WorldWideScience

Sample records for next-to-next-to-leading-order nnlo soft-gluon

  1. Next-to-next-to-leading order N-jettiness soft function for one massive colored particle production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai Tao [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics and Astronomy, Monash University, VIC-3800 (Australia); Wang, Jian [PRISMA Cluster of Excellence Mainz Institute for Theoretical Physics, Johannes Gutenberg University, D-55099 Mainz (Germany); Physik Department T31, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany)

    2017-02-01

    The N-jettiness subtraction has proven to be an efficient method to perform differential QCD next-to-next-to-leading order (NNLO) calculations in the last few years. One important ingredient of this method is the NNLO soft function. We calculate this soft function for one massive colored particle production at hadron colliders. We select the color octet and color triplet cases to present the final results. We also discuss its application in NLO and NNLO differential calculations.

  2. Differential Higgs boson pair production at next-to-next-to-leading order in QCD

    International Nuclear Information System (INIS)

    Florian, Daniel de; Mazzitelli, Javier; Grazzini, Massimiliano; Hanga, Catalin; Lindert, Jonas M.; Kallweit, Stefan; Maierhoefer, Philipp; Rathlev, Dirk

    2016-06-01

    We report on the first fully differential calculation for double Higgs boson production through gluon fusion in hadron collisions up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. The calculation is performed in the heavy-top limit of the Standard Model, and in the phenomenological results we focus on pp collisions at √(s)=14 TeV. We present differential distributions through NNLO for various observables including the transverse-momentum and rapidity distributions of the two Higgs bosons. NNLO corrections are at the level of 10%-25% with respect to the next-to-leading order (NLO) prediction with a residual scale uncertainty of 5%-15% and an overall mild phase-space dependence. Only at NNLO the perturbative expansion starts to converge yielding overlapping scale uncertainty bands between NNLO and NLO in most of the phase-space. The calculation includes NLO predictions for pp→HH+jet+X. Corrections to the corresponding distributions exceed 50% with a residual scale dependence of 20%-30%.

  3. Higgs production in gluon fusion beyond NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Richard D. [Edinburgh Univ. (United Kingdom). Tait Inst.; Bonvini, Marco [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Forte, Stefano [Milano Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Milano (Italy); Marzani, Simone [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ridolfi, Giovanni [Genova Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Genova (Italy)

    2013-03-15

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N{sup 3}LO) in {alpha}{sub s} with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analiticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N{sup 3}LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.

  4. Higgs production in gluon fusion beyond NNLO

    International Nuclear Information System (INIS)

    Ball, Richard D.; Bonvini, Marco; Forte, Stefano; Marzani, Simone; Ridolfi, Giovanni

    2013-01-01

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N 3 LO) in α s with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N 3 LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result

  5. Higgs production in gluon fusion beyond NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Richard D. [Tait Institute, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); Bonvini, Marco [Deutsches Elektronen-Synchroton, DESY, Notkestraße 85, D-22603 Hamburg (Germany); Forte, Stefano, E-mail: forte@mi.infn.it [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Marzani, Simone [Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, England (United Kingdom); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)

    2013-09-21

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N{sup 3}LO) in α{sub s} with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N{sup 3}LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.

  6. Higgs production in gluon fusion beyond NNLO

    International Nuclear Information System (INIS)

    Ball, Richard D.; Forte, Stefano; Marzani, Simone

    2013-03-01

    We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N 3 LO) in α s with finite top mass. We argue that an accurate approximation can be constructed by exploiting the analiticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N 3 LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.

  7. Higgs production at next-to-next-to-leading order

    Indian Academy of Sciences (India)

    Instituut-Lorentz, University of Leiden, Leiden, The Netherlands. Abstract. We describe the calculation of inclusive Higgs boson production at hadronic colliders at next-to-next-to-leading order (NNLO) in perturbative quantum chromody- namics. We have used the technique developed in ref. [4]. Our results agree with those.

  8. On the next-to-next-to leading order QCD corrections to heavy-quark production in deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H. [KEK Theory Center, Tsukuba (Japan); Lo Presti, N.A.; Vogt, A. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-05-15

    The contribution of quarks with masses m >> {lambda}{sub QCD} is the only part of the structure functions in deep-inelastic scattering (DIS) which is not yet known at the next-to-next-to-leading order (NNLO) of perturbative QCD. We present improved partial NNLO results for the most important structure function F{sub 2}(x,Q{sup 2}) near the partonic threshold, in the high-energy (small-x) limit and at high scales Q{sup 2} >> m{sup 2}; and employ these results to construct approximations for the gluon and quark coefficient functions which cover the full kinematic plane. The approximation uncertainties are carefully investigated, and found to be large only at very small values, x

  9. Higgs Boson Production at Hadron Colliders: Differential Cross Section Through Next-to-Next-to-Leading Order

    International Nuclear Information System (INIS)

    Anastasiou, C

    2004-01-01

    The authors present a calculation of the fully differential cross section for Higgs boson production in the gluon fusion channel through next-to-next-to-leading order in perturbative QCD. They apply the method introduced in [1] to compute double real emission corrections. The calculation permits arbitrary cuts on the final state in the reaction hh → H + X. it can be easily extended to include decays of the Higgs boson into observable final states. In this Letter, they discuss the most important features of the calculation, and present some examples of physical applications that illustrate the range of observables that can be studied using the result. They compute the NNLO rapidity distribution of the Higgs boson, and also calculate the NNLO rapidity distribution with a veto on jet activity

  10. On top-pair hadro-production at next-to-next-to-leading order

    International Nuclear Information System (INIS)

    Moch, S.; Uwer, P.; Vogt, A.

    2012-03-01

    We study the QCD corrections at next-to-next-to-leading order (NNLO) to the cross section for the hadronic pair-production of top quarks. We present new results in the high-energy limit using the well-known framework of k t -factorization. We combine these findings with the known threshold corrections and present improved approximate NNLO results over the full kinematic range. This approach is employed to quantify the residual theoretical uncertainty of the approximate NNLO results which amounts to about 4% for the Tevatron and 5% for the LHC cross-section predictions. Our analytic results in the high-energy limit will provide an important check on future computations of the complete NNLO cross sections.

  11. Next-to-next-to-leading order evolution of non-singlet fragmentation functions

    International Nuclear Information System (INIS)

    Mitov, A.; Moch, S.; Vogt, A.

    2006-04-01

    We have investigated the next-to-next-to-leading order (NNLO) corrections to inclusive hadron production in e + e - annihilation and the related parton fragmentation distributions, the 'time-like' counterparts of the 'space-like' deep-inelastic structure functions and parton densities. We have re-derived the corresponding second-order coefficient functions in massless perturbative QCD, which so far had been calculated only by one group. Moreover we present, for the first time, the third-order splitting functions governing the NNLO evolution of flavour non-singlet fragmentation distributions. These results have been obtained by two independent methods relating time-like quantities to calculations performed in deep-inelastic scattering. We briefly illustrate the numerical size of the NNLO corrections, and make a prediction for the difference of the yet unknown time-like and space-like splitting functions at the fourth order in the strong coupling constant. (Orig.)

  12. Direct Photon Production at Next-to–Next-to-Leading Order

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John M.; Ellis, R. Keith; Williams, Ciaran

    2017-05-01

    We present the first calculation of direct photon production at next-to-next-to leading order (NNLO) accuracy in QCD. For this process, although the final state cuts mandate only the presence of a single electroweak boson, the underlying kinematics resembles that of a generic vector boson plus jet topology. In order to regulate the infrared singularities present at this order we use the $N$-jettiness slicing procedure, applied for the first time to a final state that at Born level includes colored partons but no required jet. We compare our predictions to ATLAS 8 TeV data and find that the inclusion of the NNLO terms in the perturbative expansion, supplemented by electroweak corrections, provides an excellent description of the data with greatly reduced theoretical uncertainties.

  13. Heavy-quark pair production in gluon fusion at next-to-next-to-leading O(α4s) order. One-loop squared contributions

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Merebashvili, Z.

    2008-09-01

    We calculate the next-to-next-to-leading order O(α 4 s ) one-loop squared corrections to the production of heavy quark pairs in the gluon-gluon fusion process. Together with the previously derived results on the q anti q production channel the results of this paper complete the calculation of the oneloop squared contributions of the next-to-next-to-leading order O(α 4 s ) radiative QCD corrections to the hadroproduction of heavy flavours. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in dimensional regularization. (orig.)

  14. Next-to-next-leading order correction to 3-jet rate and event-shape ...

    Indian Academy of Sciences (India)

    The coupling constant, , was measured by two different methods: first by employing the three-jet observables. Combining all the data, the value of as at next-to-next leading order (NNLO) was determined to be 0.117 ± 0.004(hard) ± 0.006(theo). Secondly, from the event-shape distributions, the strong coupling constant, ...

  15. Dijet production in diffractive deep-inelastic scattering in next-to-next-to-leading order QCD arXiv

    CERN Document Server

    Britzger, D.; Gehrmann, T.; Huss, A.; Niehues, J.; Žlebčík, R.

    Hard processes in diffractive deep-inelastic scattering can be described by a factorisation into parton-level subprocesses and diffractive parton distributions. In this framework, cross sections for inclusive dijet production in diffractive deep-inelastic electron-proton scattering (DIS) are computed to next-to-next-to-leading order (NNLO) QCD accuracy and compared to a comprehensive selection of data. Predictions for the total cross sections, 39 single-differential and four double-differential distributions for six measurements at HERA by the H1 and ZEUS collaborations are calculated. In the studied kinematical range, the NNLO corrections are found to be sizeable and positive. The NNLO predictions typically exceed the data, while the kinematical shape of the data is described better at NNLO than at next-to-leading order (NLO). A significant reduction of the scale uncertainty is achieved in comparison to NLO predictions. Our results use the currently available NLO diffractive parton distributions, and the dis...

  16. Three-Jet Production in Electron-Positron Collisions at Next-to-Next-to-Leading Order Accuracy

    Science.gov (United States)

    Del Duca, Vittorio; Duhr, Claude; Kardos, Adam; Somogyi, Gábor; Trócsányi, Zoltán

    2016-10-01

    We introduce a completely local subtraction method for fully differential predictions at next-to-next-to-leading order (NNLO) accuracy for jet cross sections and use it to compute event shapes in three-jet production in electron-positron collisions. We validate our method on two event shapes, thrust and C parameter, which are already known in the literature at NNLO accuracy and compute for the first time oblateness and the energy-energy correlation at the same accuracy.

  17. Heavy-quark pair production in gluon fusion at next-to-next-to-leading O({alpha}{sup 4}{sub s}) order. One-loop squared contributions

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A.; Merebashvili, Z. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Koerner, J.G. [Mainz Univ. (Germany). Inst. fuer Physik; Rogal, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-09-15

    We calculate the next-to-next-to-leading order O({alpha}{sup 4}{sub s}) one-loop squared corrections to the production of heavy quark pairs in the gluon-gluon fusion process. Together with the previously derived results on the q anti q production channel the results of this paper complete the calculation of the oneloop squared contributions of the next-to-next-to-leading order O({alpha}{sup 4}{sub s}) radiative QCD corrections to the hadroproduction of heavy flavours. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in dimensional regularization. (orig.)

  18. Higgs boson production in association with a jet at next-to-next-to-leading order

    CERN Document Server

    Boughezal, Radja; Melnikov, Kirill; Petriello, Frank; Schulze, Markus

    2015-01-01

    We present precise predictions for Higgs boson production in association with a jet. Our calculation is accurate to next-to-next-to-leading order (NNLO) QCD in the Higgs Effective Field Theory and constitutes the first complete NNLO computation for Higgs production with a final-state jet in hadronic collisions. We include all relevant phenomenological channels and present fully-differential results as well as total cross sections for the LHC. Our NNLO predictions reduce the unphysical scale dependence by more than a factor of two and enhance the total rate by about twenty percent compared to NLO QCD predictions. Our results demonstrate for the first time satisfactory convergence of the perturbative series.

  19. Imaginary part of the next-to-leading-order static gluon self-energy in an anisotropic plasma

    International Nuclear Information System (INIS)

    Carrington, M. E.; Rebhan, A.

    2009-01-01

    Using hard-loop (HL) effective theory for an anisotropic non-Abelian plasma, which even in the static limit involves nonvanishing HL vertices, we calculate the imaginary part of the static next-to-leading-order gluon self-energy in the limit of a small anisotropy and with external momentum parallel to the anisotropy direction. At leading order, the static propagator has spacelike poles corresponding to plasma instabilities. On the basis of a calculation using bare vertices, it has been conjectured that, at next-to-leading order, the static gluon self-energy acquires an imaginary part which regulates these spacelike poles. We find that the one-loop resummed expression taken over naively from the imaginary-time formalism does yield a nonvanishing imaginary part even after including all HL vertices. However, this result is not correct. Starting from the real-time formalism, which is required in a nonequilibrium situation, we construct a resummed retarded HL propagator with correct causality properties and show that the static limit of the retarded one-loop-resummed gluon self-energy is real. This result is also required for the time-ordered propagator to exist at next-to-leading order.

  20. A factorization approach to next-to-leading-power threshold logarithms

    Energy Technology Data Exchange (ETDEWEB)

    Bonocore, D. [Nikhef,Science Park 105, NL-1098 XG Amsterdam (Netherlands); Laenen, E. [Nikhef,Science Park 105, NL-1098 XG Amsterdam (Netherlands); ITFA, University of Amsterdam,Science Park 904, Amsterdam (Netherlands); ITF, Utrecht University,Leuvenlaan 4, Utrecht (Netherlands); Magnea, L. [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino,Via P. Giuria 1, I-10125, Torino (Italy); Melville, S. [School of Physics and Astronomy, University of Glasgow,Glasgow, G12 8QQ (United Kingdom); Vernazza, L. [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh,Edinburgh, EH9 3JZ, Scotland (United Kingdom); White, C.D. [School of Physics and Astronomy, University of Glasgow,Glasgow, G12 8QQ (United Kingdom)

    2015-06-03

    Threshold logarithms become dominant in partonic cross sections when the selected final state forces gluon radiation to be soft or collinear. Such radiation factorizes at the level of scattering amplitudes, and this leads to the resummation of threshold logarithms which appear at leading power in the threshold variable. In this paper, we consider the extension of this factorization to include effects suppressed by a single power of the threshold variable. Building upon the Low-Burnett-Kroll-Del Duca (LBKD) theorem, we propose a decomposition of radiative amplitudes into universal building blocks, which contain all effects ultimately responsible for next-to-leading-power (NLP) threshold logarithms in hadronic cross sections for electroweak annihilation processes. In particular, we provide a NLO evaluation of the radiative jet function, responsible for the interference of next-to-soft and collinear effects in these cross sections. As a test, using our expression for the amplitude, we reproduce all abelian-like NLP threshold logarithms in the NNLO Drell-Yan cross section, including the interplay of real and virtual emissions. Our results are a significant step towards developing a generally applicable resummation formalism for NLP threshold effects, and illustrate the breakdown of next-to-soft theorems for gauge theory amplitudes at loop level.

  1. Percent-level-precision physics at the Tevatron: next-to-next-to-leading order QCD corrections to qq¯→tt¯+X.

    Science.gov (United States)

    Bärnreuther, Peter; Czakon, Michał; Mitov, Alexander

    2012-09-28

    We compute the next-to-next-to-leading order QCD corrections to the partonic reaction that dominates top-pair production at the Tevatron. This is the first ever next-to-next-to-leading order calculation of an observable with more than two colored partons and/or massive fermions at hadron colliders. Augmenting our fixed order calculation with soft-gluon resummation through next-to-next-to-leading logarithmic accuracy, we observe that the predicted total inclusive cross section exhibits a very small perturbative uncertainty, estimated at ±2.7%. We expect that once all subdominant partonic reactions are accounted for, and work in this direction is ongoing, the perturbative theoretical uncertainty for this observable could drop below ±2%. Our calculation demonstrates the power of our computational approach and proves it can be successfully applied to all processes at hadron colliders for which high-precision analyses are needed.

  2. Effective potential in the strong-coupling lattice QCD with next-to-next-to-learning order effects

    International Nuclear Information System (INIS)

    Nakano, Takashi Z.; Miura, Kohtaroh; Ohnishi, Akira

    2010-01-01

    We derive an analytic expression of the effective potential at finite temperature (T) and chemical potential (μ) in the strong-coupling lattice QCD for color SU(3) including next-to-next-to-leading order (NNLO) effects in the strong coupling expansion. NNLO effective action terms are systematically evaluated in the leading order of the large dimensional (1/d) expansion, and are found to come from some types of connected two-plaquette configurations. We apply the extended Hubbard-Stratonovich transformation and a gluonic-dressed fermion technique to the effective action, and obtain the effective potential as a function of T, μ, and two order parameters: chiral condensate and vector potential field. The next-to-leading order (NLO) and NNLO effects result in modifications of the wave function renormalization factor, quark mass, and chemical potential. We find that T c,μ =0 and μ c,T =0 are similar to the NLO results, whereas the position of the critical point is sensitive to NNLO corrections. (author)

  3. Neutron-proton scattering at next-to-next-to-leading order in Nuclear Lattice Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Jose Manuel [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Thomas Jefferson National Accelerator Facility, Theory Center, Newport News, VA (United States); Du, Dechuan; Laehde, Timo A.; Li, Ning; Lu, Bing-Nan; Luu, Thomas [Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Klein, Nico [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Lee, Dean [North Carolina State University, Department of Physics, Raleigh, NC (United States); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Forschungszentrum Juelich, JARA - High Performance Computing, Juelich (Germany)

    2017-05-15

    We present a systematic study of neutron-proton scattering in Nuclear Lattice Effective Field Theory (NLEFT), in terms of the computationally efficient radial Hamiltonian method. Our leading-order (LO) interaction consists of smeared, local contact terms and static one-pion exchange. We show results for a fully non-perturbative analysis up to next-to-next-to-leading order (NNLO), followed by a perturbative treatment of contributions beyond LO. The latter analysis anticipates practical Monte Carlo simulations of heavier nuclei. We explore how our results depend on the lattice spacing a, and estimate sources of uncertainty in the determination of the low-energy constants of the next-to-leading-order (NLO) two-nucleon force. We give results for lattice spacings ranging from a = 1.97 fm down to a = 0.98 fm, and discuss the effects of lattice artifacts on the scattering observables. At a = 0.98 fm, lattice artifacts appear small, and our NNLO results agree well with the Nijmegen partial-wave analysis for S-wave and P-wave channels. We expect the peripheral partial waves to be equally well described once the lattice momenta in the pion-nucleon coupling are taken to coincide with the continuum dispersion relation, and higher-order (N3LO) contributions are included. We stress that for center-of-mass momenta below 100 MeV, the physics of the two-nucleon system is independent of the lattice spacing. (orig.)

  4. The Gluon-Induced Mueller-Tang Jet Impact Factor at Next-to-Leading Order

    CERN Document Server

    Hentschinski, Martin; Murdaca, Beatrice; Vera, Agustín Sabio

    2014-01-01

    We complete the computation of the Mueller-Tang jet impact factor at next-to-leading order (NLO) initiated in arXiv:1406.5625 and presented in arXiv:1404.2937 by computing the real corrections associated to gluons in the initial state making use of Lipatov's effective action. NLO corrections for this effective vertex are an important ingredient for a reliable description of large rapidity gap phenomenology within the BFKL approach.

  5. Transverse momentum dependent fragmentation function at next-to-next-to-leading order

    NARCIS (Netherlands)

    Garcia, M.; Scimemi, I.; Vladimirov, A.

    2016-01-01

    We calculate the unpolarized transverse momentum dependent fragmentation function at next-to-next-to-leading order, evaluating separately the transverse momentum dependent (TMD) soft factor and the TMD collinear correlator. For the first time, the cancellation of spurious rapidity divergences in a

  6. The angular ordering in soft-gluon emission

    International Nuclear Information System (INIS)

    Tesima, K.

    1987-01-01

    The way to evaluate multi-parton cross-sections systematically is discussed. In the leading-double-log approximation in QCD, the successive emission of soft gluons is at successively smaller angles. The angular ordering, however, is violated in the next-to-leading order

  7. NNLO QCD corrections to jet production at hadron colliders from gluon scattering

    International Nuclear Information System (INIS)

    Currie, James; Ridder, Aude Gehrmann-De; Glover, E.W.N.; Pires, João

    2014-01-01

    We present the next-to-next-to-leading order (NNLO) QCD corrections to dijet production in the purely gluonic channel retaining the full dependence on the number of colours. The sub-leading colour contribution in this channel first appears at NNLO and increases the NNLO correction by around 10% and exhibits a p T dependence, rising from 8% at low p T to 15% at high p T . The present calculation demonstrates the utility of the antenna subtraction method for computing the full colour NNLO corrections to dijet production at the Large Hadron Collider

  8. Next-To-Leading Order Determination of Fragmentation Functions

    CERN Document Server

    Bourhis, L; Guillet, J P; Werlen, M

    2001-01-01

    We analyse LEP and PETRA data on single inclusive charged hadron cross-sections to establish new sets of Next-to-Leading order Fragmentation Functions. Data on hadro-production of large-$p_{\\bot}$ hadrons are also used to constrain the gluon Fragmentation Function. We carry out a critical comparison with other NLO parametrizations.

  9. Regge behaviour of structure functions and evolution of gluon structure function upto next-to-leading order at low-x

    International Nuclear Information System (INIS)

    Jamil, U.; Sarma, J.K.

    2011-01-01

    Evolution of gluon structure function from Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations upto next-to-leading order at low-x is presented assuming the Regge behaviour of structure functions. We compare our results of gluon structure function with GRV 98 global parameterization and show the compatibility of Regge behaviour of structure functions with PQCD. (author)

  10. First determination of D* -meson fragmentation functions and their uncertainties at next-to-next-to-leading order

    Science.gov (United States)

    Soleymaninia, Maryam; Khanpour, Hamzeh; Nejad, S. Mohammad Moosavi

    2018-04-01

    We present, for the first time, a set of next-to-next-to-leading order (NNLO) fragmentation functions (FFs) describing the production of charmed-meson D* from partons. Exploiting the universality and scaling violations of FFs, we extract the NLO and NNLO FFs through a global fit to all relevant data sets from single-inclusive e+e- annihilation. The uncertainties for the resulting FFs as well as the corresponding observables are estimated using the Hessian approach. We evaluate the quality of the SKM18 FFs determined in this analysis by comparing with the recent results in literature and show how they describe the available data for single-inclusive D*±-meson production in electron-positron annihilation. As a practical application, we apply the extracted FFs to make our theoretical predictions for the scaled-energy distributions of D*±-mesons inclusively produced in top quark decays. We explore the implications of SKM18 for LHC phenomenology and show that our findings of this study can be introduced as a channel to indirect search for top-quark properties.

  11. Probing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Benić, Sanjin [Physics Department, Faculty of Science, University of Zagreb,Zagreb 10000 (Croatia); Department of Physics, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Fukushima, Kenji [Department of Physics, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Garcia-Montero, Oscar [Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 16, 69120 Heidelberg (Germany); Venugopalan, Raju [Physics Department, Brookhaven National Laboratory,Bldg. 510A, Upton, NY 11973 (United States)

    2017-01-26

    We compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations in the gluon saturation regime of QCD. We demonstrate that k{sub ⊥} and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at small x. Other results of interest include the realization of the Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study of how the photon amplitude is obtained in Lorenz and light-cone gauges.

  12. Top quark pair production beyond NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Muselli, Claudio [TIF Lab, Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Bonvini, Marco [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, OX1 3NP, Oxford (United Kingdom); Forte, Stefano [TIF Lab, Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marzani, Simone [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN - Sezione di Genova,Via Dodecaneso 33, I-16146 Genova (Italy)

    2015-08-17

    We construct an approximate expression for the total cross section for the production of a heavy quark-antiquark pair in hadronic collisions at next-to-next-to-next-to-leading order (N{sup 3}LO) in α{sub s}. We use a technique which exploits the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummations, previously introduced and used in the case of Higgs production. We validate our method by comparing to available exact results up to NNLO. We find that N{sup 3}LO corrections increase the predicted top pair cross section at the LHC by about 4% over the NNLO.

  13. Top quark pair production beyond NNLO

    International Nuclear Information System (INIS)

    Muselli, Claudio; Bonvini, Marco; Forte, Stefano; Marzani, Simone; Ridolfi, Giovanni

    2015-01-01

    We construct an approximate expression for the total cross section for the production of a heavy quark-antiquark pair in hadronic collisions at next-to-next-to-next-to-leading order (N 3 LO) in α s . We use a technique which exploits the analyticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummations, previously introduced and used in the case of Higgs production. We validate our method by comparing to available exact results up to NNLO. We find that N 3 LO corrections increase the predicted top pair cross section at the LHC by about 4% over the NNLO.

  14. NNLO QCD corrections for the differential Higgs boson production cross-section in gluon fusion

    International Nuclear Information System (INIS)

    Anastasiou, Charalampos

    2006-01-01

    I describe a recent computation of the NNLO QCD corrections for the fully differential cross-section for Higgs boson production in the gluon fusion channel. This result is an application of a new method for calculating perturbative corrections beyond the next-to-leading order

  15. Leading and Next-to-Leading Order Gluon Polarization in the Nucleon and Longitudinal Double Spin Asymmetries from Open Charm Muoproduction

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M Jr; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmidt, A; Schmidt, K; Schmitt, L; Schmiden, H; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A

    2013-01-01

    The gluon polarisation in the nucleon was measured using open charm production by scattering 160 GeV/c polarised muons off longitudinally polarised protons or deuterons. The data were taken by the COMPASS collaboration between 2002 and 2007. A detailed account is given of the analysis method that includes the application of neural networks. Several decay channels of $D^0$ mesons are investigated. Longitudinal spin asymmetries of the D meson production cross-sections are extracted in bins of $D^0$ transverse momentum and energy. At leading order QCD accuracy the average gluon polarisation is determined as $(\\Delta g/g)^{LO}=-0.06 \\pm 0.21 (stat.) \\pm 0.08 (syst.)$ at the scale $ \\approx 13$ (GeV/c)$^2$ and an average gluon momentum fraction $\\approx$ 0.11. The average gluon polarisation is also obtained at next-to-leading order QCD accuracy as $(\\Delta g/g) NLO = -0.13 \\pm 0.15 (stat.) \\pm 0.15 (syst.)$ at the scale $ \\approx $ 13 (GeV/c)$^2$ and $ \\approx $ 0.20.

  16. Production of heavy flavours at the next-to-leading order

    International Nuclear Information System (INIS)

    Nason, P.; Ridolfi, G.; Frixione, S.; Mangano, M.L.

    1993-01-01

    The status of next-to-leading calculations of heavy quark production is reviewed. In particular, results on the doubly-differential cross section for the photoproduction of heavy flavours are discussed. The possibility of using heavy flavour production in order to determine the gluon density in the proton at HERA is also discussed. 3 figs., 22 refs

  17. Top-quark decay at next-to-next-to-leading order in QCD.

    Science.gov (United States)

    Gao, Jun; Li, Chong Sheng; Zhu, Hua Xing

    2013-01-25

    We present the complete calculation of the top-quark decay width at next-to-next-to-leading order in QCD, including next-to-leading electroweak corrections as well as finite bottom quark mass and W boson width effects. In particular, we also show the first results of the fully differential decay rates for the top-quark semileptonic decay t → W(+)(l(+)ν)b at next-to-next-to-leading order in QCD. Our method is based on the understanding of the invariant mass distribution of the final-state jet in the singular limit from effective field theory. Our result can be used to study arbitrary infrared-safe observables of top-quark decay with the highest perturbative accuracy.

  18. Resummed B→Xulν decay distributions to next-to-leading order

    International Nuclear Information System (INIS)

    Aglietti, U.

    2001-01-01

    We perform factorization of the most general distribution in semileptonic B→X u decays and we resum the threshold logarithms to next-to-leading order. From this (triple-differential) distribution, any other distribution is obtained by integration. As an application of our method, we derive simple analytical expressions for a few distributions, resummed to leading approximation. It is shown that the shape function can be directly determined by measuring the distribution in m X 2 /E X 2 , not in m X 2 /m B 2 . We compute the resummed hadron energy spectrum, which has a 'Sudakov shoulder', and we show how the distribution in the singular region is related to the shape function. We also present an improved formula for the photon spectrum in B→X s γ, which includes soft-gluon resummation and non-leading operators in the effective Hamiltonian. We explicitly show that the same non-perturbative function -- namely, the shape function -- controls the non-perturbative effects in all the distributions in the semileptonic and in the rare decay

  19. Regge vertex for quark production in the central rapidity region in the next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, M. G., E-mail: M.G.Kozlov@inp.nsk.su; Reznichenko, A. V., E-mail: A.V.Reznichenko@inp.nsk.su [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2016-03-15

    The effective vertex for quark production in the interaction of a Reggeized quark and a Reggeized gluon is calculated in the next-to-leading order (NLO). The resulting vertex is the missing component of the NLO multi-Regge amplitude featuring quark and gluon exchanges in the t channels. This calculation will make it possible to develop in future the bootstrap approach to proving quark Reggeization in the next-to-leading logarithmic approximation.

  20. Diphoton production at the LHC: a QCD study up to NNLO

    Science.gov (United States)

    Catani, Stefano; Cieri, Leandro; de Florian, Daniel; Ferrera, Giancarlo; Grazzini, Massimiliano

    2018-04-01

    We consider the production of prompt-photon pairs at the LHC and we report on a study of QCD radiative corrections up to the next-to-next-to-leading order (NNLO). We present a detailed comparison of next-to-leading order (NLO) results obtained within the standard and smooth cone isolation criteria, by studying the dependence on the isolation parameters. We highlight the role of different partonic subprocesses within the two isolation criteria, and we show that they produce large radiative corrections for both criteria. Smooth cone isolation is a consistent procedure to compute QCD radiative corrections at NLO and beyond. If photon isolation is sufficiently tight, we show that the NLO results for the two isolation procedures are consistent with each other within their perturbative uncertainties. We then extend our study to NNLO by using smooth cone isolation. We discuss the impact of the NNLO corrections and the corresponding perturbative uncertainties for both fiducial cross sections and distributions, and we comment on the comparison with some LHC data. Throughout our study we remark on the main features that are produced by the kinematical selection cuts that are applied to the photons. In particular, we examine soft-gluon singularities that appear in the perturbative computations of the invariant mass distribution of the photon pair, the transverse-momentum spectra of the photons, and the fiducial cross section with asymmetric and symmetric photon transverse-momentum cuts, and we present their behaviour in analytic form.

  1. Double collinear splitting amplitudes at next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Sborlini, Germán F.R. [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Instituto de Física Corpuscular, Universitat de València -Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna (Valencia) (Spain); Florian, Daniel de [Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Rodrigo, Germán [Instituto de Física Corpuscular, Universitat de València -Consejo Superior de Investigaciones Científicas,Parc Científic, E-46980 Paterna (Valencia) (Spain)

    2014-01-07

    We compute the next-to-leading order (NLO) QCD corrections to the 1→2 splitting amplitudes in different dimensional regularization (DREG) schemes. Besides recovering previously known results, we explore new DREG schemes and analyze their consistency by comparing the divergent structure with the expected behavior predicted by Catani’s formula. Through the introduction of scalar-gluons, we show the relation among splittings matrices computed using different schemes. Also, we extended this analysis to cover the double collinear limit of scattering amplitudes in the context of QCD+QED.

  2. Next-to-next-to-leading order O(α2α2s) results for top quark pair production in photon-photon collisions. The one-loop squared contribution

    International Nuclear Information System (INIS)

    Koerner, J.G.

    2006-11-01

    We calculate the so-called loop-by-loop contributions to the next-to-next-to-leading order O(α 2 α 2 s ) radiative QCD corrections for the production of heavy quark pairs in the collisions of unpolarized on-shell photons. In particular, we present analytical results for the squared matrix elements that correspond to the product of the one-loop amplitudes. All results of the perturbative calculation are given in the dimensional regularization scheme. These results represent the Abelian part of the corresponding gluon-induced next-to-next-to-leading order cross section for heavy quark pair hadroproduction. (orig.)

  3. Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory.

    Science.gov (United States)

    Tews, I; Krüger, T; Hebeler, K; Schwenk, A

    2013-01-18

    Neutron matter presents a unique system for chiral effective field theory because all many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N(3)LO). We present the first complete N(3)LO calculation of the neutron matter energy. This includes the subleading three-nucleon forces for the first time and all leading four-nucleon forces. We find relatively large contributions from N(3)LO three-nucleon forces. Our results provide constraints for neutron-rich matter in astrophysics with controlled theoretical uncertainties.

  4. Next to leading order semi-inclusive spin asymmetries

    International Nuclear Information System (INIS)

    Florian, D. de; Epele, L.N.; Fanchiotti, H.; Garcia C, C.A.; Sassot, R.

    1996-04-01

    We have computed semi-inclusive spin asymmetries for proton and deuteron targets including next to leading order (NLO) QCD corrections and contributions coming from the target fragmentation region. These corrections have been estimated using NLO fragmentation functions, parton distributions and also a model for spin dependent fracture functions which is proposed here. We have found that NLO corrections are small but non-negligible in a scheme where gluons are polarised and that our estimate for target fragmentation effects, which is in agreement with the available semi-inclusive data, does not modify significantly charged asymmetries but is non-negligible for the so called difference asymmetries. (author). 18 refs., 7 figs

  5. The Matrix Element Method at Next-to-Leading Order

    OpenAIRE

    Campbell, John M.; Giele, Walter T.; Williams, Ciaran

    2012-01-01

    This paper presents an extension of the matrix element method to next-to-leading order in perturbation theory. To accomplish this we have developed a method to calculate next-to-leading order weights on an event-by-event basis. This allows for the definition of next-to-leading order likelihoods in exactly the same fashion as at leading order, thus extending the matrix element method to next-to-leading order. A welcome by-product of the method is the straightforward and efficient generation of...

  6. Non-abelian factorisation for next-to-leading-power threshold logarithms

    International Nuclear Information System (INIS)

    Bonocore, D.; Laenen, E.; Magnea, L.; Vernazza, L.; White, C.D.

    2016-01-01

    Soft and collinear radiation is responsible for large corrections to many hadronic cross sections, near thresholds for the production of heavy final states. There is much interest in extending our understanding of this radiation to next-to-leading power (NLP) in the threshold expansion. In this paper, we generalise a previously proposed all-order NLP factorisation formula to include non-abelian corrections. We define a non-abelian radiative jet function, organising collinear enhancements at NLP, and compute it for quark jets at one loop. We discuss in detail the issue of double counting between soft and collinear regions. Finally, we verify our prescription by reproducing all NLP logarithms in Drell-Yan production up to NNLO, including those associated with double real emission. Our results constitute an important step in the development of a fully general resummation formalism for NLP threshold effects.

  7. Non-abelian factorisation for next-to-leading-power threshold logarithms

    Energy Technology Data Exchange (ETDEWEB)

    Bonocore, D. [Nikhef, Science Park 105, NL-1098 XG Amsterdam (Netherlands); Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, Sommerfeldstr. 16, 52074 Aachen (Germany); Laenen, E. [Nikhef, Science Park 105, NL-1098 XG Amsterdam (Netherlands); ITFA, University of Amsterdam, Science Park 904, Amsterdam (Netherlands); ITF, Utrecht University, Leuvenlaan 4, Utrecht (Netherlands); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 (United States); Magnea, L. [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Vernazza, L. [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); White, C.D. [Centre for Research in String Theory, School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS (United Kingdom)

    2016-12-22

    Soft and collinear radiation is responsible for large corrections to many hadronic cross sections, near thresholds for the production of heavy final states. There is much interest in extending our understanding of this radiation to next-to-leading power (NLP) in the threshold expansion. In this paper, we generalise a previously proposed all-order NLP factorisation formula to include non-abelian corrections. We define a non-abelian radiative jet function, organising collinear enhancements at NLP, and compute it for quark jets at one loop. We discuss in detail the issue of double counting between soft and collinear regions. Finally, we verify our prescription by reproducing all NLP logarithms in Drell-Yan production up to NNLO, including those associated with double real emission. Our results constitute an important step in the development of a fully general resummation formalism for NLP threshold effects.

  8. Next-to-next-to-leading order O({alpha}{sup 2}{alpha}{sup 2}{sub s}) results for top quark pair production in photon-photon collisions. The loop-by-loop contribution

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, J.G. [Johannes Gutenberg Univ., Mainz (Germany). Inst. fuer Phys.; Merebashvili, Z. [Tbilisi State Univ. (Georgia). Inst. of High Energy Physics and Informatization; Rogal, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2006-08-15

    We calculate the so-called loop-by-loop contributions to the next-to-next-to-leading order O({alpha}{sup 2}{alpha}{sup 2}{sub s}) radiative QCD corrections for the production of heavy quark pairs in the collisions of unpolarized on-shell photons. In particular, we present analytical results for the squared matrix elements that correspond to the product of the one-loop amplitudes. All results of the perturbative calculation are given in the dimensional regularization scheme. These results represent the Abelian part of the corresponding gluon-induced next-to-next-to-leading order cross section for heavy quark pair hadroproduction. (orig.)

  9. The method of regions and next-to-soft corrections in Drell-Yan production

    NARCIS (Netherlands)

    Bonocore, D.; Laenen, E.; Magnea, L.; Vernazza, L.; White, C. D.

    2015-01-01

    We perform a case study of the behaviour of gluon radiation beyond the soft approximation, using as an example the Drell-Yan production cross section at NNLO. We draw a careful distinction between the eikonal expansion, which is in powers of the soft gluon energies, and the expansion in powers of

  10. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    Science.gov (United States)

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  11. FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order

    Science.gov (United States)

    Gavin, Ryan; Li, Ye; Petriello, Frank; Quackenbush, Seth

    2011-11-01

    We introduce an improved version of the simulation code FEWZ ( Fully Exclusive W and Z Production) for hadron collider production of lepton pairs through the Drell-Yan process at next-to-next-to-leading order (NNLO) in the strong coupling constant. The program is fully differential in the phase space of leptons and additional hadronic radiation. The new version offers users significantly more options for customization. FEWZ now bins multiple, user-selectable histograms during a single run, and produces parton distribution function (PDF) errors automatically. It also features a significantly improved integration routine, and can take advantage of multiple processor cores locally or on the Condor distributed computing system. We illustrate the new features of FEWZ by presenting numerous phenomenological results for LHC physics. We compare NNLO QCD with initial ATLAS and CMS results, and discuss in detail the effects of detector acceptance on the measurement of angular quantities associated with Z-boson production. We address the issue of technical precision in the presence of severe phase-space cuts. Program summaryProgram title: FEWZ Catalogue identifier: AEJP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6 280 771 No. of bytes in distributed program, including test data, etc.: 173 027 645 Distribution format: tar.gz Programming language: Fortran 77, C++, Python Computer: Mac, PC Operating system: Mac OSX, Unix/Linux Has the code been vectorized or parallelized?: Yes. User-selectable, 1 to 219 RAM: 200 Mbytes for common parton distribution functions Classification: 11.1 External routines: CUBA numerical integration library, numerous parton distribution sets (see text); these are provided with the code

  12. N-jettiness Subtractions for NNLO QCD calculations

    International Nuclear Information System (INIS)

    Gaunt, Jonathan R.; Stahlhofen, Maximilian; Tackmann, Frank J.; Walsh, Jonathan R.; California Univ., CA

    2015-05-01

    We present a subtraction method utilizing the N-jettiness observable, Τ N , to perform QCD calculations for arbitrary processes at next-to-next-to-leading order (NNLO). Our method employs soft-collinear effective theory (SCET) to determine the IR singular contributions of N-jet cross sections for Τ N → 0, and uses these to construct suitable Τ N -subtractions. The construction is systematic and economic, due to being based on a physical observable. The resulting NNLO calculation is fully differential and in a form directly suitable for combining with resummation and parton showers. We explain in detail the application to processes with an arbitrary number of massless partons at lepton and hadron colliders together with the required external inputs in the form of QCD amplitudes and lower-order calculations. We provide explicit expressions for the Τ N -subtractions at NLO and NNLO. The required ingredients are fully known at NLO, and at NNLO for processes with two external QCD partons. The remaining NNLO ingredient for three or more external partons can be obtained numerically with existing NNLO techniques. As an example, we employ our method to obtain the NNLO rapidity spectrum for Drell-Yan and gluon-fusion Higgs production. We discuss aspects of numerical accuracy and convergence and the practical implementation. We also discuss and comment on possible extensions, such as more-differential subtractions, necessary steps for going to N 3 LO, and the treatment of massive quarks.

  13. Next-to-leading order unitarity fits in Two-Higgs-Doublet models with soft ℤ{sub 2} breaking

    Energy Technology Data Exchange (ETDEWEB)

    Cacchio, Vincenzo; Chowdhury, Debtosh; Eberhardt, Otto [Istituto Nazionale di Fisica Nucleare, Sezione di Roma,Piazzale Aldo Moro 2, I-00185 Roma (Italy); Murphy, Christopher W. [Scuola Normale Superiore,Piazza dei Cavalieri 7, I-56126 Pisa (Italy)

    2016-11-07

    We fit the next-to-leading order unitarity conditions to the Two-Higgs-Doublet model with a softly broken ℤ{sub 2} symmetry. In doing so, we alleviate the existing uncertainty on how to treat higher order corrections to quartic couplings of its Higgs potential. A simplified approach to implementing the next-to-leading order unitarity conditions is presented. These new bounds are then combined with all other relevant constraints, including the complete set of LHC Run I data. The upper 95% bounds we find are 4.2 on the absolute values of the quartic couplings, and 235 GeV (100 GeV) for the mass degeneracies between the heavy Higgs particles in the type I (type II) scenario. In type II, we exclude an unbroken ℤ{sub 2} symmetry with a probability of 95%. All fits are performed using the open-source code HEPfit.

  14. Charm quark contribution to K+ ---> pi+ nu anti-nu at next-to-next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Buras, Andrzej J.; /Munich, Tech. U.; Gorbahn, Martin; /Durham U., IPPP /Karlsruhe U., TTP; Haisch, Ulrich; /Fermilab /Zurich U.; Nierste, Ulrich; /Karlsruhe U., TTP

    2006-03-01

    The authors calculate the complete next-to-next-to-leading order QCD corrections to the charm contribution of the rare decay K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}. They encounter several new features, which were absent in lower orders. They discuss them in detail and present the results for the two-loop matching conditions of the Wilson coefficients, the three-loop anomalous dimensions, and the two-loop matrix elements of the relevant operators that enter the next-to-next-to-leading order renormalization group analysis of the Z-penguin and the electroweak box contribution. The inclusion of the next-to-next-to-leading order QCD corrections leads to a significant reduction of the theoretical uncertainty from {+-} 9.8% down to {+-} 2.4% in the relevant parameter P{sub c}(X), implying the leftover scale uncertainties in {Beta}(K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}) and in the determination of |V{sub td}|, sin 2{beta}, and {gamma} from the K {yields} {pi}{nu}{bar {nu}} system to be {+-} 1.3%, {+-} 1.0%, {+-} 0.006, and {+-} 1.2{sup o}, respectively. For the charm quark {ovr MS} mass m{sub c}(m{sub c}) = (1.30 {+-} 0.05) GeV and |V{sub us}| = 0.2248 the next-to-leading order value P{sub c}(X) = 0.37 {+-} 0.06 is modified to P{sub c}(X) = 0.38 {+-} 0.04 at the next-to-next-to-leading order level with the latter error fully dominated by the uncertainty in m{sub c}(m{sub c}). They present tables for P{sub c}(X) as a function of m{sub c}(m{sub c}) and {alpha}{sub s}(M{sub z}) and a very accurate analytic formula that summarizes these two dependences as well as the dominant theoretical uncertainties. Adding the recently calculated long-distance contributions they find {Beta}(K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}) = (8.0 {+-} 1.1) x 10{sup -11} with the present uncertainties in m{sub c}(m{sub c}) and the Cabibbo-Kobayashi-Maskawa elements being the dominant individual sources in the quoted error. They also emphasize that improved calculations of the long

  15. Nuclear forces with Δ excitations up to next-to-next-to-leading order. Part I: Peripheral nucleon-nucleon waves

    International Nuclear Information System (INIS)

    Krebs, H.; Epelbaum, E.; Meissner, U.G.

    2007-01-01

    We study the two-nucleon force at next-to-next-to-leading order in a chiral effective field theory with explicit Δ degrees of freedom. Fixing the appearing low-energy constants from a next-to-leading-order calculation of pion-nucleon threshold parameters, we find an improved convergence of most peripheral nucleon-nucleon phases compared to the theory with pions and nucleons only. In the delta-full theory, the next-to-leading-order corrections are dominant in most partial waves considered. (orig.)

  16. The gluon Green's function in the BFKL approach at next-to-leading logarithmic accuracy

    International Nuclear Information System (INIS)

    Andersen, Jeppe R.; Sabio Vera, Agustin

    2004-01-01

    We investigate the gluon Green's function in the high energy limit of QCD using a recently proposed iterative solution of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation at next-to-leading logarithmic (NLL) accuracy. To establish the applicability of this method in the NLL approximation we solve the BFKL equation as originally written by Fadin and Lipatov, and compare the results with previous studies in the leading logarithmic (LL) approximation

  17. Inclusive hadron production in photon-photon collisions at next-to-leading order

    International Nuclear Information System (INIS)

    Binnewies, J.

    1996-01-01

    We study inclusive charged-hadron production in collisions of quasireal photons at next-to-leading order (NLO) in the QCD-improved parton model, using fragmentation functions recently extracted from PEP and LEP1 data of e + e - annihilation. We consistently superimpose the direct (DD), single-resolved (DR), and double-resolved (RR) γγ channels. We consider photon spectra generated by electromagnetic bremsstrahlung and/or beamstrahlung off colliding e + and e - beams as well as those which result from backscattering of laser light off such beams. First, we revisit existing single-tag data taken by TASSO at PETRA and by MARK II at PEP (with e + e - energy √S∼30 GeV) and confront them with our NLO calculations imposing the respective experimental cuts. We also make comparisons with the neutral-kaon to charged-hadron ratio measured by MARK II. Then, we present NLO predictions for LEP2, a next-generation e + e - linear collider (NLC) in the TESLA design with √S=500 GeV, and a Compton collider obtained by converting a 500-GeV NLC. We analyze transverse-momentum and rapidity spectra with regard to the scale dependence, the interplay of the DD, DR, and RR components, the sensitivity to the gluon density inside the resolved photon, and the influence of gluon fragmentation. It turns out that the inclusive measurement of small-p T hadrons at a Compton collider would greatly constrain the gluon density of the photon and the gluon fragmentation function. (orig.)

  18. Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence.

    Science.gov (United States)

    Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T

    2016-07-01

    We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.

  19. Next-to-soft corrections to high energy scattering in QCD and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Luna, A.; Melville, S. [SUPA, School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Naculich, S.G. [Department of Physics, Bowdoin College,Brunswick, ME 04011 (United States); White, C.D. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,327 Mile End Road, London E1 4NS (United Kingdom)

    2017-01-12

    We examine the Regge (high energy) limit of 4-point scattering in both QCD and gravity, using recently developed techniques to systematically compute all corrections up to next-to-leading power in the exchanged momentum i.e. beyond the eikonal approximation. We consider the situation of two scalar particles of arbitrary mass, thus generalising previous calculations in the literature. In QCD, our calculation describes power-suppressed corrections to the Reggeisation of the gluon. In gravity, we confirm a previous conjecture that next-to-soft corrections correspond to two independent deflection angles for the incoming particles. Our calculations in QCD and gravity are consistent with the well-known double copy relating amplitudes in the two theories.

  20. Fully differential Higgs boson pair production in association with a Z boson at next-to-next-to-leading order in QCD

    Science.gov (United States)

    Li, Hai Tao; Li, Chong Sheng; Wang, Jian

    2018-04-01

    We present a fully differential next-to-next-to-leading order QCD calculation of the Higgs pair production in association with a Z boson at hadron colliders, which is important for probing the trilinear Higgs self-coupling. The next-to-next-to-leading-order corrections enhance the next-to-leading order total cross sections by a factor of 1.2-1.5, depending on the collider energy, and change the shape of next-to-leading order kinematic distributions. We discuss how to determine the trilinear Higgs self-coupling using our results.

  1. Polarized Di-hadron production in lepton-nucleon collisions at the next-to-leading order of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hendlmeier, Christof

    2008-05-15

    We compute the next-to-leading order QCD corrections to the spin-dependent cross section for hadron-pair photoproduction. In the first part of the Thesis the calculation is performed using largely analytical methods. We present a detailed phenomenological study of our results focussing on the K-factors and scale dependence of the next-to-leading order cross sections. The second part is dedicated to an alternative approach using Monte-Carlo integration techniques. We present a detailed description how this method works in practice and give phenomenological studies for the photoproduction of two hadrons. This process is relevant for the extraction of the gluon polarization in present and future spin-dependent lepton-nucleon scattering experiments. (orig.)

  2. Polarized Di-hadron production in lepton-nucleon collisions at the next-to-leading order of QCD

    International Nuclear Information System (INIS)

    Hendlmeier, Christof

    2008-05-01

    We compute the next-to-leading order QCD corrections to the spin-dependent cross section for hadron-pair photoproduction. In the first part of the Thesis the calculation is performed using largely analytical methods. We present a detailed phenomenological study of our results focussing on the K-factors and scale dependence of the next-to-leading order cross sections. The second part is dedicated to an alternative approach using Monte-Carlo integration techniques. We present a detailed description how this method works in practice and give phenomenological studies for the photoproduction of two hadrons. This process is relevant for the extraction of the gluon polarization in present and future spin-dependent lepton-nucleon scattering experiments. (orig.)

  3. Next-to-next-to-leading order QCD analysis of the revised CCFR data for xF3 structure function

    International Nuclear Information System (INIS)

    Kataev, A.L.; Kotikov, A.V.; Parente, G.; Sidorov, A.V.

    1997-01-01

    The results of the next-to-next-to-leading order QCD analysis of the recently revised experimental data of the CCFR collaboration for the xF 3 structure function using the Jacobi polynomial expansion method are presented. The effects of the higher twist contributions are included into the fits following the infrared renormalon motivated model. It is stressed that at the next-to-next-to-leading order the results for the parameter Λ M -bar S -bar (4) turn out to be almost nonsensitive to the predictions of the infrared renormalon model. The outcomes of our analysis are compared to the ones obtained by the CCFR collaboration itself at the next-to-leading order. (author)

  4. Next-to-next-to-eikonal corrections in the CGC

    Energy Technology Data Exchange (ETDEWEB)

    Altinoluk, Tolga; Armesto, Néstor [Departamento de Física de Partículas and IGFAE,Universidade de Santiago de Compostela,E-15706 Santiago de Compostela, Galicia (Spain); Beuf, Guillaume [Department of Physics, Ben-Gurion University of the Negev,Beer Sheva 84105 (Israel); Moscoso, Alexis [Departamento de Física de Partículas and IGFAE,Universidade de Santiago de Compostela,E-15706 Santiago de Compostela, Galicia (Spain)

    2016-01-19

    We extend the study of corrections to the eikonal approximation that was initiated in ref. http://dx.doi.org/10.1007/JHEP07(2014)068 to higher orders. These corrections associated with the finite width of the target are investigated and the gluon propagator in background field is calculated at next-to-next-to-eikonal accuracy. The result is then applied to the single inclusive gluon production cross section at central rapidities and the single transverse spin asymmetry with a transversely polarized target, in pA collisions, in order to analyze these observables beyond the eikonal limit. The next-to-next-to-eikonal corrections to the unpolarized cross section are non-zero and provide the first corrections to the usual k{sub ⊥}-factorized expression. In contrast, the eikonal and next-to-next-to-eikonal contributions to the single transverse spin asymmetry vanish, while the next-to-eikonal ones are non-zero.

  5. Next-to-next-to-leading logarithms in four-fermion electroweak processes at high energy

    International Nuclear Information System (INIS)

    Kuehn, J.H.; Moch, S.; Penin, A.A.; Smirnov, V.A.

    2001-01-01

    We sum up the next-to-next-to-leading logarithmic virtual electroweak corrections to the high energy asymptotics of the neutral current four-fermion processes for light fermions to all orders in the coupling constants using the evolution equation approach. From this all order result we derive finite order expressions through next-to-next-to leading order for the total cross section and various asymmetries. We observe an amazing cancellation between the sizable leading, next-to-leading and next-to-next-to-leading logarithmic contributions at TeV energies

  6. QCD event generators with next-to-leading order matrix-elements and parton showers

    International Nuclear Information System (INIS)

    Kurihara, Y.; Fujimoto, J.; Ishikawa, T.; Kato, K.; Kawabata, S.; Munehisa, T.; Tanaka, H.

    2003-01-01

    A new method to construct event-generators based on next-to-leading order QCD matrix-elements and leading-logarithmic parton showers is proposed. Matrix elements of loop diagram as well as those of a tree level can be generated using an automatic system. A soft/collinear singularity is treated using a leading-log subtraction method. Higher order resummation of the soft/collinear correction by the parton shower method is combined with the NLO matrix-element without any double-counting in this method. An example of the event generator for Drell-Yan process is given for demonstrating a validity of this method

  7. Determination of the strong coupling constant α{sub s}(m{sub Z}) in next-to-next-to-leading order QCD using H1 jet cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Begzsuren, K.; Ravdandorj, T. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bertone, V. [Vrije University, Department of Physics and Astronomy, Amsterdam (Netherlands); National Institute for Subatomic Physics (NIKHEF), Amsterdam (Netherlands); Bolz, A.; Britzger, D.; Huber, F.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Boudry, V.; Specka, A. [LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau (France); Brandt, G. [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France); Buniatyan, A.; Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Bylinkin, A. [Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region (Russian Federation); Bystritskaya, L.; Fedotov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Jung, H.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E.; Zlebcik, R. [DESY, Hamburg (Germany); Cantun Avila, K.B.; Contreras, J.G. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Cerny, K.; Salek, D.; Valkarova, A.; Zacek, J. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B. [Max-Planck-Institut fuer Physik, Munich (Germany); Cvach, J.; Hladky, J.; Reimer, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Prague (Czech Republic); Currie, J. [Durham University, Institute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Durham (United Kingdom); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Daum, K.; Meyer, H. [Fachbereich C, Universitaet Wuppertal, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Vallee, C. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Dobre, M.; Rotaru, M. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest (Romania); Egli, S.; Horisberger, R.; Ozerov, D. [Paul Scherrer Institute, Villigen (Switzerland); Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P.Van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Feltesse, J.; Schoeffel, L. [Irfu/SPP, CE Saclay, Gif-sur-Yvette (France); Gehrmann, T.; Mueller, K.; Niehues, J.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zurich (Switzerland); Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P. [Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland); Gouzevitch, M.; Petrukhin, A. [IPNL, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Villeurbanne (France); Grab, C.; Huss, A. [ETH Zuerich, Institut fuer Teilchenphysik, Zurich (Switzerland); Gwenlan, C.; Radescu, V. [Oxford University, Department of Physics, Oxford (United Kingdom); Henderson, R.C.W. [University of Lancaster, Department of Physics, Lancaster (United Kingdom); Jung, A.W. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Kapichine, M.; Morozov, A.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kogler, R. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Landon, M.P.J.; Rizvi, E.; Traynor, D. [Queen Mary University of London, School of Physics and Astronomy, London (United Kingdom); Lange, W.; Naumann, T. [DESY, Zeuthen (Germany); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (Germany); Perez, E. [CERN, Geneva (Switzerland); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Polifka, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); University of Toronto, Department of Physics, Toronto, ON (Canada); Rabbertz, K. [Karlsruher Institut fuer Technologie (KIT), Institut fuer Experimentelle Teilchenphysik (ETP), Karlsruhe (Germany); Rostovtsev, A. [Institute for Information Transmission Problems RAS, Moscow (Russian Federation); Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire (United Kingdom); Sauvan, E. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Universite de Savoie, CNRS/IN2P3, LAPP, Annecy-le-Vieux (France); Shushkevich, S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Stella, B. [Universita di Roma Tre, Dipartimento di Fisica, Rome (Italy); INFN Roma 3 (Italy); Sutton, M.R. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Tseepeldorj, B. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (MN); Ulaanbaatar University, Ulaanbaatar (MN); Wegener, D. [TU Dortmund, Institut fuer Physik, Dortmund (DE); Collaboration: H1 Collaboration

    2017-11-15

    The strong coupling constant α{sub s} is determined from inclusive jet and dijet cross sections in neutral-current deep-inelastic ep scattering (DIS) measured at HERA by the H1 collaboration using next-to-next-to-leading order (NNLO) QCD predictions. The dependence of the NNLO predictions and of the resulting value of α{sub s}(m{sub Z}) at the Z-boson mass m{sub Z} are studied as a function of the choice of the renormalisation and factorisation scales. Using inclusive jet and dijet data together, the strong coupling constant is determined to be α{sub s}(m{sub Z}) = 0.1157(20){sub exp}(29){sub th}. Complementary, α{sub s}(m{sub Z}) is determined together with parton distribution functions of the proton (PDFs) from jet and inclusive DIS data measured by the H1 experiment. The value α{sub s}(m{sub Z}) = 0.1142(28){sub tot} obtained is consistent with the determination from jet data alone. The impact of the jet data on the PDFs is studied. The running of the strong coupling is tested at different values of the renormalisation scale and the results are found to be in agreement with expectations. (orig.)

