based on these data, dietary kaempferol is proposed as a possible anti-AGE agent that may have the potential for use in anti-inflammation therapies. PMID:20431987

  15. Thrombin-induced, TNFR-dependent miR-181c downregulation promotes MLL1 and NF-κB target gene expression in human microglia.

    Science.gov (United States)

    Yin, Min; Chen, Zhiying; Ouyang, Yetong; Zhang, Huiyan; Wan, Zhigang; Wang, Han; Wu, Wei; Yin, Xiaoping

    2017-06-29

    Controlling thrombin-driven microglial activation may serve as a therapeutic target for intracerebral hemorrhage (ICH). Here, we investigated microRNA (miRNA)-based regulation of thrombin-driven microglial activation using an in vitro thrombin toxicity model applied to primary human microglia. A miRNA array identified 22 differential miRNA candidates. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) identified miR-181c as the most significantly downregulated miRNA. TargetScan analysis identified mixed lineage leukemia-1 (MLL1) as a putative gene target for miR-181c. qRT-PCR was applied to assess tumor necrosis factor-alpha (TNF-α), miR-181c, and MLL1 levels following thrombin or proteinase-activated receptor-4-specific activating peptide (PAR4AP) exposure. Anti-TNF-α antibodies and tumor necrosis factor receptor (TNFR) silencing were employed to test TNF-α/TNFR dependence. A dual-luciferase reporter system and miR-181c mimic transfection assessed whether mir-181c directly binds to and negatively regulates MLL1. Nuclear factor kappa-B (NF-κB)-dependent luciferase reporter assays and NF-κB target gene expression were assessed in wild-type (MLL1+) and MLL1-silenced cells. Thrombin or PAR4AP-induced miR-181c downregulation (p < 0.05) and MLL1 upregulation (p < 0.05) that were dependent upon TNF-α/TNFR. miR-181c decreased wild-type MLL1 3'-UTR luciferase reporter activity (p < 0.05), and a miR-181c mimic suppressed MLL1 expression (p < 0.05). Thrombin treatment increased, while miR-181c reduced, NF-κB activity and NF-κB target gene expression in both wild-type (MLL1+) and MLL1-silenced cells (p < 0.05). Thrombin-induced, TNF-α/TNFR-dependent miR-181c downregulation promotes MLL1 expression, increases NF-κB activity, and upregulates NF-κB target gene expression. As miR-181c opposes thrombin's stimulation of pro-inflammatory NF-κB activity, miR-181c mimic therapy may show promise in controlling thrombin

  16. TonB-dependent transporters and their occurrence in cyanobacteria

    Directory of Open Access Journals (Sweden)

    von Haeseler Arndt

    2009-10-01

    Full Text Available Abstract Background Different iron transport systems evolved in Gram-negative bacteria during evolution. Most of the transport systems depend on outer membrane localized TonB-dependent transporters (TBDTs, a periplasma-facing TonB protein and a plasma membrane localized machinery (ExbBD. So far, iron chelators (siderophores, oligosaccharides and polypeptides have been identified as substrates of TBDTs. For iron transport, three uptake systems are defined: the lactoferrin/transferrin binding proteins, the porphyrin-dependent transporters and the siderophore-dependent transporters. However, for cyanobacteria almost nothing is known about possible TonB-dependent uptake systems for iron or other substrates. Results We have screened all publicly available eubacterial genomes for sequences representing (putative TBDTs. Based on sequence similarity, we identified 195 clusters, where elements of one cluster may possibly recognize similar substrates. For Anabaena sp. PCC 7120 we identified 22 genes as putative TBDTs covering almost all known TBDT subclasses. This is a high number of TBDTs compared to other cyanobacteria. The expression of the 22 putative TBDTs individually depends on the presence of iron, copper or nitrogen. Conclusion We exemplified on TBDTs the power of CLANS-based classification, which demonstrates its importance for future application in systems biology. In addition, the tentative substrate assignment based on characterized proteins will stimulate the research of TBDTs in different species. For cyanobacteria, the atypical dependence of TBDT gene expression on different nutrition points to a yet unknown regulatory mechanism. In addition, we were able to clarify a hypothesis of the absence of TonB in cyanobacteria by the identification of according sequences.

  17. RelA NF-κB subunit activation as a therapeutic target in diffuse large B-cell lymphoma

    DEFF Research Database (Denmark)

    Zhang, Mingzhi; Xu-Monette, Zijun Y; Li, Ling

    2016-01-01

    It has been well established that nuclear factor kappa-B (NF-κB) activation is important for tumor cell growth and survival. RelA/p65 and p50 are the most common NF-kB subunits and involved in the classical NF-kB pathway. However, the prognostic and biological significance of RelA/p65 is equivoca...

  18. Weighted Kappas for 3×3 Tables

    Directory of Open Access Journals (Sweden)

    Matthijs J. Warrens

    2013-01-01

    Full Text Available Weighted kappa is a widely used statistic for summarizing inter-rater agreement on a categorical scale. For rating scales with three categories, there are seven versions of weighted kappa. It is shown analytically how these weighted kappas are related. Several conditional equalities and inequalities between the weighted kappas are derived. The analytical analysis indicates that the weighted kappas are measuring the same thing but to a different extent. One cannot, therefore, use the same magnitude guidelines for all weighted kappas.

  19. An Automation Interface for Kappa PC

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1999-01-01

    The reports documents an automation interface for Kappa PC. The automation interface can be used to embed Kappa applications in 32-bit Windowsapplications.The interface includes functions for initialising Kappa, for loading an application, for settingvalues, for getting values, and for stopping...

  20. Agreement and Kappa-Type Indices

    NARCIS (Netherlands)

    de Mast, J.

    2007-01-01

    Kappa-type indices use the concept of agreement to express the reproducibility of nominal measurements. This article grounds kappa-type indices in statistical modeling, making explicit the underlying premises and assumptions. We critically review whether the interpretation of the kappa index as a

  1. Ghrelin inhibits the development of acute pancreatitis and nuclear factor kappaB activation in pancreas and liver.

    Science.gov (United States)

    Zhou, Xiaolei; Xue, Chengrui

    2009-10-01

    To investigate the influence of ghrelin on the development of severe acute pancreatitis (SAP) and the expression of nuclear factor kappaB (NF-kappaB) p65 in the pancreas and liver. Severe acute pancreatitis was induced in rat by sodium taurocholate injection in the pancreaticobiliary duct. Ghrelin was administrated twice at the dose 10 or 20 nmol/kg per injection, respectively. Then, serum amylase activity; serum tumor necrosis factor alpha, interleukin 1beta, and interleukin 6 concentrations; and morphological signs of pancreatitis and hepatic damage were measured. Meanwhile, determination of pancreatic and hepatic NF-kappaB p65 expression was performed by Western blotting and immunohistochemistry. The serumal parameters increased, and morphological damages were observed in the pancreas and liver in SAP rats. Nuclear factor kappaB p65 expression was significantly higher in the pancreas and liver than sham-operated rats (P acute pancreatitis induced by sodium taurocholate. It exerts the therapeutic effects through inhibiting NF-kappaB expression, thereby blocks the inflammatory signal transduction pathway and reduces the release of inflammatory media and cytokines.

  2. Histamine H1-receptor antagonists inhibit nuclear factor-kappaB and activator protein-1 activities via H1-receptor-dependent and -independent mechanisms.

    Science.gov (United States)

    Roumestan, C; Henriquet, C; Gougat, C; Michel, A; Bichon, F; Portet, K; Jaffuel, D; Mathieu, M

    2008-06-01

    Histamine H1-receptor antagonists are used to relieve the symptoms of an immediate allergic reaction. They have additional anti-inflammatory effects that could result from an inhibition of the transcription factors activator protein-1 (AP-1) and nuclear factor-kappa B (NF-kappaB). The implication of the H1-receptor in these effects is controversial. Diphenhydramine is a first-generation H1-receptor antagonist while mizolastine and desloratadine are second-generation compounds. Mizolastine is also an inhibitor of 5-lipoxygenase (5-LO), an enzyme that has been involved in NF-kappaB activation. We measured the ability of antihistamines to reverse histamine-induced smooth muscle contraction, an effect that involves the H1-receptor. We then investigated whether these drugs affect NF-kappaB and AP-1 activities in A549 lung epithelial cells, and whether this potential regulation involves H1-receptor and 5-LO. Muscle tone was measured on tracheal segments of guinea-pigs. The H1-receptor was overexpressed by transfection and detected by Western blotting and immunofluorescence microscopy. NF-kappaB and AP-1 activities were assessed by reporter gene assays in cells overexpressing or not overexpressing the H1-receptor. Production of regulated upon activation, normal T cell expressed andsecreted (RANTES), a chemokine whose expression is induced through NF-kappaB, was measured using an immunoassay. H1-receptor antagonists reversed histamine-induced contraction in a dose-dependent manner. Induction of AP-1 and NF-kappaB activities by histamine and the down-regulatory effect of antihistamines required overexpression of the H1-receptor. In contrast, when tumour necrosis factor-alpha and a phorbol ester were used to stimulate NF-kappaB and AP-1 activities, respectively, repression of these activities did not involve the H1-receptor. Indeed, repression was triggered only by a subset of H1-receptor antagonists and was not stronger after overexpression of the H1-receptor. Mizolastine

  3. Effects of AT1 receptor-mediated endocytosis of extracellular Ang II on activation of nuclear factor-kappa B in proximal tubule cells.

    Science.gov (United States)

    Zhuo, Jia L; Carretero, Oscar A; Li, Xiao C

    2006-12-01

    Angiotensin II (Ang II) exerts powerful proinflammatory and growth effects on the development of Ang II-induced hypertensive glomerulosclerosis and tubulo-interstitial fibrosis. The proinflammatory and growth actions of Ang II are primarily mediated by activation of cell surface type 1 receptors (AT(1)) and the transcription factor nuclear factor-kappaB (NF-kappaB). However, binding of cell surface receptors by extracellular Ang II also induces receptor-mediated endocytosis of the agonist-receptor complex in renal cells. The purpose of the present study was to determine whether AT(1) receptor-mediated endocytosis of extracellular Ang II is required for Ang II-induced NF-kappaB activation and subsequent proliferation of rabbit renal proximal tubule cells. Expression of AT(1) (primarily AT(1a) or human AT(1)) receptors in these cells was confirmed by Western blot, showing that transfection of a human AT(1) receptor-specific 20-25 nucleotide siRNA knocked down more than 70% of AT(1) receptor protein (P cells by Ang II (1 nM) induced fourfold increases in NF-kappaB activity (P 55%, P cell proliferation and DNA synthesis, and the effect was also attenuated by coadministration of losartan and colchicine (P extracellular Ang II may be required for Ang II-induced NF-kappaB activation and subsequent cell proliferation in renal proximal tubule cells.

  4. Nuclear factor kappaB-mediated down-regulation of adhesion molecules: possible mechanism for inhibitory activity of bigelovin against inflammatory monocytes adhesion to endothelial cells.

    Science.gov (United States)

    Nam, Kung-Woo; Oh, Goo Taeg; Seo, Eun-Kyoung; Kim, Kyeong Ho; Koo, Uk; Lee, Sung-Jin; Mar, Woongchon

    2009-06-22

    The flowers of Inula britannica L. var. chinensis (Rupr.) Reg. (Compositae) are used in traditional medicine to treat asthma, chronic bronchitis, and acute pleurisy in China and Korea. However, the pharmacological actions of Inula britannica L. var. chinensis on endothelial cells and inflammatory monocytes are not clear. In this study, we investigated whether bigelovin, a sesquiterpene lactone isolated from the flowers of Inula britannica L. var. chinensis, inhibits monocyte adhesion and adhesion molecule expression in brain endothelial cells. We measured tumor necrosis factor-alpha (TNF-alpha)-enhanced Raw264.7 monocyte binding to brain endothelial cells and the levels of cell adhesion molecules, including vascular adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and endothelial-selectin (E-selectin) on the surface of brain endothelial cells. Bigelovin significantly inhibited these in a dose-dependent manner without affecting cell viability. Furthermore, bigelovin suppressed the nuclear factor kappaB (NF-kappaB) promoter-driven luciferase activity, NF-kappaB activation, and degradation of NF-kappaB inhibitor protein alpha (IkappaBalpha). These results indicate that bigelovin inhibits inflammatory monocyte adhesion to endothelial cells and the expression of VCAM-1, ICAM-1, and E-selectin by blocking IkappaBalpha degradation and NF-kappaB activation.

  5. NF-κB activation via tyrosine phosphorylation of IκB-α is crucial for CNTF-promoted neurite growth from developing neurons

    OpenAIRE

    Gallagher, Denis; Gutierrez, Humberto; O'Keeffe, Gerard; Gavalda, Nuria; Hay, Ron; Davies, Alun M.

    2007-01-01

    The cytokine CNTF (ciliary neurotrophic factor) promotes the growth of neural processes from many kinds of neurons in the developing and regenerating adult nervous system, but the intracellular signalling mechanisms mediating this important function of CNTF are poorly understood. Here we show that CNTF activates the NF-κB transcriptional system in neonatal sensory neurons and that blocking NF-κB-dependent transcription inhibits CNTF-promoted neurite growth. Selectively blocking NF-κB activati...

  6. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    Directory of Open Access Journals (Sweden)

    Mamaghani Shadi

    2009-04-01

    Full Text Available Abstract Background Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. Methods GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. Results GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-XL, and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. Conclusion GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard

  7. Butter and walnuts, but not olive oil, elicit postprandial activation of nuclear transcription factor kappaB in peripheral blood mononuclear cells from healthy men.

    Science.gov (United States)

    Bellido, Cecilia; López-Miranda, José; Blanco-Colio, Luis Miguel; Pérez-Martínez, Pablo; Muriana, Francisco José; Martín-Ventura, José Luis; Marín, Carmen; Gómez, Purificación; Fuentes, Francisco; Egido, Jesús; Pérez-Jiménez, Francisco

    2004-12-01

    Nuclear transcription factor kappaB (NF-kappaB) plays an important role in atherosclerosis by modulating gene expression. Postprandial lipemia has been correlated with an increase in NF-kappaB activation in vascular cells and it is associated with an increase in postprandial triacylglycerol-rich lipoproteins, which are involved in the development of atherosclerotic plaque. The objective of this study was to determine the effect of the intakes of 3 different foods with different fat compositions on the postprandial activation of monocyte NF-kappaB. Eight healthy men followed a 4-wk baseline diet and then consumed 3 fat-load meals consisting of 1 g fat/kg body wt (65% fat) according to a randomized crossover design. Each meal had a different fatty acid composition, and the consumption of each meal was separated by 1 wk. The compositions of the 3 test meals were as follows: olive oil meal [22% saturated fatty acids (SFAs), 38% monounsaturated fatty acids (MUFAs), 4% polyunsaturated fatty acids (PUFAs), and 0.7% alpha-linolenic acid], butter meal (38% SFAs, 22% MUFAs, 4% PUFAs, and 0.7% alpha-linolenic acid), and walnut meal (20% SFAs, 24% MUFAs, 16% PUFAs, and 4% alpha-linolenic acid). Ingestion of the olive oil meal did not elicit NF-kappaB activation compared with ingestion of either the butter meal at 3 h (P oil-enriched meal does not activate NF-kappaB in monocytes as do butter and walnut-enriched meals. This effect could enhance the cardioprotective effect of olive oil-enriched diets.

  8. Inhibitory effect on activator protein-1, nuclear factor-kappaB, and cell transformation by extracts of strawberries (Fragaria x ananassa Duch.).

    Science.gov (United States)

    Wang, Shiow Y; Feng, Rentian; Lu, Yongju; Bowman, Linda; Ding, Min

    2005-05-18

    The inhibitory effects of strawberry (Fragaria x ananassa Duch.) antioxidant enzymes on tetradecanoylphorbol-13-acetate (TPA) or ultraviolet-B (UVB) induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) were studied. The inhibitory effects of strawberry extracts on the proliferation and transformation of human and mouse cancer cells were also evaluated. Strawberries had high activities of glutathione peroxidase, superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase. Strawberry extracts inhibited the proliferation of human lung epithelial cancer cell line A549 and decreased TPA-induced neoplastic transformation of JB6 P+ mouse epidermal cells. Pretreatment of JB6 P+ mouse epidermal cells with strawberry extract resulted in the inhibition of both UVB- and TPA-induced AP-1 and NF-kappaB transactivation. Furthermore, strawberry extract also blocked TPA-induced phosphorylation of extracellular signal-regulated kinases (ERKs) and UVB-induced phosphorylation of ERKs and JNK kinase in JB6 P+ mouse epidermal cell culture. These results suggest that the ability of strawberries to block UVB- and TPA-induced AP-1 and NF-kappaB activation may be due to their antioxidant properties and their ability to reduce oxidative stress. The oxidative events that regulate AP-1 and NF-kappaB transactivation can be important molecular targets for cancer prevention. The strawberries may be highly effective as a chemopreventive agent that acts by targeting the down-regulation of AP-1 and NF-kappaB activities, blocking MAPK signaling, and suppressing cancer cell proliferation and transformation.

  9. The role for human nasal epithelial nuclear factor kappa B activation in histamine-induced mucin 5 subtype B overproduction.

    Science.gov (United States)

    Wang, Weiwei; Shao, Shengwen; Wang, Sha

    2016-03-01

    Mucin 5 subtype B (MUC5B) is 1 of the major mucins secreted by airway epithelial cells. We sought to determine the effect of histamine on MUC5B expression in human nasal epithelial cells. Human nasal epithelial cells from allergic rhinitis patients were cultured, and stimulated with 4 concentrations of histamine, or pretreated with a specific nuclear factor-kappa B (NF-κB) inhibitor (Bay11-7082) before histamine stimulation. Immunocytochemistry and Western blotting were used to detect phosphorylated inhibitor of kappa B alpha (p-IκBα), NF-κBp65 and MUC5B protein. MUC5B content in supernatants was assayed by enzyme-linked immunosorbent assay (ELISA). Histamine promoted IκBα phosphorylation and NF-κBp65 nuclear translocation. A concentration-dependent histamine-induced increase of MUC5B protein was observed, and its content in supernatants was upregulated in a concentration-dependent fashion, but these effects were attenuated by Bay11-7082. Histamine activated the IκBα/NF-κB pathway by promoting IκBα phosphorylation and inducing NF-κBp65 nuclear translocation, contributing to MUC5B overproduction and secretion. © 2015 ARS-AAOA, LLC.

  10. Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG.

    Science.gov (United States)

    Manikandan, P; Vinothini, G; Vidya Priyadarsini, R; Prathiba, D; Nagini, S

    2011-02-01

    The modulation of intracellular nuclear factor-kappaB (NF-κB) signaling pathway involved in the deregulated expression of cell proliferation and cell cycle regulatory molecules is a pragmatic approach for chemoprevention. Eugenol (4-allyl-1-hydroxy-2-methoxybenzene), a natural phenolic constituent of oils of cloves is known to possess attractive remedial features. In the present study, we investigated the modulatory effects of eugenol on NF-κB signaling in a rat model of gastric carcinogenesis induced by N-methyl-N(')-nitro-N-nitrosoguanidine (MNNG) by analysing the expression of nuclear factor-kappaB (NF-κB) family members ((NF-κB (p50 and p65), inhibitor of kappaB alpha (IκBα), phosphorylated IκBα (p-IκBα), IκB kinase β (IKKβ)) and the NF-κB target genes that promote (e.g., cyclin D1, cyclin B and PCNA) or inhibit (e.g., p53, p21, and Gadd45) cell proliferation and cell survival. MNNG-induced gastric tumours were characterized by NF-κB activation that correlated with upregulation of IKKβ, and phosphorylation and degradation of IκBα. Furthermore, upregulation of cyclins and PCNA with downregulation of p21, p53, and Gadd45 suggested that the proliferative advantage in gastric carcinomas is dependent on elevated constitutive NF-κB activity. Administration of eugenol significantly reduced the incidence of MNNG-induced gastric tumours by suppressing NF-κB activation and modulating the expression of NF-κB target genes that regulate cell proliferation and cell survival. The targeting of NF-κB signaling pathway by eugenol may have a significant impact on chemopreventive and therapeutic approaches for cancer.

  11. NF-kB activation and its downstream target genes expression after heavy ions exposure

    Science.gov (United States)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Schmitz, Claudia; Koch, Kristina; Feles, Sebastian

    2016-07-01

    To enable long-term human space flight cellular radiation response to densely ionizing radiation needs to be better understood for developing appropriate countermeasures to mitigate acute effects and late radiation risks for the astronaut. The biological effectiveness of accelerated heavy ions (which constitute the most important radiation type in space) with high linear energy transfer (LET) for effecting DNA damage response pathways as a gateway to cell death or survival is of major concern not only for space missions but also for new regimes of tumor radiotherapy. In the current research study, the contribution of NF-κB in response to space-relevant radiation qualities was determined by a NF-κB reporter cell line (HEK-pNF-κB-d2EGFP/Neo L2). The NF-κB dependent reporter gene expression (d2EGFP) after ionizing radiation (X-rays and heavy ions) exposure was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after X-irradiation and heavy ions exposure, it was expected that radiation quality (LET) might play an important role in the cellular radiation response. In addition, the biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival was examined for heavy ions having a broad range of LET (˜0.3 - 9674 keV/µm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real time reverse transcriptase quantitative PCR (RT-qPCR). In this study it was proven that NF-κB activation and NF-κB dependent gene expression comprises an early step in cellular radiation response. Taken together, this study clearly demonstrates that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ˜50-200 keV/μupm. The up-regulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, IL-8 and TNF) might be important for cell-cell communication among hit as well as unhit cells (bystander effect). The results obtained suggest the NF-κB pathway to be a

  12. Inflammatory and catabolic signalling in intervertebral discs: The roles of NF-B and MAP Kinases

    OpenAIRE

    K Wuertz; N Vo; D Kletsas; N Boos

    2012-01-01

    Painful intervertebral disc disease is characterised not only by an imbalance between anabolic (i.e., matrix synthesis) and catabolic (i.e., matrix degradation) processes, but also by inflammatory mechanisms. The increased expression and synthesis of matrix metalloproteinases and inflammatory factors is mediated by specific signal transduction, in particular the nuclear factor-kappaB (NF-kB) and mitogen-activated protein kinase (MAPK)-mediated pathways. NF-kB and MAPK have been identified as ...

  13. Inhibitory effects of alpha-zearalenol on angiotensin II-induced integrin beta3 mRNA via suppression of nuclear factor-kappaB.

    Science.gov (United States)

    Li, Su-Min; Wang, Xiao-Ming; Qiu, Jin; Si, Qin; Guo, Heng-Yi; Sun, Ren-Yu; Wu, Qi-Xia

    2005-10-01

    To investigate the effect of alpha-zearalenol on angiotensin II-induced beta3 integrin mRNA expression in human umbilical vein endothelial cells (HUVECs). The mRNA level in integrin beta3 was determined by reverse transcription-polymerase chain reaction. Endothelial NF-kappaB activity was determined by the luciferase activity assay of plasmid NF-kappaB-LUC. The angiotensin II-induced beta3 integrin mRNA expression was inhibited by alpha-zearalenol and 17beta-estradiol (10 nmol/L -1 micromol/L), but not influenced by ICI 182, 780, a pure competitive antagonist for estrogen receptor or a nitric oxide inhibitor Nomega-Nitro-L-arginine methyl ester hydrochloride. Alpha-zearalenol and 17beta-estradiol suppressed the angiotensin II-induced activation of NF-kappaB in endothelial cells. Alpha-zearalenol inhibits angiotensin II-induced integrin beta3 mRNA expression by suppressing NF-kappaB activation in endothelial cells.

  14. Study of the KAPPA antiKAPPA. pi. final state in J/psi hadronic decays

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J.J.; Blaylock, G.T.; Bolton, T.; Brown, J.S.; Bunnell, K.O.; Burnett, T.H.; Cassell, R.E.; Coffman, D.; Cook, V.; Coward, D.H.

    1987-02-01

    The reactions J/psi ..-->.. ..omega..KAPPA antiKAPPA..pi.. and J/psi ..-->.. phiKAPPA/sup + -/KAPPA/sub S//sup 0/..pi../sup - +/ have been studied using a sample of 5.8 x 10/sup 6/ produced J/psi decays. The KAPPA/sup + -/KAPPA/sub S//sup 0/..pi../sup - +/ and KAPPA/sup +/KAPPA/sup -/..pi../sup 0/ systems recoiling against an ..omega.. show enhancements in the mass distribution around 1.445 GeV/c/sup 2/ with consistent branching ratios. No such structure is observed in the mass distribution of the KAPPA/sup + -/KAPPA/sub S//sup 0/..pi../sup - +/ system recoiling against a phi. A comparison of these observations with the corresponding channels in radiative J/psi decays permits a detailed study of the structures seen in the iota(1440) and EPSILON(1420) signal regions. 8 refs., 4 figs.

  15. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration.

