WorldWideScience

Sample records for next-generation nuclear technology

  1. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  2. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  3. Generation 'Next' and nuclear power

    International Nuclear Information System (INIS)

    Sergeev, A.A.

    2001-01-01

    My generation was labeled by Russian mass media as generation 'Next.' My technical education is above average. My current position is as a mechanical engineer in the leading research and development institute for Russian nuclear engineering for peaceful applications. It is noteworthy to point out that many of our developments were really first-of-a-kind in the history of engineering. However, it is difficult to grasp the importance of these accomplishments, especially since the progress of nuclear technologies is at a standstill. Can generation 'Next' be independent in their attitude towards nuclear power or shall we rely on the opinions of elder colleagues in our industry? (authors)

  4. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  5. Control technology for nuclear power system of next generation

    International Nuclear Information System (INIS)

    1995-01-01

    This report is the summary of the results obtained by the investigation activities for two years carried out by the expert committee on investigation of control technology for nuclear power system of next generation. The course of investigation is outlined, and as the results, as advanced control technologies, adaptive control. H sub (infinite) control, fuzzy control and the application of autonomous distributed system and genetic algorithm to control; as operation support technology, the operation and monitoring system for nuclear power plants and safety support system; as interface technology which is the basic technology of them, virtual reality, multimedia and so on; further, various problems due to human factors, computer technology, artificial intelligence and others were taken up, and the grasp of the present status and the future subjects was carried out, including the information in international conferences. The items of the investigation are roughly divided into measurement and control technologies, interface technology and operation support, human factors, computer technology and artificial intelligence, and the trend in foreign countries, and the results of investigation for respective items are reported. (K.I.)

  6. U.S. FUEL CYCLE TECHNOLOGIES R&D PROGRAM FOR NEXT GENERATION NUCLEAR MATERIALS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    M.C. MILLER

    2013-11-01

    Full Text Available The U.S. Department of Energy's Fuel Cycle Technologies R&D program under the Office of Nuclear Energy is working to advance technologies to enhance both the existing and future fuel cycles. One thrust area is in developing enabling technologies for next generation nuclear materials management under the Materials Protection, Accounting and Control Technologies (MPACT Campaign where advanced instrumentation, analysis and assessment methods, and security approaches are being developed under a framework of Safeguards and Security by Design. An overview of the MPACT campaign's activities and recent accomplishments is presented along with future plans.

  7. U. S. Fuel Cycle Technologies R and D Program for Next Generation Nuclear Materials Management

    International Nuclear Information System (INIS)

    Miller, M. C.; Vega, D. A.

    2013-01-01

    The U. S. Department of Energy's Fuel Cycle Technologies R and D program under the Office of Nuclear Energy is working to advance technologies to enhance both the existing and future fuel cycles. One thrust area is in developing enabling technologies for next generation nuclear materials management under the Materials Protection, Accounting and Control Technologies (MPACT) Campaign where advanced instrumentation, analysis and assessment methods, and security approaches are being developed under a framework of Safeguards and Security by Design. An overview of the MPACT campaign's activities and recent accomplishments is presented along with future plans

  8. Development of technology for next generation reactor - Development of next generation reactor in Korea -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); and others

    1993-09-01

    The project, development of next generation reactor, aims overall related technology development and obtainment of related license in 2001. The development direction is to determine the reactor type and to build up the design concept in 1994. For development trend analysis of foreign next generation reactor, level-1 PSA, fuel cycle analysis and computer code development are performed on System 80+ and AP 600. Especially for design characteristics analysis and volume upgrade of AP 600, nuclear fuel and reactor core design analysis, coolant circuit design analysis, mechanical structure design analysis and safety analysis etc. are performed. (Author).

  9. Next generation advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Turgut, M. H.

    2009-01-01

    Growing energy demand by technological developments and the increase of the world population and gradually diminishing energy resources made nuclear power an indispensable option. The renewable energy sources like solar, wind and geothermal may be suited to meet some local needs. Environment friendly nuclear energy which is a suitable solution to large scale demands tends to develop highly economical, advanced next generation reactors by incorporating technological developments and years of operating experience. The enhancement of safety and reliability, facilitation of maintainability, impeccable compatibility with the environment are the goals of the new generation reactors. The protection of the investment and property is considered as well as the protection of the environment and mankind. They became economically attractive compared to fossil-fired units by the use of standard designs, replacing some active systems by passive, reducing construction time and increasing the operation lifetime. The evolutionary designs were introduced at first by ameliorating the conventional plants, than revolutionary systems which are denoted as generation IV were verged to meet future needs. The investigations on the advanced, proliferation resistant fuel cycle technologies were initiated to minimize the radioactive waste burden by using new generation fast reactors and ADS transmuters.

  10. NNSA Program Develops the Next Generation of Nuclear Security Experts

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.; Disney, Maren V.

    2015-09-02

    NNSA is fostering the next generation of nuclear security experts is through its successful NNSA Graduate Fellowship Program (NGFP). NGFP offers its Fellows an exceptional career development opportunity through hands-on experience supporting NNSA mission areas across policy and technology disciplines. The one-year assignments give tomorrow’s leaders in global nuclear security and nonproliferation unparalleled exposure through assignments to Program Offices across NNSA.

  11. Next Generation Nuclear Plant System Requirements Manual

    International Nuclear Information System (INIS)

    Not Listed

    2008-01-01

    System Requirements Manual for the NGNP Project. The Energy Policy Act of 2005 (H.R. 6; EPAct), which was signed into law by President George W. Bush in August 2005, required the Secretary of the U.S. Department of Energy (DOE) to establish a project to be known as the Next Generation Nuclear Plant (NGNP) Project. According to the EPAct, the NGNP Project shall consist of the research, development, design, construction, and operation of a prototype plant (to be referred to herein as the NGNP) that (1) includes a nuclear reactor based on the research and development (R and D) activities supported by the Generation IV Nuclear Energy Systems initiative, and (2) shall be used to generate electricity, to produce hydrogen, or to both generate electricity and produce hydrogen. The NGNP Project supports both the national need to develop safe, clean, economical nuclear energy and the Nuclear Hydrogen Initiative (NHI), which has the goal of establishing greenhouse-gas-free technologies for the production of hydrogen. The DOE has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the reactor concept to be used for the NGNP because it is the only near-term Generation IV concept that has the capability to provide process heat at high-enough temperatures for highly efficient production of hydrogen. The EPAct also names the Idaho National Laboratory (INL), the DOE's lead national laboratory for nuclear energy research, as the site for the prototype NGNP

  12. Reducing Risk for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  13. Reducing Risk for the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Beck, John M. II; Heydt, Harold J.; Opare, Emmanuel O.; Oswald, Kyle B.

    2010-01-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  14. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  15. Nuclear the next generation. 34th Annual Canadian Nuclear Society conference and 37th CNS/CNA student conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The 34th Annual Canadian Nuclear Society Conference and 37th CNS/CNA Student Conference was held in Toronto, Ontario, Canada on June 10-13, 2013. With the theme of the conference, 'Nuclear the Next Generation{sup ,} the conference actively engaged 400 participants in the many facets of this well-rum event. The conference combined excellent plenary speakers, a full set of technical papers, challenging student poster competitions, and interesting exhibits. The plenary session focussed on the themes: 'Nuclear Power - a Business Driver for the Next Generation'; and, 'Designing - the Next Generation'. The technical session titles were: Reactor and Radiation Physics; Environment and Spent Fuel Management; Operations and Maintenance; Fusion Science and Technology; Advanced Reactors and Fuels; Plant Life Extension, Refurbishment and Aging; Safety and Licensing; Chemistry and Materials; and, Thermalhydraulics. The student conference session was well attended and completed the 4 day event.

  16. Next generation light water reactors

    International Nuclear Information System (INIS)

    Omoto, Akira

    1992-01-01

    In the countries where the new order of nuclear reactors has ceased, the development of the light water reactors of new type has been discussed, aiming at the revival of nuclear power. Also in Japan, since it is expected that light water reactors continue to be the main power reactor for long period, the technology of light water reactors of next generation has been discussed. For the development of nuclear power, extremely long lead time is required. The light water reactors of next generation now in consideration will continue to be operated till the middle of the next century, therefore, they must take in advance sufficiently the needs of the age. The improvement of the way men and the facilities should be, the simple design, the flexibility to the trend of fuel cycle and so on are required for the light water reactors of next generation. The trend of the development of next generation light water reactors is discussed. The construction of an ABWR was started in September, 1991, as No. 6 plant in Kashiwazaki Kariwa Power Station. (K.I.)

  17. Requirements for the next generation of nuclear databases and services

    Energy Technology Data Exchange (ETDEWEB)

    Pronyaev, Vladimir; Zerkin, Viktor; Muir, Douglas [International Atomic Energy Agency, Nuclear Data Section, Vienna (Austria); Winchell, David; Arcilla, Ramon [Brookhaven National Laboratory, National Nuclear Data Center, Upton, NY (United States)

    2002-08-01

    The use of relational database technology and general requirements for the next generation of nuclear databases and services are discussed. These requirements take into account an increased number of co-operating data centres working on diverse hardware and software platforms and users with different data-access capabilities. It is argued that the introduction of programming standards will allow the development of nuclear databases and data retrieval tools in a heterogeneous hardware and software environment. The functionality of this approach was tested with full-scale nuclear databases installed on different platforms having different operating and database management systems. User access through local network, internet, or CD-ROM has been investigated. (author)

  18. Next-generation wireless technologies 4G and beyond

    CERN Document Server

    Chilamkurti, Naveen; Chaouchi, Hakima

    2013-01-01

    This comprehensive text/reference examines the various challenges to secure, efficient and cost-effective next-generation wireless networking. Topics and features: presents the latest advances, standards and technical challenges in a broad range of emerging wireless technologies; discusses cooperative and mesh networks, delay tolerant networks, and other next-generation networks such as LTE; examines real-world applications of vehicular communications, broadband wireless technologies, RFID technology, and energy-efficient wireless communications; introduces developments towards the 'Internet o

  19. Laser peening applications for next generation of nuclear power facilities

    International Nuclear Information System (INIS)

    Rankin, J.; Truong, C.; Walter, M.; Chen, H.-L.; Hackel, L.

    2008-01-01

    Generation of electricity by nuclear power can assist in achieving goals of reduced greenhouse gas emissions. Increased safety and reliability are necessary attributes of any new nuclear power plants. High pressure, hot water and radiation contribute to operating environments where Stress Corrosion Cracking (SCC) and hydrogen embrittlement can lead to potential component failures. Desire for improved steam conversion efficiency pushes the fatigue stress limits of turbine blades and other rotating equipment. For nuclear reactor facilities now being designed and built and for the next generations of designs, laser peening could be incorporated to provide significant performance life to critical subsystems and components making them less susceptible to fatigue, SCC and radiation induced embrittlement. These types of components include steam turbine blades, hubs and bearings as well as reactor components including cladding material, housings, welded assemblies, fittings, pipes, flanges, vessel penetrations, nuclear waste storage canisters. Laser peening has proven to be a commercial success in aerospace applications and has recently been put into use for gas and steam turbine generators and light water reactors. An expanded role for this technology for the broader nuclear power industry would be a beneficial extension. (author)

  20. Future of nuclear power in Japan - Development of next Generation LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Eiji; Yamamoto, T.; Kurosaki, K.; Ohga, Y.; Tsuzuki, K.; Kasai, S.; Tanaka, T.

    2010-09-15

    Japan's energy policies have been to decrease the oil portion and dependence on the Middle East for energy security, as well as satisfy environmental requirement. The report of 2008 targeted reducing GHG emission by 60-80% before 2050, and highlighted ''Cool Earth-Innovative Energy Technology Program'' featuring 21 innovative technologies. In this context nuclear power is expected as a core power source. In April 2008, ''Next Generation Light Water Power Reactor Development Program'' was launched with the IAE as the core organization in alliance with Japan's major vendors and in collaboration with METI and power utilities for the future of nuclear power.

  1. Nuclear power - strategic planning for the next generation

    International Nuclear Information System (INIS)

    Turner, K.H.

    1989-01-01

    Regardless of the real or perceived causes of the nuclear power industry's current difficulties, a number of recent trends-increasing electricity demand, foreign oil dependency, and attention paid to acid rain and the greenhouse effect-taken together, point of the most favorable atmosphere in recent history for nuclear power. Already, serious public discussion of its advantages have begun anew. Thus, the time is ripe to consider the developmental structure of nuclear power's next generation. Although much uncertainty still surrounds the nuclear industry, valuable lessons have been learned, and the evolution of the industry from this point cannot be left to chance. The purpose of this paper is to discuss a framework for nuclear power strategic planning activities. The strategic planning objectives outlined in this paper span issues that affect virtually every aspect of the nuclear power industry. Piecemeal responses to the vagaries of random stimuli will not be adequate. A proactive, integrated, industry-wide initiative-an Institute of Nuclear Power Planning, actively supported by the members of the industry-should be undertaken immediately to fill the strategic planning role. In so doing, the industry will not only be acting in its own best interest but will also be helping the nation realize the real and important benefits of its nuclear power technology

  2. The NASA Next Generation Stirling Technology Program Overview

    Science.gov (United States)

    Schreiber, J. G.; Shaltens, R. K.; Wong, W. A.

    2005-12-01

    NASAs Science Mission Directorate is developing the next generation Stirling technology for future Radioisotope Power Systems (RPS) for surface and deep space missions. The next generation Stirling convertor is one of two advanced power conversion technologies currently being developed for future NASA missions, and is capable of operating for both planetary atmospheres and deep space environments. The Stirling convertor (free-piston engine integrated with a linear alternator) produces about 90 We(ac) and has a specific power of about 90 We/kg. Operating conditions of Thot at 850 degree C and Trej at 90 degree C results in the Stirling convertor estimated efficiency of about 40 per cent. Using the next generation Stirling convertor in future RPS, the "system" specific power is estimated at 8 We/kg. The design lifetime is three years on the surface of Mars and fourteen years in deep space missions. Electrical power of about 160 We (BOM) is produced by two (2) free-piston Stirling convertors heated by two (2) General Purpose Heat Source (GPHS) modules. This development is being performed by Sunpower, Athens, OH with Pratt & Whitney, Rocketdyne, Canoga Park, CA under contract to Glenn Research Center (GRC), Cleveland, Ohio. GRC is guiding the independent testing and technology development for the next generation Stirling generator.

  3. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  4. Nuclear Knowledge to the Next Generation

    International Nuclear Information System (INIS)

    Mazour, Thomas; Kossilov, Andrei

    2004-01-01

    The safe, reliable, and cost-effective operation of Nuclear Power Plants (NPPs) requires that personnel possess and maintain the requisite knowledge, skills, and attitudes to do their jobs properly. Such knowledge includes not only the technical competencies required by the nature of the technology and particular engineering designs, but also the softer competencies associated with effective management, communication and teamwork. Recent studies have shown that there has been a loss of corporate knowledge and memory. Both explicit knowledge and tacit knowledge must be passed on to the next generation of workers in the industry to ensure a quality workforce. New and different techniques may be required to ensure timely and effective knowledge retention and transfer. The IAEA prepared a report on this subject. The main conclusions from the report regarding strategies for managing the aging workforce are included. Also included are main conclusions from the report regarding the capture an d preservation of mission critical knowledge, and the effective transfer of this knowledge to the next generation of NPP personnel. The nuclear industry due to its need for well-documented procedures, specifications, design basis, safety analyses, etc., has a greater fraction of its mission critical knowledge as explicit knowledge than do many other industries. This facilitates the task of knowledge transfer. For older plants in particular, there may be a need for additional efforts to transfer tacit knowledge to explicit knowledge to support major strategic initiatives such as plant license extensions/renewals, periodic safety reviews, major plant upgrades, and plant specific control room simulator development. The challenge in disseminating explicit knowledge is to make employees aware that it is available and provide easy access in formats and forms that are usable. Tacit knowledge is more difficult to identify and disseminate. The challenge is to identify what can be converted to

  5. Nuclear electricity generation a sustainable energy resource for Romania along the next two decades

    International Nuclear Information System (INIS)

    Prodea, Iosif; Margeanu, Cristina Alice; Aioanei, Corina; Prisecaru, Ilie; Danila, Nicolae

    2008-01-01

    The main goal of the paper is to evaluate different electricity generation costs inside of the National Romanian energy sector along the next two decades. The IAEA -MESSAGE code (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) will be used to accomplish these assessments. Due to the natural gas crisis started at the beginning of 2006, Romania has adopted a courageous energy policy based on increasing nuclear electricity share. Since then, the second nuclear Unit was commissioned at Cernavoda in 2007 and the other two CANDU-6 (700 MWe) were scheduled to be operational in 2015. On the other side the European integration of Romania asks for doubling the indigenous gas price during this year, 2008, and also for reducing the atmospheric gaseous emissions from the fossil fuel technologies. Therefore, we evaluated the economical competition between all electricity technologies in the Romanian energy sector in the next two decades for which our MESSAGE model was developed. We focused on coal, gas and, of course, nuclear electricity technologies. Some representative energy scenarios centered on nuclear share electricity growing were considered and MESSAGE results were analyzed from the energetic sustainable point of view. (authors)

  6. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Oblozinsky, P.; Herman, M.