  8. Top quark forward-backward asymmetry in e+ e- annihilation at next-to-next-to-leading order in QCD.

    Science.gov (United States)

    Gao, Jun; Zhu, Hua Xing

    2014-12-31

    We report on a complete calculation of electroweak production of top-quark pairs in e+ e- annihilation at next-to-next-to-leading order in quantum chromodynamics. Our setup is fully differential in phase space and can be used to calculate any infrared-safe observable. Especially we calculated the next-to-next-to-leading-order corrections to the top-quark forward-backward asymmetry and found sizable effects. Our results show a large reduction of the theoretical uncertainties in predictions of the forward-backward asymmetry, and allow for a precision determination of the top-quark electroweak couplings at future e+ e- colliders.

  9. Factorization for groomed jet substructure beyond the next-to-leading logarithm

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Christopher; Larkoski, Andrew J.; Schwartz, Matthew D.; Yan, Kai [Center for the Fundamental Laws of Nature, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States)

    2016-07-12

    Jet grooming algorithms are widely used in experimental analyses at hadron colliders to remove contaminating radiation from within jets. While the algorithms perform a great service to the experiments, their intricate algorithmic structure and multiple parameters has frustrated precision theoretic understanding. In this paper, we demonstrate that one particular groomer called soft drop actually makes precision jet substructure easier. In particular, we derive a factorization formula for a large class of soft drop jet substructure observables, including jet mass. The essential observation that allows for this factorization is that, without the soft wide-angle radiation groomed by soft drop, all singular contributions are collinear. The simplicity and universality of the collinear limit in QCD allows us to show that to all orders, the normalized differential cross section has no contributions from non-global logarithms. It is also independent of process, up to the relative fraction of quark and gluon jets. In fact, soft drop allows us to define this fraction precisely. The factorization theorem also explains why soft drop observables are less sensitive to hadronization than their ungroomed counterparts. Using the factorization theorem, we resum the soft drop jet mass to next-to-next-to-leading logarithmic accuracy. This requires calculating some clustering effects that are closely related to corresponding effects found in jet veto calculations. We match our resummed calculation to fixed order results for both e{sup +}e{sup −}→ dijets and pp→Z+j events, producing the first jet substructure predictions (groomed or ungroomed) to this accuracy for the LHC.

  10. Factorization for groomed jet substructure beyond the next-to-leading logarithm

    International Nuclear Information System (INIS)

    Frye, Christopher; Larkoski, Andrew J.; Schwartz, Matthew D.; Yan, Kai

    2016-01-01

    Jet grooming algorithms are widely used in experimental analyses at hadron colliders to remove contaminating radiation from within jets. While the algorithms perform a great service to the experiments, their intricate algorithmic structure and multiple parameters has frustrated precision theoretic understanding. In this paper, we demonstrate that one particular groomer called soft drop actually makes precision jet substructure easier. In particular, we derive a factorization formula for a large class of soft drop jet substructure observables, including jet mass. The essential observation that allows for this factorization is that, without the soft wide-angle radiation groomed by soft drop, all singular contributions are collinear. The simplicity and universality of the collinear limit in QCD allows us to show that to all orders, the normalized differential cross section has no contributions from non-global logarithms. It is also independent of process, up to the relative fraction of quark and gluon jets. In fact, soft drop allows us to define this fraction precisely. The factorization theorem also explains why soft drop observables are less sensitive to hadronization than their ungroomed counterparts. Using the factorization theorem, we resum the soft drop jet mass to next-to-next-to-leading logarithmic accuracy. This requires calculating some clustering effects that are closely related to corresponding effects found in jet veto calculations. We match our resummed calculation to fixed order results for both e + e − → dijets and pp→Z+j events, producing the first jet substructure predictions (groomed or ungroomed) to this accuracy for the LHC.

  11. Model for next-to-leading order threshold resummed form factors

    International Nuclear Information System (INIS)

    Aglietti, Ugo; Ricciardi, Giulia

    2004-01-01

    We present a model for next-to-leading order resummed threshold form factors based on a timelike coupling recently introduced in the framework of small x physics. Improved expressions for the form factors in N-space are obtained which are not plagued by Landau-pole singularities, as the included absorptive effects - usually neglected - act as regulators. The physical reason is that, because of faster decay of gluon jets, there is not enough resolution time to observe the Landau pole. Our form factors reduce to the standard ones when the absorptive parts related to the coupling are neglected. The inverse transform from N-space to x-space can be done directly without any prescription and we obtain analytical expressions for the form factors, which are well defined in all x-space

  12. arXiv Higgs boson pair production at NNLO with top quark mass effects

    CERN Document Server

    Grazzini, Massimiliano; Jones, Stephen; Kallweit, Stefan; Kerner, Matthias; Lindert, Jonas M.; Mazzitelli, Javier

    2018-05-09

    We consider QCD radiative corrections to Higgs boson pair production through gluon fusion in proton collisions. We combine the exact next-to-leading order (NLO) contribution, which features two-loop virtual amplitudes with the full dependence on the top quark mass M$_{t}$ , with the next-to-next-to-leading order (NNLO) corrections computed in the large-M$_{t}$ approximation. The latter are improved with different reweighting techniques in order to account for finite-M$_{t}$ effects beyond NLO. Our reference NNLO result is obtained by combining one-loop double-real corrections with full M$_{t}$ dependence with suitably reweighted real-virtual and double-virtual contributions evaluated in the large-M$_{t}$ approximation. We present predictions for inclusive cross sections in pp collisions at $ \\sqrt{s} $ = 13, 14, 27 and 100 TeV and we discuss their uncertainties due to missing M$_{t}$ effects. Our approximated NNLO corrections increase the NLO result by an amount ranging from +12% at $ \\sqrt{s}=13 $ TeV to +7%...

  13. Next to leading order three jet production at hadron colliders

    International Nuclear Information System (INIS)

    Kilgore, W.

    1997-01-01

    Results from a next-to-leading order event generator of purely gluonic jet production are presented. This calculation is the first step in the construction of a full next-to-leading order calculation of three jet production at hadron colliders. Several jet algorithms commonly used in experiments are implemented and their numerical stability is investigated. A numerical instability is found in the iterative cone algorithm which makes it inappropriate for use in fixed order calculations beyond leading order. (author)

  14. Associated production of a top pair and a Higgs boson beyond NLO

    Energy Technology Data Exchange (ETDEWEB)

    Broggio, Alessandro [Paul Scherrer Institut,CH-5232 Villigen PSI (Switzerland); Physik Department T31, Technische Universität München,James Franck-Straße 1, D-85748 Garching (Germany); Ferroglia, Andrea [Physics Department, New York City College of Technology,300 Jay St, Brooklyn, NY 11201 (United States); The Graduate School and University Center, The City University of New York,365 5th Ave, New York, NY 10016 (United States); Pecjak, Ben D. [Institute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics,Department of Physics, University of Durham, Science Laboratories,South Rd, Durham DH1 3LE (United Kingdom); Signer, Adrian [Paul Scherrer Institut,CH-5232 Villigen PSI (Switzerland); Physik-Institut, Universität Zürich,Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Yang, Li Lin [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University,No. 5 Yiheyuan Road, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,Beijing (China); Center for High Energy Physics, Peking University,No. 5 Yiheyuan Road, Beijing 100871 (China)

    2016-03-17

    We consider soft gluon emission corrections to the production of a top-antitop pair in association with a Higgs boson at hadron colliders. In particular, we present a soft-gluon resummation formula for this production process and gather all elements needed to evaluate it at next-to-next-to-leading logarithmic order. We employ these results to obtain approximate next-to-next-to-leading order (NNLO) formulas, and implement them in a bespoke parton-level Monte Carlo program which can be used to calculate the total cross section along with arbitrary differential distributions. We use this tool to study the phenomenological impact of the approximate NNLO corrections, finding that they increase the total cross section and the differential distributions which we evaluated in this work.

  15. Universality of next-to-leading power threshold effects for colourless final states in hadronic collisions

    NARCIS (Netherlands)

    Duca, Vittorio del; Laenen, E.; Magnea, L.; Vernazza, L.; White, C.D.

    2017-01-01

    We consider the production of an arbitrary number of colour-singlet particles near partonic threshold, and show that next-to-leading order cross sections for this class of processes have a simple universal form at next-to-leading power (NLP) in the energy of the emitted gluon radiation. Our analysis

  16. Pinning down the large-x gluon with NNLO top-quark pair differential distributions

    Energy Technology Data Exchange (ETDEWEB)

    Czakon, Michał [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University,D-52056 Aachen (Germany); Hartland, Nathan P. [Department of Physics and Astronomy, VU University Amsterdam,De Boelelaan 1081, NL-1081, HV Amsterdam (Netherlands); Nikhef,Science Park 105, NL-1098 XG Amsterdam (Netherlands); Mitov, Alexander [Cavendish Laboratory, University of Cambridge,Cambridge CB3 0HE (United Kingdom); Nocera, Emanuele R. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP, Oxford (United Kingdom); Rojo, Juan [Department of Physics and Astronomy, VU University Amsterdam,De Boelelaan 1081, NL-1081, HV Amsterdam (Netherlands); Nikhef,Science Park 105, NL-1098 XG Amsterdam (Netherlands)

    2017-04-10

    Top-quark pair production at the LHC is directly sensitive to the gluon PDF at large x. While total cross-section data is already included in several PDF determinations, differential distributions are not, because the corresponding NNLO calculations have become available only recently. In this work we study the impact on the large-x gluon of top-quark pair differential distributions measured by ATLAS and CMS at √s=8 TeV. Our analysis, performed in the NNPDF3.0 framework at NNLO accuracy, allows us to identify the optimal combination of LHC top-quark pair measurements that maximize the constraints on the gluon, as well as to assess the compatibility between ATLAS and CMS data. We find that differential distributions from top-quark pair production provide significant constraints on the large-x gluon, comparable to those obtained from inclusive jet production data, and thus should become an important ingredient for the next generation of global PDF fits.

  17. Pinning down the large-x gluon with NNLO top-quark pair differential distributions

    International Nuclear Information System (INIS)

    Czakon, Michał; Hartland, Nathan P.; Mitov, Alexander; Nocera, Emanuele R.; Rojo, Juan

    2017-01-01

    Top-quark pair production at the LHC is directly sensitive to the gluon PDF at large x. While total cross-section data is already included in several PDF determinations, differential distributions are not, because the corresponding NNLO calculations have become available only recently. In this work we study the impact on the large-x gluon of top-quark pair differential distributions measured by ATLAS and CMS at √s=8 TeV. Our analysis, performed in the NNPDF3.0 framework at NNLO accuracy, allows us to identify the optimal combination of LHC top-quark pair measurements that maximize the constraints on the gluon, as well as to assess the compatibility between ATLAS and CMS data. We find that differential distributions from top-quark pair production provide significant constraints on the large-x gluon, comparable to those obtained from inclusive jet production data, and thus should become an important ingredient for the next generation of global PDF fits.

  18. A next-to-leading determination of the singlet axial charge and the polarized gluon content of the nucleon

    CERN Document Server

    Ball, R D; Ridolfi, G

    1996-01-01

    We perform a full next-to-leading analysis of the the available experimental data on the polarized structure function g_1 of the nucleon, and give a precise determination of its singlet axial charge together with a thorough assessment of the theoretical uncertainties. We find that the data are now sufficient to separately determine first moments of the polarized quark and gluon distributions and show in particular that the gluon contribution is large and positive.

  19. Antinucleon-nucleon interaction at next-to-next-to-next-to-leading order in chiral effective field theory

    Science.gov (United States)

    Dai, Ling-Yun; Haidenbauer, Johann; Meißner, Ulf-G.

    2017-07-01

    Results for the antinucleon-nucleon (\\overline{N}N) interaction obtained at next-to-next-to-next-to-leading order in chiral effective field theory (EFT) are reported. A new local regularization scheme is used for the pion-exchange contributions that has been recently suggested and applied in a pertinent study of the N N force within chiral EFT. Furthermore, an alternative strategy for estimating the uncertainty is utilized that no longer depends on a variation of the cutoffs. The low-energy constants associated with the arising contact terms are fixed by a fit to the phase shifts and inelasticities provided by a phase-shift analysis of \\overline{p}p scattering data. An excellent description of the \\overline{N}N amplitudes is achieved at the highest order considered. Moreover, because of the quantitative reproduction of partial waves up to J = 3, there is also a nice agreement on the level of \\overline{p}p observables. Specifically, total and integrated elastic and charge-exchange cross sections agree well with the results from the partial-wave analysis up to laboratory energies of 300 MeV, while differential cross sections and analyzing powers are described quantitatively up to 200-250 MeV. The low-energy structure of the \\overline{N}N amplitudes is also considered and compared to data from antiprotonic hydrogen.

  20. Chiral effective field theory on the lattice at next-to-leading order

    International Nuclear Information System (INIS)

    Borasoy, B.; Epelbaum, E.; Krebs, H.; Meissner, U.G.; Lee, D.

    2008-01-01

    We study nucleon-nucleon scattering on the lattice at next-to-leading order in chiral effective field theory. We determine phase shifts and mixing angles from the properties of two-nucleon standing waves induced by a hard spherical wall in the center-of-mass frame. At fixed lattice spacing we test model independence of the low-energy effective theory by computing next-to-leading-order corrections for two different leading-order lattice actions. The first leading-order action includes instantaneous one-pion exchange and same-site contact interactions. The second leading-order action includes instantaneous one-pion exchange and Gaussian-smeared interactions. We find that in each case the results at next-to-leading order are accurate up to corrections expected at higher order. (orig.)

  1. Top quark mass effects in Higgs boson pair production up to NNLO

    International Nuclear Information System (INIS)

    Hoff, Jens

    2016-09-01

    We consider the production of pairs of Standard Model Higgs bosons via gluon fusion. Until recently the full dependence on the top quark mass M_t was not known at next-to-leading order. For this reason we apply an approximation based on the expansion for large top quark masses up to O(1/M"1"2_t). At next-to-next-to-leading order we avoid the calculation of real corrections via the soft-virtual approximation and obtain top quark mass corrections up to O(1/M"4_t). We use our results to estimate the residual uncertainty of the total cross section due to a finite top quark mass to be O(10%) at next-to-leading order and O(5%) at next-to-next-to-leading order.

  2. Next-to-leading order corrections to the valon model

    Indian Academy of Sciences (India)

    A seminumerical solution to the valon model at next-to-leading order (NLO) in the Laguerre polynomials is presented. We used the valon model to generate the structure of proton with respect to the Laguerre polynomials method. The results are compared with H1 data and other parametrizations.

  3. Next-to-leading order corrections to the valon model

    Indian Academy of Sciences (India)

    Next-to-leading order corrections to the valon model. G R BOROUN. ∗ and E ESFANDYARI. Physics Department, Razi University, Kermanshah 67149, Iran. ∗. Corresponding author. E-mail: grboroun@gmail.com; boroun@razi.ac.ir. MS received 17 January 2014; revised 31 October 2014; accepted 21 November 2014.

  4. Event generation for next to leading order chargino production at the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Robens, T.

    2006-10-15

    At the International Linear Collider (ILC), parameters of supersymmetry (SUSY) can be determined with an experimental accuracy matching the precision of next-to-leading order (NLO) and higher-order theoretical predictions. Therefore, these contributions need to be included in the analysis of the parameters. We present a Monte-Carlo event generator for simulating chargino pair production at the ILC at next-to-leading order in the electroweak couplings. We consider two approaches of including photon radiation. A strict fixed-order approach allows for comparison and consistency checks with published semianalytic results in the literature. A version with soft- and hard-collinear resummation of photon radiation, which combines photon resummation with the inclusion of the NLO matrix element for the production process, avoids negative event weights, so the program can simulate physical (unweighted) event samples. Photons are explicitly generated throughout the range where they can be experimentally resolved. In addition, it includes further higher-order corrections unaccounted for by the fixed-order method. Inspecting the dependence on the cutoffs separating the soft and collinear regions, we evaluate the systematic errors due to soft and collinear approximations for NLO and higher-order contributions. In the resummation approach, the residual uncertainty can be brought down to the per-mil level, coinciding with the expected statistical uncertainty at the ILC. We closely investigate the two-photon phase space for the resummation method. We present results for cross sections and event generation for both approaches. (orig.)

  5. NNLO contributions to jet photoproduction and determination of {alpha}{sub s}

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, Michael; Michael, Markus [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Kramer, Gustav [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2013-10-15

    We present the first calculation of inclusive jet photoproduction with next-to-next-to-leading order (NNLO) contributions, obtained from a unified threshold resummation formalism. The leading coefficients for direct photoproduction are computed analytically. Together with the coefficients pertinent to parton-parton scattering, they are shown to agree with those appearing in our full next-to-leading order calculations. For hadron-hadron scattering, numerical agreement is found with a previous calculation of jet production at the Tevatron. We show that the direct and resolved NNLO contributions considerably improve the description of final ZEUS data on jet photoproduction and that the error on the determination of the strong coupling constant is significantly reduced.

  6. Top-quark pair production at next-to-next-to-leading order QCD in electron positron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Long [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University,52056 Aachen (Germany); Dekkers, Oliver [PRISMA Cluster of Excellence and Institut für Physik,Johannes-Gutenberg-Universität Mainz,55099 Mainz (Germany); Heisler, Dennis; Bernreuther, Werner [Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University,52056 Aachen (Germany); Si, Zong-Guo [School of Physics, Shandong University,Jinan, Shandong 250100 (China)

    2016-12-19

    We set up a formalism, within the antenna subtraction framework, for computing the production of a massive quark-antiquark pair in electron positron collisions at next-to-next-to-leading order in the coupling α{sub s} of quantum chromodynamics at the differential level. Our formalism applies to the calculation of any infrared-safe observable. We apply this set-up to the production of top-quark top antiquark pairs in the continuum. We compute the production cross section and several distributions. We determine, in particular, the top-quark forward-backward asymmetry at order α{sub s}{sup 2}. Our result agrees with previous computations of this observable.

  7. Next-to-next-to-leading order calculation of the strong coupling ...

    Indian Academy of Sciences (India)

    It is observed that the NNLO correction gives a better agreement between the theory and the experimental data. Also, by using the above observables, the strong coupling constant () is determined and how much its value is affected by the NNLO correction is demonstrated. By combining the results for all variables at ...

  8. The impact of LHC jet data on the MMHT PDF fit at NNLO

    Science.gov (United States)

    Harland-Lang, L. A.; Martin, A. D.; Thorne, R. S.

    2018-03-01

    We investigate the impact of the high precision ATLAS and CMS 7 TeV measurements of inclusive jet production on the MMHT global PDF analysis at next-to-next-to-leading order (NNLO). This is made possible by the recent completion of the long-term project to calculate the NNLO corrections to the hard cross section. We find that a good description of the ATLAS data is not possible with the default treatment of experimental systematic errors, and propose a simplified solution that retains the dominant physical information of the data. We then investigate the fit quality and the impact on the gluon PDF central value and uncertainty when the ATLAS and CMS data are included in a MMHT fit. We consider both common choices for the factorization and renormalization scale, namely the inclusive jet transverse momentum, p_\\perp , and the leading jet p_\\perp , as well as the different jet radii for which the ATLAS and CMS data are made available. We find that the impact of these data on the gluon is relatively insensitive to these inputs, in particular the scale choice, while the inclusion of NNLO corrections tends to improve the data description somewhat and has a qualitatively similar though not identical impact on the gluon in comparison to NLO.

  9. NNLL momentum-space resummation for stop-pair production at the LHC

    International Nuclear Information System (INIS)

    Broggio, Alessandro; Ferroglia, Andrea; Neubert, Matthias; Vernazza, Leonardo; Yang, Li Lin

    2014-01-01

    If supersymmetry near the TeV scale is realized in Nature, the pair production of scalar top squarks is expected to be observable at the Large Hadron Collider. Recently, effective field-theory methods were employed to obtain approximate predictions for the cross section for this process, which include soft-gluon emission effects up to next-to-next-to-leading order (NNLO) in perturbation theory. In this work we employ the same techniques to resum soft-gluon emission effects to all orders in perturbation theory and with next-to-next-to-logarithmic (NNLL) accuracy. We analyze the effects of NNLL resummation on the stop-pair production cross section by obtaining NLO+NNLL predictions in pair invariant mass and one-particle inclusive kinematics. We compare the results of these calculations to the approximate NNLO predictions for the cross sections

  10. NNLL momentum-space resummation for stop-pair production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Broggio, Alessandro [Paul Scherrer Institute,CH-5232 Villigen (Switzerland); Ferroglia, Andrea [New York City College of Technology, The City University of New York,300 Jay Street, Brooklyn, NY 11201 (United States); Neubert, Matthias [PRISMA Cluster of Excellence & Mainz Institut for Theoretical Physics,Johannes Gutenberg University, D-55099 Mainz (Germany); Department of Physics, LEPP, Cornell University,Ithaca, NY 14853 (United States); Vernazza, Leonardo [Dipartimento di Fisica, Università di Torino & INFN - Sezione di Torino,Via P. Giuria 1, I-10125 Torino (Italy); Yang, Li Lin [School of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University, 100871 Beijing (China); Collaborative Innovation Center of Quantum Matter,Beijing (China); Center for High Energy Physics, Peking University,Beijing 100871 (China)

    2014-03-12

    If supersymmetry near the TeV scale is realized in Nature, the pair production of scalar top squarks is expected to be observable at the Large Hadron Collider. Recently, effective field-theory methods were employed to obtain approximate predictions for the cross section for this process, which include soft-gluon emission effects up to next-to-next-to-leading order (NNLO) in perturbation theory. In this work we employ the same techniques to resum soft-gluon emission effects to all orders in perturbation theory and with next-to-next-to-logarithmic (NNLL) accuracy. We analyze the effects of NNLL resummation on the stop-pair production cross section by obtaining NLO+NNLL predictions in pair invariant mass and one-particle inclusive kinematics. We compare the results of these calculations to the approximate NNLO predictions for the cross sections.

  11. Next-to-leading-logarithmic power corrections for N -jettiness subtraction in color-singlet production

    Science.gov (United States)

    Boughezal, Radja; Isgrò, Andrea; Petriello, Frank

    2018-04-01

    We present a detailed derivation of the power corrections to the factorization theorem for the 0-jettiness event shape variable T . Our calculation is performed directly in QCD without using the formalism of effective field theory. We analytically calculate the next-to-leading logarithmic power corrections for small T at next-to-leading order in the strong coupling constant, extending previous computations which obtained only the leading-logarithmic power corrections. We address a discrepancy in the literature between results for the leading-logarithmic power corrections to a particular definition of 0-jettiness. We present a numerical study of the power corrections in the context of their application to the N -jettiness subtraction method for higher-order calculations, using gluon-fusion Higgs production as an example. The inclusion of the next-to-leading-logarithmic power corrections further improves the numerical efficiency of the approach beyond the improvement obtained from the leading-logarithmic power corrections.

  12. Charm production in deep-inelastic e$\\gamma$ scattering to next-to-leading order in QCD

    CERN Document Server

    Laenen, Eric

    1995-01-01

    We discuss the calculation of F_2^{\\gamma}({\\rm charm}) to next-to-leading order (NLO) in QCD, including contributions from both hadronlike and pointlike photons. We show that the former dominates strongly below x\\simeq 0.01, and the latter above this value. This fact makes F_2^{\\gamma}({\\rm charm}) for x \\geq 0.01 calculable, whereas for x \\leq 0.01 it serves to constrain the small-x gluon density in the photon. Both ranges in x are accessible at LEP2. Theoretical uncertainties are well under control. We present rates for single-tag events for the process for e^+e^- \\rightarrow e^+e^- c X for LEP2. Although these event rates are small, we believe a measurement of F_2^{\\gamma}({\\rm charm}) is feasible.

  13. QCD with two colors at finite baryon density at next-to-leading order

    International Nuclear Information System (INIS)

    Splittorff, K.; Toublan, D.; Verbaarschot, J.J.M.

    2002-01-01

    We study QCD with two colors and quarks in the fundamental representation at finite baryon density in the limit of light-quark masses. In this limit the free energy of this theory reduces to the free energy of a chiral Lagrangian which is based on the symmetries of the microscopic theory. In earlier work this Lagrangian was analyzed at the mean-field level and a phase transition to a phase of condensed diquarks was found at a chemical potential of half the diquark mass (which is equal to the pion mass). In this article we analyze this theory at next-to-leading order in chiral perturbation theory. We show that the theory is renormalizable and calculate the next-to-leading order free energy in both phases of the theory. By deriving a Landau-Ginzburg theory for the order parameter we show that the finite one-loop contribution and the next-to-leading order terms in the chiral Lagrangian do not qualitatively change the phase transition. In particular, the critical chemical potential is equal to half the next-to-leading order pion mass, and the phase transition is of second order

  14. High temperature color conductivity at next-to-leading log order

    International Nuclear Information System (INIS)

    Arnold, Peter; Yaffe, Laurence G.

    2000-01-01

    The non-Abelian analogue of electrical conductivity at high temperature has previously been known only at leading logarithmic order -- that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling. We calculate the first sub-leading correction. This has immediate application to improving, to next-to-leading log order, both effective theories of non-perturbative color dynamics, and calculations of the hot electroweak baryon number violation rate

  15. Conformally symmetric contributions to BFKL evolution at next to leading order

    International Nuclear Information System (INIS)

    Coriano, C.; White, A.R.

    1995-01-01

    Unitarity corrections to the BFKL evolution at next to leading order determine a new component of the evolution kernel which is shown to possess conformal invariance properties. Expressions for the complete spectrum of the new component and the correction to the intercept of the pomeron trajectory are presented

  16. Automized squark-neutralino production to next-to-leading order

    International Nuclear Information System (INIS)

    Binoth, Thomas; Wigmore, Ioan; Netto, Dorival Goncalves; Lopez-Val, David; Plehn, Tilman; Mawatari, Kentarou

    2011-01-01

    The production of one hard jet in association with missing transverse energy is a major LHC search channel motivated by many scenarios for physics beyond the standard model. In scenarios with a weakly interacting dark matter candidate, like supersymmetry, it arises from the associated production of a quark partner with the dark matter agent. We present the next-to-leading-order cross section calculation as the first application of the fully automized MadGolem package. We find moderate corrections to the production rate with a strongly reduced theory uncertainty.

  17. Next-to-leading order strong interaction corrections to the ΔF = 2 effective Hamiltonian in the MSSM

    International Nuclear Information System (INIS)

    Ciuchini, Marco; Franco, E.; Guadagnoli, D.; Lubicz, Vittorio; Porretti, V.; Silvestrini, L.

    2006-01-01

    We compute the next-to-leading order strong interaction corrections to gluino-mediated ΔF = 2 box diagrams in the Minimal Supersymmetric Standard Model. These corrections are given by two loop diagrams which we have calculated in three different regularization schemes in the mass insertion approximation. We obtain the next-to-leading order Wilson coefficients of the ΔF = 2 effective Hamiltonian relevant for neutral meson mixings. We find that the matching scale uncertainty is largely reduced at the next-to-leading order, typically from about 10-15% to few percent

  18. Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD.

    Science.gov (United States)

    Dixon, Lance J; Luo, Ming-Xing; Shtabovenko, Vladyslav; Yang, Tong-Zhi; Zhu, Hua Xing

    2018-03-09

    The energy-energy correlation (EEC) between two detectors in e^{+}e^{-} annihilation was computed analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO) starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple, and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the EEC in the collinear and back-to-back regions through next-to-leading power, information which should aid resummation in these regions.

  19. Mueller-Navelet jets in next-to-leading order BFKL. Theory versus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Caporale, F.; Murdaca, B.; Papa, A. [Universita della Calabria, Dipartimento di Fisica, Cosenza (Italy); Gruppo collegato di Cosenza, Istituto Nazionale di Fisica Nucleare, Cosenza (Italy); Ivanov, D.Yu. [Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk (Russian Federation)

    2014-10-15

    We study, within QCD collinear factorization and including BFKL resummation at the next-to-leading order, the production of Mueller-Navelet jets at LHC with center-of-mass energy of 7 TeV. The adopted jet vertices are calculated in the approximation of a small aperture of the jet cone in the pseudorapidity-azimuthal angle plane. We consider several representations of the dijet cross section, differing only beyond the next-to-leading order, to calculate a few observables related with this process. We use various methods of optimization to fix the energy scales entering the perturbative calculation and compare our results with the experimental data from the CMS collaboration. (orig.)

  20. Universality of transverse-momentum resummation and hard factors at the NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Catani, Stefano [INFN, Sezione di Firenze and Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino, Florence (Italy); Cieri, Leandro [Dipartimento di Fisica, Università di Roma “La Sapienza” and INFN, Sezione di Roma, I-00185 Rome (Italy); Florian, Daniel de [Departamento de Física, FCEYN, Universidad de Buenos Aires, (1428) Pabellón 1 Ciudad Universitaria, Capital Federal (Argentina); Ferrera, Giancarlo [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, I-20133 Milan (Italy); Grazzini, Massimiliano [Institut für Theoretische Physik, Universität Zürich, CH-8057 Zürich (Switzerland)

    2014-04-15

    We consider QCD radiative corrections to the production of colorless high-mass systems in hadron collisions. The logarithmically-enhanced contributions at small transverse momentum are treated to all perturbative orders by a universal resummation formula that depends on a single process-dependent hard factor. We show that the hard factor is directly related to the all-order virtual amplitude of the corresponding partonic process. The direct relation is universal (process-independent), and it is expressed by an all-order factorization formula that we explicitly evaluate up to the next-to-next-to-leading order (NNLO) in QCD perturbation theory. Once the NNLO scattering amplitude is available, the corresponding hard factor is directly determined: it controls NNLO contributions in resummed calculations at full next-to-next-to-leading logarithmic accuracy, and it can be used in applications of the q{sub T} subtraction formalism to perform fully-exclusive perturbative calculations up to NNLO. The universality structure of the hard factor and its explicit NNLO form are also extended to the related formalism of threshold resummation.

  1. Beauty and charm production in fixed target experiments

    International Nuclear Information System (INIS)

    Kidonakis, Nikolaos; Vogt, Ramona

    2004-01-01

    We present calculations of NNLO threshold corrections for beauty and charm production in π - p and pp interactions at fixed-target experiments. Recent calculations for heavy quark hadroproduction have included next-to-next-to-leading-order (NNLO) soft-gluon corrections [1] to the double differential cross section from threshold resummation techniques [2]. These corrections are important for near-threshold beauty and charm production at fixed-target experiments, including HERA-B and some of the current and future heavy ion experiments

  2. A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction

    International Nuclear Information System (INIS)

    Nason, Paolo; Ridolfi, Giovanni

    2006-01-01

    We present a first application of a previously published method for the computation of QCD processes that is accurate at next-to-leading order, and that can be interfaced consistently to standard shower Monte Carlo programs. We have considered Z pair production in hadron-hadron collisions, a process whose complexity is sufficient to test the general applicability of the method. We have interfaced our result to the HERWIG and PYTHIA shower Monte Carlo programs. Previous work on next-to-leading order corrections in a shower Monte Carlo (the MC-NLO program) may involve the generation of events with negative weights, that are avoided with the present method. We have compared our results with those obtained with MC-NLO, and found remarkable consistency. Our method can also be used as a standalone, alternative implementation of QCD corrections, with the advantage of positivity, improved convergence, and next-to-leading logarithmic accuracy in the region of small transverse momentum of the radiated parton

  3. On the next-to-next-to-leading order evolution of flavour-singlet fragmentation functions

    International Nuclear Information System (INIS)

    Almasy, A.A.; Moch, S.; Vogt, A.

    2012-01-01

    We present the third-order contributions to the quark-gluon and gluon-quark timelike splitting functions for the evolution of fragmentation functions in perturbative QCD. These quantities have been derived by studying physical evolution kernels for photon- and Higgs-exchange structure functions in deep-inelastic scattering and their counterparts in semi-inclusive annihilation, together with constraints from the momentum sum rule and the supersymmetric limit. For this purpose we have also calculated the second-order coefficient functions for one-hadron inclusive Higgs decay in the heavy-top limit. A numerically tolerable uncertainty remains for the quark-gluon splitting function, which does not affect the endpoint logarithms for small and large momentum fractions. We briefly discuss these limits and illustrate the numerical impact of the third-order corrections. Compact and accurate parametrizations are provided for all third-order timelike splitting functions.

  4. On the next-to-next-to-leading order evolution of flavour-singlet fragmentation functions

    Energy Technology Data Exchange (ETDEWEB)

    Almasy, A.A.; Vogt, A. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2011-07-15

    We present the third-order contributions to the quark-gluon and gluon-quark timelike splitting functions for the evolution of fragmentation functions in perturbative QCD. These quantities have been derived by studying physical evolution kernels for photon- and Higgs-exchange structure functions in deep-inelastic scattering and their counterparts in semi-inclusive annihilation, together with constraints from the momentum sum rule and the supersymmetric limit. For this purpose we have also calculated the second-order coefficient functions for one-hadron inclusive Higgs decay in the heavy-top limit. A numerically tolerable uncertainty remains for the quark-gluon splitting function, which does not affect the endpoint logarithms for small and large momentum fractions. We briefly discuss these limits and illustrate the numerical impact of the third-order corrections. Compact and accurate parametrizations are provided for all third-order timelike splitting functions. (orig.)

  5. Towards the NNLO evolution of polarised parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, A. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Moch, S.; Rogal, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Vermaseren, J.A.M. [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands)

    2008-07-15

    We report on the first calculation of the structure function g{sub 1} in polarised deep-inelastic scattering to the third order in massless perturbative QCD. The calculation follows the dispersive approach already used for the corresponding unpolarised cases of F{sub 2,L}, but additionally involves higher tensor integrals and the Dirac matrix {gamma}{sub 5} in D {ne} 4 dimensions. Our results confirm all known two-loop expressions including the coefficient functions of Zijlstra and van Neerven not independently verified before. At three loops we extract the helicity-difference next-to-next-to-leading order (NNLO) quark-quark and gluon-quark splitting functions {delta}P{sub qq} and {delta}P{sub qg}. The results exhibit interesting features concerning sum rules and the momentum-fraction limits x {yields} 1 and x {yields} 0. (orig.)

  6. Towards the NNLO evolution of polarised parton distributions

    International Nuclear Information System (INIS)

    Vogt, A.; Vermaseren, J.A.M.

    2008-07-01

    We report on the first calculation of the structure function g 1 in polarised deep-inelastic scattering to the third order in massless perturbative QCD. The calculation follows the dispersive approach already used for the corresponding unpolarised cases of F 2,L , but additionally involves higher tensor integrals and the Dirac matrix γ 5 in D ≠ 4 dimensions. Our results confirm all known two-loop expressions including the coefficient functions of Zijlstra and van Neerven not independently verified before. At three loops we extract the helicity-difference next-to-next-to-leading order (NNLO) quark-quark and gluon-quark splitting functions ΔP qq and ΔP qg . The results exhibit interesting features concerning sum rules and the momentum-fraction limits x → 1 and x → 0. (orig.)

  7. NNLO QCD corrections to associated W H production and H →b b ¯ decay

    Science.gov (United States)

    Caola, Fabrizio; Luisoni, Gionata; Melnikov, Kirill; Röntsch, Raoul

    2018-04-01

    We present a computation of the next-to-next-to-leading-order (NNLO) QCD corrections to the production of a Higgs boson in association with a W boson at the LHC and the subsequent decay of the Higgs boson into a b b ¯ pair, treating the b quarks as massless. We consider various kinematic distributions and find significant corrections to observables that resolve the Higgs decay products. We also find that a cut on the transverse momentum of the W boson, important for experimental analyses, may have a significant impact on kinematic distributions and radiative corrections. We show that some of these effects can be adequately described by simulating QCD radiation in Higgs boson decays to b quarks using parton showers. We also describe contributions to Higgs decay to a b b ¯ pair that first appear at NNLO and that were not considered in previous fully differential computations. The calculation of NNLO QCD corrections to production and decay sub-processes is carried out within the nested soft-collinear subtraction scheme presented by some of us earlier this year. We demonstrate that this subtraction scheme performs very well, allowing a computation of the coefficient of the second-order QCD corrections at the level of a few per mill.

  8. Higgs boson pair production at NNLO with top quark mass effects

    Science.gov (United States)

    Grazzini, M.; Heinrich, G.; Jones, S.; Kallweit, S.; Kerner, M.; Lindert, J. M.; Mazzitelli, J.

    2018-05-01

    We consider QCD radiative corrections to Higgs boson pair production through gluon fusion in proton collisions. We combine the exact next-to-leading order (NLO) contribution, which features two-loop virtual amplitudes with the full dependence on the top quark mass M t , with the next-to-next-to-leading order (NNLO) corrections computed in the large- M t approximation. The latter are improved with different reweighting techniques in order to account for finite- M t effects beyond NLO. Our reference NNLO result is obtained by combining one-loop double-real corrections with full M t dependence with suitably reweighted real-virtual and double-virtual contributions evaluated in the large- M t approximation. We present predictions for inclusive cross sections in pp collisions at √{s} = 13, 14, 27 and 100 TeV and we discuss their uncertainties due to missing M t effects. Our approximated NNLO corrections increase the NLO result by an amount ranging from +12% at √{s}=13 TeV to +7% at √{s}=100 TeV, and the residual uncertainty of the inclusive cross section from missing M t effects is estimated to be at the few percent level. Our calculation is fully differential in the Higgs boson pair and the associated jet activity: we also present predictions for various differential distributions at √{s}=14 and 100 TeV, and discuss the size of the missing M t effects, which can be larger, especially in the tails of certain observables. Our results represent the most advanced perturbative prediction available to date for this process.

  9. Parton distribution functions and benchmark cross sections at NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institute for High Energy Physics (IHEP), Protvino (Russian Federation); Bluemlein, J.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-02-15

    We present a determination of parton distribution functions (ABM11) and the strong coupling constant {alpha}{sub s} at next-to-leading order and next-to-next-to-leading order (NNLO) in QCD based on world data for deep-inelastic scattering and fixed-target data for the Drell-Yan process. The analysis is performed in the fixed-flavor number scheme for n{sub f}=3,4,5 and uses the MS-scheme for {alpha}{sub s} and the heavy-quark masses. At NNLO we obtain the value {alpha}{sub s}(MZ)=0.1134{+-}0.0011. The fit results are used to compute benchmark cross sections at hadron colliders to NNLO accuracy and to compare to data from the LHC. (orig.)

  10. Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence

    Science.gov (United States)

    Jones, S. P.; Kerner, M.; Luisoni, G.

    2018-04-01

    We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high pt ,H region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.

  11. NNLO QCD corrections to the Drell-Yan cross section in models of TeV-scale gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Taushif; Banerjee, Pulak; Dhani, Prasanna K.; Rana, Narayan [The Institute of Mathematical Sciences, Chennai, Tamil Nadu (India); Homi Bhabha National Institute, Mumbai (India); Kumar, M.C. [Indian Institute of Technology Guwahati, Department of Physics, Guwahati (India); Mathews, Prakash [Saha Institute of Nuclear Physics, Kolkata, West Bengal (India); Ravindran, V. [The Institute of Mathematical Sciences, Chennai, Tamil Nadu (India)

    2017-01-15

    The first results on the complete next-to-next-to-leading order (NNLO) Quantum Chromodynamic (QCD) corrections to the production of di-leptons at hadron colliders in large extra dimension models with spin-2 particles are reported in this article. In particular, we have computed these corrections to the invariant mass distribution of the di-leptons taking into account all the partonic sub-processes that contribute at NNLO. In these models, spin-2 particles couple through the energy-momentum tensor of the Standard Model with the universal coupling strength. The tensorial nature of the interaction and the presence of both quark annihilation and gluon fusion channels at the Born level make it challenging computationally and interesting phenomenologically. We have demonstrated numerically the importance of our results at Large Hadron Collider energies. The two-loop corrections contribute an additional 10% to the total cross section. We find that the QCD corrections are not only large but also important to make the predictions stable under renormalisation and factorisation scale variations, providing an opportunity to stringently constrain the parameters of the models with a spin-2 particle. (orig.)

  12. Single jet photoproduction at HERA in next-to-leading order QCD

    International Nuclear Information System (INIS)

    Kramer, G.; Salesch, S.G.

    1993-01-01

    We present results for next- to-leading order calculations of single jet inclusive cross sections by resolved photons in ep-collisions at HERA. The dependence on the jet recombination cut and on the choice of the renormalization and factorization scales is studied in detail. (orig.). 5 figs

  13. Quarkonium spectral function in medium at next-to-leading order for any quark mass

    International Nuclear Information System (INIS)

    Burnier, Yannis

    2015-01-01

    The vector channel spectral function at zero spatial momentum is calculated at next-to-leading order in thermal QCD for any quark mass. It corresponds to the imaginary part of the massive quark contribution to the photon polarisation tensor. The spectrum shows a well-defined transport peak in contrast to both the heavy quark limit studied previously, where the low frequency domain is exponentially suppressed at this order, and the naive massless case where it vanishes at leading order and diverges at next-to-leading order. From our general expressions, the massless limit can be taken and we show that no divergences occur if done carefully. Finally, we compare the massless limit to results from lattice simulations. (orig.)

  14. The next-to-leading order (NLO) gluon distribution from DGLAP ...

    Indian Academy of Sciences (India)

    leading order (NLO) is obtained by applying the method of characteristics. Its compatibility with double leading logarithmic approximation (DLLA) asymptotics is discussed and comparison with the exact ones like GRV98NLO is made. The solution ...

  15. Next-to-leading order QCD corrections to W+W- production via vector-boson fusion

    International Nuclear Information System (INIS)

    Jaeger, Barbara; Oleari, Carlo; Zeppenfeld, Dieter

    2006-01-01

    Vector-boson fusion processes constitute an important class of reactions at hadron colliders, both for signals and backgrounds of new physics in the electroweak interactions. We consider what is commonly referred to as W + W - production via vector-boson fusion (with subsequent leptonic decay of the Ws), or, more precisely, e + ν e μ - ν-bar μ + 2 jets production in proton-proton scattering, with all resonant and non-resonant Feynman diagrams and spin correlations of the final-state leptons included, in the phase-space regions which are dominated by t-channel electroweak-boson exchange. We compute the next-to-leading order QCD corrections to this process, at order α 6 α s . The QCD corrections are modest, changing total cross sections by less than 10%. Remaining scale uncertainties are below 2%. A fully-flexible next-to-leading order partonic Monte Carlo program allows to demonstrate these features for cross sections within typical vector-boson-fusion acceptance cuts. Modest corrections are also found for distributions

  16. Resummed Higgs cross section at N3LL

    International Nuclear Information System (INIS)

    Bonvini, Marco; Marzani, Simone

    2014-05-01

    We present accurate predictions for the inclusive production of a Higgs boson in proton-proton collisions, via gluon-gluon fusion. Our calculation includes next-to-next-to-leading order (NNLO) corrections in perturbative QCD, as well as the resummation of threshold-enhanced contributions to next-to-next-to-next-to-leading logarithmic (N 3 LL) accuracy, with the inclusion of the recently-determined three-loop constant coefficient (sometimes referred to as N 3 LL' accuracy). Our result correctly accounts for finite top, bottom and charm masses at leading order (LO) and next-to-leading order (NLO), and includes the exact top mass dependence at NNLO. At the resummed level the dependence on top, bottom and charm mass is accounted for at NLL, while only the top mass at NNLL. The all-order calculation is improved by a suitable choice of the soft terms, dictated by analyticity conditions and by the inclusion of subleading corrections of collinear origin, which improve the accuracy of the resummation away from the threshold region. We present results for different collider energies and we study perturbative uncertainties by varying renormalization and factorization scales. We find that, at current LHC energies, the resummation corrects the NNLO result by as much as 20 % at μ R =μ F =m H , while the correction is much smaller, 5.5 %, at μ R =μ F =m H /2. While the central value of NNLO+N 3 LL result depends very mildly on the scale choice, we argue that a more realiable estimate of the theoretical uncertainty is found if the perturbative scales are canonically varied about m H .

  17. Evolution of spin-dependent structure functions from DGLAP equations in leading order and next to leading order

    International Nuclear Information System (INIS)

    Baishya, R.; Jamil, U.; Sarma, J. K.

    2009-01-01

    In this paper the spin-dependent singlet and nonsinglet structure functions have been obtained by solving Dokshitzer, Gribov, Lipatov, Altarelli, Parisi evolution equations in leading order and next to leading order in the small x limit. Here we have used Taylor series expansion and then the method of characteristics to solve the evolution equations. We have also calculated t and x evolutions of deuteron structure functions, and the results are compared with the SLAC E-143 Collaboration data.

  18. Multi-parton loop amplitudes and next-to-leading order jet cross-sections

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.; Kosower, D.A.; Signer, A.

    1998-02-01

    The authors review recent developments in the calculation of QCD loop amplitudes with several external legs, and their application to next-to-leading order jet production cross-sections. When a number of calculational tools are combined together--helicity, color and supersymmetry decompositions, plus unitarity and factorization properties--it becomes possible to compute multi-parton one-loop QCD amplitudes without ever evaluating analytically standard one-loop Feynman diagrams. One-loop helicity amplitudes are now available for processes with five external partons (ggggg, q anti qggg and q anti qq anti q' g), and for an intermediate vector boson V ≡ γ * , Z, W plus four external partons (V q anti q and V q anti qq'anti q'). Using these amplitudes, numerical programs have been constructed for the next-to-leading order corrections to the processes p anti p → 3 jets (ignoring quark contributions so far) and e + e - → 4 jets

  19. Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion

    Science.gov (United States)

    Bonetti, Marco; Melnikov, Kirill; Tancredi, Lorenzo

    2018-03-01

    We present an estimate of the next-to-leading-order (NLO) QCD corrections to mixed QCD-electroweak contributions to the Higgs boson production cross section in gluon fusion, combining the recently computed three-loop virtual corrections and the approximate treatment of real emission in the soft approximation. We find that the NLO QCD corrections to the mixed QCD-electroweak contributions are nearly identical to NLO QCD corrections to QCD Higgs production. Our result confirms an earlier estimate of these O (α αs2) effects by Anastasiou et al. [J. High Energy Phys. 04 (2009) 003, 10.1088/1126-6708/2009/04/003] and provides further support for the factorization approximation of QCD and electroweak corrections.

  20. The soft-gluon current at one-loop order

    CERN Document Server

    Catani, S

    2000-01-01

    We study the soft limit of one-loop QCD amplitudes and we derive the process-independent factorization formula that controls the singular behaviour in this limit. This is obtained from the customary eikonal factorization formula valid at tree (classical) level by introducing a generalized soft-gluon current that embodies the quantum corrections. We compute the explicit expression of the soft-gluon current at one-loop order. It contains purely non-abelian correlations between the colour charges of each pair of hard-momentum partons in the matrix element. This leads to colour correlations between (two and) three hard partons in the matrix element squared. Exploiting colour conservation, we recover QED-like factorization for the square of the matrix elements with two and three hard partons.

  1. Next-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian scheme

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)

    2016-01-01

    We implement the effective field theory for gravitating spinning objects in the post-Newtonian scheme at the next-to-next-to-leading order level to derive the gravitational spin-orbit interaction potential at the third and a half post-Newtonian order for rapidly rotating compact objects. From the next-to-next-to-leading order interaction potential, which we obtain here in a Lagrangian form for the first time, we derive straightforwardly the corresponding Hamiltonian. The spin-orbit sector constitutes the most elaborate spin dependent sector at each order, and accordingly we encounter a proliferation of the relevant Feynman diagrams, and a significant increase of the computational complexity. We present in detail the evaluation of the interaction potential, going over all contributing Feynman diagrams. The computation is carried out in terms of the ''nonrelativistic gravitational'' fields, which are advantageous also in spin dependent sectors, together with the various gauge choices included in the effective field theory for gravitating spinning objects, which also optimize the calculation. In addition, we automatize the effective field theory computations, and carry out the automated computations in parallel. Such automated effective field theory computations would be most useful to obtain higher order post-Newtonian corrections. We compare our Hamiltonian to the ADM Hamiltonian, and arrive at a complete agreement between the ADM and effective field theory results. Finally, we provide Hamiltonians in the center of mass frame, and complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to third and a half post-Newtonian order. The derivation presented here is essential to obtain further higher order post-Newtonian corrections, and to reach the accuracy level required for the successful detection of gravitational radiation.

  2. NNLO splitting and coefficient functions with time-like kinematics

    International Nuclear Information System (INIS)

    Mitov, A.; Moch, S.; Vogt, A.; Liverpool Univ.

    2006-09-01

    We discuss recent results on the three-loop (next-to-next-to-leading order, NNLO) time-like splitting functions of QCD and the two-loop (NNLO) coefficient functions in one-particle inclusive e + e - -annihilation. These results form the basis for extracting fragmentation functions for light and heavy flavors with NNLO accuracy that will be needed at the LHC and ILC. The two-loop calculations have been performed in Mellin space bases on a new method, the main features of which we also describe briefly. (orig.)

  3. Mellin moments of the next-to-next-to leading order coefficient functions for the Drell-Yan process and hadronic Higgs-boson production

    International Nuclear Information System (INIS)

    Bluemlein, J.; Ravindran, V.

    2005-01-01

    We calculate the Mellin moments of the next-to-next-to leading order coefficient functions for the Drell-Yan and Higgs production cross sections. The results can be expressed in terms of multiple finite harmonic sums of maximal weight w=4. Using algebraic and structural relations between harmonic sums one finds that besides the single harmonic sums only five basic sums and their derivatives w.r.t. the summation index contribute. This representation reduces the large complexity being present in x-space calculations and is well suited for fast numerical implementations. (orig.)

  4. Some higher moments of deep inelastic structure functions at next-to-next-to-leading order of perturbative QCD

    International Nuclear Information System (INIS)

    Retey, A.; Vermaseren, J.A.M.

    2001-01-01

    We present the analytic next-to-next-to-leading QCD calculation of some higher moments of deep inelastic structure functions in the leading twist approximation. We give results for the moments N=1,3,5,7,9,11,13 of the structure function F 3 . Similarly we present the moments N=10,12 for the flavour singlet and N=12,14 for the non-singlet structure functions F 2 and F L . We have calculated both the three-loop anomalous dimensions of the corresponding operators and the three-loop coefficient functions of the moments of these structure functions

  5. Comparison of three jet events to predictions from a next-to-leading order calculation

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Alexander [Univ. of New Mexico, Albuquerque, NM (United States)

    2002-01-01

    The properties of three-jet events in data of integrated luminosity 86±4 pb-1 from CDF Run 1b and with total transverse energy greater than 175 GeV have been analyzed and compared to predictions from a next-to-leading order perturbative QCD calculation.

  6. Equivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Michele [Institut d' Astrophysique de Paris, Université Pierre et Marie Curie, CNRS-UMR 7095, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@ist.utl.pt [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2014-12-01

    The next-to-next-to-leading order spin1-spin2 potential for an inspiralling binary, that is essential for accuracy to fourth post-Newtonian order, if both components in the binary are spinning rapidly, has been recently derived independently via the ADM Hamiltonian and the Effective Field Theory approaches, using different gauges and variables. Here we show the complete physical equivalence of the two results, thereby we first prove the equivalence of the ADM Hamiltonian and the Effective Field Theory approaches at next-to-next-to-leading order with the inclusion of spins. The main difficulty in the spinning sectors, which also prescribes the manner in which the comparison of the two results is tackled here, is the existence of redundant unphysical spin degrees of freedom, associated with the spin gauge choice of a point within the extended spinning object for its representative worldline. After gauge fixing and eliminating the unphysical degrees of freedom of the spin and its conjugate at the level of the action, we arrive at curved spacetime generalizations of the Newton-Wigner variables in closed form, which can also be used to obtain further Hamiltonians, based on an Effective Field Theory formulation and computation. Finally, we make use of our validated result to provide gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to fourth post-Newtonian order, including all known sectors up to date.

  7. Matching next-to-leading order predictions to parton showers in supersymmetric QCD

    CERN Document Server

    Degrande, Celine; Hirschi, Valentin; Proudom, Josselin; Shao, Hua-Sheng

    2016-04-10

    We present a fully automated framework based on the FeynRules and MadGraph5 aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.

  8. Higgs boson pair production: Top quark mass effects at NLO and NNLO

    Directory of Open Access Journals (Sweden)

    Jonathan Grigo

    2015-11-01

    Full Text Available We compute next-to-next-to-leading order QCD corrections to the gluon-induced production cross section of Higgs boson pairs in the large top quark mass limit using the soft-virtual approximation. In the limit of infinitely-heavy top quark we confirm the results in the literature. We add two more expansion terms in the inverse top quark mass to the Mt→∞ result. Since the 1/Mt expansion converges poorly, we try to improve on it by factorizing the exact leading order cross section. We discuss two ways of doing that and conclude that the finite top quark mass effects shift the cross section at most by about 10% at next-to-leading order and by about 5% at next-to-next-to-leading order.

  9. Subtraction with hadronic initial states at NLO: an NNLO-compatible scheme

    Science.gov (United States)

    Somogyi, Gábor

    2009-05-01

    We present an NNLO-compatible subtraction scheme for computing QCD jet cross sections of hadron-initiated processes at NLO accuracy. The scheme is constructed specifically with those complications in mind, that emerge when extending the subtraction algorithm to next-to-next-to-leading order. It is therefore possible to embed the present scheme in a full NNLO computation without any modifications.

  10. Subtraction with hadronic initial states at NLO: an NNLO-compatible scheme

    International Nuclear Information System (INIS)

    Somogyi, Gabor

    2009-01-01

    We present an NNLO-compatible subtraction scheme for computing QCD jet cross sections of hadron-initiated processes at NLO accuracy. The scheme is constructed specifically with those complications in mind, that emerge when extending the subtraction algorithm to next-to-next-to-leading order. It is therefore possible to embed the present scheme in a full NNLO computation without any modifications.

  11. Extended Holstein-Primakoff mapping for the next-to-leading order of the 1/N expansion at finite temperature

    International Nuclear Information System (INIS)

    Dzhioev, Alan; Storozhenko, A.; Vdovin, A.; Aouissat, Z.; Wambach, J.

    2004-01-01

    An extended Holstein-Primakoff mapping which incorporates both single- and double-fermion mappings is used in the context of thermofield dynamics to study the next-to-leading order of the 1/N expansion at finite temperature. For the Lipkin-Meshkov-Glick model it is shown that the extended mapping naturally leads to the correct Fermi statistics both in leading and next-to-leading order

  12. Next-to-leading QCD calculation of the heavy quark fragmentation function

    International Nuclear Information System (INIS)

    Mele, B.; Nason, P.

    1990-01-01

    We present the results of a next-to-leading order QCD calculation of the fragmentation function of b flavoured hadrons at LEP. We find that the addition of the next-to-leading effects improves the stability of the result under changes of the evolution scale and does not alter drastically the leading order prediction. Our next-to-leading calculation suggests that, if we neglect non-perturbative effects, the b fragmentation function is peaked at fairly large values of x, even if the average value of x is not necessarily large. (orig.)

  13. Non-abelian factorisation for next-to-leading-power threshold logarithms

    NARCIS (Netherlands)

    Bonocore, D.; Laenen, E.; Magnea, L.; Vernazza, L.; White, C.D.

    2016-01-01

    Soft and collinear radiation is responsible for large corrections to many hadronic cross sections, near thresholds for the production of heavy final states. There is much interest in extending our understanding of this radiation to next-to-leading power (NLP) in the threshold expansion. In this

  14. Next to Leading Order QCD Corrections to Polarized $\\Lambda$ Production in DIS

    CERN Document Server

    de Florian, D

    1997-01-01

    We calculate next to leading order QCD corrections to semi-inclusive polarized deep inelastic scattering and $e^+e^-$ annihilation cross sections for processes where the polarization of the identified final-state hadron can also be determined. Using dimensional regularization and the HVBM prescription for the $\\gamma_5$ matrix, we compute corrections for different spin-dependent observables, both in the $\\overline{MS}$ and $\\overline{MS_p}$ factorization schemes, and analyse their structure. In addition to the well known corrections to polarized parton distributions, we also present those for final-state polarized fracture functions and polarized fragmentation functions, in a consistent factorization scheme.

  15. Renormalization group approach to soft gluon resummation

    International Nuclear Information System (INIS)

    Forte, Stefano; Ridolfi, Giovanni

    2003-01-01

    We present a simple proof of the all-order exponentiation of soft logarithmic corrections to hard processes in perturbative QCD. Our argument is based on proving that all large logs in the soft limit can be expressed in terms of a single dimensionful variable, and then using the renormalization group to resum them. Beyond the next-to-leading log level, our result is somewhat less predictive than previous all-order resummation formulae, but it does not rely on non-standard factorization, and it is thus possibly more general. We use our result to settle issues of convergence of the resummed series, we discuss scheme dependence at the resummed level, and we provide explicit resummed expressions in various factorization schemes

  16. Matching the Nagy-Soper parton shower at next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Manfred [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University (Germany)

    2015-07-01

    We give a short review of the shower concept, first introduced by Nagy and Soper, that includes full quantum correlations in the shower evolution. We also state the current status of implementation of the publicly available shower program Deductor. However, the main focus of the talk is the matching of the shower at next-to-leading order within the MC rate at NLO formalism. Matching is necessary in order to increase the accuracy of theoretical predictions and to employ a hadronization model. We show first results using Deductor in conjunction with the Helac-NLO framework for top quark pair production in association with one hard jet.