    Science.gov (United States)

    Mauro, Claudio; Leow, Shi Chi; Anso, Elena; Rocha, Sonia; Thotakura, Anil K; Tornatore, Laura; Moretti, Marta; De Smaele, Enrico; Beg, Amer A; Tergaonkar, Vinay; Chandel, Navdeep S; Franzoso, Guido

    2011-08-28

    Cell proliferation is a metabolically demanding process. It requires active reprogramming of cellular bioenergetic pathways towards glucose metabolism to support anabolic growth. NF-κB/Rel transcription factors coordinate many of the signals that drive proliferation during immunity, inflammation and oncogenesis, but whether NF-κB regulates the metabolic reprogramming required for cell division during these processes is unknown. Here, we report that NF-κB organizes energy metabolism networks by controlling the balance between the utilization of glycolysis and mitochondrial respiration. NF-κB inhibition causes cellular reprogramming to aerobic glycolysis under basal conditions and induces necrosis on glucose starvation. The metabolic reorganization that results from NF-κB inhibition overcomes the requirement for tumour suppressor mutation in oncogenic transformation and impairs metabolic adaptation in cancer in vivo. This NF-κB-dependent metabolic pathway involves stimulation of oxidative phosphorylation through upregulation of mitochondrial synthesis of cytochrome c oxidase 2 (SCO2; ref. ). Our findings identify NF-κB as a physiological regulator of mitochondrial respiration and establish a role for NF-κB in metabolic adaptation in normal cells and cancer.

  16. Radiolysis studies of aqueous kappa-carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Abad, L.V., E-mail: lvabad@pnri.dost.gov.p [Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines); Kudo, H. [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Saiki, S. [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nagasawa, N.; Tamada, M. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Fu, H.; Muroya, Y. [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Lin, M.; Katsumura, Y. [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Relleve, L.S.; Aranilla, C.T.; DeLaRosa, A.M. [Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines)

    2010-05-15

    The effects on N{sub 2}O and N{sub 2} gas on the radiation degradation yield of aqueous kappa (kappa-) carrageenan were investigated. The G{sub d} of solution saturated with N{sub 2}O solution was expectedly much higher than in air (1.7 and 1.2 x 10{sup -7} mol J{sup -1}). On the other hand, a lower G{sub d} of 1.1 x 10{sup -7} mol J{sup -1} was obtained from kappa-carrageenan solution saturated with N{sub 2}. The rate constant of reaction of OH radicals with sonicated and irradiated kappa-carrageenan were determined using e-beam pulse radiolysis. The rate constant of OH{sup c}entre dot interaction with sonicated kappa-carrageenan decreased with decreasing molecular weight. On the other hand, the OH{sup c}entre dot interaction with irradiated kappa-carrageenan decreased but did not vary significantly with decreasing molecular weight. Metal ion (Na{sup +}) induced conformational transition into helical form decreased the rate constant of OH{sup c}entre dot reaction with kappa-carrageenan. Likewise, the G{sub d} in aqueous form was affected by the conformational state of kappa-carrageenan. The helical conformation gave a lower G{sub d} (7 x 10{sup -8} mol J{sup -1}) than the coiled conformation (G{sub d} = 1.2 x 10{sup -7} mol J{sup -1}).

  17. Involvement of nuclear factor-kappaB in a murine model for the acute form of autoimmune-like toxic oil syndrome.

    Science.gov (United States)

    Bell, S A; Page, S; Baumgartner, B; Berking, C; Haas, M; Eisele, T; Neumeier, D; Brand, K

    1999-06-15

    The toxic oil syndrome (TOS) represents an exogenously induced autoimmune disease with acute or chronic symptoms similar to systemic lupus erythematosus or scleroderma. When genetically different mouse strains were exposed to oleic acid anilide (OAA), it was possible to mimic the different syndrome manifestations. The aim of the present study was to examine the role of NF-kappaB/Rel transcription factors in the development of the severe acute wasting disease observed in A/J mice. Within a week of OAA exposure, the A/J, but not B10.S strain, displayed weight loss, cachexia, apathy, reduced activity, and breathing difficulties. In affected A/J mice we observed a marked increase in NF-kappaB activation (p50/p65 dimers) both in splenic T cells and peritoneal macrophages as well as in tissue from aorta and gut. Incubation of splenocytes with OAA in vitro induced a dose-dependent removal of IkappaB-alpha, accompanied by NF-kappaB activation, whereas Sp-1 binding was not affected. Furthermore, we demonstrated the increased expression of the two NF-kappaB target genes IL-6 and IL-1beta in OAA-exposed mice and a transient OAA-induced accumulation of TNFalpha in vitro. This is the first report which implicates NF-kappaB/Rel in acute forms of chemically induced autoimmune-like disease and may serve as a paradigm for the involvement of this transcriptional system in acute processes associated with autoimmunity, suggesting possible avenues of therapeutic intervention. Copyright 1999 Academic Press.

  18. Subversion of innate immune responses by bacterial hindrance of NF-κB pathway.

    Science.gov (United States)

    Le Negrate, Gaëlle

    2012-02-01

    Bacterial infections cause substantial mortality and burden of disease globally. Induction of a strong innate inflammatory response is the first common host mechanism required for elimination of the invading pathogens. The host transcription factor, nuclear factor kappa B (NF-κB) is essential for immune activation. Conversely, bacterial pathogens have evolved strategies to interfere directly with host cell signalling by regulating or mimicking host proteins. Given the key role of NF-κB in the host inflammatory response, bacteria have expectedly developed virulence effectors interfering with NF-κB signalling pathways. In this review, we explore the bacterial mechanisms utilized to prevent effective NF-κB signalling, which in turn usurp the host inflammatory response. © 2011 Blackwell Publishing Ltd.

  19. Proteomic Analysis of Brain Protein Expression Levels in NF-κβ p50 -/- Homozygous Knockout Mice

    OpenAIRE

    Owen, Joshua B.; Opii, Wycliffe. O.; Ramassamy, Charles; Pierce, William. M.; Butterfield, D. Allan

    2008-01-01

    The role of nuclear factor kappa B (NF-κB) in oxidative stress, and most recently in pro- and anti-apoptotic related mechanistic pathways, has well been established. Because of the dual nature of NF-κB, the wide range of genes it regulates and the plethora of stimuli that activate it, various studies addressing the functional role of NF-κB proteins have resulted in a number of differing findings. The present study examined the effect of a stimulus-free environment on the frontal cortex of mic...

  20. Reciprocal regulation of nuclear factor kappa B and its inhibitor ZAS3 after peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Madiai Francesca

    2006-01-01

    NF-κB, allowing Wallerian regeneration and induction of NF-κB-dependent gene expression, including pro-inflammatory cytokines. We propose that reciprocal changes in the expression of ZAS3 and NF-κB might generate neuropathic pain after peripheral nerve injury.

  1. Targeting of NF-κB to Dendritic Spines Is Required for Synaptic Signaling and Spine Development.

    Science.gov (United States)

    Dresselhaus, Erica C; Boersma, Matthew C H; Meffert, Mollie K

    2018-04-25

    Long-term forms of brain plasticity share a requirement for changes in gene expression induced by neuronal activity. Mechanisms that determine how the distinct and overlapping functions of multiple activity-responsive transcription factors, including nuclear factor κB (NF-κB), give rise to stimulus-appropriate neuronal responses remain unclear. We report that the p65/RelA subunit of NF-κB confers subcellular enrichment at neuronal dendritic spines and engineer a p65 mutant that lacks spine enrichment (p65ΔSE) but retains inherent transcriptional activity equivalent to wild-type p65. Wild-type p65 or p65ΔSE both rescue NF-κB-dependent gene expression in p65-deficient murine hippocampal neurons responding to diffuse (PMA/ionomycin) stimulation. In contrast, neurons lacking spine-enriched NF-κB are selectively impaired in NF-κB-dependent gene expression induced by elevated excitatory synaptic stimulation (bicuculline or glycine). We used the setting of excitatory synaptic activity during development that produces NF-κB-dependent growth of dendritic spines to test physiological function of spine-enriched NF-κB in an activity-dependent response. Expression of wild-type p65, but not p65ΔSE, is capable of rescuing spine density to normal levels in p65-deficient pyramidal neurons. Collectively, these data reveal that spatial localization in dendritic spines contributes unique capacities to the NF-κB transcription factor in synaptic activity-dependent responses. SIGNIFICANCE STATEMENT Extensive research has established a model in which the regulation of neuronal gene expression enables enduring forms of plasticity and learning. However, mechanisms imparting stimulus specificity to gene regulation, ensuring biologically appropriate responses, remain incompletely understood. NF-κB is a potent transcription factor with evolutionarily conserved functions in learning and the growth of excitatory synaptic contacts. Neuronal NF-κB is localized in both synapse and

  2. A requirement for NF-κB in developmental and plasticity-associated synaptogenesis

    Science.gov (United States)

    Boersma, Matthew C. H.; Dresselhaus, Erica C.; De Biase, Lindsay M.; Mihalas, Anca B.; Bergles, Dwight E.

    2011-01-01

    Structural plasticity of dendritic spines and synapses is a fundamental mechanism governing neuronal circuits and may form an enduring basis for information storage in the brain. We find that the p65 subunit of the NF-κB transcription factor, which is required for learning and memory, controls excitatory synapse and dendritic spine formation and morphology in murine hippocampal neurons. Endogenous NF-κB activity is elevated by excitatory transmission during periods of rapid spine and synapse development. During in-vitro synaptogenesis, NF-κB enhances dendritic spine and excitatory synapse density and loss of endogenous p65 decreases spine density and spine head volume. Cell-autonomous function of NF-κB within the postsynaptic neuron is sufficient to regulate the formation of both pre- and post-synaptic elements. During synapse development in-vivo, loss of NF-κB similarly reduces spine density and also diminishes the amplitude of synaptic responses. In contrast, after developmental synaptogenesis has plateaued, endogenous NF-κB activity is low and p65-deficiency no longer attenuates basal spine density. Instead, NF-κB in mature neurons is activated by stimuli that induce demand for new synapses, including estrogen and short-term bicuculline, and is essential for upregulating spine density in response to these stimuli. p65 is enriched in dendritic spines making local protein-protein interactions possible; however, the effects of NF-κB on spine density require transcription and the NF-κB-dependent regulation of PSD-95, a critical postsynaptic component. Collectively, our data define a distinct role for NF-κB in imparting transcriptional regulation required for the induction of changes to, but not maintenance of, excitatory synapse and spine density. PMID:21471377

  3. EWS-FLI1 inhibits TNFα-induced NFκB-dependent transcription in Ewing sarcoma cells

    International Nuclear Information System (INIS)

    Lagirand-Cantaloube, Julie; Laud, Karine; Lilienbaum, Alain; Tirode, Franck; Delattre, Olivier; Auclair, Christian; Kryszke, Marie-Helene

    2010-01-01

    Research highlights: → EWS-FLI1 interferes with TNF-induced activation of NFκB in Ewing sarcoma cells. → EWS-FLI1 knockdown in Ewing sarcoma cells increases TNF-induced NFκB binding to DNA. → EWS-FLI1 reduces TNF-stimulated NFκB-dependent transcriptional activation. → Constitutive NFκB activity is not affected by EWS-FLI1. → EWS-FLI1 physically interacts with NFκB p65 in vivo. -- Abstract: Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NFκB) is a tightly regulated transcription factor controlling cell survival, proliferation and differentiation, as well as tumorigenesis. NFκB activity is very low in unstimulated Ewing sarcoma cells, but can be induced in response to tumor necrosis factor (TNF). We wondered whether NFκB activity could be modulated by EWS-FLI1 in Ewing sarcoma. Using a knockdown approach in Ewing sarcoma cells, we demonstrated that EWS-FLI1 has no influence on NFκB basal activity, but impairs TNF-induced NFκB-driven transcription, at least in part through inhibition of NFκB binding to DNA. We detected an in vivo physical interaction between the fusion protein and NFκB p65, which could mediate these effects. Our findings suggest that, besides directly controlling the activity of its primary target promoters, EWS-FLI1 can also indirectly influence gene expression in tumor cells by modulating the activity of key transcription factors such as NFκB.

  4. Molecular Mechanisms of Bcl10-Mediated NF-kappaB Signal Transduction

    Science.gov (United States)

    2004-04-04

    Toll -like receptor ): transmembrane receptor that recognizes PAMPs and activates immune cells of the innate immune system TNFR...specific cell-surface receptors . These receptors [ Toll -like receptors (TLRs), interleukin-1 receptor (IL-1R), tumor necrosis factor receptor (TNFR), B...agent for gastric MALT lymphoma is chronic infection with Helicobacter pylori (29). One hypothesis is that T cell responses to H. pylori

  5. A20 Functional Domains Regulate Subcellular Localization and NF-Kappa B Activation

    Science.gov (United States)

    2013-08-15

    demonstrate that mutation or elimination of the κB elements leads to a loss of induction by TNF- in a Jurkat T-lymphocyte model. In addition...elements with nuclear extract from TNF- treated or untreated Jurkat T-cells leads to the formation of a specific TNF--inducible DNA-protein complex...elements were able to compete with A20 κB elements for binding with the nuclear extracts derived from TNF- treated Jurkat T-cells. These studies gave

  6. Inflammation and NF-kappa B in Alzheimer's Disease and Diabetes

    NARCIS (Netherlands)

    Granic, Ivica; Dolga, Amalia; Nijholt, Ingrid M.; van Dijk, Gertjan; Eisel, Ulrich L. M.

    2009-01-01

    Inflammatory processes are a hallmark of many chronic diseases including Alzheimer's disease and diabetes mellitus. Fairly recent statistical evidence indicating that type 2 diabetes increases the risk of developing Alzheimer's disease has led to investigations of the potential common processes that

  7. Novel Functions of NF-kappaB2/p52 in Androgen Receptor Signaling in CRPC

    Science.gov (United States)

    2015-09-01

    RPMI 1640media containing 10%FBS and treatedwithDMSOor 0.5 mmol/L niclosamide for 48 hours. Mono and oligonu cleosomes in the cytoplasmic...protein than C4 2B parental cells, including AR V1, AR V7, AR1/2/2b, and AR1/2/3/2b. Fur thermore, AR V7was constitutively expressed in the nucleus ...protein, but on export to the nucleus , regulates the translation or stability of mRNAs.31 Inmammals, Lin28 is widely expressed in early development and in

  8. Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers.

    Directory of Open Access Journals (Sweden)

    Rebecca C Fry

    2007-11-01

    Full Text Available The long-term health outcome of prenatal exposure to arsenic has been associated with increased mortality in human populations. In this study, the extent to which maternal arsenic exposure impacts gene expression in the newborn was addressed. We monitored gene expression profiles in a population of newborns whose mothers experienced varying levels of arsenic exposure during pregnancy. Through the application of machine learning-based two-class prediction algorithms, we identified expression signatures from babies born to arsenic-unexposed and -exposed mothers that were highly predictive of prenatal arsenic exposure in a subsequent test population. Furthermore, 11 transcripts were identified that captured the maximal predictive capacity to classify prenatal arsenic exposure. Network analysis of the arsenic-modulated transcripts identified the activation of extensive molecular networks that are indicative of stress, inflammation, metal exposure, and apoptosis in the newborn. Exposure to arsenic is an important health hazard both in the United States and around the world, and is associated with increased risk for several types of cancer and other chronic diseases. These studies clearly demonstrate the robust impact of a mother's arsenic consumption on fetal gene expression as evidenced by transcript levels in newborn cord blood.

  9. Carbohydrate signaling by C-type lectin DC-SIGN affects NF-kappaB activity

    NARCIS (Netherlands)

    Gringhuis, Sonja I.; Geijtenbeek, Teunis B. H.

    2010-01-01

    Pathogen recognition is central to the induction of adaptive immunity. Dendritic cells (DCs) express different pattern recognition receptors (PRRs), such as Toll-like receptors and C-type lectins, that sense invading pathogens. Pathogens trigger a specific set of PRRs, leading to activation of

  10. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer

    DEFF Research Database (Denmark)

    Gyrd-Hansen, Mads; Meier, Pascal

    2010-01-01

    . The development of such inhibitors has radically changed our knowledge of the signalling processes that are regulated by IAPs. Recent studies indicate that IAPs not only regulate caspases and apoptosis, but also modulate inflammatory signalling and immunity, mitogenic kinase signalling, proliferation and mitosis...

  11. Interaction of REPS2 with NF-kappaB in Prostate Cancer Cells

    NARCIS (Netherlands)

    T.F.E. Penninkhof

    2005-01-01

    textabstractLike normal prostate cells, prostate cancer cells are dependent on androgens for growth and survival, and prostate cancer can be treated by androgen ablation therapy. However, after a period of time some of the prostate cancer cells no longer respond to androgen ablation and survive the

  12. DMPD: Shared principles in NF-kappaB signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available ML File (.csml) Open .csml file with CIOPlayer Open .csml file with CIOPlayer - ※CIO Playerのご利用上の注意 Open .csml file with CIO Open .csml file with CIO - ※CIOのご利用上の注意 ...

  13. Spatial-Temporal Mapping of the T Cell Receptor NF-kappaB Signaling Pathway

    Science.gov (United States)

    2006-05-30

    YFP genes also contained the A206K mutation , which causes these proteins to behave as monomers, even at high local concentration [66]. Bcl10-∆MALT1...amino acids 345–832, and MALT1–2EA contains the mutations E661A and E814A in the murine equivalents of the previously reported TRAF6 binding sites [39...macro (Zeiss) with 800-nm excitation from a TI:Sapphire Chameleon laser (Coherent, Palo Alto, CA) with an activation time of ə s. One-photon

  14. NF-kappaB Activity in Macrophages Determines Metastatic Potential of Breast Tumor Cells

    Science.gov (United States)

    2011-08-01

    alpha: tumor necrosis factor alpha. Competing interests The authors declare that they have no competing interests. Authors’ contributions LC...with dox (2g/L) for 4 weeks and transgene expression was detected by RT- PCR in lung, liver, intestines (Int), and bone marrow (BM). D. IKFM and... neonatal period. The inducible cIKKb transgene allows macrophage activation at distinct stages of lung development, as compared with postnatal rodent

  15. Neuronal kappa B-binding factors consist of Sp1-related proteins. Functional implications for autoregulation of N-methyl-D-aspartate receptor-1 expression.

    Science.gov (United States)

    Mao, Xianrong; Moerman, Andrea M; Barger, Steven W

    2002-11-22

    Neurons contain a protein factor capable of binding DNA elements normally bound by the transcription factor NF-kappaB. However, several lines of evidence suggest that this neuronal kappaB-binding factor (NKBF) is not bona fide NF-kappaB. We have identified NKBF from cultures of neocortical neurons as a complex containing proteins related to Sp1. This complex was bound by antibodies to Sp1, Sp3, and Sp4 and was competed from binding to an NF-kappaB element by an oligonucleotide containing an Sp1-binding site. This Sp1 oligonucleotide detected an abundant factor in neuronal nuclei that migrated in electrophoretic mobility shift assays at a position consistent with NKBF. Expression of transfected Sp1 stimulated transcription in a manner dependent upon a kappaB cis-element. Similar to our previous reports for NKBF (Mao, X., Moerman, A. M., Lucas, M. M., and Barger, S. W. (1999) J. Neurochem. 73, 1851-1858 and Moerman, A. M., Mao, X., Lucas, M. M., and Barger, S. W. (1999) Mol. Brain Res. 67, 303-315), the activity of the Sp1-related factor was reduced by activation of ionotropic glutamate receptors, consistent with proteolytic degradation of all three Sp1-related factors. Expression of the N-methyl-d-aspartate receptor-1 (NR1) subunit of glutamate receptors correlated with the activity of the Sp1-related factor, specifically through an Sp1 element in the NR1 promoter. These data provide the first evidence that Sp1 or related family members are responsible for kappaB-binding activity and are involved in a negative feedback for NR1 in central nervous system neurons.

  16. Activation of nuclear factor-kappaB signaling pathway by interleukin-1 after hypoxia/ischemia in neonatal rat hippocampus and cortex.

    Science.gov (United States)

    Hu, Xiaoming; Nesic-Taylor, Olivera; Qiu, Jingxin; Rea, Harriett C; Fabian, Roderick; Rassin, David K; Perez-Polo, J Regino

    2005-04-01

    Perinatal hypoxia/ischemia (HI) is a common cause of neurological deficits in children. Interleukin-1 (IL-1) activity has been implicated in HI-induced brain damage. However, the mechanisms underlying its action in HI have not been characterized. We used a 7-day-old rat model to elucidate the role of nuclear factor-kappaB (NF-kappaB) activation in HI stimulation of IL-1 signaling. HI was induced by permanent ligation of the left carotid artery followed by 90 min of hypoxia (7.8% O(2)). Using ELISA assays, we observed increased cell death and caspase 3 activity in hippocampus and cortex 3, 6, 12, 24 and 48 h post-HI. IL-1beta protein expression increased, beginning at 3 h after HI and lasting until 24 h post-HI in hippocampus and 12 h post-HI in cortex. Intracerebroventricular injection of 2 microg IL-1 receptor antagonist (IL-1Ra) 2 h after HI significantly reduced cell death and caspase 3 activity. Electrophoretic mobility shift assay analyses of hippocampus and cortex after HI for NF-kappaB activity showed increased p65/p50 DNA-binding activity at 24 h post-HI. Western blot analyses showed significant nuclear translocation of p65. Protein expression levels of two known inflammatory agents, inducible nitric oxide synthase and cycloxygenase 2, known to be transcriptionally regulated by NF-kappaB, also increased at 24 h after HI. All these HI-induced changes were reversed by IL-1Ra blockade of IL-1 signaling, consistent with IL-1 triggering of inflammatory apoptotic outcomes via NF-kappaB transcriptional activation. The observed increase in cytoplasmic phosphorylated inhibitor kappaBalpha (IkappaBalpha) and nuclear translocation of Bcl-3 24 h after HI was also significantly attenuated by IL-1Ra blockade, suggesting that HI-induced IL-1 activation of NF-kappaB is via both the degradation of IkappaBalpha and the nuclear translocation of Bcl-3.

  17. Lipopolysaccharide promotes the development of murine endometriosis-like lesions via the nuclear factor-kappa B pathway.

    Science.gov (United States)

    Azuma, Yukihiro; Taniguchi, Fuminori; Nakamura, Kazuomi; Nagira, Kei; Khine, Yin Mon; Kiyama, Tomoiki; Uegaki, Takashi; Izawa, Masao; Harada, Tasuku

    2017-04-01

    Is lipopolysaccharide (LPS) involved in the development of endometriosis? BALB/c mice (n=69) were used for the murine endometriosis model. Mice with surgically induced endometriosis were injected with LPS intraperitoneally. After 4 weeks of LPS injections with or without the nuclear factor-kappa B (NF-κB) inhibitor, the extent of endometriosis-like lesions was evaluated. Expression of inflammatory factors in the implants was evaluated using real-time RT-PCR. Cell proliferation, angiogenic activity, inflammation, and NF-κB phosphorylation were assessed by immunohistochemical staining. Lipopolysaccharide increased total number, size, and mRNA expression of Ptgs-2, Vegf, Ccl-2, and Il-6 in endometriosis-like lesions. LPS also increased the percentage of Ki67-positive cells and enhanced the intensity and rate of positive cells of CD3, F4/80, and PECAM. Intense expression of phospho-NF-κB p65 after LPS administration was observed. Treatment with the NF-kB inhibitor negated these LPS-induced effects. LPS-induced pelvic inflammation status enhanced the development of murine endometriosis-like lesions via NF-κB pathway. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Physiologic activation of nuclear factor kappa-B in the endometrium during the menstrual cycle is altered in endometriosis patients.

    Science.gov (United States)

    González-Ramos, Reinaldo; Rocco, Jocelyn; Rojas, Candy; Sovino, Hugo; Poch, Andrea; Kohen, Paulina; Alvarado-Díaz, Carlos; Devoto, Luigi

    2012-03-01

    To evaluate nuclear factor kappaB (NF-κB) activation and NF-κB-p65 subunit activation, immunolocalization, and expression in the endometrium of healthy women and endometriosis patients throughout the menstrual cycle. Prospective observational study. Affiliated hospital and university research laboratory. Twenty-four healthy women and 24 endometriosis patients. Menstrual, proliferative, and secretory endometrial biopsies. Assessment of NF-κB and p65 activation by protein-DNA binding assays and p65 localization and expression by immunohistochemistry. Total NF-κB-DNA binding was constitutive and variable in human endometrium accross the menstrual cycle. Healthy women (physiologic conditions) showed higher p65-DNA binding in proliferative than in menstrual and secretory endometrium. Conversely, in endometriosis patients, p65-DNA binding was higher in proliferative and secretory endometrium than in menstrual endometrium. Endometrial epithelial cells showed higher p65 expression level score than endometrial stromal cells. NF-κB activity is constitutive, physiologic, and variable in human endometrium. The physiologic cyclic p65 activation pattern was altered in endometriosis patients, showing no cyclic variation between the proliferative and secretory phase of the menstrual cycle. The absence of decreased p65 activity in secretory endometrium from endometriosis patients is concurrent with progesterone resistance and could participate in endometrial biologic alterations during the implantation window in endometriosis patients. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography.