    2006-01-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6 Li, 10 B, Au and for 235,238 U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238 U and 208 Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  7. Nuclear Energy Research Initiative (NERI): On-Line Intelligent Self-Diagnostic Monitoring for Next Generation Nuclear Plants - Phase I Annual Report

    International Nuclear Information System (INIS)

    Bond, L.G.; Doctor, S.R.; Gilbert, R.W.; Jarrell, D.B.; Greitzer, F.L.; Meador, R.J.

    2000-01-01

    OAK-B135 This OSTI ID belongs to an IWO and is being released out of the system. The Program Manager Rebecca Richardson has confirmed that all reports have been received. The objective of this project is to design and demonstrate the operation of the real-time intelligent self-diagnostic and prognostic system for next generation nuclear power plant systems. This new self-diagnostic technology is titled, ''On-Line Intelligent Self-Diagnostic Monitoring System'' (SDMS). This project provides a proof-of-principle technology demonstration for SDMS on a pilot plant scale service water system, where a distributed array of sensors is integrated with active components and passive structures typical of next generation nuclear power reactor and plant systems. This project employs state-of-the-art sensors, instrumentation, and computer processing to improve the monitoring and assessment of the power reactor system and to provide diagnostic and automated prognostics capabilities

  8. A Systems Engineering Framework for Design, Construction and Operation of the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Edward J. Gorski; Charles V. Park; Finis H. Southworth

    2004-01-01

    Not since the International Space Station has a project of such wide participation been proposed for the United States. Ten countries, the European Union, universities, Department of Energy (DOE) laboratories, and industry will participate in the research and development, design, construction and/or operation of the fourth generation of nuclear power plants with a demonstration reactor to be built at a DOE site and operational by the middle of the next decade. This reactor will be like no other. The Next Generation Nuclear Plant (NGNP) will be passively safe, economical, highly efficient, modular, proliferation resistant, and sustainable. In addition to electrical generation, the NGNP will demonstrate efficient and cost effective generation of hydrogen to support the President's Hydrogen Initiative. To effectively manage this multi-organizational and technologically complex project, systems engineering techniques and processes will be used extensively to ensure delivery of the final product. The technological and organizational challenges are complex. Research and development activities are required, material standards require development, hydrogen production, storage and infrastructure requirements are not well developed, and the Nuclear Regulatory Commission may further define risk-informed/performance-based approach to licensing. Detailed design and development will be challenged by the vast cultural and institutional differences across the participants. Systems engineering processes must bring the technological and organizational complexity together to ensure successful product delivery. This paper will define the framework for application of systems engineering to this $1.5B - $1.9B project

  9. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  10. Developing the next generation of nuclear workers at OPG

    International Nuclear Information System (INIS)

    Spekkens, P.

    2007-01-01

    This presentation is about developing the next generation of nuclear workers at Ontario Power Generation (OPG). Industry developments are creating urgent need to hire, train and retain new staff. OPG has an aggressive hiring campaign. Training organization is challenged to accommodate influx of new staff. Collaborating with colleges and universities is increasing the supply of qualified recruits with an interest in nuclear. Program for functional and leadership training have been developed. Knowledge retention is urgently required

  11. Nuclear Energy Research Initiative (NERI): On-Line Intelligent Self-Diagnostic Monitoring for Next Generation Nuclear Plants - Phase I Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    L. J. Bond; S. R. Doctor; R. W. Gilbert; D. B. Jarrell; F. L. Greitzer; R. J. Meador

    2000-09-01

    OAK-B135 This OSTI ID belongs to an IWO and is being released out of the system. The Program Manager Rebecca Richardson has confirmed that all reports have been received. The objective of this project is to design and demonstrate the operation of the real-time intelligent self-diagnostic and prognostic system for next generation nuclear power plant systems. This new self-diagnostic technology is titled, ''On-Line Intelligent Self-Diagnostic Monitoring System'' (SDMS). This project provides a proof-of-principle technology demonstration for SDMS on a pilot plant scale service water system, where a distributed array of sensors is integrated with active components and passive structures typical of next generation nuclear power reactor and plant systems. This project employs state-of-the-art sensors, instrumentation, and computer processing to improve the monitoring and assessment of the power reactor system and to provide diagnostic and automated prognostics capabilities.

  12. Key thrusts in next generation CANDU. Annex 10

    International Nuclear Information System (INIS)

    Shalaby, B.A.; Torgerson, D.F.; Duffey, R.B.

    2002-01-01

    Current electricity markets and the competitiveness of other generation options such as CCGT have influenced the directions of future nuclear generation. The next generation CANDU has used its key characteristics as the basis to leap frog into a new design featuring improved economics, enhanced passive safety, enhanced operability and demonstrated fuel cycle flexibility. Many enabling technologies spinning of current CANDU design features are used in the next generation design. Some of these technologies have been developed in support of existing plants and near term designs while others will need to be developed and tested. This paper will discuss the key principles driving the next generation CANDU design and the fuel cycle flexibility of the CANDU system which provide synergism with the PWR fuel cycle. (author)

  13. Technology Innovations from NASA's Next Generation Launch Technology Program

    Science.gov (United States)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  14. Nuclear safety in the next century

    Energy Technology Data Exchange (ETDEWEB)

    Meneley, D A [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1993-12-31

    Can nuclear plants b made safe enough to be suitable for worldwide large-scale use? Can the radioactive wastes generated be safely managed over long terms? This paper addresses these questions from a vantage point within the nuclear industry. It also provides a scenario of the possible development over the next century of the Bruce nuclear energy centre on Lake Huron as an illustration of why it is worthwhile to further nuclear technology. (author). 4 figs.

  15. Use of virtual environments to reduce the construction costs of the next generation nuclear power reactors

    International Nuclear Information System (INIS)

    Whisker, V.E.; Baratta, A.J.

    2007-01-01

    The near term deployment of the next generation of reactors will only be successful if they are built on time and without the costly overruns experienced in the previous generation. One critical factor in achieving these goals is to ensure the design is optimized for constructability. In this work the authors explored the effectiveness of full-scale virtual reality simulation in the optimization of the design and construction of the next generation of nuclear reactors. The research tested the suitability of immersive virtual reality display technology in aiding engineers in evaluating potential cost reductions that can be realized by the optimization of design and installation and construction sequences. The intent of this research is to see if this type of technology can be used in capacities similar to those currently filled by full-scale physical mockups and desktop simulations. Using a fully-immersive five sided virtual reality system, known as a CAVE, the authors constructed a series of virtual mockups that represented two next generation nuclear power plants, the Westinghouse AP-1000 and the Pebble Bed Modular Reactor (PBMR). These virtual mockups were then tested as a design tool to help locate and correct problem areas, to optimize the construction sequence, and to assist with familiarizing trades people with the performance of maintenance activities. A series of experiments were performed to assess the usefulness of these virtual mockups in accomplishing these tasks. (authors)

  16. Proceedings of the first MIT international conference on the next generation of nuclear power technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-07-01

    The overall goal of advanced nuclear reactor development is to provide technological options which will be broadly acceptable to the different interested communities - electric utilities, environmental protection interests and electricity consumers. These constituencies will differ greatly in their priorities and understandings of what is feasible. However they all will collectively determine the definition of what constitutes an acceptable technology. The purpose of the Conference reported here was to aid the process reaching a greater consensus concerning acceptable technologies. The Conference was structured to permit all of those involved to gain a common understanding of the performance attributes which can reasonably be expected from the next generation of nuclear power plants, and to assist the process of communication among the various interest groups - ranging from reactor manufacturers and electric utilities to groups which have been strongly critical of nuclear power. This Conference is the first of an indefinite series of Conferences to be sponsored by the Program. The purpose of having a series of Conferences is to permit them to serve as a vehicle for sustained discussion among the communities which will determine whether future nuclear power plants are acceptable as national strategic options. The hope in organizing these Conferences is to improve the technologies which will eventually emerge, as a consequence of early effective communication among those concerned with the results. In order to do this, however, it is necessary for the people involved in such communication to have opportunities for sustained exposure to the ideas of others whom they would not otherwise have met. To do this it is necessary that these various communities interact repeatedly. The Conference series is intended to assist in that process. The Conference consisted of six focused topical sessions and two panel discussions. In each topical session keynote and respondent papers

  17. Proceedings of the first MIT international conference on the next generation of nuclear power technology

    International Nuclear Information System (INIS)

    1990-01-01

    The overall goal of advanced nuclear reactor development is to provide technological options which will be broadly acceptable to the different interested communities - electric utilities, environmental protection interests and electricity consumers. These constituencies will differ greatly in their priorities and understandings of what is feasible. However they all will collectively determine the definition of what constitutes an acceptable technology. The purpose of the Conference reported here was to aid the process reaching a greater consensus concerning acceptable technologies. The Conference was structured to permit all of those involved to gain a common understanding of the performance attributes which can reasonably be expected from the next generation of nuclear power plants, and to assist the process of communication among the various interest groups - ranging from reactor manufacturers and electric utilities to groups which have been strongly critical of nuclear power. This Conference is the first of an indefinite series of Conferences to be sponsored by the Program. The purpose of having a series of Conferences is to permit them to serve as a vehicle for sustained discussion among the communities which will determine whether future nuclear power plants are acceptable as national strategic options. The hope in organizing these Conferences is to improve the technologies which will eventually emerge, as a consequence of early effective communication among those concerned with the results. In order to do this, however, it is necessary for the people involved in such communication to have opportunities for sustained exposure to the ideas of others whom they would not otherwise have met. To do this it is necessary that these various communities interact repeatedly. The Conference series is intended to assist in that process. The Conference consisted of six focused topical sessions and two panel discussions. In each topical session keynote and respondent papers

  18. Next Generation Antibody Therapeutics Using Bispecific Antibody Technology.

    Science.gov (United States)

    Igawa, Tomoyuki

    2017-01-01

    Nearly fifty monoclonal antibodies have been approved to date, and the market for monoclonal antibodies is expected to continue to grow. Since global competition in the field of antibody therapeutics is intense, we need to establish novel antibody engineering technologies to provide true benefit for patients, with differentiated product values. Bispecific antibodies are among the next generation of antibody therapeutics that can bind to two different target antigens by the two arms of immunoglobulin G (IgG) molecule, and are thus believed to be applicable to various therapeutic needs. Until recently, large scale manufacturing of human IgG bispecific antibody was impossible. We have established a technology, named asymmetric re-engineering technology (ART)-Ig, to enable large scale manufacturing of bispecific antibodies. Three examples of next generation antibody therapeutics using ART-Ig technology are described. Recent updates on bispecific antibodies against factor IXa and factor X for the treatment of hemophilia A, bispecific antibodies against a tumor specific antigen and T cell surface marker CD3 for cancer immunotherapy, and bispecific antibodies against two different epitopes of soluble antigen with pH-dependent binding property for the elimination of soluble antigen from plasma are also described.

  19. Nuclear reactor technology: the next 50 years

    International Nuclear Information System (INIS)

    Sollychin, R.; Subki, H.; Adelfang, P.; Koshy, T.

    2013-01-01

    In light of the growing awareness of the environmental externalities of fossil fuel combustion, alternatives for electric power generation such as solar, wind and nuclear energy are becoming more desirable. In developed countries, large power markets are currently served by a centralized energy system through well inter-connected electricity grids. However, as shares of variable renewable energy sources (mainly wind and solar power) are increasing in the future; larger fluctuation in power generation can be expected which lead to higher risk of grid instabilities. Less-capital intensive small and medium sized nuclear reactors (SMR) are emerging as an important element of alternative power generation system to fossil fuel, with a unique additional role of balancing the power generation fluctuation caused by the solar and wind power generation. In regions not served by large electricity grids, including many parts of the developing countries with increasing demand for energy at rates above world's average, power generation using locally available energy sources including renewable energy is the practical means of providing basic energy needed for social and economic development. The integration of locally supportable SMR and local renewable energy system in a hybrid fashion can reduce the relative scale but not eliminate the fluctuation in power generation caused by the irregular availability of solar and wind energy. Without the use of commercial electricity trading that is only available in regions served by large inter-connected electricity grids, further minimization of power generation fluctuation can be done by the installation of local energy (electricity and/or heat) applications and/or energy storage device. The operation of these applications and energy storage can be done in synchronization with the availability of excess power throughout the fluctuation of the overall power generation in the region. Under these conditions, SMRs utilization as part of

  20. Informing the next nuclear generation - how does the Ginna plant branch do it?

    International Nuclear Information System (INIS)

    Saavedra, A.

    1995-01-01

    Most of us are familiar with the latest advertising phrase, ''Our children are our future.'' This phrase has been used in so many instances - from concerns about waste, Social Security, and the federal deficit to drug abuse and violence. One more area can be added to the list and advertised nuclear power. Since the establishment of the Ginna plant branch (GPB) in 1992, our target audience has been the next nuclear generation (our children), but our vehicle for dissemination has been the current generation (the adults). Have you ever thought about how often your opinions affect the children you come in contact with? One of GPB's goals is to provide as much information as possible to teachers, neighbors, and civic organizations of our community so that there is a nuclear future that can be carried on by the next generation

  1. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Demick, L.E.

    2011-01-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  2. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  3. Y-Notes; Introductory Sessions on Nuclear Technology

    International Nuclear Information System (INIS)

    2001-01-01

    This chapter is divided into next parts: What is 'Y-Notes ; Young generation opening session; Nuclear education and transfer of know-how; Nuclear technology; Other applications of nuclear technology; Nuclear programs and technical cooperation; Political aspects; Environment and safety; Communication and public perception; Economics; Fuel cycle challenges; Video

  4. Nuclear reactor technology: the next 50 years

    Energy Technology Data Exchange (ETDEWEB)

    Sollychin, R.; Subki, H.; Adelfang, P.; Koshy, T. [International Atomic Energy Agency, Vienna (Austria)

    2013-07-01

    In light of the growing awareness of the environmental externalities of fossil fuel combustion, alternatives for electric power generation such as solar, wind and nuclear energy are becoming more desirable. In developed countries, large power markets are currently served by a centralized energy system through well inter-connected electricity grids. However, as shares of variable renewable energy sources (mainly wind and solar power) are increasing in the future; larger fluctuation in power generation can be expected which lead to higher risk of grid instabilities. Less-capital intensive small and medium sized nuclear reactors (SMR) are emerging as an important element of alternative power generation system to fossil fuel, with a unique additional role of balancing the power generation fluctuation caused by the solar and wind power generation. In regions not served by large electricity grids, including many parts of the developing countries with increasing demand for energy at rates above world's average, power generation using locally available energy sources including renewable energy is the practical means of providing basic energy needed for social and economic development. The integration of locally supportable SMR and local renewable energy system in a hybrid fashion can reduce the relative scale but not eliminate the fluctuation in power generation caused by the irregular availability of solar and wind energy. Without the use of commercial electricity trading that is only available in regions served by large inter-connected electricity grids, further minimization of power generation fluctuation can be done by the installation of local energy (electricity and/or heat) applications and/or energy storage device. The operation of these applications and energy storage can be done in synchronization with the availability of excess power throughout the fluctuation of the overall power generation in the region. Under these conditions, SMRs utilization as part of

  5. Advanced Ceramic Materials For Next-Generation Nuclear Applications

    International Nuclear Information System (INIS)

    Marra, J.

    2010-01-01

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and

  6. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Michael W. Patterson

    2008-01-01

    The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible

  7. Design of a fault diagnosis system for next generation nuclear power plants

    International Nuclear Information System (INIS)

    Zhao, K.; Upadhyaya, B.R.; Wood, R.T.