  17. Production of transverse energy from minijets in next-to-leading order perturbative QCD

    CERN Document Server

    Eskola, Kari J

    2000-01-01

    We compute in next-to-leading order (NLO) perturbative QCD the transverse energy carried into the central rapidity unit of hadron or nuclear collisions by the partons freed in the few-GeV subcollisions. The formulation is based on a rapidity window and a measurement function of a new type. The behaviour of the NLO results as a function of the minimum transverse momentum and as a function of the scale choice is studied. The NLO results are found to be stable relative to the leading-order ones even in the few-GeV domain.

  18. Next-to-leading-order electroweak corrections to the production of three charged leptons plus missing energy at the LHC

    Science.gov (United States)

    Biedermann, Benedikt; Denner, Ansgar; Hofer, Lars

    2017-10-01

    The production of a neutral and a charged vector boson with subsequent decays into three charged leptons and a neutrino is a very important process for precision tests of the Standard Model of elementary particles and in searches for anomalous triple-gauge-boson couplings. In this article, the first computation of next-to-leading-order electroweak corrections to the production of the four-lepton final states μ + μ -e+ ν e, {μ}+{μ}-{e}-{\\overline{ν}}e , μ + μ - μ + ν μ , and {μ}+{μ}-{μ}-{\\overline{ν}}_{μ } at the Large Hadron Collider is presented. We use the complete matrix elements at leading and next-to-leading order, including all off-shell effects of intermediate massive vector bosons and virtual photons. The relative electroweak corrections to the fiducial cross sections from quark-induced partonic processes vary between -3% and -6%, depending significantly on the event selection. At the level of differential distributions, we observe large negative corrections of up to -30% in the high-energy tails of distributions originating from electroweak Sudakov logarithms. Photon-induced contributions at next-to-leading order raise the leading-order fiducial cross section by +2%. Interference effects in final states with equal-flavour leptons are at the permille level for the fiducial cross section, but can lead to sizeable effects in off-shell sensitive phase-space regions.

  19. A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction

    International Nuclear Information System (INIS)

    Frixione, Stefano; Ridolfi, Giovanni; Nason, Paolo

    2007-01-01

    We present a next-to-leading order calculation of heavy flavour production in hadronic collisions that can be interfaced to shower Monte Carlo programs. The calculation is performed in the context of the POWHEG method. It is suitable for the computation of charm, bottom and top hadroproduction. In the case of top production, spin correlations in the decay products are taken into account

  20. Towards next-to-leading order corrections to the heavy quark potential in the effective string theory

    Directory of Open Access Journals (Sweden)

    Hwang Sungmin

    2017-01-01

    Full Text Available We present our calculation of the non-relativistic corrections to the heavy quark-antiquark potential up to leading and next-to-leading order (NLO via the effective string theory (EST. Full systematics of effective field theory (EFT are discussed in order for including the NLO contribution that arises in the EST. We also show how the number of dimensionful parameters arising from the EST are reduced by the constraints between the Wilson coeffcients from non-relativistic EFTs for QCD.

  1. Color-singlet production at NNLO in MCFM

    Energy Technology Data Exchange (ETDEWEB)

    Boughezal, Radja [Argonne National Laboratory, High Energy Physics Division, Argonne, IL (United States); Campbell, John M.; Giele, Walter [Fermilab, P.O.Box 500, Batavia, IL (United States); Ellis, R.K. [University of Durham, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Focke, Christfried [Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Liu, Xiaohui [University of Maryland, Maryland Center for Fundamental Physics, College Park, Maryland (United States); Petriello, Frank [Argonne National Laboratory, High Energy Physics Division, Argonne, IL (United States); Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Williams, Ciaran [University at Buffalo, The State University of New York, Department of Physics, Buffalo (United States)

    2017-01-15

    We present the implementation of several color-singlet final-state processes at Next-to-Next-to Leading Order (NNLO) accuracy in QCD to the publicly available parton-level Monte Carlo program MCFM. Specifically we discuss the processes pp → H, pp → Z, pp → W, pp → HZ, pp → HW and pp → γγ. Decays of the unstable bosons are fully included, resulting in a flexible fully differential Monte Carlo code. The NNLO corrections have been calculated using the non-local N-jettiness subtraction approach. Special attention is given to the numerical aspects of running MCFM for these processes at this order. We pay particular attention to the systematic uncertainties due to the power corrections induced by the N-jettiness regularization scheme and the evaluation time needed to run the hybrid openMP/MPI version of MCFM at NNLO on multi-processor systems. (orig.)

  2. Update of the NNLO PDFs in the 3-, 4- and 5-flavour schemes

    International Nuclear Information System (INIS)

    Alekhin, Sergey; Bluemlein, Johannes; Moch, Sven-Olaf

    2010-07-01

    We report on an update of the next-to-next-to-leading order (NNLO) ABKM09 parton distributions functions. They are obtained with the use of the combined HERA collider Run I inclusive deep-inelastic scattering (DIS) data and the partial NNLO corrections to the heavy quark electro-production taken into account. The value of the strong couplig constant α NNLO s (M Z )=0.1147(12) is obtained. The standard candle cross sections for the Tevatron collider and the LHC estimated with the updated PDFs are provided. (orig.)

  3. NNLO massive corrections to Bhabha scattering and theoretical precision of BabaYaga rate at NLO

    International Nuclear Information System (INIS)

    Carloni Calame, C.M.; Nicrosini, O.; Piccinini, F.; Riemann, T.; Worek, M.

    2011-12-01

    We provide an exact calculation of next-to-next-to-leading order (NNLO) massive corrections to Bhabha scattering in QED, relevant for precision luminosity monitoring at meson factories. Using realistic reference event selections, exact numerical results for leptonic and hadronic corrections are given and compared with the corresponding approximate predictions of the event generator BabaYaga rate at NLO. It is shown that the NNLO massive corrections are necessary for luminosity measurements with per mille precision. At the same time they are found to be well accounted for in the generator at an accuracy level below the one per mille. An update of the total theoretical precision of BabaYaga rate at NLO is presented and possible directions for a further error reduction are sketched. (orig.)

  4. Study of beauty quark production and next-to-leading order at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Nuncio Quiroz, Adriana Elizabeth

    2008-08-15

    In this thesis a study on the production and evolution of beauty quarks in ep collisions at HERA is presented. The emphasis is put on the corresponding Quantum Chromodynamics predictions including next-to-leading order corrections. In the context of this work the FMNR x Pythia interface was developed, which calculates next-to-leading order Quantum Chromodynamics predictions at visible level for heavy-flavour processes in the photoproduction regime. This is achieved using the RedStat routines which transform the FMNR program into a Monte Carlo-like event generator. The parton-level events obtained are interfaced to Pythia using the Le Houches accord routines. All branching ratios and decay channels of the heavy quarks implemented in the Pythia framework are used, and therefore complex cuts on the nal state can be applied. The FMNR x Pythia interface is applied in this thesis to obtain next-to-leading order predictions for the recently finished heavy flavour ZEUS analyses: the ep {yields} b anti bX {yields} D{sup *}{mu}X' and ep {yields} b anti bX {yields} {mu}{sup +}{mu}{sup -}X' channels. A comparison with the H1 D{sup *}{mu} measurement is also performed. Since the use of such double tagging techniques to identify events where heavy flavours are present proved to be very convenient when the nal state is a pair of leptons, another part of this thesis work deals with the implementation of an electron finder, the {sup G}Elec finder. This finder is tested on the reconstruction of the J/{psi} {yields} e{sup +}e{sup -} signal. Finally, a heavy-flavour analysis has been started, namely the ep {yields} b anti bX {yields} e{mu}X' dilepton channel, using an integrated luminosity of 114 pb{sup -1} gated by the ZEUS detector in the years 1996-2000. Compared to previous analyses the study of beauty quark production in this channel extends the phase space of the measurement closer to the kinematic threshold, since electrons provide access to lower p{sub T} values

  5. Next-to-leading order electroweak corrections to off-shell WWW production at the LHC arXiv

    CERN Document Server

    Schönherr, Marek

    Triboson processes allow for a measurement of the triple and quartic couplings of the Standard Model gauge bosons, which can be used to constrain anomalous gauge couplings. In this paper we calculate the next-to-leading order electroweak corrections to fully off-shell $W^-W^+W^+$ production, namely the production of a $\\ell_1^-\\ell_2^+\\ell_3^+\\bar{\

  6. The radiative decays $B \\to V_{\\gamma}$ at next-to-leading order in QCD

    CERN Document Server

    Bosch, S W; Bosch, Stefan W.; Buchalla, Gerhard

    2002-01-01

    We provide a model-independent framework for the analysis of the radiative B-meson decays B -> K* gamma and B -> rho gamma. In particular, we give a systematic discussion of the various contributions to these exclusive processes based on the heavy-quark limit of QCD. We propose a novel factorization formula for the consistent treatment of B -> V gamma matrix elements involving charm (or up-quark) loops, which contribute at leading power in Lambda_QCD/m_B to the decay amplitude. Annihilation topologies are shown to be power suppressed. In some cases they are nevertheless calculable. The approach is similar to the framework of QCD factorization that has recently been formulated for two-body non-leptonic B decays. These results allow us, for the first time, to compute exclusive b -> s(d) gamma decays systematically beyond the leading logarithmic approximation. We present results for these decays complete to next-to-leading order in QCD and to leading order in the heavy-quark limit. Phenomenological implications ...

  7. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms I

    Science.gov (United States)

    Somogyi, Gábor; Trócsányi, Zoltán

    2008-08-01

    In previous articles we outlined a subtraction scheme for regularizing doubly-real emission and real-virtual emission in next-to-next-to-leading order (NNLO) calculations of jet cross sections in electron-positron annihilation. In order to find the NNLO correction these subtraction terms have to be integrated over the factorized unresolved phase space and combined with the two-loop corrections. In this paper we perform the integration of all one-parton unresolved subtraction terms.

  8. Next-to leading order analysis of target mass corrections to structure functions and asymmetries

    International Nuclear Information System (INIS)

    Brady, L.T.; Accardi, A.; Hobbs, T.J.; Melnitchouk, W.

    2011-01-01

    We perform a comprehensive analysis of target mass corrections (TMCs) to spin-averaged structure functions and asymmetries at next-to-leading order. Several different prescriptions for TMCs are considered, including the operator product expansion, and various approximations to it, collinear factorization, and xi-scaling. We assess the impact of each of these on a number of observables, such as the neutron to proton F 2 structure function ratio, and parity-violating electron scattering asymmetries for protons and deuterons which are sensitive to gamma-Z interference effects. The corrections from higher order radiative and nuclear effects on the parity-violating deuteron asymmetry are also quantified.

  9. NNLO time-like splitting functions in QCD

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2008-07-01

    We review the status of the calculation of the time-like splitting functions for the evolution of fragmentation functions to the next-to-next-to-leading order in perturbative QCD. By employing relations between space-like and time-like deep-inelastic processes, all quark-quark and the gluon-gluon time-like splitting functions have been obtained to three loops. The corresponding quantities for the quark-gluon and gluon-quark splitting at this order are presently still unknown except for their second Mellin moments. (orig.)

  10. NNLO QCD corrections to the polarized top quark decay t (↑)→Xb+W+

    Science.gov (United States)

    Czarnecki, A.; Groote, S.; Körner, J. G.; Piclum, J. H.

    2018-05-01

    We compute the next-to-next-to-leading order (NNLO) QCD corrections to the decay t (↑)→Xb+W+ of a polarized top quark. The spin-momentum correlation in this quasi two-body decay is described by the polar angle distribution d Γ /d cos θP=Γ/2 (1 +PtαPcos θP) , where Pt is the polarization of the top quark and αP denotes the asymmetry parameter of the decay. For the latter we find αPNNLO=0.3792 ±0.0037 .

  11. Matching fully differential NNLO calculations and parton showers

    International Nuclear Information System (INIS)

    Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Walsh, Jonathan R.; Zuberi, Saba

    2013-11-01

    We present a general method to match fully differential next-to-next-to-leading (NNLO) calculations to parton shower programs. We discuss in detail the perturbative accuracy criteria a complete NNLO+PS matching has to satisfy. Our method is based on consistently improving a given NNLO calculation with the leading-logarithmic (LL) resummation in a chosen jet resolution variable. The resulting NNLO+LL calculation is cast in the form of an event generator for physical events that can be directly interfaced with a parton shower routine, and we give an explicit construction of the input ''Monte Carlo cross sections'' satisfying all required criteria. We also show how other proposed approaches naturally arise as special cases in our method.

  12. NNLO corrections to anti B {yields} X{sub u}l anti {nu} in the shape-function region

    Energy Technology Data Exchange (ETDEWEB)

    Asatrian, H.M. [Erevanskij Fizicheskij Inst., Erevan (Armenia); Greub, C. [Bern Univ. (Switzerland). Inst. for Theoretical Physics; Pecjak, B.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2008-10-15

    The inclusive decay anti B {yields} X{sub u}l anti {nu} is of much interest because of its potential to constrain the CKM element vertical stroke V{sub ub} vertical stroke. Experimental cuts required to suppress charm background restrict measurements of this decay to the shape-function region, where the hadronic final state carries a large energy but only a moderate invariant mass. In this kinematic region, the differential decay distributions satisfy a factorization formula of the form H.J x S, where S is the non-perturbative shape function, and the object H.J is a perturbatively calculable hard-scattering kernel. In this paper we present the calculation of the hard function H at next-to-next-to-leading order (NNLO) in perturbation theory. Combined with the known NNLO result for the jet function J, this completes the perturbative part of the NNLO calculation for this process. (orig.)

  13. Next to leading order evolution of SIDIS processes in the forward region

    International Nuclear Information System (INIS)

    Daleo, A.; Sassot, R.

    2003-01-01

    We compute the order α s 2 quark initiated corrections to semi-inclusive deep inelastic scattering extending the approach developed recently for the gluon contributions. With these corrections we complete the order α s 2 QCD description of these processes, verifying explicitly the factorization of collinear singularities. We also obtain the corresponding NLO evolution kernels, relevant for the scale dependence of fracture functions. We compare the non-homogeneous evolution effects driven by these kernels with those obtained at leading order accuracy and discuss their phenomenological implications

  14. Three-jet production in electron-positron collisions using the CoLoRFulNNLO method

    CERN Document Server

    Del Duca, Vittorio

    2016-01-01

    We introduce a subtraction method for jet cross sections at next-to-next-to-leading order (NNLO) accuracy in the strong coupling and use it to compute event shapes in three-jet production in electron-positron collisions. We validate our method on two event shapes, thrust and C-parameter, which are already known in the literature at NNLO accuracy and compute for the first time oblateness and the energy-energy correlation at the same accuracy.

  15. arXiv Top-quark pair production cross sections at NNLO+NNLL in pPb collisions at $\\sqrt{s_{NN}}$ = 8.16 TeV

    CERN Document Server

    d'Enterria, David

    Total and fiducial top pair ($t\\bar{t}$) production cross sections in proton-lead (pPb) collisions at $\\sqrt{s_{NN}}$ = 8.16 TeV are computed at next-to-next-to-leading-order (NNLO) accuracy including next-to-next-to-leading-log (NNLL) gluon resummation, using the CT14 and CT10 proton parton distribution functions (PDF), and the EPPS16 and EPS09 nuclear PDF parametrizations for the lead ion. The total cross sections amount to $\\sigma(pPb\\to t\\bar{t}+X) = 59.0 \\pm 5.3$(CT14+EPPS16)$\\,^{+1.6}_{-2.1}$(scale) nb, and $57.5 \\pm \\,^{+4.3}_{-3.3}$(CT10+EPS09)$\\,^{+1.5}_{-2.0}$(scale) nb, with small modifications with respect to the result computed using the free proton PDF alone. The normalized ratio of pPb to pp cross sections (nuclear modification factor) is $R_{pPb} = 1.04 \\,^{\\pm 0.07(EPPS16)}_{\\pm0.03(EPS09)}$. In the lepton+jets decay mode, $t\\bar{t} \\to b\\bar{b} W(\\ell\

  16. NNLO QCD corrections to Higgs boson production at large transverse momentum

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X. [Center for High Energy Physics, Peking University,Beijing 100871 (China); Cruz-Martinez, J. [Institute for Particle Physics Phenomenology, Department of Physics, University of Durham,Durham, DH1 3LE (United Kingdom); Gehrmann, T. [Department of Physics, University of Zürich,CH-8057 Zürich (Switzerland); Glover, E.W.N. [Institute for Particle Physics Phenomenology, Department of Physics, University of Durham,Durham, DH1 3LE (United Kingdom); Jaquier, M. [Albert-Ludwigs-Universität Freiburg, Physikalisches Institut,D-79104 Freiburg (Germany)

    2016-10-13

    We derive the second-order QCD corrections to the production of a Higgs boson recoiling against a parton with finite transverse momentum, working in the effective field theory in which the top quark contributions are integrated out. To account for quark mass effects, we supplement the effective field theory result by the full quark mass dependence at leading order. Our calculation is fully differential in the final state kinematics and includes the decay of the Higgs boson to a photon pair. It allows one to make next-to-next-to-leading order (NNLO)-accurate theory predictions for Higgs-plus-jet final states and for the transverse momentum distribution of the Higgs boson, accounting for the experimental definition of the fiducial cross sections. The NNLO QCD corrections are found to be moderate and positive, they lead to a substantial reduction of the theory uncertainty on the predictions. We compare our results to 8 TeV LHC data from ATLAS and CMS. While the shape of the data is well-described for both experiments, we agree on the normalization only for CMS. By normalizing data and theory to the inclusive fiducial cross section for Higgs production, good agreement is found for both experiments, however at the expense of an increased theory uncertainty. We make predictions for Higgs production observables at the 13 TeV LHC, which are in good agreement with recent ATLAS data. At this energy, the leading order mass corrections to the effective field theory prediction become significant at large transverse momenta, and we discuss the resulting uncertainties on the predictions.

  17. NNLO QCD corrections to Higgs boson production at large transverse momentum

    Science.gov (United States)

    Chen, X.; Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Jaquier, M.

    2016-10-01

    We derive the second-order QCD corrections to the production of a Higgs boson recoiling against a parton with finite transverse momentum, working in the effective field theory in which the top quark contributions are integrated out. To account for quark mass effects, we supplement the effective field theory result by the full quark mass dependence at leading order. Our calculation is fully differential in the final state kinematics and includes the decay of the Higgs boson to a photon pair. It allows one to make next-to-next-to-leading order (NNLO)-accurate theory predictions for Higgs-plus-jet final states and for the transverse momentum distribution of the Higgs boson, accounting for the experimental definition of the fiducial cross sections. The NNLO QCD corrections are found to be moderate and positive, they lead to a substantial reduction of the theory uncertainty on the predictions. We compare our results to 8 TeV LHC data from ATLAS and CMS. While the shape of the data is well-described for both experiments, we agree on the normalization only for CMS. By normalizing data and theory to the inclusive fiducial cross section for Higgs production, good agreement is found for both experiments, however at the expense of an increased theory uncertainty. We make predictions for Higgs production observables at the 13 TeV LHC, which are in good agreement with recent ATLAS data. At this energy, the leading order mass corrections to the effective field theory prediction become significant at large transverse momenta, and we discuss the resulting uncertainties on the predictions.

  18. Matching fully differential NNLO calculations and parton showers

    Energy Technology Data Exchange (ETDEWEB)

    Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Walsh, Jonathan R.; Zuberi, Saba [California Univ., Berkeley, CA (United States). Ernest Orlando Lawrence Berkeley National Laboratory; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    We present a general method to match fully differential next-to-next-to-leading (NNLO) calculations to parton shower programs. We discuss in detail the perturbative accuracy criteria a complete NNLO+PS matching has to satisfy. Our method is based on consistently improving a given NNLO calculation with the leading-logarithmic (LL) resummation in a chosen jet resolution variable. The resulting NNLO+LL calculation is cast in the form of an event generator for physical events that can be directly interfaced with a parton shower routine, and we give an explicit construction of the input ''Monte Carlo cross sections'' satisfying all required criteria. We also show how other proposed approaches naturally arise as special cases in our method.

  19. Survival probability for diffractive dijet production in p anti p collisions from next-to-leading order calculations

    International Nuclear Information System (INIS)

    Klasen, M.; Kramer, G.

    2009-08-01

    We perform next-to-leading order calculations of the single-diffractive and non-diffractive cross sections for dijet production in proton-antiproton collisions at the Tevatron. By comparing their ratio to the data published by the CDF collaboration for two different center-of-mass energies, we deduce the rapidity-gap survival probability as a function of the momentum fraction of the parton in the antiproton. Assuming Regge factorization, this probability can be interpreted as a suppression factor for the diffractive structure function measured in deep-inelastic scattering at HERA. In contrast to the observations for photoproduction, the suppression factor in protonantiproton collisions depends on the momentum fraction of the parton in the Pomeron even at next-to-leading order. (orig.)

  20. Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data

    CERN Document Server

    Adolph, C.; Akhunzyanov, R.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Chang, W.C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Jorg, P.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kramer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; J.Matou s; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.C.; Pereira, F.; M. Pe s; Peshekhonov, D.V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Weisrock, T.; Wilfert, M.; Wolbeek, J. ter; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2017-01-01

    Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality $Q^2>1~({\\rm GeV}/c)^2$. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/$c$ polarised muon beam impinging on a polarised $^6$LiD target. By analysing the full range in hadron transverse momentum $p_T$, the different $p_T$-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation $\\Delta g/g$ is evaluated at leading order in pQCD at a hard scale of $\\mu^2 = \\langle Q^2\\rangle = 3(GeV=c)^2$. It is determined in three intervals of the nucleon momentum fraction carried by gluons, $x_g$, covering the range $0.04 \\!<\\! x_{ \\rm g}\\! <\\! 0.28$ . and does not exhibit a significant dependence on $x_{\\rm g}$. Average...

  1. Soft-gluon resummation for high-pT inclusive-hadron production at COMPASS

    International Nuclear Information System (INIS)

    Pfeuffer, Melanie

    2013-01-01

    One of the experiments that may be used to probe the nucleon's gluon distribution is the fixed-target lepton scattering experiment COMPASS at CERN, where charged hadrons with high transverse momentum are observed. An aspect that makes the COMPASS experiment quite challenging for the theoretical calculation in perturbative QCD is its fixed-target regime. The hadron's transverse momentum is relatively large compared to the available center-of-mass energy. Thus the partonic process is close to the threshold, where all available partonic center-of-mass energy is just used to produce the high-transverse momentum parton that subsequently hadronizes into the observed hadron, and its recoiling counterpart. Additional real gluon radiation is strongly suppressed and therefore mostly constrained to the emission of soft and/or collinear gluons. This results in a strong imbalance between real and virtual gluon diagrams and the cancellation of infrared singularities leaves behind large logarithmic corrections to the leading order cross section. These logarithms are not only present in the next-to-leading (NLO) corrections, but appear also in all higher order corrections in its perturbation expansion. They dominate the cross section in the kinematic region close to the threshold and thus have to be taken into account order-by-order. A technique that addresses these logarithms is known as threshold resummation. The main goal of this work is to investigate the relevance of higher-order QCD corrections of the unpolarized photoproduction reaction in fixed-target scattering at COMPASS, where the hadron is produced at large transverse momentum. In particular the large logarithmic threshold corrections to the partonic cross sections are addressed, which are resummed to all orders at next-to-leading logarithmic (NLL) accuracy. As new technical ingredient to resummation, the rapidity dependence of the cross section in the resummed calculation is fully included in order to account for all

  2. $ZZ$ production at the LHC: NNLO predictions for $2\\ell2\

    CERN Document Server

    Kallweit, Stefan

    We consider QCD radiative corrections to $ZZ$ production for all experimentally relevant leptonic processes. We report on a novel computation of next-to-next-to-leading-order (NNLO) corrections to the diboson signature with two charged leptons and missing transverse energy ($\\ell\\ell$+$E_T^{\\rm miss}$). All relevant final states are considered: $\\ell\\ell\

  3. Study of beauty quark production and next-to-leading order effects at HERA

    International Nuclear Information System (INIS)

    Nuncio Quiroz, Adriana Elizabeth

    2008-08-01

    In this thesis a study on the production and evolution of beauty quarks in ep collisions at HERA is presented. The emphasis is put on the corresponding Quantum Chromodynamics predictions including next-to-leading order corrections. In the context of this work the FMNR x Pythia interface was developed, which calculates next-to-leading order Quantum Chromodynamics predictions at visible level for heavy-flavour processes in the photoproduction regime. This is achieved using the RedStat routines which transform the FMNR program into a Monte Carlo-like event generator. The parton-level events obtained are interfaced to Pythia using the Le Houches accord routines. All branching ratios and decay channels of the heavy quarks implemented in the Pythia framework are used, and therefore complex cuts on the nal state can be applied. The FMNR x Pythia interface is applied in this thesis to obtain next-to-leading order predictions for the recently finished heavy flavour ZEUS analyses: the ep → b anti bX → D * μX' and ep → b anti bX → μ + μ - X' channels. A comparison with the H1 D * μ measurement is also performed. Since the use of such double tagging techniques to identify events where heavy flavours are present proved to be very convenient when the nal state is a pair of leptons, another part of this thesis work deals with the implementation of an electron finder, the G Elec finder. This finder is tested on the reconstruction of the J/ψ → e + e - signal. Finally, a heavy-flavour analysis has been started, namely the ep → b anti bX → eμX' dilepton channel, using an integrated luminosity of 114 pb -1 gated by the ZEUS detector in the years 1996-2000. Compared to previous analyses the study of beauty quark production in this channel extends the phase space of the measurement closer to the kinematic threshold, since electrons provide access to lower p T values than muons do. The technical part of this thesis consisted in the calibration, maintenance and data

  4. CGC factorization for forward particle production in proton-nucleus collisions at next-to-leading order

    International Nuclear Information System (INIS)

    Iancu, E.; Mueller, A.H.; Triantafyllopoulos, D.N.

    2016-01-01

    Within the Color Glass Condensate effective theory, we reconsider the next-to-leading order (NLO) calculation of the single inclusive particle production at forward rapidities in proton-nucleus collisions at high energy. Focusing on quark production for definiteness, we establish a new factorization scheme, perturbatively correct through NLO, in which there is no ‘rapidity subtraction’. That is, the NLO correction to the impact factor is not explicitly separated from the high-energy evolution. Our construction exploits the skeleton structure of the (NLO) Balitsky-Kovchegov equation, in which the first step of the evolution is explicitly singled out. The NLO impact factor is included by computing this first emission with the exact kinematics for the emitted gluon, rather than by using the eikonal approximation. This particular calculation has already been presented in the literature http://dx.doi.org/10.1103/PhysRevLett.108.122301, http://dx.doi.org/10.1103/PhysRevD.86.054005, but the reorganization of the perturbation theory that we propose is new. As compared to the proposal in http://dx.doi.org/10.1103/PhysRevLett.108.122301, http://dx.doi.org/10.1103/PhysRevD.86.054005, our scheme is free of the fine-tuning inherent in the rapidity subtraction, which might be the origin of the negativity of the NLO cross-section observed in previous studies.

  5. CGC factorization for forward particle production in proton-nucleus collisions at next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, E. [Institut de physique théorique, Université Paris Saclay,CNRS, CEA, F-91191 Gif-sur-Yvette (France); Mueller, A.H. [Department of Physics, Columbia University,New York, NY 10027 (United States); Triantafyllopoulos, D.N. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas - ECT*, Trento (Italy); Fondazione Bruno Kessler, Strada delle Tabarelle 286, I-38123 Villazzano (Italy)

    2016-12-13

    Within the Color Glass Condensate effective theory, we reconsider the next-to-leading order (NLO) calculation of the single inclusive particle production at forward rapidities in proton-nucleus collisions at high energy. Focusing on quark production for definiteness, we establish a new factorization scheme, perturbatively correct through NLO, in which there is no ‘rapidity subtraction’. That is, the NLO correction to the impact factor is not explicitly separated from the high-energy evolution. Our construction exploits the skeleton structure of the (NLO) Balitsky-Kovchegov equation, in which the first step of the evolution is explicitly singled out. The NLO impact factor is included by computing this first emission with the exact kinematics for the emitted gluon, rather than by using the eikonal approximation. This particular calculation has already been presented in the literature http://dx.doi.org/10.1103/PhysRevLett.108.122301, http://dx.doi.org/10.1103/PhysRevD.86.054005, but the reorganization of the perturbation theory that we propose is new. As compared to the proposal in http://dx.doi.org/10.1103/PhysRevLett.108.122301, http://dx.doi.org/10.1103/PhysRevD.86.054005, our scheme is free of the fine-tuning inherent in the rapidity subtraction, which might be the origin of the negativity of the NLO cross-section observed in previous studies.

  6. The complete vertical stroke ΔS vertical stroke =2-hamiltonian in the next-to-leading order

    International Nuclear Information System (INIS)

    Herrlich, S.; Nierste, U.

    1996-04-01

    We present the complete next-to-leading order short-distance QCD corrections to the effective vertical stroke ΔS vertical stroke =2-hamiltonian in the Standard Model. The calculation of the coefficient η 3 is described in great detail. It involves the two-loop mixing of bilocal structures composed of two vertical stroke ΔS vertical stroke =1 operators into vertical stroke ΔS vertical stroke =2 operators. The next-to-leading order corrections enhance η 3 by 27% to η 3 =0.47(+0.03-0.04) thereby affecting the phenomenology of ε K sizeably. η 3 depends on the physical input parameters m t , m c and Λsub(anti M anti S) only weakly. The quoted error stems from renormalization scale dependences, which have reduced compared to the old leading log result. The known calculation of η 1 and η 2 is repeated in order to compare the structure of the three QCD coefficients. We further discuss some field theoretical aspects of the calculation such as the renormalization group equation for Green's functions with two operator insertions and the renormalization scheme dependence caused by the presence of evanescent operators. (orig.)

  7. Higher-order radiative corrections for b b ¯→H-W+

    Science.gov (United States)

    Kidonakis, Nikolaos

    2018-02-01

    I present higher-order radiative corrections from collinear and soft-gluon emission for the associated production of a charged Higgs boson with a W boson. The calculation uses expressions from resummation at next-to-leading-logarithm accuracy. From the resummed cross section I derive analytical formulas at approximate next-to-next-to-leading order and next-to-next-to-next-to-leading order. Total cross sections are presented for the process b b ¯→H-W+ at various LHC energies. The transverse momentum and rapidity distributions of the charged Higgs boson are also calculated.

  8. Next-to-Leading Order Computation of Exclusive Diffractive Light Vector Meson Production in a Saturation Framework.

    Science.gov (United States)

    Boussarie, R; Grabovsky, A V; Ivanov, D Yu; Szymanowski, L; Wallon, S

    2017-08-18

    We perform the first next-to-leading order computation of the γ^{(*)}→V (ρ,ϕ,ω) exclusive impact factor in the QCD shock-wave approach and in the most general kinematics. This paves the way to the very first quantitative study of high-energy nucleon and nucleus saturation beyond the leading order for a whole range of small-x exclusive processes, to be measured in ep, eA, pp, and pA collisions at existing and future colliders.

  9. Towards next-to-leading order transport coefficients from the four-particle irreducible effective action

    International Nuclear Information System (INIS)

    Carrington, M. E.; Kovalchuk, E.

    2010-01-01

    Transport coefficients can be obtained from two-point correlators using the Kubo formulas. It has been shown that the full leading order result for electrical conductivity and (QCD) shear viscosity is contained in the resummed two-point function that is obtained from the three-loop three-particle irreducible resummed effective action. The theory produces all leading order contributions without the necessity for power counting, and in this sense it provides a natural framework for the calculation. In this article we study the four-loop four-particle irreducible effective action for a scalar theory with cubic and quartic interactions, with a nonvanishing field expectation value. We obtain a set of integral equations that determine the resummed two-point vertex function. A next-to-leading order contribution to the viscosity could be obtained from this set of coupled equations.

  10. A next-to-leading order QCD analysis of the spin structure function $g_1$

    CERN Document Server

    AUTHOR|(CDS)2067425; Arik, E; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; De Botton, N R; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Rijllart, A; Reicherz, G; Roberts, J; Rodríguez, M; Rondio, Ewa; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J

    1998-01-01

    We present a next-to-leading order QCD analysis of the presently available data on the spin structure function $g_1$ including the final data from the Spin Muon Collaboration (SMC). We present resu lts for the first moments of the proton, deuteron and neutron structure functions, and determine singlet and non-singlet parton distributions in two factorization schemes. We also test the Bjor ken sum rule and find agreement with the theoretical prediction at the level of 10\\%.

  11. Zγ production at NNLO including anomalous couplings

    Science.gov (United States)

    Campbell, John M.; Neumann, Tobias; Williams, Ciaran

    2017-11-01

    In this paper we present a next-to-next-to-leading order (NNLO) QCD calculation of the processes pp → l + l -γ and pp\\to ν \\overline{ν}γ that we have implemented in MCFM. Our calculation includes QCD corrections at NNLO both for the Standard Model (SM) and additionally in the presence of Zγγ and ZZγ anomalous couplings. We compare our implementation, obtained using the jettiness slicing approach, with a previous SM calculation and find broad agreement. Focusing on the sensitivity of our results to the slicing parameter, we show that using our setup we are able to compute NNLO cross sections with numerical uncertainties of about 0.1%, which is small compared to residual scale uncertainties of a few percent. We study potential improvements using two different jettiness definitions and the inclusion of power corrections. At √{s}=13 TeV we present phenomenological results and consider Zγ as a background to H → Zγ production. We find that, with typical cuts, the inclusion of NNLO corrections represents a small effect and loosens the extraction of limits on anomalous couplings by about 10%.

  12. Wgamma and Zgamma production at the LHC in NNLO QCD

    International Nuclear Information System (INIS)

    Grazzini, Massimiliano; Kallweit, Stefan; Rathlev, Dirk

    2016-01-01

    We consider the production of Wγ and Zγ pairs at the LHC, and report on the fully differential computation of next-to-next-to-leading order (NNLO) corrections in QCD perturbation theory. The calculation includes leptonic vector-boson decays with the corresponding spin correlations, off-shell effects and final-state photon radiation. We present numerical results for pp collisions at 7 TeV, and compare them with available ATLAS data. In the case of Zγ production, the impact of NNLO corrections is generally moderate, ranging from 8% to 17%, depending on the applied cuts. In the case of Wγ production, the NNLO effects are more important, and range from 19% to 26%, thereby improving the agreement of the theoretical predictions with the data. As expected, a veto against jets significantly reduces the impact of QCD radiative corrections.

  13. Higher-order threshold resummation for semi-inclusive e+e- annihilation

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2009-08-01

    The complete soft-enhanced and virtual-gluon contributions are derived for the quark coefficient functions in semi-inclusive e + e - annihilation to the third order in massless perturbative QCD. These terms enable us to extend the soft-gluon resummation for the fragmentation functions by two orders to the next-to-next-to-next-to-leading logarithmic (N 3 LL) accuracy. The resummation exponent is found to be the same as for the structure functions in inclusive deep-inelastic scattering. This finding, together with known results on the higher-order quark form factor, facilitates the determination of all soft and virtual contributions of the fourth-order difference of the coefficient functions for these two processes. Unlike the previous (N 2 LL) order in the exponentiation, the numerical effect of the N 3 LL contributions turns out to be negligible at LEP energies. (orig.)

  14. A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions

    International Nuclear Information System (INIS)

    Somogyi, Gabor; Trocsanyi, Zoltan; Del Duca, Vittorio

    2007-01-01

    We present a generalization of the dipole subtraction scheme for computing jet cross sections in electron-positron annihilation at next-to-next-to-leading order accuracy in perturbative QCD. In this first part we deal with the regularization of the doubly-real contribution to the NNLO correction

  15. A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, Gabor [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary); Trocsanyi, Zoltan [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary); Del Duca, Vittorio [Istituto Nazionale di Fisica Nucleare, Sez. di Torino, via P. Giuria, 1 - 10125 Turin (Italy)

    2007-01-15

    We present a generalization of the dipole subtraction scheme for computing jet cross sections in electron-positron annihilation at next-to-next-to-leading order accuracy in perturbative QCD. In this first part we deal with the regularization of the doubly-real contribution to the NNLO correction.

  16. A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, Gabor; Trocsanyi, Zoltan [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, PO Box 51 (Hungary)

    2007-01-15

    We present a generalization of the dipole subtraction scheme for computing jet cross sections in electron-positron annihilation at next-to-next-to-leading order accuracy in perturbative QCD. In this second part we deal with the regularization of the real-virtual contribution to the NNLO correction.

  17. Fixation of theoretical ambiguities in the improved fits to $xF_{3}$ CCFR data at the next-to-next-to-leading order and beyond

    CERN Document Server

    Kataev, A L; Sidorov, A V

    2003-01-01

    Using new theoretical information on the NNLO and N$^3$LO perturbative QCD corrections to renormalization-group quantities of odd $xF_3$ Mellin moments, we perform the reanalysis of the CCFR'97 data for $xF_3$ structure function. The fits were done without and with twist-4 power suppressed terms. Theoretical questions of applicability of the renormalon-inspired large-$\\beta_0$ approximation for estimating NNLO and N$^3$LO terms in the coefficient functions of odd $xF_3$ moments and even non-singlet moments of $F_2$ are considered. The comparison with [1/1] Pad\\'e estimates is presented. The small $x$ behaviour of the phenomenological model for $xF_3$ is compared with available theoretical predictions. The $x$-shape of the twist-4 contributions is determined. Indications of oscillating-type behaviour of $h(x)$ are obtained from more detailed NNLO fits when only statistical uncertainties are taken into account. The scale-dependent uncertainties of $\\alpha_s(M_Z)$ are analyzed. The obtained NNLO and approximate ...

  18. Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy

    International Nuclear Information System (INIS)

    Martini, Till; Uwer, Peter

    2015-01-01

    In this article we illustrate how event weights for jet events can be calculated efficiently at next-to-leading order (NLO) accuracy in QCD. This is a crucial prerequisite for the application of the Matrix Element Method in NLO. We modify the recombination procedure used in jet algorithms, to allow a factorisation of the phase space for the real corrections into resolved and unresolved regions. Using an appropriate infrared regulator the latter can be integrated numerically. As illustration, we reproduce differential distributions at NLO for two sample processes. As further application and proof of concept, we apply the Matrix Element Method in NLO accuracy to the mass determination of top quarks produced in e"+e"− annihilation. This analysis is relevant for a future Linear Collider. We observe a significant shift in the extracted mass depending on whether the Matrix Element Method is used in leading or next-to-leading order.

  19. Detailed comparison of next-to-leading order predictions for jet photoproduction at HERA.

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. W.; Klassen, M.; Vossebeld, J.

    1999-06-02

    The precision of new HERA data on jet photoproduction opens up the possibility to discriminate between different models of the photon structure. This requires equally precise theoretical predictions from perturbative QCD calculations. In the past years, next-to-leading order calculations for the photoproduction of jets at HERA have become available. Using the kinematic cuts of recent ZEUS analyses, we compare the predictions of three calculations for different dijet and three-jet distributions. We find that in general all three calculations agree within the statistical accuracy of the Monte Carlo integration yielding reliable theoretical predictions. In certain restricted regions of phase space, the calculations differ by up to 5%.

  20. QCD next-to-leading order predictions matched to parton showers for vector-like quark models

    CERN Document Server

    Fuks, Benjamin

    2017-02-27

    Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair-production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks...

  1. The three-loop splitting functions in QCD. The helicity-dependent case

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2014-09-01

    We present the next-to-next-to-leading order (NNLO) contributions to the main splitting functions for the evolution of longitudinally polarized parton densities of hadrons in perturbative QCD. The quark-quark and gluon-quark splitting functions have been obtained by extending our previous all Mellin-N calculations to the structure function g 1 in electromagnetic deep-inelastic scattering (DIS). Their quark-gluon and gluon-gluon counterparts have been derived using third-order fixed-N calculations of structure functions in graviton-exchange DIS, relations to the unpolarized case and mathematical tools for systems of Diophantine equations. The NNLO corrections to the splitting functions are small outside the region of small momentum fractions x where they exhibit a large double-logarithmic enhancement, yet the corrections to the evolution of the parton densities can be unproblematic down to at least x∼10 -4 .

  2. Soft gluon contributions to hard processes

    International Nuclear Information System (INIS)

    Ciafaloni, M.

    1981-10-01

    The main concern of this paper is in trying to elucidate the origin of large QCD perturbative corrections and explain how to deal with them to all orders. They come essentially from the phase space regions close to the kinematical boundary of a hard process, in which one or many gluons become soft

  3. Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Till; Uwer, Peter [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstraße 15, 12489 Berlin (Germany)

    2015-09-14

    In this article we illustrate how event weights for jet events can be calculated efficiently at next-to-leading order (NLO) accuracy in QCD. This is a crucial prerequisite for the application of the Matrix Element Method in NLO. We modify the recombination procedure used in jet algorithms, to allow a factorisation of the phase space for the real corrections into resolved and unresolved regions. Using an appropriate infrared regulator the latter can be integrated numerically. As illustration, we reproduce differential distributions at NLO for two sample processes. As further application and proof of concept, we apply the Matrix Element Method in NLO accuracy to the mass determination of top quarks produced in e{sup +}e{sup −} annihilation. This analysis is relevant for a future Linear Collider. We observe a significant shift in the extracted mass depending on whether the Matrix Element Method is used in leading or next-to-leading order.

  4. Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)

    2016-01-01

    The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there is an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.

  5. Next-to-leading order QCD predictions for the hadronic WH+jet production

    International Nuclear Information System (INIS)

    Su Jijuan; Ma Wengan; Zhang Renyou; Guo Lei

    2010-01-01

    We calculate the next-to-leading order (NLO) QCD corrections to the WH 0 production in association with a jet at hadron colliders. We study the impacts of the complete NLO QCD radiative corrections to the integrated cross sections, the scale dependence of the cross sections, and the differential cross sections ((dσ/dcosθ), (dσ/dp T )) of the final W-, Higgs boson and jet. We find that the corrections significantly modify the physical observables, and reduce the scale uncertainty of the leading-order cross section. Our results show that by applying the inclusive scheme with p T,j cut =20 GeV and taking m H =120 GeV, μ=μ 0 ≡(1/2)(m W +m H ), the K-factor is 1.15 for the process pp→W ± H 0 j+X at the Tevatron, while the K-factors for the processes pp→W - H 0 j+X and pp→W + H 0 j+X at the LHC are 1.12 and 1.08, respectively. We conclude that to understand the hadronic associated WH 0 production, it is necessary to study the NLO QCD corrections to the WH 0 j production process which is part of the inclusive WH 0 production.

  6. Next-to-leading-order electroweak corrections to the production of four charged leptons at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Benedikt; Denner, Ansgar [Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, 97074 Würzburg (Germany); Dittmaier, Stefan [Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg (Germany); Hofer, Lars [Institut de Ciències del Cosmo (ICCUB), Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona - UB, 08028 Barcelona (Spain); Jäger, Barbara [Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, 72076 Tübingen (Germany)

    2017-01-09

    We present a state-of-the-art calculation of the next-to-leading-order electroweak corrections to ZZ production, including the leptonic decays of the Z bosons into μ{sup +}μ{sup −}e{sup +}e{sup −} or μ{sup +}μ{sup −}μ{sup +}μ{sup −} final states. We use complete leading-order and next-to-leading-order matrix elements for four-lepton production, including contributions of virtual photons and all off-shell effects of Z bosons, where the finite Z-boson width is taken into account using the complex-mass scheme. The matrix elements are implemented into Monte Carlo programs allowing for the evaluation of arbitrary differential distributions. We present integrated and differential cross sections for the LHC at 13 TeV both for an inclusive setup where only lepton identification cuts are applied, and for a setup motivated by Higgs-boson analyses in the four-lepton decay channel. The electroweak corrections are divided into photonic and purely weak contributions. The former show the well-known pronounced tails near kinematical thresholds and resonances; the latter are generically at the level of ∼−5% and reach several −10% in the high-energy tails of distributions. Comparing the results for μ{sup +}μ{sup −}e{sup +}e{sup −} and μ{sup +}μ{sup −}μ{sup +}μ{sup −} final states, we find significant differences mainly in distributions that are sensitive to the μ{sup +}μ{sup −} pairing in the μ{sup +}μ{sup −}μ{sup +}μ{sup −} final state. Differences between μ{sup +}μ{sup −}e{sup +}e{sup −} and μ{sup +}μ{sup −}μ{sup +}μ{sup −} channels due to interferences of equal-flavour leptons in the final state can reach up to 10% in off-shell-sensitive regions. Contributions induced by incoming photons, i.e. photon-photon and quark-photon channels, are included, but turn out to be phenomenologically unimportant.

  7. The next-next-to-leading QCD approximation for non-singlet moments of deep inelastic structure functions

    International Nuclear Information System (INIS)

    Larin, S.A.; Ritbergen, T. van; Vermaseren, J.A.M.

    1993-12-01

    We obtain the analytic next-next-to-leading perturbative QCD corrections in the leading twist approximation for the moments N = 2, 4, 6, 8 of the non-singlet deep inelastic structure functions F 2 and F L . We calculate the three-loop anomalous dimensions of the corresponding non-singlet operators and the three-loop coefficient functions of the structure function F L . (orig.)

  8. Vector boson fusion NNLO in QCD. SM Higgs and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bolzoni, Paolo [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Maltoni, Fabio; Zaro, Marco [Catholique Univ. Louvain-la-Neuve (BE). Center for Cosmology, Particle Phyics and Phenomenology (CP3); Moch, Sven-Olaf [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2011-09-15

    Weak vector boson fusion provides a unique channel to directly probe the mechanism of electroweak symmetry breaking at hadron colliders. We present a method that allows to calculate total cross sections to next-to-next-to-leading order (NNLO) in QCD for an arbitrary V{sup *}V{sup *}{yields}X process, the so-called structure function approach. By discussing the case of Higgs production in detail, we estimate several classes of previously neglected contributions and we argue that such method is accurate at a precision level well above the typical residual scale and PDF uncertainties at NNLO. Predictions for cross sections at the Tevatron and the LHC are presented for a variety of cases: the Standard Model Higgs (including anomalous couplings), neutral and charged scalars in extended Higgs sectors and (fermiophobic) vector resonance production. Further results can be easily obtained through the public use of the VBF rate at NNLO code. (orig.)

  9. Higgs boson decay into b-quarks at NNLO accuracy

    Science.gov (United States)

    Del Duca, Vittorio; Duhr, Claude; Somogyi, Gábor; Tramontano, Francesco; Trócsányi, Zoltán

    2015-04-01

    We compute the fully differential decay rate of the Standard Model Higgs boson into b-quarks at next-to-next-to-leading order (NNLO) accuracy in αs. We employ a general subtraction scheme developed for the calculation of higher order perturbative corrections to QCD jet cross sections, which is based on the universal infrared factorization properties of QCD squared matrix elements. We show that the subtractions render the various contributions to the NNLO correction finite. In particular, we demonstrate analytically that the sum of integrated subtraction terms correctly reproduces the infrared poles of the two-loop double virtual contribution to this process. We present illustrative differential distributions obtained by implementing the method in a parton level Monte Carlo program. The basic ingredients of our subtraction scheme, used here for the first time to compute a physical observable, are universal and can be employed for the computation of more involved processes.

  10. Higgs boson decay into b-quarks at NNLO accuracy

    CERN Document Server

    Del Duca, Vittorio; Somogyi, Gábor; Tramontano, Francesco; Trócsányi, Zoltán

    2015-01-01

    We compute the fully differential decay rate of the Standard Model Higgs boson into b-quarks at next-to-next-to-leading order (NNLO) accuracy in alpha_S. We employ a general subtraction scheme developed for the calculation of higher order perturbative corrections to QCD jet cross sections, which is based on the universal infrared factorization properties of QCD squared matrix elements. We show that the subtractions render the various contributions to the NNLO correction finite. In particular, we demonstrate analytically that the sum of integrated subtraction terms correctly reproduces the infrared poles of the two-loop double virtual contribution to this process. We present illustrative differential distributions obtained by implementing the method in a parton level Monte Carlo program. The basic ingredients of our subtraction scheme, used here for the first time to compute a physical observable, are universal and can be employed for the computation of more involved processes.

  11. Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data

    International Nuclear Information System (INIS)

    Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Zink, A.; Aghasyan, M.; Birsa, R.; Dalla Torre, S.; Levorato, S.; Santos, C.; Sozzi, F.; Tessaro, S.; Tessarotto, F.; Akhunzyanov, R.; Alexeev, G.D.; Anfimov, N.V.; Anosov, V.; Efremov, A.; Gavrichtchouk, O.P.; Guskov, A.; Ivanshin, Yu.; Kisselev, Yu.; Kouznetsov, O.M.; Kroumchtein, Z.V.; Meshcheryakov, G.V.; Nagaytsev, A.; Olshevsky, A.G.; Orlov, I.; Peshekhonov, D.V.; Rossiyskaya, N.S.; Rybnikov, A.; Savin, I.A.; Selyunin, A.; Shevchenko, O.Yu.; Slunecka, M.; Smolik, J.; Tasevsky, M.; Zavada, P.; Zemlyanichkina, E.; Alexeev, M.G.; Amoroso, A.; Balestra, F.; Chiosso, M.; Gnesi, I.; Grasso, A.; Ivanov, A.; Kotzinian, A.M.; Longo, R.; Parsamyan, B.; Takekawa, S.; Andrieux, V.; Boer, M.; Curiel, Q.; Ferrero, A.; Fuchey, E.; Hose, N. d'; Kunne, F.; Levillain, M.; Magnon, A.; Marchand, C.; Neyret, D.; Platchkov, S.; Seder, E.; Thibaud, F.; Augustyniak, W.; Klimaszewski, K.; Kurek, K.; Marianski, B.; Sandacz, A.; Szabelski, A.; Sznajder, P.; Austregesilo, A.; Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Huber, S.; Kraemer, M.; Krinner, F.; Paul, S.; Uhl, S.; Azevedo, C.D.R.; Pereira, F.; Veloso, J.; Badelek, B.; Barth, J.; Hahne, D.; Klein, F.; Pretz, J.; Schmieden, H.; Beck, R.; Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Ketzer, B.; Mikhasenko, M.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Mallot, G.K.; Schoenning, K.; Bodlak, M.; Finger, M.; Finger, M. Jr.; Matousek, J.; Pesek, M.; Roskot, M.; Bordalo, P.; Franco, C.; Nunes, A.S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M.; Bradamante, F.; Bressan, A.; Dasgupta, S.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P.; Buechele, M.; Fischer, H.; Gorzellik, M.; Grussenmeyer, T.; Heinsius, F.H.; Herrmann, F.; Joerg, P.; Koenigsmann, K.; Kremser, P.; Nowak, W.D.; Regali, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Szameitat, T.; Wolbeek, J. ter; Chang, W.C.; Hsieh, C.Y.; Sawada, T.; Choi, I.; Giordano, F.; Grosse Perdekamp, M.; Heitz, R.; Kulinich, Y.; Makins, N.; Montuenga, P.; Peng, J.C.; Riedl, C.; Cicuttin, A.; Crespo, M.L.; Dasgupta, S.S.; Dhara, L.; Sarkar, S.; Sinha, L.; Denisov, O.Yu.; Maggiora, A.; Panzieri, D.; Tosello, F.; Donskov, S.V.; Khaustov, G.V.; Khokhlov, Yu.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D.; Doshita, N.; Hashimoto, R.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Nukazuka, G.; Suzuki, H.; Duic, V.; Dziewiecki, M.; Kurjata, R.P.; Marzec, J.; Rychter, A.; Zaremba, K.; Ziembicki, M.; Fresne von Hohenesche, N. du; Harrach, D. von; Kabuss, E.; Nerling, F.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M.

    2017-01-01

    Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality Q"2 > 1 (GeV/c)"2. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam impinging on a polarised "6LiD target. By analysing the full range in hadron transverse momentum p_T, the different p_T-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation Δg/g is evaluated at leading order in pQCD at a hard scale of μ"2 = left angle Q"2 right angle = 3 (GeV/c)"2. It is determined in three intervals of the nucleon momentum fraction carried by gluons, x_g, covering the range 0.04 < x_g < 0.28 and does not exhibit a significant dependence on x_g. The average over the three intervals, left angle Δg/g right angle = 0.113 ± 0.038_(_s_t_a_t_._) ± 0.036_(_s_y_s_t_._) at left angle x_g right angle ∼ 0.10, suggests that the gluon polarisation is positive in the measured x_g range. (orig.)

  12. Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Zink, A. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Aghasyan, M.; Birsa, R.; Dalla Torre, S.; Levorato, S.; Santos, C.; Sozzi, F.; Tessaro, S.; Tessarotto, F. [INFN, Trieste (Italy); Akhunzyanov, R.; Alexeev, G.D.; Anfimov, N.V.; Anosov, V.; Efremov, A.; Gavrichtchouk, O.P.; Guskov, A.; Ivanshin, Yu.; Kisselev, Yu.; Kouznetsov, O.M.; Kroumchtein, Z.V.; Meshcheryakov, G.V.; Nagaytsev, A.; Olshevsky, A.G.; Orlov, I.; Peshekhonov, D.V.; Rossiyskaya, N.S.; Rybnikov, A.; Savin, I.A.; Selyunin, A.; Shevchenko, O.Yu.; Slunecka, M.; Smolik, J.; Tasevsky, M.; Zavada, P.; Zemlyanichkina, E. [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation); Alexeev, M.G. [University of Turin, Department of Physics, Turin (Italy); Amoroso, A.; Balestra, F.; Chiosso, M.; Gnesi, I.; Grasso, A.; Ivanov, A.; Kotzinian, A.M.; Longo, R.; Parsamyan, B.; Takekawa, S. [University of Turin, Department of Physics, Turin (Italy); INFN, Turin (Italy); Andrieux, V.; Boer, M.; Curiel, Q.; Ferrero, A.; Fuchey, E.; Hose, N. d' ; Kunne, F.; Levillain, M.; Magnon, A.; Marchand, C.; Neyret, D.; Platchkov, S.; Seder, E.; Thibaud, F. [CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); Augustyniak, W.; Klimaszewski, K.; Kurek, K.; Marianski, B.; Sandacz, A.; Szabelski, A.; Sznajder, P. [National Centre for Nuclear Research, Warsaw (Poland); Austregesilo, A.; Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Huber, S.; Kraemer, M.; Krinner, F.; Paul, S.; Uhl, S. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Azevedo, C.D.R.; Pereira, F.; Veloso, J. [University of Aveiro, Department of Physics, Aveiro (Portugal); Badelek, B. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Barth, J.; Hahne, D.; Klein, F.; Pretz, J.; Schmieden, H. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Beck, R.; Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Ketzer, B.; Mikhasenko, M. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Bedfer, Y. [CERN, Geneva 23 (Switzerland); CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); Bernhard, J. [CERN, Geneva 23 (Switzerland); Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Bicker, K. [CERN, Geneva 23 (Switzerland); Technische Universitaet Muenchen, Physik Department, Garching (Germany); Bielert, E.R.; Mallot, G.K.; Schoenning, K. [CERN, Geneva 23 (Switzerland); Bodlak, M.; Finger, M.; Finger, M. Jr.; Matousek, J.; Pesek, M.; Roskot, M. [Charles University in Prague, Faculty of Mathematics and Physics, Prague (Czech Republic); Bordalo, P.; Franco, C.; Nunes, A.S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M. [LIP, Lisbon (Portugal); Bradamante, F.; Bressan, A.; Dasgupta, S.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P. [University of Trieste, Department of Physics, Trieste (Italy); INFN, Trieste (Italy); Buechele, M.; Fischer, H.; Gorzellik, M.; Grussenmeyer, T.; Heinsius, F.H.; Herrmann, F.; Joerg, P.; Koenigsmann, K.; Kremser, P.; Nowak, W.D.; Regali, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Szameitat, T.; Wolbeek, J. ter [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Chang, W.C.; Hsieh, C.Y.; Sawada, T. [Academia Sinica, Institute of Physics, Taipei (China); Choi, I.; Giordano, F.; Grosse Perdekamp, M.; Heitz, R.; Kulinich, Y.; Makins, N.; Montuenga, P.; Peng, J.C.; Riedl, C. [University of Illinois at Urbana-Champaign, Department of Physics, Urbana, IL (United States); Cicuttin, A.; Crespo, M.L. [INFN, Trieste (Italy); Abdus Salam ICTP, Trieste (Italy); Dasgupta, S.S.; Dhara, L.; Sarkar, S.; Sinha, L. [Matrivani Institute of Experimental Research and Education, Calcutta (India); Denisov, O.Yu.; Maggiora, A.; Panzieri, D.; Tosello, F. [INFN, Turin (Italy); Donskov, S.V.; Khaustov, G.V.; Khokhlov, Yu.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D. [State Scientific Center Institute for High Energy Physics of National Research Center ' Kurchatov Institute' , Protvino (Russian Federation); Doshita, N.; Hashimoto, R.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Nukazuka, G.; Suzuki, H. [Yamagata University, Yamagata (Japan); Duic, V. [University of Trieste, Department of Physics, Trieste (Italy); Dziewiecki, M.; Kurjata, R.P.; Marzec, J.; Rychter, A.; Zaremba, K.; Ziembicki, M. [Warsaw University of Technology, Institute of Radioelectronics, Warsaw (Poland); Fresne von Hohenesche, N. du; Harrach, D. von; Kabuss, E.; Nerling, F.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Collaboration: COMPASS Collaboration; and others

    2017-04-15

    Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality Q{sup 2} > 1 (GeV/c){sup 2}. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam impinging on a polarised {sup 6}LiD target. By analysing the full range in hadron transverse momentum p{sub T}, the different p{sub T}-dependences of the underlying processes are separated using a neural-network approach. In the absence of pQCD calculations at next-to-leading order in the selected kinematic domain, the gluon polarisation Δg/g is evaluated at leading order in pQCD at a hard scale of μ{sup 2} = left angle Q{sup 2} right angle = 3 (GeV/c){sup 2}. It is determined in three intervals of the nucleon momentum fraction carried by gluons, x{sub g}, covering the range 0.04 < x{sub g} < 0.28 and does not exhibit a significant dependence on x{sub g}. The average over the three intervals, left angle Δg/g right angle = 0.113 ± 0.038{sub (stat.)} ± 0.036{sub (syst.)} at left angle x{sub g} right angle ∼ 0.10, suggests that the gluon polarisation is positive in the measured x{sub g} range. (orig.)