    Science.gov (United States)

    Yeo, Joon Hyung; Moon, Nam Ju; Lee, Jeong Kyu

    2017-06-01

    To introduce a new convenient and accurate method to measure the angle kappa using ultrasound biomicroscopy (UBM) and corneal topography. Data from 42 eyes (13 males and 29 females) were analyzed in this study. The angle kappa was measured using Orbscan II and calculated with UBM and corneal topography. The angle kappa of the dominant eye was compared with measurements by Orbscan II. The mean patient age was 36.4 ± 13.8 years. The average angle kappa measured by Orbscan II was 3.98° ± 1.12°, while the average angle kappa calculated with UBM and corneal topography was 3.19° ± 1.15°. The difference in angle kappa measured by the two methods was statistically significant (p topography to calculate the angle kappa. This method is convenient to use and allows for measurement of the angle kappa without an expensive device. © 2017 The Korean Ophthalmological Society

  20. NOTCH and NF-κB interplay in chronic lymphocytic leukemia is independent of genetic lesion.

    Science.gov (United States)

    Baldoni, Stefano; Sportoletti, Paolo; Del Papa, Beatrice; Aureli, Patrizia; Dorillo, Erica; Rosati, Emanuela; Ciurnelli, Raffaella; Marconi, Pierfrancesco; Falzetti, Franca; Di Ianni, Mauro

    2013-08-01

    The NOTCH and nuclear factor kappa B (NF-κB) pathways are both constitutively activated in Chronic Lymphocytic Leukemia (CLL). We first described the NOTCH1 PEST domain mutation in a CLL subgroup, but the activation of the NOTCH pathway in NOTCH1-unmutated cases remains unexplained. Here, we investigated whether genetic lesions in the NF-κB/NOTCH loop might support the NOTCH activation status by sequencing negative (TNFAIP3/A20) and positive (TRAF2, TRAF5, TNFRSF11A/RANK, MAP3K7/TAK1, and CARD11) regulators of NF-κB together with NF-κB targets on the NOTCH pathway, the NOTCH ligands Jagged1 and Jagged2, in CLL patients. The sequence analysis revealed four missense mutations for A20, TRAF2, TRAF5 and RANK1 genes, all causing a change in amino acid group from polar to non-polar, but functional domains were not involved. Specific predictive software analyses confirmed that the amino acid changes have a low-functional impact on the protein. Our results show that in CLL, NF-κB regulators and Jagged are both unmutated, suggesting that the Jagged-mediated interplay between NF-κB and NOTCH is independent of genetic lesions.

  1. Roles of TRAFs in NF-κB signaling pathways mediated by BAFF.

    Science.gov (United States)

    Tang, Xiaoyu; Zhang, Lingling; Wei, Wei

    2018-04-01

    B cell activating factor (BAFF) is an important cytokine for the maintenance of B cell development, survival and homeostasis. BAFF/BAFF-R could directly activate nuclear factor kappa B (NF-κB) pathway. Tumour necrosis factor receptor-associated factors (TRAFs) are key regulatory proteins in NF-κB signaling pathways. TRAF1 enhances the activation of tumor necrosis factor receptor 2 (TNF-R2) induced by NF-κB. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals mediated by BAFF receptor. TRAF5 is most homologous to TRAF3, as well as most functionally similar to TRAF2. TRAF6 is also required for the BAFF-mediated activation of NF-κB signal pathway. TRAF7 is involved in signal transduction pathways that lead either to activation or repression of NF-κB transcription factor. In this article, we reviewed the roles of TRAFs in NF-κB signaling pathway mediated by BAFF. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  2. Chronic Normobaric Hypoxia Induces Pulmonary Hypertension in Rats: Role of NF-κB.

    Science.gov (United States)

    Fan, Junming; Fan, Xiaofang; Li, Yang; Ding, Lu; Zheng, Qingqing; Guo, Jinbin; Xia, Dongmei; Xue, Feng; Wang, Yongyu; Liu, Shufang; Gong, Yongsheng

    2016-03-01

    To investigate whether nuclear factor-kappa B (NF-κB) activation is involved in chronic normobaric hypoxia-induced pulmonary hypertension (PH), rats were treated with saline or an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC, 150 mg/kg, sc, twice daily), and exposed to normoxia or chronic normobaric hypoxia with a fraction of inspired oxygen of ∼0.1 for 14 days. Lung tissue levels of NF-κB activity, and interleukin (IL)-1β, IL-6, and cyclooxygenase-2 mRNAs, were determined, and mean pulmonary arterial pressure, right ventricular hypertrophy, and right heart function were evaluated. Compared to the normoxia exposure group, rats exposed to chronic normobaric hypoxia showed an increased NF-κB activity, measured by increased nuclear translocation of p50 and p65 proteins, an increased inflammatory gene expression in the lungs, elevated mean pulmonary arterial blood pressure and mean right ventricular pressure, right ventricular hypertrophy, as assessed by right ventricle-to-left ventricle plus septum weight ratio, and right heart dysfunction. Treatment of hypoxia-exposed rats with PDTC inhibited NF-κB activity, decreased pulmonary arterial blood pressure and right ventricular pressure, and ameliorated right ventricular hypertrophy and right heart dysfunction. Hypoxia exposure increased protein kinase C activity and promoted pulmonary artery smooth muscle cell proliferation in vitro. Our data suggest that NF-κB activation may contribute to chronic normobaric hypoxia-induced PH.

  3. M-CSF induces monocyte survival by activating NF-κB p65 phosphorylation at Ser276 via protein kinase C.

    Directory of Open Access Journals (Sweden)

    Yijie Wang

    Full Text Available Macrophage colony-stimulating factor (M-CSF promotes mononuclear phagocyte survival and proliferation. The transcription factor Nuclear Factor-kappaB (NF-κB is a key regulator of genes involved in M-CSF-induced mononuclear phagocyte survival and this study focused at identifying the mechanism of NF-κB transcriptional activation. Here, we demonstrate that M-CSF stimulated NF-κB transcriptional activity in human monocyte-derived macrophages (MDMs and the murine macrophage cell line RAW 264.7. The general protein kinase C (PKC inhibitor Ro-31-8220, the conventional PKCα/β inhibitor Gö-6976, overexpression of dominant negative PKCα constructs and PKCα siRNA reduced NF-κB activity in response to M-CSF. Interestingly, Ro-31-8220 reduced Ser276 phosphorylation of NF-κBp65 leading to decreased M-CSF-induced monocyte survival. In this report, we identify conventional PKCs, including PKCα as important upstream kinases for M-CSF-induced NF-κB transcriptional activation, NF-κB-regulated gene expression, NF-κB p65 Ser276 phosphorylation, and macrophage survival. Lastly, we find that NF-κB p65 Ser276 plays an important role in basal and M-CSF-stimulated NF-κB activation in human mononuclear phagocytes.

  4. Vinpocetine Ameliorates Acetic Acid-Induced Colitis by Inhibiting NF-κB Activation in Mice.

    Science.gov (United States)

    Colombo, Bárbara B; Fattori, Victor; Guazelli, Carla F S; Zaninelli, Tiago H; Carvalho, Thacyana T; Ferraz, Camila R; Bussmann, Allan J C; Ruiz-Miyazawa, Kenji W; Baracat, Marcela M; Casagrande, Rúbia; Verri, Waldiceu A

    2018-04-10

    The idiopathic inflammatory bowel diseases (IBD) comprise two types of chronic intestinal disorders: Crohn's disease and ulcerative colitis. Recruited neutrophils and macrophages contribute to intestinal tissue damage via production of ROS and NF-κB-dependent pro-inflammatory cytokines. The introduction of anti-TNF-α therapies in the treatment of IBD patients was a seminal advance. This therapy is often limited by a loss of efficacy due to the development of adaptive immune response, underscoring the need for novel therapies targeting similar pathways. Vinpocetine is a nootropic drug and in addition to its antioxidant effect, it is known to have anti-inflammatory and analgesic properties, partly by inhibition of NF-κB and downstream cytokines. Therefore, the present study evaluated the effect of the vinpocetine in a model of acid acetic-induced colitis in mice. Treatment with vinpocetine reduced edema, MPO activity, microscopic score and macroscopic damage, and visceral mechanical hyperalgesia. Vinpocetine prevented the reduction of colonic levels of GSH, ABTS radical scavenging ability, and normalized levels of anti-inflammatory cytokine IL-10. Moreover, vinpocetine reduced NF-κB activation and thereby NF-κB-dependent pro-inflammatory cytokines IL-1β, TNF-α, and IL-33 in the colon. Thus, we demonstrate for the first time that vinpocetine has anti-inflammatory, antioxidant, and analgesic effects in a model of acid acetic-induced colitis in mice and deserves further screening to address its suitability as an approach for the treatment of IBD.

  5. Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-AT.

    Directory of Open Access Journals (Sweden)

    Rahul Checker

    Full Text Available BACKGROUND: Ursolic acid (UA, a pentacyclic triterpenoid carboxylic acid, is the major component of many plants including apples, basil, cranberries, peppermint, rosemary, oregano and prunes and has been reported to possess antioxidant and anti-tumor properties. These properties of UA have been attributed to its ability to suppress NF-κB (nuclear factor kappa B activation. Since NF-κB, in co-ordination with NF-AT (nuclear factor of activated T cells and AP-1(activator protein-1, is known to regulate inflammatory genes, we hypothesized that UA might exhibit potent anti-inflammatory effects. METHODOLOGY/PRINCIPAL FINDINGS: The anti-inflammatory effects of UA were assessed in activated T cells, B cells and macrophages. Effects of UA on ERK, JNK, NF-κB, AP-1 and NF-AT were studied to elucidate its mechanism of action. In vivo efficacy of UA was studied using mouse model of graft-versus-host disease. UA inhibited activation, proliferation and cytokine secretion in T cells, B cells and macrophages. UA inhibited mitogen-induced up-regulation of activation markers and co-stimulatory molecules in T and B cells. It inhibited mitogen-induced phosphorylation of ERK and JNK and suppressed the activation of immunoregulatory transcription factors NF-κB, NF-AT and AP-1 in lymphocytes. Treatment of cells with UA prior to allogenic transplantation significantly delayed induction of acute graft-versus-host disease in mice and also significantly reduced the serum levels of pro-inflammatory cytokines IL-6 and IFN-γ. UA treatment inhibited T cell activation even when added post-mitogenic stimulation demonstrating its therapeutic utility as an anti-inflammatory agent. CONCLUSIONS/SIGNIFICANCE: The present study describes the detailed mechanism of anti-inflammatory activity of UA. Further, UA may find application in the treatment of inflammatory disorders.

  6. Synergistic activation of NF-κB by nontypeable H. influenzae and S. pneumoniae is mediated by CK2, IKKβ-IκBα, and p38 MAPK

    International Nuclear Information System (INIS)

    Kweon, Soo-Mi; Wang, Beinan; Rixter, Davida; Lim, Jae Hyang; Koga, Tomoaki; Ishinaga, Hajime; Chen, L.-F.; Jono, Hirofumi; Xu Haidong; Li, J.-D.

    2006-01-01

    In review of the past studies on NF-κB regulation, most of them have focused on investigating how NF-κB is activated by a single inducer at a time. Given the fact that, in mixed bacterial infections in vivo, multiple inflammation inducers, including both nontypeable Haemophilus influenzae (NTHi) and Streptococcus pneumoniae, are present simultaneously, a key issue that has yet to be addressed is whether NTHi and S. pneumoniae simultaneously activate NF-κB and the subsequent inflammatory response in a synergistic manner. Here, we show that NTHi and S. pneumoniae synergistically induce NF-κB-dependent inflammatory response via activation of multiple signaling pathways in vitro and in vivo. The classical IKKβ-IκBα and p38 MAPK pathways are involved in synergistic activation of NF-κB via two distinct mechanisms, p65 nuclear translocation-dependent and -independent mechanisms. Moreover, casein kinase 2 (CK2) is involved in synergistic induction of NF-κB via a mechanism dependent on phosphorylation of p65 at both Ser536 and Ser276 sites. These studies bring new insights into the molecular mechanisms underlying the NF-κB-dependent inflammatory response in polymicrobial infections and may lead to development of novel therapeutic strategies for modulating inflammation in mixed infections for patients with otitis media and chronic obstructive pulmonary diseases

  7. Generation of Kappa Distributions in Solar Wind at 1 au

    Science.gov (United States)

    Livadiotis, G.; Desai, M. I.; Wilson, L. B., III

    2018-02-01

    We examine the generation of kappa distributions in the solar wind plasma near 1 au. Several mechanisms are mentioned in the literature, each characterized by a specific relationship between the solar wind plasma features, the interplanetary magnetic field (IMF), and the kappa index—the parameter that governs the kappa distributions. This relationship serves as a signature condition that helps the identification of the mechanism in the plasma. In general, a mechanism that generates kappa distributions involves a single or a series of stochastic or physical processes that induces local correlations among particles. We identify three fundamental solar wind plasma conditions that can generate kappa distributions, noted as (i) Debye shielding, (ii) frozen IMF, and (iii) temperature fluctuations, each one prevailing in different scales of solar wind plasma and magnetic field properties. Moreover, our findings show that the kappa distributions, and thus, their generating mechanisms, vary significantly with solar wind features: (i) the kappa index has different dependence on the solar wind speed for slow and fast modes, i.e., slow wind is characterized by a quasi-constant kappa index, κ ≈ 4.3 ± 0.7, while fast wind exhibits kappa indices that increase with bulk speed; (ii) the dispersion of magnetosonic waves is more effective for lower kappa indices (i.e., further from thermal equilibrium); and (iii) the kappa and polytropic indices are positively correlated, as it was anticipated by the theory.

  8. Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast-Based Functional Assay.

    Directory of Open Access Journals (Sweden)

    Vasundhara Sharma

    Full Text Available The NF-κB transcription factor family plays a central role in innate immunity and inflammation processes and is frequently dysregulated in cancer. We developed an NF-κB functional assay in yeast to investigate the following issues: transactivation specificity of NF-κB proteins acting as homodimers or heterodimers; correlation between transactivation capacity and in vitro DNA binding measurements; impact of co-expressed interacting proteins or of small molecule inhibitors on NF-κB-dependent transactivation. Full-length p65 and p50 cDNAs were cloned into centromeric expression vectors under inducible GAL1 promoter in order to vary their expression levels. Since p50 lacks a transactivation domain (TAD, a chimeric construct containing the TAD derived from p65 was also generated (p50TAD to address its binding and transactivation potential. The p50TAD and p65 had distinct transactivation specificities towards seventeen different κB response elements (κB-REs where single nucleotide changes could greatly impact transactivation. For four κB-REs, results in yeast were predictive of transactivation potential measured in the human MCF7 cell lines treated with the NF-κB activator TNFα. Transactivation results in yeast correlated only partially with in vitro measured DNA binding affinities, suggesting that features other than strength of interaction with naked DNA affect transactivation, although factors such as chromatin context are kept constant in our isogenic yeast assay. The small molecules BAY11-7082 and ethyl-pyruvate as well as expressed IkBα protein acted as NF-κB inhibitors in yeast, more strongly towards p65. Thus, the yeast-based system can recapitulate NF-κB features found in human cells, thereby providing opportunities to address various NF-κB functions, interactions and chemical modulators.

  9. Inhibition of NF-κB by a cell permeable form of IκBα induces apoptosis in eosinophils

    International Nuclear Information System (INIS)

    Fujihara, Satoko; Jaffray, Ellis; Farrow, Stuart N.; Rossi, Adriano G.; Haslett, Christopher; Hay, Ronald T.

    2005-01-01

    An 11 amino acid HIV-TAT peptide can deliver target proteins into a variety of cells in a receptor-independent manner. To generate a highly specific inhibitor of the transcription factor NF-κB, we have fused the TAT-peptide to a version of IκBα that is resistant to signal-induced degradation. TAT-IκBα(S32A, S36A) inhibited NF-κB-dependent transcription in HeLa and A549 cells by retaining NF-κB p65 in the cytoplasm. Introduction of TAT-IκBα(S32A, S36A) into human eosinophils inhibited the nuclear translocation of NF-κB and induced apoptosis. Thus, continuous NF-κB-dependent transcription is important for eosinophil survival. While eosinophils are normally refractive to standard methods of gene delivery, the ability of TAT fusion proteins to be taken up by these cells should enable a detailed molecular analysis of survival pathways in these cells

  10. NFAT5 participates in seawater inhalation-induced acute lung injury via modulation of NF-κB activity

    Science.gov (United States)

    Li, Congcong; Liu, Manling; Bo, Liyan; Liu, Wei; Liu, Qingqing; Chen, Xiangjun; Xu, Dunquan; Li, Zhichao; Jin, Faguang

    2016-01-01

    Nuclear factor of activated T cells 5 (NFAT5) is a transcription factor that can be activated by extracellular tonicity. It has been reported that NFAT5 may increase the transcription of certain osmoprotective genes in the renal system, and the aim of the current study was to explore the role of NFAT5 in seawater inhalation-induced acute lung injury. Though establishing the model of seawater inhalation-induced acute lung injury, it was demonstrated that seawater inhalation enhanced the transcription and protein expression of NFAT5 (evaluated by reverse transcription-polymerase chain reaction, immunohistochemistry stain and western blotting) and activation of nuclear factor (NF)-κB (evaluated by western blotting and mRNA expression levels of three NF-κB-dependent genes) both in lung tissue and rat alveolar macrophage cells (NR8383 cells). When expression of NFAT5 was reduced in NR8383 cells using an siRNA targeted to NFAT5, the phosphorylation of NF-κB and transcription of NF-κB-dependent genes were significantly reduced. In addition, the elevated content of certain inflammatory cytokines [tumor necrosis factor α, interleukin (IL)-1 and IL-8] were markedly reduced. In conclusion, NFAT5 serves an important pathophysiological role in seawater inhalation-induced acute lung injury by modulating NF-κB activity, and these data suggest that NFAT5 may be a promising therapeutic target. PMID:27779669

  11. 15-Deoxy-Δ{sup 12,14}-prostaglandin J{sub 2} inhibits IL-13 production in T cells via an NF-κB-dependent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Marie-Christine; Tremblay, Sarah [Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke (QC), Canada J1K 2R1 (Canada); Dumais, Nancy, E-mail: nancy.dumais@usherbrooke.ca [Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke (QC), Canada J1K 2R1 (Canada)

    2013-02-15

    Highlights: ► 15d-PGJ{sub 2} decreased IL-13 mRNA transcription and secretion in activated T cells. ► IL-13 inhibition by 15d-PGJ{sub 2} is independent of PPAR-γ. ► The nuclear factor-κB mediates the 15d-PGJ{sub 2}-dependent down regulation of IL-13. -- Abstract: Interleukin (IL)-13 is a cytokine produced by activated CD4{sup +} T cells that plays a critical role in promoting allergic responses and tumor cell growth. The 15-deoxy-Δ{sup 12,14}-prostaglandin J{sub 2} (15d-PGJ{sub 2}) is a natural ligand for the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), a known regulator of anti-inflammatory activities. We determined the effects of 15d-PGJ{sub 2} on IL-13 expression in the Jurkat E6.1 T-cell line and in peripheral blood mononuclear cells. Semi-quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay revealed that treatment of activated T cells with 15d-PGJ{sub 2} significantly decreased IL-13 mRNA transcription and secretion, respectively. This inhibition by 15d-PGJ{sub 2} was independent of PPAR-γ since treatment with GW9662, an irreversible antagonist of the nuclear receptor, produced no effect. Our data also revealed the involvement of nuclear factor-κB in mediating 15d-PGJ{sub 2}-dependent down regulation of IL-13 expression. Collectively, these results demonstrate the potential of 15d-PGJ{sub 2} in attenuating expression and production of IL-13 in activated T cells.

  12. Rhizoma Coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NF?B-Dependent Pathway

    OpenAIRE

    Remppis, Andrew; Bea, Florian; Greten, Henry Johannes; Buttler, Annette; Wang, Hongjie; Zhou, Qianxing; Preusch, Michael R.; Enk, Ronny; Ehehalt, Robert; Katus, Hugo; Blessing, Erwin

    2010-01-01

    Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFB was anal...

  13. NF-κB p50 subunit knockout impairs late LTP and alters long term memory in the mouse hippocampus

    Directory of Open Access Journals (Sweden)

    Oikawa Kensuke

    2012-07-01

    Full Text Available Abstract Background Nuclear factor kappa B (NF-κB is a transcription factor typically expressed with two specific subunits (p50, p65. Investigators have reported that NF-κB is activated during the induction of in vitro long term potentiation (LTP, a paradigm of synaptic plasticity and correlate of memory, suggesting that NF-κB may be necessary for some aspects of memory encoding. Furthermore, NF-κB has been implicated as a potential requirement in behavioral tests of memory. Unfortunately, very little work has been done to explore the effects of deleting specific NF-κB subunits on memory. Studies have shown that NF-κB p50 subunit deletion (p50−/− leads to memory deficits, however some recent studies suggest the contrary where p50−/− mice show enhanced memory in the Morris water maze (MWM. To more critically explore the role of the NF-κB p50 subunit in synaptic plasticity and memory, we assessed long term spatial memory in vivo using the MWM, and synaptic plasticity in vitro utilizing high frequency stimuli capable of eliciting LTP in slices from the hippocampus of NF-κB p50−/− versus their controls (p50+/+. Results We found that the lack of the NF-κB p50 subunit led to significant decreases in late LTP and in selective but significant alterations in MWM tests (i.e., some improvements during acquisition, but deficits during retention. Conclusions These results support the hypothesis that the NF-κ p50 subunit is required in long term spatial memory in the hippocampus.

  14. An NF-κB Transcription-Factor-Dependent Lineage-Specific Transcriptional Program Promotes Regulatory T Cell Identity and Function.

    Science.gov (United States)

    Oh, Hyunju; Grinberg-Bleyer, Yenkel; Liao, Will; Maloney, Dillon; Wang, Pingzhang; Wu, Zikai; Wang, Jiguang; Bhatt, Dev M; Heise, Nicole; Schmid, Roland M; Hayden, Matthew S; Klein, Ulf; Rabadan, Raul; Ghosh, Sankar

    2017-09-19

    Both conventional T (Tconv) cells and regulatory T (Treg) cells are activated through ligation of the T cell receptor (TCR) complex, leading to the induction of the transcription factor NF-κB. In Tconv cells, NF-κB regulates expression of genes essential for T cell activation, proliferation, and function. However the role of NF-κB in Treg function remains unclear. We conditionally deleted canonical NF-κB members p65 and c-Rel in developing and mature Treg cells and found they have unique but partially redundant roles. c-Rel was critical for thymic Treg development while p65 was essential for mature Treg identity and maintenance of immune tolerance. Transcriptome and NF-κB p65 binding analyses demonstrated a lineage specific, NF-κB-dependent transcriptional program, enabled by enhanced chromatin accessibility. These dual roles of canonical NF-κB in Tconv and Treg cells highlight the functional plasticity of the NF-κB signaling pathway and underscores the need for more selective strategies to therapeutically target NF-κB. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4

    DEFF Research Database (Denmark)

    Thoresen, Sigrid B; Campsteijn, Coen; Vietri, Marina

    2014-01-01

    of the ESCRT machinery, the ATPase VPS4. In concert with CHMP4C, ANCHR associates with VPS4 at the midbody ring following DNA segregation defects to control abscission timing and prevent multinucleation in an Aurora-B-dependent manner. This association prevents VPS4 relocalization to the abscission zone...... and is relieved following inactivation of Aurora B to allow abscission. We propose that the abscission checkpoint is mediated by ANCHR and CHMP4C through retention of VPS4 at the midbody ring....

  16. Gelam Honey Attenuates Carrageenan-Induced Rat Paw Inflammation via NF-κB Pathway

    Science.gov (United States)

    Hussein, Saba Zuhair; Mohd Yusoff, Kamaruddin; Makpol, Suzana; Mohd Yusof, Yasmin Anum

    2013-01-01

    The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α. PMID:24015236

  17. NF-κB expression and its association with nutritional status in hemodialysis patients.

    Science.gov (United States)

    Farage, Najla E; Stockler-Pinto, Milena B; Leal, Viviane O; Cardozo, Ludmila Lmf; Carraro-Eduardo, José Carlos; Fouque, Denis; Mafra, Denise

    2016-12-01

    This study aimed to evaluate the association among the expressions of pro- and anti-inflammatory nuclear factors (nuclear factor-kappaB, NF-κB and nuclear erythroid 2-related factor 2, Nrf2) and nutritional status in HD patients. This cross-sectional study included eighty-three HD patients. The peripheral blood mononuclear cells were isolated and processed for the evaluation of NF-κB and Nrf2 RNAm expression by quantitative real-time polymerase chain reaction. Muscle mass was estimated by creatinine index (CI) and percentage of body fat (%BF) by anthropometry. Seven-point subjective global assessment was also used to evaluate the nutritional status. The NF-κB expression was negatively correlated with CI (r = -0.54, p = 0.0001), serum albumin (r = -0.32, p = 0.02) and %BF (r = -0.61, p = 0.001). Multiple linear regression analysis revealed that NF-κB expression was independently associated with CI (β: -0.8, p = 0.013) and %BF (β: -0.42, p = 0.04). There was no correlation among Nrf2 and anthropometric and biochemical variables. The classical NF-κB activation seems to be associated with poor nutritional status in HD patients; however, the exact underlying mechanisms deserve further studies.