    2004-01-01

    A new design approach for fault diagnosis is developed for next generation nuclear power plants. In the nuclear reactor design phase, data reconciliation is used as an efficient tool to determine the measurement requirements to achieve the specified goal of fault diagnosis. In the reactor operation phase, the plant measurements are collected to estimate uncertain model parameters so that a high fidelity model can be obtained for fault diagnosis. The proposed algorithm of fault detection and isolation is able to combine the strength of first principle model based fault diagnosis and the historical data based fault diagnosis. Principal component analysis on the reconciled data is used to develop a statistical model for fault detection. The updating of the principal component model based on the most recent reconciled data is a locally linearized model around the current plant measurements, so that it is applicable to any generic nonlinear systems. The sensor fault diagnosis and process fault diagnosis are decoupled through considering the process fault diagnosis as a parameter estimation problem. The developed approach has been applied to the IRIS helical coil steam generator system to monitor the operational performance of individual steam generators. This approach is general enough to design fault diagnosis systems for the next generation nuclear power plants. (authors)

  8. Next Generation Nuclear Plant Project Preliminary Project Management Plan

    International Nuclear Information System (INIS)

    Dennis J. Harrell

    2006-01-01

    This draft preliminary project management plan presents the conceptual framework for the Next Generation Nuclear Plant (NGNP) Project, consistent with the authorization in the Energy Policy Act of 2005. In developing this plan, the Idaho National Laboratory has considered three fundamental project planning options that are summarized in the following section. Each of these planning options is literally compliant with the Energy Policy Act of 2005, but each emphasizes different approaches to technology development risks, design, licensing and construction risks, and to the extent of commercialization support provided to the industry. The primary focus of this draft preliminary project management plan is to identify those activities important to Critical Decision-1, at which point a decision on proceeding with the NGNP Project can be made. The conceptual project framework described herein is necessary to establish the scope and priorities for the technology development activities. The framework includes: A reference NGNP prototype concept based on what is judged to be the lowest risk technology development that would achieve the needed commercial functional requirements to provide an economically competitive nuclear heat source and hydrogen production capability. A high-level schedule logic for design, construction, licensing, and acceptance testing. This schedule logic also includes an operational shakedown period that provides proof-of-principle to establish the basis for commercialization decisions by end-users. An assessment of current technology development plans to support Critical Decision-1 and overall project progress. The most important technical and programmatic uncertainties (risks) are evaluated, and potential mitigation strategies are identified so that the technology development plans may be modified as required to support ongoing project development. A rough-order-of-magnitude cost evaluation that provides an initial basis for budget planning. This

  9. Nuclear technologies

    International Nuclear Information System (INIS)

    Toyama, Makoto; Hamasaki, Manabu; Kobayashi, Masahiko; Hoshide, Akihiko; Katayama, Kimio; Nozawa, H.; Karigome, Satoshi

    2010-01-01

    In recent days, energy security is becoming a major global concern and it has been recognized that a major reduction in greenhouse-gas emissions is required to combat climate change. Considerable expansion and new introduction of nuclear power generation are currently being planned and considered for the further in various parts of the world. Nuclear technologies of the latest 10 years in Japan were reviewed with their characteristics, advancement and future perspective. Steady efforts have been made to construct new nuclear power stations with computer-aided engineering system and modular and prefabricated structures, extend the interval of periodic inspections under the new inspection system that should improve both safety and reliability, implement advanced measures against aging and develop the next-generation light water reactors including a medium small reactor. Export of nuclear power plants has been promoted with international business alliance or cooperation. Activities to close nuclear fuel cycle to ensure sustainable nuclear energy utilization have been promoted. Decommissioning technologies for Tokai power station have been developed and accumulated know-how will be utilized in light water reactors. (T. Tanaka)

  10. Evaluating nuclear power as the next baseload generation option

    International Nuclear Information System (INIS)

    Jackson, K.J.; Sanford, M.O.

    1992-01-01

    Numerous factors must be taken into account when planning to meet baseload generating needs of the next century. Examining nuclear power as an option to meet these needs offers significant challenges with respect to evaluating and managing the business risks. This paper describes one mechanism to accomplish this while continuing to participate in industry activities targeted at advancing the nuclear option. One possible model of pursuing high-risk, long-term projects, like nuclear power, is to spread these risks among the project participants and for each organization to commit slowly. With this model of progressive engagement, participants may invest in early information gathering with the objective of uncertainty reduction at preliminary stages in the project, before large investments must be made. For nuclear power, a partnership between a utility (or utility group) and a supplier team may well be the best means of implementing such a model. A partnership also provides opportunity to develop the long-term relationships within the industry which are imperative

  11. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  12. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  13. A Survey on the Development Status of Nano Technology as a Basic and Fundamental Technology of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Lee, J. Y.; Lee, G. H.

    2010-02-01

    - It is necessary to research and develop high-grade nuclear energy technology such as raising stability of nuclear power generation, improving economic feasibility and managing radioactive wastes. - Innovation of nano technology is composed of each stage as follows Energy source -> conversion to energy -> distribution of energy -> energy storage -> energy use which are a value added system in the part of energy. - It is necessary to strengthen support of the government to raise next-generation human resources for continuous promotion of nuclear energy, referring to KNOO program promoted by the UK government for raising recognition about nuclear energy, raising core human resources and developing next generation core technology

  14. Next Generation Nuclear Plant Intermediate Heat Exchanger Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C to 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium cooled, prismatic or pebble-bed reactor, and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Intermediate Heat Exchanger (IHX).This component will be operated in flowing, impure helium on the primary and secondary side at temperatures up to 950°C. There are major high temperature design, materials availability, and fabrication issues that need to be addressed. The prospective materials are Alloys 617, 230, 800H and X, with Alloy 617 being the leading candidate for the use at 950°C. The material delivery schedule for these materials does not pose a problem for a 2018 start up as the vendors can quote reasonable delivery times at the moment. The product forms and amount needed must be finalized as soon as possible. An

  15. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  16. Next Generation Nuclear Plant Pre-Conceptual Design Report

    International Nuclear Information System (INIS)

    Larry Demick; Doug Vandel

    2007-01-01

    The Next Generation Nuclear Plant (NGNP) will be a demonstration of the technical, licensing, operational, and commercial viability of High Temperature Gas-Cooled Reactor (HTGR) technology for the production of process heat, electricity, and hydrogen. This nuclear based technology can provide high-temperature process heat (up to 950 C) that can be used as a substitute for the burning of fossil fuels for a wide range of commercial applications. The substitution of the HTGR for burning fossil fuels conserves these hydrocarbon resources for other uses, reduces uncertainty in the cost and supply of natural gas and oil, and eliminates the emissions of greenhouse gases attendant with the burning of these fuels. The HTGR is a passively1 safe nuclear reactor concept with an easily understood safety basis that permits substantially reduced emergency planning requirements and improved siting flexibility compared to current and advanced light water reactors (LWRs). In the Energy Policy Act of 2005 (EPAct), the Department of Energy (DOE) was tasked with providing a demonstration of this HTGR technology to economically and reliably produce electricity and hydrogen by the year 2021. As the lead nuclear technology development laboratory of the DOE, the Idaho National Laboratory (INL) has initiated the work necessary to complete this task. The EPAct also stipulated that the task should be undertaken in partnership with the industrial end users of the technology. To that end, a working group has been assembled consisting of suppliers of the technology, nuclear plant owner/operators, other supportive technology companies, and potential end users. The objective of the working group is to form an Alliance that would provide the private sector perspective and direction for completion of the NGNP in partnership with the DOE. The Alliance will support the selection of the specific operating conditions and configuration for NGNP to ensure it meets private sector expectations, commence

  17. Recent technology for nuclear steam turbine-generator units

    International Nuclear Information System (INIS)

    Moriya, Shin-ichi; Kuwashima, Hidesumi; Ueno, Takeshi; Ooi, Masao

    1988-01-01

    As the next nuclear power plants subsequent to the present 1,100 MWe plants, the technical development of ABWRs was completed, and the plan for constructing the actual plants is advanced. As for the steam turbine and generator facilities of 1,350 MWe output applied to these plants, the TC6F-52 type steam turbines using 52 in long blades, moisture separation heaters, butterfly type intermediate valves, feed heater drain pumping-up system and other new technologies for increasing the capacity and improving the thermal efficiency were adopted. In this paper, the outline of the main technologies of those and the state of examination when those are applied to the actual plants are described. As to the technical fields of the steam turbine system for ABWRs, the improvement of the total technologies of the plants was promoted, aiming at the good economical efficiency, reliability and thermal efficiency of the whole facilities, not only the main turbines. The basic specification of the steam turbine facilities for 50 Hz ABWR plants and the main new technologies applied to the turbines are shown. The development of 52 in long last stage blades, the development of the analysis program for the coupled vibration of the large rotor system, the development of moisture separation heaters, the turbine control system, condensate and feed water system, and the generators are described. (Kako, I.)

  18. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  19. Advanced nuclear energy analysis technology

    International Nuclear Information System (INIS)

    Gauntt, Randall O.; Murata, Kenneth K.; Romero, Vicente Josce; Young, Michael Francis; Rochau, Gary Eugene

    2004-01-01

    A two-year effort focused on applying ASCI technology developed for the analysis of weapons systems to the state-of-the-art accident analysis of a nuclear reactor system was proposed. The Sandia SIERRA parallel computing platform for ASCI codes includes high-fidelity thermal, fluids, and structural codes whose coupling through SIERRA can be specifically tailored to the particular problem at hand to analyze complex multiphysics problems. Presently, however, the suite lacks several physics modules unique to the analysis of nuclear reactors. The NRC MELCOR code, not presently part of SIERRA, was developed to analyze severe accidents in present-technology reactor systems. We attempted to: (1) evaluate the SIERRA code suite for its current applicability to the analysis of next generation nuclear reactors, and the feasibility of implementing MELCOR models into the SIERRA suite, (2) examine the possibility of augmenting ASCI codes or alternatives by coupling to the MELCOR code, or portions thereof, to address physics particular to nuclear reactor issues, especially those facing next generation reactor designs, and (3) apply the coupled code set to a demonstration problem involving a nuclear reactor system. We were successful in completing the first two in sufficient detail to determine that an extensive demonstration problem was not feasible at this time. In the future, completion of this research would demonstrate the feasibility of performing high fidelity and rapid analyses of safety and design issues needed to support the development of next generation power reactor systems

  20. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    International Nuclear Information System (INIS)

    Simos, N.

    2011-01-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the

  1. OLEDs : Technology's next generation

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2001-10-01

    Major advances in organic light emitting device (OLED) technology are bringing some science fiction concepts to the brink of reality. At the moment. OLED technology is being developed for the flat panel display industry. Liquid crystal display dominates the market for wristwatches and cellular phones for example, while the cathode ray tube plays the same role for television sets and desktop computers. Both have limitations when it comes to meeting the needs of the next generation of smart products. The attributes required include high brightness, low power consumption, high definition, full colour, wide preview angle, fast response time and portability, and low cost. OLED has the potential to meet all those requirements. Universal Display Corporation (UDC) was founded, and specializes in the development and commercialization of OLED technology. A partnership was established early with Princeton University professors, and no fewer than 20 researchers are working on OLED technology projects at both Princeton University and the University of Southern California. To date, 35 patents have been issued, and 60 others are pending. A joint development agreement was reached with Sony Corporation this year for high efficiency active matrix OLEDs to be used in large area monitor applications. OLED technology is based on vacuum-deposited organic small molecule materials that emit very bright light when electrically stimulated. Three advances in the technology were briefly discussed: TOLED{sup TM} for Transparent OLED, SOLED{sup TM} for Stacked OLED, and FOLED{sup TM} for Flexible OLED. A list detailing the various potential uses for the technology was also included in this paper. 3 figs.

  2. Electric vehicle charge patterns and the electricity generation mix and competitiveness of next generation vehicles

    International Nuclear Information System (INIS)

    Masuta, Taisuke; Murata, Akinobu; Endo, Eiichi

    2014-01-01

    Highlights: • The energy system of whole of Japan is analyzed in this study. • An advanced model based on MARKAL is used for the energy system analysis. • The impact of charge patterns of EVs on electricity generation mix is evaluated. • Technology competitiveness of the next generation vehicles is also evaluated. - Abstract: The nuclear accident of 2011 brought about a reconsideration of the future electricity generation mix of power systems in Japan. A debate on whether to phase out nuclear power plants and replace them with renewable energy sources is taking place. Demand-side management becomes increasingly important in future Japanese power systems with a large-scale integration of renewable energy sources. This paper considers the charge control of electric vehicles (EVs) through demand-side management. There have been many studies of the control or operation methods of EVs known as vehicle-to-grid (V2G), and it is important to evaluate both their short-term and long-term operation. In this study, we employ energy system to evaluate the impact of the charge patterns of EVs on both the electricity generation mix and the technology competitiveness of the next generation vehicles. An advanced energy system model based on Market Allocation (MARKAL) is used to consider power system control in detail

  3. Next generation digital microfluidic technology: Electrophoresis of charged droplets

    Energy Technology Data Exchange (ETDEWEB)

    Im, Do Jin [Pukyong National University, Busan (Korea, Republic of)

    2015-06-15

    Contact charging of a conducting droplet in a dielectric medium is introduced as a novel and useful digital microfluidic technology as well as an interesting scientific phenomenon. The history of this phenomenon, starting from original observations to its interpretations and applications, is presented. The basic principle of the droplet contact charging is also presented. Several fundamental aspects of the droplet contact charging from view points of electrochemistry, surface science, electrocoalescence, and electrohydrodynamics are mentioned. Some promising results for future applications and potential features as a next generation digital microfluidic technology are discussed, especially for 3D organ printing. Finally, implications and significance of the proposed technology for chemical engineering community are discussed.

  4. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for

  5. Life cycle analysis of advanced nuclear power generation technologies

    International Nuclear Information System (INIS)

    Uchiyama, Yoji; Yokoyama, Hayaichi

    1996-01-01

    In this research, as for light water reactors and fast breeder reactors, for the object of all the processes from the mining, transport and refining of fuel, electric power generation to the treatment and disposal of waste, the amount of energy input and the quantity of CO 2 emission over the life cycle were analyzed, and regarding the influence that the technical progress of nuclear power generation exerted to environment, the effect of improvement was elucidated. Attention has been paid to nuclear power generation as its CO 2 emission is least, and the effect of global warming is smallest. In order to reduce the quantity of radioactive waste generation in LWRs and the cost of fuel cycle, and to extend the operation cycle, the technical development for heightening fuel burnup is in progress. The process of investigation of the new technologies of nuclear power generation taken up in this research is described. The analysis of the energy balance of various power generation methods is discussed. In the case of pluthermal process, the improvement of energy balance ratio is dependent on uranium enrichment technology. Nuclear power generation requires much materials and energy for the construction, and emits CO 2 indirectly. The CO 2 unit emission based on the analysis of energy balance was determined for the new technologies of nuclear power generation, and the results are shown. (K.I.)

  6. Next-generation phylogenomics

    Directory of Open Access Journals (Sweden)

    Chan Cheong Xin

    2013-01-01

    Full Text Available Abstract Thanks to advances in next-generation technologies, genome sequences are now being generated at breadth (e.g. across environments and depth (thousands of closely related strains, individuals or samples unimaginable only a few years ago. Phylogenomics – the study of evolutionary relationships based on comparative analysis of genome-scale data – has so far been developed as industrial-scale molecular phylogenetics, proceeding in the two classical steps: multiple alignment of homologous sequences, followed by inference of a tree (or multiple trees. However, the algorithms typically employed for these steps scale poorly with number of sequences, such that for an increasing number of problems, high-quality phylogenomic analysis is (or soon will be computationally infeasible. Moreover, next-generation data are often incomplete and error-prone, and analysis may be further complicated by genome rearrangement, gene fusion and deletion, lateral genetic transfer, and transcript variation. Here we argue that next-generation data require next-generation phylogenomics, including so-called alignment-free approaches. Reviewers Reviewed by Mr Alexander Panchin (nominated by Dr Mikhail Gelfand, Dr Eugene Koonin and Prof Peter Gogarten. For the full reviews, please go to the Reviewers’ comments section.

  7. R and D areas for next generation desalination and water purification technologies

    International Nuclear Information System (INIS)

    Raha, A.; Rao, I.S.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    By 2020, desalination and water purification technologies are expected to contribute significantly to ensure a safe, sustainable, affordable and adequate water supply. The cost of producing water from the current generation desalination technologies has declined over time at a rate of only approximately 4% per year. So we need to accelerate our research and development (R and D) activities with a near and long term objective for evolution of current generation desalination technology and to create revolutionary next generation advanced desalination and water purification technologies which will offer a promise of step reduction in cost of producing water. There are five broad technological areas-thermal technologies, membrane technologies, alternate technologies, concentrate management technologies, reuse and recycle technologies that encompass the spectrum of desalination technology. In this paper high priority research areas in all the above technologies areas are discussed to make decision about research direction that will help to mitigate our nation's future water supply challenges. (author)

  8. Conceptual design of next generation MTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Hiroshi; Yamaura, Takayuki; Naka, Michihiro; Kawamata, Kazuo; Izumo, Hironobu; Hori, Naohiko; Nagao, Yoshiharu; Kusunoki, Tsuyoshi; Kaminaga, Masanori; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Mine, M [Hitachi-GE Nuclear Energy, Ltd., Hitachi, Ibaraki (Japan); Yamazaki, S [Kawasaki Heavy Industries, Ltd., Kobe, Hyogo (Japan); Ishikawa, S [NGK Insulators, Ltd., Nagoya, Aichi (Japan); Miura, K [Sukegawa Electric Co., Ltd., Takahagi, Ibaraki (Japan); Nakashima, S [Fuji Electric Co., Ltd., Tokyo (Japan); Yamaguchi, K [Chiyoda Technol Corp., Tokyo (Japan)

    2012-03-15

    Conceptual design of the high-performance and low-cost next generation materials testing reactor (MTR) which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  9. Predicting the market penetration of the next generation of coal-fired technologies

    International Nuclear Information System (INIS)

    Guha, M.K.; McCall, G.W.