  13. The next-next-to-leading QCD approximation for non-singlet moments of deep inelastic structure functions

    Energy Technology Data Exchange (ETDEWEB)

    Larin, S.A.; Ritbergen, T. van; Vermaseren, J.A.M.

    1993-12-01

    We obtain the analytic next-next-to-leading perturbative QCD corrections in the leading twist approximation for the moments N = 2, 4, 6, 8 of the non-singlet deep inelastic structure functions F{sub 2} and F{sub L}. We calculate the three-loop anomalous dimensions of the corresponding non-singlet operators and the three-loop coefficient functions of the structure function F{sub L}. (orig.).

  14. Electroweak penguin contributions to non-leptonic ΔF=1 decays at NNLO

    International Nuclear Information System (INIS)

    Buras, Andrzej J.; Gambino, Paolo; Haisch, Ulrich A.

    2000-01-01

    We calculate the O(α s ) corrections to the Z 0 -penguin and electroweak box diagrams relevant for non-leptonic ΔF=1 decays with F=S,B. This calculation provides the complete O(α W α s ) and O(α W α s sin 2 θ W m t 2 ) corrections (α W =α/sin 2 θ W ) to the Wilson coefficients of the electroweak penguin four quark operators relevant for non-leptonic K- and B-decays. We argue that this is the dominant part of the next-next-to-leading (NNLO) contributions to these coefficients. Our results allow us to reduce considerably the uncertainty due to the definition of the top quark mass present in the existing NLO calculations of non-leptonic decays. The NNLO corrections to the coefficient of the color singlet (V-A)x(V-A) electroweak penguin operator Q 9 relevant for B-decays are generally moderate, amount to a few percent for the choice m t (μ t =m t ) and depend only weakly on the renormalization scheme. Larger NNLO corrections with substantial scheme dependence are found for the coefficients of the remaining electroweak penguin operators Q 7 , Q 8 and Q 10 . In particular, the strong scheme dependence of the NNLO corrections to C 8 allows us to reduce considerably the scheme dependence of C 8 8 > 2 relevant for the ratio ε'/ε

  15. Inclusive particle production at HERA: Resolved and direct quasi-real photon contributions in next-to-leading order QCD

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Kramer, G.

    1994-01-01

    We calculate in next-to-leading order inclusive cross sections of single-particle production via both direct and resolved photons in ep collisions at HERA. Transverse-momentum and rapidity distributions are presented and the dependences on renormalization and factorization scales and subtraction schemes are investigated. (orig.)

  16. On next-to-eikonal corrections to threshold resummation for the Drell-Yan and DIS cross sections

    International Nuclear Information System (INIS)

    Laenen, Eric; Magnea, Lorenzo; Stavenga, Gerben

    2008-01-01

    We study corrections suppressed by one power of the soft gluon energy to the resummation of threshold logarithms for the Drell-Yan cross section and for Deep Inelastic structure functions. While no general factorization theorem is known for these next-to-eikonal (NE) corrections, it is conjectured that at least a subset will exponentiate, along with the logarithms arising at leading power. Here we develop some general tools to study NE logarithms, and we construct an ansatz for threshold resummation that includes various sources of NE corrections, implementing in this context the improved collinear evolution recently proposed by Dokshitzer, Marchesini and Salam (DMS). We compare our ansatz to existing exact results at two and three loops, finding evidence for the exponentiation of leading NE logarithms and confirming the predictivity of DMS evolution

  17. Higgs production via vector-boson fusion at NNLO in QCD

    International Nuclear Information System (INIS)

    Bolzoni, Paolo; Moch, Sven-Olaf; Maltoni, Fabio; Zaro, Marco

    2010-03-01

    We present the total cross sections at next-to-next-to-leading order (NNLO) in the strong coupling for Higgs production via weak boson fusion. Our results are obtained via the structure function approach, which builds upon the approximate, though very accurate, factorization of the QCD corrections between the two quark lines. The theoretical uncertainty on the total cross sections at the LHC from higher order corrections and the parton distribution uncertainties are estimated at the 2% level each for a wide range of Higgs boson masses. (orig.)

  18. Mueller–Navelet small-cone jets at LHC in next-to-leading BFKL

    Energy Technology Data Exchange (ETDEWEB)

    Caporale, F., E-mail: francesco.caporale@fis.unical.it [Dipartimento di Fisica, Università della Calabria and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Ivanov, D.Yu., E-mail: d-ivanov@math.nsc.ru [Sobolev Institute of Mathematics and Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Murdaca, B., E-mail: beatrice.murdaca@fis.unical.it [Dipartimento di Fisica, Università della Calabria and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Papa, A., E-mail: alessandro.papa@fis.unical.it [Dipartimento di Fisica, Università della Calabria and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy)

    2013-12-01

    We consider within QCD collinear factorization the process p+p→jet+jet+X, where two forward high-p{sub T} jets are produced with a large separation in rapidity Δy (Mueller–Navelet jets). In this case the (calculable) hard part of the reaction receives large higher-order corrections ∼α{sub s}{sup n}(Δy){sup n}, which can be accounted for in the BFKL approach with next-to-leading logarithmic accuracy, including contributions ∼α{sub s}{sup n}(Δy){sup n−1}. We calculate several observables related with this process, using the next-to-leading order jet vertices, recently calculated in the approximation of small aperture of the jet cone in the pseudorapidity–azimuthal angle plane.

  19. Virasoro vacuum block at next-to-leading order in the heavy-light limit

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido [Dipartimento di Matematica e Fisica Ennio De Giorgi,Università del Salento & INFN, Via Arnesano, 73100 Lecce (Italy)

    2016-02-11

    We consider the semiclassical limit of the vacuum Virasoro block describing the diagonal 4-point correlation functions on the sphere. At large central charge c, after exponentiation, it depends on two fixed ratios h{sub H}/c and h{sub L}/c, where h{sub H,L} are the conformal dimensions of the 4-point function operators. The semiclassical block may be expanded in powers of the light ratio h{sub L}/c and the leading non-trivial (linear) order is known in closed form as a function of h{sub H}/c. Recently, this contribution has been matched against AdS{sub 3} gravity calculations where heavy operators build up a classical geometry corresponding to a BTZ black hole, while the light operators are described by a geodesic in this background. Here, we compute for the first time the next-to-leading quadratic correction O((h{sub L}/c){sup 2}), again in closed form for generic heavy operator ratio h{sub H}/c. The result is a highly non-trivial extension of the leading order and may be relevant for further refined AdS{sub 3}/CFT{sub 2} tests. Applications to the two-interval Rényi entropy are also presented.

  20. Soft factors for double parton scattering at NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirov, Alexey [Institut für Theoretische Physik, Universität Regensburg,D-93040 Regensburg (Germany)

    2016-12-13

    We show at NNLO that the soft factors for double parton scattering (DPS) for both integrated and unintegrated kinematics, can be presented entirely in the terms of the soft factor for single Drell-Yan process, i.e. the transverse momentum dependent (TMD) soft factor. Using the linearity of the logarithm of TMD soft factor in rapidity divergences, we decompose the DPS soft factor matrices into a product of matrices with rapidity divergences in given sectors, and thus, define individual double parton distributions at NNLO. The rapidity anomalous dimension matrices for double parton distributions are presented in the terms of TMD rapidity anomalous dimension. The analysis is done using the generating function approach to web diagrams. Significant part of the result is obtained from the symmetry properties of web diagrams without referring to explicit expressions or a particular rapidity regularization scheme. Additionally, we present NNLO expression for the web diagram generating function for Wilson lines with two light-like directions.

  1. QCD next-to-leading-order predictions matched to parton showers for vector-like quark models.

    Science.gov (United States)

    Fuks, Benjamin; Shao, Hua-Sheng

    2017-01-01

    Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however, rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks thanks to an accurate control of the shapes of the relevant observables and emphasise the extra handles that could be provided by novel vector-like-quark probes never envisaged so far.

  2. Higgs boson decay into b-quarks at NNLO accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Duca, Vittorio Del [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati,Via E. Fermi 40, I-00044 Frascati (Italy); Duhr, Claude [PH Department, TH Unit, CERN,CH-1211 Geneva 23 (Switzerland); Center for Cosmology, Particle Physics and Phenomenology (CP3),Université Catholique de Louvain, Chemin du Cyclotron 2,B-1348 Louvain-La-Neuve (Belgium); Somogyi, Gábor [University of Debrecen and MTA-DE Particle Physics Research Group,H-4010 Debrecen, PO Box 105 (Hungary); Tramontano, Francesco [Dipartimento di Fisica, Università degli studi di Napoli andINFN - Sezione di Napoli, 80125 Napoli (Italy); Trócsányi, Zoltán [University of Debrecen and MTA-DE Particle Physics Research Group,H-4010 Debrecen, PO Box 105 (Hungary)

    2015-04-08

    We compute the fully differential decay rate of the Standard Model Higgs boson into b-quarks at next-to-next-to-leading order (NNLO) accuracy in α{sub s}. We employ a general subtraction scheme developed for the calculation of higher order perturbative corrections to QCD jet cross sections, which is based on the universal infrared factorization properties of QCD squared matrix elements. We show that the subtractions render the various contributions to the NNLO correction finite. In particular, we demonstrate analytically that the sum of integrated subtraction terms correctly reproduces the infrared poles of the two-loop double virtual contribution to this process. We present illustrative differential distributions obtained by implementing the method in a parton level Monte Carlo program. The basic ingredients of our subtraction scheme, used here for the first time to compute a physical observable, are universal and can be employed for the computation of more involved processes.

  3. Soft gluon resummation of Drell-Yan rapidity distributions: Theory and phenomenology

    International Nuclear Information System (INIS)

    Bonvini, Marco; Forte, Stefano; Ridolfi, Giovanni

    2011-01-01

    We examine critically the theoretical underpinnings and phenomenological implications of soft gluon (threshold) resummation of rapidity distributions at a hadron collider, taking Drell-Yan production at the Tevatron and the LHC as a reference test case. First, we show that in perturbative QCD soft gluon resummation is necessary whenever the partonic (rather the hadronic) center-of-mass energy is close enough to threshold, and we provide tools to assess when resummation is relevant for a given process. Then, we compare different prescriptions for handling the divergent nature of the series of resummed perturbative corrections, specifically the minimal and Borel prescriptions. We assess the intrinsic ambiguities of resummed results, both due to the asymptotic nature of their perturbative expansion, and to the treatment of subleading terms. Turning to phenomenology, we introduce a fast and accurate method for the implementation of resummation with the minimal and Borel prescriptions using an expansion on a basis of Chebyshev polynomials. We then present results for W and Z production as well as both high- and low-mass dilepton pairs at the LHC, and show that soft gluon resummation effects are generally comparable in size to NNLO corrections, but sometimes affected by substantial ambiguities.

  4. Applications of SCET to the pair production of supersymmetric particles at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Broggio, Alessandro

    2013-02-04

    In this thesis we investigate the phenomenology of supersymmetric particles at hadron colliders beyond next-to-leading order (NLO) in perturbation theory. We discuss the foundations of Soft-Collinear Effective Theory (SCET) and, in particular, we explicitly construct the SCET Lagrangian for QCD. As an example, we discuss factorization and resummation for the Drell-Yan process in SCET. We use techniques from SCET to improve existing calculations of the production cross sections for slepton-pair production and top-squark-pair production at hadron colliders. As a first application, we implement soft-gluon resummation at next-to-next-to-next-to-leading logarithmic order (NNNLL) for slepton-pair production in the minimal supersymmetric extension of the Standard Model (MSSM). This approach resums large logarithmic corrections arising from the dynamical enhancement of the partonic threshold region caused by steeply falling parton luminosities. We evaluate the resummed invariant-mass distribution and total cross section for slepton-pair production at the Tevatron and LHC and we match these results, in the threshold region, onto NLO fixed-order calculations. As a second application we present the most precise predictions available for top-squark-pair production total cross sections at the LHC. These results are based on approximate NNLO formulas in fixed-order perturbation theory, which completely determine the coefficients multiplying the singular plus distributions. The analysis of the threshold region is carried out in pair invariant mass (PIM) kinematics and in single-particle inclusive (1PI) kinematics. We then match our results in the threshold region onto the exact fixed-order NLO results and perform a detailed numerical analysis of the total cross section.

  5. Charged Higgs production via vector-boson fusion at NNLO in QCD

    International Nuclear Information System (INIS)

    Zaro, Marco; Maltoni, Fabio

    2010-12-01

    We present the total cross sections at next-to-next-to-leading order (NNLO) in the strong coupling for single and double charged Higgs production via weak boson fusion. Results are obtained via the structure function approach, which builds upon the approximate, though very accurate, factorization of the QCD corrections between the two quark lines. The theoretical uncertainty on the total cross sections at the LHC from higher order corrections and the parton distribution uncertainties are estimated at the 2% level each for a wide range of Higgs boson masses. (orig.)

  6. Resonance saturation of the chiral couplings at next-to-leading order in 1/NC

    International Nuclear Information System (INIS)

    Rosell, Ignasi; Ruiz-Femenia, Pedro; Sanz-Cillero, Juan Jose

    2009-01-01

    The precision obtainable in phenomenological applications of chiral perturbation theory is currently limited by our lack of knowledge on the low-energy constants (LECs). The assumption that the most important contributions to the LECs come from the dynamics of the low-lying resonances, often referred to as the resonance saturation hypothesis, has stimulated the use of large-N C resonance Lagrangians in order to obtain explicit values for the LECs. We study the validity of the resonance saturation assumption at the next-to-leading order in the 1/N C expansion within the framework of resonance chiral theory. We find that, by imposing QCD short-distance constraints, the chiral couplings can be written in terms of the resonance masses and couplings and do not depend explicitly on the coefficients of the chiral operators in the Goldstone boson sector of resonance chiral theory. As we argue, this is the counterpart formulation of the resonance saturation statement in the context of the resonance Lagrangian. Going beyond leading order in the 1/N C counting allows us to keep full control of the renormalization scale dependence of the LEC estimates.

  7. Higher-order hadronic and heavy-lepton contributions to the anomalous magnetic moment

    International Nuclear Information System (INIS)

    Kurz, Alexander; Liu, Tao; Steinhauser, Matthias

    2014-07-01

    We report about recent results obtained for the muon anomalous magnetic moment. Three-loop kernel functions have been computed to obtain the next-to-next-to-leading-order hadronic vacuum polarization contributions. The numerical result, a μ had,NNLO = 1.24 ± 0.01 x 10 -10 , is of the same order of magnitude as the current uncertainty from the hadronic contributions. For heavy-lepton corrections, analytical results are obtained at four-loop order and compared with the known results.

  8. Analytical approaches to the determination of spin-dependent parton distribution functions at NNLO approximation

    Science.gov (United States)

    Salajegheh, Maral; Nejad, S. Mohammad Moosavi; Khanpour, Hamzeh; Tehrani, S. Atashbar

    2018-05-01

    In this paper, we present SMKA18 analysis, which is a first attempt to extract the set of next-to-next-leading-order (NNLO) spin-dependent parton distribution functions (spin-dependent PDFs) and their uncertainties determined through the Laplace transform technique and Jacobi polynomial approach. Using the Laplace transformations, we present an analytical solution for the spin-dependent Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NNLO approximation. The results are extracted using a wide range of proton g1p(x ,Q2) , neutron g1n(x ,Q2) , and deuteron g1d(x ,Q2) spin-dependent structure functions data set including the most recent high-precision measurements from COMPASS16 experiments at CERN, which are playing an increasingly important role in global spin-dependent fits. The careful estimations of uncertainties have been done using the standard Hessian error propagation. We will compare our results with the available spin-dependent inclusive deep inelastic scattering data set and other results for the spin-dependent PDFs in literature. The results obtained for the spin-dependent PDFs as well as spin-dependent structure functions are clearly explained both in the small and large values of x .

  9. On γ5 in higher-order QCD calculations and the NNLO evolution of the polarized valence distribution

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2015-06-01

    We discuss the prescription for the Dirac matrix γ 5 in dimensional regularization used in most second- and third-order QCD calculations of collider cross sections. We provide an alternative implementation of this approach that avoids the use of an explicit form of γ 5 and of its (anti-) commutation relations in the most important case of no more than one γ 5 in each fermion trace. This treatment is checked by computing the third-order corrections to the structure functions F 2 and g 1 in charged-current deep-inelastic scattering with axial-vector couplings to the W-bosons. We derive the so far unknown third-order helicity-difference splitting function ΔP ns (2)s that contributes to the next-to-next-to-leading order (NNLO) evolution of the polarized valence quark distribution of the nucleon. This function is negligible at momentum fractions x>or similar 0.3 but relevant at x<<1.

  10. Holiday fun with soft gluons

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Emissions of soft gluons from energetic particles play an important role in collider processes. While the basic physics of soft emissions is simple, it gives rise to a variety of interesting and intricate phenomena (non-global logs, Glauber phases, super-leading logs, factorization breaking). After an introduction, I will review progress in resummation methods such as Soft-Collinear Effective Theory driven by a better understanding of soft emissions. I will also show some new results for computations of soft-gluon effects in gap-between-jets and isolation-cone cross sections.

  11. Inclusive two-jet production in photon-photon collisions: Direct and resolved contributions in next-to-leading order QCD

    International Nuclear Information System (INIS)

    Kleinwort, T.; Kramer, G.

    1996-10-01

    We have calculated inclusive two-jet production in photon-photon collisions superimposing direct, single-resolved and double-resolved cross sections for center-of-mass energies of TRISTAN and LEP1.5. All three contributions are calculated up to next-to-leading order. The results are compared with recent experimental data. Three NLO sets of parton distributions of the photon are tested. (orig.)

  12. Next-to-leading order γγ+2-jet production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z.; Dixon, L. J.; Febres Cordero, F.; Höche, S.; Ita, H.; Kosower, D. A.; Lo Presti, N. A.; Maître, D.

    2014-09-01

    We present next-to-leading-order QCD predictions for cross sections and for a comprehensive set of distributions in γγ+2-jet production at the Large Hadron Collider. We consider the contributions from loop amplitudes for two photons and four gluons, but we neglect top quarks. We use BlackHat together with SHERPA to carry out the computation. We use a Frixione cone isolation for the photons. We study standard sets of cuts on the jets and the photons and also sets of cuts appropriate for studying backgrounds to Higgs-boson production via vector-boson fusion.

  13. On some aspects of optimisation of factorisation scheme dependence at the next-to-leading order in QCD

    International Nuclear Information System (INIS)

    Chyla, J.

    1989-01-01

    Several recent papers attempting to apply the optimised QCD perturbation theory to reactions involving real or virtual photons are discussed with particular attention paid to the ambiguity appearing in the definition of parton distribution and fragmentation functions at the next-to-leading order (NLO). The necessity to use NLO parametrisations of quark densities is stressed and the problem with respect to the factorisation mass M for the 'physical' definition of parton densities is pointed out. (orig.)

  14. Pseudo-scalar Higgs boson production at N"3LO_A+N"3LL"'

    International Nuclear Information System (INIS)

    Ahmed, Taushif; Rana, Narayan; Ravindran, V.; Bonvini, Marco; Rottoli, Luca; Kumar, M.C.; Mathews, Prakash

    2016-01-01

    We consider the production of a pseudo-scalar particle A at the LHC, and present accurate theoretical predictions for its inclusive cross section in gluon fusion. The prediction is based on combining fixed-order perturbation theory and all-order threshold resummation. At fixed order we include the exact next-to-next-to-leading order (NNLO) plus an approximate next-to-next-to-next-to-leading order (N"3LO_A) which is based on the recent computation at this order for the scalar case. We then add threshold resummation at next-to-next-to-next-to leading logarithmic accuracy (N"3LL"'). Various forms of threshold resummation are considered, differing by the treatment of subleading terms, allowing a robust estimate of the theoretical uncertainties due to missing higher orders. With particular attention to pseudo-scalar masses of 200 and 750 GeV, we also observe that perturbative convergence is much improved when resummation is included. Additionally, results obtained with threshold resummation in direct QCD are compared with analogous results as computed in soft-collinear effective theory, which turn out to be in good agreement. We provide precise predictions for pseudo-scalar inclusive cross section at 13 TeV LHC for a wide range of masses. The results are available through updated versions of the public codes ggHiggs and TROLL. (orig.)

  15. Pinning down the large-x gluon with NNLO top-quark pair differential distributions

    NARCIS (Netherlands)

    Czakon, Michał; Hartland, Nathan P.; Mitov, Alexander; Nocera, Emanuele R.; Rojo, Juan

    2016-01-01

    Top-quark pair production at the LHC is directly sensitive to the gluon PDF at large x. While total cross-section data is already included in several PDF determinations, differential distributions are not, because the corresponding NNLO calculations have become available only recently. In this work

  16. Fully-differential NNLO predictions for vector-boson pair production with MATRIX

    CERN Document Server

    Wiesemann, Marius; Kallweit, Stefan; Rathlev, Dirk

    2016-01-01

    We review the computations of the next-to-next-to-leading order (NNLO) QCD corrections to vector-boson pair production processes in proton–proton collisions and their implementation in the numerical code MATRIX. Our calculations include the leptonic decays of W and Z bosons, consistently taking into account all spin correlations, off-shell effects and non-resonant contributions. For massive vector-boson pairs we show inclusive cross sections, applying the respective mass windows chosen by ATLAS and CMS to define Z bosons from their leptonic decay products, as well as total cross sections for stable bosons. Moreover, we provide samples of differential distributions in fiducial phase-space regions inspired by typical selection cuts used by the LHC experiments. For the vast majority of measurements, the inclusion of NNLO corrections significantly improves the agreement of the Standard Model predictions with data.

  17. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiński, Wojciech, E-mail: wkaminsk@fuw.edu.pl [Wydział Fizyki, Uniwersytet Warszawski, Hoża 69, 00-681, Warsaw (Poland); Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany); Steinhaus, Sebastian, E-mail: steinhaus.sebastian@gmail.com [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2013-12-15

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.

  18. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    International Nuclear Information System (INIS)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2013-01-01

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol

  19. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    Science.gov (United States)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2013-12-01

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.

  20. NNLO corrections for LHC processes

    CERN Document Server

    Caola, Fabrizio

    2015-01-01

    To fully profit from the remarkable achievements of the experimental program at the LHC, very precise theoretical predictions for signal and background processes are required. In this contribution, I will review some of the recent progress in fully exclusive next-to-next-toleading-order (NNLO) QCD computations. As an example of the phenomenological relevance of these results, I will present LHC predictions for t-channel single-top production and Higgs boson production in association with one hard jet.

  1. Next-to-leading-order tests of NRQCD factorization with J/{psi} yield and polarization

    Energy Technology Data Exchange (ETDEWEB)

    Butenschoen, Mathias [Wien Univ. (Austria). Fakultaet fuer Physik; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2012-12-15

    We report on recent progress in testing the factorization formalism of nonrelativistic quantum chromodynamics (NRQCD) at next-to-leading order (NLO) for J/{psi} yield and polarization. We demonstrate that it is possible to unambiguously determine the leading color-octet long-distance matrix elements (LDMEs) in compliance with the velocity scaling rules through a global fit to experimental data of unpolarized J/{psi} production in pp, p anti p, ep, {gamma}{gamma}, and e{sup +}e{sup -} collisions.Three data sets not included in the fit, from hadroproduction and from photoproduction in the fixed-target and colliding-beam modes, are nicely reproduced. The polarization observables measured in different frames at DESY HERA and CERN LHC reasonably agree with NLO NRQCD predictions obtained using the LDMEs extracted from the global fit, while measurements from the FNAL Tevatron exhibit severe disagreement. We demonstrate that alternative LDME sets recently obtained in two other NLO NRQCD analyses of J/{psi} yield and polarization, with different philosophies, also fail to reconcile the Tevatron polarization data with the other available world data.

  2. Next-order spin-orbit contributions to chaos in compact binaries

    International Nuclear Information System (INIS)

    Wang Yuzhao; Wu Xin

    2011-01-01

    This paper is mainly devoted to numerically investigating the effects of the next-order spin-orbit interactions including the 2.5 post-Newtonian order term of the equations of motion and the second post-Newtonian order terms of the spin precession equations on chaos in the conservative Lagrangian dynamics of a spinning compact binary system. It is shown sufficiently through individual orbit simulations, the dependence of the invariant fast Lyapunov indicators on the variations of initial spin angles and the phase space scans for chaos, that the next-order spin-orbit contributions do play an important role in the amplification of chaos.

  3. Production of massless bottom jets in p anti p and pp collisions at next-to-leading order of QCD

    International Nuclear Information System (INIS)

    Bierenbaum, Isabella; Kramer, Gustav

    2016-03-01

    We present predictions for the inclusive production of bottom jets in proton-antiproton collisions at 1.96 TeV and proton-proton collisions at 7 TeV. The bottom quark is considered massless. In this scheme, we find that at small transverse momentum (p T ) the ratio of the next-to-leading order to the leading-order cross section (K factor) is smaller than one. It increases with increasing p T and approaches one at larger p T at a value depending essentially on the choice of the renormalization scale. Adding non-perturbative corrections obtained from PYTHIA Monte Carlo calculations leads to reasonable agreement with experimental b-jet cross sections obtained by the CDF and the CMS collaborations.

  4. W{sup ±}Z production at the LHC: fiducial cross sections and distributions in NNLO QCD

    Energy Technology Data Exchange (ETDEWEB)

    Grazzini, Massimiliano [Physik-Institut, Universität Zürich,CH-8057 Zürich (Switzerland); Kallweit, Stefan [TH Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Rathlev, Dirk [Physik-Institut, Universität Zürich,CH-8057 Zürich (Switzerland); Wiesemann, Marius [Physik-Institut, Universität Zürich,CH-8057 Zürich (Switzerland); TH Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland)

    2017-05-26

    We report on the first fully differential calculation for W{sup ±}Z production in hadron collisions up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. Leptonic decays of the W and Z bosons are consistently taken into account, i.e. we include all resonant and non-resonant diagrams that contribute to the process pp→ℓ{sup ′±}ν{sub ℓ{sup ′}}ℓ{sup +}ℓ{sup −}+X both in the same-flavour (ℓ{sup ′}=ℓ) and the different-flavour (ℓ{sup ′}≠ℓ) channel. Fiducial cross sections and distributions are presented in the presence of standard selection cuts applied in the experimental W{sup ±}Z analyses by ATLAS and CMS at centre-of-mass energies of 8 and 13 TeV. As previously shown for the inclusive cross section, NNLO corrections increase the NNLO result by about 10%, thereby leading to an improved agreement with experimental data. The importance of NNLO accurate predictions is also shown in the case of new-physics scenarios, where, especially in high-p{sub T} categories, their impact can reach O(20%). The availability of differential NNLO predictions will play a crucial role in the rich physics programme that is based on precision studies of W{sup ±}Z signatures at the LHC.

  5. Finite top-mass effects in gluon-induced Higgs production with a jet-veto at NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Tobias [Universitaet Wuppertal (Germany); Wiesemann, Marius [Universitaet Zuerich (Switzerland)

    2015-07-01

    Effects from a finite top quark mass on the H+n-jet cross section through gluon fusion are studied for n = 0/n ≥ 1 at NNLO/NLO QCD. For this purpose, sub-leading terms in 1/m{sub t} are calculated. We show that the asymptotic expansion of the jet-vetoed cross section at NNLO is very well behaved and that the heavy-top approximation is valid at the five permille level up to jet-veto cuts of 300 GeV. For the inclusive Higgs+jet rate, we introduce a matching procedure that allows for a reliable prediction of the top-mass effects using the expansion in 1/m{sub t}. The quality of the effective field theory to evaluate differential K-factors for the distribution of the hardest jet is found to be better than 1-2% as long as the transverse momentum of the jet is integrated out or remains below about 150 GeV.

  6. Higgs production at NNLO in QCD. The VBF channel

    International Nuclear Information System (INIS)

    Bolzoni, P.; Moch, S.; Zaro, M.; Maltoni, F.

    2010-06-01

    We present a phenomenological study for the production of the Higgs boson at next-to-next-to-leading order (NNLO) in QCD via the vector boson fusion (VBF) process. After a general discussion about the different production channels of the Higgs, we show results for hadron colliders like LHC and Tevatron in VBF. The theoretical predictions are obtained using the structure function approach. This approximation turns out to be more accurate than the precision to which the VBF Higgs production channel can be considered a well defined process by itself and the theoretical uncertainty which are of the order of 1-2%. The uncertainties due to parton distributions are also discussed and are estimated to be at the same level. (orig.)

  7. Production of massless bottom jets in p anti p and pp collisions at next-to-leading order of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bierenbaum, Isabella [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Kramer, Gustav [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2016-03-15

    We present predictions for the inclusive production of bottom jets in proton-antiproton collisions at 1.96 TeV and proton-proton collisions at 7 TeV. The bottom quark is considered massless. In this scheme, we find that at small transverse momentum (p{sub T}) the ratio of the next-to-leading order to the leading-order cross section (K factor) is smaller than one. It increases with increasing p{sub T} and approaches one at larger p{sub T} at a value depending essentially on the choice of the renormalization scale. Adding non-perturbative corrections obtained from PYTHIA Monte Carlo calculations leads to reasonable agreement with experimental b-jet cross sections obtained by the CDF and the CMS collaborations.

  8. The three-loop splitting functions in QCD: The helicity-dependent case

    Directory of Open Access Journals (Sweden)

    S. Moch

    2014-12-01

    Full Text Available We present the next-to-next-to-leading order (NNLO contributions to the main splitting functions for the evolution of longitudinally polarized parton densities of hadrons in perturbative QCD. The quark–quark and gluon–quark splitting functions have been obtained by extending our previous all Mellin-N calculations to the structure function g1 in electromagnetic deep-inelastic scattering (DIS. Their quark–gluon and gluon–gluon counterparts have been derived using third-order fixed-N calculations of structure functions in graviton-exchange DIS, relations to the unpolarized case and mathematical tools for systems of Diophantine equations. The NNLO corrections to the splitting functions are small outside the region of small momentum fractions x where they exhibit a large double-logarithmic enhancement, yet the corrections to the evolution of the parton densities can be unproblematic down to at least x≈10−4.

  9. Regge behaviour of distribution functions and evolution of gluon ...

    Indian Academy of Sciences (India)

    work we solved DGLAP evolution equation for gluon distribution function at low-x in next-to-leading order (NLO) and the t and x-evolutions of gluon distribution function thus obtained have been compared with global MRST2004 and GRV98 parametrizations. In PQCD, since the higher-order terms in the leading logarithmic.

  10. W+W- production at the LHC. Fiducial cross sections and distributions in NNLO QCD

    International Nuclear Information System (INIS)

    Grazzini, Massimiliano; Wiesemann, Marius; Kallweit, Stefan; California Univ., Santa Barbara, CA; Pozzorini, Stefano; California Univ., Santa Barbara, CA; Rathlev, Dirk

    2016-05-01

    We consider QCD radiative corrections to W + W - production at the LHC and present the first fully differential predictions for this process at next-to-next-to-leading order (NNLO) in perturbation theory. Our computation consistently includes the leptonic decays of the W bosons, taking into account spin correlations, off-shell effects and non-resonant contributions. Detailed predictions are presented for the different-flavour channel pp→μ + e - ν μ anti ν e +X at √(s)=8 and 13 TeV. In particular, we discuss fiducial cross sections and distributions in the presence of standard selection cuts used in experimental W + W - and H→W + W - analyses at the LHC. The inclusive W + W - cross section receives large NNLO corrections, and, due to the presence of a jet veto, typical fiducial cuts have a sizeable influence on the behaviour of the perturbative expansion. The availability of differential NNLO predictions, both for inclusive and fiducial observables, will play an important role in the rich physics programme that is based on precision studies of W + W - signatures at the LHC.

  11. Revisiting the vector form factor at next-to-leading order in 1/N{sub C}

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, Ignasi, E-mail: rosell@uch.ceu.e [Departamento de Ciencias Fisicas, Matematicas y de la Computacion, Universidad CEU Cardenal Herrera, c/ Sant Bartomeu 55, E-46115 Alfara del Patriarca, Valencia (Spain); IFIC, Universitat de Valencia - CSIC, Apt. Correus 22085, E-46071 Valencia (Spain)

    2010-10-15

    Using the Resonance Chiral Theory lagrangian, we perform a calculation of the vector form factor of the pion at the next-to-leading order (NLO) in the 1/N{sub C} expansion. Imposing the correct QCD short-distance constraints, one determines it in terms of F, G{sub V}, F{sub A} and resonance masses. Its low momentum expansion fixes then the low-energy chiral couplings L{sub 9} and C{sub 88} -C{sub 90} at NLO, keeping full control of their renormalization scale dependence. At {mu}{sub 0} = 0.77 GeV, we obtain L{sup r}{sub 9}({mu}{sub 0}) = (7.6 {+-} 0.6) . 10{sup -3} and C{sup r}{sub 88}({mu}{sub 0}) -C{sup r}{sub 90}({mu}{sub 0}) = (-4.5 {+-} 0.5) . 10{sup -5}.

  12. Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory.

    Science.gov (United States)

    Zhang, Cen

    2016-04-22

    Single top production processes at hadron colliders provide information on the relation between the top quark and the electroweak sector of the standard model. We compute the next-to-leading order QCD corrections to the three main production channels: t-channel, s-channel, and tW associated production, in the standard model including operators up to dimension six. The calculation can be matched to parton shower programs and can therefore be directly used in experimental analyses. The QCD corrections are found to significantly impact the extraction of the current limits on the operators, because both of an improved accuracy and a better precision of the theoretical predictions. In addition, the distributions of some of the key discriminating observables are modified in a nontrivial way, which could change the interpretation of measurements in terms of UV complete models.

  13. High energy evolution of soft gluon cascades

    International Nuclear Information System (INIS)

    Shuvaev, A.; Wallon, S.

    2006-01-01

    In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)

  14. High energy evolution of soft gluon cascades

    Energy Technology Data Exchange (ETDEWEB)

    Shuvaev, A. [St. Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg district (Russian Federation); Wallon, S. [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)

    2006-04-15

    In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)

  15. Next-to-leading order prediction for the decay μ→e (e{sup +}e{sup −}) νν̄

    Energy Technology Data Exchange (ETDEWEB)

    Fael, M.; Greub, C. [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,CH-3012 Bern (Switzerland)

    2017-01-19

    We present the differential decay rates and the branching ratios of the muon decay with internal conversion, μ→e (e{sup +}e{sup −}) νν̄, in the Standard Model at next-to-leading order (NLO) in the on-shell scheme. This rare decay mode of the muon is among the main sources of background to the search for μ→eee decay. We found that in the phase space region where the neutrino energies are small, and the three-electron momenta have a similar signature as in the μ→eee decay, the NLO corrections decrease the leading-order prediction by about 10−20% depending on the applied cut.

  16. Average gluon and quark jet multiplicities at higher orders

    Energy Technology Data Exchange (ETDEWEB)

    Bolzoni, Paolo; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, Anatoly V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2013-05-15

    We develop a new formalism for computing and including both the perturbative and nonperturbative QCD contributions to the scale evolution of average gluon and quark jet multiplicities. The new method is motivated by recent progress in timelike small-x resummation obtained in the MS factorization scheme. We obtain next-to-next-to-leading-logarithmic (NNLL) resummed expressions, which represent generalizations of previous analytic results. Our expressions depend on two nonperturbative parameters with clear and simple physical interpretations. A global fit of these two quantities to all available experimental data sets that are compatible with regard to the jet algorithms demonstrates by its goodness how our results solve a longstanding problem of QCD. We show that the statistical and theoretical uncertainties both do not exceed 5% for scales above 10 GeV. We finally propose to use the jet multiplicity data as a new way to extract the strong-coupling constant. Including all the available theoretical input within our approach, we obtain {alpha}{sub s}{sup (5)}(M{sub Z})=0.1199{+-}0.0026 in the MS scheme in an approximation equivalent to next-to-next-to-leading order enhanced by the resummations of ln(x) terms through the NNLL level and of ln Q{sup 2} terms by the renormalization group, in excellent agreement with the present world average.

  17. NNLO leptonic and hadronic corrections to Bhabha scattering and luminosity monitoring at meson factories

    Energy Technology Data Exchange (ETDEWEB)

    Carloni Calame, C. [Southampton Univ. (United Kingdom). School of Physics; Czyz, H.; Gluza, J.; Gunia, M. [Silesia Univ., Katowice (Poland). Dept. of Field Theory and Particle Physics; Montagna, G. [Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica; INFN, Sezione di Pavia (Italy); Nicrosini, O.; Piccinini, F. [INFN, Sezione di Pavia (Italy); Riemann, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Worek, M. [Wuppertal Univ. (Germany). Fachbereich C Physik

    2011-07-15

    Virtual fermionic N{sub f}=1 and N{sub f}=2 contributions to Bhabha scattering are combined with realistic real corrections at next-to-next-to-leading order in QED. The virtual corrections are determined by the package BHANNLOHF, and real corrections with the Monte Carlo generators BHAGEN-1PH, HELAC-PHEGAS and EKHARA. Numerical results are discussed at the energies of and with realistic cuts used at the {phi} factory DA{phi}NE, at the B factories PEP-II and KEK, and at the charm/{tau} factory BEPC II. We compare these complete calculations with the approximate ones realized in the generator BABAYAGA rate at NLO used at meson factories to evaluate their luminosities. For realistic reference event selections we find agreement for the NNLO leptonic and hadronic corrections within 0.07% or better and conclude that they are well accounted for in the generator by comparison with the present experimental accuracy. (orig.)

  18. Two-loop corrections to the triple Higgs boson production cross section

    Energy Technology Data Exchange (ETDEWEB)

    Florian, Daniel de [International Center for Advanced Studies (ICAS), ECyT-UNSAM, Campus Miguelete, 25 de Mayo y Francia (1650) Buenos Aires (Argentina); Mazzitelli, Javier [International Center for Advanced Studies (ICAS), ECyT-UNSAM, Campus Miguelete, 25 de Mayo y Francia (1650) Buenos Aires (Argentina); Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)

    2017-02-22

    In this paper we compute the QCD corrections for the triple Higgs boson production cross section via gluon fusion, within the heavy-top approximation. We present, for the first time, analytical results for the next-to-leading order corrections, and also compute the soft and virtual contributions of the next-to-next-to-leading order cross section. We provide predictions for the total cross section and the triple Higgs invariant mass distribution. We find that the QCD corrections are large at both perturbative orders, and that the scale uncertainty is substantially reduced when the second order perturbative corrections are included.

  19. Resummation of soft gluon logarithms in the DGLAP evolution of fragmentation functions

    International Nuclear Information System (INIS)

    Albino, S.; Kniehl, B.A.; Kramer, G.; Ochs, W.

    2005-10-01

    We define a general scheme for the evolution of fragmentation functions which resums both soft gluon logarithms and mass singularities in a consistent manner and to any order, and requires no additional theoretical assumptions. Using the Double Logarithmic Approximation and the known perturbative results for the splitting functions, we present our scheme with the complete contribution from the double logarithms, being the largest soft gluon logarithms. We show that the resulting approximation is more complete than the Modified Leading Logarithm Approximation even with the fixed order contribution calculated to leading order only, and find, after using it to fit quark and gluon fragmentation functions to experimental data, that this approximation in our scheme gives a good description of the data from the largest χ p values to the peak region in ξ=ln(1/χ p ), in contrast to other approximations. In addition, we develop a treatment of hadron mass effects which gives additional improvements at large ξ. (orig.)

  20. Direct photon production and PDF fits reloaded

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John M.; Rojo, Juan; Slade, Emma; Williams, Ciaran

    2018-02-08

    Direct photon production in hadronic collisions provides a handle on the gluon PDF by means of the QCD Compton scattering process. In this work we revisit the impact of direct photon production on a global PDF analysis, motivated by the recent availability of the next-to-next-to-leading (NNLO) calculation for this process. We demonstrate that the inclusion of NNLO QCD and leading-logarithmic electroweak corrections leads to a good quantitative agreement with the ATLAS measurements at 8 TeV and 13 TeV, except for the most forward rapidity region in the former case. By including the ATLAS 8 TeV direct photon production data in the NNPDF3.1 NNLO global analysis, we assess its impact on the medium-x gluon. We also study the constraining power of the direct photon production measurements on PDF fits based on different datasets, in particular on the NNPDF3.1 no-LHC and collider-only fits. We also present updated NNLO theoretical predictions for direct photon production at 13 TeV that include the constraints from the 8 TeV measurements.

  1. Analytic integration of real-virtual counterterms in NNLO jet cross sections I

    Science.gov (United States)

    Aglietti, Ugo; Del Duca, Vittorio; Duhr, Claude; Somogyi, Gábor; Trócsányi, Zoltán

    2008-09-01

    We present analytic evaluations of some integrals needed to give explicitly the integrated real-virtual counterterms, based on a recently proposed subtraction scheme for next-to-next-to-leading order (NNLO) jet cross sections. After an algebraic reduction of the integrals, integration-by-parts identities are used for the reduction to master integrals and for the computation of the master integrals themselves by means of differential equations. The results are written in terms of one- and two-dimensional harmonic polylogarithms, once an extension of the standard basis is made. We expect that the techniques described here will be useful in computing other integrals emerging in calculations in perturbative quantum field theories.

  2. Second-order QCD effects in Higgs boson production through vector boson fusion

    Science.gov (United States)

    Cruz-Martinez, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.

    2018-06-01

    We compute the factorising second-order QCD corrections to the electroweak production of a Higgs boson through vector boson fusion. Our calculation is fully differential in the kinematics of the Higgs boson and of the final state jets, and uses the antenna subtraction method to handle infrared singular configurations in the different parton-level contributions. Our results allow us to reassess the impact of the next-to-leading order (NLO) QCD corrections to electroweak Higgs-plus-three-jet production and of the next-to-next-to-leading order (NNLO) QCD corrections to electroweak Higgs-plus-two-jet production. The NNLO corrections are found to be limited in magnitude to around ± 5% and are uniform in several of the kinematical variables, displaying a kinematical dependence only in the transverse momenta and rapidity separation of the two tagging jets.

  3. Inclusive photoproduction of D*± mesons at next-to-leading order in the general-mass variable-flavor-number scheme

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Kramer, G.; Schienbein, I.; Spiesberger, H.

    2009-02-01

    We discuss the inclusive production of D *± mesons in γp collisions at DESY HERA, based on a calculation at next-to-leading order in the general-mass variable-flavor-number scheme. In this approach, MS subtraction is applied in such a way that large logarithmic corrections are resummed in universal parton distribution and fragmentation functions and finite mass terms are taken into account. We present detailed numerical results for a comparison with data obtained at HERA and discuss various sources of theoretical uncertainties. (orig.)

  4. Inclusive photoproduction of D{sup *{+-}} mesons at next-to-leading order in the general-mass variable-flavor-number scheme

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A.; Kramer, G. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Schienbein, I. [Univ. Joseph Fourier/CNRS-IN2P3, INPG, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie; Spiesberger, H. [Mainz Univ. (Germany). Inst. fuer Physik

    2009-02-15

    We discuss the inclusive production of D{sup *{+-}} mesons in {gamma}p collisions at DESY HERA, based on a calculation at next-to-leading order in the general-mass variable-flavor-number scheme. In this approach, MS subtraction is applied in such a way that large logarithmic corrections are resummed in universal parton distribution and fragmentation functions and finite mass terms are taken into account. We present detailed numerical results for a comparison with data obtained at HERA and discuss various sources of theoretical uncertainties. (orig.)

  5. Soft gluon emission in coloured quark scattering

    International Nuclear Information System (INIS)

    Frenkel, J.; Meuldemans, R.; Mohammad, I.; Taylor, J.C.

    1977-01-01

    In order to investigate the infrared behaviour of non-Abelian gauge theories the leading logarithms in the bremsstrahlung of two soft gluons by a coloured quark scattered in an external colourless potential have been calculated. In the calculations only diagrams containing exactly one Yang-Mills vertex have been used alongside with the dimensional infrared regularization. An expression is obtained exhibiting a crucial difference between QCD and QED

  6. Associated production of a Higgs boson decaying into bottom quarks at the LHC in full NNLO QCD

    Science.gov (United States)

    Ferrera, Giancarlo; Somogyi, Gábor; Tramontano, Francesco

    2018-05-01

    We consider the production of a Standard Model Higgs boson decaying to bottom quarks in association with a vector boson W± / Z in hadron collisions. We present a fully exclusive calculation of QCD radiative corrections both for the production cross section and for the Higgs boson decay rate up to next-to-next-to-leading order (NNLO) accuracy. Our calculation also includes the leptonic decay of the vector boson with finite-width effects and spin correlations. We consider typical kinematical cuts applied in the experimental analyses at the Large Hadron Collider (LHC) and we find that the full NNLO QCD corrections significantly decrease the accepted cross section and have a substantial impact on the shape of distributions. We point out that these additional effects are essential to obtain precise theoretical predictions to be compared with the LHC data.

  7. Production of H H H and H H V (V =γ ,Z ) at the hadron colliders

    Science.gov (United States)

    Agrawal, Pankaj; Saha, Debashis; Shivaji, Ambresh

    2018-02-01

    We consider the production of two Higgs bosons in association with a gauge boson or another Higgs boson at the hadron colliders. We compute the cross sections and distributions for the processes p p →H H H and H H Z within the standard model. In particular, we compute the gluon-gluon fusion one-loop contributions mediated via heavy quarks in the loop. It is the leading order contribution to p p →H H H process. To the process p p →H H Z , it is next-to-next-to-leading-order (NNLO) contribution in QCD coupling. We also compare this contribution to the next-to-leading-order (NLO) QCD contribution to this process. The NNLO contribution can be similar to NLO contribution at the Large Hadron Collider (LHC), and significantly more at higher center-of-mass energy machines. We also study new physics effects in these processes by considering t t H , H H H , H H H H , H Z Z , and H H Z Z interactions as anomalous. The anomalous couplings can enhance the cross sections significantly. The g g →H H H process is specially sensitive to anomalous trilinear Higgs boson self-coupling. For the g g →H H Z process, there is some modest dependence on anomalous H Z Z couplings.

  8. Two-loop current–current operator contribution to the non-leptonic QCD penguin amplitude

    Directory of Open Access Journals (Sweden)

    G. Bell

    2015-11-01

    Full Text Available The computation of direct CP asymmetries in charmless B decays at next-to-next-to-leading order (NNLO in QCD is of interest to ascertain the short-distance contribution. Here we compute the two-loop penguin contractions of the current–current operators Q1,2 and provide a first estimate of NNLO CP asymmetries in penguin-dominated b→s transitions.

  9. Next-to-leading-order QCD and electroweak corrections to WWW production at proton-proton colliders

    Science.gov (United States)

    Dittmaier, Stefan; Huss, Alexander; Knippen, Gernot

    2017-09-01

    Triple-W-boson production in proton-proton collisions allows for a direct access to the triple and quartic gauge couplings and provides a window to the mechanism of electroweak symmetry breaking. It is an important process to test the Standard Model (SM) and might be background to physics beyond the SM. We present a calculation of the next-to-leading order (NLO) electroweak corrections to the production of WWW final states at proton-proton colliders with on-shell W bosons and combine the electroweak with the NLO QCD corrections. We study the impact of the corrections to the integrated cross sections and to kinematic distributions of the W bosons. The electroweak corrections are generically of the size of 5-10% for integrated cross sections and become more pronounced in specific phase-space regions. The real corrections induced by quark-photon scattering turn out to be as important as electroweak loops and photon bremsstrahlung corrections, but can be reduced by phase-space cuts. Considering that prior determinations of the photon parton distribution function (PDF) involve rather large uncertainties, we compare the results obtained with different photon PDFs and discuss the corresponding uncertainties in the NLO predictions. Moreover, we determine the scale and total PDF uncertainties at the LHC and a possible future 100 TeV pp collider.

  10. Associated production of a top pair and a Z boson at the LHC to NNLL accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Broggio, Alessandro [Physik Department T31, Technische Universität München,James Franck-Straße 1, D-85748 Garching (Germany); Ferroglia, Andrea; Ossola, Giovanni [Physics Department, New York City College of Technology, The City University of New York,300 Jay Street, Brooklyn, NY 11201 (United States); The Graduate School and University Center, The City University of New York,365 Fifth Avenue, New York, NY 10016 (United States); Pecjak, Ben D. [Institute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics,Department of Physics, University of Durham, Science Laboratories,South Rd, Durham DH1 3LE (United Kingdom); Sameshima, Ray D. [Physics Department, New York City College of Technology, The City University of New York,300 Jay Street, Brooklyn, NY 11201 (United States); The Graduate School and University Center, The City University of New York,365 Fifth Avenue, New York, NY 10016 (United States)

    2017-04-19

    We study the resummation of soft gluon emission corrections to the production of a top-antitop pair in association with a Z boson at the Large Hadron Collider to next-to-next-to-leading logarithmic accuracy. By means of an in-house parton level Monte Carlo code we evaluate the resummation formula for the total cross section and several differential distributions at a center-of-mass energy of 13 TeV, and we match these calculations to next-to-leading order results.

  11. Multiplicity distributions of gluon and quark jets and tests of QCD analytic predictions

    Science.gov (United States)

    OPAL Collaboration; Ackerstaff, K.; et al.

    Gluon jets are identified in e+e^- hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon jets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The charged particle multiplicity distribution of the gluon jets is presented, and is analyzed for its mean, dispersion, skew, and curtosis values, and for its factorial and cumulant moments. The results are compared to the analogous results found for a sample of light quark (uds) jets, also defined inclusively. We observe differences between the mean, skew and curtosis values of gluon and quark jets, but not between their dispersions. The cumulant moment results are compared to the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the data compared to a next-to-leading order calculation without energy conservation. There is agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets.

  12. Direct photon production and PDF fits reloaded

    NARCIS (Netherlands)

    Campbell, John M.; Rojo, Juan; Slade, Emma; Williams, Ciaran

    2018-01-01

    Direct photon production in hadronic collisions provides a handle on the gluon PDF by means of the QCD Compton scattering process. In this work we revisit the impact of direct photon production on a global PDF analysis, motivated by the recent availability of the next-to-next-to-leading (NNLO)

  13. Heavy Quark Impact Factor at Next-to-leading Level

    OpenAIRE

    Ciafaloni, Marcello; Rodrigo, German

    2000-01-01

    We further analyze the definition and the calculation of the heavy quark impact factor at next-to-leading (NL) log(s) level, and we provide its analytical expression in a previously proposed k-factorization scheme. Our results indicate that k-factorization holds at NL level with a properly chosen energy scale, and with the same gluonic Green's function previously found in the massless probe case.

  14. Heavy-quark fragmentation functions at next-to-leading perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi Nejad, S.M. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Sartipi Yarahmadi, P. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of)

    2016-10-15

    It is well known that the dominant mechanism to produce hadronic bound states with large transverse momentum is fragmentation. This mechanism is described by the fragmentation functions (FFs) which are the universal and process-independent functions. Here, we review the perturbative FFs formalism as an appropriate tool for studying these hadronization processes and detail the extension of this formalism at next-to-leading order (NLO). Using Suzuki's model, we calculate the perturbative QCD FF for a heavy quark to fragment into a S-wave heavy meson at NLO. As an example, we study the LO and NLO FFs for a charm quark to split into the S-wave D-meson and compare our analytic results both with experimental data and well-known phenomenological models. (orig.)

  15. Two-Loop Gluon to Gluon-Gluon Splitting Amplitudes in QCD

    International Nuclear Information System (INIS)

    Bern, Z.

    2004-01-01

    Splitting amplitudes are universal functions governing the collinear behavior of scattering amplitudes for massless particles. We compute the two-loop g → gg splitting amplitudes in QCD, N = 1, and N = 4 super-Yang-Mills theories, which describe the limits of two-loop n-point amplitudes where two gluon momenta become parallel. They also represent an ingredient in a direct x-space computation of DGLAP evolution kernels at next-to-next-to-leading order. To obtain the splitting amplitudes, we use the unitarity sewing method. In contrast to the usual light-cone gauge treatment, our calculation does not rely on the principal-value or Mandelstam-Leibbrandt prescriptions, even though the loop integrals contain some of the denominators typically encountered in light-cone gauge. We reduce the integrals to a set of 13 master integrals using integration-by-parts and Lorentz invariance identities. The master integrals are computed with the aid of differential equations in the splitting momentum fraction z. The ε-poles of the splitting amplitudes are consistent with a formula due to Catani for the infrared singularities of two-loop scattering amplitudes. This consistency essentially provides an inductive proof of Catani's formula, as well as an ansatz for previously-unknown 1/ε pole terms having non-trivial color structure. Finite terms in the splitting amplitudes determine the collinear behavior of finite remainders in this formula

  16. NNLOPS accurate associated HZ production with NLO decay ${\\rm{H}} \\to b\\bar{b}$ arXiv

    CERN Document Server

    Astill, William; Re, Emanuele; Zanderighi, Giulia

    We present a next-to-next-to-leading order (NNLO) accurate description of associated HZ production, followed by the Higgs boson decay into a pair of $b$-quarks treated at next-to-leading order (NLO), consistently matched to a parton shower (PS). The matching is achieved by performing reweighting of the $\\texttt{HZJ-MiNLO}$ events, using multi-dimensional distributions that are fully-differential in the HZ Born kinematics, to the NNLO results obtained by using the $\\texttt{MCFM-8.0}$ fixed-order calculation. Additionally we include the $gg\\to\\rm{HZ}$ contribution to the discussed process that appears at the $\\mathcal{O}(\\alpha_s^2)$. We present phenomenological results obtained for 13 TeV hadronic collisions.

  17. Leading multi-soft limits from scattering equations

    Science.gov (United States)

    Zlotnikov, Michael

    2017-10-01

    A Cachazo-He-Yuan (CHY) type formula is derived for the leading gluon, bi-adjoint scalar ϕ 3, Yang-Mills-scalar and non-linear sigma model m-soft factors S m in arbitrary dimension. The general formula is used to evaluate explicit examples for up to three soft legs analytically and up to four soft legs numerically via comparison with amplitude ratios under soft kinematics. A structural pattern for gluon m-soft factor is inferred and a simpler formula for its calculation is conjectured. In four dimensions, a Cachazo-Svrček-Witten (CSW) recursive procedure producing the leading m-soft gluon factor in spinor helicity formalism is developed as an alternative, and Britto-Cachazo-Feng-Witten (BCFW) recursion is used to obtain the leading four-soft gluon factor for all analytically distinct helicity configurations.

  18. Next to Leading Logarithms and the PHOTOS Monte Carlo

    CERN Document Server

    Golonka, P

    2007-01-01

    With the approaching start-up of the experiments at LHC, the urgency to quantify systematic uncertainties of the generators, used in the interpretation of the data, is becoming pressing. The PHOTOS Monte Carlo program is often used for the simulationof experimental, selection-sensitive, QED radiative corrections in decays of Z bosons and other heavy resonances and particles. Thanks to its complete phase-space coverage it is possible, with no approximations for any decay channel, to implement the matrix-element. The present paper will be devoted to those parts of the next-to-leading order corrections for Z decays which are normally missing in PHOTOS. The analytical form of the exact and truncated (standard) kernel used in PHOTOS will be explicitly given. The correction, being the ratio of the exact to the approximate kernel, can be activated as an optional contribution to the internal weight of PHOTOS. To calculate the weight, the information on the effective Born-level Z/gamma* couplings and even directions o...

  19. Transverse energy-energy correlations in next-to-leading order in {alpha}{sub s} at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed; Wang, Wei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Barreiro, Fernando; Llorente, Javier [Universidad Autonoma de Madrid (Spain). Dept. de Fisica

    2012-05-15

    We compute the transverse energy-energy correlation (EEC) and its asymmetry (AEEC) in next-to-leading order (NLO) in {alpha}{sub s} in proton-proton collisions at the LHC with the center-of-mass energy E{sub c.m.}=7 TeV. We show that the transverse EEC and the AEEC distributions are insensitive to the QCD factorization- and the renormalization-scales, structure functions of the proton, and for a judicious choice of the jet-size, also the underlying minimum bias events. Hence they can be used to precisely test QCD in hadron colliders and determine the strong coupling {alpha}{sub s}. We illustrate these features by defining the hadron jets using the anti-k{sub T} jet algorithm and an event selection procedure employed in the analysis of jets at the LHC and show the {alpha}{sub s}(M{sub Z})-dependence of the transverse EEC and the AEEC in the anticipated range 0.11{<=} {alpha}{sub s}(M{sub Z}){<=}0.13.