  18. Desflurane preconditioning induces oscillation of NF-κB in human umbilical vein endothelial cells.

    Directory of Open Access Journals (Sweden)

    Juan Yi

    Full Text Available BACKGROUND: Nuclear factor kappa B (NF-κB has been implicated in anesthetic preconditioning (APC induced protection against anoxia and reoxygenation (A/R injury. The authors hypothesized that desflurane preconditioning would induce NF-κB oscillation and prevent endothelial cells apoptosis. METHODS: A human umbilical vein endothelial cells (HUVECs A/R injury model was used. A 30 minute desflurane treatment was initiated before anoxia. NF-κB inhibitor BAY11-7082 was administered in some experiments before desflurane preconditioning. Cells apoptosis was analyzed by flow cytometry using annexin V-fluorescein isothiocyanate staining and cell viability was evaluated by modified tertrozalium salt (MTT assay. The cellular superoxide dismutases (SOD activitiy were tested by water-soluble tetrazolium salt (WST-1 assay. NF-κB p65 subunit nuclear translocation was detected by immunofluorescence staining. Expression of inhibitor of NF-κB-α (IκBα, NF-κB p65 and cellular inhibitor of apoptosis 1 (c-IAP1, B-cell leukemia/lymphoma 2 (Bcl-2, cysteine containing aspartate specific protease 3 (caspases-3 and second mitochondrial-derived activator of caspase (SMAC/DIABLO were determined by western blot. RESULTS: Desflurane preconditioning caused phosphorylation and nuclear translocation of NF-κB before anoxia, on the contrary, induced the synthesis of IκBα and inhibition of NF-κB after reoxygenation. Desflurane preconditioning up-regulated the expression of c-IAP1 and Bcl-2, blocked the cleavage of caspase-3 and reduced SMAC release, and decreased the cell death of HUVECs after A/R. The protective effect was abolished by BAY11-7082 administered before desflurane. CONCLUSIONS: The results demonstrated that desflurane activated NF-κB during the preconditioning period and inhibited excessive activation of NF-κB in reperfusion. And the oscillation of NF-κB induced by desflurane preconditioning finally up-regulated antiapoptotic proteins expression and

  19. Anti-cancer effect of bee venom on colon cancer cell growth by activation of death receptors and inhibition of nuclear factor kappa B.

    Science.gov (United States)

    Zheng, Jie; Lee, Hye Lim; Ham, Young Wan; Song, Ho Sueb; Song, Min Jong; Hong, Jin Tae

    2015-12-29

    Bee venom (BV) has been used as a traditional medicine to treat arthritis, rheumatism, back pain, cancerous tumors, and skin diseases. However, the effects of BV on the colon cancer and their action mechanisms have not been reported yet. We used cell viability assay and soft agar colony formation assay for testing cell viability, electro mobility shift assay for detecting DNA binding activity of nuclear factor kappa B (NF-κB) and Western blotting assay for detection of apoptosis regulatory proteins. We found that BV inhibited growth of colon cancer cells through induction of apoptosis. We also found that the expression of death receptor (DR) 4, DR5, p53, p21, Bax, cleaved caspase-3, cleaved caspase-8, and cleaved caspase-9 was increased by BV treatment in a dose dependent manner (0-5 μg/ml). Consistent with cancer cell growth inhibition, the DNA binding activity of nuclear factor kappa B (NF-κB) was also inhibited by BV treatment. Besides, we found that BV blocked NF-κB activation by directly binding to NF-κB p50 subunit. Moreover, combination treatment with BV and p50 siRNA or NF-κB inhibitor augmented BV-induced cell growth inhibition. However, p50 mutant plasmid (C62S) transfection partially abolished BV-induced cell growth inhibiton. In addition, BV significantly suppressed tumor growth in vivo. Therefore, these results suggested that BV could inhibit colon cancer cell growth, and these anti-proliferative effects may be related to the induction of apoptosis by activation of DR4 and DR5 and inhibition of NF-κB.

  20. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    International Nuclear Information System (INIS)

    Liu, Xin-Hua; Bauman, William A.; Cardozo, Christopher

    2015-01-01

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed-back inhibitory loop

  1. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Bauman, William A. [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Cardozo, Christopher, E-mail: chris.cardozo@va.gov [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States)

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed-back inhibitory loop

  2. Influence of 17β-estradiol treatment on the expression of NF-κB in complete hydatidiform mole culture

    Directory of Open Access Journals (Sweden)

    Tatit Nurseta

    2013-12-01

    Full Text Available Background:  Genetic evidence has established a role of nuclear factor kappa B (NF-κB signaling in oncogenesis. However, activity of NF-κB in complete hydatidiform mole (CHM cell culture under 17β-estradiol (E2 treatment is not yet known. Recently, a positive cross-talk between estrogen receptor (ER and NF-κB to promote survival and progress of cancer cells to a more aggressive phenotype was established. In the present study, we examined the influence of E2 treatment on the NF-κB expression in CHM’s culture.Methods:  This experimental study measured the expression of NF-κB in CHM culture treated with E2: 10, 100, 300, 600, and 1000 pg/mL and without E2. Imunohistochemistry staining was used to assess the expression of NF-κB. Microphotographs were taken using 400x magnification. Adobe photoshop CS2 was used to assess the NF-κB expression in cell nucleus. The lower the color intensity of cell RGBbv, is the higher the expression of NF-κB in cells. ANOVA test was performed to compare the expression of NF-κB.Results: NF-κB expression as indicated by color intensity in control group was 114.84 ± 9.02. NF-κB expression in E2 treatment groups were respectively: E2 10 pg/mL: 106.30 ± 13.95; E2 100 pg/mL: 82.47 ± 4.72; E2 300 pg/mL: 82.24 ± 2.67; E2 600 pg/mL: 69.05 ± 6.47; E2 1000 pg/mL: 68.49 ± 2.37. There was progressive decline in color intensity of cells with E2 treatment indicating the increase expression of NF-κB. Significant differences with the control group occurred in doses of E2 100, 300, 600, dan 1000 pg/mL.Conclusion: Treatment of CHM trophoblast culture with escalating doses of E2 was associated with the increase of NF-κB expression in a dose dependent manner. (Med J Indones. 2013;22:197-201. doi: 10.13181/mji.v22i4.599Keywords: 17-β Estradiol, Hydatidiform mole, NF-κB

  3. Enhanced expression of WD repeat-containing protein 35 via nuclear factor-kappa B activation in bupivacaine-treated Neuro2a cells.

    Directory of Open Access Journals (Sweden)

    Lei Huang

    Full Text Available The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS generation and p38 mitogen-activated protein kinase (MAPK activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35 in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB and activator protein 1 (AP-1. The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression.

  4. Enhanced Expression of WD Repeat-Containing Protein 35 via Nuclear Factor-Kappa B Activation in Bupivacaine-Treated Neuro2a Cells

    Science.gov (United States)

    Huang, Lei; Kondo, Fumio; Harato, Misako; Feng, Guo-Gang; Ishikawa, Naoshisa; Fujiwara, Yoshihiro; Okada, Shoshiro

    2014-01-01

    The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS) generation and p38 mitogen-activated protein kinase (MAPK) activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1). The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression. PMID:24466034

  5. [Effects of TCM treatment according to syndrome differentiation on expressions of nuclear factor-kappaB and gamma-glutamylcysteine synthetase in rats with chronic obstructive pulmonary disease of various syndrome types].

    Science.gov (United States)

    Zhang, Wei; Zhang, Xin-Yue; Shao, Yu-Meng

    2007-05-01

    To explore the mechanism of traditional Chinese medicine (TCM) treatment according to syndrome differentiation in treating chronic obstructive pulmonary disease (COPD) by observing the changes of nuclear factor-kappaB (NF-kappaB) and gamma-glutamylcysteine synthetase (gamma-GCS) expression levels in rats. COPD model was established by modified method of combining fumigation and lipopolysaccharide (LPS) intra-tracheal dripping. Model rats were treated respectively for succesive 14 days according to their syndrome, that is, Xiaoqinglong Decoction to the rats of cold-phlegm accumulation in Fei, Maxing Shigan Decoction to those of heat-phlegm accumulation in Fei, Yupingfeng Decoction to those of Fei-qi deficiency, Liujunzi Decoction to those of Pi-qi deficiency, Renshen Gejie Decoction to those of Shen qi-deficiency. Besides, model rats in the model control group received 2mL normal saline daily, and no intervention was applied in the normal control group. The expression of gamma-GCS and NF-kappaB was detected by immunochemistry before and after treatment. Compared with that in the normal rats, the expressions of gamma-GCS and NF-kappaB in bronchial and alveolar epithelium of COPD rats before treatment were significantly higher, but the positive expression rates were lowered after treatment significantly (Psyndrome differentiation could rectify imbalance of oxidation/anti-oxidation and alleviate inflammatory reaction in COPD rats, thus to treat COPD effectively.

  6. Novel insights into the role of NF-κB p50 in astrocyte-mediated fate specification of adult neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Valeria Bortolotto

    2017-01-01

    Full Text Available Within the CNS nuclear factor-kappa B (NF-κB transcription factors are involved in a wide range of functions both in homeostasis and in pathology. Over the years, our and other groups produced a vast array of information on the complex involvement of NF-κB proteins in different aspects of postnatal neurogenesis. In particular, several extracellular signals and membrane receptors have been identified as being able to affect neural progenitor cells (NPC and their progeny via NF-κB activation. A crucial role in the regulation of neuronal fate specification in adult hippocampal NPC is played by the NF-κB p50 subunit. NF-κB p50KO mice display a remarkable reduction in adult hippocampal neurogenesis which correlates with a selective defect in hippocampal-dependent short-term memory. Moreover absence of NF-κB p50 can profoundly affect the in vitro proneurogenic response of adult hippocampal NPC (ahNPC to several endogenous signals and drugs. Herein we briefly review the current knowledge on the pivotal role of NF-κB p50 in the regulation of adult hippocampal neurogenesis. In addition we discuss more recent data that further extend the relevance of NF-κB p50 to novel astroglia-derived signals which can influence neuronal specification of ahNPC and to astrocyte-NPC cross-talk.

  7. Effects of Qingshen Granules on the Oxidative Stress-NF/kB Signal Pathway in Unilateral Ureteral Obstruction Rats

    Directory of Open Access Journals (Sweden)

    Hua Jin

    2018-01-01

    Full Text Available Background. The activation of NF-kappa B (NF/kB signaling pathway plays an important role in the process of epithelial-mesenchymal transition (EMT and renal interstitial fibrosis (RIF in renal tubules. The process of oxidative stress reaction in kidney is via excessive reactive oxygen species (ROS production to activate NF/kB signaling pathway. Qingshen Granule (QSG is an effective Chinese formula utilized to treat chronic renal failure. Previous studies confirmed that QSG could inhibit RIF in unilateral ureteral obstruction (UUO rats. In this study, we used UUO rats to investigate the effects of QSG on oxidative stress and the activation of NF/kB signaling. Seventy male Sprague-Dawley (SD rats were randomly divided into a sham group, UUO model group, Qingshen Granules (QSG high-dose, medium-dose, and low-dose groups, PDTC group, and candesartan group (10 rats in each group. Our study demonstrated that oxidative stress-NF/kB signal pathway contributed to the formation of UUO renal interstitial fibrosis. QSG may protect against RIF by inhibiting the oxidative stress-NF/kB signal pathway, reducing inflammation, and improving renal tubular EMT.

  8. Kappa-Electrons Downstream of the Solar Wind Termination Shock

    Science.gov (United States)

    Fahr, H. J.

    2017-12-01

    A theoretical description of the solar wind electron distribution function downstream of the termination shock under the influence of the shock-induced injection of overshooting KeV-energetic electrons will be presented. A kinetic phasespace transport equation in the bulk frame of the heliosheath plasma flow is developed for the solar wind electrons, taking into account shock-induced electron injection, convective changes, magnetic cooling processes and whistler wave-induced energy diffusion. Assuming that the local electron distribution under the prevailing Non-LTE conditions can be represented by a local kappa function with a local kappa parameter that varies with the streamline coordinates, we determine the parameters of the resulting, initial kappa distribution for the downstream electrons. From this initial function spectral electron fluxes can be derived and can be compared with those measured by the VOYAGER-1 spacecraft in the range between 40 to 70 KeV. It can then be shown that with kappa values around kappa = 6 one can in fact fit these data very satisfactorily. In addition it is shown that for isentropic electron flows kappa-distributed electrons have to undergo simultaneous changes of both parameters, i.e. kappa and theta, of the electron kappa function. It is also shown then that under the influence of energy sinks and sources the electron flux becomes non-isentropic with electron entropies changing along the streamline.

  9. Kappa-casein gene polymorphism in Holstein and Iranian native ...

    African Journals Online (AJOL)

    Administrator

    2011-06-08

    Jun 8, 2011 ... samples of 247 Holstein and 210 native cattle for identification and genotyping of kappa-casein gene by ... and protein content of milk. ... DNA extraction was performed using DNA isolation kit (Gentra Inc.,. Minneapolis, MN) according to manufacturer's instructions. PCR-RFLP assay for kappa-casein ...

  10. TAK1 regulates NF-ΚB and AP-1 activation in airway epithelial cells following RSV infection

    International Nuclear Information System (INIS)

    Dey, Nilay; Liu Tianshuang; Garofalo, Roberto P.; Casola, Antonella

    2011-01-01

    Respiratory syncytial virus (RSV) is the most common cause of epidemic respiratory diseases in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-κB (NF-κB) and AP-1. In this study, we have investigated the signaling pathway leading to activation of these two transcription factors in response to RSV infection. Our results show that IKKβ plays a key role in viral-induced NF-κB activation, while JNK regulates AP-1-dependent gene transcription, as demonstrated by using kinase inactive proteins and chemical inhibitors of the two kinases. Inhibition of TAK1 activation, by overexpression of kinase inactive TAK1 or using cells lacking TAK1 expression, significantly reduced RSV-induced NF-κB and AP-1 nuclear translocation and DNA-binding activity, as well as NF-κB-dependent gene expression, identifying TAK1 as an important upstream signaling molecule regulating RSV-induced NF-κB and AP-1 activation. - Highlights: → IKKβ is a major kinase involved in RSV-induced NF-κB activation. → JNK regulates AP-1-dependent gene transcription in RSV infection. → TAK1 is a critical upstream signaling molecule for both pathways in infected cells.

  11. Regulation of development and function of different T cell subtypes by Rel/NF-κB family members

    International Nuclear Information System (INIS)

    Vallabhapurapu, S.

    2004-09-01

    This study reveals the requirement of distinct members of the Rel/NF-κB family in both hematopoietic and non-hematopoietic cells for the development of thymic NKT cells. Activation of NF-κB via the classical IκBα-regulated pathway is required within the NKT precursors for their efficient maturation from NK1.1 - precursors to mature NK1.1 + NKT cells. The Rel/NF-κB family member RelB, on the other hand, is required in thymic stromal cells for the generation of very early NK1.1 - precursors. NF-κB-inducing kinase (NIK) has also been shown to be required in thymic stromal cells for NKT cell development and this study demonstrates that NIK specifically regulates both constitutive and signal-induced DNA binding of RelB, but not RelA. Moreover, NIK-induced DNA binding of RelB depends on the processing of inhibitory p100 to p52, revealing an alternate pathway of NF-κB induction. Thus, Rel/NF-κB complexes activated by the classical IκBα-regulated pathway in NKT precursors and an alternate NIK/p100/RelB pathway in thymic stromal cells regulate different stages of NKT cell development. (orig.)

  12. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Jane T. Jones

    2016-08-01

    Full Text Available Nuclear Factor kappa B (NF-κB is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ, among other NF-κB proteins. Glutathione S-transferase Pi (GSTP is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS. TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor.

  13. Identification of sigmaB-dependent genes in Bacillus cereus by proteome and in vitro transcription analysis.

    Science.gov (United States)

    van Schaik, Willem; Zwietering, Marcel H; de Vos, Willem M; Abee, Tjakko

    2004-07-01

    The alternative sigma factor sigmaB of the food pathogen Bacillus cereus is activated upon stress exposure and plays a role in the adaptive response of vegetative cells. This study describes the identification of sigmaB-dependent genes in B. cereus. Two-dimensional gel electrophoresis was performed with protein extracts from a sigmaB-overproducing B. cereus strain. Nine protein spots, which were absent from the negative control, were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry or N-terminal sequencing. The sigmaB-dependent expression of the corresponding genes was confirmed by Northern blot analysis with RNA isolated from B. cereus ATCC 14579 and its sigB null mutant. Northern blot analysis also revealed that six other genes were part of sigmaB-dependent operons. The proteins that are predicted to be encoded by the sigmaB-dependent genes include an intracellular protease, a Mg2+ transporter, and a thiamine biosynthesis protein (ThiG). Highly conserved promoter sites were found to precede all sigmaB-dependent genes, with the exception of thiG. By searching the B. cereus genome for this conserved promoter sequence, five more candidate sigmaB-dependent genes were identified. Northern blot analysis and in vitro transcription experiments with a reconstituted B. cereus sigmaB-RNA polymerase holoenzyme confirmed the sigmaB dependency of two of these genes and strongly suggested that two other genes, encoding an oligopeptide-binding OppA-like protein and subunit II of the cytochrome d ubiquinol oxidase, are also sigmaB dependent. In conclusion, sigmaB of B. cereus not only regulates genes directly involved in the stress response but may also control specific metabolic rearrangements.

  14. Modulation of both activator protein-1 and nuclear factor-kappa B signal transduction of human T cells by amiodarone.

    Science.gov (United States)

    Cheng, Shu-Meng; Lin, Wei-Hsiang; Lin, Chin-Sheng; Ho, Ling-Jun; Tsai, Tsung-Neng; Wu, Chun-Hsien; Lai, Jenn-Haung; Yang, Shih-Ping

    2015-01-01

    Amiodarone, a common and effective antiarrhythmic drug, has been reported to have anti-inflammatory effects such as reducing the activation and movement of neutrophils. However, its effects on human T cells remain unclear. The aim of this study was to elucidate the effects and possible underlying mechanisms of amiodarone on human T cells. We isolated human primary T cells from the peripheral blood of healthy volunteers and performed enzyme-linked immunosorbent assay (ELISA), flow cytometry, electrophoretic mobility shift assay, luciferase assay, and Western blotting to evaluate the modulatory effects of amiodarone on human T cells. We found that amiodarone dose dependently inhibited the production of cytokines, including interleukin-2 (IL-2), IL-4, tumor necrosis factor-alpha, and interferon-gamma in activated human T cells. By flow cytometry, we demonstrated that amiodarone suppressed the expression of IL-2 receptor-alpha (CD25) and CD69, the cell surface markers of activated T cells. Moreover, molecular investigations revealed that amiodarone down-regulated activator protein-1 (AP-1) and nuclear factor kappa-B (NF-κB) DNA-binding activities in activated human T cells and also inhibited DNA binding and transcriptional activities of both AP-1 and NF-κB in Jurkat cells. Finally, by Western blotting, we showed that amiodarone reduced the activation of c-Jun NH(2)-terminal protein kinase and P38 mitogen-activated protein kinase, and suppressed stimuli-induced I-kappa B-alpha degradation in activated human T cells. Through regulation of AP-1 and NF-κB signaling, amiodarone inhibits cytokine production and T cell activation. These results show the pleiotropic effects of amiodarone on human T cells and suggest its therapeutic potential in inflammation-related cardiovascular disorders. © 2014 by the Society for Experimental Biology and Medicine.

  15. Kappa Cygnids (KCG) by TV observation results

    Science.gov (United States)

    Shiba, Yasuo

    2017-12-01

    The kappa Cygnids (KCG) and its nearby region were researched by using Japanese automatic TV observation network (SonotaCo network) results for 2007-2016. KCG in 2007 and 2014 were observed with an enhancement of eight times as many meteors than ordinary years at solar longitude 145 degrees. Also the 2013 KCG were enhanced with three times the number of meteors recorded than ordinary years at solar longitude 135 degrees. In years of observed enhanced KCG (2007, 2013, 2014) luminous magnitudes were brighter than in ordinary years. The 2007 and 2014 KCG radiant distributions were similar but shifted 5 degrees to the north in 2013. The 2013 KCG orbital elements were systematically different from 2007 and 2014. If a continuous meteoroid distribution in the solar system causes the enhanced KCG, it is suggested that a distorted `swarm' has been constructed. The annual KCG radiant distribution and distributions of every orbital element have some peaks which indicate a complex meteor shower. Luminous trajectory altitudes in years of observed enhanced KCG were higher than the annual KCG height. August Draconids (AUD) is an annual meteor shower, many meteors of which are decided to also belong to KCG by using the criterion, but each meteor shower is independent because they have different characteristics. AUD radiants on the celestial sphere drift to the west and form an arc lasting till the end of September. I recommend to create a standard to decide for two meteor showers whether they are truly two meteor showers or not.

  16. Buddleja officinalis suppresses high glucose-induced vascular smooth muscle cell proliferation: role of mitogen-activated protein kinases, nuclear factor-kappaB and matrix metalloproteinases.

    Science.gov (United States)

    Lee, Yun Jung; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2010-02-01

    Diabetes mellitus is a well-established risk factor for vascular diseases caused by atherosclerosis. In the development of diabetic atherogenesis, vascular smooth muscle cell proliferation is recognized as a key event. Thus, we aimed to investigate whether an ethanol extract of Buddleja officinalis (EBO) suppresses high glucose-induced proliferation in primary cultured human aortic smooth muscle cells (HASMC). [(3)H]-thymidine incorporation revealed that incubation of HASMC with a high concentration of glucose (25 mmol/L) increased cell proliferation. The expression levels of cell cycle protein were also increased by treatment with high glucose concentration. Pretreatment of HASMC with EBO significantly attenuated the increase of high glucose-induced cell proliferation as well as p38 mitogen-activated protein kinases (MAPK) and JNK phosphorylation. EBO suppressed high glucose-induced matrix metalloproteinase (MMP)-9 activity in a dose-dependent manner. In addition, EBO suppressed nuclear factor-kappaB (NF-kappaB) nuclear translocation and transcriptional activity in high glucose conditions. Taken together, the present data suggest that EBO could suppress high glucose-induced atherosclerotic processes through inhibition of p38, JNK, NF-kappaB and MMP signal pathways in HASMC.

  17. KLF2 in Regulation of NF-κB-Mediated Immune Cell Function and Inflammation

    Directory of Open Access Journals (Sweden)

    Prerana Jha

    2017-11-01

    Full Text Available KLF2 (Kruppel-like factor 2 is a member of the zinc finger transcription factor family, which critically regulates embryonic lung development, function of endothelial cells and maintenance of quiescence in T-cells and monocytes. It is expressed in naïve T-cells and monocytes, however its level of expression decreases during activation and differentiation. KLF2 also plays critical regulatory role in various inflammatory diseases and their pathogenesis. Nuclear factor-kappaB (NF-κB is an important inducer of inflammation and the inflammation is mediated through the transcription of several proinflammatory cytokines, chemokines and adhesion molecules. So, both transcriptional factors KLF2 and NF-κB are being associated with the similar cellular functions and their maintenance. It was shown that KLF2 regulates most of the NF-κB-mediated activities. In this review, we focused on emphasizing the involvement of KLF2 in health and disease states and how they interact with transcriptional master regulator NF-κB.

  18. TLR2 ligands induce NF-κB activation from endosomal compartments of human monocytes.

    Directory of Open Access Journals (Sweden)

    Karim J Brandt

    Full Text Available Localization of Toll-like receptors (TLR in subcellular organelles is a major strategy to regulate innate immune responses. While TLR4, a cell-surface receptor, signals from both the plasma membrane and endosomal compartments, less is known about the functional role of endosomal trafficking upon TLR2 signaling. Here we show that the bacterial TLR2 ligands Pam3CSK4 and LTA activate NF-κB-dependent signaling from endosomal compartments in human monocytes and in a NF-κB sensitive reporter cell line, despite the expression of TLR2 at the cell surface. Further analyses indicate that TLR2-induced NF-κB activation is controlled by a clathrin/dynamin-dependent endocytosis mechanism, in which CD14 serves as an important upstream regulator. These findings establish that internalization of cell-surface TLR2 into endosomal compartments is required for NF-κB activation. These observations further demonstrate the need of endocytosis in the activation and regulation of TLR2-dependent signaling pathways.

  19. HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role.

    Science.gov (United States)

    Fochi, Stefania; Mutascio, Simona; Bertazzoni, Umberto; Zipeto, Donato; Romanelli, Maria G

    2018-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4 + /CD25 + T-cell malignancy and of a severe neurodegenerative disease, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The chronic activation or deregulation of the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways play a crucial role in tumorigenesis. The HTLV-1 Tax-1 oncoprotein is a potent activator of the NF-κB transcription factors and the NF-κB response is required for promoting the development of HTLV-1 transformed cell lines. The homologous retrovirus HTLV-2, which also expresses a Tax-2 transforming protein, is not associated with ATL. In this review, we provide an updated synopsis of the role of Tax-1 in the deregulation of the NF-κB pathway, highlighting the differences with the homologous Tax-2. Special emphasis is directed toward the understanding of the molecular mechanisms involved in NF-κB activation resulting from Tax interaction with host factors affecting several cellular processes, such as cell cycle, apoptosis, senescence, cell proliferation, autophagy, and post-translational modifications. We also discuss the current knowledge on the role of the antisense viral protein HBZ in down-regulating the NF-κB activation induced by Tax, and its implication in cellular senescence. In addition, we review the recent studies on the mechanism of HBZ-mediated inhibition of NF-κB activity as compared to that exerted by the HTLV-2 antisense protein, APH-2. Finally, we discuss recent advances aimed at understanding the role exerted in the development of ATL by the perturbation of NF-κB pathway by viral regulatory proteins.