    1990-01-01

    This paper discusses what role clean coal-fired technology will have in future generating capacity based on availability and prices of coal and natural gas, the nuclear option, environmental regulations, limitations of current air pollution control technologies, and economics. The topics of the paper include the need for new electric generating capacity, why coal must remain a source of energy for generating electricity, technology effectiveness and market penetration analysis methodologies, coal-fired technology economic and technical assumptions, cost estimates, and high and low growth scenarios

  10. On fire risk/methodology for the next generation of reactors and nuclear facilities

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Alesso, H.P.; Altenbach, T.J.

    1992-01-01

    Methodologies for including fire in probabilistic risk assessments (PRAs) have been evolving during the last ten years. Many of these studies show that fire risk constitutes a significant percentage of external events, as well as the total core damage frequency. This paper summarizes the methodologies used in the fire risk analysis of the next generation of reactors and existing DOE nuclear facilities. Methodologies used in other industries, as well as existing nuclear power plants, are also discussed. Results of fire risk studies for various nuclear plants and facilities are shown and compared

  11. Next-generation Nuclear Data Web Services

    Energy Technology Data Exchange (ETDEWEB)

    Sonzogni, A.A. [National Nuclear Data Center, Building 197D, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2005-07-25

    The National Nuclear Data Center collects, evaluates, and disseminates nuclear physics data for basic nuclear research and applied nuclear technologies. We have recently produced a nuclear data portal featuring modern and powerful servers, relational database software, Linux operating system, and Java programming language. The portal includes nuclear structure, decay and reaction data, as well as literature information. Data can be searched for using optimized query forms; results are presented in tables and interactive plots. Additionally, a number of nuclear science tools, codes, applications, and links are provided. A brief tutorial of the different databases and products will be provided.

  12. Next-generation Nuclear Data Web Services

    International Nuclear Information System (INIS)

    Sonzogni, A.A.

    2005-01-01

    The National Nuclear Data Center collects, evaluates, and disseminates nuclear physics data for basic nuclear research and applied nuclear technologies. We have recently produced a nuclear data portal featuring modern and powerful servers, relational database software, Linux operating system, and Java programming language. The portal includes nuclear structure, decay and reaction data, as well as literature information. Data can be searched for using optimized query forms; results are presented in tables and interactive plots. Additionally, a number of nuclear science tools, codes, applications, and links are provided. A brief tutorial of the different databases and products will be provided

  13. Nuclear power generation and automation technology

    International Nuclear Information System (INIS)

    Korei, Yoshiro

    1985-01-01

    The proportion of nuclear power in the total generated electric power has been increasing year after year, and the ensuring of its stable supply has been demanded. For the further development of nuclear power generation, the heightening of economical efficiency which is the largest merit of nuclear power and the public acceptance as a safe and stable electric power source are the important subjects. In order to solve these subjects, in nuclear power generation, various automation techniques have been applied for the purpose of the heightening of reliability, labor saving and the reduction of radiation exposure. Meeting the high needs of automation, the automation technology aided by computers have been applied to the design, manufacture and construction, operation and maintenance of nuclear power plants. Computer-aided design and the examples of design of a reactor building, pipings and a fuel assembly, an automatic welder for pipings of all position TIG welding type, a new central monitoring and control system, an automatic exchanger of control rod-driving mechanism, an automatic in-service inspection system for nozzles and pipings, and a robot for steam generator maintenance are shown. The trend of technical development and an intelligent moving robot, a system maintenance robot and a four legs walking robot are explained. (Kako, I.)

  14. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  15. The next generation CANDU 6

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    1999-01-01

    AECL's product line of CANDU 6 and CANDU 9 nuclear power plants are adapted to respond to changing market conditions, experience feedback and technological development by a continuous improvement process of design evolution. The CANDU 6 Nuclear Power Plant design is a successful family of nuclear units, with the first four units entering service in 1983, and the most recent entering service this year. A further four CANDU 6 units are under construction. Starting in 1996, a focused forward-looking development program is under way at AECL to incorporate a series of individual improvements and integrate them into the CANDU 6, leading to the evolutionary development of the next-generation enhanced CANDU 6. The CANDU 6 improvements program includes all aspects of an NPP project, including engineering tools improvements, design for improved constructability, scheduling for faster, more streamlined commissioning, and improved operating performance. This enhanced CANDU 6 product will combine the benefits of design provenness (drawing on the more than 70 reactor-years experience of the seven operating CANDU 6 units), with the advantages of an evolutionary next-generation design. Features of the enhanced CANDU 6 design include: Advanced Human Machine Interface - built around the Advanced CANDU Control Centre; Advanced fuel design - using the newly demonstrated CANFLEX fuel bundle; Improved Efficiency based on improved utilization of waste heat; Streamlined System Design - including simplifications to improve performance and safety system reliability; Advanced Engineering Tools, -- featuring linked electronic databases from 3D CADDS, equipment specification and material management; Advanced Construction Techniques - based on open top equipment installation and the use of small skid mounted modules; Options defined for Passive Heat Sink capability and low-enrichment core optimization. (author)

  16. The bungling giant : Atomic Energy Canada Limited and next-generation nuclear technology, 1980-1994

    International Nuclear Information System (INIS)

    Slater, I.J.

    2003-01-01

    From 1980-1994 Atomic Energy Canada Limited (AECL), the Crown Corporation responsible for the development of nuclear technology in Canada, ventured into the market for small-scale, decentralized power systems with the Slowpoke Energy System (SES), a 10MW nuclear reactor for space heating in urban and remote areas. The SES was designed to be 'passively' or 'inherently' safe, such that even the most catastrophic failure of the system would not result in a serious accident (e.g. a meltdown or an explosion). This Canadian initiative, a beneficiary of the National Energy Program, was the first and by far the most successful attempt at a passively safe, decentralized nuclear power system anywhere in the world. Part one uses archival documentation and interviews with project leaders to reconstruct the history of the SES. The standard explanations for the failure of the project, cheap oil, public resistance to the technology, and lack of commercial expertise, are rejected. Part two presents an alternative explanation for the failure of AECL to commercialize the SES. In short, technological momentum towards large-scale nuclear designs led to structural restrictions for the SES project. These restrictions manifested themselves internally to the company (e.g., marginalization of the SES) and externally to the company (e.g., licensing). In part three, the historical lessons of the SES are used to refine one of the central tenets of Popper's political philosophy, 'piecemeal social engineering.' Popper's presentation of the idea is lacking in detail; the analysis of the SES provides some empirical grounding for the concept. I argue that the institutions surrounding traditional nuclear power represent a form utopian social engineering, leading to consequences such as the suspension of civil liberties to guarantee security of the technology. The SES project was an example of a move from the utopian social engineering of large-scale centralized nuclear technology to the piecemeal

  17. The bungling giant: Atomic Energy Canada Limited and next-generation nuclear technology, 1980--1994

    Science.gov (United States)

    Slater, Ian James

    From 1980--1994 Atomic Energy Canada Limited (AECL), the Crown Corporation responsible for the development of nuclear technology in Canada, ventured into the market for small-scale, decentralized power systems with the Slowpoke Energy System (SES), a 10MW nuclear reactor for space heating in urban and remote areas. The SES was designed to be "passively" or "inherently" safe, such that even the most catastrophic failure of the system would not result in a serious accident (e.g. a meltdown or an explosion). This Canadian initiative, a beneficiary of the National Energy Program, was the first and by far the most successful attempt at a passively safe, decentralized nuclear power system anywhere in the world. Part one uses archival documentation and interviews with project leaders to reconstruct the history of the SES. The standard explanations for the failure of the project, cheap oil, public resistance to the technology, and lack of commercial expertise, are rejected. Part two presents an alternative explanation for the failure of AECL to commercialize the SES. In short, technological momentum towards large-scale nuclear designs led to structural restrictions for the SES project. These restrictions manifested themselves internally to the company (e.g., marginalization of the SES) and externally to the company (e.g., licensing). In part three, the historical lessons of the SES are used to refine one of the central tenets of Popper's political philosophy, "piecemeal social engineering." Popper's presentation of the idea is lacking in detail; the analysis of the SES provides some empirical grounding for the concept. I argue that the institutions surrounding traditional nuclear power represent a form utopian social engineering, leading to consequences such as the suspension of civil liberties to guarantee security of the technology. The SES project was an example of a move from the utopian social engineering of large-scale centralized nuclear technology to the piecemeal

  18. Next generation PWR

    International Nuclear Information System (INIS)

    Tanaka, Toshihiko; Fukuda, Toshihiko; Usui, Shuji

    2001-01-01

    Development of LWR for power generation in Japan has been intended to upgrade its reliability, safety, operability, maintenance and economy as well as to increase its capacity in order, since nuclear power generation for commercial use was begun on 1970, to steadily increase its generation power. And, in Japan, ABWR (advanced BWR) of the most promising LWR in the world, was already used actually and APWR (advanced PWR) with the largest output in the world is also at a step of its actual use. And, development of the APWR in Japan was begun on 1980s, and is at a step of plan on construction of its first machine at early of this century. However, by large change of social affairs, economy of nuclear power generation is extremely required, to be positioned at an APWR improved development reactor promoted by collaboration of five PWR generation companies and the Mitsubishi Electric Co., Ltd. Therefore, on its development, investigation on effect of change in social affairs on nuclear power stations was at first carried out, to establish a design requirement for the next generation PWR. Here were described on outline, reactor core design, safety concept, and safety evaluation of APWR+ and development of an innovative PWR. (G.K.)

  19. Nuclear reactors and technology in the next stage

    International Nuclear Information System (INIS)

    Orlov, V.

    2000-01-01

    Author deals with the perspectives of development of nuclear power. It is possible to create in a fairly short time reactors and fuel technology that would meet the main requirements for large-scale power production, i.e.: (a) to afford a 100-fold reduction in the specific consumption of uranium, by utilizing thousands of tonnes of Pu accumulated in the spent fuel from the reactors of the fl t stage; .to rule out nuclear disasters, by taking advantage of the intrinsic properties and behavior of reactor, coolant, fuel, etc., with the plants made simpler and cheaper; (b) to hit a balance between the radiotoxicity of waste and that of feed uranium, by providing neutron transmutation; (c) to create power reactors and fuel cycle technology that would not afford extraction of weapon-grade materials. To fulfil all these requirements, it is necessary to provide substantial neutron excess in a chain reaction for Pu breeding, to use fuel with an equilibrium composition, to bum actinides and LLFPs. All this can be done only in fast reactors. Fast reactors can also provide fuel for thermal reactors that might still be used for some applications, operating in a Th/U cycle, which is the best option for such facilities. Novel engineering solutions will be necessary: high-density heat-conductive fuel (UPuN), chemically inert high-boiling coolant (Pb), dry reprocessing. These issues have been studied well enough to allow embarking on the development of advanced fast reactors. Minatom institutions are finalizing a detailed design of a demonstration BREST-300 plant, complete with an on-site fuel cycle that will meet the requirements of large-scale nuclear power. Hopefully, construction of this plant at Beloyarsk site with its subsequent trial operation would open a door to the next stage in nuclear power development. (author)

  20. An overview of advanced power generation technologies

    International Nuclear Information System (INIS)

    Gardner, D.; Shaw, P.

    1993-01-01

    This paper is intended as a brief review of the technologies currently applied in Australian electricity generation and the technologies which are likely to be employed in the future. The paper opens with a review of the primary energy resources available for the generation of electricity in Australia, and the technologies currently employed. The development of advanced generation technologies around the world is reviewed, and the most likely technologies to be employed in Australia are described. There are a number of renewable and alternative technologies, such as generation from sewage digester, landfill or mine gases. Their impact would, however, be disproportionate because of the strong climate forcing effect of methane. Of the wide range of other emerging renewable technologies examined, solar thermal offers the best prospect of maturing into a financially-competitive technology for large scale generation in the next 20 years. However, will remain unable to compete with non-renewable technologies in normal financial terms, at least until 2005 and probably well beyond that date. Generation using the fission of nuclear fuels is a mature, proven technology. Based on the most likely fuel and other assumptions made in this study, the costs of nuclear generation are only moderately higher than conventional coal-fired options. Nuclear generation is thus a relatively low cost route to reductions in carbon dioxide emission for new plant, at $19/tonne CO 2 saved, in comparison with conventional black coal technology, and $13/tonne CO 2 compared with conventional brown coal firing. While major considerations of societal acceptance clearly exist, nuclear generation has the necessary technical and financial qualifications for serious consideration as an element in any greenhouse strategy. 5 tab., 2 figs

  1. Project control - the next generation

    International Nuclear Information System (INIS)

    Iorii, V.F.; McKinnon, B.L.

    1993-01-01

    The Yucca Mountain Site Characterization Project (YMP) is the U.S. Department of Energy's (DOE) second largest Major System Acquisition Project. We have developed an integrated planning and control system (called PACS) that we believe represents the 'Next Generation' in project control. PACS integrates technical scope, cost, and schedule information for over 50 participating organizations and produces performances measurement reports for science and engineering managers at all levels. Our 'Next Generation' project control too, PACS, has been found to be in compliance with the new DOE Project Control System Guidelines. Additionally, the nuclear utility oversight group of the Edison Electric Institute has suggested PACS be used as a model for other civilian radioactive waste management projects. A 'Next Generation' project control tool will be necessary to do science in the 21st century

  2. Maintaining a technology-neutral approach to hydrogen production process development through conceptual design of the next generation nuclear plant - HTR2008-58191

    International Nuclear Information System (INIS)

    Patterson, M. W.; Park, C. V.

    2008-01-01

    The Energy Policy Act of 2005 (EPAct) charges the Dept. of Energy (DOE) with developing and demonstrating the technical and economic feasibility of using high temperature gas-cooled reactor (HTGR) technology for the production of electricity and/or hydrogen. The design, construction and demonstration of this technology in an HTGR proto-type reactor are termed the Next Generation Nuclear Plant (NGNP) Project. Currently, parallel development of three hydrogen production processes will continue until a single process technology is recommended for final demonstration in the NGNP - a technology neutral approach. This analysis compares the technology neutral approach to acceleration of the hydrogen process down-selection at the completion of the NGNP conceptual design to improve integration of the hydrogen process development and NGNP Project schedule. The accelerated schedule activities are based on completing evaluations and achieving technology readiness levels (TRLs) identified in NGNP systems engineering and technology road-maps. The cost impact of accelerating the schedule and risk reduction strategies was also evaluated. The NGNP Project intends to design and construct a component test facility (CTF) to support testing and demonstration of HTGR technologies, including those for hydrogen production. The demonstrations will support scheduled design and licensing activities, leading to subsequent construction and operation of the NGNP. Demonstrations in the CTF are expected to start about two years earlier than similarly scaled hydrogen demonstrations planned in the technology neutral baseline. The schedule evaluation assumed that hydrogen process testing would be performed in the CTF and synchronized the progression of hydrogen process development with CTF availability. (authors)

  3. C-NET: the Centre for Nuclear Energy Technology

    International Nuclear Information System (INIS)

    Roberts, J.W.

    2011-01-01

    The Centre for Nuclear Energy Technology was established as part of the Dalton Nuclear Institute at The University of Manchester in 2009 to focus the UK research on front-end nuclear technologies. This includes plant-life extension, new build, naval propulsion and next generation reactors. Building on £4M of government funding through the North West Development Agency (NWDA), C-NET will act as a hub for nuclear research in the North West of England collaborating with both universities and industry. (author)

  4. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  5. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Bess, J.D.; Briggs, J.B.; Garcia, A.S.

    2011-01-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along with summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.

  6. Potential growth of nuclear and coal electricity generation in the US

    International Nuclear Information System (INIS)

    Bloomster, C.H.; Merrill, E.T.

    1989-08-01

    Electricity demand should continue to grow at about the same rate as GNP, creating a need for large amounts of new generating capacity over the next fifty years. Only coal and nuclear at this time have the abundant domestic resources and assured technology to meet this need. However, large increase in both coal and nuclear usage will require solutions to many of the problems that now deter their increased usage. For coal, the problems center around the safety and environmental impacts of increased coal mining and coal combustion. For nuclear, the problems center around reactor safety, radioactive waste disposal, financial risk, and nuclear materials safeguards. This report assesses the impacts associated with a range of projected growth rates in electricity demand over the next 50 years. The resource requirements and waste generation resulting from pursuing the coal and nuclear fuel options to meet the projected growth rates are estimated. The fuel requirements and waste generation for coal plants are orders of magnitude greater than for nuclear. Improvements in technology and waste management practices must be pursued to mitigate environmental and safety concerns about electricity generation from both options. 34 refs., 18 figs., 14 tabs

  7. Next Generation Nuclear Plant GAP Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL; Burchell, Timothy D [ORNL; Corwin, William R [ORNL; Fisher, Stephen Eugene [ORNL; Forsberg, Charles W. [Massachusetts Institute of Technology (MIT); Morris, Robert Noel [ORNL; Moses, David Lewis [ORNL

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  8. Candu technology: the next generation now

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Duffey, R.B.; Torgerson, D.F.