  20. Measurement of integrated and differential cross sections for isolated photon pairs in pp collisions at sqrt{

    CERN Document Server

    Li, Xingguo; The ATLAS collaboration

    2017-01-01

    A measurement of the production cross section for two isolated photons in proton-proton collisions at a centre-of-mass energy of √ s = 8 TeV is presented. The results are based on an integrated luminosity of 20.24 fb−1 recorded by the ATLAS detector at the Large Hadron Collider. The measurement considers photons with pseudorapidities satisfying |η γ | 40 GeV and Eγ T,2 > 30 GeV for the highest and second highest Eγ T photon produced in the interaction. The background due to hadronic jets and electrons is subtracted using data-driven techniques. The fiducial cross sections are corrected for detector effects and measured differentially as a function of six kinematic observables. The data are compared to fixed-order QCD calculations at 16 next-to-leading order (NLO) and next-to-next-to-leading-order (NNLO) accuracy as well as NLO computations including resummation of initial-state gluon radiation at next-to-next-to-leading-logarithm or matched to a parton shower.

  1. Multiplicity distributions of gluon and quark jets and a test of QCD analytic calculations

    International Nuclear Information System (INIS)

    Gary, J. William

    1999-01-01

    Gluon jets are identified in e + e - hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon jets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The mean and first few higher moments of the gluon jet charged particle multiplicity distribution are compared to the analogous results found for light quark (uds) jets, also defined inclusively. Large differences are observed between the mean, skew and curtosis values of the gluon and quark jets, but not between their dispersions. The cumulant factorial moments of the distributions are also measured, and are used to test the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the separated gluon and quark jet cumulant moments compared to a next-to-leading order calculation without energy conservation. There is good quantitative agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets. The data sample used is the LEP-1 sample of the OPAL experiment at LEP

  2. Multiplicity distributions of gluon and quark jets and a test of QCD analytic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gary, J. William

    1999-03-01

    Gluon jets are identified in e{sup +}e{sup -} hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon jets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The mean and first few higher moments of the gluon jet charged particle multiplicity distribution are compared to the analogous results found for light quark (uds) jets, also defined inclusively. Large differences are observed between the mean, skew and curtosis values of the gluon and quark jets, but not between their dispersions. The cumulant factorial moments of the distributions are also measured, and are used to test the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the separated gluon and quark jet cumulant moments compared to a next-to-leading order calculation without energy conservation. There is good quantitative agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets. The data sample used is the LEP-1 sample of the OPAL experiment at LEP.

  3. Multiplicity distributions of gluon and quark jets and a test of QCD analytic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gary, J.W. [California Univ., Riverside, CA (United States). Dept. of Physics

    1999-03-01

    Gluon jets are identified in e{sup +}e{sup -} hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon jets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The mean and first few higher moments of the gluon jet charged particle multiplicity distribution are compared to the analogous results found for light quark (uds) jets, also defined inclusively. Large differences are observed between the mean, skew and curtosis values of the gluon and quark jets, but not between their dispersions. The cumulant factorial moments of the distributions are also measured, and are used to test the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the separated gluon and quark jet cumulant moments compared to a next-to-leading order calculation without energy conservation. There is good quantitative agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets. The data sample used is the LEP-1 sample of the OPAL experiment at LEP. (orig.) 6 refs.

  4. Multiplicity distributions of gluon and quark jets and a test of QCD analytic calculations

    International Nuclear Information System (INIS)

    Gary, J.W.

    1999-01-01

    Gluon jets are identified in e + e - hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon jets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The mean and first few higher moments of the gluon jet charged particle multiplicity distribution are compared to the analogous results found for light quark (uds) jets, also defined inclusively. Large differences are observed between the mean, skew and curtosis values of the gluon and quark jets, but not between their dispersions. The cumulant factorial moments of the distributions are also measured, and are used to test the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the separated gluon and quark jet cumulant moments compared to a next-to-leading order calculation without energy conservation. There is good quantitative agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets. The data sample used is the LEP-1 sample of the OPAL experiment at LEP. (orig.)

  5. Multiplicity distributions of gluon and quark jets and a test of QCD analytic calculations

    Science.gov (United States)

    Gary, J. William

    1999-03-01

    Gluon jets are identified in e +e - hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon hets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The mean and first few higher moments of the gluon jet charged particle multiplicity distribution are compared to the analogous results found for light quark (uds) jets, also defined inclusively. Large differences are observed between the mean, skew and curtosis values of the gluon and quark jets, but not between their dispersions. The cumulant factorial moments of the distributions are also measured, and are used to test the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the separated gluon and quark jet cumulant moments compared to a next-to-leading order calculation without energy conservation. There is good quantitative agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets. The data sample used is the LEP-1 sample of the OPAL experiment at LEP.

  6. TMD splitting functions in kT factorization. The real contribution to the gluon-to-gluon splitting

    International Nuclear Information System (INIS)

    Hentschinski, M.; Kusina, A.; Kutak, K.; Serino, M.

    2018-01-01

    We calculate the transverse momentum dependent gluon-to-gluon splitting function within k T -factorization, generalizing the framework employed in the calculation of the quark splitting functions in Hautmann et al. (Nucl Phys B 865:54-66, arXiv:1205.1759, 2012), Gituliar et al. (JHEP 01:181, arXiv:1511.08439, 2016), Hentschinski et al. (Phys Rev D 94(11):114013, arXiv:1607.01507, 2016) and demonstrate at the same time the consistency of the extended formalism with previous results. While existing versions of k T factorized evolution equations contain already a gluon-to-gluon splitting function i.e. the leading order Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel or the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) kernel, the obtained splitting function has the important property that it reduces both to the leading order BFKL kernel in the high energy limit, to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) gluon-to-gluon splitting function in the collinear limit as well as to the CCFM kernel in the soft limit. At the same time we demonstrate that this splitting kernel can be obtained from a direct calculation of the QCD Feynman diagrams, based on a combined implementation of the Curci-Furmanski-Petronzio formalism for the calculation of the collinear splitting functions and the framework of high energy factorization. (orig.)

  7. Next-to-leading order QCD-analysis of EMC deep inelastic μp and μd scattering data

    International Nuclear Information System (INIS)

    Bilen'kaya, S.I.; Stamenov, D.B.

    1987-01-01

    A combined next-to-leading order QCD analysis of the European Muon Collaboration (EMC) μH 2 and μD 2 scattering data is presented. The nucleon structure functions are given in terms of parton distributions. The Buras-Gaemers method is used to solve the QCD equations for these distributions. The higher twist corrections are not taken into account. As has been shown their contribution to the structure functions is negligible in the EMC kinematic region. Unlike most of the papers on this subject the cross section data (not the value for the structure functions obtained from these data by additional extrapolations and assumptions) are fitted. the following values for the QCD scale parameter Λ MS-bar are found: Λ MS-bar =218 ±73 MeV for the non-singlet fit to the data in the range x>0.3 and Λ MS-bar =65±20 MeV if the whole x data are fitted

  8. Higher twists and αs(MZ) extractions from the NNLO QCD analysis of the CCFR data for the xF3 structure function

    International Nuclear Information System (INIS)

    Kataev, A.L; Parente, G.; Sidorov, A.V.

    1999-05-01

    The more detailed next-to-next-to-leading order (NNLO) QCD analysis of the experimental data of the CCFR collaboration for the xF 3 structure function is performed. The factorization scale uncertainties are analyzed. The theoretical ambiguities of the results of our NNLO fits are estimated by means of the Pade resummation technique. The NNLO and the N 3 LO α s (Q 2 ) MS-matching conditions are used. In the process of the fits we are taking into account the twist-4 1/Q 2 -terms. We found that the amplitude of the x-shape of the twist-4 factor is consequently decreasing at the NLO and NNLO, though some remaining twist-4 structure seems to retain at the NNLO in the case when only statistical uncertainties are taken into account. The question of the stability of these results to the application of the [0/2] Pade resummation technique is considered. Our NNLO results for α s (M z ) values, extracted from the CCFR xF 3 data, are α s (M z ) = 0.118 ± 0.002(stat) ± 0.005(syst) ± 0.003(theory) provided the twist-4 contributions are fixed through the infrared renormalon model and α s (M z ) 0.121 -0.010 +0.007 (stat)±0.005(syst)±0.003(theory) provided the twist-4 terms are considered as the free parameters. (author)

  9. SU(N)-QCD2 meson equation in next-to-leading order

    International Nuclear Information System (INIS)

    Durgut, M.; Pak, N.K.

    1982-08-01

    We compute the 1/N corrections to the meson equation in the regular cut-off scheme. We illustrate that although the quark and gluon self energy and vertex corrections do not vanish explicitly as in the singular cut-off scheme, their contributions to the meson Bethe-Salpeter equation get cancelled within the whole set of contributing diagrams. We also argue that 0(1/N) corrections to the meson equation remove the massless boson from the spectrum in accordance with the Coleman theorem. (author)

  10. Impact of Next-to-Leading Order Contributions to Cosmic Microwave Background Lensing.

    Science.gov (United States)

    Marozzi, Giovanni; Fanizza, Giuseppe; Di Dio, Enea; Durrer, Ruth

    2017-05-26

    In this Letter we study the impact on cosmological parameter estimation, from present and future surveys, due to lensing corrections on cosmic microwave background temperature and polarization anisotropies beyond leading order. In particular, we show how post-Born corrections, large-scale structure effects, and the correction due to the change in the polarization direction between the emission at the source and the detection at the observer are non-negligible in the determination of the polarization spectra. They have to be taken into account for an accurate estimation of cosmological parameters sensitive to or even based on these spectra. We study in detail the impact of higher order lensing on the determination of the tensor-to-scalar ratio r and on the estimation of the effective number of relativistic species N_{eff}. We find that neglecting higher order lensing terms can lead to misinterpreting these corrections as a primordial tensor-to-scalar ratio of about O(10^{-3}). Furthermore, it leads to a shift of the parameter N_{eff} by nearly 2σ considering the level of accuracy aimed by future S4 surveys.

  11. Medium-induced gluon radiation and colour decoherence beyond the soft approximation

    CERN Document Server

    Apolinário, Liliana; Milhano, José Guilherme; Salgado, Carlos A

    2015-01-01

    We derive the in-medium gluon radiation spectrum off a quark within the path integral formalism at finite energies, including all next-to-eikonal corrections in the propagators of quarks and gluons. Results are computed for finite formation times, including interference with vacuum amplitudes. Rewriting the medium averages in a convenient manner we present the spectrum in terms of dipole cross sections and a colour decoherence parameter with the same physical origin as that found in previous studies of the antenna radiation. This factorisation allows us to present a simple physical picture of the medium-induced radiation for any value of the formation time, of interest for a probabilistic implementation of the modified parton shower. Interestingly -- and unexpectedly -- we also find a modification of the contribution from the hard vertex which cannot be factorized, at finite formation time, as the vacuum Altarelli-Parisi splitting function. Known results are recovered for the particular cases of soft radiatio...

  12. Driving missing data at the LHC: NNLO predictions for the ratio of γ+j and Z+j

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John M.; Ellis, R. Keith; Williams, Ciaran

    2017-07-01

    In this paper we present a calculation of the $\\gamma+j$ process at next-to-next-to-leading order (NNLO) in QCD and compare the resulting predictions to 8 TeV CMS data. We find good agreement with the shape of the photon $p_T$ spectrum, particularly after the inclusion of additional electroweak corrections, but there is a tension between the overall normalization of the theoretical prediction and the measurement. We use our results to compute the ratio of $Z(\\to \\ell^+\\ell^-)+j$ to $\\gamma+j$ events as a function of the vector boson transverse momentum at NNLO, a quantity that is used to normalize $Z(\\rightarrow\

  13. vh@nnlo-v2: new physics in Higgs Strahlung

    Science.gov (United States)

    Harlander, Robert V.; Klappert, Jonas; Liebler, Stefan; Simon, Lukas

    2018-05-01

    Introducing version 2 of the code vh@nnlo [1], we study the effects of a number of new-physics scenarios on the Higgs-Strahlung process. In particular, the cross section is evaluated within a general 2HDM and the MSSM. While the Drell-Yan-like contributions are consistently taken into account by a simple rescaling of the SM result, the gluon-initiated contribution is supplemented by squark-loop mediated amplitudes, and by the s-channel exchange of additional scalars which may lead to conspicuous interference effects. The latter holds as well for bottom-quark initiated Higgs Strahlung, which is also included in the new version of vh@nnlo. Using an orthogonal rotation of the three Higgs CP eigenstates in the 2HDM and the MSSM, vh@nnlo incorporates a simple means of CP mixing in these models. Moreover, the effect of vector-like quarks in the SM on the gluon-initiated contribution can be studied. Beyond concrete models, vh@nnlo allows to include the effect of higher-dimensional operators on the production of CP-even Higgs bosons. Transverse momentum distributions of the final state Higgs boson and invariant mass distributions of the Vϕ final state for the gluon- and bottom-quark initiated contributions can be studied. Distributions for the Drell-Yan-like component of Higgs Strahlung can be included through a link to MCFM. vh@nnlo can also be linked to FeynHiggs and 2HDMC for the calculation of Higgs masses and mixing angles. It can also read these parameters from an SLHA-file as produced by standard spectrum generators. Throughout the manuscript, we highlight new-physics effects in various numerical examples, both at the inclusive level and for distributions.

  14. Problems in the resummation of soft-gluon effects in the transverse-momentum distributions of massive vector bosons in hadronic collisions

    CERN Document Server

    Frixione, Stefano; Ridolfi, G

    1999-01-01

    We consider the resummation of soft-gluon emission in the transverse-momentum distribution of vector mesons in hadronic collisions. We find that the resummed expression in the impact-parameter formulation has an expansion in $\\as$ with factorially growing terms with oscillating signs. These diverging terms arise from the small impact-parameter region of integration, and are of a subleading nature. We also obtain a closed expression for the next-to-leading logarithm resummation in $\\qt$-space, and we study its analytic structure. We find in this case that, although no factorially growing terms are present, there are geometrical singularities that severely restrict the range of applicability of the resummation formula.

  15. NLO QCD corrections to Higgs boson production plus three jets in gluon fusion

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Deurzen, H. van; Greiner, N.; Luisoni, G.; Mirabella, E.; Peraro, T. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Mastrolia, P. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padova Univ. (Italy). Dipt. di Fisica e Astronomia; INFN, Sezione di Padova (Italy); Ossola, G. [New York Univ., NY (United States). New York City College of Technology; New York Univ., NY (United States). The Graduate School and University Center; Tramontano, F. [Napoli Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Napoli (Italy)

    2013-07-15

    We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs and the leading jets. The results are obtained with the combined use of GoSam, Sherpa, and the MadDipole/MadEvent framework.

  16. Next-to-leading-order QCD corrections to e+e−→H+γ

    Directory of Open Access Journals (Sweden)

    Wen-Long Sang

    2017-12-01

    Full Text Available The associated production of Higgs boson with a hard photon at lepton collider, i.e., e+e−→Hγ, is known to bear a rather small cross section in Standard Model, and can serve as a sensitive probe for the potential new physics signals. Similar to the loop-induced Higgs decay channels H→γγ,Zγ, the e+e−→Hγ process also starts at one-loop order provided that the tiny electron mass is neglected. In this work, we calculate the next-to-leading-order (NLO QCD corrections to this associated H+γ production process, which mainly stem from the gluonic dressing to the top quark loop. The QCD corrections are found to be rather modest at lower center-of-mass energy range (s<300 GeV, thus of negligible impact on Higgs factory such as CEPC. Nevertheless, when the energy is boosted to the ILC energy range (s≈400 GeV, QCD corrections may enhance the leading-order cross section by 20%. In any event, the e+e−→Hγ process has a maximal production rate σmax≈0.08 fb around s=250 GeV, thus CEPC turns out to be the best place to look for this rare Higgs production process. In the high energy limit, the effect of NLO QCD corrections become completely negligible, which can be simply attributed to the different asymptotic scaling behaviors of the LO and NLO cross sections, where the former exhibits a milder decrement ∝1/s , but the latter undergoes a much faster decrease ∝1/s2. Keywords: Standard Model, Higgs boson, QCD corrections

  17. High energy QCD at NLO: from light-cone wave function to JIMWLK evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lublinsky, Michael [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel); Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269-3046 (United States); Mulian, Yair [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel)

    2017-05-17

    Soft components of the light cone wave-function of a fast moving projectile hadron is computed in perturbation theory to the third order in QCD coupling constant. At this order, the Fock space of the soft modes consists of one-gluon, two-gluon, and a quark-antiquark states. The hard component of the wave-function acts as a non-Abelian background field for the soft modes and is represented by a valence charge distribution that accounts for non-linear density effects in the projectile. When scattered off a dense target, the diagonal element of the S-matrix reveals the Hamiltonian of high energy evolution, the JIMWLK Hamiltonian. This way we provide a new direct derivation of the JIMWLK Hamiltonian at the Next-to-Leading Order.

  18. Check of the bootstrap conditions for the gluon Reggeization

    International Nuclear Information System (INIS)

    Papa, A.

    2000-01-01

    The property of gluon Reggeization plays an essential role in the derivation of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation for the cross sections at high energy √s in perturbative QCD. This property has been proved to all orders of perturbation theory in the leading logarithmic approximation and it is assumed to be valid also in the next-to-leading logarithmic approximation, where it has been checked only to the first three orders of perturbation theory. From s-channel unitarity, however, very stringent 'bootstrap' conditions can be derived which, if fulfilled, leave no doubts that gluon Reggeization holds

  19. NNLO QCD analysis of CCFR data on xF3 structure function and Gross-Llewellyn Smith sum rule with higher twist and nuclear corrections

    International Nuclear Information System (INIS)

    Sidorov, A.V.; Tokarev, M.V.

    1997-01-01

    A detailed NNLO QCD analysis of new CCFR data on xF 3 structure function including the target mass, higher twist and nuclear corrections was performed and parametrizations of the perturbative and power terms of the structure function were constructed. The results of QCD analysis of the structure function were used to study the Q 2 -dependence of the Gross-Llewellyn Smith sum rule. The α S /π-expansion of S GLS (Q 2 ) was studied and parameters of the expansion were found to be s 1 =2.74±0.01, s 2 =-2.22±0.23, s 3 =-7.86±1.74 which are in good agreement with the perturbative QCD predictions for the Gross-Llewellyn Smith sum rule in the next-to-leading and next-to-next-to-leading order

  20. NNLO QCD analysis of CCFR data on xF3 structure function and Gross-Llewellyn-Smith sum rule with higher twist and nuclear corrections

    International Nuclear Information System (INIS)

    Sidorov, A.V.; Tokarev, M.V.

    1997-01-01

    A detailed NNLO QCD analysis of new CCFR data on xF 3 structure function including the target mass, higher twist and nuclear corrections was performed and parametrizations of the perturbative and power terms of the structure function were constructed. The results of QDC analysis of the structure function were used to study the Q 2 -dependence of the Gross-Llewellyn-Smith sum rule. The α s /π-expansion of S GLS (Q 2 ) was studied and parameters of the expansion were found to be s 1 =2.74±0.01, s 2 =-2.22±0.23, s 3 =-7.86±1.74 which are in good agreement with the perturbative QCD predictions for the Gross-Llewellyn-Smith sum rule in the next-to-leading and next-to-next-leading order

  1. Evidence of quasi-partonic higher-twist effects in deep inelastic scattering at HERA at moderate Q{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, Leszek; Sadzikowski, Mariusz; Slominski, Wojciech [Jagiellonian University, Institute of Physics, Krakow (Poland); Wichmann, Katarzyna [DESY, Hamburg (Germany)

    2018-01-15

    The combined HERA data for the inclusive deep inelastic scattering (DIS) cross sections for the momentum transfer Q{sup 2} > 1 GeV{sup 2} are fitted within the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) framework at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) accuracy, complemented by a QCD-inspired parameterisation of twist 4 corrections. A modified form of the input parton density functions is also included, motivated by parton saturation mechanism at small Bjorken x and at a low scale. These modifications lead to a significant improvement of the data description in the region of low Q{sup 2}. For the whole data sample, the new benchmark NNLO DGLAP fit yields χ{sup 2}/d.o.f. ≅ 1.19 to be compared to 1.46 resulting from the standard NNLO DGLAP fit. We discuss the results in the context of the parton saturation picture and describe the impact of the higher-twist corrections on the derived parton density functions. The resulting description of the longitudinal proton structure function F{sub L} is consistent with the HERA data. Our estimates of higher-twist contributions to the proton structure functions are comparable to the leading-twist contributions at low Q{sup 2} ≅ 2 GeV{sup 2} and x ≅ 10{sup -5}. The x-dependence of the twist 4 corrections obtained from the best fit is consistent with the leading twist 4 quasi-partonic operators, corresponding to an exchange of four interacting gluons in the t-channel. (orig.)

  2. Soft gluons and superleading logarithms in QCD

    CERN Document Server

    Forshaw, J R

    2009-01-01

    After a brief introduction to the physics of soft gluons in QCD we present a surprising prediction. Dijet production in hadron-hadron collisions provides the paradigm, i.e. h_1 +h_2 \\to jj+X. In particular, we look at the case where there is a restriction placed on the emission of any further jets in the region in between the primary (highest p_T) dijets. Logarithms in the ratio of the jet scale to the veto scale can be summed to all orders in the strong coupling. Surprisingly, factorization of collinear emissions fails at scales above the veto scale and triggers the appearance of double logarithms in the hard sub-process. The effect appears first at fourth order relative to the leading order prediction and is subleading in the number of colours.

  3. Multiplicity distributions of gluon and quark jets and tests of QCD analytic predictions

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bobinski, M; Bock, P; Bonacorsi, D; Boutemeur, M; Bouwens, B T; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Clarke, P E L; Cohen, I; Conboy, J E; Cooke, O C; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; Desch, Klaus; Dienes, B; Dixit, M S; do Couto e Silva, E; Doucet, M; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Edwards, J E G; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Foucher, M; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geddes, N I; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hart, P A; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Hutchcroft, D E; Igo-Kemenes, P; Imrie, D C; Ingram, M R; Ishii, K; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kirk, J; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lahmann, R; Lai, W P; Lanske, D; Lauber, J; Lautenschlager, S R; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markus, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mikenberg, G; Miller, D J; Mincer, A; Mir, R; Mohr, W; Montanari, A; Mori, T; Morii, M; Müller, U; Mihara, S; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oh, A; Oldershaw, N J; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pearce, M J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, J L; Plane, D E; Poffenberger, P R; Poli, B; Posthaus, A; Rees, D L; Rigby, D; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Rooke, A M; Ros, E; Rossi, A M; Routenburg, P; Rozen, Y; Runge, K; Runólfsson, O; Ruppel, U; Rust, D R; Rylko, R; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schenk, P; Schieck, J; Schleper, P; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schultz-Coulon, H C; Schumacher, M; Schwick, C; Scott, W G; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Springer, R W; Sproston, M; Stephens, K; Steuerer, J; Stockhausen, B; Stoll, K; Strom, D; Szymanski, P; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Utzat, P; Van Kooten, R; Verzocchi, M; Vikas, P; Vokurka, E H; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilkens, B; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01

    Gluon jets are identified in e+e- hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon jets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The charged particle multiplicity distribution of the gluon jets is presented, and is analyzed for its mean, dispersion, skew, and curtosis values, and for its factorial and cumulant moments. The results are compared to the analogous results found for a sample of light quark (uds) jets, also defined inclusively. We observe differences between the mean, skew and curtosis values of gluon and quark jets, but not between their dispersions. The cumulant moment results are compared to the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observe...

  4. Casimir meets Poisson: improved quark/gluon discrimination with counting observables

    Science.gov (United States)

    Frye, Christopher; Larkoski, Andrew J.; Thaler, Jesse; Zhou, Kevin

    2017-09-01

    Charged track multiplicity is among the most powerful observables for discriminating quark- from gluon-initiated jets. Despite its utility, it is not infrared and collinear (IRC) safe, so perturbative calculations are limited to studying the energy evolution of multiplicity moments. While IRC-safe observables, like jet mass, are perturbatively calculable, their distributions often exhibit Casimir scaling, such that their quark/gluon discrimination power is limited by the ratio of quark to gluon color factors. In this paper, we introduce new IRC-safe counting observables whose discrimination performance exceeds that of jet mass and approaches that of track multiplicity. The key observation is that track multiplicity is approximately Poisson distributed, with more suppressed tails than the Sudakov peak structure from jet mass. By using an iterated version of the soft drop jet grooming algorithm, we can define a "soft drop multiplicity" which is Poisson distributed at leading-logarithmic accuracy. In addition, we calculate the next-to-leading-logarithmic corrections to this Poisson structure. If we allow the soft drop groomer to proceed to the end of the jet branching history, we can define a collinear-unsafe (but still infrared-safe) counting observable. Exploiting the universality of the collinear limit, we define generalized fragmentation functions to study the perturbative energy evolution of collinear-unsafe multiplicity.

  5. Resummation improved rapidity spectrum for gluon fusion Higgs production

    International Nuclear Information System (INIS)

    Ebert, Markus A.; Tackmann, Frank J.; Michel, Johannes K.L.; Muenster Univ.

    2017-02-01

    Gluon-induced processes such as Higgs production typically exhibit large perturbative corrections. These partially arise from large virtual corrections to the gluon form factor, which at timelike momentum transfer contains Sudakov logarithms evaluated at negative arguments ln 2 (-1)=-π 2 . It has been observed that resumming these terms in the timelike form factor leads to a much improved perturbative convergence for the total cross section. We discuss how to consistently incorporate the resummed form factor into the perturbative predictions for generic cross sections differential in the Born kinematics, including in particular the Higgs rapidity spectrum. We verify that this indeed improves the perturbative convergence, leading to smaller and more reliable perturbative uncertainties, and that this is not affected by cancellations between resummed and unresummed contributions. Combining both fixed-order and resummation uncertainties, the perturbative uncertainty for the total cross section at N 3 LO+N 3 LL φ ' is about a factor of two smaller than at N 3 LO. The perturbative uncertainty of the rapidity spectrum at NNLO+NNLL φ ' is similarly reduced compared to NNLO. We also study the analogous resummation for quark-induced processes, namely Higgs production through bottom quark annihilation and the Drell-Yan rapidity spectrum. For the former the resummation leads to a small improvement, while for the latter it confirms the already small uncertainties of the fixed-order predictions.

  6. Fourth generation CP violation effects on B-->Kpi, phiK, and rhoK in next-to-leading-order perturbative QCD.

    Science.gov (United States)

    Hou, Wei-Shu; Li, Hsiang-nan; Mishima, Satoshi; Nagashima, Makiko

    2007-03-30

    We study the effect from a sequential fourth generation quark on penguin-dominated two-body nonleptonic B meson decays in the next-to-leading order perturbative QCD formalism. With an enhancement of the color-suppressed tree amplitude and possibility of a new CP phase in the electroweak penguin amplitude, we can account better for A(CP)(B(0)-->K+ pi-)-A(CP)(B+-->K+ pi0). Taking |V(t's)V(t'b)| approximately 0.02 with a phase just below 90 degrees, which is consistent with the b-->sl+ l- rate and the B(s) mixing parameter Deltam(B)(s), we find a downward shift in the mixing-induced CP asymmetries of B(0)-->K(S)(pi 0) and phi(K)(S). The predicted behavior for B(0)-->rho(0)(K)(S) is opposite.

  7. 3D-SoftChip: A Novel Architecture for Next-Generation Adaptive Computing Systems

    Directory of Open Access Journals (Sweden)

    Lee Mike Myung-Ok

    2006-01-01

    Full Text Available This paper introduces a novel architecture for next-generation adaptive computing systems, which we term 3D-SoftChip. The 3D-SoftChip is a 3-dimensional (3D vertically integrated adaptive computing system combining state-of-the-art processing and 3D interconnection technology. It comprises the vertical integration of two chips (a configurable array processor and an intelligent configurable switch through an indium bump interconnection array (IBIA. The configurable array processor (CAP is an array of heterogeneous processing elements (PEs, while the intelligent configurable switch (ICS comprises a switch block, 32-bit dedicated RISC processor for control, on-chip program/data memory, data frame buffer, along with a direct memory access (DMA controller. This paper introduces the novel 3D-SoftChip architecture for real-time communication and multimedia signal processing as a next-generation computing system. The paper further describes the advanced HW/SW codesign and verification methodology, including high-level system modeling of the 3D-SoftChip using SystemC, being used to determine the optimum hardware specification in the early design stage.

  8. BFKL equation for the adjoint representation of the gauge group in the next-to-leading approximation at N=4 SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V.S. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Budker Nuclear Physics Institute, Novosibirsk (Russian Federation); Novosibirskij Gosudarstvennyj Univ., Novosibirsk (Russian Federation); Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); St. Petersburg State Univ., Gatchina (Russian Federation)

    2011-12-15

    We calculate the eigenvalues of the next-to-leading kernel for the BFKL equation in the adjoint representation of the gauge group SU(N{sub c}) in the N=4 supersymmetric Yang-Mills model. These eigenvalues are used to obtain the high energy behavior of the remainder function for the 6-point scattering amplitude with the maximal helicity violation in the kinematical regions containing the Mandelstam cut contribution. The leading and next-to-leading singularities of the corresponding collinear anomalous dimension are calculated in all orders of perturbation theory. We compare our result with the known collinear limit and with the recently suggested ansatz for the remainder function in three loops and obtain the full agreement providing that the numerical parameters in this anzatz are chosen in an appropriate way.

  9. Matrix elements for the anti B→Xsγ decay at NNLO

    International Nuclear Information System (INIS)

    Schutzmeier, Thomas Paul

    2009-01-01

    In the context of the indirect search for non-standard physics in the flavour sector of the Standard Model (SM), one of the most interesting processes is the rare inclusive anti B→ X s γ decay. On the one hand, being a flavour-changing neutral current, this B decay is sensitive to new physics, as it is loop-suppressed in the SM. On the other hand, it is only mildly affected by non-perturbative effects, and thus allows for precise theoretical predictions in the framework of renormalization-group improved perturbation theory. Accurate measurements as well as precise theoretical predictions with a good control over both perturbative and non-perturbative contributions have to be provided in order to derive stringent constraints on the parameter space of physics beyond the SM. On the experimental side, an outstanding accuracy in the measurement of the anti B→X s γ decay rate has been achieved, which is mainly due the specialized experiments BaBar and Belle at the so-called B factories. To match the small experimental uncertainty, higher order computations within an effective low-energy theory of the SM are mandatory. In fact, next-to-next-to-leading order (NNLO) QCD corrections are required to provide a prediction for the decay rate with the same precision as the measurement. The NNLO evaluation of the anti B→X s γ decay rate has been pursued by various groups over the last decade. The project was completed to a large extent and a first estimate at this level of perturbation theory was obtained in 2006. This prediction, however, lacks important contributions from yet unknown matrix elements, that were estimated from results which are only partially known to date. In this work, we provide a framework for the systematic study of the missing matrix elements at the NNLO. As main results of this thesis, we determine fermionic corrections to the charm quark mass dependent matrix elements of four-quark operators in the effective theory at NNLO. For the first time, the

  10. Regge behaviour of structure function and gluon distribution at low-x in leading order

    International Nuclear Information System (INIS)

    Sarma, J.K.

    2000-01-01

    We present a method to find the gluon distribution from the F 2 proton structure function data at low-x assuming the Regge behaviour of the gluon distribution function at this limit. We use the leading order (LO) Altarelli-Parisi (AP) evolution equation in our analysis and compare our result with those of other authors. We also discuss the limitations of the Taylor expansion method in extracting the gluon distribution from the F 2 structure function used by those authors. (orig.)

  11. The BFKL high energy asymptotic in the next-to-leading approximation

    International Nuclear Information System (INIS)

    Levin, Eugene

    1999-01-01

    We discuss the high energy asymptotic in the next-to-leading (NLO) BFKL equation. We find a general solution for the Green functions and consider two properties of the NLO BFKL kernel: running QCD coupling and large NLO corrections to the conformal part of the kernel. Both these effects lead to Regge-BFKL asymptotic only in the limited range of energy (y = ln(s/qq 0 ) ≤ (α S ) ((-5)/(3)) ) and change the energy behaviour of the amplitude for higher values of energy. We confirm the oscillation in the total cross section found by D.A. Ross [SHEP-98-06, hep-ph/9804332] in the NLO BFKL asymptotic, which shows that the NLO BFKL has a serious pathology

  12. Gluons from logarithmic slopes of F2 in the NLL approximation

    International Nuclear Information System (INIS)

    Golec-Biernat, K.

    1994-02-01

    We make a critical, next-to-leading order, study of the accuracy of the ''Prytz'' relation, which is frequently used to extract the gluon distribution at small x from the logarithmic slopes of the structure function F 2 . We find that the simple relation is not generally valid in the HERA regime, but show that it is a reasonable approximation for gluons which are sufficiency singular at small x. (author). 9 refs, 3 figs

  13. Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider.

    Science.gov (United States)

    Bevilacqua, G; Hartanto, H B; Kraus, M; Worek, M

    2016-02-05

    We present a complete description of top quark pair production in association with a jet in the dilepton channel. Our calculation is accurate to next-to-leading order (NLO) in QCD and includes all nonresonant diagrams, interferences, and off-shell effects of the top quark. Moreover, nonresonant and off-shell effects due to the finite W gauge boson width are taken into account. This calculation constitutes the first fully realistic NLO computation for top quark pair production with a final state jet in hadronic collisions. Numerical results for differential distributions as well as total cross sections are presented for the Large Hadron Collider at 8 TeV. With our inclusive cuts, NLO predictions reduce the unphysical scale dependence by more than a factor of 3 and lower the total rate by about 13% compared to leading-order QCD predictions. In addition, the size of the top quark off-shell effects is estimated to be below 2%.

  14. Production of heavy neutrino in next-to-leading order QCD at the LHC and beyond

    International Nuclear Information System (INIS)

    Das, Arindam; Konar, Partha; Majhi, Swapan

    2016-01-01

    Majorana and pseudo-Dirac heavy neutrinos are introduced into the type-I and inverse seesaw models, respectively, in explaining the naturally small neutrino mass. TeV scale heavy neutrinos can also be accommodated to have a sizable mixing with the Standard Model light neutrinos, through which they can be produced and detected at the high energy colliders. In this paper we consider the Next-to-Leading Order QCD corrections to the heavy neutrino production, and study the scale variation in cross-sections as well as the kinematic distributions with different final states at 14 TeV LHC and also in the context of 100 TeV hadron collider. The repertoire of the Majorana neutrino is realized through the characteristic signature of the same-sign dilepton pair, whereas, due to a small lepton number violation, the pseudo-Dirac heavy neutrino can manifest the trileptons associated with missing energy in the final state. Using the √s=8 TeV, 20.3 fb"−"1 and 19.7 fb"−"1 data at the ATLAS and CMS respectively, we obtain prospective scale dependent upper bounds of the light-heavy neutrino mixing angles for the Majorana heavy neutrinos at the 14 TeV LHC and 100 TeV collider. Further exploiting a recent study on the anomalous multilepton search by CMS at √s=8 TeV with 19.5 fb"−"1 data, we also obtain the prospective scale dependent upper bounds on the mixing angles for the pseudo-Dirac neutrinos. We thus project a scale dependent prospective reach using the NLO processes at the 14 TeV LHC.

  15. Renormalizability of a quark-gluon model with soft BRST breaking in the infrared region

    CERN Document Server

    Baulieu, L; Gomez, A J; Lemes, V E R; Sobreiro, R F; Sorella, S P

    2010-01-01

    We prove the renormalizability of a quark-gluon model with a soft breaking of the BRST symmetry, which accounts for the modification of the large distance behavior of the quark and gluon correlation functions. The proof is valid to all orders of perturbation theory, by making use of softly broken Ward identities.

  16. αs and |Vcs| determination, and CKM unitarity test, from W decays at NNLO

    Directory of Open Access Journals (Sweden)

    David d'Enterria

    2016-12-01

    Full Text Available The hadronic (ΓhadW and total (ΓtotW widths of the W boson, computed at least at next-to-next-to-leading-order (NNLO accuracy, are combined to derive a new precise prediction for the hadronic W branching ratio BhadW ≡ ΓhadW/ΓtotW=0.682±0.011par, using the experimental Cabibbo–Kobayashi–Maskawa (CKM matrix elements, with uncertainties dominated by the input parameters of the calculations, or BhadW=0.6742±0.0002th±0.0001par assuming CKM unitarity. Comparing the theoretical predictions and experimental measurements for various W decay observables, the NNLO strong coupling constant at the Z pole, αs(mZ2=0.117±0.042exp±0.004th±0.001par, as well as the charm-strange CKM element, |Vcs|=0.973±0.004exp±0.002par, can be extracted under different assumptions. We also show that W decays provide today the most precise test of CKM unitarity for the 5 quarks lighter than mW, ∑u,c,d,s,b|Vij|2=1.999±0.008exp±0.001th. Perspectives for αs and |Vcs| extractions from W decays measurements at the LHC and future e+e− colliders are presented.

  17. Automated next-to-leading order predictions for new physics at the LHC: the case of colored scalar pair production

    CERN Document Server

    Degrande, Céline; Hirschi, Valentin; Proudom, Josselin; Shao, Hua-Sheng

    2015-01-01

    We present for the first time the full automation of collider predictions matched with parton showers at the next-to-leading accuracy in QCD within non-trivial extensions of the Standard Model. The sole inputs required from the user are the model Lagrangian and the process of interest. As an application of the above, we explore scenarios beyond the Standard Model where new colored scalar particles can be pair produced in hadron collisions. Using simplified models to describe the new field interactions with the Standard Model, we present precision predictions for the LHC within the MadGraph5 aMC@NLO framework.

  18. QCD evolution of (un)polarized gluon TMDPDFs and the Higgs q T -distribution

    Science.gov (United States)

    Echevarria, Miguel G.; Kasemets, Tomas; Mulders, Piet J.; Pisano, Cristian

    2015-07-01

    We provide the proper definition of all the leading-twist (un)polarized gluon transverse momentum dependent parton distribution functions (TMDPDFs), by considering the Higgs boson transverse momentum distribution in hadron-hadron collisions and deriving the factorization theorem in terms of them. We show that the evolution of all the (un)polarized gluon TMDPDFs is driven by a universal evolution kernel, which can be resummed up to next-to-next-to-leading-logarithmic accuracy. Considering the proper definition of gluon TMDPDFs, we perform an explicit next-to-leading-order calculation of the unpolarized ( f {1/ g }), linearly polarized ( h {1/⊥ g }) and helicity ( g {1/L g }) gluon TMDPDFs, and show that, as expected, they are free from rapidity divergences. As a byproduct, we obtain the Wilson coefficients of the refactorization of these TMDPDFs at large transverse momentum. In particular, the coefficient of g {1/L g }, which has never been calculated before, constitutes a new and necessary ingredient for a reliable phenomenological extraction of this quantity, for instance at RHIC or the future AFTER@LHC or Electron-Ion Collider. The coefficients of f {1/ g } and h {1/⊥ g } have never been calculated in the present formalism, although they could be obtained by carefully collecting and recasting previous results in the new TMD formalism. We apply these results to analyze the contribution of linearly polarized gluons at different scales, relevant, for instance, for the inclusive production of the Higgs boson and the C-even pseudoscalar bottomonium state η b . Applying our resummation scheme we finally provide predictions for the Higgs boson q T -distribution at the LHC.

  19. Anatomy of Bs → PV decays and effects of next-to-leading order contributions in the perturbative QCD factorization approach

    Science.gov (United States)

    Yan, Da-Cheng; Yang, Ping; Liu, Xin; Xiao, Zhen-Jun

    2018-06-01

    In this paper, we will make systematic calculations for the branching ratios and the CP-violating asymmetries of the twenty one Bbars0 → PV decays by employing the perturbative QCD (PQCD) factorization approach. Besides the full leading-order (LO) contributions, all currently known next-to-leading order (NLO) contributions are taken into account. We found numerically that: (a) the NLO contributions can provide ∼ 40% enhancement to the LO PQCD predictions for B (Bbars0 →K0K bar * 0) and B (Bbars0 →K±K*∓), or a ∼ 37% reduction to B (Bbars0 →π-K*+); and we confirmed that the inclusion of the known NLO contributions can improve significantly the agreement between the theory and those currently available experimental measurements; (b) the total effects on the PQCD predictions for the relevant Bs0 → P transition form factors after the inclusion of the NLO twist-2 and twist-3 contributions is generally small in magnitude: less than 10% enhancement respect to the leading order result; (c) for the "tree" dominated decay Bbars0 →K+ρ- and the "color-suppressed-tree" decay Bbars0 →π0K*0, the big difference between the PQCD predictions for their branching ratios are induced by different topological structure and by interference effects among the decay amplitude AT,C and AP: constructive for the first decay but destructive for the second one; and (d) for Bbars0 → V (η ,η‧) decays, the complex pattern of the PQCD predictions for their branching ratios can be understood by rather different topological structures and the interference effects between the decay amplitude A (Vηq) and A (Vηs) due to the η-η‧ mixing.

  20. Analysis of the proton longitudinal structure function from the gluon distribution function

    International Nuclear Information System (INIS)

    Boroun, G.R.; Rezaei, B.

    2012-01-01

    We make a critical, next-to-leading order, study of the relationship between the longitudinal structure function F L and the gluon distribution proposed in Cooper-Sarkar et al. (Z. Phys. C 39:281, 1988; Acta Phys. Pol. B 34:2911 2003), which is frequently used to extract the gluon distribution from the proton longitudinal structure function at small x. The gluon density is obtained by expanding at particular choices of the point of expansion and compared with the hard Pomeron behavior for the gluon density. Comparisons with H1 data are made and predictions for the proposed best approach are also provided. (orig.)

  1. Higher Order Corrections in the CoLoRFulNNLO Framework

    Science.gov (United States)

    Somogyi, G.; Kardos, A.; Szőr, Z.; Trócsányi, Z.

    We discuss the CoLoRFulNNLO method for computing higher order radiative corrections to jet cross sections in perturbative QCD. We apply our method to the calculation of event shapes and jet rates in three-jet production in electron-positron annihilation. We validate our code by comparing our predictions to previous results in the literature and present the jet cone energy fraction distribution at NNLO accuracy. We also present preliminary NNLO results for the three-jet rate using the Durham jet clustering algorithm matched to resummed predictions at NLL accuracy, and a comparison to LEP data.

  2. Matrix elements for the anti B{yields}X{sub s}{gamma} decay at NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Schutzmeier, Thomas Paul

    2009-12-17

    In the context of the indirect search for non-standard physics in the flavour sector of the Standard Model (SM), one of the most interesting processes is the rare inclusive anti B{yields} X{sub s}{gamma} decay. On the one hand, being a flavour-changing neutral current, this B decay is sensitive to new physics, as it is loop-suppressed in the SM. On the other hand, it is only mildly affected by non-perturbative effects, and thus allows for precise theoretical predictions in the framework of renormalization-group improved perturbation theory. Accurate measurements as well as precise theoretical predictions with a good control over both perturbative and non-perturbative contributions have to be provided in order to derive stringent constraints on the parameter space of physics beyond the SM. On the experimental side, an outstanding accuracy in the measurement of the anti B{yields}X{sub s}{gamma} decay rate has been achieved, which is mainly due the specialized experiments BaBar and Belle at the so-called B factories. To match the small experimental uncertainty, higher order computations within an effective low-energy theory of the SM are mandatory. In fact, next-to-next-to-leading order (NNLO) QCD corrections are required to provide a prediction for the decay rate with the same precision as the measurement. The NNLO evaluation of the anti B{yields}X{sub s}{gamma} decay rate has been pursued by various groups over the last decade. The project was completed to a large extent and a first estimate at this level of perturbation theory was obtained in 2006. This prediction, however, lacks important contributions from yet unknown matrix elements, that were estimated from results which are only partially known to date. In this work, we provide a framework for the systematic study of the missing matrix elements at the NNLO. As main results of this thesis, we determine fermionic corrections to the charm quark mass dependent matrix elements of four-quark operators in the

  3. Soft gluon resummation formulae for hard proton processes in QCD

    International Nuclear Information System (INIS)

    Craigie, N.S.; Jones, H.F.

    1980-01-01

    We briefly review the treatment of leading logarithmic behaviour of the parton distributions in QCD within the Bethe-Salpeter framework by analysing directly parton hadron Green functions in the limit of parton four-momentum k 2 → - infinitely in a special light-like gauge involving a spectator vector. This technique allows us to derive the factorization of parton probabilities in leading logarithmic order in QCD in the various inclusive processes involving a single short-distance scale. The proof requires us to show that the use of planar gauges eta = psub(A) + psub(B) + ..., where psub(A), psub(B)... are the observed hadron momenta, reduces to choosing the appropriate light-like gauge for each hadron-parton BS channel, after demonstrating a Bloch-Nordsieck cancellation of the real and virtual soft left-over gluons. In the case where two large momentum scales appear, by restricting the transverse phase space into which the gluons are radiated, we derive the double logarithmic eikonal renormalization of the hard scattering formula of the type proposed recently by Parisi and Petronzio. (orig.)

  4. An approach to next step device optimisation

    International Nuclear Information System (INIS)

    Salpietro, E.

    2000-01-01

    The requirements for ITER EDA were to achieve ignition with a good safety margin, and controlled long inductive burn. These requirements lead to a big device, which requested a too ambitious step to be undertaken by the world fusion community. More realistic objectives for a next step device shall be to demonstrate the net production of energy with a high energy gain factor (Q) and a high boot strap current fraction (>60%) which is required for a Fusion Power Plant (FPP). The Next Step Device (NSD) shall also allow operation flexibility in order to explore a large range of plasma parameters to find out the optimum concept for the fusion power plant prototype. These requirements could be too demanding for one single device and could probably be better explored in a strongly integrated world programme. The cost of one or more devices is the decisive factor for the choice of the fusion power development programme strategy. The plasma elongation and triangularity have a strong impact in the cost of the device and are limited by the plasma vertical position control issue. The distance between plasma separatrix and the toroidal field conductor does not vary a lot between devices. It is determined by the sum of the distance between first wall-plasma sepratrix and the thickness of the nuclear shield required to protect the toroidal field coil insultation. The thickness of the TF coil is determined by the allowable stresses and superconducting characteristics. The outer radius of the central solenoid is the result of an optimisation to provide the magnetic flux to inductively drive the plasma. Therefore, in order to achieve the objectives for Q and boot-strap current fractions at the minimum cost, the plasma aspect ratio and magnetic field value shall be determined. The paper will present the critical issues for the next device and will make considerations on the optimal way to proceed towards the realisation of the fusion power plant

  5. On a residual freedom of the next-to-leading BFKL eigenvalue in color adjoint representation in planar N=4 SYM

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, Sergey; Prygarin, Alex [Physics Department, Ariel University,Ariel 40700, territories administered by (Israel)

    2016-07-15

    We discuss a residual freedom of the next-to-leading BFKL eigenvalue that originates from ambiguity in redistributing the next-to-leading (NLO) corrections between the adjoint BFKL eigenvalue and eigenfunctions in planar N=4 super-Yang-Mills (SYM) Theory. In terms of the remainder function of the Bern-Dixon-Smirnov (BDS) amplitude this freedom is translated to reshuffling correction between the eigenvalue and the impact factors in the multi-Regge kinematics (MRK) in the next-to-leading logarithm approximation (NLA). We show that the modified NLO BFKL eigenvalue suggested by the authors in ref. http://arxiv.org/abs/1510.00589 can be introduced in the MRK expression for the remainder function by shifting the anomalous dimension in the impact factor in such a way that the two and three loop remainder function is left unchanged to the NLA accuracy.

  6. Soft gluon resummation in the infrared region and the Froissart bound

    CERN Document Server

    Pancheri, Giulia; Godbole, Rohini M; Srivastava, Yogendra N

    2010-01-01

    We describe the taming effect induced by soft gluon $k_t$-resummation on the rapid rise of QCD mini-jet contributions to the total cross-sections.This results from an eikonal model in which the rise of the total cross-section is due to mini-jet contribution. We perform the calculation with current Parton Density Functions (PDFs). The impact parameter distribution we use is obtained as the Fourier transform of the resummed $k_t$-distribution of soft gluons emitted from the initial state during the collision.The emission, which is energy dependent, destroys the initial collinearity of partons.In this model, the strong power-like rise due to the increasing number of low-x gluon collisions is tamed by the acollinearity induced by soft gluon kt-resummation down to zero gluon momenta. It explicitly links a singular soft gluon coupling in the infrared region to the behaviour dictated by the Froissart bound for the total cross-section. The model describes well both proton and photon processes at present accelerator e...

  7. Updated Higgs cross section at approximate N3LO

    International Nuclear Information System (INIS)

    Bonvini, Marco; Ball, Richard D; Forte, Stefano; Marzani, Simone; Ridolfi, Giovanni

    2014-01-01

    We update our estimate of the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order in α s in view of the recent full computation of the result in the soft limit for infinite top mass, which determines a previously unknown constant. We briefly discuss the phenomenological implications. Results are available through the updated version of the ggHiggs code. (paper)

  8. Updated Higgs cross section at approximate N3LO

    International Nuclear Information System (INIS)

    Bonvini, Marco; Ball, Richard D.; Marzani, Simone

    2014-04-01

    We update our estimate of the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N 3 LO) in α s in view of the recent full computation of the result in the soft limit for infinite top mass, which determines a previously unknown constant. We briefly discuss the phenomenological implications. Results are available through the updated version of the ggHiggs code.

  9. Next generation light water reactors

    International Nuclear Information System (INIS)

    Omoto, Akira

    1992-01-01

    In the countries where the new order of nuclear reactors has ceased, the development of the light water reactors of new type has been discussed, aiming at the revival of nuclear power. Also in Japan, since it is expected that light water reactors continue to be the main power reactor for long period, the technology of light water reactors of next generation has been discussed. For the development of nuclear power, extremely long lead time is required. The light water reactors of next generation now in consideration will continue to be operated till the middle of the next century, therefore, they must take in advance sufficiently the needs of the age. The improvement of the way men and the facilities should be, the simple design, the flexibility to the trend of fuel cycle and so on are required for the light water reactors of next generation. The trend of the development of next generation light water reactors is discussed. The construction of an ABWR was started in September, 1991, as No. 6 plant in Kashiwazaki Kariwa Power Station. (K.I.)

  10. Next-to-next-to-leading order calculation of the strong coupling ...

    Indian Academy of Sciences (India)

    Pramana – J. Phys., Vol. 81, No. ... of the higher moments of the different shape variable is similar to what was observed for the first moments. Although ... Figure 1. First moment of four event-shape variables: (a) 1 − T, (b) ρ, (c) BT,. (d) Bw. 3.

  11. The ABM parton distributions tuned to LHC data

    International Nuclear Information System (INIS)

    Alekhin, S.; Bluemlein, J.; Moch, S.; Hamburg Univ.

    2013-10-01

    We present a global fit of parton distributions at next-to-next-to-leading order (NNLO) in QCD. The fit is based on the world data for deep-inelastic scattering, fixed-target data for the Drell-Yan process and includes, for the first time, data from the Large Hadron Collider (LHC) for the Drell-Yan process and the hadro-production of top-quark pairs. The analysis applies the fixed-flavor number scheme for n f =3,4,5, uses the MS scheme for the strong coupling α s and the heavy-quark masses and keeps full account of the correlations among all non-perturbative parameters. At NNLO this returns the values of α s (M Z )=0.1132±0.0011 and m t (pole)=171.2±2.4 GeV for the top-quark pole mass. The fit results are used to compute benchmark cross sections for Higgs production at the LHC to NNLO accuracy. We compare our results to those obtained by other groups and show that differences can be linked to different theoretical descriptions of the underlying physical processes.

  12. The dipole form of the gluon part of the BFKL kernel

    International Nuclear Information System (INIS)

    Fadin, V.S.; Fiore, R.; Grabovsky, A.V.; Papa, A.

    2007-01-01

    The dipole form of the gluon part of the color singlet BFKL kernel in the next-to-leading order (NLO) is obtained in the coordinate representation by direct transfer from the momentum representation, where the kernel was calculated before. With this paper the transformation of the NLO BFKL kernel to the dipole form, started a few months ago with the quark part of the kernel, is completed

  13. Updated Higgs cross section at approximate N{sup 3}LO

    Energy Technology Data Exchange (ETDEWEB)

    Bonvini, Marco [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ball, Richard D. [Edinburgh Univ. (United Kingdom). Tait Inst.; Forte, Stefano [Milano Univ. (Italy). Dipt. di Fisica; INFN, Milano (Italy); Marzani, Simone [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ridolfi, Giovanni [Genova Univ. (Italy). Dipt. di Fisica; INFN, Genova (Italy)

    2014-04-15

    We update our estimate of the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N{sup 3}LO) in α{sub s} in view of the recent full computation of the result in the soft limit for infinite top mass, which determines a previously unknown constant. We briefly discuss the phenomenological implications. Results are available through the updated version of the ggHiggs code.

  14. Heavy-quark production in gluon fusion at two loops in QCD

    International Nuclear Information System (INIS)

    Czakon, M.

    2007-07-01

    We present the two-loop virtual QCD corrections to the production of heavy quarks in gluon fusion. The results are exact in the limit when all kinematical invariants are large compared to the mass of the heavy quark up to terms suppressed by powers of the heavy-quark mass. Our derivation uses a simple relation between massless and massive QCD scattering amplitudes as well as a direct calculation of the massive amplitude at two loops. The results presented here together with those obtained previously for quark-quark scattering form important parts of the next-to-next-to-leading order QCD corrections to heavy-quark production in hadron-hadron collisions. (orig.)

  15. The Mellin transform technique for the extraction of the gluon density

    International Nuclear Information System (INIS)

    Graudenz, D.

    1995-06-01

    A new method is presented to determine the gluon density in the proton from jet production in deeply inelastic scattering. By using the technique of Mellin transforms not only for the solution of the scale evolution equation of the parton densities but also for the evaluation of scattering cross sections, the gluon density can be extracted in next-to-leading order QCD. The method described in this paper is, however, more general, and can be used in situations where a repeated fast numerical evaluation of scattering cross sections for varying parton distribution functions is required. (orig.)

  16. Determination of the strong coupling constant αs(MZ2) under regardment of completely resummed leading and next-to-leading logarithms. Analysis of global event variables measured in hadronic Z decays

    International Nuclear Information System (INIS)

    Wehr, A.

    1994-06-01

    The value of the strong coupling constant α s is determined from a combined analysis of the global event shape variables thrust, heavy jet mass and total and wide jet broadening. The extraction of α s includes the full calculation of O(α s 2 ) terms and leading and next-to-leading logarithms resummed to all orders of α s . The analysis is based on data taken with the DELPHI detector at LEP during 1991 and 1992. The dependence of the result on the detailed matching of the resummed and fixed order terms is studied. The result from the combined theory is compared with values coming from a pure NLLA analysis and as pure O(α s 2 ) analysis, respectively. It is found that the inclusion of the resummed logarithms allows the description of the data in the two jet range and reduces the scale dependence of α s (M Z 2 ) compared to pure O(α s 2 ) theory. The value using the combined NLLA+O(α s 2 ) theory at the scale μ 2 =M Z 2 is α S (M Z 2 )=0.118±0.007. The running of α s is measured from the 1991 data in an energy range from 88.5 to 93.7 GeV. The slope of α s obtained at the Z peak is dα s /dQ/ Q=Mz =-(2.9±2.8)x10 -4 GeV -1 . This value is compatible with QCD and exludes an abelian gluon model with more than two standard deviations. (orig.)

  17. On the calculation of soft phase space integral

    International Nuclear Information System (INIS)

    Zhu, Hua Xing

    2015-01-01

    The recent discovery of the Higgs boson at the LHC attracts much attention to the precise calculation of its production cross section in quantum chromodynamics. In this work, we discuss the calculation of soft triple-emission phase space integral, which is an essential ingredient in the recently calculated soft-virtual corrections to Higgs boson production at next-to-next-to-next-to-leading order. The main techniques used this calculation are method of differential equation for Feynman integral, and integration of harmonic polylogarithms.

  18. Energy-energy correlation in electron-positron annihilation at NNLL + NNLO accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Tulipant, Zoltan; Kardos, Adam; Somogyi, Gabor [University of Debrecen, MTA-DE Particle Physics Research Group, Debrecen (Hungary)

    2017-11-15

    We present the computation of energy-energy correlation in e{sup +}e{sup -} collisions in the back-to-back region at next-to-next-to-leading logarithmic accuracy matched with the next-to-next-to-leading order perturbative prediction. We study the effect of the fixed higher-order corrections in a comparison of our results to LEP and SLC data. The next-to-next-to-leading order correction has a sizable impact on the extracted value of α{sub S}(M{sub Z}), hence its inclusion is mandatory for a precise measurement of the strong coupling using energy-energy correlation. (orig.)

  19. Energy-energy correlation in electron-positron annihilation at NNLL + NNLO accuracy

    Science.gov (United States)

    Tulipánt, Zoltán; Kardos, Adam; Somogyi, Gábor

    2017-11-01

    We present the computation of energy-energy correlation in e^+e^- collisions in the back-to-back region at next-to-next-to-leading logarithmic accuracy matched with the next-to-next-to-leading order perturbative prediction. We study the effect of the fixed higher-order corrections in a comparison of our results to LEP and SLC data. The next-to-next-to-leading order correction has a sizable impact on the extracted value of α S(M_Z), hence its inclusion is mandatory for a precise measurement of the strong coupling using energy-energy correlation.