  20. AAV-based shRNA silencing of NF-κB ameliorates muscle pathologies in mdx mice.

    Science.gov (United States)

    Yang, Q; Tang, Y; Imbrogno, K; Lu, A; Proto, J D; Chen, A; Guo, F; Fu, F H; Huard, J; Wang, B

    2012-12-01

    Chronic inflammation, promoted by an upregulated NF-kappa B (NF-κB) pathway, has a key role in Duchenne muscular dystrophy (DMD) patients' pathogenesis. Blocking the NF-κB pathway has been shown to be a viable approach to diminish chronic inflammation and necrosis in the dystrophin-defective mdx mouse, a murine DMD model. In this study, we used the recombinant adeno-associated virus serotype 9 (AAV9) carrying an short hairpin RNA (shRNA) specifically targeting the messenger RNA of NF-κB/p65 (p65-shRNA), the major subunit of NF-κB associated with chronic inflammation in mdx mice. We examined whether i.m. AAV9-mediated delivery of p65-shRNA could decrease NF-κB activation, allowing for amelioration of muscle pathologies in 1- and 4-month-old mdx mice. At 1 month after treatment, NF-κB/p65 levels were significantly decreased by AAV gene transfer of p65-shRNA in the two ages of treatment groups, with necrosis significantly decreased compared with controls. Quantitative analysis revealed that central nucleation (CN) of the myofibers of p65-shRNA-treated 1-month-old mdx muscles was reduced from 67 to 34%, but the level of CN was not significantly decreased in treated 4-month-old mdx mice. Moreover, delivery of the p65-shRNA enhanced the capacity of myofiber regeneration in old mdx mice treated at 4 months of age when the dystrophic myofibers were most exhausted; however, such p65 silencing diminished the myofiber regeneration in young mdx mice treated at 1 month of age. Taken together, these findings demonstrate that the AAV-mediated delivery of p65-shRNA has the capacity to ameliorate muscle pathologies in mdx mice by selectively reducing NF-κB/p65 activity.

  1. Critical role for Sec22b-dependent antigen cross-presentation in antitumor immunity.

    Science.gov (United States)

    Alloatti, Andrés; Rookhuizen, Derek C; Joannas, Leonel; Carpier, Jean-Marie; Iborra, Salvador; Magalhaes, Joao G; Yatim, Nader; Kozik, Patrycja; Sancho, David; Albert, Matthew L; Amigorena, Sebastian

    2017-08-07

    CD8 + T cells mediate antigen-specific immune responses that can induce rejection of solid tumors. In this process, dendritic cells (DCs) are thought to take up tumor antigens, which are processed into peptides and loaded onto MHC-I molecules, a process called "cross-presentation." Neither the actual contribution of cross-presentation to antitumor immune responses nor the intracellular pathways involved in vivo are clearly established because of the lack of experimental tools to manipulate this process. To develop such tools, we generated mice bearing a conditional DC-specific mutation in the sec22b gene, a critical regulator of endoplasmic reticulum-phagosome traffic required for cross-presentation. DCs from these mice show impaired cross-presentation ex vivo and defective cross-priming of CD8 + T cell responses in vivo. These mice are also defective for antitumor immune responses and are resistant to treatment with anti-PD-1. We conclude that Sec22b-dependent cross-presentation in DCs is required to initiate CD8 + T cell responses to dead cells and to induce effective antitumor immune responses during anti-PD-1 treatment in mice. © 2017 Alloatti et al.

  2. TonB-Dependent Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Babykin, Michael M; Obando, Tobias S A; Zinchenko, Vladislav V

    2018-02-01

    In Gram-negative bacteria, transport of ferric siderophores through outer membrane is a complex process that requires specific outer membrane transporters and energy-transducing TonB-ExbB-ExbD system in the cytoplasmic membrane. The genome of the non-siderophore-producing cyanobacterium Synechocystis sp. PCC 6803 encodes all putative components of the siderophore-mediated iron uptake system. So far, there has been no experimental evidence for the existence of such a pathway in this organism. On the contrary, its reductive iron uptake pathway has been studied in detail. We demonstrate that Synechocystis sp. PCC 6803 is capable of using dihydroxamate xenosiderophores, either ferric schizokinen (FeSK) or a siderophore of the filamentous cyanobacterium Anabaena variabilis ATCC 29413 (SAV), as the sole source of iron. Inactivation of the tonB gene or the exbB1-exbD1 gene cluster resulted in an inability to utilize these siderophores. At the same time, the inactivation of the feoB gene encoding FeoB plasma membrane ferrous iron transporter, or one of the futB or futC genes encoding permease and ATPase subunit of FutABC ferric iron transporter, did not impair the ability of cells to utilize FeSK or SAV as the sole source of iron for growth. Our data suggest that cyanobacterium Synechocystis sp. PCC 6803 is capable of acquiring iron-siderophore complexes in a TonB-dependent manner without iron reduction in the periplasm.

  3. Differences of Tooth Colorimetric Parameters L*a*b* Depended on Age.

    Science.gov (United States)

    Krasniqi, Teuta Pustina; Lila-Krasniqi, Zana; Ajeti, Nexhmije; Shala, Kujtim; Bicaj, Teuta; Dula, Linda

    2017-10-15

    The study aimed to analyse differences in colourimetric parameters L*a*b*, depended on age. In this study were included 255 subjects with age interval from 20 to 49 years. The subjects were divided into three groups, as follows: in the younger group were 20 to 29 years of age, those in the middle group 30 to 39 years and older group 40 to 49 years. The overall number of analysed teeth in the intercanine sector of the maxilla was 2295. The colour of the teeth was measured using the spectrophotometer VITA Easyshade. The results for differences in the colourimetric parameters in relation with age were tested with Pearson Chi-square (χ 2 ). For χ 2 = 572, 87 and df = 124 there was a statistical significant difference between the ages P < 0.001. In this study, it was concluded that the parameter L* - Lightness was decreasing when age increased. In the age group, 20 to 29 years L* was 83.2, whereas in the older group of this investigation; 40 to 49 years was 79.4. In the youngest group, the parameter a* was - 0.7, whereas with increasing of age this parameter was -0.5. The values for parameter b* from the youngest to the older group were from 21.7 to 23.9.

  4. Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-kappaB activation and pro-inflammatory gene expression in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Haller, D.; Holt, L.; Parlesak, Alexandr

    2004-01-01

    We have previously shown that non-pathogenic Gram negative bacteria induce RelA phosphorylation, nuclear factor (NF)-kappaB transcriptional activity and pro-inflammatory gene expression in intestinal epithelial cells (IEC) in vivo and in vitro. In this study, we investigated the molecular mechanism......, PBMC from patients with active ulcerative colitis and Crohn's disease differentially trigger epithelial cell activation in response to E. coli and E. coli-derived LPS. In conclusion, this study provides evidence for a differential regulation of non-pathogenic Gram-negative bacteria-induced NF......-kappaB signalling and IL-8 gene expression in IEC cocultured with immune cells and suggests the presence of mechanisms that assure hyporesponsiveness of the intestinal epithelium to certain commensally enteric bacteria....

  5. Characterization of kappa 1 and kappa 2 opioid binding sites in frog (Rana esculenta) brain membrane preparation

    Energy Technology Data Exchange (ETDEWEB)

    Benyhe, S.; Varga, E.; Hepp, J.; Magyar, A.; Borsodi, A.; Wollemann, M.

    1990-09-01

    The distribution and properties of frog brain kappa-opioid receptor subtypes differ not only from those of the guinea pig brain, but also from that of the rat brain. In guinea pig cerebellum the kappa 1 is the dominant receptor subtype, frog brain contains mainly the kappa 2 subtype, and the distribution of the rat brain subtypes is intermediate between the two others. In competition experiments it has been established that ethylketocyclazocine and N-cyclopropylmethyl-norazidomorphine, which are nonselective kappa-ligands, have relatively high affinities to frog brain membranes. The kappa 2 ligands (Met5)enkephalin-Arg6-Phe7 and etorphine also show high affinities to the frog brain. Kappa 1 binding sites measured in the presence of 5 microM/D-Ala2-Leu5/enkephalin represent 25-30% of (3H)ethylketocyclazocine binding in frog brain membranes. The kappa 2 subtype in frog brain resembles more to the mu subtype than the delta subtype of opioid receptors, but it differs from the mu subtype in displaying low affinity toward beta-endorphin and /D-Ala2-(Me)Phe4-Gly5-ol/enkephalin (DAGO). From our data it is evident that the opioid receptor subtypes are already present in the amphibian brain but the differences among them are less pronounced than in mammalian brain.

  6. Characterization of kappa 1 and kappa 2 opioid binding sites in frog (Rana esculenta) brain membrane preparation

    International Nuclear Information System (INIS)

    Benyhe, S.; Varga, E.; Hepp, J.; Magyar, A.; Borsodi, A.; Wollemann, M.

    1990-01-01

    The distribution and properties of frog brain kappa-opioid receptor subtypes differ not only from those of the guinea pig brain, but also from that of the rat brain. In guinea pig cerebellum the kappa 1 is the dominant receptor subtype, frog brain contains mainly the kappa 2 subtype, and the distribution of the rat brain subtypes is intermediate between the two others. In competition experiments it has been established that ethylketocyclazocine and N-cyclopropylmethyl-norazidomorphine, which are nonselective kappa-ligands, have relatively high affinities to frog brain membranes. The kappa 2 ligands (Met5)enkephalin-Arg6-Phe7 and etorphine also show high affinities to the frog brain. Kappa 1 binding sites measured in the presence of 5 microM/D-Ala2-Leu5/enkephalin represent 25-30% of [3H]ethylketocyclazocine binding in frog brain membranes. The kappa 2 subtype in frog brain resembles more to the mu subtype than the delta subtype of opioid receptors, but it differs from the mu subtype in displaying low affinity toward beta-endorphin and /D-Ala2-(Me)Phe4-Gly5-ol/enkephalin (DAGO). From our data it is evident that the opioid receptor subtypes are already present in the amphibian brain but the differences among them are less pronounced than in mammalian brain

  7. NF-κB in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Véronique Imbert

    2017-05-01

    Full Text Available NF-κB (Nuclear Factor Κ-light-chain-enhancer of activated B cells transcription factors are critical regulators of immunity, stress response, apoptosis, and differentiation. Molecular defects promoting the constitutive activation of canonical and non-canonical NF-κB signaling pathways contribute to many diseases, including cancer, diabetes, chronic inflammation, and autoimmunity. In the present review, we focus our attention on the mechanisms of NF-κB deregulation in hematological malignancies. Key positive regulators of NF-κB signaling can act as oncogenes that are often prone to chromosomal translocation, amplifications, or activating mutations. Negative regulators of NF-κB have tumor suppressor functions, and are frequently inactivated either by genomic deletions or point mutations. NF-κB activation in tumoral cells is also driven by the microenvironment or chronic signaling that does not rely on genetic alterations.

  8. NF-κB in Hematological Malignancies.

    Science.gov (United States)

    Imbert, Véronique; Peyron, Jean-François

    2017-05-31

    NF-κB (Nuclear Factor Κ-light-chain-enhancer of activated B cells) transcription factors are critical regulators of immunity, stress response, apoptosis, and differentiation. Molecular defects promoting the constitutive activation of canonical and non-canonical NF-κB signaling pathways contribute to many diseases, including cancer, diabetes, chronic inflammation, and autoimmunity. In the present review, we focus our attention on the mechanisms of NF-κB deregulation in hematological malignancies. Key positive regulators of NF-κB signaling can act as oncogenes that are often prone to chromosomal translocation, amplifications, or activating mutations. Negative regulators of NF-κB have tumor suppressor functions, and are frequently inactivated either by genomic deletions or point mutations. NF-κB activation in tumoral cells is also driven by the microenvironment or chronic signaling that does not rely on genetic alterations.

  9. Light induces translocation of NF-κB p65 to the mitochondria and suppresses expression of cytochrome c oxidase subunit III (COX III) in the rat retina

    International Nuclear Information System (INIS)

    Tomita, Hiroshi; Tabata, Kitako; Takahashi, Maki; Nishiyama, Fumiaki; Sugano, Eriko

    2016-01-01

    The transcription factor nuclear factor kappaB (NF-κB) plays various roles in cell survival, apoptosis, and inflammation. In the rat retina, NF-κB activity increases after exposure to damaging light, resulting in degeneration of photoreceptors. Here, we report that in dark-adapted rats exposed for 6 h to bright white light, the p65 subunit of retinal NF-κB translocates to the mitochondria, an event associated with a decrease in expression of cytochrome c oxidase subunit III (COX III). However, sustained exposure for 12 h depleted p65 from the mitochondria, and enhanced COX III expression. Treatment with the protective antioxidant PBN prior to light exposure prevents p65 depletion in the mitochondria and COX III upregulation during prolonged exposure, and apoptosis in photoreceptor cells. These results indicate that COX III expression is sensitive to the abundance of NF-κB p65 in the mitochondria, which, in turn, is affected by exposure to damaging light. - Highlights: • Damaging light exposure of the retina induces NF-κB p65 mitochondrial translocation. • NF-κB p65 mitochondrial translocation is associated with the decrease of COX III expression. • Prolonged light exposure depletes mitochondrial p65 resulting in the increase in COX III expression. • NF-κB p65 and COX III expression play an important role in the light-induced photoreceptor degeneration.

  10. Light induces translocation of NF-κB p65 to the mitochondria and suppresses expression of cytochrome c oxidase subunit III (COX III) in the rat retina

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Hiroshi, E-mail: htomita@iwate-u.ac.jp [Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Soft-Path Engineering Research Center (SPERC), Faculty of Science and Engineering, Iwate University, Morioka 020-8551 (Japan); Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8574 (Japan); Tabata, Kitako, E-mail: ktabata@iwate-u.ac.jp [Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Takahashi, Maki, E-mail: mqdelta@iwate-u.ac.jp [Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Nishiyama, Fumiaki, E-mail: t2114018@iwate-u.ac.jp [Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Sugano, Eriko, E-mail: sseriko@iwate-u.ac.jp [Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Soft-Path Engineering Research Center (SPERC), Faculty of Science and Engineering, Iwate University, Morioka 020-8551 (Japan)

    2016-05-13

    The transcription factor nuclear factor kappaB (NF-κB) plays various roles in cell survival, apoptosis, and inflammation. In the rat retina, NF-κB activity increases after exposure to damaging light, resulting in degeneration of photoreceptors. Here, we report that in dark-adapted rats exposed for 6 h to bright white light, the p65 subunit of retinal NF-κB translocates to the mitochondria, an event associated with a decrease in expression of cytochrome c oxidase subunit III (COX III). However, sustained exposure for 12 h depleted p65 from the mitochondria, and enhanced COX III expression. Treatment with the protective antioxidant PBN prior to light exposure prevents p65 depletion in the mitochondria and COX III upregulation during prolonged exposure, and apoptosis in photoreceptor cells. These results indicate that COX III expression is sensitive to the abundance of NF-κB p65 in the mitochondria, which, in turn, is affected by exposure to damaging light. - Highlights: • Damaging light exposure of the retina induces NF-κB p65 mitochondrial translocation. • NF-κB p65 mitochondrial translocation is associated with the decrease of COX III expression. • Prolonged light exposure depletes mitochondrial p65 resulting in the increase in COX III expression. • NF-κB p65 and COX III expression play an important role in the light-induced photoreceptor degeneration.

  11. Kappa. -electron capture probability in sup 167 Tm

    Energy Technology Data Exchange (ETDEWEB)

    Sree Krishna Murty, G.; Chandrasekhar Rao, M.V.S.; Radha Krishna, K.; Bhuloka Reddy, S.; Satyanarayana, G.; Ramana Rao, P.V.; Sastry, D.L. (Andhra Univ., Visakhapatnam (India). Labs. for Nuclear Research); Chintalapudi, S.N. (Variable Energy Cyclotron Centre, Calcutta (India))

    1990-07-01

    The {Kappa}-electron capture probability in the decay of {sup 167}Tm for the first-forbidden transition 1/2{sup +}{yields}3/2{sup -} was measured using the sum-coincidence method and employing a hyper-pure Ge system. The P{sub {Kappa}} value is found to be 0.835{plus minus}0.029, in agreement with the theoretical value of 0.829. (author).

  12. Has the sun set on kappa3-opioid receptors?

    Science.gov (United States)

    Connor, Mark; Kitchen, Ian

    2006-02-01

    Mu-opioid receptor agonists are a mainstay of clinical analgesia, despite the significant unwanted effects and dependence liability associated with drugs like morphine. The quest for opioids that produce analgesia with fewer undesirable effects has lead to the putative identification of multiple opioid receptor subtypes, despite the identification of only four opioid-related receptor genes. One such putative receptor subtype is the kappa3 receptor, activation of which supposedly produces analgesia in animals. In the present issue of this Journal, Olianas and co-workers have demonstrated that the prototypic kappa3 agonist naloxone benzoylhydrazone is actually a partial agonist at the cloned mu, delta, and kappa opioid receptors and an antagonist at opioid-like NOP receptors. Together with a recent study that showed that high-affinity naloxone benzoylhydrazone binding is abolished in triple mu/delta/kappa receptor knockout mice, the present study provides strong evidence that in vivo effects attributed to kappa3 receptor activation probably just reflect the combined actions of a particularly nonselective opioid drug. Indeed, molecular identification of any of the proposed subtypes of mu, delta, and kappa opioid receptors has proven elusive, suggesting that it is perhaps time to retire the notion of opioid receptor subtypes until definitive evidence for their existence is provided.

  13. Myeloid Malignancies with Chromosome 5q Deletions Acquire a Dependency on an Intrachromosomal NF-κB Gene Network

    Directory of Open Access Journals (Sweden)

    Jing Fang

    2014-09-01

    Full Text Available Chromosome 5q deletions (del[5q] are common in high-risk (HR myelodysplastic syndrome (MDS and acute myeloid leukemia (AML; however, the gene regulatory networks that sustain these aggressive diseases are unknown. Reduced miR-146a expression in del(5q HR MDS/AML and miR-146a−/− hematopoietic stem/progenitor cells (HSPCs results in TRAF6/NF-κB activation. Increased survival and proliferation of HSPCs from miR-146alow HR MDS/AML is sustained by a neighboring haploid gene, SQSTM1 (p62, expressed from the intact 5q allele. Overexpression of p62 from the intact allele occurs through NF-κB-dependent feedforward signaling mediated by miR-146a deficiency. p62 is necessary for TRAF6-mediated NF-κB signaling, as disrupting the p62-TRAF6 signaling complex results in cell-cycle arrest and apoptosis of MDS/AML cells. Thus, del(5q HR MDS/AML employs an intrachromosomal gene network involving loss of miR-146a and haploid overexpression of p62 via NF-κB to sustain TRAF6/NF-κB signaling for cell survival and proliferation. Interfering with the p62-TRAF6 signaling complex represents a therapeutic option in miR-146a-deficient and aggressive del(5q MDS/AML.

  14. T-cell activation triggers death receptor-6 expression in a NF-kappa B and NF-AT dependent manner

    Czech Academy of Sciences Publication Activity Database

    Klíma, Martin; Broučková, Adéla; Koc, Michal; Anděra, Ladislav

    2011-01-01

    Roč. 48, 12-13 (2011), s. 1439-1447 ISSN 0161-5890 R&D Projects: GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : TNFRSF21 * T cells * Jurkat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.897, year: 2011

  15. PUMA and NF-kB Are Cell Signaling Predictors of Reovirus Oncolysis of Breast Cancer

    Science.gov (United States)

    Shi, Zhong-Qiao; Thirukkumaran, Ponnampalam; Luider, Joanne; Kopciuk, Karen; Spurrell, Jason; Elzinga, Kate; Morris, Don

    2017-01-01

    Background and purpose Reovirus is a ubiquitous RNA virus that exploits aberrant signaling pathways for its replication. The oncolytic potential of reovirus against numerous cancers under pre-clinical/clinical conditions has been documented by us and others. Despite its proven clinical activity, the underlying mechanisms of reovirus oncolysis is still not well elucidated. If reovirus therapy is to be optimized for cancer, including breast cancer patients, it is imperative to understand the mechanisms of reovirus oncolysis, especially in treatment of resistant tumour. Experimental approach and results In the present study global gene expression profiling was utilized as a preliminary roadmap to tease-out pivotal molecules involved in reovirus induced apoptosis in breast cancer. Reovirus treated HTB133 and MCF7 breast cancer cells revealed transcriptional alteration of a defined subset of apoptotic genes and members of the nuclear factor-kappa B (NF-kB) family and p53 upregulated modulator of apoptosis (PUMA) were prominent. Since NF-kB can paradoxically suppress or promote apoptosis in cancer, the significance of NF-kB in reovirus oncolysis of breast cancer was investigated. Real time PCR analysis indicated a 2.9–4.3 fold increase in NF-kB p65 message levels following reovirus infection of MCF7 and HTB133, respectively. Nuclear translocation of NF-kB p65 protein was also dramatically augmented post reovirus treatment and correlated with enhanced DNA binding. Pharmacologic inhibition of NF-kB lead to oncolytic protection and significant down regulation of PUMA message levels. PUMA down regulation using siRNA suppressed reovirus oncolysis via significantly repressed apoptosis in p53 mutant HTB133 cells. Conclusions This study demonstrates for the first time that a prominent pathway of reovirus oncolysis of breast cancer is mediated through NF-kB and that PUMA upregulation is dependent on NF-kB activation. These findings represent potential therapeutic indicators of

  16. Nicotine stimulates nerve growth factor in lung fibroblasts through an NFκB-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Cherry Wongtrakool

    Full Text Available Airway hyperresponsiveness (AHR is classically found in asthma, and persistent AHR is associated with poor asthma control. Although airway smooth muscle (ASM cells play a critical pathophysiologic role in AHR, the paracrine contributions of surrounding cells such as fibroblasts to the contractile phenotype of ASM cells have not been examined fully. This study addresses the hypothesis that nicotine promotes a contractile ASM cell phenotype by stimulating fibroblasts to increase nerve growth factor (NGF secretion into the environment.Primary lung fibroblasts isolated from wild type and α7 nicotinic acetylcholine receptor (α7 nAChR deficient mice were treated with nicotine (50 µg/ml in vitro for 72 hours. NGF levels were measured in culture media and in bronchoalveolar lavage (BAL fluid from asthmatic, smoking and non-smoking subjects by ELISA. The role of the NFκB pathway in nicotine-induced NGF expression was investigated by measuring NFκB nuclear translocation, transcriptional activity, chromatin immunoprecipitation assays, and si-p65 NFκB knockdown. The ability of nicotine to stimulate a fibroblast-mediated, contractile ASM cell phenotype was confirmed by examining expression of contractile proteins in ASM cells cultured with fibroblast-conditioned media or BAL fluid.NGF levels were elevated in the bronchoalveolar lavage fluid of nicotine-exposed mice, current smokers, and asthmatic children. Nicotine increased NGF secretion in lung fibroblasts in vitro in a dose-dependent manner and stimulated NFκB nuclear translocation, p65 binding to the NGF promoter, and NFκB transcriptional activity. These responses were attenuated in α7 nAChR deficient fibroblasts and in wild type fibroblasts following NFκB inhibition. Nicotine-treated, fibroblast-conditioned media increased expression of contractile proteins in ASM cells.Nicotine stimulates NGF release by lung fibroblasts through α7 nAChR and NFκB dependent pathways. These novel findings

  17. Diclofenac pretreatment effects on the toll-like receptor 4/nuclear factor kappa B-mediated inflammatory response to eccentric exercise in rat liver.

    Science.gov (United States)

    Barcelos, Rômulo Pillon; Bresciani, Guilherme; Rodriguez-Miguelez, Paula; Cuevas, Maria José; Soares, Félix Alexandre Antunes; Barbosa, Nilda Vargas; González-Gallego, Javier

    2016-03-01

    Acute exercise is a stress stimulus that may cause cell damage through the activation of the toll-like receptor (TLR)4 pathway, resulting in the translocation of nuclear factor kappa B (NF-κB) into the cell nucleus and the upregulation of inflammatory genes. Nonsteroidal anti-inflammatory drugs, such as diclofenac, are often prescribed to counteract exercise-induced inflammation. This study analyzed effects of diclofenac pretreatment on the TLR4/NF-κB pathway in rat liver after an acute eccentric exercise. Twenty male Wistar rats were divided in four groups: control-saline, control-diclofenac, exercise-saline and exercise-diclofenac. The rats received saline or diclofenac (10mg/kg) for 7days prior to an eccentric exercise bout. After exercise there was an increase in TLR4, myeloid differentiation primary response gene 88 (MyD88), TIR domain-containing adaptor inducing interferon (TRIF) and p65 NF-κB subunit protein levels. Exercise also resulted in increased mRNA and protein expression of interleukin (IL)-6, inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α. Proinflammatory effects of exercise were prevented by the administration of diclofenac, which blunted the activation of the TLR4/NF-κB pathway and the inflammatory response in the liver of exercised rats. Results from the present study highlight the role of TLR4 as a target for anti-inflammatory interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Identification of sigmaB-dependent genes in Bacillus cereus by proteome and in vitro transcription analysis

    NARCIS (Netherlands)

    Schaik, van W.; Zwietering, M.H.; Vos, de W.M.; Abee, T.

    2004-01-01

    The alternative sigma factor sigma(B) of the food pathogen Bacillus cereus is activated upon stress exposure and plays a role in the adaptive response of vegetative cells. This study describes the identification of sigma(B)-dependent genes in B. cereus. Two-dimensional gel electrophoresis was

  19. Identification of angular naphthopyrones from the Philippine echinoderm Comanthus species as inhibitors of the NF-κB signaling pathway.