    2001-01-01

    We describe the development philosophy, direction and concepts that are being utilized by AECL to refine the CANDU reactor to meet the needs of current and future competitive energy markets. The technology development path for CANDU reactors is based on the optimization of the pressure tube concept. Because of the inherent modularity and flexibility of this basis for the core design, it is possible to provide a seamless and continuous evolution of the reactor design and performance. There is no need for a drastic shift in concept, in technology or in fuel. By continual refinement of the flow and materials conditions in the channels, the basic reactor can be thermally and operationally efficient, highly competitive and economic, and highly flexible in application. Thus, the design can build on the successful construction and operating experience of the existing plants, and no step changes in development direction are needed. This approach minimizes investor, operator and development risk but still provides technological, safety and performance advances. In today's world energy markets, major drivers for the technology development are: (a) reduced capital cost; (b) improved operation; (c) enhanced safety; and (d) fuel cycle flexibility. The drivers provide specific numerical targets. Meeting these drivers ensures that the concept meets and exceeds the customer economic, performance, safety and resource use goals and requirements, including the suitable national and international standards. This logical development of the CANDU concept leads naturally to the 'Next Generation' of CANDU reactors. The major features under development include an optimized lattice for SEU (slightly enriched uranium) fuel, light water cooling coupled with heavy water moderation, advanced fuel channels and CANFLEX fuel, optimization of plant performance, enhanced thermal and BOP (balance of plant) efficiency, and the adoption of layout and construction technology adapted from successful on

  9. Safety improvement technologies for nuclear power generation

    International Nuclear Information System (INIS)

    Nishida, Koji; Adachi, Hirokazu; Kinoshita, Hirofumi; Takeshi, Noriaki; Yoshikawa, Kazuhiro; Itou, Kanta; Kurihara, Takao; Hino, Tetsushi

    2015-01-01

    As the Hitachi Group's efforts in nuclear power generation, this paper explains the safety improvement technologies that are currently under development or promotion. As efforts for the decommissioning of Fukushima Daiichi Nuclear Power Station, the following items have been developed. (1) As for the spent fuel removal of Unit 4, the following items have mainly been conducted: removal of the debris piled up on the top surface of existing reactor building (R/B), removal of the debris deposited in spent fuel pool (SFP), and fuel transfer operation by means of remote underwater work. The removal of all spent fuels was completed in 2014. (2) The survey robots inside R/B, which are composed of a basement survey robot to check leaking spots at upper pressure suppression chamber and a floor running robot to check leaking spots in water, were verified with a field demonstration test at Unit 1. These robots were able to find the leaking spots at midair pipe expansion joint. (3) As the survey robot for reactor containment shells, robots of I-letter posture and horizontal U-letter posture were developed, and the survey on the upper part of first-floor grating inside the containment shells was performed. (4) As the facilities for contaminated water measures, sub-drain purification equipment, Advanced Liquid Processing System, etc. were developed and supplied, which are now showing good performance. On the other hand, an advanced boiling water reactor with high safety of the United Kingdom (UK ABWR) is under procedure of approval for introduction. In addition, a next-generation light-water reactor of transuranic element combustion type is under development. (A.O.)

  10. Progress on next generation linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1989-01-01

    In this paper, I focus on reviewing the issues and progress on a next generation linear collider with the general parameters of energy, luminosity, length, power, technology. The energy range is dictated by physics with a mass reach well beyond LEP, although somewhat short of SSC. The luminosity is that required to obtain 10 3 /minus/ 10 4 units of R 0 per year. The length is consistent with a site on Stanford land with collisions occurring on the SLAC site. The power was determined by economic considerations. Finally, the technology was limited by the desire to have a next generation linear collider before the next century. 25 refs., 3 figs., 6 tabs

  11. Commercializing the next generation: the AP600 advanced simplified nuclear power plant

    International Nuclear Information System (INIS)

    Bruschi, H.J.

    1994-01-01

    Today, government and industry are working together on advanced nuclear power plant designs that take advantage of valuable lessons learned from the experience to date and promise to reconcile the demands of economic expansion with the laws of environmental protection. In the U.S., the Department of Energy (DOE) and the Electric Power Research Institute (EPRI) initiated a design certification program in 1989 to develop and commercialize advanced light water reactors (ALWRs) for the next round of power plant construction. Advanced, simplified technology is one approach under development to end the industry's search for a simpler, more forgiving, and less costly reactor. As part of this program, Westinghouse is developing the AP600, a new standard 600 MWe advanced, simplified plant. The design strikes a balance between the use of proven technology and new approaches. The result is a greatly streamlined plant that can meet safety regulations and reliability requirements, be economically competitive, and promote broader public confidence in nuclear energy. 1 fig

  12. Balancing Performance and Sustainability in Next-Generation PMR Technologies for OMC Structures

    Science.gov (United States)

    2016-05-26

    John J. La Scala , Benjamin G. Harvey, Giuseppe R. Palmese, William S. Eck, Joshua M. Sadler, Santosh K. Yadav 5d. PROJECT NUMBER 5e. TASK NUMBER...PERFORMANCE AND SUSTAINABILITY IN NEXT-GENERATION PMR TECHNOLOGIES FOR OMC STRUCTURES Gregory R. Yandek,1 Jason T. Lamb,2 John J. La Scala ,3 Benjamin G

  13. Design option of heat exchanger for the next generation nuclear plant - HTR2008-58175

    International Nuclear Information System (INIS)

    Oh, C. H.; Kim, E. S.

    2008-01-01

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale, producing a few hundred megawatts of power in the form of electricity and hydrogen. The power conversion unit (PCU) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTRs to provide higher efficiencies than can be achieved with the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. As part of the system integration of the VHTRs and the hydrogen production plant, the intermediate heat exchanger is used to transfer the process heat from VHTRs to the hydrogen plant. Therefore, the design and configuration of the intermediate heat exchanger is very important. This paper will include analysis of one stage versus two stage heat exchanger design configurations and simple stress analyses of a printed circuit heat exchanger (PCHE), helical coil heat exchanger, and shell/tube heat exchanger. (authors)

  14. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  15. Comparing microarrays and next-generation sequencing technologies for microbial ecology research.

    Science.gov (United States)

    Roh, Seong Woon; Abell, Guy C J; Kim, Kyoung-Ho; Nam, Young-Do; Bae, Jin-Woo

    2010-06-01

    Recent advances in molecular biology have resulted in the application of DNA microarrays and next-generation sequencing (NGS) technologies to the field of microbial ecology. This review aims to examine the strengths and weaknesses of each of the methodologies, including depth and ease of analysis, throughput and cost-effectiveness. It also intends to highlight the optimal application of each of the individual technologies toward the study of a particular environment and identify potential synergies between the two main technologies, whereby both sample number and coverage can be maximized. We suggest that the efficient use of microarray and NGS technologies will allow researchers to advance the field of microbial ecology, and importantly, improve our understanding of the role of microorganisms in their various environments.

  16. Next generation DNA led technologies

    CERN Document Server

    Jyothsna, G; Kashyap, Amita

    2016-01-01

    This brief highlights advances in DNA technologies and their wider applications. DNA is the source of life and has been studied since a generation, but very little is known as yet. Several sophisticated technologies of the current era have laid their foundations on the principle of DNA based mechanisms. DNA based technologies are bringing a new revolution of Advanced Science and Technology. Forensic Investigation, Medical Diagnosis, Paternity Disputes, Individual Identity, Health insurance, Motor Insurance have incorporated the DNA testing and profiling technologies for settling the issues.

  17. Applications and Case Studies of the Next-Generation Sequencing Technologies in Food, Nutrition and Agriculture.

    Science.gov (United States)

    Next-generation sequencing technologies are able to produce high-throughput short sequence reads in a cost-effective fashion. The emergence of these technologies has not only facilitated genome sequencing but also changed the landscape of life sciences. Here I survey their major applications ranging...

  18. Efforts onto electricity and instrumentation technology for nuclear power generation

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi

    2000-01-01

    Nuclear power generation shares more than 1/3 of all amounts of in-land generation at present, as a supplying source of stable electric energy after 2000 either. As a recent example of efforts onto electricity and instrumentation technology for nuclear power generation, there are, on instrumentation control system a new central control board aiming at reduction of operator's load, protection of human error, and upgrading of system reliability and economics by applying high level micro-processor applied technique and high speed data transfer technique to central monitoring operation and plant control protection, on a field of reactor instrumentation a new digital control rod position indicator improved of conventional system on a base of operation experience and recent technology, on a field of radiation instrumentation a new radiation instrumentation system accumulating actual results in a wide application field on a concept of application to nuclear power plant by adopting in-situ separation processing system using local network technique, and on a field of operation maintenance and management a conservation management system for nuclear generation plant intending of further effectiveness of operation maintenance management of power plant by applying of operation experience and recent data processing and communication technology. And, in the large electric apparatus, there are some generators carried out production and verification of a model one with actual size in lengthwise dimension, to correspond to future large capacity nuclear power plant. By this verification, it was proved that even large capacity generator of 1800 MVA class could be manufactured. (G.K.)

  19. Nuclear power of the coming century and requirements to the nuclear technology

    International Nuclear Information System (INIS)

    Orlov, V.; Leonov, V.; Sila-Novitski, A.; Smirnov, V.; Tsikunov, V.; Filin, A.

    2001-01-01

    Current state of nuclear power in the world has been considered and the reasons for its falling short of the great expectations relating to its vigorous development in the outgoing century are considered. Anticipated energy demand of mankind in the next century is evaluated, suggesting that with exhausted resources of cheap fossil fuel and ecological restrictions it can be satisfied by means of a new nuclear technology meeting the requirements of large-scale power generation in terms of safety and economic indices, moreover, the technology can be elaborated in the context of achievements made in civil and military nuclear engineering. Since the developing countries are the most interested parties, it is just their initiative in the development of nuclear technology at the next stage that could provide an impetus for its actual advance. It is shown that large-scale development of nuclear power, being adequate to increase in energy demand, is possible even if solely large NPP equipped with breeders providing BR≥1 are constructed. Requirements for the reactor and fuel cycle technologies are made, their major aspects being: efficient utilization of Pu accumulated and reduction of U specific consumption by at least an order of magnitude; natural inherent safety and deterministic elimination of accidents involving high radioactive releases; assurance of a balance between radiation hazard posed by radioactive wastes disposed and uranium extracted from the ground; nuclear weapons nonproliferation due to fuel reprocessing ruling out potentiality of Pu diversion; reduction of the new generation reactor costs below the costs of today's LWR. (author)

  20. A National Demonstration Project Building the Next Generation

    International Nuclear Information System (INIS)

    Keuter, Dan; Hughey, Kenneth; Melancon, Steve; Quinn, Edward 'Ted'

    2002-01-01

    The U.S., and the world to a greater extent, needs more electrical power generating plants. In the U.S. alone some estimates say that over the next 20 years more than 400,000 MWe of new generation will be needed. This in a period when domestic oil and gas production decreases while consumption increases. Consequently, the U.S. grows more and more dependent on foreign energy sources today importing approximately 60% of our needs. Consider also that the U.S., once the world leader in all nuclear technology, no long leads the world in this technology and each day that goes by the U.S. nuclear infrastructure becomes less and less robust. Due to its improved safety, reliability/economics and emission free generation nuclear power is once more seen as an important energy source in many countries. In 2000, the number of operating nuclear power plants worldwide increased to 438, with 36 new plants under construction. Unfortunately, no new reactor orders have been placed in the US since 1979. When one considers national issues such as reducing environmental emissions, reallocation and conservation of limited natural resources and domestic energy security, the need for new nuclear generation is essential. While the hurdles facing the deployment of new nuclear generation in the U.S. are certainly formidable, the consequences of inaction in this regard are intolerable. In partnership with industry, the Department of Energy should move forward with an aggressive effort in support of deployment of an advanced nuclear power reactor incorporating state-of-the-art safety and proliferation resistant systems. This effort should be structured so as to significantly advance the timetable by which the systems would be available for commercial deployment by taking advantage of ongoing efforts currently underway at DOE and industry. The effort should be sequenced, to the extent possible, so that it can best reflect, both with respect to schedule and capability, the evolving national

  1. Next generation reactor development activity at Hitachi, Ltd

    International Nuclear Information System (INIS)

    Yamashita, Junichi

    2005-01-01

    Developments of innovative nuclear systems in Japan have been highly requested to cope with uncertain future nuclear power generation and fuel cycle situation. Next generation reactor system shall be surely deployed earlier to be capable to provide with several options such as plutonium multi-recycle, intermediate storage of spent fuels, simplified reprocessing of spent fuels and separated storage of 'Pu+FP' and 'U', spent fuels storage after Pu LWR recycle and their combinations, while future reactor system will be targeted at ideal fuel recycle system of higher breeding gain and transmutation of radioactive wastes. Modified designs of the ABWR at large size and medium and small size have been investigated as well as a BWR based RMWR and a supercritical-pressure LWR to ensure safety and improve economics. Advanced fuel cycle technologies of a combination of fluoride volatility process and PUREX process with high decontamination (FLUOREX process) and a modified fluoride volatility process with low decontamination have been developed. (T. Tanaka)

  2. The human factors issue in the next generation nuclear plants

    International Nuclear Information System (INIS)

    Noviello, L.; Bolognini, G.; Nobile, M.

    1992-01-01

    The national Energy Plan approved by the Italian Government in 1988, soon after the public referendum on nuclear issues held in the wake of the Chernobyl accident, requested the start of a research program to study next generation nuclear plants. These new reactors should feature some important and innovative characteristics to have a chance to be considered for future constructions, should the politicians decide the conditions for such a step are again re-established in Italy. The most important of these characteristics is certainly the fact that no evaluation nor land set a-side shall be required even in case of the most severe conceivable accident. This challenging objective should be reached through: a) the simplification of the nuclear plant as a whole b) the extensive use of passive components and/or inherent safety features in the design of the engineering safeguard systems c) a containment designed to cope with any conceivable accident sequence without releasing any major quantity of radioactive products into the environment. d) the upgrading of the man-machine interface and the introduction of computerized aids both for operational and maintenance activities. This paper deals in particular with the improvements, described in point d), that aim at greatly reducing the probability of human errors, widely recognized as one of the most important aspects to be pursued to increase nuclear plant safety. (author)

  3. Advanced Safeguards Technology Road-map for the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Miller, M.C.; Tobin, S.; Smith, L.E.; Ehinger, M.; Dougan, A.; Cipiti, B.; Bakel, A.; Bean, R.

    2008-01-01

    Strengthening the nonproliferation regime, including advanced safeguards, is a cornerstone of the Global Nuclear Energy Partnership (GNEP). To meet these challenges, the Safeguards Campaign was formed, whose mission is to provide research and technology development for the foundation of next generation safeguards systems for implementation in U.S. GNEP facilities. The Safeguards Campaign works closely with the Nuclear Nonproliferation and International Security department (NA-24) of NNSA (National Nuclear Safety Administration) to ensure that technology developed for domestic safeguards applications are optimum with respect to international safeguards use. A major milestone of the program this year has been the development of the advanced safeguards technology road-map. This paper will broadly describe the road-map, which provides a path to next generation safeguards systems including advanced instrumentation; process monitoring; data integration, protection, and analysis; and system level evaluation and knowledge extraction for real time applications. (authors)

  4. Physics and Technology for the Next Generation of Radioactive Ion Beam Facilities: EURISOL

    CERN Document Server

    Kadi, Y; Catherall, R; Giles, T; Stora, T; Wenander, F K

    2012-01-01

    Since the discovery of artificial radioactivity in 1935, nuclear scientists have developed tools to study nuclei far from stability. A major breakthrough came in the eighties when the first high energy radioactive beams were produced at Berkeley, leading to the discovery of neutron halos. The field of nuclear structure received a new impetus, and the major accelerator facilities worldwide rivalled in ingenuity to produce more intense, purer and higher resolution rare isotope beams, leading to our much improved knowledge and understanding of the general evolution of nuclear properties throughout the nuclear chart. However, today, further progress is hampered by the weak beam intensities of current installations which correlate with the difficulty to reach the confines of nuclear binding where new phenomena are predicted, and where the r-process path for nuclear synthesis is expected to be located. The advancement of Radioactive Ion Beam (RIB) science calls for the development of so-called next-generation facil...