  20. Jet pT resummation in Higgs production at NNLL'+NNLO

    International Nuclear Information System (INIS)

    Stewart, Iain W.; Tackmann, Frank J.; Walsh, Jonathan R.; Zuberi, Saba

    2013-07-01

    We present predictions for Higgs production via gluon fusion with a p T veto on jets and with the resummation of jet-veto logarithms at NNLL'+NNLO order. These results incorporate explicit O(α s 2 ) calculations of soft and beam functions, which include the dominant dependence on the jet radius R. In particular the NNLL' order accounts for the correct boundary conditions for the N 3 LL resummation, for which the only unknown ingredients are higher-order anomalous dimensions. We use scale variations in a factorization theorem in both rapidity and virtuality space to estimate the perturbative uncertainties, accounting for both higher fixed-order corrections as well as higher-order towers of jet-p T logarithms. This formalism also predicts the correlations in the theory uncertainty between the exclusive 0-jet and inclusive 1-jet bins. At the values of R used experimentally, there are important corrections due to jet algorithm clustering that include logarithms of R. Although we do not sum logarithms of R, we do include an explicit contribution in our uncertainty estimate to account for higher-order jet clustering logarithms. Precision predictions for this H+0-jet cross section and its theoretical uncertainty are an integral part of Higgs analyses that employ jet binning.

  1. Collinear and TMD quark and gluon densities from parton branching solution of QCD evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Hautmann, F. [Rutherford Appleton Laboratory, Chilton (United Kingdom); Oxford Univ. (United Kingdom). Dept. of Theoretical Physics; Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysica; Jung, H.; Lelek, A.; Zlebcik, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Radescu, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2017-08-15

    We study parton-branching solutions of QCD evolution equations and present a method to construct both collinear and transverse momentum dependent (TMD) parton densities from this approach. We work with next-to-leading-order (NLO) accuracy in the strong coupling. Using the unitarity picture in terms of resolvable and non-resolvable branchings, we analyze the role of the soft-gluon resolution scale in the evolution equations. For longitudinal momentum distributions, we find agreement of our numerical calculations with existing evolution programs at the level of better than 1 percent over a range of five orders of magnitude both in evolution scale and in longitudinal momentum fraction. We make predictions for the evolution of transverse momentum distributions. We perform fits to the high-precision deep inelastic scattering (DIS) structure function measurements, and we present a set of NLO TMD distributions based on the parton branching approach.

  2. Shear and bulk viscosity of high-temperature gluon plasma

    Science.gov (United States)

    Zhang, Le; Hou, De-Fu

    2018-05-01

    We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)

  3. Subtraction method of computing QCD jet cross sections at NNLO accuracy

    Science.gov (United States)

    Trócsányi, Zoltán; Somogyi, Gábor

    2008-10-01

    We present a general subtraction method for computing radiative corrections to QCD jet cross sections at next-to-next-to-leading order accuracy. The steps needed to set up this subtraction scheme are the same as those used in next-to-leading order computations. However, all steps need non-trivial modifications, which we implement such that that those can be defined at any order in perturbation theory. We give a status report of the implementation of the method to computing jet cross sections in electron-positron annihilation at the next-to-next-to-leading order accuracy.

  4. Subtraction method of computing QCD jet cross sections at NNLO accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Trocsanyi, Zoltan [University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen P.O.Box 51 (Hungary)], E-mail: Zoltan.Trocsanyi@cern.ch; Somogyi, Gabor [University of Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland)], E-mail: sgabi@physik.unizh.ch

    2008-10-15

    We present a general subtraction method for computing radiative corrections to QCD jet cross sections at next-to-next-to-leading order accuracy. The steps needed to set up this subtraction scheme are the same as those used in next-to-leading order computations. However, all steps need non-trivial modifications, which we implement such that that those can be defined at any order in perturbation theory. We give a status report of the implementation of the method to computing jet cross sections in electron-positron annihilation at the next-to-next-to-leading order accuracy.

  5. The ABM parton distributions tuned to LHC data

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institute for High Energy Physics, Protvino (Russian Federation); Bluemlein, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2013-10-15

    We present a global fit of parton distributions at next-to-next-to-leading order (NNLO) in QCD. The fit is based on the world data for deep-inelastic scattering, fixed-target data for the Drell-Yan process and includes, for the first time, data from the Large Hadron Collider (LHC) for the Drell-Yan process and the hadro-production of top-quark pairs. The analysis applies the fixed-flavor number scheme for n{sub f}=3,4,5, uses the MS scheme for the strong coupling {alpha}{sub s} and the heavy-quark masses and keeps full account of the correlations among all non-perturbative parameters. At NNLO this returns the values of {alpha}{sub s}(M{sub Z})=0.1132{+-}0.0011 and m{sub t}(pole)=171.2{+-}2.4 GeV for the top-quark pole mass. The fit results are used to compute benchmark cross sections for Higgs production at the LHC to NNLO accuracy. We compare our results to those obtained by other groups and show that differences can be linked to different theoretical descriptions of the underlying physical processes.

  6. Soft Gluon Radiation off Heavy Quarks beyond Eikonal Approximation

    International Nuclear Information System (INIS)

    Mazumder, Surasree; Bhattacharyya, Trambak; Abir, Raktim

    2016-01-01

    We calculate the soft gluon radiation spectrum off heavy quarks (HQs) interacting with light quarks (LQs) beyond small angle scattering (eikonality) approximation and thus generalize the dead-cone formula of heavy quarks extensively used in the literatures of Quark-Gluon Plasma (QGP) phenomenology to the large scattering angle regime which may be important in the energy loss of energetic heavy quarks in the deconfined Quark-Gluon Plasma medium. In the proper limits, we reproduce all the relevant existing formulae for the gluon radiation distribution off energetic quarks, heavy or light, used in the QGP phenomenology.

  7. NextGEOSS: The Next Generation Data Hub For Earth Observations

    Science.gov (United States)

    Lilja Bye, Bente; De Lathouwer, Bart; Catarino, Nuno; Concalves, Pedro; Trijssenaar, Nicky; Grosso, Nuno; Meyer-Arnek, Julian; Goor, Erwin

    2017-04-01

    The Group on Earth observation embarked on the next 10 year phase with an ambition to streamline and further develop its achievements in building the Global Earth Observing System of Systems (GEOSS). The NextGEOSS project evolves the European vision of GEOSS data exploitation for innovation and business, relying on the three main pillars of engaging communities, delivering technological developments and advocating the use of GEOSS, in order to support the creation and deployment of Earth observation based innovative research activities and commercial services. In this presentation we will present the NextGEOSS concept, a concept that revolves around providing the data and resources to the users communities, together with Cloud resources, seamlessly connected to provide an integrated ecosystem for supporting applications. A central component of NextGEOSS is the strong emphasis put on engaging the communities of providers and users, and bridging the space in between.

  8. MoonNEXT: A European Mission to the Moon

    Science.gov (United States)

    Carpenter, J. D.; Koschny, D.; Crawford, I.; Falcke, H.; Kempf, S.; Lognonne, P.; Ricci, C.; Houdou, B.; Pradier, A.

    2008-09-01

    MoonNEXT is a mission currently being studied, under the direction of the European Space Agency, whose launch is foreseen between 2015 and 2018. MoonNEXT is intended to prepare the way for future exploration activities on the Moon, while addressing key science questions. Exploration Objectives The primary goal for the MoonNEXT mission is to demonstrate autonomous soft precision landing with hazard avoidance; a key capability for future exploration missions. The nominal landing site is at the South Pole of the Moon, at the edge of the Aitken basin and in the region of Shackleton crater, which has been identified as an optimal location for a future human outpost by the NASA lunar architecture team [1]. This landing site selection ensures a valuable contribution by MoonNEXT to the Global Exploration Strategy [2]. MoonNEXT will also prepare for future lunar exploration activities by characterising the environment at the lunar surface. The potentially hazardous radiation environment will me monitored while a dedicated instrument package will investigate the levitation and mobility of lunar dust. Experience on Apollo demonstrated the potentially hazardous effects of dust for surface operations and human activities and so an understanding of these processes is important for the future. Life sciences investigations will be carried out into the effects of the lunar environment (including radiation, gravity and illumination conditions) on a man made ecosystem analogous to future life support systems. In doing so MoonNEXT will demonstrate the first extraterrestrial man made ecosystem and develop valuable expertise for future missions. Geological and geochemical investigations will explore the possibilities for In Situ Resource Utilisation (ISRU), which will be essential for long term human habitation on the Moon and is of particular importance at the proposed landing site, given its potential as a future habitat location. Science Objectives In addition to providing extensive

  9. Squark and gluino hadroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Beenakker, Wim; Niessen, Irene [Radboud Univ., Nijmegen (Netherlands). Theoretical High Energy Physics; Brensing, Silja [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Kraemer, Michael; Kulesza, Anna [RWTH Aachen Univ. (Germany). Inst. for Theoretical Particle Physics and Cosmology; Laenen, Eric [ITFA, Amsterdam Univ. (Netherlands); ITF, Utrecht Univ. (Netherlands); Nikhef, Amsterdam (Netherlands); Motyka, Leszek [Krakow Univ. (Poland). Inst. of Physics

    2011-09-15

    We review the theoretical status of squark and gluino hadroproduction and provide numerical predictions for all squark and gluino pair-production processes at the Tevatron and at the LHC, with a particular emphasis on proton-proton collisions at 7 TeV. Our predictions include next-to-leading order supersymmetric QCD corrections and the resummation of soft gluon emission at next-to-leading-logarithmic accuracy. We discuss the impact of the higher-order corrections on total cross sections, and provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions. (orig.)

  10. Squark and gluino hadroproduction

    International Nuclear Information System (INIS)

    Beenakker, Wim; Niessen, Irene; Kraemer, Michael; Kulesza, Anna; Motyka, Leszek

    2011-09-01

    We review the theoretical status of squark and gluino hadroproduction and provide numerical predictions for all squark and gluino pair-production processes at the Tevatron and at the LHC, with a particular emphasis on proton-proton collisions at 7 TeV. Our predictions include next-to-leading order supersymmetric QCD corrections and the resummation of soft gluon emission at next-to-leading-logarithmic accuracy. We discuss the impact of the higher-order corrections on total cross sections, and provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions. (orig.)

  11. Next-to-Leading Order Differential Cross Sections for J/ψ, ψ(2S), and Υ Production in Proton-Proton Collisions at a Fixed-Target Experiment Using the LHC Beams

    OpenAIRE

    Yu Feng; Jian-Xiong Wang

    2015-01-01

    Using nonrelativistic QCD (NRQCD) factorization, we calculate the yields for J/ψ , ψ(2S) , and Υ(1S) hadroproduction at s=72  GeV and 115 GeV including the next-to-leading order QCD corrections. Both these center-of-mass energies correspond to those obtained with 7 TeV and 2.76 TeV nucleon beam impinging a fixed target. We study the cross section integrated in pt as a function of the (center-of-mass) rapidity as well as the pt differential cross section in the central rapidity region. Using d...

  12. Phenomenology of threshold corrections for inclusive jet production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M.C. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2013-09-15

    We study one-jet inclusive hadro-production and compute the QCD threshold corrections for large transverse momentum of the jet in the soft-gluon resummation formalism at next-to-leading logarithmic accuracy. We use the resummed result to generate approximate QCD corrections at next-to-next-to leading order, compare with results in the literature and present rapidity integrated distributions of the jet's transverse momentum for Tevatron and LHC. For the threshold approximation we investigate its kinematical range of validity as well as its dependence on the jet's cone size and kinematics.

  13. Soft-collinear factorization in effective field theory

    International Nuclear Information System (INIS)

    Bauer, Christian W.; Pirjol, Dan; Stewart, Iain W.

    2002-01-01

    The factorization of soft and ultrasoft gluons from collinear particles is shown at the level of operators in an effective field theory. Exclusive hadronic factorization and inclusive partonic factorization follow as special cases. The leading-order Lagrangian is derived using power counting and gauge invariance in the effective theory. Several species of gluons are required, and softer gluons appear as background fields to gluons with harder momenta. Two examples are given: the factorization of soft gluons in B→Dπ and the soft-collinear convolution for the B→X s γ spectrum

  14. Soft x-ray imager (SXI) onboard the NeXT satellite

    Science.gov (United States)

    Tsuru, Takeshi Go; Takagi, Shin-Ichiro; Matsumoto, Hironori; Inui, Tatsuya; Ozawa, Midori; Koyama, Katsuji; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Miyata, Emi; Ozawa, Hideki; Touhiguchi, Masakuni; Matsuura, Daisuke; Dotani, Tadayasu; Ozaki, Masanobu; Murakami, Hiroshi; Kohmura, Takayoshi; Kitamoto, Shunji; Awaki, Hisamitsu

    2006-06-01

    We give overview and the current status of the development of the Soft X-ray Imager (SXI) onboard the NeXT satellite. SXI is an X-ray CCD camera placed at the focal plane detector of the Soft X-ray Telescopes for Imaging (SXT-I) onboard NeXT. The pixel size and the format of the CCD is 24 x 24μm (IA) and 2048 x 2048 x 2 (IA+FS). Currently, we have been developing two types of CCD as candidates for SXI, in parallel. The one is front illumination type CCD with moderate thickness of the depletion layer (70 ~ 100μm) as a baseline plan. The other one is the goal plan, in which we develop back illumination type CCD with a thick depletion layer (200 ~ 300μm). For the baseline plan, we successfully developed the proto model 'CCD-NeXT1' with the pixel size of 12μm x 12μm and the CCD size of 24mm x 48mm. The depletion layer of the CCD has reached 75 ~ 85μm. The goal plan is realized by introduction of a new type of CCD 'P-channel CCD', which collects holes in stead of electrons in the common 'N-channel CCD'. By processing a test model of P-channel CCD we have confirmed high quantum efficiency above 10 keV with an equivalent depletion layer of 300μm. A back illumination type of P-channel CCD with a depletion layer of 200μm with aluminum coating for optical blocking has been also successfully developed. We have been also developing a thermo-electric cooler (TEC) with the function of the mechanically support of the CCD wafer without standoff insulators, for the purpose of the reduction of thermal input to the CCD through the standoff insulators. We have been considering the sensor housing and the onboard electronics for the CCD clocking, readout and digital processing of the frame date.

  15. Gauge boson production at colliders – Predictions for precision studies

    Indian Academy of Sciences (India)

    2012-10-03

    Oct 3, 2012 ... Next-to-leading order; quantum chromodynamics; gauge bosons. PACS Nos 12.38.−t; 12.15.−y. 1. .... to-leading logarithms (NNLL), transverse momentum resummation [11] and soft gluon resummation have been ..... From the figure it is clear that if only the three hardest jets are included in the definition of.

  16. Threshold resummation of the rapidity distribution for Higgs production at NNLO +NNLL

    Science.gov (United States)

    Banerjee, Pulak; Das, Goutam; Dhani, Prasanna K.; Ravindran, V.

    2018-03-01

    We present a formalism that resums threshold-enhanced logarithms to all orders in perturbative QCD for the rapidity distribution of any colorless particle produced in hadron colliders. We achieve this by exploiting the factorization properties and K +G equations satisfied by the soft and virtual parts of the cross section. We compute for the first time compact and most general expressions in two-dimensional Mellin space for the resummed coefficients. Using various state-of-the-art multiloop and multileg results, we demonstrate the numerical impact of our resummed results up to next-to-next-to-leading order for the rapidity distribution of the Higgs boson at the LHC. We find that inclusion of these threshold logs through resummation improves the reliability of perturbative predictions.

  17. Topics in perturbative QCD beyond the leading order

    International Nuclear Information System (INIS)

    Buras, A.J.

    1979-08-01

    The basic structure of QCD formulae for various inclusive and semi-inclusive processes is presented. Next to leading order QCD corrections to inclusive deep-inelastic scattering are discussed in some detail. The methods for calculations of QCD corrections (leading, next to leading) to semi-inclusive processes are outlined. Some results of these calculations are discussed. 58 references

  18. Thermalization of mini-jets in a quark–gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, Edmond, E-mail: edmond.iancu@cea.fr; Wu, Bin, E-mail: bin.wu.phys@gmail.com [Institut de Physique Théorique, CEA Saclay, CNRS UMR 3681, F-91191 Gif-sur-Yvette (France); Department of Physics, The Ohio State University, Columbus, OH 43210 (United States)

    2016-12-15

    We present the complete physical picture for the evolution of a high-energy jet propagating through a weakly-coupled quark-gluon plasma (QGP) by analytical and numerical investigation of thermalization of the soft components of the jet. Our results support the following physical picture: the leading particle emits a significant number of mini-jets which promptly evolve via multiple branching and thus degrade into a myriad of soft gluons, with energies of the order of the medium temperature T. Via elastic collisions with the medium constituents, these soft gluons relax to local thermal equilibrium with the plasma over a time scale which is considerably shorter than the typical lifetime of the mini-jet. The thermalized gluons form a tail which lags behind the hard components of the jet. Together with the background QGP, they behave hydrodynamically.

  19. SIMP model at NNLO in chiral perturbation theory

    Science.gov (United States)

    Hansen, Martin; Langæble, Kasper; Sannino, Francesco

    2015-10-01

    We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 →2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By performing a consistent next-to-leading- and next-to-next-to-leading-order chiral perturbative investigation we demonstrate that the leading-order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher-order corrections substantially increase the tension with phenomenological constraints challenging the viability of the simplest realization of the strongly interacting massive particle paradigm.

  20. Jet p{sub T} resummation in Higgs production at NNLL'+NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Iain W. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Walsh, Jonathan R.; Zuberi, Saba [California Univ., Berkeley, CA (United States). Ernes Orlando Lawrence Berkeley National Laboratory

    2013-07-15

    We present predictions for Higgs production via gluon fusion with a p{sub T} veto on jets and with the resummation of jet-veto logarithms at NNLL'+NNLO order. These results incorporate explicit O({alpha}{sub s}{sup 2}) calculations of soft and beam functions, which include the dominant dependence on the jet radius R. In particular the NNLL' order accounts for the correct boundary conditions for the N{sup 3}LL resummation, for which the only unknown ingredients are higher-order anomalous dimensions. We use scale variations in a factorization theorem in both rapidity and virtuality space to estimate the perturbative uncertainties, accounting for both higher fixed-order corrections as well as higher-order towers of jet-p{sub T} logarithms. This formalism also predicts the correlations in the theory uncertainty between the exclusive 0-jet and inclusive 1-jet bins. At the values of R used experimentally, there are important corrections due to jet algorithm clustering that include logarithms of R. Although we do not sum logarithms of R, we do include an explicit contribution in our uncertainty estimate to account for higher-order jet clustering logarithms. Precision predictions for this H+0-jet cross section and its theoretical uncertainty are an integral part of Higgs analyses that employ jet binning.

  1. Next-to-leading order corrections to the spin-dependent energy spectrum of hadrons from polarized top quark decay in the general two Higgs doublet model

    Directory of Open Access Journals (Sweden)

    S. Mohammad Moosavi Nejad

    2017-08-01

    Full Text Available In recent years, searches for the light and heavy charged Higgs bosons have been done by the ATLAS and the CMS collaborations at the Large Hadron Collider (LHC in proton–proton collision. Nevertheless, a definitive search is a program that still has to be carried out at the LHC. The experimental observation of charged Higgs bosons would indicate physics beyond the Standard Model. In the present work, we study the scaled-energy distribution of bottom-flavored mesons (B inclusively produced in polarized top quark decays into a light charged Higgs boson and a massless bottom quark at next-to-leading order in the two-Higgs-doublet model; t(↑→bH+→BH++X. This spin-dependent energy distribution is studied in a specific helicity coordinate system where the polarization vector of the top quark is measured with respect to the direction of the Higgs momentum. The study of these energy distributions could be considered as a new channel to search for the charged Higgs bosons at the LHC. For our numerical analysis and phenomenological predictions, we restrict ourselves to the unexcluded regions of the MSSM mH+−tan⁡β parameter space determined by the recent results of the CMS [13] and ATLAS [14] collaborations.

  2. Threshold resummation for Higgs production in effective field theory

    International Nuclear Information System (INIS)

    Idilbi, Ahmad; Ji Xiangdong; Ma Jianping; Yuan Feng

    2006-01-01

    We present an effective field theory approach to resum the large double logarithms originated from soft-gluon radiations at small final-state hadron invariant masses in Higgs and vector boson (γ*,W,Z) production at hadron colliders. The approach is conceptually simple, independent of details of an effective field theory formulation, and valid to all orders in subleading logarithms. As an example, we show the result of summing the next-to-next-to-next-to leading logarithms is identical to that of the standard pQCD factorization method

  3. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    We describe the calculation of inclusive Higgs boson production at hadronic colliders at next-to-next-to-leading order (NNLO) in perturbative quantum chromodynamics. We have used the technique developed in ref. [4]. Our results agree with those published earlier in the literature.

  4. The gluon structure of hadrons and nuclei from lattice QCD

    Science.gov (United States)

    Shanahan, Phiala

    2018-03-01

    I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.

  5. Next-to-next-leading order correction to 3-jet rate and event-shape ...

    Indian Academy of Sciences (India)

    portunity to test QCD by measuring the energy dependence of different ... event shape data was not satisfactory largely due to the scale uncertainty of the pertur- .... )3 d ¯C dy. + O. ( α4 s. ) . (5). Here the event-shape distribution is normalized to the ..... [1] A Gehrmann-De Ridder, T Gehrmann, E W N Glover and G Heinrich, J.

  6. Shining LUX on isospin-violating dark matter beyond leading order

    DEFF Research Database (Denmark)

    Cirigliano, V.; Graesser, M. L.; Ovanesyan, G.

    2014-01-01

    Isospin-violating dark matter (IVDM) has been proposed as a viable scenario to reconcile conflicting positive and null results from direct detection dark matter experiments. We show that the lowest-order dark matter-nucleus scattering rate can receive large and nucleus-dependent corrections at next......-to-leading order (NLO) in the chiral expansion. The size of these corrections depends on the specific couplings of dark matter to quark flavors and gluons. In general the full NLO dark-matter-nucleus cross-section is not adequately described by just the zero-energy proton and neutron couplings. These statements...... are concretely illustrated in a scenario where the dark matter couples to quarks through scalar operators. We find the canonical IVDM scenario can reconcile the null XENON and LUX results and the recent CDMS-Si findings provided its couplings to second and third generation quarks either lie on a special line...

  7. Spin nematics next to spin singlets

    Science.gov (United States)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  8. Higher order constraints on the Higgs production rate from fixed-target DIS data

    International Nuclear Information System (INIS)

    Alekhin, S.; Bluemlein, J.; Moch, S.

    2011-01-01

    The constraints of fixed-target DIS data in fits of parton distributions including QCD corrections to next-to-next-to leading order are studied. We point out a potential problem in the analysis of the NMC data which can lead to inconsistencies in the extracted value for α s (M Z ) and the gluon distribution at higher orders in QCD. The implications for predictions of rates for Standard Model Higgs boson production at hadron colliders are investigated. We conclude that the current range of excluded Higgs boson masses at the Tevatron appears to be much too large. (orig.)

  9. Leading order determination of the gluon polarisation from DIS events with high-$p_T$ hadron pairs

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Burtin, E; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Denisov, O.Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; jr., M.Finger; Fischer, H; Franco, C; von Hohenesche, N.du Fresne; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Hedicke, S; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu.A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kunne, F.; Kurek, K; Lauser, L; Le Goff, J M; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu.V; Moinester, M A; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Nassalski, J P; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S.; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Procureur, S L; Quaresma, M; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S.; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C.; Schluter, T; Schmidt, K; Schmitt, L; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O.Yu; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Sznajder, P; Takekawa, S; Wolbeek, J.Ter; Tessaro, S; Tessarotto, F; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Wang, L; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A

    2013-01-01

    We present a determination of the gluon polarisation Delta g/g in the nucleon, based on the longitudinal double-spin asymmetry of DIS events with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam scattering off a polarised ^6LiD target. The gluon polarisation is evaluated by a Neural Network approach for three intervals of the gluon momentum fraction x_g covering the range 0.04 < x_g < 0.27. The values obtained at leading order in QCD do not show any significant dependence on x_g. Their average is Delta g/g = 0.125 +/- 0.060 (stat.) +/- 0.063 (syst.) at x_g=0.09 and a scale of mu^2 = 3~(GeV/c)^2.

  10. The gluon structure of hadrons and nuclei from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Phiala A. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2018-04-01

    I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.

  11. Generalized threshold resummation for semi-inclusive e+e- annihilation

    International Nuclear Information System (INIS)

    Lo Presti, N.A.; Vogt, A.

    2012-02-01

    Recently methods have been developed to extend the resummation of large-x double logarithms in inclusive deep-inelastic scattering (DIS) to terms not addressed by the soft-gluon exponentiation. Here we briefly outline our approach based on fixed-order results, the general large-x structure in dimensional regularization and the all-order factorization of mass singularities, which is directly applicable also to semi-inclusive e + e - annihilation (SIA). We then present some main results for the corresponding timelike splitting functions and transverse and longitudinal fragmentation functions. The close relation between DIS and SIA facilitates the determination of additional third-order results for the latter function which is fully known only at the next-to-leading order. Therefore all above quantities can be resummed at next-to-next-to-leading logarithmic accuracy. (orig.)

  12. Effective field theory approach to open heavy flavor production in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhong-Bo [Department of Physics and Astronomy, University of California,Los Angeles, California 90095 (United States); Mani L. Bhaumik Institute for Theoretical Physics, University of California,Los Angeles, California 90095 (United States); Theoretical Division, Los Alamos National Laboratory,Los Alamos, New Mexico 87545 (United States); Ringer, Felix; Vitev, Ivan [Theoretical Division, Los Alamos National Laboratory,Los Alamos, New Mexico 87545 (United States)

    2017-03-28

    We develop a version of Soft Collinear Effective Theory (SCET) which includes finite quark masses, as well as Glauber gluons that describe the interaction of collinear partons with QCD matter. In the framework of this new effective field theory, labeled SCET{sub M,G}, we derive the massive splitting functions in the vacuum and the QCD medium for the processes Q→Qg, Q→gQ and g→QQ̄. The numerical effects due to finite quark masses are sizable and our results are consistent with the traditional approach to parton energy loss in the soft gluon emission limit. In addition, we present a new framework for including the medium-induced full splitting functions consistent with next-to-leading order calculations in QCD for inclusive hadron production. Finally, we show numerical results for the suppression of D- and B-mesons in heavy ion collisions at √(s{sub NN})=5.02 TeV and 2.76 TeV and compare to available data from the LHC.

  13. Duality and multi-gluon scattering

    International Nuclear Information System (INIS)

    Mangano, M.; Parke, S.; Xu Zhan

    1988-01-01

    For the six-gluon scattering process we give explicit and simple expressions for the amplitude and its square. To achieve this we use an analogy with string theories to identify a unique procedure for writing the multi-gluon scattering amplitudes in terms of a sum of gauge invariant dual sub-amplitudes multiplied by an appropriate color (Chan-Paton) factor. The sub-amplitudes defined in this way are invariant under cyclic permutations, satisfy powerful identities which relate different non-cyclic permutations and factorize in the soft gluon limit, the two-gluon collinear limit and on multi-gluon poles. Also, to leading order in the number of colors these sub-amplitudes sum incoherently in the square of the full matrix element. The results contained here are important for Monte Carlo studies of multi-jet processes at hadron colliders as well as for understanding the general structure of QCD. (orig.)

  14. Soft gluon evolution and non-global logarithms

    Science.gov (United States)

    Martínez, René Ángeles; De Angelis, Matthew; Forshaw, Jeffrey R.; Plätzer, Simon; Seymour, Michael H.

    2018-05-01

    We consider soft-gluon evolution at the amplitude level. Our evolution algorithm applies to generic hard-scattering processes involving any number of coloured partons and we present a reformulation of the algorithm in such a way as to make the cancellation of infrared divergences explicit. We also emphasise the special role played by a Lorentz-invariant evolution variable, which coincides with the transverse momentum of the latest emission in a suitably defined dipole zero-momentum frame. Handling large colour matrices presents the most significant challenge to numerical implementations and we present a means to expand systematically about the leading colour approximation. Specifically, we present a systematic procedure to calculate the resulting colour traces, which is based on the colour flow basis. Identifying the leading contribution leads us to re-derive the Banfi-Marchesini-Smye equation. However, our formalism is more general and can systematically perform resummation of contributions enhanced by the t'Hooft coupling α s N ˜ 1, along with successive perturbations that are parametrically suppressed by powers of 1 /N . We also discuss how our approach relates to earlier work.

  15. Analytic treatment of leading-order parton evolution equations: Theory and tests

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal; McKay, Douglas W.

    2009-01-01

    We recently derived an explicit expression for the gluon distribution function G(x,Q 2 )=xg(x,Q 2 ) in terms of the proton structure function F 2 γp (x,Q 2 ) in leading-order (LO) QCD by solving the LO Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation for the Q 2 evolution of F 2 γp (x,Q 2 ) analytically, using a differential-equation method. We showed that accurate experimental knowledge of F 2 γp (x,Q 2 ) in a region of Bjorken x and virtuality Q 2 is all that is needed to determine the gluon distribution in that region. We rederive and extend the results here using a Laplace-transform technique, and show that the singlet quark structure function F S (x,Q 2 ) can be determined directly in terms of G from the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi gluon evolution equation. To illustrate the method and check the consistency of existing LO quark and gluon distributions, we used the published values of the LO quark distributions from the CTEQ5L and MRST2001 LO analyses to form F 2 γp (x,Q 2 ), and then solved analytically for G(x,Q 2 ). We find that the analytic and fitted gluon distributions from MRST2001LO agree well with each other for all x and Q 2 , while those from CTEQ5L differ significantly from each other for large x values, x > or approx. 0.03-0.05, at all Q 2 . We conclude that the published CTEQ5L distributions are incompatible in this region. Using a nonsinglet evolution equation, we obtain a sensitive test of quark distributions which holds in both LO and next-to-leading order perturbative QCD. We find in either case that the CTEQ5 quark distributions satisfy the tests numerically for small x, but fail the tests for x > or approx. 0.03-0.05--their use could potentially lead to significant shifts in predictions of quantities sensitive to large x. We encountered no problems with the MRST2001LO distributions or later CTEQ distributions. We suggest caution in the use of the CTEQ5 distributions.

  16. Soft gluon approach for diffractive photoproduction of J/ψ

    International Nuclear Information System (INIS)

    Ma, J.P.; Xu Jiasheng

    2002-01-01

    We study diffractive photoproduction of J/ψ by taking the charm quark as a heavy quark. A description of nonperturbative effect related to J/ψ can be made by using NRQCD. In the forward region of the kinematics, the interaction between the cc-bar-pair and the initial hadron is due to exchange of soft gluons. The effect of the exchange can be studied by using the expansion in the inverse of the quark mass m c . At the leading order we find that the nonperturbative effect related to the initial hadron is represented by a matrix element of field strength operators, which are separated in the moving direction of J/ψ in the spacetime. The S-matrix element is then obtained without using perturbative QCD and the results are not based on any model. Corrections to the results can be systematically added. Keeping the dominant contribution of the S-matrix element in the large energy limit we find that the imaginary part of the S-matrix element is related to the gluon distribution for x→0 with a reasonable assumption, the real part can be obtained with another approximation or with dispersion relation. Our approach is different than previous approaches and also our results are different than those in these approaches. The differences are discussed in detail. A comparison with experiment is also made and a qualitative agreement is found. (author)

  17. NNLL-fast: predictions for coloured supersymmetric particle production at the LHC with threshold and Coulomb resummation

    NARCIS (Netherlands)

    Beenakker, W.; Borschensky, C.; Krämer, M.; Kulesza, A.; Laenen, E.

    2016-01-01

    We present state-of-the art predictions for the production of supersymmetric squarks and gluinos at the Large Hadron Collider (LHC), including soft-gluon resummation up to next-to-next-to-leading logarithmic (NNLL) accuracy, the resummation of Coulomb corrections and the contribution from bound

  18. NNLL-fast : predictions for coloured supersymmetric particle production at the LHC with threshold and Coulomb resummation

    NARCIS (Netherlands)

    Beenakker, Wim; Borschensky, Christoph; Krämer, Michael; Kulesza, Anna; Laenen, Eric

    2016-01-01

    We present state-of-the art predictions for the production of supersymmetric squarks and gluinos at the Large Hadron Collider (LHC), including soft-gluon resummation up to next-to-next-to-leading logarithmic (NNLL) accuracy, the resummation of Coulomb corrections and the contribution from bound

  19. Quantitative constraints on the gluon distribution function in the proton from collider isolated-photon data

    CERN Document Server

    d'Enterria, David

    2012-01-01

    The impact of isolated-photon data from proton-(anti)proton collisions at RHIC, SppbarS, Tevatron and LHC energies, on the parton distribution functions of the proton is studied using a recently developed Bayesian reweighting method. The impact on the gluon density of the 35 existing isolated-gamma measurements is quantified using next-to-leading order (NLO) perturbative QCD calculations complemented with the NNPDF2.1 parton densities. The NLO predictions are found to describe well most of the datasets from 200 GeV up to 7 TeV centre-of-mass energies. The isolated-photon spectra recently measured at the LHC are precise enough to constrain the gluon distribution and lead to a moderate reduction (up to 20%) of its uncertainties around fractional momenta x~0.02. As a particular case, we show that the improved gluon density reduces the PDF uncertainty for the Higgs boson production cross section in the gluon-fusion channel by more than 20% at the LHC. We conclude that present and future isolated-photon measuremen...

  20. Hadronic total cross-sections through soft gluon summation in impact parameter space

    International Nuclear Information System (INIS)

    Grau, A.

    1999-01-01

    IThe Bloch-Nordsieck model for the parton distribution of hadrons in impact parameter space, constructed using soft gluon summation, is investigated in detail. Its dependence upon the infrared structure of the strong coupling constant α s is discussed, both for finite as well as singular, but integrable, α s . The formalism is applied to the prediction of total proton-proton and proton-antiproton cross-sections, where screening, due to soft gluon emission from the initial valence quarks, becomes evident

  1. The jet mass distribution after Soft Drop

    Energy Technology Data Exchange (ETDEWEB)

    Marzani, Simone [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); INFN, Sezione di Genova (Italy); Schunk, Lais [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Soyez, Gregory [IPhT, CEA Saclay, CNRS UMR 3681, Gif-Sur-Yvette (France)

    2018-02-15

    We present a first-principle computation of the mass distribution of jets which have undergone the grooming procedure known as Soft Drop. This calculation includes the resummation of the large logarithms of the jet mass over its transverse momentum, up to next-to-logarithmic accuracy, matched to exact fixed-order results at next-to-leading order. We also include non-perturbative corrections obtained from Monte-Carlo simulations and discuss analytic expressions for hadronisation and Underlying Event effects. (orig.)

  2. The jet mass distribution after Soft Drop

    Science.gov (United States)

    Marzani, Simone; Schunk, Lais; Soyez, Gregory

    2018-02-01

    We present a first-principle computation of the mass distribution of jets which have undergone the grooming procedure known as Soft Drop. This calculation includes the resummation of the large logarithms of the jet mass over its transverse momentum, up to next-to-logarithmic accuracy, matched to exact fixed-order results at next-to-leading order. We also include non-perturbative corrections obtained from Monte-Carlo simulations and discuss analytic expressions for hadronisation and Underlying Event effects.

  3. Gluon and quark jet multiplicities at N3L0+NNLL

    International Nuclear Information System (INIS)

    Bolzoni, P.; Kniehl, B.A.; Kotikov, A.V.; Joint Institute of Nuclear Research, Moscow

    2012-09-01

    We present a new approach to consider and include both the perturbative and the non-perturbative contributions to the multiplicities of gluon and quark jets. Thanks to this new method we have included for the first time new contributions to these quantities obtaining next-to-next-to-leading-logarithmic (NNLL) resummed formulae. Our analytic expressions depend on two non-perturbative parameters with a clear and simple physical interpretation. A global fit of these two quantities shows how our results represent an important improvement in the explanation of the experimental data.

  4. arXiv Addendum to: Predictions for Higgs production at the Tevatron and the associated uncertainties

    CERN Document Server

    Baglio, Julien

    2010-01-01

    We update the theoretical predictions for the production cross sections of the Standard Model Higgs boson at the Fermilab Tevatron collider, focusing on the two main search channels, the gluon-gluon fusion mechanism $gg \\to H$ and the Higgs-strahlung processes $q \\bar q \\to VH$ with $V=W/Z$, including all relevant higher order QCD and electroweak corrections in perturbation theory. We then estimate the various uncertainties affecting these predictions: the scale uncertainties which are viewed as a measure of the unknown higher order effects, the uncertainties from the parton distribution functions and the related errors on the strong coupling constant, as well as the uncertainties due to the use of an effective theory approach in the determination of the radiative corrections in the $gg \\to H$ process at next-to-next-to-leading order. We find that while the cross sections are well under control in the Higgs--strahlung processes, the theoretical uncertainties are rather large in the case of the gluon-gluon fus...

  5. High-quality two-nucleon potentials up to fifth order of the chiral expansion

    Science.gov (United States)

    Entem, D. R.; Machleidt, R.; Nosyk, Y.

    2017-08-01

    We present NN potentials through five orders of chiral effective field theory ranging from leading order (LO) to next-to-next-to-next-to-next-to-leading order (N4LO ). The construction may be perceived as consistent in the sense that the same power counting scheme as well as the same cutoff procedures are applied in all orders. Moreover, the long-range parts of these potentials are fixed by the very accurate π N low-energy constants (LECs) as determined in the Roy-Steiner equations analysis by Hoferichter, Ruiz de Elvira, and coworkers. In fact, the uncertainties of these LECs are so small that a variation within the errors leads to effects that are essentially negligible, reducing the error budget of predictions considerably. The NN potentials are fit to the world NN data below the pion-production threshold of the year 2016. The potential of the highest order (N4LO ) reproduces the world NN data with the outstanding χ2/datum of 1.15, which is the highest precision ever accomplished for any chiral NN potential to date. The NN potentials presented may serve as a solid basis for systematic ab initio calculations of nuclear structure and reactions that allow for a comprehensive error analysis. In particular, the consistent order by order development of the potentials will make possible a reliable determination of the truncation error at each order. Our family of potentials is nonlocal and, generally, of soft character. This feature is reflected in the fact that the predictions for the triton binding energy (from two-body forces only) converges to about 8.1 MeV at the highest orders. This leaves room for three-nucleon-force contributions of moderate size.

  6. Constraining gluon distributions in nuclei using dijets in proton-proton and proton-lead collisions at ${\\sqrt {\\smash [b]{s_{_{\\mathrm {NN}}}}}} = $ 5.02 TeV

    CERN Document Server

    Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Dragicevic, Marko; Erö, Janos; Escalante Del Valle, Alberto; Flechl, Martin; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hrubec, Josef; Jeitler, Manfred; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Taurok, Anton; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Pieters, Maxim; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Marchesini, Ivan; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Beghin, Diego; Bilin, Bugra; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dorney, Brian; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Kalsi, Amandeep Kaur; Lenzi, Thomas; Luetic, Jelena; Postiau, Nicolas; Starling, Elizabeth; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Wang, Qun; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Trocino, Daniele; Tytgat, Michael; Verbeke, Willem; Vermassen, Basile; Vit, Martina; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; David, Pieter; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Saggio, Alessia; Vidal Marono, Miguel; Wertz, Sébastien; Zobec, Joze; Alves, Fábio Lúcio; Alves, Gilvan; Correa Martins Junior, Marcos; Correia Silva, Gilson; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Coelho, Eduardo; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Sanchez Rosas, Luis Junior; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Calligaris, Luigi; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Yuan, Li; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhang, Sijing; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Levin, Andrew; Li, Jing; Li, Linwei; Li, Qiang; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Wang, Yi; Avila, Carlos; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Segura Delgado, Manuel Alejandro; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Kolosova, Marina; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Ayala, Edy; Carrera Jarrin, Edgar; Abdalla, Hassan; Abdelalim, Ahmed Ali; Mahmoud, Mohammed; Bhowmik, Sandeep; Carvalho Antunes De Oliveira, Alexandra; Dewanjee, Ram Krishna; Ehataht, Karl; Kadastik, Mario; Raidal, Martti; Veelken, Christian; Eerola, Paula; Kirschenmann, Henning; Pekkanen, Juska; Voutilainen, Mikko; Havukainen, Joona; Heikkilä, Jaana Kristiina; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Laurila, Santeri; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Siikonen, Hannu; Tuominen, Eija; Tuominiemi, Jorma; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Leloup, Clément; Locci, Elizabeth; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Amendola, Chiara; Antropov, Iurii; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Granier de Cassagnac, Raphael; Kucher, Inna; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Pigard, Philipp; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Cherepanov, Vladimir; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lattaud, Hugues; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max Philip; Schomakers, Christian; Schulz, Johannes; Teroerde, Marius; Wittmer, Bruno; Zhukov, Valery; Albert, Andreas; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Esch, Thomas; Fischer, Robert; Ghosh, Saranya; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Keller, Henning; Knutzen, Simon; Mastrolorenzo, Luca; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Schmidt, Alexander; Teyssier, Daniel; Flügge, Günter; Hlushchenko, Olena; Kress, Thomas; Künsken, Andreas; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Roy, Dennis; Sert, Hale; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Babounikau, Illia; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bertsche, David; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Danilov, Vladyslav; De Wit, Adinda; Defranchis, Matteo Maria; Diez Pardos, Carmen; Domínguez Damiani, Daniela; Eckerlin, Guenter; Eichhorn, Thomas; Elwood, Adam; Eren, Engin; Gallo, Elisabetta; Geiser, Achim; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Haranko, Mykyta; Harb, Ali; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Knolle, Joscha; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Meyer, Mareike; Missiroli, Marino; Mittag, Gregor; Mnich, Joachim; Myronenko, Volodymyr; Pflitsch, Svenja Karen; Pitzl, Daniel; Raspereza, Alexei; Savitskyi, Mykola; Saxena, Pooja; Schütze, Paul; Schwanenberger, Christian; Shevchenko, Rostyslav; Singh, Akshansh; Tholen, Heiner; Turkot, Oleksii; Vagnerini, Antonio; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Aggleton, Robin; Bein, Samuel; Benato, Lisa; Benecke, Anna; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Karavdina, Anastasia; Kasieczka, Gregor; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Kutzner, Viktor; Lange, Johannes; Marconi, Daniele; Multhaup, Jens; Niedziela, Marek; Nowatschin, Dominik; Perieanu, Adrian; Reimers, Arne; Rieger, Oliver; Scharf, Christian; Schleper, Peter; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Troendle, Daniel; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baselga, Marta; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; El Morabit, Karim; Faltermann, Nils; Freund, Benedikt; Giffels, Manuel; Harrendorf, Marco Alexander; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Katkov, Igor; Kudella, Simon; Mildner, Hannes; Mitra, Soureek; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Paspalaki, Garyfallia; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Kontaxakis, Pantelis; Panagiotou, Apostolos; Papavergou, Ioanna; Saoulidou, Niki; Tziaferi, Eirini; Vellidis, Konstantinos; Kousouris, Konstantinos; Papakrivopoulos, Ioannis; Tsipolitis, Georgios; Evangelou, Ioannis; Foudas, Costas; Gianneios, Paraskevas; Katsoulis, Panagiotis; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Tsitsonis, Dimitrios; Bartók, Márton; Csanad, Mate; Filipovic, Nicolas; Major, Péter; Nagy, Marton Imre; Pasztor, Gabriella; Surányi, Olivér; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Vámi, Tamás Álmos; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Tiwari, Praveen Chandra; Bahinipati, Seema; Kar, Chandiprasad; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chauhan, Sushil; Chawla, Ridhi; Dhingra, Nitish; Gupta, Rajat; Kaur, Anterpreet; Kaur, Amandeep; Kaur, Manjit; Kaur, Sandeep; Kumar, Ramandeep; Kumari, Priyanka; Lohan, Manisha; Mehta, Ankita; Sandeep, Kaur; Sharma, Sandeep; Singh, Jasbir; Walia, Genius; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Gola, Mohit; Keshri, Sumit; Kumar, Ashok; Malhotra, Shivali; Naimuddin, Md; Priyanka, Priyanka; Ranjan, Kirti; Shah, Aashaq; Sharma, Ramkrishna; Bhardwaj, Rishika; Bharti, Monika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Bhowmik, Debabrata; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Mondal, Kuntal; Nandan, Saswati; Purohit, Arnab; Rout, Prasant Kumar; Roy, Ashim; Roy Chowdhury, Suvankar; Saha, Gourab; Sarkar, Subir; Sharan, Manoj; Singh, Bipen; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Bhat, Muzamil Ahmad; Dugad, Shashikant; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Ravindra Kumar Verma, Ravindra; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Karmakar, Saikat; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sahoo, Niladribihari; Sarkar, Tanmay; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Di Florio, Adriano; Errico, Filippo; Fiore, Luigi; Gelmi, Andrea; Iaselli, Giuseppe; Ince, Merve; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Borgonovi, Lisa; Braibant-Giacomelli, Sylvie; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Ciocca, Claudia; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Iemmi, Fabio; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Di Mattia, Alessandro; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Latino, Giuseppe; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferro, Fabrizio; Ravera, Fabio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Beschi, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Di Guida, Salvatore; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Zuolo, Davide; Buontempo, Salvatore; Cavallo, Nicola; Di Crescenzo, Antonia; Fabozzi, Francesco; Fienga, Francesco; Galati, Giuliana; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Voevodina, Elena; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Boletti, Alessio; Bragagnolo, Alberto; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Hoh, Siew Yan; Lacaprara, Stefano; Lujan, Paul; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Tiko, Andres; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bianchini, Lorenzo; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Fiori, Francesco; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Manca, Elisabetta; Mandorli, Giulio; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Cometti, Simona; Costa, Marco; Covarelli, Roberto; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Soldi, Dario; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Vazzoler, Federico; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Kim, Hyunsoo; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Jeon, Dajeong; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castaneda Hernandez, Alfredo; Murillo Quijada, Javier Alberto; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Ramirez-Sanchez, Gabriel; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Reyes-Almanza, Rogelio; Ramírez García, Mateo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Eysermans, Jan; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Bheesette, Srinidhi; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Traczyk, Piotr; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Araujo, Mariana; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Golunov, Alexey; Golutvin, Igor; Karjavine, Vladimir; Korenkov, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Mitsyn, Valeri Valentinovitch; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Smirnov, Vitaly; Trofimov, Vladimir; Yuldashev, Bekhzod S; Zarubin, Anatoli; Zhiltsov, Victor; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sosnov, Dmitry; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Stolin, Viatcheslav; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Chadeeva, Marina; Parygin, Pavel; Philippov, Dmitry; Polikarpov, Sergey; Popova, Elena; Rusinov, Vladimir; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Barnyakov, Alexander; Blinov, Vladimir; Dimova, Tatyana; Kardapoltsev, Leonid; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Godizov, Anton; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Mandrik, Petr; Petrov, Vladimir; Ryutin, Roman; Slabospitskii, Sergei; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Babaev, Anton; Baidali, Sergei; Okhotnikov, Vitalii; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Alcaraz Maestre, Juan; Álvarez Fernández, Adrian; Bachiller, Irene; Barrio Luna, Mar; Brochero Cifuentes, Javier Andres; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Moran, Dermot; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Triossi, Andrea; Albajar, Carmen; de Trocóniz, Jorge F; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Rodríguez Bouza, Víctor; Sanchez Cruz, Sergio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Duarte Campderros, Jordi; Fernandez, Marcos; Fernández Manteca, Pedro José; García Alonso, Andrea; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Prieels, Cédric; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Akgun, Bora; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Bianco, Michele; Bocci, Andrea; Botta, Cristina; Brondolin, Erica; Camporesi, Tiziano; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; Cucciati, Giacomo; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Roeck, Albert; Deelen, Nikkie; Dobson, Marc; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Fasanella, Daniele; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gilbert, Andrew; Gill, Karl; Glege, Frank; Guilbaud, Maxime; Gulhan, Doga; Hegeman, Jeroen; Innocente, Vincenzo; Jafari, Abideh; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Kornmayer, Andreas; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Malgeri, Luca; Mannelli, Marcello; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Ngadiuba, Jennifer; Nourbakhsh, Shervin; Orfanelli, Styliani; Orsini, Luciano; Pantaleo, Felice; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pitters, Florian Michael; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Tosi, Mia; Treille, Daniel; Tsirou, Andromachi; Veckalns, Viesturs; Zeuner, Wolfram Dietrich; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Backhaus, Malte; Bäni, Lukas; Berger, Pirmin; Chernyavskaya, Nadezda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Klijnsma, Thomas; Lustermann, Werner; Manzoni, Riccardo Andrea; Marionneau, Matthieu; Meinhard, Maren Tabea; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Pigazzini, Simone; Quittnat, Milena; Ruini, Daniele; Sanz Becerra, Diego Alejandro; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Brzhechko, Danyyl; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Leontsinis, Stefanos; Neutelings, Izaak; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Chang, Yu-Hsiang; Cheng, Kai-yu; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Hou, George Wei-Shu; Kumar, Arun; Li, You-ying; Liu, Yueh-Feng; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Bat, Ayse; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dolek, Furkan; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Isik, Candan; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Sunar Cerci, Deniz; Tali, Bayram; Tok, Ufuk Guney; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Atakisi, Ismail Okan; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Agaras, Merve Nazlim; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Komurcu, Yildiray; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Newbold, Dave M; Paramesvaran, Sudarshan; Penning, Bjoern; Sakuma, Tai; Smith, Dominic; Smith, Vincent J; Taylor, Joseph; Titterton, Alexander; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Linacre, Jacob; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Auzinger, Georg; Bainbridge, Robert; Bloch, Philippe; Borg, Johan; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Di Maria, Riccardo; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Komm, Matthias; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Martelli, Arabella; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Singh, Gurpreet; Stoye, Markus; Strebler, Thomas; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Mackay, Catherine Kirsty; Morton, Alexander; Reid, Ivan; Teodorescu, Liliana; Zahid, Sema; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Madrid, Christopher; Mcmaster, Brooks; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Coubez, Xavier; Cutts, David; Hadley, Mary; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Lee, Jangbae; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Usai, Emanuele; Yu, David; Band, Reyer; Brainerd, Christopher; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Ko, Winston; Kukral, Ota; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Stolp, Dustin; Taylor, Devin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Zhang, Fengwangdong; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Regnard, Simon; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Karapostoli, Georgia; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Gilbert, Dylan; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Citron, Matthew; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; Gouskos, Loukas; Heller, Ryan; Incandela, Joe; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Wang, Sicheng; Yoo, Jaehyeok; Anderson, Dustin; Bornheim, Adolf; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Sun, Menglei; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; MacDonald, Emily; Mulholland, Troy; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Cheng, Yangyang; Chu, Jennifer; Datta, Abhisek; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Quach, Dan; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Alyari, Maral; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kortelainen, Matti J; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Pena, Cristian; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Savoy-Navarro, Aurore; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Cadamuro, Luca; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Gleyzer, Sergei V; Joshi, Bhargav Madhusudan; Konigsberg, Jacobo; Korytov, Andrey; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Shi, Kun; Sperka, David; Wang, Jian; Wang, Sean-Jiun; Joshi, Yagya Raj; Linn, Stephan; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Schiber, Catherine; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Rahmani, Mehdi; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Dittmer, Susan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Mills, Corrinne; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Varelas, Nikos; Wang, Hui; Wang, Xiao; Wu, Zhenbin; Zhang, Jingyu; Alhusseini, Mohammad; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Hung, Wai Ting; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Bylinkin, Alexander; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Rogan, Christopher; Sanders, Stephen; Schmitz, Erich; Tapia Takaki, Daniel; Wang, Quan; Duric, Senka; Ivanov, Andrew; Kaadze, Ketino; Kim, Doyeong; Maravin, Yurii; Mendis, Dalath Rachitha; Mitchell, Tyler; Modak, Atanu; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Baron, Owen; Belloni, Alberto; Eno, Sarah Catherine; Feng, Yongbin; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Wong, Kak; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Baty, Austin; Bauer, Gerry; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Harris, Philip; Hsu, Dylan; Hu, Miao; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lee, Yen-Jie; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Zhaozhong, Shi; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Wadud, Mohammad Abrar; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Golf, Frank; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kharchilava, Avto; Mclean, Christine; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Barberis, Emanuela; Freer, Chad; Hortiangtham, Apichart; Morse, David Michael; Orimoto, Toyoko; Teixeira De Lima, Rafael; Wamorkar, Tanvi; Wang, Bingran; Wisecarver, Andrew; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Bucci, Rachael; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Li, Wenzhao; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Siddireddy, Prasanna; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wightman, Andrew; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Ling, Ta-Yung; Luo, Wuming; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Elmer, Peter; Hardenbrook, Joshua; Higginbotham, Samuel; Kalogeropoulos, Alexis; Lange, David; Lucchini, Marco Toliman; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Salfeld-Nebgen, Jakob; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Gutay, Laszlo; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Mahakud, Bibhuprasad; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Qiu, Hao; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xiao, Rui; Xie, Wei; Cheng, Tongguang; Dolen, James; Parashar, Neeti; Chen, Zhenyu; Ecklund, Karl Matthew; Freed, Sarah; Geurts, Frank JM; Kilpatrick, Matthew; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Shi, Wei; Tu, Zhoudunming; Zabel, James; Zhang, Aobo; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Dulemba, Joseph Lynn; Fallon, Colin; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Taus, Rhys; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Heideman, Joseph; Riley, Grant; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Luo, Sifu; Mueller, Ryan; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Mengke, Tielige; Muthumuni, Samila; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Padeken, Klaas; Ruiz Alvarez, José David; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Verweij, Marta; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Joyce, Matthew; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Harr, Robert; Karchin, Paul Edmund; Poudyal, Nabin; Sturdy, Jared; Thapa, Prakash; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Carlsmith, Duncan; Dasu, Sridhara; Dodd, Laura; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Long, Kenneth; Loveless, Richard; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Woods, Nathaniel

    2018-01-01

    The pseudorapidity distributions of dijets as a function of their average transverse momentum ($ p_{\\mathrm{T}}^{text{ave}} $) are measured in proton-lead (pPb) and proton-proton (pp) collisions. The data samples were collected by the CMS experiment at the CERN LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. A significant modification of the pPb spectra with respect to the pp spectra is observed in all $p_{\\mathrm{T}}^{text{ave}}$ intervals investigated. The ratios of the pPb and pp distributions are compared to next-to-leading order perturbative quantum chromodynamics calculations with unbound nucleon and nuclear parton distribution functions (PDFs). These results give the first evidence that the gluon PDF at large Bjorken $x$ in lead ions is strongly suppressed with respect to the PDF in unbound nucleons.

  7. A next-to-leading-order QCD analysis of neutrino-iron structure functions at the Tevatron

    International Nuclear Information System (INIS)

    Seligman, W.G.

    1997-01-01

    Nucleon structure functions measured in neutrino-iron and antineutrino-iron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 GeV. The structure functions F 2 and xF 3 are compared with the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives value of ΛNLO,(4)/MS = 337 ± 28 (exp.) MeV, which corresponds to α S (M Z 2 ) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by xG(x,Q 0 2 = 5GeV 2 ) = (2.22 ± 0.34) x (1 - x) 4.65±0.68

  8. A Next-to-Leading Order QCD Analysis of Neutrino - Iron Structure Functions at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Seligman, William Glenn [Nevis Labs, Columbia U.

    1997-01-01

    Nucleon structure functions measured in neutrino-iron and antineutrinoiron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 Ge V. The structure functions $F_2$ and $xF_3$ are compared with the the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives NL0(4) . 2 value of $\\Lambda^{NLO,(4)}_{\\overline MS}$ = 337 ± 28 (exp.) MeV, which corresponds to $\\alpha_s$ ($M^2_z$) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by $xG(x,Q^2_0 = 5 GeV^2$ ) = (2.22±0.34) x ($1-x)^{4.65 \\pm 0.68}$

  9. B{yields}V{gamma} decays at NNLO in SCET

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.; Pecjak, B.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Greub, C. [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik

    2007-09-15

    We compute NNLO (O({alpha}{sup 2}{sub s})) corrections to the hard-scattering kernels entering the QCD factorization formula for B {yields} V{gamma} decays, where V is a light vector meson. We give complete NNLO results for the dipole operators Q{sub 7} and Q{sub 8}, and partial results for Q{sub 1} valid in the large-{beta}{sub 0} limit and neglecting the NNLO correction from hard spectator scattering. Large perturbative logarithms in the hard-scattering kernels are identified and resummed using soft-collinear effective theory. We use our results to estimate the branching fractions for B {yields} K{sup *}{gamma} and B{sub s} {yields} {phi}{gamma} decays at NNLO and compare them with the current experimental data. (orig.)

  10. Gluon saturation beyond (naive) leading logs

    Energy Technology Data Exchange (ETDEWEB)

    Beuf, Guillaume

    2014-12-15

    An improved version of the Balitsky–Kovchegov equation is presented, with a consistent treatment of kinematics. That improvement allows to resum the most severe of the large higher order corrections which plague the conventional versions of high-energy evolution equations, with approximate kinematics. This result represents a further step towards having high-energy QCD scattering processes under control beyond strict Leading Logarithmic accuracy and with gluon saturation effects.