    Science.gov (United States)

    Chovolou, Yvonni; Ebada, Sherif Saeed; Wätjen, Wim; Proksch, Peter

    2011-04-25

    The redox-sensitive nuclear factor kappa-B (NF-κB) signaling pathway is an important cellular pathway often misregulated in various cancer cells. Therefore, blockade of NF-κB signaling in cancer cells presents a promising strategy and enormous effort has been invested to identify potent and specific inhibitors. The aim of this study was the identification of new compounds derived from marine organisms that act as NF-κB inhibitors and to identify their mechanism of action. In the present work a bioassay-guided investigation of a Philippine specimen of the marine echinoderm Comanthus sp. yielded ten compounds evenly divided into anthraquinones and naphthopyrones. From these compounds only two naphthopyrones, comaparvin and 6-methoxycomaparvin exhibited noteworthy inhibitory activity against tumor necrosis factor-alpha (TNF-α) induced NF-κB activation in rat hepatoma cells and human breast cancer cells. Comaparvin at concentrations between 50μM and 100μM reduces chymotrypsin-like proteasomal activity, blocks nuclear translocation of NF-κB and effectively inhibits TNF-α induced IκB phosphorylation suggesting a role of this compound in targeting IκB kinase (IKK). Furthermore, comaparvin sensitized cancer cells to apoptotic effects mediated by the pro-inflammatory cytokine TNF-α. These results correlate with downregulation of TNF-α induced expression of protective NF-κB target genes like MnSOD, XIAP or A20. In conclusion we identified the naphthopyrone comaparvin isolated from the marine echinoderm Comanthus sp. as a new inhibitor of the NF-κB signaling pathway acting by targeting both proteasome function and IκB phosphorylation likely by direct inhibitory effect on IKKβ activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Pentacyclic Triterpenoids Inhibit IKKβ Mediated Activation of NF-κB Pathway: In Silico and In Vitro Evidences.

    Directory of Open Access Journals (Sweden)

    Kalpesh R Patil

    Full Text Available Pentacyclic Triterpenoids (PTs and their analogues as well as derivatives are emerging as important drug leads for various diseases. They act through a variety of mechanisms and a majority of them inhibit the nuclear factor kappa-beta (NF-κB signaling pathway. In this study, we examined the effects of the naturally occurring PTs on IκB kinase-β (IKKβ, which has great scientific relevance in the NF-κB signaling pathway. On virtual screening, 109 PTs were screened through the PASS (prediction of activity spectra of substances software for prediction of NF-κB inhibitory activity followed by docking on the NEMO/IKKβ association complex (PDB: 3BRV and testing for compliance with the softened Lipinski's Rule of Five using Schrodinger (LLC, New York, USA. Out of the projected 45 druggable PTs, Corosolic Acid (CA, Asiatic Acid (AA and Ursolic Acid (UA were assayed for IKKβ kinase activity in the cell free medium. The UA exhibited a potent IKKβ inhibitory effect on the hotspot kinase assay with IC50 of 69 μM. Whereas, CA at 50 μM concentration markedly reduced the NF-κB luciferase activity and phospho-IKKβ protein expressions. The PTs tested, attenuated the expression of the NF-κB cascade proteins in the LPS-stimulated RAW 264.7 cells, prevented the phosphorylation of the IKKα/β and blocked the activation of the Interferon-gamma (IFN-γ. The results suggest that the IKKβ inhibition is the major mechanism of the PTs-induced NF-κB inhibition. PASS predictions along with in-silico docking against the NEMO/IKKβ can be successfully applied in the selection of the prospective NF-κB inhibitory downregulators of IKKβ phosphorylation.

  1. Effects of returning NF concentrate on the MBR-NF process treating antibiotic production wastewater.

    Science.gov (United States)

    Li, Kun; Cheng, Yutao; Wang, Jianxing; Zhang, Junya; Liu, Jibao; Yu, Dawei; Li, Mingyue; Wei, Yuansong

    2016-07-01

    The optimization of the nanofiltration (NF) concentrate backflow ratio (R cb) and the influence of the NF concentrate on the performance of membrane bioreactor-nanofiltration (MBR-NF) process treating antibiotic production wastewater were investigated on a laboratory scale. The R cb was optimized at 60 % based on the removal rates of chemical oxygen demand (COD) and NH4 (+)-N by MBR. Data analyses indicated that salinity brought by NF concentrate is the major driver leading to the decrease of sludge activity, especially at a high R cb. EPS analysis showed that electric conductivity (EC), proteins in soluble microbial products (SMP), and SMP brought by NF concentrate are the dominant factors causing the severe membrane fouling in MBR. Furthermore, undegradable substances including fulvic acid-like and humic acid-like compounds accumulated in NF concentrate showed significant influence on fouling of NF. MBR could well degrade small MW compounds in NF concentrate, which confirmed the enhancement of organic removal efficiency by recycling the NF concentrate to MBR. The MBR-NF process showed a relatively stable performance at the R cb of 60 % (volume reduction factor (VRF) = 5), and the NF permeate could satisfy the water quality standard for fermentation process with a water recovery rate of 90.9 %.

  2. NF45 and NF90 Bind HIV-1 RNA and Modulate HIV Gene Expression

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-02-01

    Full Text Available A previous proteomic screen in our laboratory identified nuclear factor 45 (NF45 and nuclear factor 90 (NF90 as potential cellular factors involved in human immunodeficiency virus type 1 (HIV-1 replication. Both are RNA binding proteins that regulate gene expression; and NF90 has been shown to regulate the expression of cyclin T1 which is required for Tat-dependent trans-activation of viral gene expression. In this study the roles of NF45 and NF90 in HIV replication were investigated through overexpression studies. Ectopic expression of either factor potentiated HIV infection, gene expression, and virus production. Deletion of the RNA binding domains of NF45 and NF90 diminished the enhancement of HIV infection and gene expression. Both proteins were found to interact with the HIV RNA. RNA decay assays demonstrated that NF90, but not NF45, increased the half-life of the HIV RNA. Overall, these studies indicate that both NF45 and NF90 potentiate HIV infection through their RNA binding domains.

  3. Nuclear IL-33 is a transcriptional regulator of NF-κB p65 and induces endothelial cell activation

    International Nuclear Information System (INIS)

    Choi, Yeon-Sook; Park, Jeong Ae; Kim, Jihye; Rho, Seung-Sik; Park, Hyojin; Kim, Young-Myeong; Kwon, Young-Guen

    2012-01-01

    Highlights: ► IL-33 as nuclear factor regulated expression of ICAM-1 and VCAM-1. ► Nuclear IL-33 increased the transcription of NF-κB p65 by binding to the p65 promoter. ► Nuclear IL-33 controls NF-κB-dependent inflammatory responses. -- Abstract: Interleukin (IL)-33, an IL-1 family member, acts as an extracellular cytokine by binding its cognate receptor, ST2. IL-33 is also a chromatin-binding transcriptional regulator highly expressed in the nuclei of endothelial cells. However, the function of IL-33 as a nuclear factor is poorly defined. Here, we show that IL-33 is a novel transcriptional regulator of the p65 subunit of the NF-κB complex and is involved in endothelial cell activation. Quantitative reverse transcriptase PCR and Western blot analyses indicated that IL-33 mediates the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in endothelial cells basally and in response to tumor necrosis factor-α-treatment. IL-33-induced ICAM-1/VCAM-1 expression was dependent on the regulatory effect of IL-33 on the nuclear factor (NF)-κB pathway; NF-κB p65 expression was enhanced by IL-33 overexpression and, conversely, reduced by IL-33 knockdown. Moreover, NF-κB p65 promoter activity and chromatin immunoprecipitation analysis revealed that IL-33 binds to the p65 promoter region in the nucleus. Our data provide the first evidence that IL-33 in the nucleus of endothelial cells participates in inflammatory reactions as a transcriptional regulator of NF-κB p65.

  4. Introducing log-kappa distributions for solar wind analysis

    Science.gov (United States)

    Leitner, Martin; Vörös, Zolan Z.; Leubner, Manfred P.

    2010-05-01

    The one-point probability density functions (PDFs) obtained from the Wind spacecraft observations of the magnitude of total magnetic field (B) and the solar wind quasi-invariant (QI) are investigated at 1 AU during the years 1995 and 1998. It is known from previous studies that the distributions follow in a rather good approximation a lognormal distribution. This indicates that the underlying random multiplicative processes are skewed, the PDFs are nonsymmetric. The concept of kappa distributions generating PDF tails closer to the observed values is introduced. The skewness, characteristic for the multiplicative processes in the solar wind, is treated on the basis of log-kappa distributions, introduced here for the first time. Normal and lognormal distributions are related in a similar way to each other as the kappa and log-kappa distributions, although the statistics is based on extensive physics in the former and nonextensive physics in the latter cases. We show hat log-kappa PDFs describe the observed distributions in the solar wind more accurately than the lognormal PDFs. In particular, the tails of PDFs corresponding to extreme values of the considered parameters B and QI are better modeled in terms of the nonextensive approach. It indicates that, for the theoretical explanation of the complexity of multisource fluctuations present in 1 year solar wind magnetic and plasma data, both the extensive and the nonextensive physical escription is needed. The variation of the values of kappa obtained from the log-kappa fits can serve as a quantitative measure describing the changing balance between these two distinct physical processes during the solar cycle.

  5. Risk of ovarian cancer and the NF-kappaB pathway: genetic association with IL1A and TNFSF10

    NARCIS (Netherlands)

    Charbonneau, B.; Block, M.S.; Bamlet, W.R.; Vierkant, R.A.; Kalli, K.R.; Fogarty, Z.; Rider, D.N.; Sellers, T.A.; Tworoger, S.S.; Poole, E.; Risch, H.A.; Salvesen, H.B.; Kiemeney, B.; Baglietto, L.; Giles, G.G.; Severi, G.; Trabert, B.; Wentzensen, N.; Chenevix-Trench, G.; Whittemore, A.S.; Sieh, W.; Chang-Claude, J.; Bandera, E.V.; Orlow, I.; Terry, K.; Goodman, M.T.; Thompson, P.J.; Cook, L.S.; Rossing, M.A.; Ness, R.B.; Narod, S.A.; Kupryjanczyk, J.; Lu, K.; Butzow, R.; Dork, T.; Pejovic, T.; Campbell, I.; Le, N.D.; Bunker, C.H.; Bogdanova, N.; Runnebaum, I.B.; Eccles, D.; Paul, J.; Wu, A.H.; Gayther, S.A.; Hogdall, E.; Heitz, F.; Kaye, S.B.; Karlan, B.Y.; Anton-Culver, H.; Gronwald, J.; Hogdall, C.K.; Lambrechts, D.; Fasching, P.A.; Menon, U.; Schildkraut, J.; Pearce, C.L.; Levine, D.A.; Kjaer, S.K.; Cramer, D.; Flanagan, J.M.; Phelan, C.M.; Brown, R.; Massuger, L.F.A.G.; Song, H.; Doherty, J.A.; Krakstad, C.; Liang, D.; Odunsi, K.; Berchuck, A.; Jensen, A.; Lubinski, J.; Nevanlinna, H.; Bean, Y.T.; Lurie, G.; Ziogas, A.; Walsh, C.; Despierre, E.; Brinton, L.; Hein, A.; Rudolph, A.; Dansonka-Mieszkowska, A.; Olson, S.H.; Harter, P.; Tyrer, J.; Vitonis, A.F.; Brooks-Wilson, A.; Aben, K.K.H.; Pike, M.C.; Ramus, S.J.; Wik, E.; Cybulski, C.; Lin, J.; Sucheston, L.; Edwards, R.; McGuire, V.; Lester, J.; Bois, A. du; Lundvall, L.; et al.,

    2014-01-01

    A missense single-nucleotide polymorphism (SNP) in the immune modulatory gene IL1A has been associated with ovarian cancer risk (rs17561). Although the exact mechanism through which this SNP alters risk of ovarian cancer is not clearly understood, rs17561 has also been associated with risk of

  6. The cachectic mediator proteolysis inducing factor activates NF-kappaB and STAT3 in human Kupffer cells and monocytes

    NARCIS (Netherlands)

    Watchorn, T.M.; Dowidar, N.; Dejong, C.H.; Waddell, I.D.; Garden, O.J.; Ross, J.A.

    2005-01-01

    A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells,

  7. HIC1 Tumor Suppressor Loss Potentiates TLR2/NF-kappa B Signaling and Promotes Tissue Damage-Associated Tumorigenesis

    Czech Academy of Sciences Publication Activity Database

    Janečková, Lucie; Pospíchalová, Vendula; Fafílek, Bohumil; Vojtěchová, Martina; Turečková, Jolana; Dobeš, Jan; Dubuissez, M.; Leprince, D.; Baloghová, Nikol; Horázná, Monika; Hlavatá, Adéla; Stančíková, Jitka; Šloncová, Eva; Galušková, Kateřina; Strnad, Hynek; Kořínek, Vladimír

    2015-01-01

    Roč. 13, č. 7 (2015), s. 1139-1148 ISSN 1541-7786 R&D Projects: GA ČR GAP305/12/2347; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : hypermethylated in cancer 1 * intestinal epithelium * colorectal cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.510, year: 2015

  8. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-kappa B-mediated inflammation

    NARCIS (Netherlands)

    Leus, Niek G. J.; Zwinderman, Martijn R. H.; Dekker, Frank J.

    Activation of inflammatory gene expression is regulated, among other factors, by post-translational modifications of histone proteins. The most investigated type of histone modifications is lysine acetylations. Histone deacetylases (HDACs) remove acetylations from lysines, thereby influencing

  9. Generation of Soluble Receptor Activator of NF-KappaB Ligand Is Critical for Osteolytic Bone Metastasis

    Science.gov (United States)

    2010-10-01

    mature, TRAP-positive multinucleated cells were counted as osteoclasts. BD BioCoat Osteologic Coverslips (BD Biosciences) were placed in 24-well plates...by counting the number of calcium phosphate matrix resorption pits formed per BD BioCoat Osteologic Coverslip. Commercially available sRANKL (positive

  10. DMPD: Dual role of oxidized LDL on the NF-kappaB signaling pathway. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available (.html) CSML File (.csml) Open .csml file with CIOPlayer Open .csml file with CIOPlayer - ※CIO Playerのご利用上の注意 Open .csml file with CIO Open .csml file with CIO - ※CIOのご利用上の注意 ...

  11. Flavonoid glycosides from Olax mannii: Structure elucidation and effect on the nuclear factor kappa B pathway.

    Science.gov (United States)

    Okoye, Festus B C; Sawadogo, Wamtinga Richard; Sendker, Jandirk; Aly, Amal H; Quandt, Bettina; Wray, Victor; Hensel, Andreas; Esimone, Charles O; Debbab, Abdessamad; Diederich, Marc; Proksch, Peter

    2015-12-24

    Olax mannii Oliv. (Olacaceae) is among the many medicinal plants used in Nigeria for the ethnomedicinal management of both cancer and inflammation. Such plants represent potential sources of innovative therapeutic agents for the treatment of cancer and other malignant disorders. While the majority of medicinal plants exert their anticancer effects by direct cytotoxicity on tumor cells, it is important that other mechanisms through which these plants can exhibit anticancer effects are investigated. Preliminary studies indicated that Olax mannii leaves are rich sources of novel flavonoid glycosides. The detailed chemistry as well the mechanisms through which these flavonoid constituents may exert their cancer chemo-preventive and therapeutic effects are, however, not yet investigated. The aim of this study is to carry out a detailed chemical investigation of Olax mannii leaves and the effects of the isolated constituents on the nuclear factor kappa B (NF-κB) pathway. A methanol leaf extract was subjected to various chromatographic separations to achieve isolation of flavonoid glycosides and the structures of the isolated compounds were elucidated by a combination of 1D and 2D NMR and high resolution mass spectrometry. Biological activities were assessed by measurement of cellular viability and proliferation using quantitative IncuCyte videomicroscopy, trypan blue staining and by quantification of the number of metabolically active K562 cells based on quantitation of ATP. The effect of the compounds on the inhibition of the NF-κB pathway as well as toxicity towards peripheral blood mononuclear cells to evaluate differential toxicity was also assayed. Chemical investigation of the methanol leaf extract of the plant material led to the isolation of three new flavonoid triglycosides, kaempferol 3-O-[α-D-apiofuranosyl-(1 → 2)-α-L-arabinofuranoside]-7-O-α-L-rhamnopyranoside (1), kaempferol 3-O-[β-D-glucopyranosyl-(1 → 2)-α-L-arabinofuranoside]-7-O

  12. Numerical solution of High-kappa model of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Karamikhova, R. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.

  13. β-Carotene suppresses osteoclastogenesis and bone resorption by suppressing NF-κB signaling pathway.

    Science.gov (United States)

    Wang, Feng; Wang, Nan; Gao, Youshui; Zhou, Zubin; Liu, Wei; Pan, Chenhao; Yin, Peipei; Yu, Xiaowei; Tang, Mingjie

    2017-04-01

    β-Carotene is a natural anti-oxidant, which has been used for treatment of cancer and cardiovascular diseases. Recently, the ameliorating function of β-carotene in osteoporosis has been implicated. However, the precise mechanism of β-carotene in prevention and treatment of osteoporosis is largely unknown. In the present study, we aimed to elucidate how β-carotene affects osteoclast formation and bone resorption. Bone marrow-derived monocytes/-macrophages (BMM) were exposed to 0.05, 0.1, 0.2, 0.4 and 0.6μM β-carotene, followed by evaluation of cell viability, lactate dehydrogenase (LDH) release, receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis and resorption pits formation. Key factors in nuclear factor kappa B (NF-ĸB) and mitogen-activated protein kinases (MAPK) pathways were evaluated with western blot after BMM cells were exposed to RANKL and β-carotene. The effects of β-carotene in nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos and cathepsin K (CTSK) expression were also evaluated. β-Carotene significantly inhibited BMM viability and promoted LDH release at concentrations of 0.4 and 0.6μM. A decrease in RANKL-induced osteoclastogenesis and resorption was also observed after β-carotene treatment. β-Carotene attenuated the NF-ĸB pathway activation by RANKL, with no effect on MAPK pathway. β-Carotene suppressed the upregulation of NFATc1 and c-Fos by RANKL. We clarified the anti-osteoclastogenic role of β-carotene, which is mediated by NF-κB signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Combining oral contraceptives with a natural nuclear factor-kappa B inhibitor for the treatment of endometriosis-related pain

    Directory of Open Access Journals (Sweden)

    Maia H Jr

    2013-12-01

    Full Text Available Hugo Maia Jr,1–3 Clarice Haddad,3 Julio Casoy3 1Department of Gynecology and Obstetrics, School of Medicine, Federal University of Bahia, 2Itaigara Memorial Day Hospital, 3Centro de Pesquisas e Assistência em Reprodução Humana (CEPARH, Salvador, Bahia, Brazil Abstract: Endometriosis is a chronic disease in which a persistent state of heightened inflammation is maintained by nuclear factor-kappa B (NF-κB activation. The progestins present in oral contraceptives are potent inhibitors of NF-κB translocation to cell nuclei, while Pycnogenol® (Pinus pinaster acts by blocking post-translational events. In this study, the effects of Pycnogenol on pain scores were investigated in patients with endometriosis using oral contraceptives containing either gestodene or drospirenone in extended regimens. Pain scores were determined using a visual analog scale before and after 3 months of treatment. Oral contraceptives, used alone (groups 1 and 3 or in association with Pycnogenol (groups 2 and 4, resulted in significant decreases in pain scores after 3 months of treatment; however, this reduction was significantly greater in the groups using oral contraceptives + Pycnogenol (groups 2 and 4 compared with those using oral contraceptives alone (groups 1 and 3. In the groups using oral contraceptives alone, 50% of patients became pain-free by the end of the third month of treatment. These results suggest that Pycnogenol increases the efficacy of oral contraceptives for the treatment of endometriosis-related pain. Keywords: Pycnogenol®, aromatase, endometriosis, nuclear factor-kappa B

  15. NF-kB activation as a biomarker of light injury using a transgenic mouse model

    Science.gov (United States)

    Pocock, Ginger M.; Boretsky, Adam; Wang, Heuy-Ching; Golden, Dallas; Gupta, Praveena; Vargas, Gracie; Oliver, Jeffrey W.; Motamedi, Massoud

    2012-03-01

    The spatial and temporal activation of NF-kB (p65) was monitored in the retina of a transgenic mouse model (cis-NFkB-EGFP) in vivo after receiving varying grades of laser induced thermal injury in one eye. Baseline images of the retinas from 26 mice were collected prior to injury and up to five months post-exposure using a Heidelberg Spectralis HRA confocal scanning laser ophthalmoscope (cSLO) with a spectral domain optical coherence tomographer (SDOCT). Injured and control eyes were enucleated at discrete time points following laser exposure for cryosectioning to determine localization of NF-kB dependent enhanced green fluorescent protein (EGFP) reporter gene expression within the retina using fluorescence microscopy. In addition, EGFP basal expression in brain and retinal tissue from the cis-NFkB-EGFP was characterized using two-photon imaging. Regions of the retina exposed to threshold and supra-threshold laser damage evaluated using fluorescence cSLO showed increased EGFP fluorescence localized to the exposed region for a duration that was dependent upon the degree of injury. Fluorescence microscopy of threshold damage revealed EGFP localized to the outer nuclear region and retinal pigment epithelial layer. Basal expression of EGFP imaged using two-photon microscopy was heterogeneously distributed throughout brain tissue and confined to the inner retina. Results show cis-NF-kB-EGFP reporter mouse can be used for in vivo studies of light induced injury to the retina and possibly brain injury.

  16. Dynamic activity of NF-κB in multiple trauma patients and protective effects of ulinastain

    Directory of Open Access Journals (Sweden)

    LI Jun

    2012-02-01

    response syndrome and multiple organ dysfunction syndrome, but does not show the ability to decrease the activity of NF-κB . Key words: Wounds and injuries; Multiple trauma; NF-kappaB; Cytokines

  17. Method for rapidly determining a pulp kappa number using spectrophotometry

    Science.gov (United States)

    Chai, Xin-Sheng; Zhu, Jun Yong

    2002-01-01

    A system and method for rapidly determining the pulp kappa number through direct measurement of the potassium permanganate concentration in a pulp-permanganate solution using spectrophotometry. Specifically, the present invention uses strong acidification to carry out the pulp-permanganate oxidation reaction in the pulp-permanganate solution to prevent the precipitation of manganese dioxide (MnO.sub.2). Consequently, spectral interference from the precipitated MnO.sub.2 is eliminated and the oxidation reaction becomes dominant. The spectral intensity of the oxidation reaction is then analyzed to determine the pulp kappa number.

  18. Testing kappa-Poincaré with neutral kaons

    CERN Document Server

    Amelino-Camelia, Giovanni; Amelino-Camelia, Giovanni; Buccella, Franco

    2000-01-01

    In recent work on experimental tests of quantum-gravity-motivated phenomenological models, a significant role has been played by the so-called ``$\\kappa$'' deformations of Poincaré symmetries. Sensitivity to values of the relevant deformation length $\\lambda$ as small as $5 \\cdot 10^{-33}m$ has been achieved in recent analyses comparing the structure of $\\kappa$-Poincaré symmetries with data on the gamma rays we detect from distant astrophysical sources. We investigate violations of CPT symmetry which may be associated with estimate indicates that experiments on the neutral kaons may actually be more already allow to probe values of $\\lambda$ of order the Planck length.

  19. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time

    KAUST Repository

    Hwang, Yoon-Hyung

    2016-01-11

    Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein–protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  20. Nrf2 and NF-κB Signaling Pathways Contribute to Porphyra-334-Mediated Inhibition of UVA-Induced Inflammation in Skin Fibroblasts.

    Science.gov (United States)

    Ryu, Jina; Kwon, Mi-Jin; Nam, Taek-Jeong

    2015-07-31

    In this study, we examined the protective effects of porphyra-334 against UVA-irradiated cellular damage and elucidated the underlying mechanisms. Porphyra-334 prevented UVA-induced cell death and exhibited scavenging activities against intracellular oxidative stress induced by UVA irradiation in skin fibroblasts. We found that porphyra-334 significantly reduced the secretion and expression of IL-6 and TNF-α, reduced nuclear expression of Nuclear factor-κB (NF-κB), and sustained NF-E2-related factor 2 (Nrf2) activation. Further mechanism research revealed that porphyra-334 promoted the Nrf2 signaling pathway in UVA-irradiated skin fibroblasts. Our results show that the antioxidant effect of porphyra-334 is due to the direct scavenging of oxidative stress and its inhibitory effects on NF-κB-dependent inflammatory genes, such as IL-6 and TNF-κ. Therefore, we hypothesize that boosting the Nrf2- NF-κB-dependent response to counteract environmental stress is a promising strategy for the prevention of UVA-related damage.