  5. Developing next-generation telehealth tools and technologies: patients, systems, and data perspectives.

    Science.gov (United States)

    Ackerman, Michael J; Filart, Rosemarie; Burgess, Lawrence P; Lee, Insup; Poropatich, Ronald K

    2010-01-01

    The major goals of telemedicine today are to develop next-generation telehealth tools and technologies to enhance healthcare delivery to medically underserved populations using telecommunication technology, to increase access to medical specialty services while decreasing healthcare costs, and to provide training of healthcare providers, clinical trainees, and students in health-related fields. Key drivers for these tools and technologies are the need and interest to collaborate among telehealth stakeholders, including patients, patient communities, research funders, researchers, healthcare services providers, professional societies, industry, healthcare management/economists, and healthcare policy makers. In the development, marketing, adoption, and implementation of these tools and technologies, communication, training, cultural sensitivity, and end-user customization are critical pieces to the process. Next-generation tools and technologies are vehicles toward personalized medicine, extending the telemedicine model to include cell phones and Internet-based telecommunications tools for remote and home health management with video assessment, remote bedside monitoring, and patient-specific care tools with event logs, patient electronic profile, and physician note-writing capability. Telehealth is ultimately a system of systems in scale and complexity. To cover the full spectrum of dynamic and evolving needs of end-users, we must appreciate system complexity as telehealth moves toward increasing functionality, integration, interoperability, outreach, and quality of service. Toward that end, our group addressed three overarching questions: (1) What are the high-impact topics? (2) What are the barriers to progress? and (3) What roles can the National Institutes of Health and its various institutes and centers play in fostering the future development of telehealth?

  6. Current status of nuclear power generation in Japan and directions in water cooled reactor technology development

    International Nuclear Information System (INIS)

    Miwa, T.

    1991-01-01

    Electric power demand aspects and current status of nuclear power generation in Japan are outlined. Although the future plan for nuclear power generation has not been determined yet the Japanese nuclear research centers and institutes are investigating and developing some projects on the next generation of light water reactors and other types of reactors. The paper describes these main activities

  7. Green technology into nuclear industry Eligibility of Ambidexter nuclear complex for a generation IV nuclear power system

    International Nuclear Information System (INIS)

    Park, Kwangheon; Koh, Moosung; Ryu, Jeongdong; Kim, Yangeun; Lee, Bumsik; Park, Hyuntack

    2000-01-01

    Green power is being developed up to a point that is feasible not only in an environmental sense, but also in an economical viewpoint. This paper introduces two case studies that applied green technology into nuclear industry. 1) Nuclear laundry: A laundry machine that uses liquid and supercritical Co 2 as a solvent for decontamination of contaminated working dresses in nuclear power plants was developed. The machine consists of a 16 liter reactor, a recovery system with compressors, and storage tanks. All CO 2 used in cleaning is fully recovered and reused in next cleaning, resulting in no production

  8. Improved methods for prediction of creep-fatigue in next generation conventional and nuclear plant

    International Nuclear Information System (INIS)

    Payten, Warwick

    2012-01-01

    Materials technology poses a major challenge in the design and construction of next generation super critical/ultra super critical power plant (SC/USC) and Generation IV (GenIV) nuclear plant. New plant is expected to have in the order of a 60 year life-time, imposing complex design difficulties in areas of creep rupture and creep fatigue damage. For SC/USC plant, the main goal is the enhancement of performance by raising the steam pressure and temperatures. In order to achieve these goals materials with acceptable creep rupture strength at design temperatures and pressures must be used. In GenIV designs, the issue is more complex, with both low and high tempera-ture designs. A key requirement in the majority of the designs, however, will be acceptable resistance to creep rupture, fatigue cracking, creep fatigue interactions, with the additional effects of void swelling and irradiation creep. The accumulation of creep fatigue damage over time in both SC/USC and GenIV plant will be one of the principal damage mechanisms. This will eventually lead to crack initiation in critical high temperature equipment. Hence, improved knowledge of creep and fatigue interactions is a necessary development as components in power-generating plants move to operate at high temperature under cyclic conditions. The key to safe, reliable operation of these high-energy plants will depend on understanding the factors that affect damage initiation and propagation, as well as developing and validating technologies to predict the accumulation of damage in systems and components.

  9. Tying the knot with next-generation reactors: Can the industry afford a second marriage?

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This article examines the future of nuclear power beyond the year 2000. The nuclear industry just celebrated 50 years of nuclear technology, but no new plants have been ordered in the US since 1978 and some European countries are giving up on the nuclear option. This article discusses the four US advanced light-water reactor design and safety features, specific design features and parameters for the advanced designs, advanced designs from Europe, features utilities look for in a reactor, evolutionary versus passive designs, gaining public acceptance for new designs, and what alternatives are there to installing next-generation nuclear systems?

  10. Development of next-generation light water reactor

    International Nuclear Information System (INIS)

    Ishibashi, Fumihiko; Yasuoka, Makoto

    2010-01-01

    The Next-Generation Light Water Reactor Development Program, a national project in Japan, was inaugurated in April 2008. The primary objective of this program is to meet the need for the replacement of existing nuclear power plants in Japan after 2030. With the aim of setting a global standard design, the reactor to be developed offers greatly improved safety, reliability, and economic efficiency through several innovative technologies, including a reactor core system with uranium enrichment of 5 to 10%, a seismic isolation system, long-life materials, advanced water chemistry, innovative construction techniques, optimized passive and active safety systems, innovative digital technologies, and so on. In the first three years, a plant design concept with these innovative features is to be established and the effectiveness of the program will be reevaluated. The major part of the program will be completed in 2015. Toshiba is actively engaged in both design studies and technology development as a founding member of this program. (author)

  11. Site Selection and Characterization Status Report for Next Generation Nuclear Plant (NGNP)

    International Nuclear Information System (INIS)

    Holbrook, Mark

    2007-01-01

    In the near future, the US Department of Energy (DOE) will need to make important decisions regarding design and construction of the Next Generation Nuclear Plant (NGNP). One part of making these decisions is considering the potential environmental impacts that this facility may have, if constructed here at the Idaho National Laboratory (INL). The National Environmental Policy Act (NEPA) of 1969 provides DOE decision makers with a process to systematically consider potential environmental consequences of agency decisions. In addition, the Energy Policy Act of 2005 (Title VI, Subtitel C, Section 644) states that the 'Nuclear Regulatory Commission (NRC) shall have licensing and regulatory authority for any reactor authorized under this subtitle.' This stipulates that the NRC will license the NGNP for operation. The NRC NEPA Regulations (10 CFR Part 51) require tha thte NRC prepare an Environmental Impact Statement (EIS) for a permit to construct a nuclear power plant. The applicant is required to submit an Environmental report (ER) to aid the NRC in complying with NEPA.

  12. Fuelling innovation: Countries look to the next generation of nuclear power

    International Nuclear Information System (INIS)

    Perera, Judith

    2004-01-01

    The past few years have seen several multinational initiatives looking at the prospects for the medium and long-term development of nuclear energy. These include: the US-led Generation IV International Forum (GIF), the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), and the European Michelangelo network for competitiveness and sustainability of nuclear energy in the EU (Micanet). There have also been two major studies - a joint investigation by the IAEA together with the OECD's International Energy Agency (IEA) and Nuclear Energy Agency (NEA), Innovative Nuclear Reactor Development; Opportunities for International Co-operation; and an interdisciplinary study by the Massachusetts Institute of Technology (MIT) on The Future of Nuclear Energy. All these cover much of the same ground, looking at innovative nuclear systems including reactors and fuel cycles. But, while they were prompted by the same set of underlying imperatives, they also differ to some extent, not least in the importance they attach to the nuclear fuel cycle. GIF and INPRO are two initiatives where enhanced international cooperation could emerge

  13. Optical Subsystems for Next Generation Access Networks

    DEFF Research Database (Denmark)

    Lazaro, J.A; Polo, V.; Schrenk, B.

    2011-01-01

    Recent optical technologies are providing higher flexibility to next generation access networks: on the one hand, providing progressive FTTx and specifically FTTH deployment, progressively shortening the copper access network; on the other hand, also opening fixed-mobile convergence solutions...... in next generation PON architectures. It is provided an overview of the optical subsystems developed for the implementation of the proposed NG-Access Networks....

  14. Special Issue: Next Generation DNA Sequencing

    Directory of Open Access Journals (Sweden)

    Paul Richardson

    2010-10-01

    Full Text Available Next Generation Sequencing (NGS refers to technologies that do not rely on traditional dideoxy-nucleotide (Sanger sequencing where labeled DNA fragments are physically resolved by electrophoresis. These new technologies rely on different strategies, but essentially all of them make use of real-time data collection of a base level incorporation event across a massive number of reactions (on the order of millions versus 96 for capillary electrophoresis for instance. The major commercial NGS platforms available to researchers are the 454 Genome Sequencer (Roche, Illumina (formerly Solexa Genome analyzer, the SOLiD system (Applied Biosystems/Life Technologies and the Heliscope (Helicos Corporation. The techniques and different strategies utilized by these platforms are reviewed in a number of the papers in this special issue. These technologies are enabling new applications that take advantage of the massive data produced by this next generation of sequencing instruments. [...

  15. Smart Energy Cryo-refrigerator Technology for the next generation Very Large Array

    Science.gov (United States)

    Spagna, Stefano

    2018-01-01

    We describe a “smart energy” cryocooler technology architecture for the next generation Very Large Array that makes use of multiple variable frequency cold heads driven from a single variable speed air cooled compressor. Preliminary experiments indicate that the compressor variable flow control, advanced diagnostics, and the cryo-refrigerator low vibration, provide a unique energy efficient capability for the very large number of antennas that will be employed in this array.

  16. Airspace Systems Program: Next Generation Air Transportation System Concepts and Technology Development FY2010 Project Plan Version 3.0

    Science.gov (United States)

    Kopardekar, Parimal H.

    2010-01-01

    This document describes the FY2010 plan for the management and execution of the Next Generation Air Transportation System (NextGen) Concepts and Technology Development (CTD) Project. The document was developed in response to guidance from the Airspace Systems Program (ASP), as approved by the Associate Administrator of the Aeronautics Research Mission Directorate (ARMD), and from guidelines in the Airspace Systems Program Plan. Congress established the multi-agency Joint Planning and Development Office (JPDO) in 2003 to develop a vision for the 2025 Next Generation Air Transportation System (NextGen) and to define the research required to enable it. NASA is one of seven agency partners contributing to the effort. Accordingly, NASA's ARMD realigned the Airspace Systems Program in 2007 to "directly address the fundamental research needs of the Next Generation Air Transportation System...in partnership with the member agencies of the JPDO." The Program subsequently established two new projects to meet this objective: the NextGen-Airspace Project and the NextGen-Airportal Project. Together, the projects will also focus NASA s technical expertise and world-class facilities to address the question of where, when, how and the extent to which automation can be applied to moving aircraft safely and efficiently through the NAS and technologies that address optimal allocation of ground and air technologies necessary for NextGen. Additionally, the roles and responsibilities of humans and automation influence in the NAS will be addressed by both projects. Foundational concept and technology research and development begun under the NextGen-Airspace and NextGen-Airportal projects will continue. There will be no change in NASA Research Announcement (NRA) strategy, nor will there be any change to NASA interfaces with the JPDO, Federal Aviation Administration (FAA), Research Transition Teams (RTTs), or other stakeholders

  17. Intelligent control and automation technology for nuclear applications

    International Nuclear Information System (INIS)

    Kim, Jae Hui; Huh, Young Hwan; Lee, Jang Soo; Kim, Ko Ryeo; Cha, Kyoung Ho; Lee, Jae Cheol; Dong, In Sook

    1993-01-01

    This project intends to establish the basic technology of intelligent control and automation to be applied to the next generation nuclear plant. For that, the research status of those technologies is surveyed for various application areas at first. The characteristics and availability of those techniques such as neural network, fuzzy rule based control and reasoning, multimedia, real-time software and qualitative modelling are studied through a series of simulations and experiments. By integrating each technologies studied above, we developed a hierarchical, intelligent control system for an autonomous mobile robot as a test bed. The system is composed of several modules of software and hardware subsystems, which are implemented by use of the intelligent techniques. Through the analysis of the results and experiences, we investigated the feasibility of application of the basic technology to the next generation plant. (Author)

  18. Korea's choice of a new generation of nuclear plants

    International Nuclear Information System (INIS)

    Redding, J.R.

    1994-01-01

    The ABWR and SBWR design, both under development at GE, provide the best platform for developing the next generation advanced plants. The ABWR, which is rapidly setting the standard for new nuclear reactor plants, is clearly the best choice to meet the present energy needs of Korea. And through a GE/Korea partnership to develop the plant of the next century, Korea will establish itself as a leader in innovative reactor technology

  19. Thermal hydrodynamic modeling and simulation of hot-gas duct for next-generation nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Hong, Sungdeok; Kim, Chansoo [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bai, Cheolho; Hong, Sungyull [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shim, Jaesool, E-mail: jshim@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2016-12-15

    Highlights: • Thermal hydrodynamic nonlinear model is presented to examine a hot gas duct (HGD) used in a fourth-generation nuclear power reactor. • Experiments and simulation were compared to validate the nonlinear porous model. • Natural convection and radiation are considered to study the effect on the surface temperature of the HGD. • Local Nusselt number is obtained for the optimum design of a possible next-generation HGD. - Abstract: A very high-temperature gas-cooled reactor (VHTR) is a fourth-generation nuclear power reactor that requires an intermediate loop that consists of a hot-gas duct (HGD), an intermediate heat exchanger (IHX), and a process heat exchanger for massive hydrogen production. In this study, a mathematical model and simulation were developed for the HGD in a small-scale nitrogen gas loop that was designed and manufactured by the Korea Atomic Energy Research Institute. These were used to investigate the effect of various important factors on the surface of the HGD. In the modeling, a porous model was considered for a Kaowool insulator inside the HGD. The natural convection and radiation are included in the model. For validation, the modeled external surface temperatures are compared with experimental results obtained while changing the inlet temperatures of the nitrogen working fluid. The simulation results show very good agreement with the experiments. The external surface temperatures of the HGD are obtained with respect to the porosity of insulator, emissivity of radiation, and pressure of the working fluid. The local Nusselt number is also obtained for the optimum design of a possible next-generation HGD.

  20. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  1. Better-Than-Visual Technologies for Next Generation Air Transportation System Terminal Maneuvering Area Operations

    Science.gov (United States)

    Prinzel, Lawrence J., III; Bailey, Randall E.; Shelton, Kevin J.; Jones, Denise R.; Kramer, Lynda J.; Arthur, Jarvis J., III; Williams, Steve P.; Barmore, Bryan E.; Ellis, Kyle E.; Rehfeld, Sherri A.

    2011-01-01

    A consortium of industry, academia and government agencies are devising new concepts for future U.S. aviation operations under the Next Generation Air Transportation System (NextGen). Many key capabilities are being identified to enable NextGen, including the concept of Equivalent Visual Operations (EVO) replicating the capacity and safety of today's visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual (BTV) operational concept. The BTV operational concept uses an electronic means to provide sufficient visual references of the external world and other required flight references on flight deck displays that enable VFR-like operational tempos and maintain and improve the safety of VFR while using VFR-like procedures in all-weather conditions. NASA Langley Research Center (LaRC) research on technologies to enable the concept of BTV is described.

  2. High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant

    International Nuclear Information System (INIS)

    Beck, J.M.; Collins, J.W.; Garcia, C.B.; Pincock, L.F.

    2010-01-01

    High Temperature Gas Reactors (HTGR) have been designed and operated throughout the world over the past five decades. These seven HTGRs are varied in size, outlet temperature, primary fluid, and purpose. However, there is much the Next Generation Nuclear Plant (NGNP) has learned and can learn from these experiences. This report captures these various experiences and documents the lessons learned according to the physical NGNP hardware (i.e., systems, subsystems, and components) affected thereby.

  3. Young Generation in Nuclear Initiative to Promote Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Kilavi Ndege, P.K.

    2015-01-01

    The Kenyan Young Generation in Nuclear (KYGN) is a recently founded not to profit organization. Its mandate is to educate, inform, promote and transfer knowledge on the peaceful, safe and secure users of nuclear science and technology in Kenya. It brings on board all scientist and students with special interest in nuclear science and related fields. KYGN is an affiliate of International Youth Nuclear Congress (YNC) whose membership with IYNC whose membership is drawn from member state of United Nations. Through our membership with IYNC, KYGN members have been able to participate in different forums. In this paper, we discuss KYGN’s prime roles opportunities as well as the challenges of the organization

  4. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.

    Science.gov (United States)

    Elingaramil, Sauli; Li, Xiaolong; He, Nongyue

    2013-07-01

    Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.

  5. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.

    Science.gov (United States)

    Sucher, Nikolaus J; Hennell, James R; Carles, Maria C

    2012-01-01

    DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.