  11. Answers to Teachers' Questions about the Next Generation Science Standards

    Science.gov (United States)

    Workosky, Cindy; Willard, Ted

    2015-01-01

    K-12 teachers of science have been digging into the "Next Generation Science Standards" ("NGSS") (NGSS Lead States 2013) to begin creating plans and processes for translating them for classroom instruction. As teachers learn about the NGSS, they have asked about the general structure of the standards document and how to read…

  12. Role of the QCD induced gluon-gluon coupling to gauge boson pairs in the multitev region

    International Nuclear Information System (INIS)

    Ametller, L.; Gava, E.; Paver, N.; Treleani, D.

    1985-02-01

    We discuss the production of γγ and Zsup(O)γ pairs induced by the gluon-gluon fusion mechanism at typical supercollider energies. Due to the large flux of gluons with small fractional momenta, it is found that in certain kinematical configurations that subprocess, although of order (αsub(S)/π) 2 with respect to the leading quark annihilation, can give an appreciable contribution to the cross-section for Zsup(O)γ and even a larger one for the γγ production. (author)

  13. Higher Order Heavy Quark Corrections to Deep-Inelastic Scattering

    Science.gov (United States)

    Blümlein, Johannes; DeFreitas, Abilio; Schneider, Carsten

    2015-04-01

    The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q2. We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring αs (MZ), the charm quark mass mc, and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.

  14. Higher order heavy quark corrections to deep-inelastic scattering

    International Nuclear Information System (INIS)

    Bluemlein, J.; Freitas, A. de; Johannes Kepler Univ., Linz; Schneider, C.

    2014-11-01

    The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q 2 . We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring α s (M Z ), the charm quark mass m c , and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.

  15. Wind energy in the next millennium and the next year

    International Nuclear Information System (INIS)

    Chabot, B.

    1999-01-01

    The rapid development of wind energy was once again confirmed in 1998 and everything points to the fact that this road will in the next century rapidly become the third channel of primary electricity production in the world, both in terms of annual sales and contribution of energy. In particular, a scenario for the development, of wind energy in the coming century is proposed, taking as model and minimum objective the historical development of success of wind energy should prove perfectly feasible, it is difficult to foresee in the short term the actual impact of the liberalization of electricity markets on existing inducements in favour of wind energy and even more difficult to estimate the effectiveness of new inducements more in line with this liberalization process. These difficulties may be overcome by selecting - for the long term scenario - a starting point within the next decade which is in line with the best market studies currently available and by constructing the model for variations in operational stock world-wide on the basis of a Rayleigh distribution, adjusted for the market conditions defined in the short term, in order that the future contributions defined in the short term, in order that the future contribution of wind energy might come to equal that of hydro-electricity before the end of the next century. (author)

  16. Gluon and quark jet multiplicities at N{sup 3}L0+NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Bolzoni, P.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, A.V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2012-09-15

    We present a new approach to consider and include both the perturbative and the non-perturbative contributions to the multiplicities of gluon and quark jets. Thanks to this new method we have included for the first time new contributions to these quantities obtaining next-to-next-to-leading-logarithmic (NNLL) resummed formulae. Our analytic expressions depend on two non-perturbative parameters with a clear and simple physical interpretation. A global fit of these two quantities shows how our results represent an important improvement in the explanation of the experimental data.

  17. Consistent, high-quality two-nucleon potentials up to fifth order of the chiral expansion

    Science.gov (United States)

    Machleidt, R.

    2018-02-01

    We present N N potentials through five orders of chiral effective field theory ranging from leading order (LO) to next-to-next-to-next-to-next-to-leading order (N4LO). The construction may be perceived as consistent in the sense that the same power counting scheme as well as the same cutoff procedures are applied in all orders. Moreover, the long-range parts of these potentials are fixed by the very accurate πN low-energy constants (LECs) as determined in the Roy-Steiner equations analysis by Hoferichter, Ruiz de Elvira and coworkers. In fact, the uncertainties of these LECs are so small that a variation within the errors leads to effects that are essentially negligible, reducing the error budget of predictions considerably. The N N potentials are fit to the world N N data below pion-production threshold of the year of 2016. The potential of the highest order (N4LO) reproduces the world N N data with the outstanding χ 2/datum of 1.15, which is the highest precision ever accomplished for any chiral N N potential to date. The N N potentials presented may serve as a solid basis for systematic ab initio calculations of nuclear structure and reactions that allow for a comprehensive error analysis. In particular, the consistent order by order development of the potentials will make possible a reliable determination of the truncation error at each order. Our family of potentials is non-local and, generally, of soft character. This feature is reflected in the fact that the predictions for the triton binding energy (from two-body forces only) converges to about 8.1 MeV at the highest orders. This leaves room for three-nucleon-force contributions of moderate size.

  18. A next-to-leading-order QCD analysis of neutrino-iron structure functions at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Seligman, William Glenn [Columbia Univ., New York, NY (United States)

    1997-01-01

    Nucleon structure functions measured in neutrino-iron and antineutrino-iron charged-current interactions are presented. The data were taken in two high-energy high-statistics runs by the LAB-E detector at the Fermilab Tevatron. Structure functions are extracted from a sample of 950,000 neutrino and 170,000 antineutrino events with neutrino energies from 30 to 360 GeV. The structure functions F2 and xF3 are compared with the predictions of perturbative Quantum Chromodynamics (PQCD). The combined non-singlet and singlet evolution in the context of PQCD gives value of ΛNLO,(4)/MS = 337 ± 28 (exp.) MeV, which corresponds to αS(MZ2) = 0.119 ± 0.002 (exp.) ± 0.004 (theory), and with a gluon distribution given by xG(x,Q02 = 5GeV2) = (2.22 ± 0.34) x (1 - x)4.65±0.68.

  19. The gluon Reggeization in perturbative QCD at NLO

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V.S. [Novosibirsk State Univ., Institute for Nuclear Physics (Russian Federation)

    2005-07-01

    The gluon Reggeization is one of the outstanding properties of QCD. It is extremely important for description of high energy processes. In particular, it appears as the basis of the BFKL approach to summation of the terms strengthened by powers of log(1/x). The hypothesis is extremely powerful, since all scattering amplitudes are expressed in terms of the gluon trajectory and several Reggeon vertices. Now the hypothesis is proved in NLA (next-to leading approximation). The proof is based on bootstrap relations. It is shown that an infinite number of these relations is reduced to several bootstrap conditions on the gluon trajectory and the Reggeon vertices. It is shown that fulfillment of these conditions means a proof of the Reggeization hypothesis. All bootstraps conditions are formulated explicitly and are proved to be fulfilled.

  20. Quantitative constraints on the gluon distribution function in the proton from collider isolated-photon data

    Energy Technology Data Exchange (ETDEWEB)

    D' Enterria, David, E-mail: dde@cern.ch [CERN, PH Department, CH-1211 Geneva 23 (Switzerland); ICREA and ICC-UB, Universitat de Barcelona, 08028 Barcelona, Catalonia (Spain); Rojo, Juan [CERN, PH Department, TH Unit, CH-1211 Geneva 23 (Switzerland)

    2012-07-21

    The impact of isolated-photon data from proton-(anti)proton collisions at RHIC, Spp{sup Macron }S, Tevatron and LHC energies, on the parton distribution functions of the proton is studied using a recently developed Bayesian reweighting method. The impact on the gluon density of the 35 existing isolated-{gamma} measurements is quantified using next-to-leading order (NLO) perturbative QCD calculations complemented with the NNPDF2.1 parton densities. The NLO predictions are found to describe well most of the datasets from 200 GeV up to 7 TeV centre-of-mass energies. The isolated-photon spectra recently measured at the LHC are precise enough to constrain the gluon distribution and lead to a moderate reduction (up to 20%) of its uncertainties around fractional momenta x Almost-Equal-To 0.02. As a particular case, we show that the improved gluon density reduces the PDF uncertainty for the Higgs boson production cross section in the gluon-fusion channel by more than 20% at the LHC. We conclude that present and future isolated-photon measurements constitute an interesting addition to coming global PDF analyses.

  1. Inclusive cross sections in ME+PS merging

    International Nuclear Information System (INIS)

    Plaetzer, Simon

    2013-07-01

    We discuss an extension of matrix element plus parton shower merging at leading and next-to-leading order. The algorithm does preserve inclusive cross sections at the respective input order. This constraint avoids potentially large logarithmic contributions, which would require approximate (N)NLO contributions to cancel against.

  2. Quark mass relations to four-loop order

    International Nuclear Information System (INIS)

    Marquard, Peter; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias

    2015-02-01

    We present results for the relation between a heavy quark mass defined in the on-shell and MS scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS heavy quark masses.

  3. ABM11 parton distributions and benchmarks

    International Nuclear Information System (INIS)

    Alekhin, Sergey; Bluemlein, Johannes; Moch, Sven-Olaf

    2012-08-01

    We present a determination of the nucleon parton distribution functions (PDFs) and of the strong coupling constant α s at next-to-next-to-leading order (NNLO) in QCD based on the world data for deep-inelastic scattering and the fixed-target data for the Drell-Yan process. The analysis is performed in the fixed-flavor number scheme for n f =3,4,5 and uses the MS scheme for α s and the heavy quark masses. The fit results are compared with other PDFs and used to compute the benchmark cross sections at hadron colliders to the NNLO accuracy.

  4. ABM11 parton distributions and benchmarks

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, Sergey [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institut Fiziki Vysokikh Ehnergij, Protvino (Russian Federation); Bluemlein, Johannes; Moch, Sven-Olaf [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-08-15

    We present a determination of the nucleon parton distribution functions (PDFs) and of the strong coupling constant {alpha}{sub s} at next-to-next-to-leading order (NNLO) in QCD based on the world data for deep-inelastic scattering and the fixed-target data for the Drell-Yan process. The analysis is performed in the fixed-flavor number scheme for n{sub f}=3,4,5 and uses the MS scheme for {alpha}{sub s} and the heavy quark masses. The fit results are compared with other PDFs and used to compute the benchmark cross sections at hadron colliders to the NNLO accuracy.

  5. Gluon fusion and bb¯ corrections to HW+W−/HZZ production in the POWHEG-BOX

    Directory of Open Access Journals (Sweden)

    Julien Baglio

    2017-01-01

    Full Text Available The study of the Higgs boson properties is one of the most important tasks to be accomplished in the next years, at the Large Hadron Collider (LHC and at future colliders such as the Future Circular Collider in hadron–hadron mode (FCC-hh, the potential 100 TeV follow-up of the LHC machine. In this view the precise study of the Higgs couplings to weak gauge bosons is crucial and requires as much information as possible. After the recent calculation of the next-to-leading order QCD corrections to the production cross sections and differential distributions of a Standard Model Higgs boson in association with a pair of weak bosons, matched with parton shower in the POWHEG-BOX framework, we present the gluon fusion correction gg→HW+W−(HZZ to the process pp→HW+W−(HZZ. This correction can be sizeable and amounts to +3% (+10% in the HW+W− process and +5% (+18% in the HZZ process at the LHC (FCC-hh. We also present the first study of the impact of the bottom-quark initiated channels bb¯→HW+W−/HZZ and find that they induce a significant +18% correction in the HW+W− channel at the FCC-hh. We present results on total cross sections and distributions at the LHC and at the FCC-hh.

  6. Soft probes of the quark gluon plasma in ATLAS

    CERN Document Server

    Wozniak, K W; The ATLAS collaboration

    2014-01-01

    Measurements of low-$p_{T}$ (< 5 GeV) particle production have provided valuable insight on the production and evolution of the quark-gluon plasma in Pb+Pb collisions at the LHC. In particular, measurements of elliptic and higher order collective flow imprinted on the azimuthal angle distributions of low-$p_{T}$ particles directly probe the strongly-coupled dynamics of the quark gluon plasma and test hydrodynamic model descriptions of its evolution. The large acceptance of detectors like ATLAS have made it possible to measure flow event-by-event and to determine the correlations between different harmonics. Recent measurements of low-$p_{T}$ particle production and multi-particle correlations in proton-lead collisions have shown features similar to the collective flow observed in Pb+Pb collisions. Results will be presented from a variety of single and multi-particle measurements in Pb+Pb and proton-Pb collisions that probe the collective dynamics of the quark gluon plasma and possibly provide evidence for ...

  7. Signal-background interference effects for gg→H→W+W- beyond leading order

    International Nuclear Information System (INIS)

    Bonvini, Marco; Caola, Fabrizio; Melnikov, Kirill; Ridolfi, Giovanni

    2013-04-01

    We study the effect of QCD corrections to the gg → H → W + W - signal-background interference at the LHC for a heavy Higgs boson. We construct a soft-collinear approximation to the NLO and NNLO corrections for the background process, which is exactly known only at LO. We estimate its accuracy by constructing and comparing the same approximation to the exact result for the signal process, which is known up to NNLO, and we conclude that we can describe the signal-background interference to better than O(10%) accuracy. We show that our result implies that, in practice, a fairly good approximation to higher-order QCD corrections to the interference may also be obtained by rescaling the known LO result by a K-factor computed using the signal process.

  8. NNLL resummation for the associated production of a top pair and a Higgs boson at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Broggio, Alessandro [Physik Department T31, Technische Universität München,James Franck-Straße 1, Garching, D-85748 (Germany); Ferroglia, Andrea [Physics Department, New York City College of Technology, The City University of New York,300 Jay Street, Brooklyn, NY, 11201 (United States); The Graduate School and University Center, The City University of New York,365 Fifth Avenue, New York, NY, 10016 (United States); Pecjak, Ben D. [Institute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics,Department of Physics, University of Durham, Science Laboratories,South Rd, Durham, DH1 3LE United Kingdom (United Kingdom); Yang, Li Lin [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University,No. 5 Yiheyuan Road, Beijing, 100871 (China); Collaborative Innovation Center of Quantum Matter,Beijing (China); Center for High Energy Physics, Peking University,No. 5 Yiheyuan Road, Beijing, 100871 (China)

    2017-02-24

    We study the resummation of soft gluon emission corrections to the production of a top-antitop pair in association with a Higgs boson at the Large Hadron Collider. Starting from a soft-gluon resummation formula derived in previous work, we develop a bespoke parton-level Monte Carlo program which can be used to calculate the total cross section along with differential distributions. We use this tool to study the phenomenological impact of the resummation to next-to-next-to-leading logarithmic (NNLL) accuracy, finding that these corrections increase the total cross section and the differential distributions with respect to NLO calculations of the same observables.

  9. Probing QCD with the ATLAS Detector

    CERN Document Server

    Kulchitsky, Yuri; The ATLAS collaboration

    2018-01-01

    Perturbative QCD calculations at next-to-next-to leading order (NNLO) are available for many processes since several years and can be rigorously tested with a large variety of final states. In this talk, we present the latest results from the ATLAS collaboration involving jets, dijets, photons in association with heavy flavors and vector bosons in association with jets, measured at center of mass energies of 8 and 13 TeV. All measured cross-sections are compared to state-of-the art theory predictions. Moreover, we present two measurements of dijet energy correlations allowing to test the renormalization group equation and to extract the strong coupling constant. The talk concludes with the latest results of jet-substructure studies at 13 TeV, in particular the measurement of the jet soft-drop mass.

  10. NextGen Future Safety Assessment Game

    Science.gov (United States)

    Ancel, Ersin; Gheorghe, Adrian; Jones, Sharon Monica

    2011-01-01

    The successful implementation of the next generation infrastructure systems requires solid understanding of their technical, social, political and economic aspects along with their interactions. The lack of historical data that relate to the long-term planning of complex systems introduces unique challenges for decision makers and involved stakeholders which in turn result in unsustainable systems. Also, the need to understand the infrastructure at the societal level and capture the interaction between multiple stakeholders becomes important. This paper proposes a methodology in order to develop a holistic approach aiming to provide an alternative subject-matter expert (SME) elicitation and data collection method for future sociotechnical systems. The methodology is adapted to Next Generation Air Transportation System (NextGen) decision making environment in order to demonstrate the benefits of this holistic approach.

  11. Study of the s - s bar asymmetry in the proton

    Science.gov (United States)

    Goharipour, Muhammad

    2018-05-01

    The study of s - s bar asymmetry is essential to better understand of the structure of nucleon and also the perturbative and nonperturbative mechanisms for sea quark generation. Actually, the nature and dynamical origins of this asymmetry have always been an interesting subject to research both experimentally and theoretically. One of the most powerful models can lead to s - s bar asymmetry is the meson-baryon model (MBM). In this work, using a simplified configuration of this model suggested by Pumplin, we calculate the s - s bar asymmetry for different values of cutoff parameter Λ, to study the dependence of model to this parameter and also to estimate the theoretical uncertainty imposed on the results due to its uncertainty. Then, we study the evolution of distributions obtained both at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) using different evolution schemes. It is shown that the evolution of the intrinsic quark distributions from a low initial scale, as suggested by Chang and Pang, is not a good choice at NNLO using variable flavor number scheme (VFNS).

  12. Soft radiation in heavy-particle pair production: All-order colour structure and two-loop anomalous dimension

    International Nuclear Information System (INIS)

    Beneke, M.; Falgari, P.; Schwinn, C.

    2010-01-01

    We consider the total production cross section of heavy coloured particle pairs in hadronic collisions at the production threshold. We construct a basis in colour space that diagonalizes to all orders in perturbation theory the soft function, which appears in a new factorization formula for the combined resummation of soft gluon and Coulomb gluon effects. This extends recent results on the structure of soft anomalous dimensions and allows us to determine an analytic expression for the two-loop soft anomalous dimension at threshold for all production processes of interest.

  13. Nonperturbative dynamics of hot non-Abelian gauge fields: Beyond the leading log approximation

    International Nuclear Information System (INIS)

    Arnold, Peter; Yaffe, Laurence G.

    2000-01-01

    Many aspects of high-temperature gauge theories, such as the electroweak baryon number violation rate, color conductivity, and the hard gluon damping rate, have previously been understood only at leading logarithmic order (that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling). We discuss how to systematically go beyond leading logarithmic order in the analysis of physical quantities. Specifically, we extend to next-to-leading-log order (NLLO) the simple leading-log effective theory due to Bo''deker that describes non-perturbative color physics in hot non-Abelian plasmas. A suitable scaling analysis is used to show that no new operators enter the effective theory at next-to-leading-log order. However, a NLLO calculation of the color conductivity is required, and we report the resulting value. Our NLLO result for the color conductivity can be trivially combined with previous numerical work by Moore to yield a NLLO result for the hot electroweak baryon number violation rate

  14. Impact factors for Reggeon-gluon transition in N=4 SYM with large number of colours

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V.S., E-mail: fadin@inp.nsk.su [Budker Institute of Nuclear Physics of SD RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Fiore, R., E-mail: roberto.fiore@cs.infn.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, Arcavacata di Rende, I-87036 Cosenza (Italy)

    2014-06-27

    We calculate impact factors for Reggeon-gluon transition in supersymmetric Yang–Mills theory with four supercharges at large number of colours N{sub c}. In the next-to-leading order impact factors are not uniquely defined and must accord with BFKL kernels and energy scales. We obtain the impact factor corresponding to the kernel and the energy evolution parameter, which is invariant under Möbius transformation in momentum space, and show that it is also Möbius invariant up to terms taken into account in the BDS ansatz.

  15. Design and Performance of Soft Gamma-ray Detector for NeXT Mission

    Science.gov (United States)

    Tajima, H.; Kamae, T.; Madejski, G.; Takahashi, T.; Nakazawa, K.; Watanabe, S.; Mitani, T.; Tanaka, T.; Fukazawa, Y.; Kataoka, J.; Ikagawa, T.; Kokubun, M.; Makishima, K.; Terada, Y.; Nomachi, M.; Tashiro, M.

    The Soft Gamma-ray Detector (SGD) on board NeXT (Japanese future high energy astrophysics mission) is a Compton telescope with narrow field of view, which utilizes Compton kinematics to enhance its background rejection capabilities. It is realized as a hybrid semiconductor gamma-ray detector which consists of silicon and Cadmium Telluride (CdTe) detectors. It can detect photons in an energy band 0.05-1 MeV at a background level of 5×10-7 counts/s/cm2/keV; the silicon layers are required to improve the performance at a lower energy band (development of key technologies to realize the SGD; high quality CdTe, low noise front-end VLSI and bump bonding technology. Energy resolutions of 1.7 keV (FWHM) for CdTe pixel detectors and 1.1 keV for silicon strip detectors have been measured. We also present the validation of Monte Carlo simulation used to evaluate the performance of the SGD.

  16. Gluon structure function of a color dipole in the light-cone limit of lattice QCD

    International Nuclear Information System (INIS)

    Gruenewald, D.; Ilgenfritz, E.-M.; Pirner, H. J.

    2009-01-01

    We calculate the gluon structure function of a color dipole in near-light-cone SU(2) lattice QCD as a function of x B . The quark and antiquark are external nondynamical degrees of freedom which act as sources of the gluon string configuration defining the dipole. We compute the color dipole matrix element of transversal chromo-electric and chromo-magnetic field operators separated along a direction close to the light cone, the Fourier transform of which is the gluon structure function. As vacuum state in the pure glue sector, we use a variational ground state of the near-light-cone Hamiltonian. We derive a recursion relation for the gluon structure function on the lattice similar to the perturbative Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation. It depends on the number of transversal links assembling the Schwinger string of the dipole. Fixing the mean momentum fraction of the gluons to the 'experimental value' in a proton, we compare our gluon structure function for a dipole state with four links with the next-to-leading-order MRST 2002 and the CTEQ AB-0 parametrizations at Q 2 =1.5 GeV 2 . Within the systematic uncertainty we find rather good agreement. We also discuss the low x B behavior of the gluon structure function in our model calculation.

  17. Measurements of the structure of quark and gluon jets in hadronic Z decays

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Merle, E; Minard, M N; Nief, J Y; Pietrzyk, B; Alemany, R; Boix, G; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Bright-Thomas, P G; Casper, David William; Cattaneo, M; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Cerutti, F; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Halley, A W; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Williams, M I; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Etienne, F; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Kroha, H; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Zobernig, G

    2000-01-01

    An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for tests of QCD over a wide range of transverse momentum scales. The observables include distributions of jet-shape variables, the mean and standard deviation of the subjet multiplicity distribution and the fragmentation function for charged particles. The data are compared with predictions of perturbative QCD as well as QCD-based Monte Carlo models. In certain kinematic regions the measurements are sensitive mainly to perturbatively calculable effects, allowing for a test of QCD. The comparisons are also extended into regions where nonperturbative effects become large, and in this way the transition from hard to soft QCD is investigated. It is found that by including leading and next-to-leading logarithmic contributions in the QCD predictions, the agreement with the data can be extended to lower transverse momentum sca...

  18. Rapidity evolution of gluon TMD from low to moderate x

    International Nuclear Information System (INIS)

    Balitsky, I.

    2016-01-01

    I discuss how the rapidity evolution of gluon transverse momentum dependent distribution (TMD) changes from nonlinear evolution at small x << 1 to linear evolution at moderate x ∼ 1. I have described the rapidity evolution of gluon TMD in the whole range of Bjorken x B and the whole range of transverse momentum. It should be emphasized that with our definition of rapidity cutoff the leading-order matrix elements of TMD operators are UV-finite so the rapidity evolution is the only evolution and it describes all the dynamics of gluon TMDs in the leading-log approximation

  19. Framework for Leading Next Generation Science Standards Implementation

    Science.gov (United States)

    Stiles, Katherine; Mundry, Susan; DiRanna, Kathy

    2017-01-01

    In response to the need to develop leaders to guide the implementation of the Next Generation Science Standards (NGSS), the Carnegie Corporation of New York provided funding to WestEd to develop a framework that defines the leadership knowledge and actions needed to effectively implement the NGSS. The development of the framework entailed…

  20. Observation of top quark production in proton-nucleus collisions

    CERN Document Server

    INSPIRE-00507411

    2017-01-01

    The multi-TeV energies available at LHC have opened up the possibility to measure, for the first time, various large-mass elementary particles in nuclear collisions. The current study presents the first observation of top quark--the heaviest elementary particle in the standard model--using proton-lead collisions. The measurement is based on a data set whose integrated luminosity amounts to 174~nb$^{-1}$, as recorded by CMS at a center-of-mass energy per nucleon pair of 8.16 TeV. The pair production process is measured using events with exactly one isolated lepton, electron or muon, and at least four jets, leading to a cross section of $45\\pm8\\ \\rm{nb}$. This is well compatible with theoretical predictions from perturbative quantum chromodynamics at next-to-next-to-leading order with soft gluon resummation at next-to-next-to-leading logarithmic accuracy. The statistical significance of the signal against the background-only hypothesis is above five standard deviations.

  1. Ethical challenges related to next of kin - nursing staffs' perspective.

    Science.gov (United States)

    Tønnessen, Siri; Solvoll, Betty-Ann; Brinchmann, Berit Støre

    2016-11-01

    Patients in clinical settings are not lonely islands; they have relatives who play a more or less active role in their lives. The purpose of this article is to elucidate the ethical challenges nursing staff encounter with patients' next of kin and to discuss how these challenges affect clinical practice. The study is based on data collected from ethical group discussions among nursing staff in a nursing home. The discussions took place in 2011 and 2012. The data were analysed and interpreted by using hermeneutic methodology. All the data have been anonymised and handled with confidentiality. Written informed consent was obtained from all participants. Ethical challenges relating to patients' next of kin were found to be an issue frequently discussed in the groups. Our findings indicate that next of kin have different characteristics, categorised as 'the professionals' and 'the shadows'. In this article, we will describe the next of kin's characteristics and the ethical challenges and practical implications that nursing staff experience in this connection. We will discuss the findings in the light of the four basic principles of medical ethics and propose interventions to help nurses manage ethical challenges related to next of kin. The study reveals the need to enhance nursing staffs' communicative and ethical skills on an individual level, but most importantly, to establish routines in clinical settings for informing and following up next of kin in a systematic and structured way. © The Author(s) 2015.

  2. Longitudinal structure function from logarithmic slopes of F2 at low x

    Science.gov (United States)

    Boroun, G. R.

    2018-01-01

    Using Laplace transform techniques, I calculate the longitudinal structure function FL(x ,Q2) from the scaling violations of the proton structure function F2(x ,Q2) and make a critical study of this relationship between the structure functions at leading order (LO) up to next-to-next-to leading order (NNLO) analysis at small x . Furthermore, I consider heavy quark contributions to the relation between the structure functions, which leads to compact formula for Nf=3 +Heavy . The nonlinear corrections to the longitudinal structure function at LO up to NNLO analysis are shown in the Nf=4 (light quark flavor) based on the nonlinear corrections at R =2 and R =4 GeV-1 . The results are compared with experimental data of the longitudinal proton structure function FL in the range of 6.5 ≤Q2≤800 GeV2 .

  3. Efficient analytic computation of higher-order QCD amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.; Chalmers, G.; Dunbar, D.C.; Kosower, D.A.

    1995-01-01

    The authors review techniques simplifying the analytic calculation of one-loop QCD amplitudes with many external legs, for use in next-to-leading-order corrections to multi-jet processes. Particularly useful are the constraints imposed by perturbative unitarity, collinear singularities and a supersymmetry-inspired organization of helicity amplitudes. Certain sequences of one-loop helicity amplitudes with an arbitrary number of external gluons have been obtained using these constraints

  4. AugerNext: innovative research studies for the next generation ground-based ultra-high energy cosmic ray experiment

    Directory of Open Access Journals (Sweden)

    Haungs Andreas

    2013-06-01

    Full Text Available The findings so far of the Pierre Auger Observatory and also of the Telescope Array define the requirements for a possible next generation experiment: it needs to be considerably increased in size, it needs a better sensitivity to composition, and it should cover the full sky. AugerNext aims to perform innovative research studies in order to prepare a proposal fulfilling these demands. Such R&D studies are primarily focused in the following areas iconsolidation of the detection of cosmic rays using MHz radio antennas; iiproof-of-principle of cosmic-ray microwave detection; iiitest of the large-scale application of a new generation photo-sensors; ivgeneralization of data communication techniques; vdevelopment of new ways of muon detection with surface arrays. These AugerNext studies on new innovative detection methods for a next generation cosmic-ray experiment are performed at the Pierre Auger Observatory. The AugerNext consortium consists presently of fourteen partner institutions from nine European countries supported by a network of European funding agencies and it is a principal element of the ASPERA/ApPEC strategic roadmaps.

  5. Ian Ingram: Next Animals

    DEFF Research Database (Denmark)

    2015-01-01

    Ian Ingram: Next Animals is an exhibition catalogue presenting research on the work by Ian Ingram in relation to his exhibition Next Animals at Nikolaj Kunsthal in 2015.......Ian Ingram: Next Animals is an exhibition catalogue presenting research on the work by Ian Ingram in relation to his exhibition Next Animals at Nikolaj Kunsthal in 2015....

  6. Next-generation science information network for leading-edge applications

    International Nuclear Information System (INIS)

    Urushidani, S.; Matsukata, J.

    2008-01-01

    High-speed networks are definitely essential tools for leading-edge applications in many research areas, including nuclear fusion research. This paper describes a number of advanced features in the Japanese next-generation science information network, called SINET3, and gives researchers clues on the uses of advanced high-speed network for their applications. The network services have four categories, multiple layer transfer, enriched virtual private network, enhanced quality-of-service, and bandwidth on demand services, and comprise a versatile service platform. The paper also describes the network architecture and advanced networking capabilities that enable economical service accommodation and flexible network resource assignment as well as effective use of Japan's first 40-Gbps lines

  7. Next-generation science information network for leading-edge applications

    Energy Technology Data Exchange (ETDEWEB)

    Urushidani, S. [National Institute of Informatics, 2-1-2 Hitotsubashi Chiyoda-ku, Tokyo 101-8430 (Japan)], E-mail: urushi@nii.ac.jp; Matsukata, J. [National Institute of Informatics, 2-1-2 Hitotsubashi Chiyoda-ku, Tokyo 101-8430 (Japan)

    2008-04-15

    High-speed networks are definitely essential tools for leading-edge applications in many research areas, including nuclear fusion research. This paper describes a number of advanced features in the Japanese next-generation science information network, called SINET3, and gives researchers clues on the uses of advanced high-speed network for their applications. The network services have four categories, multiple layer transfer, enriched virtual private network, enhanced quality-of-service, and bandwidth on demand services, and comprise a versatile service platform. The paper also describes the network architecture and advanced networking capabilities that enable economical service accommodation and flexible network resource assignment as well as effective use of Japan's first 40-Gbps lines.

  8. Being next of kin to an elderly person with cancer

    DEFF Research Database (Denmark)

    Esbensen, Bente Appel

    2010-01-01

    Background: Being next of kin to an elderly person with cancer and its impact on everyday life has been sparsely researched. Such understanding is needed to support both the sufferers and their relatives in dealing with issues arising after a cancer diagnosis in old age. Aim: To illuminate...... the experience of life as next of kin to an elderly person with cancer. Method: A qualitative study was used to illuminate the experience of next of kin of elderly people with cancer. In total, 16 (mean age 61, range 42-80) persons were interviewed. Open-ended interviews were used to get closer...... to their experiences. Manifest and latent content analysis were used. Findings: Two main categories Transformations of roles and Changed frames of mind were identified, as well as four subcategories. The study showed that the cancer activated perceptions in the next of kin about aging and growing old. The onset...

  9. Dynamical relaxation of the CP phases in next-to-minimal supersymmetry

    International Nuclear Information System (INIS)

    Demir, D.A.

    1999-11-01

    After promoting the phases of the soft masses to dynamical fields corresponding to Goldstone bosons of spontaneously broken global symmetries in the supersymmetry breaking sector, the next-to-minimal supersymmetric model is found to solve the μ problem and the strong CP problem simultaneously with an invisible axion. The domain wall problem persists in the form of axionic domain formation. Relaxation dynamics of the physical CP-violating phases is determined only by the short-distance physics and their relaxation values are not necessarily close to the CP-conserving points. Consequently, the solution of tile supersymmetric CP problem may require heavy enough superpartners and nonminimal flavor structures, where the latter may be also relevant for avoiding the formation of axionic domain walls. (author)

  10. Δ isobars and nuclear saturation

    Science.gov (United States)

    Ekström, A.; Hagen, G.; Morris, T. D.; Papenbrock, T.; Schwartz, P. D.

    2018-02-01

    We construct a nuclear interaction in chiral effective field theory with explicit inclusion of the Δ -isobar Δ (1232 ) degree of freedom at all orders up to next-to-next-to-leading order (NNLO). We use pion-nucleon (π N ) low-energy constants (LECs) from a Roy-Steiner analysis of π N scattering data, optimize the LECs in the contact potentials up to NNLO to reproduce low-energy nucleon-nucleon scattering phase shifts, and constrain the three-nucleon interaction at NNLO to reproduce the binding energy and point-proton radius of 4He. For heavier nuclei we use the coupled-cluster method to compute binding energies, radii, and neutron skins. We find that radii and binding energies are much improved for interactions with explicit inclusion of Δ (1232 ) , while Δ -less interactions produce nuclei that are not bound with respect to breakup into α particles. The saturation of nuclear matter is significantly improved, and its symmetry energy is consistent with empirical estimates.

  11. A new prescription for soft gluon resummation

    International Nuclear Information System (INIS)

    Abbate, Riccardo; Forte, Stefano; Ridolfi, Giovanni

    2007-01-01

    We present a new prescription for the resummation of the divergent series of perturbative corrections, due to soft gluon emission, to hard processes near threshold in perturbative QCD (threshold resummation). This prescription is based on Borel resummation, and contrary to the commonly used minimal prescription, it does not introduce a dependence of resummed physical observables on the kinematically unaccessible x→0 region of parton distributions. We compare results for resummed deep-inelastic scattering obtained using the Borel prescription and the minimal prescription and exploit the comparison to discuss the ambiguities related to the resummation procedure

  12. Getting Ahead Three Steps to Take Your Career to the Next Level

    CERN Document Server

    Garfinkle, Joel A

    2011-01-01

    A leading executive coach pinpoints three vital traits necessary to advance your career In Getting Ahead, one of the top 50 executive coaches in the United States, Joel Garfinkle reveals his signature model for mastering three skills to take your career to the next level: Perception, Visibility, and Influence. The PVI-model of professional advancement will teach you to: (1) Actively promote yourself as an asset and valuable person inside the organization, (2) Increase your visibility to gain others' recognition and appreciation for your efforts and (3) Become a person of influence who makes ke

  13. Soft gluon resummation for gluon-induced Higgs Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Harlander, Robert; Zirke, Tom [Fachbereich C, Bergische Universitaet Wuppertal (Germany); Kulesza, Anna; Theeuwes, Vincent [Institute for Theoretical Physics, WWU Muenster (Germany)

    2015-07-01

    We study the effect of soft gluon emission on the total cross section predictions for the gg → HZ associated Higgs production process at the LHC. To this end, we perform resummation of threshold corrections at the NLL accuracy in the absolute threshold production limit and in the threshold limit for production of a ZH system with a given invariant mass. Analytical results and numerical predictions for various possible LHC collision energies are presented. The perturbative stability of the results is verified by including universal NNLL effects. We find that resummation significantly reduces the scale uncertainty of the gg → HZ contribution, which is the dominant source of perturbative uncertainty to ZH production. We use our results to evaluate updated numbers for the total inclusive cross section of associated pp → ZH production at the LHC. The reduced scale uncertainty of the gg → HZ component translates into a decrease of the overall scale error by about a factor of two.

  14. Next generation toroidal devices

    International Nuclear Information System (INIS)

    Yoshikawa, Shoichi

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one's view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  15. Next generation toroidal devices

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Shoichi [Princeton Plasma Physics Lab., Princeton Univ., NJ (United States)

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one`s view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  16. Mass effects in the emission of gluons from heavy quarks at high energies

    CERN Document Server

    Fuster, J A; Tortosa, P

    2001-01-01

    The effects in the emission of gluons due to the mass of the heavy quarks have clearly been observed by the experiments at LEP and SLC. The analyses of the data using theoretical corrections computed at Next-to-Leading Order have allowed to either test the flavour independence of the strong coupling constant with very high precision (~1%) or measure the b-quark mass at high energy, square root s~M/sub Z/. The results obtained by the various experiments, ALEPH, DELPHI, OPAL and SLD, agree well within errors. The systematic uncertainties limit present determinations though new methods and strategies are being developed to overcome the present bounds. (15 refs).

  17. Generation 'Next' and nuclear power

    International Nuclear Information System (INIS)

    Sergeev, A.A.

    2001-01-01

    My generation was labeled by Russian mass media as generation 'Next.' My technical education is above average. My current position is as a mechanical engineer in the leading research and development institute for Russian nuclear engineering for peaceful applications. It is noteworthy to point out that many of our developments were really first-of-a-kind in the history of engineering. However, it is difficult to grasp the importance of these accomplishments, especially since the progress of nuclear technologies is at a standstill. Can generation 'Next' be independent in their attitude towards nuclear power or shall we rely on the opinions of elder colleagues in our industry? (authors)

  18. Achieving universal access to next generation networks

    DEFF Research Database (Denmark)

    Falch, Morten; Henten, Anders

    The paper examines investment dimensions of next generation networks in a universal service perspective in a European context. The question is how new network infrastructures for getting access to communication, information and entertainment services in the present and future information society...

  19. Leading-order hadronic contribution to the electron and muon g-2

    International Nuclear Information System (INIS)

    Jegerlehner, Fred; Humboldt-Univ. Berlin

    2015-11-01

    I present a new data driven update of the hadronic vacuum polarization effects for the muon and the electron g-2. For the leading order contributions I find a had(1) μ =(686.99±4.21)[687.19±3.48] x 10 -10 based on e + e - data [incl. τ data], a had(2) μ =(-9.934± 0.091) x 10 -10 (NLO) and a had(3) μ =(1.226±0.012) x 10 -10 (NNLO) for the muon, and a had(1) e =(184.64±1.21) x 10 -14 (LO), a had(2) e =(-22.10±0.14) x 10 -14 (NLO) and a had(3) e =(2.79±0.02) x 10 -14 (NNLO) for the electron. A problem with vacuum polarization undressing of cross-sections (time-like region) is addressed. I also add a comment on properly including axial mesons in the hadronic light-by-light scattering contribution. My estimate here reads aμ[a 1 ,f 1 ' ,f 1 ]∝(7.51±2.71) x 10 -11 . With these updates a exp μ - the μ =(32.73±8.15) x 10 -10 a 4.0σ deviation, while a exp e -a the e =(-1.10±0.82) x 10 -12 shows no significant deviation.

  20. xF 3( x,Q 2) Structure Function and Gross-Llewellyn Smith Sum Rule with Nuclear Effect and Higher Twist Correction

    International Nuclear Information System (INIS)

    Nath, N.M.; Mukharjee, A.; Das, M.K.; Sarma, J.K.

    2016-01-01

    We present an analysis of the xF 3 (x,Q 2 ) structure function and Gross-Llewellyn Smith(GLS) sum rule taking into account the nuclear effects and higher twist correction. This analysis is based on the results presented in [N.M. Nath, et al, Indian J. Phys. 90 (2016) 117]. The corrections due to nuclear effects predicted in several earlier analysis are incorporated to our results of xF 3 (x,Q 2 ) structure function and GLS sum rule for free nucleon, corrected upto next-next-to-leading order (NNLO) perturbative order and calculate the nuclear structure function as well as sum rule for nuclei. In addition, by means of a simple model we have extracted the higher twist contributions to the non-singlet structure function xF 3 (x,Q 2 ) and GLS sum rule in NNLO perturbative orders and then incorporated them to our results. Our NNLO results along with nuclear effect and higher twist corrections are observed to be compatible with corresponding experimental data and other phenomenological analysis. (paper)

  1. Determination of the top-quark mass from hadro-production of single top-quarks

    International Nuclear Information System (INIS)

    Alekhin, S.; Moch, S.; Thier, S.

    2016-08-01

    We present a new determination of the top-quark mass m_t based on the experimental data from the Tevatron and the LHC for single-top hadro-production. We use the inclusive cross sections of s- and t-channel top-quark production to extract m_t and to minimize the dependence on the strong coupling constant and the gluon distribution in the proton compared to the hadro-production of top-quark pairs. As part of our analysis we compute the next-to-next-to-leading order approximation for the s-channel cross section in perturbative QCD based on the known soft-gluon corrections and implement it in the program HatHor for the numerical evaluation of the hadronic cross section. Results for the top-quark mass are reported in the MS and in the on-shell renormalization scheme.

  2. Next-Generation Pathology.

    Science.gov (United States)

    Caie, Peter D; Harrison, David J

    2016-01-01

    The field of pathology is rapidly transforming from a semiquantitative and empirical science toward a big data discipline. Large data sets from across multiple omics fields may now be extracted from a patient's tissue sample. Tissue is, however, complex, heterogeneous, and prone to artifact. A reductionist view of tissue and disease progression, which does not take this complexity into account, may lead to single biomarkers failing in clinical trials. The integration of standardized multi-omics big data and the retention of valuable information on spatial heterogeneity are imperative to model complex disease mechanisms. Mathematical modeling through systems pathology approaches is the ideal medium to distill the significant information from these large, multi-parametric, and hierarchical data sets. Systems pathology may also predict the dynamical response of disease progression or response to therapy regimens from a static tissue sample. Next-generation pathology will incorporate big data with systems medicine in order to personalize clinical practice for both prognostic and predictive patient care.

  3. Application of part-whole training methods to evaluate when to introduce NextGen air traffic management tools to students.

    Science.gov (United States)

    Vu, Kim-Phuong L; Kiken, Ariana; Chiappe, Dan; Strybel, Thomas Z; Battiste, Vernol

    2013-01-01

    The Next Generation Air Transportation System (NextGen) will use advanced technologies and new concepts of operation to accommodate projected increases in air travel over the next few decades. Use of NextGen tools requires air traffic controllers (ATCos) to use different procedures than those required to manage NextGen-unequipped aircraft, and ATCos will need to integrate the 2 skill sets when managing a sector consisting of NextGen-equipped and unequipped aircraft. The goal of the present study was to determine the effectiveness of 2 procedures in the training of student controllers to manage both equipage types. We applied a variant of the part-whole training paradigm in the present study. Using a quasi-experimental design, we trained students from 2 different labs of an internship course to manage air traffic with potential NextGen tools concurrent with their traditional training (whole-task group) or after they had time to learn traditional air traffic management skills (part-whole group). Participants were then tested in their ability to manage a simulated sector consisting of different percentages of NextGen-equipped and unequipped aircraft at the mid-term and after the final week of their internship. Results showed that it is better to train students in manual ATCo skills before introducing NextGen tools, unless the students are of higher aptitude. For more skilled students, simultaneously introducing NextGen and manual tools into their curriculum had little negative impact.

  4. Next-to-next-to-leading order QCD analysis of combined data for xF3 structure function and higher-twist contribution

    International Nuclear Information System (INIS)

    Sidorov, A.V.

    1996-01-01

    The simultaneous QCD analysis of the xF 3 structure function measured in deep-inelastic scattering by several collaborations is done up to 3-loop order of QCD. The x dependence of the higher-twist contribution is evaluated and turns out to be in a qualitative agreement with the results of 'old' CCFR data analysis and with renormalon approach predictions. The Gross-Llewellyn Smith sum rule and its higher-twist corrections are evaluated. 32 refs., 1 figs., 1 tab

  5. Non-perturbative power corrections to ghost and gluon propagators

    International Nuclear Information System (INIS)

    Boucaud, Philippe; Leroy, Jean-Pierre; Yaouanc, Alain Le; Lokhov, Alexey; Micheli, Jacques; Pene, Olivier; RodrIguez-Quintero, Jose; Roiesnel, Claude

    2006-01-01

    We study the dominant non-perturbative power corrections to the ghost and gluon propagators in Landau gauge pure Yang-Mills theory using OPE and lattice simulations. The leading order Wilson coefficients are proven to be the same for both propagators. The ratio of the ghost and gluon propagators is thus free from this dominant power correction. Indeed, a purely perturbative fit of this ratio gives smaller value ( ≅ 270MeV) of Λ M-barS-bar than the one obtained from the propagators separately( ≅ 320MeV). This argues in favour of significant non-perturbative ∼ 1/q 2 power corrections in the ghost and gluon propagators. We check the self-consistency of the method

  6. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces

    Science.gov (United States)

    Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.

    2017-01-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332

  7. Gluon contribution to the Sivers effect. COMPASS results on deuteron target

    Directory of Open Access Journals (Sweden)

    Szabelski Adam

    2015-01-01

    Full Text Available Sivers effect for gluons is connected to gluon orbital angular momentum which may be the missing part of the nucleon spin puzzle. We present a method of extraction of Sivers effect for gluons from COMPASS SIDIS data on transversely polarised target. In order to access the Sivers effect for gluons photon-gluon fusion (PGF process is used. To enhance the fraction of PGF in the sample high-pT hadron pair events are selected. The method is based on a assumption that there are 3 processes contributing to the muon-nucleon scattering: PGF, leading process and QCD Compton process. Then one performs a weighting procedure which enables to extract the asymmetries for the 3 contributing processes simultaneously. In order to do that a neural network trained by a Monte Carlo to assign to each event 3 probabilities corresponding to the 3 processes is needed. Finaly we show results of Sivers effect for gluons extraction on COMPASS data with transversely polarised deuteron target. APGFsinΦ2h–ΦS = −0.14 ± 0.15 (stat. at ‹XG› = 0.126.

  8. Quark and Gluon Relaxation in Quark-Gluon Plasmas

    Science.gov (United States)

    Heiselberg, H.; Pethick, C. J.

    1993-01-01

    The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.

  9. Measurement of the differential cross sections for isolated direct photon pair production in pp¯ collisions at √(s)=1.96 TeV

    International Nuclear Information System (INIS)

    Abazov, V.M.; Abbott, B.; Acharya, B.S.; Adams, M.; Adams, T.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Anikeev, V.B.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D.V.; Banerjee, S.; Barberis, E.; Baringer, P.

    2013-01-01

    We present measurements of direct photon pair production cross sections using 8.5 fb −1 of data collected with the D0 detector at the Fermilab Tevatron pp ¯ collider. The results are presented as differential distributions of the photon pair invariant mass dσ/dM γγ , pair transverse momentum dσ/dp T γγ , azimuthal angle between the photons dσ/dΔϕ γγ , and polar scattering angle in the Collins–Soper frame dσ/d|cosθ ⁎ |. Measurements are performed for isolated photons with transverse momenta p T γ >18(17) GeV for the leading (next-to-leading) photon in p T , pseudorapidities |η γ | γγ >0.4. We present comparisons with the predictions from Monte Carlo event generators DIPHOX and RESBOS implementing QCD calculations at next-to-leading order, 2γNNLO at next-to-next-to-leading order, and SHERPA using matrix elements with higher-order real emissions matched to parton shower

  10. Jet-medium interactions at NLO in a weakly-coupled quark-gluon plasma

    International Nuclear Information System (INIS)

    Ghiglieri, Jacopo; Moore, Guy D.; Teaney, Derek

    2016-01-01

    We present an extension to next-to-leading order in the strong coupling constant g of the AMY effective kinetic approach to the energy loss of high momentum particles in the quark-gluon plasma. At leading order, the transport of jet-like particles is determined by elastic scattering with the thermal constituents, and by inelastic collinear splittings induced by the medium. We reorganize this description into collinear splittings, high-momentum-transfer scatterings, drag and diffusion, and particle conversions (momentum-preserving identity-changing processes). We show that this reorganized description remains valid to NLO in g, and compute the appropriate modifications of the drag, diffusion, particle conversion, and inelastic splitting coefficients. In addition, a new kinematic regime opens at NLO for wider-angle collinear bremsstrahlung. These semi-collinear emissions smoothly interpolate between the leading order high-momentum-transfer scatterings and collinear splittings. To organize the calculation, we introduce a set of Wilson line operators on the light-cone which determine the diffusion and identity changing coefficients, and we show how to evaluate these operators at NLO.

  11. Next Gen One Portal Usability Evaluation

    Science.gov (United States)

    Cross, E. V., III; Perera, J. S.; Hanson, A. M.; English, K.; Vu, L.; Amonette, W.

    2018-01-01

    Each exercise device on the International Space Station (ISS) has a unique, customized software system interface with unique layouts / hierarchy, and operational principles that require significant crew training. Furthermore, the software programs are not adaptable and provide no real-time feedback or motivation to enhance the exercise experience and/or prevent injuries. Additionally, the graphical user interfaces (GUI) of these systems present information through multiple layers resulting in difficulty navigating to the desired screens and functions. These limitations of current exercise device GUI's lead to increased crew time spent on initiating, loading, performing exercises, logging data and exiting the system. To address these limitations a Next Generation One Portal (NextGen One Portal) Crew Countermeasure System (CMS) was developed, which utilizes the latest industry guidelines in GUI designs to provide an intuitive ease of use approach (i.e., 80% of the functionality gained within 5-10 minutes of initial use without/limited formal training required). This is accomplished by providing a consistent interface using common software to reduce crew training, increase efficiency & user satisfaction while also reducing development & maintenance costs. Results from the usability evaluations showed the NextGen One Portal UI having greater efficiency, learnability, memorability, usability and overall user experience than the current Advanced Resistive Exercise Device (ARED) UI used by astronauts on ISS. Specifically, the design of the One-Portal UI as an app interface similar to those found on the Apple and Google's App Store, assisted many of the participants in grasping the concepts of the interface with minimum training. Although the NextGen One-Portal UI was shown to be an overall better interface, observations by the test facilitators noted specific exercise tasks appeared to have a significant impact on the NextGen One-Portal UI efficiency. Future updates to

  12. Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report. Appendix

    Science.gov (United States)

    Achieve, Inc., 2010

    2010-01-01

    This appendix accompanies the report "Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report," a study conducted by Achieve to compare the science standards of 10 countries. This appendix includes the following: (1) PISA and TIMSS Assessment Rankings; (2) Courses and…

  13. Signal-background interference effects for gg{yields}H{yields}W{sup +}W{sup -} beyond leading order

    Energy Technology Data Exchange (ETDEWEB)

    Bonvini, Marco [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Caola, Fabrizio; Melnikov, Kirill [Johns Hopkins Univ., Baltimore (United States). Dept. of Physics and Astronomy; Forte, Stefano [Univ. di Milano, Sezione di Milano (Italy). Dipt. di Fisica; INFN, Sezione di Milano (Italy); Ridolfi, Giovanni [Univ. di Genova, Sezione di Genova (Italy). Dipt. di Fisica; INFN, Sezione di Genova (Italy)

    2013-04-15

    We study the effect of QCD corrections to the gg {yields} H {yields} W{sup +}W{sup -} signal-background interference at the LHC for a heavy Higgs boson. We construct a soft-collinear approximation to the NLO and NNLO corrections for the background process, which is exactly known only at LO. We estimate its accuracy by constructing and comparing the same approximation to the exact result for the signal process, which is known up to NNLO, and we conclude that we can describe the signal-background interference to better than O(10%) accuracy. We show that our result implies that, in practice, a fairly good approximation to higher-order QCD corrections to the interference may also be obtained by rescaling the known LO result by a K-factor computed using the signal process.

  14. Next to leading order analysis of DVCS and TCS

    Directory of Open Access Journals (Sweden)

    Wagner J.

    2014-03-01

    Full Text Available The study of O(αs QCD contributions to the timelike and spacelike virtual Compton scattering amplitudes in the generalized Bjorken scaling regime demonstrates that gluonic contributions are by no means negligible even in the medium energy range which will be studied intensely at JLab12 and in the COMPASS-II experiment at CERN.

  15. Leading and Next-to-Leading Order Gluon Polarisation in the Nucleon and Longitudinal Double Spin Asymmetries from Open Charm Muoproduction

    Czech Academy of Sciences Publication Activity Database

    Adolph, C.; Alekseev, M.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Antonov, A. A.; Austregisilio, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Crespo, M.; Dalla Torre, S.; Das, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O.; Dhara, L.; Donskov, S.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.V.; Elia, C.; Eversheim, P.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Fresne von Hohenesche, N.; Friedrich, J.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Heinsius, F.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V.; Korzenev, A.; Kotzinian, A.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z.; Kunne, F.; Kurek, K.; Lauser, L.; Lednev, A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Y.; Morreale, A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.; Nowak, W. D.; Nunes, A.S.; Olshevsky, A.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.; Pretz, J.; Quaresma, M.; Quintans, C.; Rajotte, J.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Rocco, E.; Rondio, E.; Rossiyskaya, N. S.; Ryabchikov, D.; Samoylenko, V.; Sandacz, A.; Sapozhnikov, M.; Sarkar, S.; Savin, I.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlütter, T.; Schmidt, A.; Schmidt, K.; Schmiden, H.; Schmitt, L.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.; Silva, L.; Sinha, L.; Sissakian, A.; Slunecka, M.; Smirnov, G.; Sosio, S.; Sozzi, F.; Srnka, Aleš; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Tkatchev, L.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vlassov, N.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zvyagin, A.

    2013-01-01

    Roč. 87, č. 5 (2013), 052018:1-22 ISSN 1550-7998 Institutional support: RVO:68081731 Keywords : dependent structure-function * Monte-Carlo generator Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.864, year: 2013

  16. Triviality bound on lightest Higgs mass in next to minimal supersymmetric model

    International Nuclear Information System (INIS)

    Choudhury, S.R.; Mamta; Dutta, Sukanta

    1998-01-01

    We study the implication of triviality on Higgs sector in next to minimal supersymmetric model (NMSSM) using variational field theory. It is shown that the mass of the lightest Higgs boson in NMSSM has an upper bound ∼ 10 M w which is of the same order as that in the standard model. (author)

  17. Singularity-free next-to-leading order ΔS=1 renormalization group evolution and ϵ{sub K}{sup ′}/ϵ{sub K} in the Standard Model and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Kitahara, Teppei [Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology,Engesserstraße 7, Karlsruhe, D-76128 (Germany); Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology,Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344 (Germany); Nierste, Ulrich; Tremper, Paul [Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology,Engesserstraße 7, Karlsruhe, D-76128 (Germany)

    2016-12-16

    The standard analytic solution of the renormalization group (RG) evolution for the ΔS=1 Wilson coefficients involves several singularities, which complicate analytic solutions. In this paper we derive a singularity-free solution of the next-to-leading order (NLO) RG equations, which greatly facilitates the calculation of ϵ{sub K}{sup ′}, the measure of direct CP violation in K→ππ decays. Using our new RG evolution and the latest lattice results for the hadronic matrix elements, we calculate the ratio ϵ{sub K}{sup ′}/ϵ{sub K} (with ϵ{sub K} quantifying indirect CP violation) in the Standard Model (SM) at NLO to ϵ{sub K}{sup ′}/ϵ{sub K}=(1.06±5.07)×10{sup −4}, which is 2.8 σ below the experimental value. We also present the evolution matrix in the high-energy regime for calculations of new physics contributions and derive easy-to-use approximate formulae. We find that the RG amplification of new-physics contributions to Wilson coefficients of the electroweak penguin operators is further enhanced by the NLO corrections: if the new contribution is generated at the scale of 1–10 TeV, the RG evolution between the new-physics scale and the electroweak scale enhances these coefficients by 50–100%. Our solution contains a term of order α{sub EM}{sup 2}/α{sub s}{sup 2}, which is numerically unimportant for the SM case but should be included in studies of high-scale new-physics.

  18. Particle collider to fire up next may

    CERN Multimedia

    Higgins, Alexander G

    2007-01-01

    "The world's biggest particle colider will start up next May, six months behind schedule because of problems, including the failure of a keyU.S. designed part, the European Organization for Nuclear Research said Friday." (1 page)

  19. The Next Generation Science Standards

    Science.gov (United States)

    Pruitt, Stephen L.

    2015-01-01

    The Next Generation Science Standards (NGSS Lead States 2013) were released almost two years ago. Work tied to the NGSS, their adoption, and implementation continues to move forward around the country. Stephen L. Pruitt, senior vice president, science, at Achieve, an independent, nonpartisan, nonprofit education reform organization that was a lead…

  20. Quark mass relations to four-loop order in perturbative QCD.

    Science.gov (United States)

    Marquard, Peter; Smirnov, Alexander V; Smirnov, Vladimir A; Steinhauser, Matthias

    2015-04-10

    We present results for the relation between a heavy quark mass defined in the on-shell and minimal subtraction (MS[over ¯]) scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS[over ¯] quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS[over ¯] heavy quark masses.

  1. Development of next BWR plant

    International Nuclear Information System (INIS)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke

    1995-01-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.)

  2. Development of next BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke [Hitachi Ltd., Ibaraki (Japan). Hitachi Works

    1995-04-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.).