  1. Nrf2 and NF-κB Signaling Pathways Contribute to Porphyra-334-Mediated Inhibition of UVA-Induced Inflammation in Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Jina Ryu

    2015-07-01

    Full Text Available In this study, we examined the protective effects of porphyra-334 against UVA-irradiated cellular damage and elucidated the underlying mechanisms. Porphyra-334 prevented UVA-induced cell death and exhibited scavenging activities against intracellular oxidative stress induced by UVA irradiation in skin fibroblasts. We found that porphyra-334 significantly reduced the secretion and expression of IL-6 and TNF-α, reduced nuclear expression of Nuclear factor-κB (NF-κB, and sustained NF-E2-related factor 2 (Nrf2 activation. Further mechanism research revealed that porphyra-334 promoted the Nrf2 signaling pathway in UVA-irradiated skin fibroblasts. Our results show that the antioxidant effect of porphyra-334 is due to the direct scavenging of oxidative stress and its inhibitory effects on NF-κB-dependent inflammatory genes, such as IL-6 and TNF-κ. Therefore, we hypothesize that boosting the Nrf2- NF-κB-dependent response to counteract environmental stress is a promising strategy for the prevention of UVA-related damage.

  2. Combining oral contraceptives with a natural nuclear factor-kappa B inhibitor for the treatment of endometriosis-related pain

    Science.gov (United States)

    Maia, Hugo; Haddad, Clarice; Casoy, Julio

    2014-01-01

    Endometriosis is a chronic disease in which a persistent state of heightened inflammation is maintained by nuclear factor-kappa B (NF-κB) activation. The progestins present in oral contraceptives are potent inhibitors of NF-κB translocation to cell nuclei, while Pycnogenol® (Pinus pinaster) acts by blocking post-translational events. In this study, the effects of Pycnogenol on pain scores were investigated in patients with endometriosis using oral contraceptives containing either gestodene or drospirenone in extended regimens. Pain scores were determined using a visual analog scale before and after 3 months of treatment. Oral contraceptives, used alone (groups 1 and 3) or in association with Pycnogenol (groups 2 and 4), resulted in significant decreases in pain scores after 3 months of treatment; however, this reduction was significantly greater in the groups using oral contraceptives + Pycnogenol (groups 2 and 4) compared with those using oral contraceptives alone (groups 1 and 3). In the groups using oral contraceptives alone, 50% of patients became pain-free by the end of the third month of treatment. These results suggest that Pycnogenol increases the efficacy of oral contraceptives for the treatment of endometriosis-related pain. PMID:24379702

  3. Combining oral contraceptives with a natural nuclear factor-kappa B inhibitor for the treatment of endometriosis-related pain.

    Science.gov (United States)

    Maia, Hugo; Haddad, Clarice; Casoy, Julio

    2013-01-01

    Endometriosis is a chronic disease in which a persistent state of heightened inflammation is maintained by nuclear factor-kappa B (NF-κB) activation. The progestins present in oral contraceptives are potent inhibitors of NF-κB translocation to cell nuclei, while Pycnogenol® (Pinus pinaster) acts by blocking post-translational events. In this study, the effects of Pycnogenol on pain scores were investigated in patients with endometriosis using oral contraceptives containing either gestodene or drospirenone in extended regimens. Pain scores were determined using a visual analog scale before and after 3 months of treatment. Oral contraceptives, used alone (groups 1 and 3) or in association with Pycnogenol (groups 2 and 4), resulted in significant decreases in pain scores after 3 months of treatment; however, this reduction was significantly greater in the groups using oral contraceptives + Pycnogenol (groups 2 and 4) compared with those using oral contraceptives alone (groups 1 and 3). In the groups using oral contraceptives alone, 50% of patients became pain-free by the end of the third month of treatment. These results suggest that Pycnogenol increases the efficacy of oral contraceptives for the treatment of endometriosis-related pain.

  4. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B.

    Science.gov (United States)

    Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G

    2010-08-01

    Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities.

  5. Butyrate protects liver against ischemia reperfusion injury by inhibiting nuclear factor kappa B activation in Kupffer cells.

    Science.gov (United States)

    Qiao, Ying-li; Qian, Jian-min; Wang, Fang-rui; Ma, Zhen-yu; Wang, Qian-wei

    2014-04-01

    The inflammatory response after hepatic ischemia reperfusion (I/R) contributes to liver dysfunction and failure after transplantation. Butyrate is a four-carbon fatty acid, normally produced by bacterial fermentation of fiber in mammalian intestines, with anti-inflammatory activities. The purpose of the present study was to investigate the protective effect of butyrate preconditioning, if any, against hepatic I/R injury in rats and the underlying mechanisms involved. Male Sprague-Dawley rats were subjected to a partial (70%) hepatic ischemia for 60 min after pretreatment with either vehicle or butyrate, followed by 3, 6, and 24 h of reperfusion. Hepatic injury was evaluated by biochemical and histopathologic examinations. Neutrophil infiltration was measured by myeloperoxidase (MPO) activity. The expression of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) was measured by enzyme-linked immunosorbent assay (Elisa) and Real-time reverse-transcriptase polymerase chain reaction (RT-PCR). The expression of nuclear factor kappa B (NF-κB) p65 was determined by immunohistochemistry and Western blot analysis. Butyrate treatment markedly improved hepatic function and histology, as indicated by reduced transaminase levels and ameliorated tissue pathologic changes. The expression of tumor necrosis factor-alpha, interleukin-6, and myeloperoxidase activity was attenuated by butyrate. Butyrate also reduced I/R-induced nuclear translocation of NF-κB p65 in Kupffer cells. Our results suggest that butyrate alleviates I/R-induced liver injury, possibly by suppressing inflammatory factors production and preventing NF-κB activation in Kupffer cells. Copyright © 2014. Published by Elsevier Inc.

  6. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jian; Zhang, Lin [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Dai, Weiqi [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Mao, Yuqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Li, Sainan [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Wang, Jingjie; Li, Huanqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China); Guo, Chuanyong [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University, Shanghai (China); Fan, Xiaoming, E-mail: xiaomingfan57@sina.com [Department of Gastroenterology, Jinshan Hospital of Fudan University, Shanghai (China)

    2015-02-27

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and also prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.

  7. Functional Analysis of Drosophila NF1

    National Research Council Canada - National Science Library

    Bernards, Andre

    2005-01-01

    ...) for Ras, yet homozygous loss of a highly conserved Drosophila NF1 ortholog results in several phenotypes that are insensitive to manipulating Ras signal transduction, but rescued by increasing...

  8. Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes.

    Science.gov (United States)

    Ajit, Deepa; Simonyi, Agnes; Li, Runting; Chen, Zihong; Hannink, Mark; Fritsche, Kevin L; Mossine, Valeri V; Smith, Robert E; Dobbs, Thomas K; Luo, Rensheng; Folk, William R; Gu, Zezong; Lubahn, Dennis B; Weisman, Gary A; Sun, Grace Y

    2016-07-01

    The increase in oxidative stress and inflammatory responses associated with neurodegenerative diseases has drawn considerable attention towards understanding the transcriptional signaling pathways involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and Nrf2 (Nuclear Factor Erythroid 2-like 2). Our recent studies with immortalized murine microglial cells (BV-2) demonstrated effects of botanical polyphenols to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) and enhance Nrf2-mediated antioxidant responses (Sun et al., 2015). In this study, an immortalized rat astrocyte (DI TNC1) cell line expressing a luciferase reporter driven by the NF-κB or the Nrf2/Antioxidant Response Element (ARE) promoter was used to assess regulation of these two pathways by phytochemicals such as quercetin, rutin, cyanidin, cyanidin-3-O-glucoside, as well as botanical extracts from Withania somnifera (Ashwagandha), Sutherlandia frutescens (Sutherlandia) and Euterpe oleracea (Açaí). Quercetin effectively inhibited LPS-induced NF-κB reporter activity and stimulated Nrf2/ARE reporter activity in DI TNC1 astrocytes. Cyanidin and the glycosides showed similar effects but only at much higher concentrations. All three botanical extracts effectively inhibited LPS-induced NF-κB reporter activity. These extracts were capable of enhancing ARE activity by themselves and further enhanced ARE activity in the presence of LPS. Quercetin and botanical extracts induced Nrf2 and HO-1 protein expression. Interestingly, Ashwagandha extract was more active in inducing Nrf2 and HO-1 expression in DI TNC1 astrocytes as compared to Sutherlandia and Açaí extracts. In summary, this study demonstrated NF-kB and Nrf2/ARE promoter activities in DI TNC1 astrocytes, and further showed differences in ability for specific botanical polyphenols and extracts to down-regulate LPS-induced NF-kB and up-regulate the NRF2/ARE activities in these cells. Copyright © 2016 Elsevier Ltd

  9. Effects of sevoflurane on NF-кB and TNF-α expression in renal ischemia-reperfusion diabetic rats.

    Science.gov (United States)

    Zhang, Yu; Hu, Fang; Wen, Jianghua; Wei, Xiaohong; Zeng, Yingjuan; Sun, Ying; Luo, Shunkui; Sun, Liao

    2017-10-01

    Ischemia-reperfusion (I/R) injury is the main reason of acute renal failure. However, inflammatory response and cell apoptosis are important mechanisms implicated in I/R injury. Recent studies indicated that nuclear factor kappa B (NF-кB) and tumor necrosis factor α (TNF-α) are both involved in these mechanisms. Sevoflurane reduces NF-кB and TNF-α expression in rats' heart and decreases their renal I/R injury. However, few studies are available regarding the effect of sevoflurane on kidney of diabetic rats. Therefore, the aim of this study was to evaluate sevoflurane effect on NF-кB and TNF-α expression in diabetic rats to decrease renal I/R injury. Male Sprague-Dawley rats were divided into five groups: Group A, non-diabetic rats underwent sham operation; Group B, non-diabetic rats with renal I/R injury; Group C, diabetic rats underwent sham operation; Group D, diabetic rats with renal I/R injury; Group E, diabetic rats with renal I/R injury after sevoflurane pretreatment. Rats of Group E were exposed to 2.5% sevoflurane for 30 min. After 24 h, creatinine (Cr), blood urea nitrogen (BUN), renal cell apoptosis, and NF-кB and TNF-α expression in kidney were assessed. Renal cell apoptosis, NF-кB, and TNF-α expression were significantly higher in diabetic rats with renal I/R injury group compared to diabetic rats that underwent sham operation (P renal injury by lowering the expression of NF-кB and TNF-α in renal I/R diabetic rats.

  10. The intact strontium ranelate complex stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation.

    Science.gov (United States)

    Yamaguchi, Masayoshi; Weitzmann, M Neale

    2012-01-01

    Strontium ranelate, a pharmaceutical agent shown in clinical trials to be effective in managing osteoporosis and reducing fracture risk in postmenopausal women, is relatively unique in its ability to both blunt bone resorption and stimulate bone formation. However, its mechanisms of action are largely unknown. As the nuclear factor-kappa B (NF-κB) activation antagonists both stimulate osteoblastic bone formation and repress osteoclastic bone resorption, we hypothesized that strontium ranelate may achieve its anabolic and anti-catabolic activities by modulating NF-κB activation in bone cells. In this study, osteoclast and osteoblast precursors were treated with intact strontium ranelate or its individual components sodium ranelate and/or strontium chloride, and its effect on in vitro osteoclastogenesis and osteoblastogenesis and on NF-κB activation quantified. Although the activity of strontium ranelate has been attributed to the release of strontium ions, low dose intact strontium ranelate complex, but not sodium ranelate and/or strontium chloride, potently antagonized NF-κB activation in osteoclasts and osteoblasts in vitro, and promoted osteoblast differentiation while suppressing osteoclast formation. Taken together, our data suggest a novel centralized mechanism by which strontium ranelate promotes osteoblast activity and suppresses osteoclastogenesis, based on suppression of NF-κB signal transduction. We further demonstrate that the biological actions of strontium ranelate may be related to low dose of the intact molecule rather than dissociation and release of strontium ions, as previously thought. These data may facilitate the development of additional novel pharmacological agents for the amelioration of osteoporosis, based on NF-κB blockade.

  11. Neuropilin-1 promotes epithelial-to-mesenchymal transition by stimulating nuclear factor-kappa B and is associated with poor prognosis in human oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Weiming Chu

    Full Text Available The epithelial-to-mesenchymal transition (EMT is a key process in carcinogenesis, invasion, and metastasis of oral squamous cell carcinoma (OSCC. In our previous studies, we found that neuropilin-1 (NRP1 is overexpressed in tongue squamous cell carcinoma and that this overexpression is associated with cell migration and invasion. Nuclear factor-kappa B (NF-κB plays an essential role both in the induction and the maintenance of EMT and tumor metastasis. Therefore, we hypothesized that NRP1 induces EMT, and that NRP1-induced migration and invasion may be an important mechanism for promoting invasion and metastasis of OSCC through NF-κB activation.The variations in gene and protein expression and the changes in the biological behavior of OSCC cell lines transfected with a vector encoding NRP1, or the corresponding vector control, were evaluated. NRP1 overexpression promoted EMT and was associated with enhanced invasive and metastatic properties. Furthermore, the induction of EMT promoted the acquisition of some cancer stem cell (CSC-like characteristics in OSCC cells. We addressed whether selective inhibition of NF-κB suppresses the NRP1-mediated EMT by treating cells with pyrrolidinedithiocarbamate ammonium (PDTC, an inhibitor of NF-κB. Immunohistochemical analysis of NRP1 in OSCC tissue samples further supported a key mediator role for NRP1 in tumor progression, lymph node metastasis, and indicated that NRP1 is a predictor for poor prognosis in OSCC patients.Our results indicate that NRP1 may regulate the EMT process in OSCC cell lines through NF-κB activation, and that higher NRP1 expression levels are associated with lymph node metastasis and poor prognosis in OSCC patients. Further investigation of the role of NRP1 in tumorigenesis may help identify novel targets for the prevention and therapy of oral cancers.

  12. Nuclear factor-kappa B family member RelB inhibits human immunodeficiency virus-1 Tat-induced tumor necrosis factor-alpha production.

    Directory of Open Access Journals (Sweden)

    Michelle Kiebala

    2010-07-01

    Full Text Available Human Immunodeficiency Virus-1 (HIV-1-associated neurocognitive disorder (HAND is likely neuroinflammatory in origin, believed to be triggered by inflammatory and oxidative stress responses to cytokines and HIV protein gene products such as the HIV transactivator of transcription (Tat. Here we demonstrate increased messenger RNA for nuclear factor-kappa B (NF-kappaB family member, transcription factor RelB, in the brain of doxycycline-induced Tat transgenic mice, and increased RelB synthesis in Tat-exposed microglial cells. Since genetic ablation of RelB in mice leads to multi-organ inflammation, we hypothesized that Tat-induced, newly synthesized RelB inhibits cytokine production by microglial cells, possibly through the formation of transcriptionally inactive RelB/RelA complexes. Indeed, tumor necrosis factor-alpha (TNFalpha production in monocytes isolated from RelB deficient mice was significantly higher than in monocytes isolated from RelB expressing controls. Moreover, RelB overexpression in microglial cells inhibited Tat-induced TNFalpha synthesis in a manner that involved transcriptional repression of the TNFalpha promoter, and increased phosphorylation of RelA at serine 276, a prerequisite for increased RelB/RelA protein interactions. The Rel-homology-domain within RelB was necessary for this interaction. Overexpression of RelA itself, in turn, significantly increased TNFalpha promoter activity, an effect that was completely blocked by RelB overexpression. We conclude that RelB regulates TNFalpha cytokine synthesis by competitive interference binding with RelA, which leads to downregulation of TNFalpha production. Moreover, because Tat activates both RelB and TNFalpha in microglia, and because Tat induces inflammatory TNFalpha synthesis via NF-kappaB, we posit that RelB serves as a cryoprotective, anti-inflammatory, counter-regulatory mechanism for pathogenic NF-kappaB activation. These findings identify a novel regulatory pathway for

  13. Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding

    DEFF Research Database (Denmark)

    Sap, J; Jiang, Y P; Friedlander, D

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) feature PTPase domains in the context of a receptor-like transmembrane topology. The R-PTPase R-PTP-kappa displays an extracellular domain composed of fibronectin type III motifs, a single immunoglobulin domain, as well as a recently defined MAM domain (Y...

  14. Seasonal Variation in Content and Quality of Kappa-Carrageenan ...

    African Journals Online (AJOL)

    partly caused by a relatively slower growth rate of the kappa carrageenophyte K. alvarezii as compared to the iota .... rinsed three times with 300 ml of isopropanol, squeezed to remove the excess, oven-dried to constant ... short rains (Table 2) and temperature (see some positive correlation with temperature, nitrogen and.

  15. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Periyasamy, S.; Hoss, W. (Univ. of Toledo, OH (USA))

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain {kappa}- but neither {mu}- nor {delta}- receptors are coupled to the PI turnover response.

  16. Purification of kappa (k)-carrageenase from locally isolated ...

    African Journals Online (AJOL)

    Partial purification of the crude kappa (k)-carrageenase present in the culture filtrates of Cellulosimicrobium cellulans was carried out by fractional precipitation, using ammonium sulphate, acetone and ethanol individually. The highest recovered protein (37.08%) combined with enzyme activity was obtained with ammonium ...

  17. Kappa-casein gene polymorphism in Holstein and Iranian native ...

    African Journals Online (AJOL)

    Caseins amount to nearly 80% of the protein output in cow milk. Caseins are biologically important proteins and they are also a raw material for the cheese making industry. The aim of this study was to identify kappa-casein genotype in Holstein and Iranian native cattle. DNA was extracted from 457 blood samples of 247 ...

  18. Bioinformatic analyses of kappa casein gene in mammalian ...

    African Journals Online (AJOL)

    Kappa casein (CSN3) gene is a variant of the milk protein highly conserved in mammalian species. Genetic variations in CSN3 gene of six mammalian livestock species were investigated using bioinformatics approach. A total of twenty-seven CSN3 gene sequences with corresponding amino acids belonging to the six ...

  19. Kappa-symmetric deformations of M5-brane dynamics

    NARCIS (Netherlands)

    Drummond, JM; Kerstan, SF

    We calculate the first supersymmetric and kappa-symmetric derivative deformation of the M5-brane worldvolume theory in a flat eleven-dimensional background. By applying cohomological techniques we obtain a deformation of the standard constraint of the superembedding formalism. The first possible

  20. NF1 Signal Transduction and Vascular Dysfunction

    Science.gov (United States)

    2014-05-01

    the effects of losing a second allele of NF1 in the vascular endothelium of the adult mouse. This will be the first model of NF1 loss in the... adult endothelium and can serve as a model system for investigation of both cardiovascular effects and the tumor microenvironment. Body: Aim 1...would be to try and determine if there were defects in TGF-b signaling (Smad activation/EndMT) prior to doing a wholesale catalog of all the

  1. Aberrant activation of NF-κB signaling in mammary epithelium leads to abnormal growth and ductal carcinoma in situ

    International Nuclear Information System (INIS)

    Barham, Whitney; Chen, Lianyi; Tikhomirov, Oleg; Onishko, Halina; Gleaves, Linda; Stricker, Thomas P.; Blackwell, Timothy S.; Yull, Fiona E.

    2015-01-01

    Approximately 1 in 5 women diagnosed with breast cancer are considered to have in situ disease, most often termed ductal carcinoma in situ (DCIS). Though recognized as a risk factor for the development of more invasive cancer, it remains unclear what factors contribute to DCIS development. It has been shown that inflammation contributes to the progression of a variety of tumor types, and nuclear factor kappa B (NF-κB) is recognized as a master-regulator of inflammatory signaling. However, the contributions of NF-κB signaling to tumor initiation are less well understood. Aberrant up-regulation of NF-κB activity, either systemically or locally within the breast, could occur due to a variety of commonly experienced stimuli such as acute infection, obesity, or psychological stress. In this study, we seek to determine if activation of NF-κB in mammary epithelium could play a role in the formation of hyperplastic ductal lesions. Our studies utilize a doxycycline-inducible transgenic mouse model in which constitutively active IKKβ is expressed specifically in mammary epithelium. All previously published models of NF-κB modulation in the virgin mammary gland have been constitutive models, with transgene or knock-out present throughout the life and development of the animal. For the first time, we will induce activation at later time points after normal ducts have formed, thus being able to determine if NF-κB activation can promote pre-malignant changes in previously normal mammary epithelium. We found that even a short pulse of NF-κB activation could induce profound remodeling of mammary ductal structures. Short-term activation created hyperproliferative, enlarged ducts with filled lumens. Increased expression of inflammatory markers was concurrent with the down-regulation of hormone receptors and markers of epithelial differentiation. Furthermore, the oncoprotein mucin 1, known to be up-regulated in human and mouse DCIS, was over-expressed and mislocalized in the

  2. Inhibitory effect of snake venom toxin on NF-κB activity prevents human cervical cancer cell growth via increase of death receptor 3 and 5 expression.

    Science.gov (United States)

    Lee, Hye Lim; Park, Mi Hee; Hong, Ji Eun; Kim, Dae Hwan; Kim, Ji Young; Seo, Hyen Ok; Han, Sang-Bae; Yoon, Joo Hee; Lee, Won Hyoung; Song, Ho Sueb; Lee, Ji In; Lee, Ung Soo; Song, Min Jong; Hong, Jin Tae

    2016-02-01

    We previously found that snake venom toxin inhibits nuclear factor kappa B (NF-κB) activity in several cancer cells. NF-κB is implicated in cancer cell growth and chemoresistance. In our present study, we investigated whether snake venom toxin (SVT) inhibits NF-κB, thereby preventing human cervical cancer cell growth (Ca Ski and C33A). SVT (0-12 μg/ml) inhibited the growth of cervical cancer cells by the induction of apoptotic cell death. These inhibitory effects were associated with the inhibition of NF-κB activity. However, SVT dose dependently increased the expression of death receptors (DRs): DR3, DR5 and DR downstream pro-apoptotic proteins. Exploration of NF-κB inhibitor (Phenylarsine oxide, 0.1 μM) synergistically further increased SVT-induced DR3 and DR5 expressions accompanied with further inhibition of cancer cells growth. Moreover, deletion of DR3 and DR5 by small interfering RNA significantly abolished SVT-induced cell growth inhibitory effects, as well as NF-κB inactivation. Using TNF-related apoptosis-inducing ligand resistance cancer cells (A549 and MCF-7), we also found that SVT enhanced the susceptibility of chemoresistance of these cancer cells through down-regulation of NF-κB, but up-regulation of DR3 and DR5. In vivo study also showed that SVT (0.5 and 1 mg/kg) inhibited tumor growth accompanied with inactivation of NF-κB. Thus, our present study indicates that SVT could be applicable as an anticancer agent for cervical cancer, or as an adjuvant agent for chemoresistant cancer cells.

  3. Ciliary neurotrophic factor activates NF-κB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents.

    Science.gov (United States)

    Saleh, Ali; Roy Chowdhury, Subir K; Smith, Darrell R; Balakrishnan, Savitha; Tessler, Lori; Martens, Corina; Morrow, Dwane; Schartner, Emily; Frizzi, Katie E; Calcutt, Nigel A; Fernyhough, Paul

    2013-02-01

    Diabetes causes mitochondrial dysfunction in sensory neurons that may contribute to peripheral neuropathy. Ciliary neurotrophic factor (CNTF) promotes sensory neuron survival and axon regeneration and prevents axonal dwindling, nerve conduction deficits and thermal hypoalgesia in diabetic rats. In this study, we tested the hypothesis that CNTF protects sensory neuron function during diabetes through normalization of impaired mitochondrial bioenergetics. In addition, we investigated whether the NF-κB signal transduction pathway was mobilized by CNTF. Neurite outgrowth of sensory neurons derived from streptozotocin (STZ)-induced diabetic rats was reduced compared to neurons from control rats and exposure to CNTF for 24 h enhanced neurite outgrowth. CNTF also activated NF-κB, as assessed by Western blotting for the NF-κB p50 subunit and reporter assays for NF-κB promoter activity. Conversely, blockade of NF-κB signaling using SN50 peptide inhibited CNTF-mediated neurite outgrowth. Studies in mice with STZ-induced diabetes demonstrated that systemic therapy with CNTF prevented functional indices of peripheral neuropathy along with deficiencies in dorsal root ganglion (DRG) NF-κB p50 expression and DNA binding activity. DRG neurons derived from STZ-diabetic mice also exhibited deficiencies in maximal oxygen consumption rate and associated spare respiratory capacity that were corrected by exposure to CNTF for 24 h in an NF-κB-dependent manner. We propose that the ability of CNTF to enhance axon regeneration and protect peripheral nerve from structural and functional indices of diabetic peripheral neuropathy is associated with targeting of mitochondrial function, in part via NF-κB activation, and improvement of cellular bioenergetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-05-28

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-{kappa}B) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-{alpha}), interleukin-1beta (IL-1{beta}), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min{sup -1}, the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of {sup 137}Cs {gamma} rays (10 mGy min{sup -1}). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or {sup 137}Cs {gamma} rays, delivered at 10 mGy min{sup -1}, was similar. Although statistically significant levels of NF-{kappa}B activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or < 0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min{sup -1} induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  5. A practical application of analysing weighted kappa for panels of experts and EQA schemes in pathology.