  6. Future nuclear systems, Astrid, an option for the fourth generation: preparing the future of nuclear energy, sustainably optimising resources, defining technological options, sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ter Minassian, Vahe

    2016-01-01

    Energy independence and security of supplies, improved safety standards, sustainably optimised material management, minimal waste production - all without greenhouse gas emissions. These are the Generation IV International Forum specifications for nuclear energy of the future. The CEA is responsible for designing Astrid, an integrated technology demonstrator for the 4. generation of sodium-cooled fast reactors, in accordance with the French Sustainable Nuclear Materials and Waste Management Act of June 28, 2006, and funded as part of the Investments for the Future programme enacted by the French parliament in 2010. Energy management - a vital need and a factor of economic growth - is a major challenge for the world of tomorrow. The nuclear industry has significant advantages in this regard, although it faces safety, resource sustainability, and waste management issues that must be met through continuing technological innovation. Fast reactors are also of interest to the nuclear industry because their recycling capability would solve a number of problems related to the stockpiles of uranium and plutonium. After the resumption of R and D work with EDF and AREVA in 2006, the Astrid design studies began in 2010. The CEA, as owner and contracting authority for this programme, is now in a position to define the broad outlines of the demonstrator 4. generation reactor that could be commissioned during the next decade. A sodium-cooled fast reactor (SFR) operates in the same way as a conventional nuclear reactor: fission reactions in the atoms of fuel in the core generate heat, which is conveyed to a turbine generator to produce electricity. In the context of 4. generation technology, SFRs represent an innovative solution for optimising the use of raw materials as well as for enhancing safety. Here are a few ideas advanced by the CEA. (authors)

  7. Nuclear technology international 1987

    International Nuclear Information System (INIS)

    Geary, Neville

    1987-01-01

    A total of 59 articles cover a wide range of subjects within the scope of nuclear power generation. The first 13 are concerned with the design and construction of nuclear reactors - PWRs, AGRs, Magnox reactors, fast reactors. The final article in this section is on reactor decommissioning. The next 33 papers all concern services to the nuclear power industry. These include the supply of uranium, uranium enrichment, fuel fabrication, reprocessing, spent fuel storage, robotics and remote handling and radioactive waste disposal. The 13 articles in the safety and public acceptability section concern fears over the Chernobyl accident, safety aspects of nuclear power including risk assessment, fire protection, quality assurance, earthquake tolerance, non-proliferation of nuclear weapons and finally, general problems of balancing advances in nuclear technology and economic desirability against a lack of public confidence in the industry. All reactor and fuel types are represented. Most of the articles concern nuclear power in Europe or North America. All are indexed separately. (UK)

  8. Building next-generation converged networks theory and practice

    CERN Document Server

    Pathan, Al-Sakib Khan

    2013-01-01

    Supplying a comprehensive introduction to next-generation networks, Building Next-Generation Converged Networks: Theory and Practice strikes a balance between how and why things work and how to make them work. It compiles recent advancements along with basic issues from the wide range of fields related to next generation networks. Containing the contributions of 56 industry experts and researchers from 16 different countries, the book presents relevant theoretical frameworks and the latest research. It investigates new technologies such as IPv6 over Low Power Wireless Personal Area Network (6L

  9. Space Communications and Data Systems Technologies for Next Generation Earth Science Measurements

    Science.gov (United States)

    Bauer, Robert A.; Reinhart, Richard C.; Hilderman, Don R.; Paulsen, Phillip E.

    2003-01-01

    The next generation of Earth observing satellites and sensor networks will face challenges in supporting robust high rate communications links from the increasingly sophisticated onboard instruments. Emerging applications will need data rates forecast to be in the 100's to 1000's of Mbps. As mission designers seek smaller spacecraft, challenges exist in reducing the size and power requirements while increasing the capacity of the spacecraft's communications technologies. To meet these challenges, this work looks at three areas of selected space communications and data services technologies, specifically in the development of reflectarray antennas, demonstration of space Internet concepts, and measurement of atmospheric propagation effects on Ka-band signal transmitted from LEO.

  10. New reactor concepts for new generation of nuclear power plants: an overview, invited paper

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Milosevic, M.

    2006-01-01

    The outlook for energy demand underscores the need to increase the share of nuclear energy production. Achieving the vision of sustainable growth of nuclear energy will require development of both advanced nuclear fuel cycles and next generation reactor technologies and advanced reprocessing and fuel treatment technologies. To achieve this vision, the US department of energy (DOE) has adopted new strategy, the Global Nuclear Energy Partnership (GNEP), which integrates earlier programs: the Generation IV Nuclear Energy Systems Initiative (Generation IV), Nuclear Hydrogen Initiative (NHI), and the Advanced Fuel Cycle Initiative (AFCI) with proliferation-resistant spent fuel reprocessing to minimize nuclear waste. Generation IV furthers this vision beyond previous energy systems, such as Generation III+, through incremental improvements in economic competitiveness, sustainability, development of passively safe systems, and breakthrough methods to reduce the routes of nuclear proliferation. This paper summarizes the main characteristics of the six most promising nuclear energy systems identified by the Generation IV Roadmap and reviews some Generation IV system designs for small-side proliferation resistant reactors being developed by University of California at Berkeley. (author)

  11. Development of nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Kawahara, Akira; Sugimoto, Yoshikazu; Shibata, Satoshi; Ikeda, Takashi; Suzuki, Kazumichi; Miki, Atsushi.

    1990-01-01

    In order to establish the stable supply of nuclear fuel as an important energy source, Hitachi ltd. has advanced the technical development aiming at the heightening of reliability, the increase of capacity, upgrading and the heightening of performance of the facilities related to nuclear fuel cycle. As for fuel reprocessing, Japan Nuclear Fuel Service Ltd. is promoting the construction of a commercial fuel reprocessing plant which is the first in Japan. The verification of the process performance, the ensuring of high reliability accompanying large capacity and the technical development for recovering effective resources from spent fuel are advanced. Moreover, as for uranium enrichment, Laser Enrichment Technology Research Association was founded mainly by electric power companies, and the development of the next generation enrichment technology using laser is promoted. The development of spent fuel reprocessing technology, the development of the basic technology of atomic process laser enrichment and so on are reported. In addition to the above technologies recently developed by Hitachi Ltd., the technology of reducing harm and solidification of radioactive wastes, the molecular process laser enrichment and others are developed. (K.I.)

  12. Next generation of energy production systems

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Carre, F.

    2003-01-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources

  13. NIRS report of investigations for the development of the next generation PET apparatus. FY 2002

    International Nuclear Information System (INIS)

    2003-03-01

    The present status of studies conducted by representative technology fields for the development of the next generation PET apparatus, and the summary of opinions given by investigators of nuclear medicine are reported. The former involves chapters of: Summary of representative technologies for the development of the next generation PET apparatus; Count rate analysis of PET apparatuses for the whole body and small animals by PET simulator; Scintillator; DOI (depth of interaction) detector-evaluation of the detector with 256-ch fluorescence polarization-photomultiplier tubes (FP-PMT) trial apparatus etc; Examination of multi-slice DOI-MR compatible detector for PET; Development of application specific integrated circuit (ASIC) for processing the front-end signals; Detector simulation; Circuit for processing PET detector signals; Signal processing-coincidence circuit; Data collection system; Signal processing technology for the next generation PET; Reconstruction of statistical PET image using DOI signals; Monte Carlo simulation and Unique directions-PET for infants and for the whole body autonomic nervous systems and mental activity; and Actual design and evaluation of image reconstruction by statistical means. Opinions are: Progress of clinical PET apparatus; Desirable PET drugs and apparatuses; From clinical practice for the development of the next generation PET apparatus; From clinical psychiatric studies for the development; From application of drug development and basic researches; From brain PET practice; From clinical PET practice; and The role of National Institute of Radiological Sciences (NIRS) in PET development. Also involved is the publication list. (N.I.)

  14. High technology supporting nuclear power industry in CRIEPI

    International Nuclear Information System (INIS)

    Ueda, Nobuyuki

    2009-01-01

    As a central research institute of electric power industry, Central Research Institute of Electric Power Industry (CRIEPI) has carried out R and D on broad range of topics such as power generation, power transmission, power distribution, power application and energy economics and society, aiming to develop prospective and advanced technologies, fundamental reinforce technologies and next-generation core technologies. To realize low-carbon society to cope with enhancement of global environmental issues, nuclear power is highly recommended as large-scale power with low-carbon emission. At the new start of serial explanation on advanced technologies, R and D on electric power industry was outlined. (T. Tanaka)

  15. The next generation of CANDU technologies: profiling the potential for hydrogen fuel

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    2001-01-01

    This report discusses the Next-generation CANDU Power Reactor technologies currently under development at AECL. The innovations introduced into proven CANDU technologies include a compact reactor core design, which reduces the size by a factor of one third for the same power output; improved thermal efficiency through higher-pressure steam turbines; reduced use of heavy water (one quarter of the heavy water required for existing plants), thus reducing the cost and eliminating many material handling concerns; use of slightly enriched uranium to extend fuel life to three times that of existing natural uranium fuel and additions to CANDU's inherent passive safety. With these advanced features, the capital cost of constructing the plant can be reduced by up to 40 per cent compared to existing designs. The clean, affordable CANDU-generated electricity can be used to produce hydrogen for fuel cells for the transportation sector, thereby reducing emissions from the transportation sector

  16. Technology assessment HTR. Part 8. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Turkenburg, W.C.

    1996-06-01

    The small social acceptance of nuclear power for power generation suggests that in the present situation nuclear technology does not meet certain sustainable criteria. First, the concept of sustainable development is explained and which dimensions can be distinguished. Next, the sustainable development with regard to the development of the energy supply is outlined and the energy policy to obtain this situation is discussed. Subsequently, the impact of the sustainable development and the policy used to realize this on the nuclear technology are dealt with. As a result, criteria are formulated that can be used to verify how nuclear technology will meet this criteria and which demands should be used to fit this technology so it can be used in a sustainable development of the society. 55 refs

  17. Near-term and next-generation nuclear power plant concepts

    International Nuclear Information System (INIS)

    Shiga, Shigenori; Handa, Norihiko; Heki, Hideaki

    2002-01-01

    Near-term and next-generation nuclear reactors will be required to have high economic competitiveness in the deregulated electricity market, flexibility with respect to electricity demand and investment, and good public acceptability. For near-term reactors in the 2010s, Toshiba is developing an improved advanced boiling water reactor (ABWR) based on the present ABWR with newly rationalized systems and components; a construction period of 36 months, one year shorter than the current period; and a power lineup ranging from 800 MWe to 1,600 MWe. For future reactors in the 2020s and beyond, Toshiba is developing the ABWR-II for large-scale, centralized power sources; a supercritical water-cooled power reactor with high thermal efficiency for medium-scale power sources; a modular reactor with siting flexibility for small-scale power sources; and a small, fast neutron reactor with inherent safety for independent power sources. From the viewpoint of efficient uranium resource utilization, a low-moderation BWR core with a high conversion factor is also being developed. (author)

  18. Nigeria nuclear power generation programme: Suggested way forward

    International Nuclear Information System (INIS)

    Adesanmi, C.A.

    2007-01-01

    It has now been established worldwide that nuclear power generation is needed to meet growing energy demands. The gases emitted from fossil fuel have serious adverse effects on the environment. The message from the 50th Annual General Conference of the International Atomic Energy Agency (IAEA) held in Vienna, September 2006 was very clear on this issue. There was a unanimous support for more nuclear power generation to meet the world energy demand. All the member states that can afford the nuclear power technology and willing to abide by the international regulations and safeguards were encouraged to do so. The requirements to participate in the nuclear power generation programme are political will and organized diplomacy, legislative and statutory framework, international safety obligations, institutional framework, public acceptability, capacity building and technology transfer, environmental concern , waste management and financing. Nigeria's performance on all the criteria was evaluated and found satisfactory. All these coupled with Nigeria's dire need for more power and better energy mix, are sufficient and undisputable reasons for the whole world to support Nigeria nuclear power generation programme. Definitely the programme poses serious challenges to the Nigerian Physicists. Therefore, Departments of Physics should endeavour to include nuclear physics option in their programme and work in collaboration with the faculty of Engineering in their various tertiary institutions in order to attain the necessary critical human capacity that will be needed to man the nuclear power industry within the next 10 years

  19. Cycle layout studies of S-CO2 cycle for the next generation nuclear system application

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Bae, Seong Jun; Kim, Minseok; Cho, Seong Kuk; Baik, Seungjoon; Lee, Jeong Ik; Cha, Jae Eun

    2014-01-01

    According to the second law of thermodynamics, the next generation nuclear reactor system efficiency can potentially be increased with higher operating temperature. Fig.1 shows several power conversion system efficiencies and heat sources with respect to the system top operating temperature. As shown in Fig.1, the steam Rankine and gas Brayton cycles have been considered as the major power conversion systems more than several decades. In the next generation reactor operating temperature region (450 - 900 .deg. C), the steam Rankine and gas Brayton cycles have limits due to material problems and low efficiency, respectively. Among the future power conversion systems, S-CO 2 cycle is receiving interests due to several benefits including high efficiency under the mild turbine inlet temperature range (450-650 .deg. C), compact turbomachinery and simple layout compared to the steam Rankine cycle. S-CO 2 cycle can show relatively high efficiency under the mild turbine inlet temperature range (450-600 .deg. C) compared to other power conversion systems. The recompression cycle shows the best efficiency among other layouts and it is suitable for the application to advanced nuclear reactor systems. As S-CO 2 cycle performance can vary depending on the layout configuration, further studies on the layouts are required to design a better performing cycle

  20. Next Generation HeliMag UXO Mapping Technology

    Science.gov (United States)

    2010-01-01

    Ancillary instrumentation records aircraft height above ground and attitude. A fluxgate magnetometer is used to allow for aeromagnetic compensation of... Magnetometer System WWII World War II WAA wide area assessment ACKNOWLEDGEMENTS This Next Generation HeliMag Unexploded Ordnance (UXO) Mapping...for deployment of seven total-field magnetometers on a Kevlar reinforced boom mounted on a Bell 206L helicopter. The objectives of this

  1. Space Technology Game Changing Development- Next Generation Life Support: Spacecraft Oxygen Recovery (SCOR)

    Science.gov (United States)

    Abney, Morgan; Barta, Daniel

    2015-01-01

    The Next Generation Life Support Spacecraft Oxygen Recovery (SCOR) project element is dedicated to developing technology that enables oxygen recovery from metabolically produced carbon dioxide in space habitats. The state-of-the-art system on the International Space Station uses Sabatier technology to recover (is) approximately 50% oxygen from carbon dioxide. The remaining oxygen required for crew respiration is supplied from Earth. For long duration manned missions beyond low-Earth orbit, resupply of oxygen becomes economically and logistically prohibitive. To mitigate these challenges, the SCOR project element is targeting development of technology to increase the recovery of oxygen to 75% or more, thereby reducing the total oxygen resupply required for future missions.

  2. Next Generation Solar Collectors for CSP

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Attila [3M Company, St. Paul, MN (United States); Charles, Ruth [3M Company, St. Paul, MN (United States)

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  3. Next-Generation Sequencing: From Understanding Biology to Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Benjamin Meder

    2013-03-01

    Full Text Available Within just a few years, the new methods for high-throughput next-generation sequencing have generated completely novel insights into the heritability and pathophysiology of human disease. In this review, we wish to highlight the benefits of the current state-of-the-art sequencing technologies for genetic and epigenetic research. We illustrate how these technologies help to constantly improve our understanding of genetic mechanisms in biological systems and summarize the progress made so far. This can be exemplified by the case of heritable heart muscle diseases, so-called cardiomyopathies. Here, next-generation sequencing is able to identify novel disease genes, and first clinical applications demonstrate the successful translation of this technology into personalized patient care.

  4. Ribosome display: next-generation display technologies for production of antibodies in vitro.

    Science.gov (United States)

    He, Mingyue; Khan, Farid

    2005-06-01

    Antibodies represent an important and growing class of biologic research reagents and biopharmaceutical products. They can be used as therapeutics in a variety of diseases. With the rapid expansion of proteomic studies and biomarker discovery, there is a need for the generation of highly specific binding reagents to study the vast number of proteins encoded by the genome. Display technologies provide powerful tools for obtaining antibodies. Aside from the preservation of natural antibody repertoires, they are capable of exploiting diversity by DNA recombination to create very large libraries for selection of novel molecules. In contrast to in vivo immunization processes, display technologies allow selection of antibodies under in vitro-defined selection condition(s), resulting in enrichment of antibodies with desired properties from large populations. In addition, in vitro selection enables the isolation of antibodies against difficult antigens including self-antigens, and this can be applied to the generation of human antibodies against human targets. Display technologies can also be combined with DNA mutagenesis for antibody evolution in vitro. Some methods are amenable to automation, permitting high-throughput generation of antibodies. Ribosome display is considered as representative of the next generation of display technologies since it overcomes the limitations of cell-based display methods by using a cell-free system, offering advantages of screening larger libraries and continuously expanding new diversity during selection. Production of display-derived antibodies can be achieved by choosing one of a variety of prokaryotic and eukaryotic cell-based expression systems. In the near future, cell-free protein synthesis may be developed as an alternative for large-scale generation of antibodies.