  3. Measurement of D* meson cross sections at HERA and determination of the gluon density in the proton using NLO QCD

    International Nuclear Information System (INIS)

    Adloff, C.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Baehr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beck, M.; Beglarian, A.; Behnke, O.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Biddulph, P.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Brown, D.P.; Brueckner, W.; Bruel, P.; Bruncko, D.; Buerger, J.; Buesser, F.W.; Buniatian, A.; Burke, S.; Burrage, A.; Buschhorn, G.; Calvet, D.; Campbell, A.J.; Carli, T.; Chabert, E.; Charlet, M.; Clarke, D.; Clerbaux, B.; Contreras, J.G.; Cormack, C.; Coughlan, J.A.; Cousinou, M.-C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; David, M.; Davidsson, M.; De Roeck, A.; De Wolf, E.A.; Delcourt, B.; Demirchyan, R.; Diaconu, C.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K.T.; Dowell, J.D.; Droutskoi, A.; Ebert, J.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Enzenberger, M.; Erdmann, M.; Fahr, A.B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Fleischer, M.; Fluegge, G.; Fomenko, A.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gassner, J.; Gayler, J.; Gerhards, R.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gorelov, I.; Grab, C.; Graessler, H.; Greenshaw, T.; Griffiths, R.K.; Grindhammer, G.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haustein, V.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herynek, I.; Hewitt, K.; Hiller, K.H.; Hilton, C.D.; Hladky, J.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Jansen, D.M.; Joensson, L.; Johnson, D.P.; Jones, M.; Jung, H.; Kaestli, H.K.; Kander, M.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnik, O.; Katzy, J.; Kaufmann, O.; Kausch, M.; Kenyon, I.R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Koehne, J.H.; Kolanoski, H.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Kraemerkaemper, T.; Krasny, M.W.; Krehbiel, H.; Kruecker, D.; Krueger, K.; Kuepper, A.; Kuester, H.; Kuhlen, M.; Kurca, T.; Lahmann, R.; Landon, M.P.J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobo, G.; Lobodzinska, E.; Lubimov, V.; Lueders, S.; Lueke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krueger, H.; Malinovski, E.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martin, G.; Martyn, H.-U.; Martyniak, J.; Maxfield, S.J.; McMahon, T.R.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Mikocki, S.; Milstead, D.; Moeck, J.; Mohr, R.; Mohrdieck, S.; Moreau, F.; Morris, J.V.; Mueller, D.; Mueller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Negri, I.; Newman, P.R.; Nguyen, H.K.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nikitin, D.; Nix, O.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J.E.; Ozerov, D.; Palmen, P.; Panassik, V.; Pascaud, C.; Passaggio, S.; Patel, G.D.; Pawletta, H.; Perez, E.; Phillips, J.P.; Pieuchot, A.; Pitzl, D.; Poeschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Schacht, P.; Scheins, J.; Schilling, F.-P.; Schleif, S.; Schleper, P.; Schmidt, D.; Schmidt, D.; Schoeffel, L.; Schroeder, V.; Schultz-Coulon, H.-C.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sirois, Y.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Spaskov, V.; Specka, A.; Spiekermann, J.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Sutton, J.P.; Swart, M.; Tapprogge, S.; Tasevsky, M.; Tchernshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P.D.; Tobien, N.; Todenhagen, R.; Truoel, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Esch, P.; Van Haecke, A.; Van Mechelen, P.; Vazdik, Y.; Villet, G.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L.R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wittmann, E.; Wobisch, M.; Wollatz, H.; Wuensch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; zurNedden, M.

    1999-01-01

    With the H1 detector at the ep collider HERA, D * meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q 2 > 3 GeV 2 and in photoproduction at energies around W γp ∼ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x g g(x g ), has been extracted in the momentum fraction range 7.5 x 10 -4 g -2 at average scales μ 2 = 25 to 50 GeV 2 . The gluon momentum fraction x g has been obtained from the measured kinematics of the scattered electron and the D * meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F 2

  4. Resummation for supersymmetric particle production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Brensing, Silja Christine

    2011-05-10

    The search for supersymmetry is among the most important tasks at current and future colliders. Especially the production of coloured supersymmetric particles would occur copiously in hadronic collisions. Since these production processes are of high relevance for experimental searches accurate theoretical predictions are needed. Higher-order corrections in quantum chromodynamics (QCD) to these processes are dominated by large logarithmic terms due to the emission of soft gluons from initial-state and final-state particles. A systematic treatment of these logarithms to all orders in perturbation theory is provided by resummation methods. We perform the resummation of soft gluons at next-to-leading-logarithmic (NLL) accuracy for all possible production processes in the framework of the Minimal Supersymmetric Standard Model. In particular we consider pair production processes of mass-degenerate light-flavour squarks and gluinos as well as the pair production of top squarks and non-mass-degenerate bottom squarks. We present analytical results for all considered processes including the soft anomalous dimensions. Moreover numerical predictions for total cross sections and transverse-momentum distributions for both the Large Hadron Collider (LHC) and the Tevatron are presented. We provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions. The inclusion of NLL corrections leads to a considerable reduction of the theoretical uncertainty due to scale variation and to an enhancement of the next-to-leading order (NLO) cross section predictions. The size of the soft-gluon corrections and the reduction in the scale uncertainty are most significant for processes involving gluino production. At the LHC, where the sensitivity to squark and gluino masses ranges up to 3 TeV, the corrections due to NLL resummation over and above the NLO predictions can be as high as 35 % in the case of gluino-pair production, whereas at the

  5. Penguin diagrams in the charm sector in K{sup +}→π{sup +}νν{sup ¯}

    Energy Technology Data Exchange (ETDEWEB)

    Mondéjar, J., E-mail: jorge.marin@kit.edu; Rittinger, J.

    2013-06-21

    We evaluate at next-to-next-to-leading order (NNLO) the QCD corrections to the charm contribution from penguin diagrams to the decay K{sup +}→π{sup +}νν{sup ¯}. A NNLO calculation is already available in the literature (Buras et al., 2006 [1]). We provide an independent check of the results of non-anomalous and anomalous diagrams. We use Renormalization Group improvement and an effective theory framework to resum the large logarithms that appear. In the case of the non-anomalous diagrams, our results for the decoupling coefficients and anomalous dimensions, as well as the final numerical result, are in agreement with those of Buras et al. (2006) [1]. In the anomalous case, analytical and numerical disagreements are observed.

  6. The development of the light cone in the quantum chromodynamics up to the first non-leading order

    International Nuclear Information System (INIS)

    Kaschluhn, L.

    1986-01-01

    For the product of two electromagnetic currents in QCD there is derived in a systematic way a nonlocal light-cone expansion up to next-to-leading order. Thereby the gauge-invariance of the underlying theory has been taken into acccount by using the known general solutions of the Ward identities in axial gauge. (author)

  7. Inclusive Higgs boson production at the LHC in the k{sub T}-factorization approach

    Energy Technology Data Exchange (ETDEWEB)

    Abdulov, N.A. [Lomonosov Moscow State Univ. (Russian Federation). Faculty of Physics; Lipatov, A.V. [Lomonosov Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Joint Institute for Nuclear Research, Dubna (Russian Federation); Malyshev, M.A. [Lomonosov Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2017-08-15

    We investigate the inclusive Higgs boson production in proton-proton collisions at the CERN LHC conditions using the k{sub T}-factorization approach. Our analysis is based on the dominant off-shell gluon-gluon fusion subprocess (where the transverse momenta of initial gluons are taken into account) and covers H→γγ, H→ZZ{sup *}→4l (where l=e,μ) and H→W{sup +}W{sup -}→e{sup ±}μ{sup -+}ν anti ν decay channels. The transverse momentum dependent (or unintegrated) gluon densities in a proton were derived from Ciafaloni-Catani-Fiorani-Marchesini equation or, alternatively, were chosen in accordance with Kimber-Martin-Ryskin prescription. We estimate the theoretical uncertainties of our calculations and compare our results with next-to-next-to-leading-order plus next-to-next-to-leading-logarithmic ones obtained using collinear QCD factorization. Our predictions agree well with the latest experimental data taken by the CMS and ATLAS Collaborations at √(s)=8 and 13 TeV.

  8. Inclusive Higgs boson production at the LHC in the kT-factorization approach

    International Nuclear Information System (INIS)

    Abdulov, N.A.; Malyshev, M.A.

    2017-08-01

    We investigate the inclusive Higgs boson production in proton-proton collisions at the CERN LHC conditions using the k T -factorization approach. Our analysis is based on the dominant off-shell gluon-gluon fusion subprocess (where the transverse momenta of initial gluons are taken into account) and covers H→γγ, H→ZZ * →4l (where l=e,μ) and H→W + W - →e ± μ -+ ν anti ν decay channels. The transverse momentum dependent (or unintegrated) gluon densities in a proton were derived from Ciafaloni-Catani-Fiorani-Marchesini equation or, alternatively, were chosen in accordance with Kimber-Martin-Ryskin prescription. We estimate the theoretical uncertainties of our calculations and compare our results with next-to-next-to-leading-order plus next-to-next-to-leading-logarithmic ones obtained using collinear QCD factorization. Our predictions agree well with the latest experimental data taken by the CMS and ATLAS Collaborations at √(s)=8 and 13 TeV.

  9. Collinear limits beyond the leading order from the scattering equations

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Dhritiman; Plefka, Jan; Wormsbecher, Wadim [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, D-12489 Berlin (Germany)

    2017-02-08

    The structure of tree-level scattering amplitudes for collinear massless bosons is studied beyond their leading splitting function behavior. These near-collinear limits at sub-leading order are best studied using the Cachazo-He-Yuan (CHY) formulation of the S-matrix based on the scattering equations. We compute the collinear limits for gluons, gravitons and scalars. It is shown that the CHY integrand for an n-particle gluon scattering amplitude in the collinear limit at sub-leading order is expressed as a convolution of an (n−1)-particle gluon integrand and a collinear kernel integrand, which is universal. Our representation is shown to obey recently proposed amplitude relations in which the collinear gluons of same helicity are replaced by a single graviton. Finally, we extend our analysis to effective field theories and study the collinear limit of the non-linear sigma model, Einstein-Maxwell-Scalar and Yang-Mills-Scalar theory.

  10. Distinguishing anomaly mediation from gauge mediation with a W-ino next-to-lightest supersymmetric particle

    International Nuclear Information System (INIS)

    Kribs, Graham D.

    2000-01-01

    A striking consequence of supersymmetry breaking communicated purely via the superconformal anomaly is that the gaugino masses are proportional to the gauge β functions. This result, however, is not unique to anomaly mediation. We present examples of ''generalized'' gauge-mediated models with messengers in standard model representations that give nearly identical predictions for the gaugino masses, but positive (mass) 2 for all sleptons. There are remarkable similarities between an anomaly-mediated model with a small additional universal mass added to all scalars and the gauge-mediated models with a long-lived W-ino next-to-lightest supersymmetric particle, leading to only a small set of observables that provide robust distinguishing criteria. These include ratios of the heaviest to lightest selectrons, smuons, and top squarks. The sign of the gluino soft mass is an unambiguous distinction, but requires measuring a difficult class of one-loop radiative corrections to sparticle interactions. A high precision measurement of the Higgs-boson-b-b(bar sign) coupling is probably the most promising interaction from which this sign might be extracted. (c) 2000 The American Physical Society

  11. Environmental Information for the U.S. Next Generation Air Transportation System (NextGen)

    Science.gov (United States)

    Murray, J.; Miner, C.; Pace, D.; Minnis, P.; Mecikalski, J.; Feltz, W.; Johnson, D.; Iskendarian, H.; Haynes, J.

    2009-09-01

    It is estimated that weather is responsible for approximately 70% of all air traffic delays and cancellations in the United States. Annually, this produces an overall economic loss of nearly 40B. The FAA and NASA have determined that weather impacts and other environmental constraints on the U.S. National Airspace System (NAS) will increase to the point of system unsustainability unless the NAS is radically transformed. A Next Generation Air Transportation System (NextGen) is planned to accommodate the anticipated demand for increased system capacity and the super-density operations that this transformation will entail. The heart of the environmental information component that is being developed for NextGen will be a 4-dimensional data cube which will include a single authoritative source comprising probabilistic weather information for NextGen Air Traffic Management (ATM) systems. Aviation weather constraints and safety hazards typically comprise meso-scale, storm-scale and microscale observables that can significantly impact both terminal and enroute aviation operations. With these operational impacts in mind, functional and performance requirements for the NextGen weather system were established which require significant improvements in observation and forecasting capabilities. This will include satellite observations from geostationary and/or polar-orbiting hyperspectral sounders, multi-spectral imagers, lightning mappers, space weather monitors and other environmental observing systems. It will also require improved in situ and remotely sensed observations from ground-based and airborne systems. These observations will be used to better understand and to develop forecasting applications for convective weather, in-flight icing, turbulence, ceilings and visibility, volcanic ash, space weather and the environmental impacts of aviation. Cutting-edge collaborative research efforts and results from NASA, NOAA and the FAA which address these phenomena are summarized

  12. A simple next-best alternative to seasonal predictions in Europe

    Science.gov (United States)

    Buontempo, Carlo; De Felice, Matteo

    2016-04-01

    In order to build a climate proof society, we need to learn how to best use the climate information we have. Having spent time and resources in developing complex numerical models has often blinded us on the value some of this information really has in the eyes of a decision maker. An effective way to assess this is to check the quality of the forecast (and its cost) to the quality of the forecast from a prediction system based on simpler assumption (and thus cheaper to run). Such a practice is common in marketing analysis where it is often referred to as the next-best alternative. As a way to facilitate such an analysis, climate service providers should always provide alongside the predictions a set of skill scores. These are usually based on climatological means, anomaly persistence or more recently multiple linear regressions. We here present an equally simple benchmark based on a Markov chain process locally trained at a monthly or seasonal time-scale. We demonstrate that in spite of its simplicity the model easily outperforms not only the standard benchmark but also most of the seasonal predictions system at least in EUROPE. We suggest that a benchmark of this kind could represent a useful next-best alternative for a number of users.

  13. Momentum-space resummation for transverse observables and the Higgs p ⊥ at N3LL+NNLO

    Science.gov (United States)

    Bizoń, Wojciech; Monni, Pier Francesco; Re, Emanuele; Rottoli, Luca; Torrielli, Paolo

    2018-02-01

    We present an approach to the momentum-space resummation of global, recursively infrared and collinear safe observables that can vanish away from the Sudakov region. We focus on the hadro-production of a generic colour singlet, and we consider the class of observables that depend only upon the total transverse momentum of the radiation, prime examples being the transverse momentum of the singlet, and ϕ ∗ in Drell-Yan pair production. We derive a resummation formula valid up to next-to-next-to-next-to-leading-logarithmic accuracy for the considered class of observables. We use this result to compute state-of-the-art predictions for the Higgs-boson transverse-momentum spectrum at the LHC at next-to-next-to-next-to-leading-logarithmic accuracy matched to fixed next-to-next-to-leading order. Our resummation formula reduces exactly to the customary resummation performed in impact-parameter space in the known cases, and it also predicts the correct power-behaved scaling of the cross section in the limit of small value of the observable. We show how this formalism is efficiently implemented by means of Monte Carlo techniques in a fully exclusive generator that allows one to apply arbitrary cuts on the Born variables for any colour singlet, as well as to automatically match the resummed results to fixed-order calculations.

  14. Hadronic Leading Order Contribution to the Muon g-2

    Science.gov (United States)

    Nomura, Daisuke

    2018-05-01

    We calculate the Standard Model (SM) prediction for the muon anomalous magnetic moment. By using the latest experimental data for e+e- → hadrons as input to dispersive integrals, we obtain the values of the leading order (LO) and the next-to-leading-order (NLO) hadronic vacuum polarisation contributions as ahad, LO VPμ = (693:27 ± 2:46) × 10-10 and ahad, NLO VP μ = (_9.82 ± 0:04) × 1010-10, respectively. When combined with other contributions to the SM prediction, we obtain aμ(SM) = (11659182:05 ± 3.56) × 10-10; which is deviated from the experimental value by Δaμ(exp) _ aμ(SM) = (27.05 ± 7.26) × 10-10. This means that there is a 3.7 σ discrepancy between the experimental value and the SM prediction. We also discuss another closely related quantity, the running QED coupling at the Z-pole, α(M2 Z). By using the same e+e- → hadrons data as input, our result for the 5-flavour quark contribution to the running QED coupling at the Z pole is Δ(5)had(M2 Z) = (276.11 ± 1.11) × 10-4, from which we obtain Δ(M2 Z) = 128.946 ± 0.015.

  15. Next-Generation Sequencing: From Understanding Biology to Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Benjamin Meder

    2013-03-01

    Full Text Available Within just a few years, the new methods for high-throughput next-generation sequencing have generated completely novel insights into the heritability and pathophysiology of human disease. In this review, we wish to highlight the benefits of the current state-of-the-art sequencing technologies for genetic and epigenetic research. We illustrate how these technologies help to constantly improve our understanding of genetic mechanisms in biological systems and summarize the progress made so far. This can be exemplified by the case of heritable heart muscle diseases, so-called cardiomyopathies. Here, next-generation sequencing is able to identify novel disease genes, and first clinical applications demonstrate the successful translation of this technology into personalized patient care.

  16. Next-generation phylogenomics

    Directory of Open Access Journals (Sweden)

    Chan Cheong Xin

    2013-01-01

    Full Text Available Abstract Thanks to advances in next-generation technologies, genome sequences are now being generated at breadth (e.g. across environments and depth (thousands of closely related strains, individuals or samples unimaginable only a few years ago. Phylogenomics – the study of evolutionary relationships based on comparative analysis of genome-scale data – has so far been developed as industrial-scale molecular phylogenetics, proceeding in the two classical steps: multiple alignment of homologous sequences, followed by inference of a tree (or multiple trees. However, the algorithms typically employed for these steps scale poorly with number of sequences, such that for an increasing number of problems, high-quality phylogenomic analysis is (or soon will be computationally infeasible. Moreover, next-generation data are often incomplete and error-prone, and analysis may be further complicated by genome rearrangement, gene fusion and deletion, lateral genetic transfer, and transcript variation. Here we argue that next-generation data require next-generation phylogenomics, including so-called alignment-free approaches. Reviewers Reviewed by Mr Alexander Panchin (nominated by Dr Mikhail Gelfand, Dr Eugene Koonin and Prof Peter Gogarten. For the full reviews, please go to the Reviewers’ comments section.

  17. Towards three-loop QCD corrections to the time-like splitting functions

    International Nuclear Information System (INIS)

    Gituliar, O.; Moch, S.

    2015-05-01

    We report on the status of a direct computation of the time-like splitting functions at next-to-next-to-leading order in QCD. Time-like splitting functions govern the collinear kinematics of inclusive hadron production and the evolution of the parton fragmentation distributions. Current knowledge about them at three loops has been inferred by means of crossing symmetry from their related space-like counterparts, which has left certain parts of the off-diagonal quark-gluon splitting function undetermined. This motivates an independent calculation from first principles. We review the tools and methods which are applied to attack the problem.

  18. Top-quark pair production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, Valentin

    2011-12-08

    In this thesis we investigate several phenomenologically important properties of top-quark pair production at hadron colliders. We calculate double differential cross sections in two different kinematical setups, pair invariant-mass (PIM) and single-particle inclusive (1PI) kinematics. In pair invariant-mass kinematics we are able to present results for the double differential cross section with respect to the invariant mass of the top-quark pair and the top-quark scattering angle. Working in the threshold region, where the pair invariant mass M is close to the partonic center-of-mass energy {radical}(s), we are able to factorize the partonic cross section into different energy regions. We use renormalization-group (RG) methods to resum large threshold logarithms to next-to-next-to-leading-logarithmic (NNLL) accuracy. On a technical level this is done using effective field theories, such as heavy-quark effective theory (HQET) and soft-collinear effective theory (SCET). The same techniques are applied when working in 1PI kinematics, leading to a calculation of the double differential cross section with respect to transverse-momentum pT and the rapidity of the top quark. We restrict the phase-space such that only soft emission of gluons is possible, and perform a NNLL resummation of threshold logarithms. The obtained analytical expressions enable us to precisely predict several observables, and a substantial part of this thesis is devoted to their detailed phenomenological analysis. Matching our results in the threshold regions to the exact ones at next-to-leading order (NLO) in fixed-order perturbation theory, allows us to make predictions at NLO+NNLL order in RG-improved, and at approximate next-to-next-to-leading order (NNLO) in fixed order perturbation theory. We give numerical results for the invariant mass distribution of the top-quark pair, and for the top-quark transverse-momentum and rapidity spectrum. We predict the total cross section, separately for both

  19. Next-generation approaches to the microbial ecology of food fermentations

    Directory of Open Access Journals (Sweden)

    Nicholas A. Bokulich1,2,3 & David A. Mills1,2,3*

    2012-07-01

    Full Text Available Food fermentations have enhanced human health since the dawnof time and remain a prevalent means of food processing andpreservation. Due to their cultural and nutritional importance,many of these foods have been studied in detail using moleculartools, leading to enhancements in quality and safety. Furthermore,recent advances in high-throughput sequencing technologyare revolutionizing the study of food microbial ecology,deepening insight into complex fermentation systems. Thisreview provides insight into novel applications of selectmolecular techniques, particularly next-generation sequencingtechnology, for analysis of microbial communities in fermentedfoods. We present a guideline for integrated molecular analysis offood microbial ecology and a starting point for implementingnext-generation analysis of food systems.

  20. RES-E-NEXT: Next Generation of RES-E Policy Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.; Bird, L.; Cochran, J.; Milligan, M.; Bazilian, M. [National Renewable Energy Laboratory, Golden, CO (United States); Denny, E.; Dillon, J.; Bialek, J.; O’Malley, M. [Ecar Limited (Ireland); Neuhoff, K. [DIW Berlin (Germany)

    2013-07-04

    The RES-E-NEXT study identifies policies that are required for the next phase of renewable energy support. The study analyses policy options that secure high shares of renewable electricity generation and adequate grid infrastructure, enhance flexibility and ensure an appropriate market design. Measures have limited costs or even save money, and policies can be gradually implemented.

  1. Soft and hard contributions to hard pion photoproduction

    International Nuclear Information System (INIS)

    Afanasev, Andrei; Carlson, Carl E.; Wahlquist, Christian

    2000-01-01

    Pion photoproduction at high transverse momentum supplements what can be learned in the standard probes of deep inelastic scattering and Drell-Yan processes. With polarized initial states there is sensitivity to the polarized gluon distribution, Δg, in leading order. This contrasts to other processes mentioned, which have no leading order gluon contribution. Additionally, in some kinematic regions the process occurs mainly due to pion production at short distances ('direct pion production', resulting in kinematically isolated pions), which gives sensitivity to the high-x valence quark distribution

  2. Invitation to a forum: architecting operational `next generation' earth monitoring satellites based on best modeling, existing sensor capabilities, with constellation efficiencies to secure trusted datasets for the next 20 years

    Science.gov (United States)

    Helmuth, Douglas B.; Bell, Raymond M.; Grant, David A.; Lentz, Christopher A.

    2012-09-01

    Architecting the operational Next Generation of earth monitoring satellites based on matured climate modeling, reuse of existing sensor & satellite capabilities, attention to affordability and evolutionary improvements integrated with constellation efficiencies - becomes our collective goal for an open architectural design forum. Understanding the earth's climate and collecting requisite signatures over the next 30 years is a shared mandate by many of the world's governments. But there remains a daunting challenge to bridge scientific missions to 'operational' systems that truly support the demands of decision makers, scientific investigators and global users' requirements for trusted data. In this paper we will suggest an architectural structure that takes advantage of current earth modeling examples including cross-model verification and a first order set of critical climate parameters and metrics; that in turn, are matched up with existing space borne collection capabilities and sensors. The tools used and the frameworks offered are designed to allow collaborative overlays by other stakeholders nominating different critical parameters and their own treaded connections to existing international collection experience. These aggregate design suggestions will be held up to group review and prioritized as potential constellation solutions including incremental and spiral developments - including cost benefits and organizational opportunities. This Part IV effort is focused on being an inclusive 'Next Gen Constellation' design discussion and is the natural extension to earlier papers.

  3. NASA's Next Generation Space Geodesy Program

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  4. 77 FR 33777 - General Aviation Safety Forum: Climbing to the Next Level

    Science.gov (United States)

    2012-06-07

    ... NATIONAL TRANSPORTATION SAFETY BOARD General Aviation Safety Forum: Climbing to the Next Level The National Transportation Safety Board (NTSB) will convene a 2- day forum focused on safety issues related to... the Next Level,'' will be chaired by NTSB Chairman Deborah A. P. Hersman and all five Board Members...

  5. Measurements of Z boson plus jet production cross section using √(s)=8 TeV data and studies of jet quark-gluon decomposition

    International Nuclear Information System (INIS)

    Kondrashova, Nataliia

    2016-04-01

    A measurement of the differential cross-section of pp→Z/γ * (→e + e - )+jet production and a study of the jet quark-gluon decomposition are presented. The data of 21.3 fb -1 collected with the ATLAS detector at the Large Hadron Collider in 2012 at the centre-of-mass energy √(s)=8 TeV are used. The double-differential pp→Zγ * (→e + e - )+jet cross-section is measured as a function of the absolute rapidity and the transverse momentum of jets. The jet quark-gluon decomposition study is performed in bins of the transverse momentum and the absolute rapidity of the highest-p T jet. The possibility to distinguish between quark-initiated and gluon-initiated jets is especially important for beyond Standard Mode searches, where a lot of signal processes have quarks in the final states, while background processes in Quantum Chromodynamic have mostly gluons. The performance of the discrimination between these two types of jets using different jet properties is studied using data-driven techniques with purified quark-like and gluon-like jet samples. The pp→Z/γ * (→e + e - )+jet production provides an important test of perturbative Quantum Chromodynamics and is an important background for many Standard Model processes and beyond Standard Model searches. In addition, the measurement of the pp→Z/γ * (→e + e - )+jet cross section as a function of the absolute rapidity and the transverse momentum of inclusive jets provides constraints on the uncertainties on the parton distribution functions. The rapidity of jets provides the information on the fraction of the initial proton's momentum carried by the interacting partons, which provides the sensitivity to the parton distribution functions, while the transverse momentum of jets allows to probe different transfer momentum scales.The measured cross-section is compared to the predictions from Monte Carlo generators based on leading order matrix elements and supplemented by parton showers, where the predictions

  6. Phenomenological analysis of Higgs boson production through gluon fusion in association with jets

    International Nuclear Information System (INIS)

    Greiner, Nicolas; Luisoni, Gionata; Winter, Jan-Christopher; Yundin, Valery; Schoenherr, Marek

    2015-06-01

    We present a detailed phenomenological analysis of the production of a Standard Model Higgs boson in association with up to three jets. We consider the gluon fusion channel using an effective theory in the large top-quark mass limit. Higgs boson production in gluon fusion constitutes an irreducible background to the vector boson fusion (VBF) process; hence the precise knowledge of its characteristics is a prerequisite for any measurement in the VBF channel. The calculation is carried out at next-to-leading order (NLO) in QCD in a fully automated way by combining the two programs GoSam and Sherpa. We present numerical results for a large variety of observables for both standard cuts and VBF selection cuts. We find that for all jet multiplicities the NLO corrections are sizeable. This is particularly true in the presence of kinematic selections enhancing the VBF topology, which are based on vetoing additional jet activity. In this case, precise predictions for the background can be made using our calculation by taking the difference between the inclusive H+2 jets and the inclusive H+3 jets result.

  7. AgMIP: Next Generation Models and Assessments

    Science.gov (United States)

    Rosenzweig, C.

    2014-12-01

    Next steps in developing next-generation crop models fall into several categories: significant improvements in simulation of important crop processes and responses to stress; extension from simplified crop models to complex cropping systems models; and scaling up from site-based models to landscape, national, continental, and global scales. Crop processes that require major leaps in understanding and simulation in order to narrow uncertainties around how crops will respond to changing atmospheric conditions include genetics; carbon, temperature, water, and nitrogen; ozone; and nutrition. The field of crop modeling has been built on a single crop-by-crop approach. It is now time to create a new paradigm, moving from 'crop' to 'cropping system.' A first step is to set up the simulation technology so that modelers can rapidly incorporate multiple crops within fields, and multiple crops over time. Then the response of these more complex cropping systems can be tested under different sustainable intensification management strategies utilizing the updated simulation environments. Model improvements for diseases, pests, and weeds include developing process-based models for important diseases, frameworks for coupling air-borne diseases to crop models, gathering significantly more data on crop impacts, and enabling the evaluation of pest management strategies. Most smallholder farming in the world involves integrated crop-livestock systems that cannot be represented by crop modeling alone. Thus, next-generation cropping system models need to include key linkages to livestock. Livestock linkages to be incorporated include growth and productivity models for grasslands and rangelands as well as the usual annual crops. There are several approaches for scaling up, including use of gridded models and development of simpler quasi-empirical models for landscape-scale analysis. On the assessment side, AgMIP is leading a community process for coordinated contributions to IPCC AR6

  8. One-loop QCD and Higgs bosons to partons processes using six-dimensional helicity and generalized unitarity

    International Nuclear Information System (INIS)

    Davies, Scott

    2011-01-01

    We combine the six-dimensional helicity formalism of Cheung and O'Connell with D-dimensional generalized unitarity to obtain a new formalism for computing one-loop amplitudes in dimensionally regularized QCD. With this procedure, we simultaneously obtain the pieces that are constructible from four-dimensional unitarity cuts and the rational pieces that are missed by them, while retaining a helicity formalism. We illustrate the procedure using four- and five-point one-loop amplitudes in QCD, including examples with external fermions. We also demonstrate the technique's effectiveness in next-to-leading order QCD corrections to Higgs processes by computing the next-to-leading order correction to the Higgs plus three positive-helicity gluons amplitude in the large top-quark mass limit.

  9. Fiber to the home: next generation network

    Science.gov (United States)

    Yang, Chengxin; Guo, Baoping

    2006-07-01

    Next generation networks capable of carrying converged telephone, television (TV), very high-speed internet, and very high-speed bi-directional data services (like video-on-demand (VOD), Game etc.) strategy for Fiber To The Home (FTTH) is presented. The potential market is analyzed. The barriers and some proper strategy are also discussed. Several technical problems like various powering methods, optical fiber cables, and different network architecture are discussed too.

  10. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    Science.gov (United States)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  11. An electronic flight bag for NextGen avionics

    Science.gov (United States)

    Zelazo, D. Eyton

    2012-06-01

    The introduction of the Next Generation Air Transportation System (NextGen) initiative by the Federal Aviation Administration (FAA) will impose new requirements for cockpit avionics. A similar program is also taking place in Europe by the European Organisation for the Safety of Air Navigation (Eurocontrol) called the Single European Sky Air Traffic Management Research (SESAR) initiative. NextGen will require aircraft to utilize Automatic Dependent Surveillance-Broadcast (ADS-B) in/out technology, requiring substantial changes to existing cockpit display systems. There are two ways that aircraft operators can upgrade their aircraft in order to utilize ADS-B technology. The first is to replace existing primary flight displays with new displays that are ADS-B compatible. The second, less costly approach is to install an advanced Class 3 Electronic Flight Bag (EFB) system. The installation of Class 3 EFBs in the cockpit will allow aircraft operators to utilize ADS-B technology in a lesser amount of time with a decreased cost of implementation and will provide additional benefits to the operator. This paper describes a Class 3 EFB, the NexisTM Flight-Intelligence System, which has been designed to allow users a direct interface with NextGen avionics sensors while additionally providing the pilot with all the necessary information to meet NextGen requirements.

  12. CEATI distribution roadmap : what's next?

    International Nuclear Information System (INIS)

    2006-01-01

    The future of the electric distribution utility environment over the next 20 years was discussed. A study was conducted to assist utilities in developing future implementation plans. Twenty-one scenarios were created in order to obtain a list of technologies that may impact the future of the distribution grid. Scenarios considered potential policies and regulation, and investigated technologies required to implement each scenario. The scenarios considered future energy markets; business environments; distribution assets; and workforce developments. A distribution value chain classification was used to identify potential synergies. Results of the study showed that distributed resources will become more important in the next 20 years. Employee and system safety will require active consideration as the electricity grid becomes more complex. A second phase of the project will identify key technologies, common infrastructure needs, and guidelines for transforming distribution utilities in the future

  13. Effects of next-to-leading order DGLAP evolution on generalized parton distributions of the proton and deeply virtual Compton scattering at high energy

    Energy Technology Data Exchange (ETDEWEB)

    Khanpour, Hamzeh [University of Science and Technology of Mazandaran, Department of Physics, Behshahr (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Goharipour, Muhammad [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Guzey, Vadim [Petersburg Nuclear Physics Institute (PNPI), National Research Center ' ' Kurchatov Institute' ' , Gatchina (Russian Federation)

    2018-01-15

    We studied the effects of NLO Q{sup 2} evolution of generalized parton distributions (GPDs) using the aligned-jet model for the singlet quark and gluon GPDs at an initial evolution scale. We found that the skewness ratio for quarks is a slow logarithmic function of Q{sup 2}, reaching r{sup S} = 1.5-2 at Q{sup 2} = 100 GeV{sup 2} and r{sup g} ∼ 1 for gluons in a wide range of Q{sup 2}. Using the resulting GPDs, we calculated the DVCS cross section on the proton in NLO pQCD and found that this model in conjunction with modern parameterizations of proton PDFs (CJ15 and CT14) provides a good description of the available H1 and ZEUS data in a wide kinematic range. (orig.)

  14. NExT server

    CERN Document Server

    1989-01-01

    The first website at CERN - and in the world - was dedicated to the World Wide Web project itself and was hosted on Berners-Lee's NeXT computer. The website described the basic features of the web; how to access other people's documents and how to set up your own server. This NeXT machine - the original web server - is still at CERN. As part of the project to restore the first website, in 2013 CERN reinstated the world's first website to its original address.

  15. Community access networks: how to connect the next billion to the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Community access networks: how to connect the next billion to the Internet. Despite recent progress with mobile technology diffusion, more than four billion people worldwide are unconnected and have limited access to global communication infrastructure. The cost of implementing connectivity infrastructure in underserved ...

  16. Sensitivity of NEXT-100 to neutrinoless double beta decay

    CERN Document Server

    Martín-Albo, J.; Ferrario, P.; Nebot-Guinot, M.; Gómez-Cadenas, J.J.; Álvarez, V.; Azevedo, C.D.R.; Borges, F.I.G.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C.A.N.; Díaz, J.; Diesburg, M.; Esteve, R.; Fernandes, L.M.P.; Ferreira, A.L.; Freitas, E.D.C.; Gehman, V.M.; Goldschmidt, A.; González-Díaz, D.; Gutiérrez, R.M.; Henriques, C.A.O.; Hernando Morata, J.A.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Lorca, D.; Losada, M.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C.M.B.; Mora, F.J.; Moutinho, L.M.; Novella, P.; Nygren, D.; Para, A.; Perez, J.; Perez Aparicio, J.L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F.P.; dos Santos, J.M.F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J.F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J.F.C.A.; Villar, J.A.; Webb, R.; White, J.T.; Yahlali, N.; Yepes-Ramírez, H.; Hauptman, J.

    2016-01-01

    NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta decay of Xe-136. The detector possesses two features of great value in neutrinoless double beta decay searches: very good energy resolution (better than 1% FWHM at the Q value of Xe-136) and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Detailed Monte Carlo detector simulations and material-screening measurements predict a background rate for NEXT-100 of at most 0.0004 counts/(keV kg yr). Accordingly, the detector will reach a sensitivity to the neutrinoless double beta decay half-life of 6.E25 years after running for 3 effective years.

  17. Planning Instruction to Meet the Intent of the Next Generation Science Standards

    Science.gov (United States)

    Krajcik, Joseph; Codere, Susan; Dahsah, Chanyah; Bayer, Renee; Mun, Kongju

    2014-03-01

    The National Research Council's Framework for K- 12 Science Education and the Next Generation Science Standards (NGSS Lead States in Next Generation Science Standards: For states, by states. The National Academies Press, Washington, 2013) move teaching away from covering many isolated facts to a focus on a smaller number of disciplinary core ideas (DCIs) and crosscutting concepts that can be used to explain phenomena and solve problems by engaging in science and engineering practices. The NGSS present standards as knowledge-in-use by expressing them as performance expectations (PEs) that integrate all three dimensions from the Framework for K- 12 Science Education. This integration of core ideas, practices, and crosscutting concepts is referred to as three-dimensional learning (NRC in Division of Behavioral and Social Sciences and Education. The National Academies Press, Washington, 2014). PEs state what students can be assessed on at the end of grade level for K-5 and at the end of grade band for 6-8 and 9-12. PEs do not specify how instruction should be developed nor do they serve as objectives for individual lessons. To support students in developing proficiency in the PEs, the elements of the DCIs will need to be blended with various practices and crosscutting concepts. In this paper, we examine how to design instruction to support students in meeting a cluster or "bundle" of PEs and how to blend the three dimensions to develop lesson level PEs that can be used for guiding instruction. We provide a ten-step process and an example of that process that teachers and curriculum designers can use to design lessons that meet the intent of the Next Generation of Science Standards.

  18. IVS contribution to the next ITRF

    Science.gov (United States)

    Bachmann, Sabine; Messerschmitt, Linda; Thaller, Daniela

    2015-04-01

    Generating the contribution of the International VLBI Service (IVS) to the next ITRF (ITRF2013 or ITRF2014) was the main task of the IVS Combination Center at the Federal Agency for Cartography and Geodesy (BKG, Germany) in 2014. Starting with the ITRF2005, the IVS contribution to the ITRF is an intra-technique combined solution using multiple individual contributions from different institutions. For the upcoming ITRF ten international institutions submitted data files for a combined solution. The data files contain 24h VLBI sessions from the late 1970s until the end of 2014 in SINEX file format containing datum free normal equations with station coordinates and Earth Orientation Parameters (EOP). All contributions have to meet the IVS standards for ITRF contribution in order to guarantee a consistent combined solution. In the course of the generation of the intra-technique combined solution, station coordinate time series for each station as well as a Terrestrial Reference Frame based on the contributed VLBI data (VTRF) were generated and analyzed. Preliminary results using data until the end of 2013 show a scaling factor of -0.47 ppb resulting from a 7-parameter Helmert transformation of the VTRF w.r.t. ITRF2008, which is comparable to the scaling factor that was determined in the precedent ITRF generation. An internal comparison of the EOPs between the combined solution and the individual contributions as well as external comparisons of the EOP series were carried out in order to assure a consistent quality of the EOPs. The data analyses, the combination procedure and results of the combined solution for station coordinates and EOP will be presented.

  19. Inclusive Higgs boson production at the LHC in the kT -factorization approach

    Science.gov (United States)

    Abdulov, N. A.; Lipatov, A. V.; Malyshev, M. A.

    2018-03-01

    We investigate the inclusive Higgs boson production in proton-proton collisions at the CERN LHC conditions using the kT-factorization approach. Our analysis is based on the dominant off-shell gluon-gluon fusion subprocess (where the transverse momenta of initial gluons are taken into account) and covers H →γ γ , H →Z Z*→4 l (where l =e , μ ) and H →W+W-→e±μ∓ν ν ¯ decay channels. The transverse momentum dependent (or unintegrated) gluon densities in a proton were derived from Ciafaloni-Catani-Fiorani-Marchesini equation, which resums large logarithmic terms proportional to ln s ˜ln 1 /x , important at high energies. As an alternative choice, we apply the Kimber-Martin-Ryskin prescription, where the transverse momentum dependent gluon density is constructed from the known conventional parton distributions. We estimate the theoretical uncertainties of our calculations and compare our results with next-to-next-to-leading-order plus next-to-next-to-leading-logarithmic ones obtained using collinear QCD factorization. Our predictions agree well with the latest experimental data taken by the CMS and ATLAS Collaborations at √{s }=8 and 13 TeV.

  20. Community access networks: how to connect the next billion to the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Community access networks: how to connect the next billion to the Internet ... services is a prerequisite to sustainable socio-economic development. ... It will provide case studies and formulate recommendations with respect to ... An IDRC delegation will join international delegates and city representatives at the ICLEI World ...

  1. Next generation initiation techniques

    Science.gov (United States)

    Warner, Tom; Derber, John; Zupanski, Milija; Cohn, Steve; Verlinde, Hans

    1993-01-01

    Four-dimensional data assimilation strategies can generally be classified as either current or next generation, depending upon whether they are used operationally or not. Current-generation data-assimilation techniques are those that are presently used routinely in operational-forecasting or research applications. They can be classified into the following categories: intermittent assimilation, Newtonian relaxation, and physical initialization. It should be noted that these techniques are the subject of continued research, and their improvement will parallel the development of next generation techniques described by the other speakers. Next generation assimilation techniques are those that are under development but are not yet used operationally. Most of these procedures are derived from control theory or variational methods and primarily represent continuous assimilation approaches, in which the data and model dynamics are 'fitted' to each other in an optimal way. Another 'next generation' category is the initialization of convective-scale models. Intermittent assimilation systems use an objective analysis to combine all observations within a time window that is centered on the analysis time. Continuous first-generation assimilation systems are usually based on the Newtonian-relaxation or 'nudging' techniques. Physical initialization procedures generally involve the use of standard or nonstandard data to force some physical process in the model during an assimilation period. Under the topic of next-generation assimilation techniques, variational approaches are currently being actively developed. Variational approaches seek to minimize a cost or penalty function which measures a model's fit to observations, background fields and other imposed constraints. Alternatively, the Kalman filter technique, which is also under investigation as a data assimilation procedure for numerical weather prediction, can yield acceptable initial conditions for mesoscale models. The

  2. Electroweak production of top-quark pairs in e+e- annihilation at NNLO in QCD: The vector current contributions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jun [Southern Methodist Univ., Dallas, TX (United States); Zhu, Hua Xing [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-12-17

    We report on a calculation of the vector current contributions to the electroweak production of top quark pairs in e+e annihilation at next-to-next-to-leading order in quantum chromodynamics. Our setup is fully differential and can be used to calculate any infrared-safe observable. The real emission contributions are handled by a next-to-next-to-leading order generalization of the phase-space slicing method. As a result, we demonstrate the power of our technique by considering its application to various inclusive and exclusive observables.

  3. Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV

    CERN Document Server

    Khachatryan, Vardan; CMS Collaboration; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Molina, Jorge; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrens, Ulf; Bell, Alan James; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Nowatschin, Dominik; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Tziaferi, Eirini; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Gulmini, Michele; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Magnani, Alice; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Dellacasa, Giulio; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Ryu, Min Sang; Kim, Jae Yool; Moon, Dong Ho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Wan Abdullah, Wan Ahmad Tajuddin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Scarborough, Tara; Wu, Zhenbin; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Sagir, Sinan; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Xiao, Meng; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Nourbakhsh, Shervin; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Ratnikov, Fedor; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Mueller, Charles; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Malik, Sudhir; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Miller, David Harry; Neumeister, Norbert; Primavera, Federica; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Verzetti, Mauro; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wolfe, Evan; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Vuosalo, Carl; Woods, Nathaniel

    2015-07-29

    We present a measurement of the Z boson differential cross section in rapidity and transverse momentum using a data sample of pp collision events at a centre-of-mass energy $\\sqrt{s}$ = 8 TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The Z boson is identified via its decay to a pair of muons. The measurement provides a precision test of quantum chromodynamics over a large region of phase space. In addition, due to the small experimental uncertainties in the measurement the data has the potential to constrain the gluon parton distribution function in the kinematic regime important for Higgs boson production via gluon fusion. The results agree with the next-to-next-to-leading-order predictions computed with the FEWZ program. The results are also compared to the commonly used leading-order MADGRAPH and next-to-leading-order POWHEG generators.

  4. Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV

    Science.gov (United States)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Molina, J.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Zhang, L.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Tziaferi, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Gulmini, M.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Magnani, A.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Dellacasa, G.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Ryu, M. S.; Kim, J. Y.; Moon, D. H.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Wan Abdullah, W. A. T.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.; Wu, Z.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Xiao, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Malik, S.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Verzetti, M.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.

    2015-10-01

    We present a measurement of the Z boson differential cross section in rapidity and transverse momentum using a data sample of pp collision events at a centre-of-mass energy √{ s} = 8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. The Z boson is identified via its decay to a pair of muons. The measurement provides a precision test of quantum chromodynamics over a large region of phase space. In addition, due to the small experimental uncertainties in the measurement the data has the potential to constrain the gluon parton distribution function in the kinematic regime important for Higgs boson production via gluon fusion. The results agree with the next-to-next-to-leading-order predictions computed with the FEWZ program. The results are also compared to the commonly used leading-order MADGRAPH and next-to-leading-order POWHEG generators.

  5. Analytic derivation of the leading-order gluon distribution function G(x,Q2)=xg(x,Q2) from the proton structure function F2p(x,Q2)

    International Nuclear Information System (INIS)

    Block, Martin M.; Durand, Loyal; McKay, Douglas W.

    2008-01-01

    We derive a second-order linear differential equation for the leading-order gluon distribution function G(x,Q 2 )=xg(x,Q 2 ) which determines G(x,Q 2 ) directly from the proton structure function F 2 p (x,Q 2 ). This equation is derived from the leading-order evolution equation for F 2 p (x,Q 2 ), and does not require knowledge of either the individual quark distributions or the gluon evolution equation. Given an analytic expression that successfully reproduces the known experimental data for F 2 p (x,Q 2 ) in a domain x min (Q 2 )≤x≤x max (Q 2 ), Q min 2 ≤Q 2 ≤Q max 2 of the Bjorken variable x and the virtuality Q 2 in deep inelastic scattering, G(x,Q 2 ) is uniquely determined in the same domain. We give the general solution and illustrate the method using the recently proposed Froissart-bound-type parametrization of F 2 p (x,Q 2 ) of E. L. Berger, M. M. Block and C.-I. Tan [Phys. Rev. Lett. 98, 242001 (2007)]. Existing leading-order gluon distributions based on power-law descriptions of individual parton distributions agree roughly with the new distributions for x > or approx. 10 -3 as they should, but are much larger for x -3 .

  6. Global analysis of nuclear parton distribution functions at leading and next-to-leading order perturbative QCD

    Science.gov (United States)

    Pesznyak, Csilla

    The aim of the investigation is to give answer to some questions of the QC in the mega-voltage therapy for the sake of making the treatments more trouble-free. We investigated the terms of the usage of CT and PET/CT equipments in treatment planning that were made originally for diagnostic purposes. We compared the calculation algorithms of the Varian CadPlan(TM) and CMS XiORTM treatment planning systems (TPS) for photon and electron radiations of different energy. We also investigated the terms of usage of the PTW EPID QC PHANTOMRTM in the quality control of the EPID's and the portal images, as well. We laid down the terms in a protocol that make the diagnostic CT and PET/CT equipments capable for radiation treatment planning. The protocols should contain the exact patient setup, the tube voltage, detailed directions for use of patient immobilization tools, the review and use of the necessary QA/QC devices, the time consumption of the procedure, the frequency of controls and the worksheet to be used during the measurements. On the base of the measurements, it can be stated that on photon energies the superposition algorithm can be used for patient treatments in the case of the CMS XiORTM TPS while in the case of Varian CadPlan(TM) TPS the PBMB algorithm is the proper choice. It is not allowed to use the TPS without inhomogeneity correction. The CIRS Thorax IMRT phantom can be used for electron measurement only at higher than 10 MeV since only the Farmer chamber can be inserted into the holes of the phantom. On the base of the electron measurements, it can be stated that both planning systems give good results in soft tissue. In lung equivalent material the calculated values of the Varian CadPlan(TM) are in better agreement with the measured values, but the calculated values behind the bones are not accurate enough. In the QA/QC process the PTW EPID QC PHANTOMRTM is usable not only for the amorphous silicon EPID's but the image quality can be analysed on the video

  7. NNLO QCD corrections to production of a spin-2 particle with nonuniversal couplings in the Drell-Yan process

    Science.gov (United States)

    Banerjee, Pulak; Dhani, Prasanna K.; Kumar, M. C.; Mathews, Prakash; Ravindran, V.

    2018-05-01

    We study the phenomenological impact of the interaction of spin-2 fields with those of the Standard Model in a model independent framework up to next-to-next-to-leading order in perturbative quantum chromodynamics. We use the invariant mass distribution of the pair of leptons produced at the Large Hadron Collider to demonstrate this. A minimal scenario where the spin-2 fields couple to two gauge invariant operators with different coupling strengths has been considered. These operators not being conserved show very different ultraviolet behavior increasing the searches options of spin-2 particles at the colliders. We find that our results using the higher order quantum corrections stabilize the predictions with respect to renormalization and factorization scales. We also find that corrections are appreciable which need to be taken into account in such searches at the colliders.

  8. Boosted top production: factorization and resummation for single-particle inclusive distributions

    International Nuclear Information System (INIS)

    Ferroglia, Andrea; Marzani, Simone; Pecjak, Ben D.; Yang, Li Lin

    2014-01-01

    We study single-particle inclusive (1PI) distributions in top-quark pair production at hadron colliders, working in the highly boosted regime where the top-quark p T is much larger than its mass. In particular, we derive a novel factorization formula valid in the small-mass and soft limits of the differential partonic cross section. This provides a framework for the simultaneous resummation of soft gluon corrections and small-mass logarithms, and also an efficient means of obtaining higher-order corrections to the differential cross section in this limit. The result involves five distinct one-scale functions, three of which arise through the subfactorization of soft real radiation in the small-mass limit. We list the NNLO corrections to each of these functions, building on results in the literature by performing a new calculation of a soft function involving four light-like Wilson lines to this order. We thus obtain a nearly complete description of the small-mass limit of the differential partonic cross section at NNLO near threshold, missing only terms involving closed top-quark loops in the virtual corrections

  9. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms

    CERN Document Server

    Somogyi, Gabor

    2013-01-01

    We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of the regularised doubly virtual contribution to the NNLO cross section becomes feasible.

  10. Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Borges, F I G; Conde, C A N; Dias, T H V T; Fernandes, L M P; Freitas, E D C; Castel, J; Cebrián, S; Dafni, T; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    NEXT-DEMO is a large-scale prototype of the NEXT-100 detector, an electroluminescent time projection chamber that will search for the neutrinoless double beta decay of XE using 100–150 kg of enriched xenon gas. NEXT-DEMO was built to prove the expected performance of NEXT-100, namely, energy resolution better than 1% FWHM at 2.5 MeV and event topological reconstruction. In this paper we describe the prototype and its initial results. A resolution of 1.75% FWHM at 511 keV (which extrapolates to 0.8% FWHM at 2.5 MeV) was obtained at 10 bar pressure using a gamma-ray calibration source. Also, a basic study of the event topology along the longitudinal coordinate is presented, proving that it is possible to identify the distinct dE/dx of electron tracks in high-pressure xenon using an electroluminescence TPC.

  11. The contribution of next generation sequencing to epilepsy genetics

    DEFF Research Database (Denmark)

    Møller, Rikke S.; Dahl, Hans A.; Helbig, Ingo

    2015-01-01

    During the last decade, next generation sequencing technologies such as targeted gene panels, whole exome sequencing and whole genome sequencing have led to an explosion of gene identifications in monogenic epilepsies including both familial epilepsies and severe epilepsies, often referred to as ...

  12. The apeNEXT project

    International Nuclear Information System (INIS)

    Belletti, F.; Bodin, F.; Boucaud, Ph.; Cabibbo, N.; Lonardo, A.; De Luca, S.; Lukyanov, M.; Micheli, J.; Morin, L.; Pene, O.; Pleiter, D.; Rapuano, F.; Rossetti, D.; Schifano, S.F.; Simma, H.; Tripiccione, R.; Vicini, P.

    2006-01-01

    Numerical simulations in theoretical high-energy physics (Lattice QCD) require huge computing resources. Several generations of massively parallel computers optimised for these applications have been developed within the APE (array processor experiment) project. Large prototype systems of the latest generation, apeNEXT, are currently being assembled and tested. This contribution explains how the apeNEXT architecture is optimised for Lattice QCD, provides an overview of the hardware and software of apeNEXT, and describes its new features, like the SPMD programming model and the C compiler

  13. Leading order relativistic chiral nucleon-nucleon interaction

    Science.gov (United States)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  14. Next Generation Microshutter Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop the next generation MicroShutter Array (MSA) as a multi-object field selector for missions anticipated in the next two decades. For many...

  15. Fetal Kidney Anomalies: Next Generation Sequencing

    DEFF Research Database (Denmark)

    Rasmussen, Maria; Sunde, Lone; Nielsen, Marlene Louise

    Aim and Introduction Identification of abnormal kidneys in the fetus may lead to termination of the pregnancy and raises questions about the underlying cause and recurrence risk in future pregnancies. In this study, we investigate the effectiveness of targeted next generation sequencing in fetuses...... with prenatally detected kidney anomalies in order to uncover genetic explanations and assess recurrence risk. Also, we aim to study the relation between genetic findings and post mortem kidney histology. Methods The study comprises fetuses diagnosed prenatally with bilateral kidney anomalies that have undergone...... postmortem examination. The approximately 110 genes included in the targeted panel were chosen on the basis of their potential involvement in embryonic kidney development, cystic kidney disease, or the renin-angiotensin system. DNA was extracted from fetal tissue samples or cultured chorion villus cells...

  16. Next generation solar energy. From fundamentals to applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the International Conference between 12th and 14th December, 2011 in Erlangen (Federal Republic of Germany) the following lectures were presented: (1) The opto-electronic physics required to approach the Shockley-Queisser efficiency limit (E. Yablonovitch); (2) The Shockley-Queisser-limit and beyond (G.H. Bauer); (3) Designing composite nanomaterials for photovoltaic devices (B. Rech); (4) Light-Material interactions in energy conversion (H. Atwater); (5) Functional imaging of hybrid nanostructures - Visualizing mechanisms of solar energy utilization (L. Lauhon); (6) Are photosynthetic proteins suitable for PV applications (Y. Rosenwaks); (7) Detailed balance limit in photovoltaic systems (U. Rau); (8) Plasmonics and nanophotonics for next generation photovoltaics (E. Garnett); (9) Dispersion, wave propagation and efficiency analysis of nanowire solar cells (B. Witzigmann); (10) Application of nanostructures to next generation photovoltaics - Opportunities and challenges from an industrial research perspective (L. Tsakalakos); (11) Triplet states in organic and organometallic photovoltaic cells (K.S. Schanze); (12) New photoelectrode architectures (J.T. Hupp); (13) Dendrimers for optoelectronic and photovoltaic applications (P. Ceroni); (14) Photon management with luminescent materials (J. Goldschmidt); (15) Economical aspects of next generation solar cell technologies (W. Hoffmann); (16) Scalability in solar energy conversion - First-row transition metal-based chromophores for dye-sensitized solar cells (J. McCusker); (17) Designing organic materials for photovoltaic devices (A. Harriman); (18) Molecular photovoltaics - What can we learn from model studies (B. Albinsson); (19) Porphyrin-sensitised titanium dioxide solar cells (D. Officer); (20) Light-harvesting: Charge separation, and charge-transportation properties of novel materials for organic photovoltaics (H. Imahori); (21) Phthalocyanines for molecular photovoltaics (T. Torres); (22) Photophysics of

  17. On the Drell-Levy-Yan relation to O(α2s)

    International Nuclear Information System (INIS)

    Bluemlein, J.; Ravindran, V.; Neerven, W.L. van; Rijksuniversiteit Leiden

    2000-03-01

    We study the validity of a relation by Drell, Levy and Yan (DLY) connecting the deep inelastic structure (DIS) functions and the single-particle fragmentation functions in e + e - annihilation which are defined in the spacelike (q 2 2 > 0) regions respectively. Here q denotes the momentum of the virtual photon exchanged in the deep inelastic scattering process or the annihilation process. An extension of the DLY-relation, which originally was only derived in the scaling parton model, to all orders in QCD leads to a connection between the two evolution kernels determining the q 2 -dependence of the DIS structure functions and the fragmentation functions respectively. In relation to this we derive the transformation relations between the space-and time-like splitting functions up to next-to-leading order (NLO) and the coefficient functions up to NNLO both for unpolarized and polarized scattering. It is shown that the evolution kernels describing the combined singlet evolution for the structure functions F 2 (x, Q 2 ), F L (x, Q 2 ) where Q 2 = vertical stroke q 2 vertical stroke or F 2 (x, Q 2 ), ∂F 2 (x,Q 2 )/∂ln(Q 2 ) and the corresponding fragmentation functions satisfy the DLY relation up to next-to-leading order. We also comment on a relation proposed by Gribov and Lipatov. (orig.)

  18. Jet Substructure Measurements Sensitive to Soft QCD effects with the ATLAS Detector

    CERN Document Server

    Asquith, Lily; The ATLAS collaboration

    2017-01-01

    Calculations of jet substructure observables which are accurate beyond leading-logarithmic accuracy have recently become available. Such observables are significant not only for probing a new regime of QCD at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. In this talk, we discuss first measurement of jet substructure quantities at a hadron collider, calculated at next-to-next-to-leading-logarithm accuracy. The soft drop mass is measured in dijet events with the ATLAS detector at 13 TeV, unfolded to particle-level and compared to Monte Carlo simulations. In addition, we present a measurement of the splitting scales in the kt jet-clustering algorithm for final states containing a Z-boson candidate at a centre-of-mass energy of 8 TeV.  The data are also corrected for detector effects and are compared to state-of-the-art Monte Carlo predictions.

  19. Dijet rates with symmetric Et cuts

    International Nuclear Information System (INIS)

    Banfi, Andrea; Dasgupta, Mrinal

    2004-01-01

    We consider dijet production in the region where symmetric cuts on the transverse energy, E t , are applied to the jets. In this region next-to-leading order calculations are unreliable and an all-order resummation of soft gluon effects is needed, which we carry out. Although, for illustrative purposes, we choose dijets produced in deep inelastic scattering, our general ideas apply additionally to dijets produced in photoproduction or gamma-gamma processes and should be relevant also to the study of prompt di-photon E t spectra in association with a recoiling jet, in hadron-hadron processes. (author)

  20. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms

    Science.gov (United States)

    Somogyi, Gábor

    2013-04-01

    We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of fully differential rates for electron-positron annihilation into two and three jets at NNLO accuracy becomes feasible.