    Science.gov (United States)

    Wright, Karen C; Harnden, Patricia; Moss, Sue; Berney, Dan M; Melia, Jane

    2011-03-01

    Kappa statistics are frequently used to analyse observer agreement for panels of experts and External Quality Assurance (EQA) schemes and generally treat all disagreements as total disagreement. However, the differences between ordered categories may not be of equal importance (eg, the difference between grades 1 vs 2 compared with 1 vs 3). Weighted kappa can be used to adjust for this when comparing a small number of readers, but this has not as yet been applied to the large number of readers typical of a national EQA scheme. To develop and validate a method for applying weighted kappa to a large number of readers within the context of a real dataset: the UK National Urological Pathology EQA Scheme for prostatic biopsies. Data on Gleason grade recorded by 19 expert readers were extracted from the fixed text responses of 20 cancer cases from four circulations of the EQA scheme. Composite kappa, currently used to compute an unweighted kappa for large numbers of readers, was compared with the mean kappa for all pairwise combinations of readers. Weighted kappa generalised for multiple readers was compared with the newly developed 'pairwise-weighted' kappa. For unweighted analyses, the median increase from composite to pairwise kappa was 0.006 (range -0.005 to +0.052). The difference between the pairwise-weighted kappa and generalised weighted kappa for multiple readers never exceeded ±0.01. Pairwise-weighted kappa is a suitable and highly accurate approximation to weighted kappa for multiple readers.

  6. Squid Giant Axons Synthesize NF Proteins.

    Science.gov (United States)

    Crispino, Marianna; Chun, Jong Tai; Giuditta, Antonio

    2018-04-01

    Squid giant axon has been an excellent model system for studying fundamental topics in neurobiology such as neuronal signaling. It has been also useful in addressing the questions of local protein synthesis in the axons. Incubation of isolated squid giant axons with [ 35 S]methionine followed by immunoprecipitation with a rabbit antibody against all squid neurofilament (NF) proteins demonstrates the local synthesis of a major 180 kDa NF protein and of several NF proteins of lower molecular weights. Their identification as NF proteins is based on their absence in the preimmune precipitates. Immunoprecipitates washed with more stringent buffers confirmed these results. Our data are at variance with a recent study based on the same experimental procedure that failed to visualize the local synthesis of NF proteins by the giant axon and thereby suggested their exclusive derivation from nerve cell bodies (as reported by Gainer et al. in Cell Mol Neurobiol 37:475-486, 2017). By reviewing the pertinent literature, we confute the claims that mRNA translation is absent in mature axons because of a putative translation block and that most proteins of mature axons are synthesized in the surrounding glial cells. Given the intrinsic axonal capacity to synthesize proteins, we stress the glial derivation of axonal and presynaptic RNAs and the related proposal that these neuronal domains are endowed with largely independent gene expression systems (as reported by Giuditta et al. in Physiol Rev 88:515-555, 2008).

  7. Cervical neurofibromas in children with NF-1

    International Nuclear Information System (INIS)

    Chung, C.J.; Mukherji, S.K.; Fordham, L.A.; Armfield, K.B.; Krause, W.L.

    1999-01-01

    Background. Children with neurofibromatosis type 1 (NF1) are at increased risk of developing plexiform neurofibroma throughout the body, including the cervical soft tissues. However, the incidence of cervical soft tissue tumors and the value of screening MR for children with NF1 are not known. Purpose. The purposes of this study were to determine the incidence and clinical significance of cervical tumors seen on MR imaging in children with NF1. Materials and methods. A retrospective review of the brain and orbit MR with cervical images obtained on 95 children who meet the NIH consensus criteria for NF1 and who are followed at our neurofibromatosis clinic was carried out. Results. Cervical tumors were found on MR imaging in 21 of 95 (22 %) children. Of 21 children with cervical tumors, 14 children were determined to be surgical candidates. In nine children, MR imaging altered the clinical management by demonstrating tumors for which surgery was indicated, but the tumors were not suspected prior to MR imaging. Conclusion. Cervical tumors are commonly seen in children with NF1. MR imaging may demonstrate a significant number of tumors that require surgery, but were not suspected prior to MR imaging. (orig.)

  8. NIRS Characterization of Paper Pulps to Predict Kappa Number

    Directory of Open Access Journals (Sweden)

    Ana Moral

    2015-01-01

    Full Text Available Rice is one of the most abundant food crops in the world and its straw stands as an important source of fibres both from an economic and an environmental point of view. Pulp characterization is of special relevance in works involving alternative raw materials, since pulp properties are closely linked to the quality of the final product. One of the analytical techniques that can be used in pulp characterization is near-infrared spectroscopy (NIRS. The use of NIRS has economic and technical advantages over conventional techniques. This paper aims to discuss the convenience of using NIRS to predict Kappa number in rice straw pulps produced under different conditions. We found that the resulting Kappa number can be acceptably estimated by NIRS, as the errors obtained with that method are similar to those found for other techniques.

  9. Estrogen deficiency inhibits the odonto/osteogenic differentiation of dental pulp stem cells via activation of the NF-κB pathway.

    Science.gov (United States)

    Wang, Yanping; Yan, Ming; Yu, Yan; Wu, Jintao; Yu, Jinhua; Fan, Zhipeng

    2013-06-01

    Various factors can affect the functions of dental pulp stem cells (DPSCs). However, little knowledge is available about the effects of estrogen deficiency on the differentiation of DPSCs. In this study, an estrogen-deficient rat model was constructed and multi-colony-derived DPSCs were obtained from the incisors of ovariectomized (OVX) or sham-operated rats. Odonto/osteogenic differentiation and the possible involvement of the nuclear factor kappa B (NF-κB) pathway in the OVX-DPSCs/Sham-DPSCs of these rats were then investigated. OVX-DPSCs presented decreased odonto/osteogenic capacity and an activated NF-κB pathway, as compared with Sham-DPSCs. When the cellular NF-κB pathway was specifically inhibited by BMS345541, the odonto/osteogenic potential in OVX-DPSCs was significantly upregulated. Thus, estrogen deficiency down-regulated the odonto/osteogenic differentiation of DPSCs by activating NF-κB signaling and inhibition of the NF-κB pathway effectively rescued the decreased differentiation potential of DPSCs.

  10. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2014-12-01

    Full Text Available A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes.

  11. Splenectomy following MCAO inhibits the TLR4-NF-κB signaling pathway and protects the brain from neurodegeneration in rats.

    Science.gov (United States)

    Belinga, Victor Fabrice; Wu, Guan-Jin; Yan, Fu-Ling; Limbenga, Erica Audrey

    2016-04-15

    The Toll-like receptor 4(TLR4)/nuclear factor kappa B NF-κB inflammatory pathway contributes to secondary inflammation in many diseases including stroke. Moreover, the neuroprotective effect of splenectomy in stroke is supported by a vast body of experimental evidence. Nevertheless, the underlying mechanism(s) by which splenectomy enhance neuroprotection in stroke is still poorly understood. Our study aimed to investigate whether post-ischemic splenectomy modulate the TLR4/NF-κB inflammatory pathway in stroke. Immunohistochemistry was used to evaluate the levels of TLR4 and NF-κB expression in brain areas (parietal lobe, hippocampus and striatum) of rats that underwent: MCAO-splenectomy surgery (MS ); MCAO surgery without splenectomy (MCAO control or MC); Sham MCAO and splenectomy surgery (sham control group or SC group respectively. Apoptosis in these areas was assessed by TUNEL detection technique. The levels of TLR4 and NF-κB expression were significantly reduced in splenectomized rats relative to the MS group (Psplenectomy in ischemic stroke. Our results suggest that such an effect might be due to the inhibition of theTLR4/NF-κB inflammatory pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Common gene variants in the tumor necrosis factor (TNF and TNF receptor superfamilies and NF-kB transcription factors and non-Hodgkin lymphoma risk.

    Directory of Open Access Journals (Sweden)

    Sophia S Wang

    Full Text Available A promoter polymorphism in the pro-inflammatory cytokine tumor necrosis factor (TNF (TNF G-308A is associated with increased non-Hodgkin lymphoma (NHL risk. The protein product, TNF-alpha, activates the nuclear factor kappa beta (NF-kappaB transcription factor, and is critical for inflammatory and apoptotic responses in cancer progression. We hypothesized that the TNF and NF-kappaB pathways are important for NHL and that gene variations across the pathways may alter NHL risk.We genotyped 500 tag single nucleotide polymorphisms (SNPs from 48 candidate gene regions (defined as 20 kb 5', 10 kb 3' in the TNF and TNF receptor superfamilies and the NF-kappaB and related transcription factors, in 1946 NHL cases and 1808 controls pooled from three independent population-based case-control studies. We obtained a gene region-level summary of association by computing the minimum p-value ("minP test". We used logistic regression to compute odds ratios and 95% confidence intervals for NHL and four major NHL subtypes in relation to SNP genotypes and haplotypes. For NHL, the tail strength statistic supported an overall relationship between the TNF/NF-kappaB pathway and NHL (p = 0.02. We confirmed the association between TNF/LTA on chromosome 6p21.3 with NHL and found the LTA rs2844484 SNP most significantly and specifically associated with the major subtype, diffuse large B-cell lymphoma (DLBCL (p-trend = 0.001. We also implicated for the first time, variants in NFKBIL1 on chromosome 6p21.3, associated with NHL. Other gene regions identified as statistically significantly associated with NHL included FAS, IRF4, TNFSF13B, TANK, TNFSF7 and TNFRSF13C. Accordingly, the single most significant SNPs associated with NHL were FAS rs4934436 (p-trend = 0.0024, IRF4 rs12211228 (p-trend = 0.0026, TNFSF13B rs2582869 (p-trend = 0.0055, TANK rs1921310 (p-trend = 0.0025, TNFSF7 rs16994592 (p-trend = 0.0024, and TNFRSF13C rs6002551 (p-trend = 0.0074. All associations were

  13. Eggshell membrane hydrolyzates activate NF-κB in vitro: possible implications for in vivo efficacy

    Directory of Open Access Journals (Sweden)

    Ruff KJ

    2015-02-01

    Full Text Available Kevin J Ruff,1 Paul L Durham,2 Austin O’Reilly,2 F Daniel Long1 1ESM Technologies, LLC, Carthage, MO, USA; 2Center for Biomedical and Life Sciences, Missouri State University, Springfield, MO, USA Purpose: Eggshell membrane (ESM has been shown to contain naturally occurring bioactive components, and biological activities such as reducing proinflammatory cytokines, liver fibrosis, and joint pain in osteoarthritis sufferers have also been reported for ESM matrix as a whole. Nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB is a signaling protein found in the cytoplasm of nearly all human and animal cell types and is a primary regulator of immune function. The studies reported herein were designed to investigate the possible role that NF-κB activity might play in the reported biological activities of ESM. Methods: Three ESM hydrolyzates produced via fermentation, enzymatic, or chemical hydrolysis were evaluated in vitro in either human peripheral blood mononuclear cell or THP-1 (human leukemic monocyte cell cultures for NF-κB activity following 4-hour exposure. The hydrolyzates were compared with untreated control cells or cells incubated with lipopolysaccharide or ascorbic acid. The source of ESM activity was also evaluated. Results: NF-κB levels were increased above levels found in untreated cells at all three dilutions (1:100, 1:1,000, and 1:10,000 for the fermentation hydrolyzate of ESM (ESM-FH (P=0.021, P=0.020, P=0.009, respectively in peripheral blood mononuclear cells. The enzymatic hydrolyzate of ESM (ESM-EH also produced statistically significant levels of activated NF-κB at the 1:100 and 1:1,000 dilutions (P=0.004, P=0.006, respectively but fell just shy of significance at the 1:10,000 dilution (P=0.073. Similarly, ESM-FH (P=0.021, P=0.002 and ESM-EH (P=0.007, P=0.007 activated NF-κB in THP-1 cells at 1:1,000 and 1:10,000 dilutions, respectively. The chemical hydrolyzate of ESM (ESM-CH showed statistically

  14. Downregulation of NF-ΚB1 enhances the radiosensitivity of renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Ikegami, Amanda; Silva, Luiz Felipe Teixeira da; Bellini, Maria Helena [Instituto De Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Full text: Introduction: Clear cell renal cell carcinoma (ccRCC) accounts for ∼80% of all renal cell carcinomas (RCC) and has the Von Hippel-Lindau (VHL) tumor suppressor gene mutated. The lack of VHL protein leads to a constitutionally active Hypoxia Inducible Factor (HIF) pathway that confers both chemoresistance and radioresistance for renal tumor. HIF pathway is known to interact with the transcription factor nuclear factor kappa B (NF-kB). Increased NF-κB activity is associated with the development and progression of RCC (IKEGAMI A, TEIXEIRA LF. BRAGA MS et al. The American Society for Cell Biology 2016; 26: 3948-3955). Objective: Evaluate the synergistic effect of NF-kB1 knockdown and ionizing radiation in murine renal adenocarcinoma cell line. Methods: The murine renal adenocarcinoma cell line (Renca cells) (ATCC, USA) was cultured in RPMI 1640 supplemented with 10% FBS and penicillin/streptomycin. Lentiviral shRNA vector was used to knockdown of NF-KB1 gene in Renca cells, as described previously (1). In the clonogenic cell survival assay, the cells were irradiated by {sup 60}Co source in the range from 0 to 10 Gy, using the GammaCell 220 – Irradiation Unit of Canadian-Atomic Energy Commision Ltd. (CTR-IPEN). After 10-14 days of culture, cell colonies were fixed and stained with formaldehyde 4% and rhodamine B 2% and counted. To assess cell viability, tetrazolium [3-(4,5-dimethylthiazol-2-yl)-5- (3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-MTS] was performed within 24 hours after irradiation at a dose of 10Gy. The survival variables α e β were fitted according to the linear quadratic equation (SF=exp[-αD-βD2]); SF=survival fraction, D=dose of irradiation and P value was determined by F test. Multiple comparisons were assessed by One-way ANOVA followed by Bonferroni´s tests with GraphPad Prism version 6.0 software. P< 0.05 was considered statistically significant. Data are shown as the mean ± SD. Results: The Renca-shRNA-NF-kB1 cells were found

  15. A flow cytometry technique to study intracellular signals NF-κB and STAT3 in peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    Chavarin Patricia

    2007-07-01

    Full Text Available Abstract Background Cytokines have essential roles on intercellular communications and are effective in using a variety of intracellular pathways. Among this multitude of signalling pathways, the NF-κB (nuclear factor kappaB and STAT (signal transducer and activator of transcription families are among the most frequently investigated because of their importance. Indeed, they have important role in innate and adaptive immunity. Current techniques to study NF-κB and STAT rely on specific ELISAs, Western Blots and – most recently described – flow cytometry; so far, investigation of such signalling pathways are most commonly performed on homogeneous cells after purification. Results The present investigation aimed at developing a flow cytometry technique to study transcription factors in various cellular types such as mixtures of B-cells, T-lymphocytes and monocytes/macrophages stimulated in steady state conditions (in other words, as peripheral blood mononuclear cells. To achieve this goal, a two step procedure was carried out; the first one consisted of stimulating PBMCs with IL1β, sCD40L and/or IL10 in such a manner that optimal stimulus was found for each cell subset (and subsequent signal transduction, therefore screened by specific ELISA; the second step consisted of assessing confirmation and fine delineation of technical conditions by specific Western-Blotting for either NF-κB or STAT products. We then went on to sensitize the detection technique for mixed cells using 4 color flow cytometry. Conclusion In response to IL1β, or IL10, the levels of phosphorylated NF-κB and STAT3 – respectively – increased significantly for all the studied cell types. In contrast, B-cells and monocytes/macrophages – but, interestingly, not T-lymphocytes (in the context of PBMCs – responded significantly to sCD40L by increasing phosphorylated NF-κB.

  16. NLRP3 inflammasome activation regulated by NF-κB and DAPK contributed to paraquat-induced acute kidney injury.

    Science.gov (United States)

    Liu, Zhenning; Wang, Xiaokai; Wang, Yu; Zhao, Min

    2017-06-01

    Paraquat can result in dysfunction of multiple organs after ingestion in human. However, the mechanisms of nucleotide-binding domain and leucine-rich repeat containing protein 3 (NLRP3) inflammasome activation in acute kidney injury have not been clearly demonstrated. The aim of this study was to determine the effect of NLRP3 inflammasome activation and its regulation by nuclear factor-kappa B (NF-κB) and death-associated protein kinase (DAPK). Male Wistar rats were treated with intraperitoneal injection of paraquat at 20 mg/kg, and NF-κB inhibitor BAY 11-7082 was pretreated at 10 mg/kg 1 h before paraquat exposure. Additionally, rat renal tubular epithelial cells (NRK-52E) were transfected with small interfering RNA (siRNA) against DAPK to evaluate its role in NLRP3 inflammasome activation. DAPK and NLRP3 inflammasome were evaluated by immunohistochemistry staining or Western blot; the pro-inflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-18 (IL-18) were measured via ELISA. The results showed that NF-κB, DAPK, and NLRP3 inflammasome were activated in paraquat (PQ)-treated rat kidney; the secretion of pro-inflammatory cytokines was significantly increased. These toxic effects were attenuated by NF-κB inhibitor. Besides, the activation of NLRP3 inflammasome and secretion of IL-1β and IL-18 in paraquat-treated rat renal tubular epithelial cells were inhibited by siRNA against DAPK. In conclusion, NLRP3 inflammasome activation regulated by NF-κB and DAPK played an important role in paraquat-induced acute kidney injury.

  17. Interleukin 6 promotes endometrial cancer growth through an autocrine feedback loop involving ERK–NF-κB signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Che, Qi; Liu, Bin-Ya; Wang, Fang-Yuan; He, Yin-Yan; Lu, Wen; Liao, Yun [Department of Obstetrics and Gynecology, Shanghai First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai (China); Gu, Wei, E-mail: krisgu70@163.com [Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai (China); Wan, Xiao-Ping, E-mail: wanxp@sjtu.edu.cn [Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital Affiliated to Tong Ji University, Shanghai (China)

    2014-03-28

    Highlights: • IL-6 could promote endometrial cancer cells proliferation. • IL-6 promotes its own production through an autocrine feedback loop. • ERK and NF-κB pathway inhibitors inhibit IL-6 production and tumor growth. • IL-6 secretion relies on the activation of ERK–NF-κB pathway axis. • An orthotopic nude endometrial carcinoma model confirms the effect of IL-6. - Abstract: Interleukin (IL)-6 as an inflammation factor, has been proved to promote cancer proliferation in several human cancers. However, its role in endometrial cancer has not been studied clearly. Previously, we demonstrated that IL-6 promoted endometrial cancer progression through local estrogen biosynthesis. In this study, we proved that IL-6 could directly stimulate endometrial cancer cells proliferation and an autocrine feedback loop increased its production even after the withdrawal of IL-6 from the medium. Next, we analyzed the mechanism underlying IL-6 production in the feedback loop and found that its production and IL-6-stimulated cell proliferation were effectively blocked by pharmacologic inhibitors of nuclear factor-kappa B (NF-κB) and extra-cellular signal-regulated kinase (ERK). Importantly, activation of ERK was upstream of the NF-κB pathways, revealing the hierarchy of this event. Finally, we used an orthotopic nude endometrial carcinoma model to confirm the effects of IL-6 on the tumor progression. Taken together, these data indicate that IL-6 promotes endometrial carcinoma growth through an expanded autocrine regulatory loop and implicate the ERK–NF-κB pathway as a critical mediator of IL-6 production, implying IL-6 to be an important therapeutic target in endometrial carcinoma.

  18. Generation and quenching of NF(a) and NF(b) molecules

    International Nuclear Information System (INIS)

    Setser, D.W.; Cha, H.; Quinones, E.; Du, K.

    1987-01-01

    The Ar( 3 Po,2) + NF 2 and 2F + HN 3 reactions have been developed as sources of NF(b 1 Σ + ) and NF(a 1 Δ) molecules, respectively, in a flow reactor. The decay kinetics for these molecules in the presence of added reagent can be studied using standard flow reactor techniques. Room temperature quenching rate constants for both molecules are reported for several reagents and compared to results for the isoelectronic O 2 (a) and O 2 (b) molecules

  19. The reciprocal interaction of sympathetic nervous system and cAMP-PKA-NF-kB pathway in immune suppression after experimental stroke.

    Science.gov (United States)

    Zuo, Lei; Shi, Luhang; Yan, Fuling

    2016-08-03

    Sympathetic nervous system(SNS) is involved in the mechanism of immune suppression after stroke. Furthermore, as the pro-inflammatory effect of nuclear factor kappa B(NF-kB) is inhibited after stroke, which is regulated by cyclic adenosine monophosphate(cAMP) and proteinkinase A(PKA). The cAMP-PKA-NF-kB pathway might play an important role in noradrenergic-mediated immune dysfunction. The purpose of our research is to analyze how SNS interfere with the immune system after acute stroke and the underlying mechanism of cAMP-PKA-NF-kB pathway in regulating the inflammation. 32 healthy male Sprague-Dawley rats were divided into 4 groups equally and randomly (1) Sham operation group; (2) middle cerebral artery occlusion; (MCAO) control group; (3) propranolol MCAO group; (4) isopropylarterenol sham group. 72h later after MCAO or sham operation, tumor necrosis factor-α(TNF-α)and interleukine-10(IL-10) in serum as well as cAMP, PKA and NF-kB in spleen cells were tested. TNF-α decreased while IL-10 increased in serum after acute ischemia stroke (pPKA in spleen both increased in MCAO model while the expression of NF-kB was inhibited (pPKA. Therefore, the level of nuclear factor NF-kB is down-regulated. Since the pro-inflammatory effect of NF-kB slacked, the immune system may be inhibited after stroke. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. PMS1077 sensitizes TNF-α induced apoptosis in human prostate cancer cells by blocking NF-κB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Jie Shi

    Full Text Available Our previous studies have demonstrated that PMS1077, a platelet-activating factor (PAF antagonist, could induce apoptosis of Raji cells. However, the mechanism of action has not yet been determined. The nuclear transcription factor-kappa B (NF-κB signaling pathway plays a critical role in tumor cell survival, proliferation, invasion, metastasis, and angiogenesis, so we determined the effects of PMS1077 and its structural analogs on tumor necrosis factor-α (TNF-α induced activation of NF-κB signaling. In this study, we found that PMS1077 inhibited TNF-α induced expression of the NF-κB regulated reporter gene in a dose dependent manner. Western blot assay indicated that PMS1077 suppressed the TNF-α induced inhibitor of κB-α (IκB-α phosphorylation, IκB-α degradation, and p65 phosphorylation. PMS1077 consistently blocked TNF-α induced p65 nuclear translocation as demonstrated in the immunofluorescence assay used. Docking studies by molecular modeling predicted that PMS1077 might interact directly with the IκB kinase-β (IKK-β subunit. These results suggested that PMS1077 might suppress the activation of NF-κB by targeting IKK-β involved in the NF-κB signaling pathway. Finally, we showed that PMS1077 sensitized cells to TNF-α induced apoptosis by suppressing the expression of NF-κB regulated anti-apoptotic genes. Our results reveal a novel function of PMS1077 on the NF-κB signaling pathway and imply that PMS1077 can be considered as an anti-tumor lead compound.

  1. Anti-Inflammatory Effects of Ginsenoside Rg3 via NF-κB Pathway in A549 Cells and Human Asthmatic Lung Tissue

    Directory of Open Access Journals (Sweden)

    In-Seung Lee

    2016-01-01

    Full Text Available Objective. There is limited information of the anti-inflammatory effects of Rg3 on inflamed lung cells and tissues. Therefore, we confirmed the anti-inflammatory mechanism of ginsenoside Rg3 in inflamed human airway epithelial cells (A549 and tissues whether Rg3 regulates nuclear factor kappa B (NF-κB activity. Methods. To induce the inflammation, IL-1β (10 ng/ml was treated to A549 cells for 4 h. The effects of Rg3 on NF-κB activity and COX-2 expression were evaluated by western blotting analysis in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. Using multiplex cytokines assay, the secretion levels of NF-κB-mediated cytokines/chemokines were measured. Result. Rg3 showed the significant inhibition of NF-κB activity thereby reduced COX-2 expression was determined in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. In addition, among NF-κB-mediated cytokines, the secretion levels of IL-4, TNF-α, and eotaxin were significantly decreased by Rg3 in asthma tissues. Even though there was no significant difference, IL-6, IL-9, and IL-13 secretion showed a lower tendency compared to saline-treated human asthmatic airway epithelial tissues. Conclusion. The results from this study demonstrate the potential of Rg3 as an anti-inflammatory agent through regulating NF-κB activity and reducing the secretion of NF-κB-mediated cytokines/chemokines.

  2. The type III secretion effector NleF of enteropathogenic Escherichia coli activates NF-κB early during infection.

    Science.gov (United States)

    Pallett, Mitchell A; Berger, Cedric N; Pearson, Jaclyn S; Hartland, Elizabeth L; Frankel, Gad

    2014-11-01

    The enteric pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli employ a type 3 secretion system (T3SS) to manipulate the host inflammatory response during infection. Previously, it has been reported that EPEC, in a T3SS-dependent manner, induces an early proinflammatory response through activation of NF-κB via extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase Cζ (PKCζ). However, the activation of NF-κB during infection has not yet been attributed to an effector. At later time points postinfection, NF-κB signaling is inhibited through the translocation of multiple effectors, including NleE and NleC. Here we report that the highly conserved non-LEE (locus of enterocyte effacement)-encoded effector F (NleF) shows both diffuse and mitochondrial localization during ectopic expression. Moreover, NleF induces the nuclear translocation of NF-κB p65 and the expression of interleukin 8 (IL-8) following ectopic expression and during EPEC infection. Furthermore, the proinflammatory activity and localization of NleF were dependent on the C-terminal amino acids LQCG. While the C-terminal domain of NleF has previously been shown to be essential for interaction with caspase-4, caspase-8, and caspase-9, the proinflammatory activity of NleF was independent of interaction with caspa