  5. Next Generation of Photovoltaics New Concepts

    CERN Document Server

    Vega, Antonio; López, Antonio

    2012-01-01

    This book presents new concepts for a next generation of PV. Among these concepts are: Multijunction solar cells, multiple excitation solar cells (or how to take benefit of high energy photons for the creation of more than one electron hole-pair), intermediate band solar cells (or how to take advantage of below band-gap energy photons) and related technologies (for quantum dots, nitrides, thin films), advanced light management approaches (plasmonics). Written by world-class experts in next generation photovoltaics this book is an essential reference guide accessible to both beginners and experts working with solar cell technology. The book deeply analyzes the current state-of-the-art of the new photovoltaic approaches and outlines the implementation paths of these advanced devices. Topics addressed range from the fundamentals to the description of state-of-the-art of the new types of solar cells.

  6. Next generation of photovoltaics. New concepts

    Energy Technology Data Exchange (ETDEWEB)

    Cristobal Lopez, Ana Belen; Marti Vega, Antonio; Luque Lopez, Antonio (eds.) [Univ. Politecnica de Madrid (Spain). Inst. de Energia Solar E.T.S.I. Telecomunicacion

    2012-07-01

    This book presents new concepts for a next generation of PV. Among these concepts are: Multijunction solar cells, multiple excitation solar cells (or how to take benefit of high energy photons for the creation of more than one electron hole-pair), intermediate band solar cells (or how to take advantage of below band-gap energy photons) and related technologies (for quantum dots, nitrides, thin films), advanced light management approaches (plasmonics). Written by world-class experts in next generation photovoltaics this book is an essential reference guide accessible to both beginners and experts working with solar cell technology. The book deeply analyzes the current state-of-the-art of the new photovoltaic approaches and outlines the implementation paths of these advanced devices. Topics addressed range from the fundamentals to the description of state-of-the-art of the new types of solar cells. (orig.)

  7. Next-generation mammalian genetics toward organism-level systems biology.

    Science.gov (United States)

    Susaki, Etsuo A; Ukai, Hideki; Ueda, Hiroki R

    2017-01-01

    Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.

  8. Prospects for next-generation e+e- linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1990-02-01

    The purpose of this paper is to review progress in the US towards a next generation linear collider. During 1988, there were three workshops held on linear colliders: ''Physics of Linear Colliders,'' in Capri, Italy, June 14--18, 1988; Snowmass 88 (Linear Collider subsection) June 27--July 15, 1988; and SLAC International Workshop on Next Generation Linear Colliders, November 28--December 9, 1988. In this paper, I focus on reviewing the issues and progress on a next generation linear collider. The energy range is dictated by physics with a mass reach well beyond LEP, although somewhat short of SSC. The luminosity is that required to obtain 10 3 --10 4 units of R 0 per year. The length is consistent with a site on Stanford land with collision occurring on the SLAC site; the power was determined by economic considerations. Finally, the technology as limited by the desire to have a next generation linear collider by the next century. 37 refs., 3 figs., 6 tabs

  9. Segmenting the Net-Generation: Embracing the Next Level of Technology

    Science.gov (United States)

    Smith, Russell K.

    2014-01-01

    A segmentation study is used to partition college students into groups that are more or less likely to adopt tablet technology as a learning tool. Because the college population chosen for study presently relies upon laptop computers as their primary learning device, tablet technology represents a "next step" in technology. Student…

  10. Next Generation Nuclear Plant Methods Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  11. The role of advanced nuclear plants in reducing the environmental and economic impact of greenhouse emissions on electrical generation

    International Nuclear Information System (INIS)

    Redding, J.; Veitch, C.

    1995-01-01

    The paper discusses the potential impact of imposing economic penalties (externalities) in an effort to reduce emission levels and environmental effect of existing and newly constructed electric facilities, on the selection of generation technology and fuel type, and how the nuclear industry's efforts to develop the next generation of nuclear power facilities will provide an economic, low emission generating option to meet the expanding global electrical needs. The efforts of the US nuclear industry to improve the performance and economics of the existing and next generation facilities are presented, focusing on General Electric's Advanced Boiling Water Reactor and Simplified Boiling Water Reactor. 5 refs., 4 figs., 2 tabs

  12. Next-generation Digital Earth.

    Science.gov (United States)

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  13. Next generation CANDU plants

    International Nuclear Information System (INIS)

    Hedges, K.R.; Yu, S.K.W.

    1998-01-01

    Future CANDU designs will continue to meet the emerging design and performance requirements expected by the operating utilities. The next generation CANDU products will integrate new technologies into both the product features as well as into the engineering and construction work processes associated with delivering the products. The timely incorporation of advanced design features is the approach adopted for the development of the next generation of CANDU. AECL's current products consist of 700MW Class CANDU 6 and 900 MW Class CANDU 9. Evolutionary improvements are continuing with our CANDU products to enhance their adaptability to meet customers ever increasing need for higher output. Our key product drivers are for improved safety, environmental protection and improved cost effectiveness. Towards these goals we have made excellent progress in Research and Development and our investments are continuing in areas such as fuel channels and passive safety. Our long term focus is utilizing the fuel cycle flexibility of CANDU reactors as part of the long term energy mix

  14. A strategy for improving public confidence of nuclear energy based on the segmentation of stake holders -Focused on Univ. Students, the Opinion Leader in the Next Generation-

    International Nuclear Information System (INIS)

    Jang, Jenam

    2012-01-01

    Korea Nuclear Energy Promotion Agency(hereafter, referred as KONEPA) is a public institution established in March, 1992 to improve correct understanding of nuclear energy through development and dissemination of objective, scientific knowledge on the peaceful use of nuclear energy. KONEPA divided the targeted group into four large groups? opinion leaders, civil-social group, LOCA governments, general public/next-generation students/teachers? according to the knowledge levels of nuclear power and involvements in nuclear power plants, and implemented 'customized strategy' suited to the own characteristic of each group. Of these four groups, the next generation, focused on the 'Univ. students' will be discussed with their activities and future plans in this paper

  15. Technological studies for obtaining lead oxide compacts used in generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Paraschiv, I.; Benga, D.

    2016-01-01

    One of the main concerns of the nuclear research at this moment is the development of the necessary technologies for Generation IV reactors. The main candidate as coolant agent in these reactors is molten lead but this material involves ensuring the oxygen control, due to potential contamination of coolant through the formation of solid oxides and the influence on the corrosion rate of structural parts and for this reason, the oxygen concentration must be kept in a well specified domain. One of the proposed methods for oxygen monitoring and control in the technology of Generation IV reactors, is the use of PbO compacts. For this paper technological tests were performed for developing and setting the optimal parameters in order to attain lead oxide compacts necessary for the oxygen control technology in Generation IV nuclear reactors. (authors)

  16. The next generation safeguards initiative

    International Nuclear Information System (INIS)

    Tobey, William

    2008-01-01

    NGSI or the Next Generation Safeguards Initiative is designed to revitalize the U.S. safeguards technical base, as well as invest in human resources, and to mobilize our primary asset - the U.S. National Laboratories - as well as industry and academia to restore capabilities. While NGSI is a U.S. effort it is intended to serve as a catalyst for a much broader commitment to international safeguards in partnership with the IAEA and other countries. Initiatives over the last years include such as the Proliferation Security Initiative, UN Security Council Resolution 1540, the Global Initiative to Combat Nuclear Terrorism, and initiatives of the G-8 and NSG to discourage the spread of enrichment and reprocessing. NGSI augments this agenda by providing a means to strengthen the technical and political underpinnings of IAEA safeguards. Priorities and envisioned activities under NGSI are the following. (1) Cooperation with IAEA and others to promote universal adoption of safeguards agreements and the Additional Protocol including greater information sharing between member states and the IAEA, investigation of weaponization and procurement activities, and options to strengthen the state-level approach to safeguards. (2) NGSI anticipates the deployment of new types of reactors and fuel cycle facilities, as well as the need to use limited safeguards resources effectively and efficiently, especially in plants that pose the largest burden specifically complex, bulk-handling facilities. (3) NGSI will encourage a generational improvement in current safeguards technologies including improvement of precision and speed of nuclear measurements, performance of real-time process monitoring and surveillance in unattended mode, enabling in-field, pre-screening and analysis of nuclear and environmental samples, and collection, integration, analysis and archiving safeguards-relevant information from all available sources.(4) NGSI will address human capital management. Training and

  17. Next generation sensors and systems

    CERN Document Server

    2016-01-01

    Written by experts in their area of research, this book has outlined the current status of the fundamentals and analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors and discussed about the trends of next generation of sensors and systems happening in the area of Sensing technology. This book will be useful as a reference book for engineers and scientist especially the post-graduate students find will this book as reference book for their research on wearable sensors, devices and technologies.  .

  18. Precision medicine for cancer with next-generation functional diagnostics.

    Science.gov (United States)

    Friedman, Adam A; Letai, Anthony; Fisher, David E; Flaherty, Keith T

    2015-12-01

    Precision medicine is about matching the right drugs to the right patients. Although this approach is technology agnostic, in cancer there is a tendency to make precision medicine synonymous with genomics. However, genome-based cancer therapeutic matching is limited by incomplete biological understanding of the relationship between phenotype and cancer genotype. This limitation can be addressed by functional testing of live patient tumour cells exposed to potential therapies. Recently, several 'next-generation' functional diagnostic technologies have been reported, including novel methods for tumour manipulation, molecularly precise assays of tumour responses and device-based in situ approaches; these address the limitations of the older generation of chemosensitivity tests. The promise of these new technologies suggests a future diagnostic strategy that integrates functional testing with next-generation sequencing and immunoprofiling to precisely match combination therapies to individual cancer patients.

  19. Introductory study of super survey (next generation underground exploration technology); Super survey (jisedai chika tansa gijutsu) no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    An investigational study was conducted on the R and D trend of innovative technology aiming at high-accuracy/high-efficiency next generation underground exploration technology (super survey technology). Paying attention to the seismic survey and electromagnetic survey, the study was made on technical characteristics, the utilization status and the needs at sites, the R and D trend, etc. As to the present R and D, the development is proceeded with of the time domain method in the electromagnetic survey, the effective quantity data processing/analysis method and the indication method using the reflection method in the elastic survey. As new technology to be noticed, the following are cited: SQUID magnetometer, underground analysis using magnetic deviation data, electromagnetic migration, ACROSS, rotating seismometer, laser Doppler vibrator, etc. Concerning the course of the next generation underground survey technology, a system of the integrated underground exploration theory is considered which is based on a combination of the electromagnetic survey and seismic exploration. In the study, a plan is worked out for research/development of a technology of analyzing the different data obtained. 49 figs., 13 tabs.

  20. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  1. Technology standards for structure, etc. concerning nuclear power generating facilities

    International Nuclear Information System (INIS)

    1977-01-01

    Based on the Ordinance for the Technology Standards concerning Nuclear Power Generating Facilities, the technology standards are established for the vessels of class 1 to 4 (including reactor pressure vessels, reactor containment vessels, etc.), the pipes of class 1 to 3, safety valves, pressure test and monitoring test specimens. Those specified are materials, nondestructive tests, structures, shapes, shells, flanges, etc. for the vessels and the pipes, and so on. (Mori, K.)

  2. The next generation of power reactors - safety characteristics

    International Nuclear Information System (INIS)

    Modro, S.M.

    1995-01-01

    The next generation of commercial nuclear power reactors is characterized by a new approach to achieving reliability of their safety systems. In contrast to current generation reactors, these designs apply passive safety features that rely on gravity-driven transfer processes or stored energy, such as gas-pressurized accumulators or electric batteries. This paper discusses the passive safety system of the AP600 and Simplified Boiling Water Reactor (SBWR) designs

  3. Defining the research and development needs for the next generation nuclear plant: Neutronics and thermal-hydraulics

    International Nuclear Information System (INIS)

    Schultz, R. R.; Nigg, D. W.; Ougouag, A. M.

    2004-01-01

    In May, 2004, the U.S. Department of Energy (DOE) released a 'Request for Information and Expressions of Interest' (EOI) on the Next Generation Nuclear Plant (NGNP). The DOE objective 'is to conduct research, development, and demonstration of a next-generation nuclear power reactor in order to establish advanced technology for the future production of safe, efficient, and environmentally-acceptable power and to demonstrate the economic and technical feasibility of such facilities to the U.S. electric power industry.' The process of demonstrating the NGNP will require rigorous analysis of the plant's projected behavior under all postulated operational and accident conditions such that the operational and accident envelopes for the NGNP are fully defined and understood. Thus, the analytical tools must be demonstrated to be capable of analyzing the plant's behavior in the plant's operational and accident envelopes. Research and development (R and D) specific to the NGNP and conducted to date is based on the very high temperature reactor (VHTR) concept promulgated in the Generation IV technology roadmap. Although the NGNP may or may not resemble this concept, early thinking on the most likely candidates for the NGNP has led researchers to consider the prismatic and pebble bed variants of the very high temperature gas cooled thermal reactor. These designs have been demonstrated and have been studied extensively. Because some of their operational and accident characteristics have been identified in past studies, these characteristics are a good starting point for research and development planning and studies. This paper only addresses R and D needs regarding neutronics and thermal-hydraulics specific to very high temperature gas-cooled thermal reactors. The process of identifying R and D needs and then formulating plans is straightforward, although there are many unknowns and the process itself is iterative. The process is shown in flow chart form. In essence it is a

  4. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  5. Next Steps: Water Technology Advances (Research)

    Science.gov (United States)

    This project will focus on contaminants and their impact on health, adequate removal of contaminants from various water systems, and water and resource recovery within treatment systems. It will develop the next generation of technological advances to provide guidance in support ...

  6. Next Generation Drivetrain Development and Test Program

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan; Erdman, Bill; Blodgett, Doug; Halse, Chris; Grider, Dave

    2015-11-03

    This presentation was given at the Wind Energy IQ conference in Bremen, Germany, November 30 through December 2, 2105. It focused on the next-generation drivetrain architecture and drivetrain technology development and testing (including gearbox and inverter software and medium-voltage inverter modules.

  7. New Temperature References and Sensors for the Next Generation of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Sadli, M.; Deuze, T.; Failleau, G.; Mokdad, S.-A.; Podesta, M. de; Edwards, G.; Elliott, C.-J.; Pearce, J.-V.; Sutton, G.; Del Campo, D.; Garcia-Izquierdo, C.; Fourrez, S.; Laurie, M.

    2013-06-01

    In preparation for the new challenges posed by the higher temperature environments which are likely to be encountered in the next generation of nuclear power plants, to maintain the safety and to ensure the long-term reliability of such plants, it is crucial that new temperature sensors and methods for in-situ measurement are investigated and developed. This is the general objective of the first work package of the joint research project, ENG08 MetroFission, funded in the framework of the European metrology research program. This paper will review the results obtained in developing and testing new temperature sensors and references during the course of the project. The possible continuation of these activities in the future is discussed. (authors)

  8. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  9. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    International Nuclear Information System (INIS)

    Saurwein, J.

    2011-01-01

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  10. History of the nuclear power generation technology in Japan

    International Nuclear Information System (INIS)

    2016-01-01

    First, the outline of the historical fact is described. Next, the research institution, the industrial world, and the government which were the bearers of technical development are described and look back upon the history of development from each position. The focus is a viewpoint based on refection of a Fukushima disaster. 'Teachings from history' seen from each actor was described being based on the objective fact. Moreover, it focuses also on the society, the politics, and the economic factor which affected development of nuclear development. The following three were treated as themes. 1. Relation with the atomic power and the nonproliferation policy of the U.S. government. 2. Relation with public opinion or media. 3. Social responsibility of a society, or a scientist and an engineering person. Finally, based on these teachings, the viewpoint considered to be important for future nuclear power generation and technical development was summarized as a proposal. (author)

  11. INL Human Resource Development and the Next-Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia, Fernando; Metcalf, Richard Royce Madison

    2010-07-01

    It is the stated goal of the Next Generation Safeguards Initiative (NGSI) to promote the development of a strengthened nuclear safeguards base, one with the potential to advance the secure and peaceful implementation of nuclear energy world-wide. To meet this goal, the initiative, among other things, has sought to develop a revitalized effort to ensure the continued availability of next generation safeguards professionals. Accordingly, this paper serves to outline the human capital building strategies taken by Idaho National Laboratory (INL) in line with the NGSI. Various components are presented in detail, including INL’s efforts directed at university outreach, in particular the laboratory’s summer internship program, along with the development of various innovative training programs and long-term oriented strategies for student professional development. Special highlights include a video training series, developed by INL in cooperation with LLNL and other laboratories, which sought to expose students and entry-level professionals to the concept and practice of international nuclear safeguards.

  12. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  13. The nuclear power industry's ageing workforce: Transfer of knowledge to the next generation

    International Nuclear Information System (INIS)

    2004-06-01

    This report is intended primarily for senior and middle level managers in nuclear power plant operating organizations. It is intended to provide them practical information they can use to improve the transfer of knowledge from the current generation of NPP operating organization personnel to the next generation in an effective manner. The information provided in this report is based upon the experience of Member State operating organizations as well as other related industries. In September 2000, the IAEA held a technical meeting on the topic of an ageing workforce and declining educational infrastructures. The proceedings of this meeting were distributed on CD-ROM as Working Material. Several recent IAEA meetings including a senior level meeting held in June 2002 in Vienna and a technical session of the IAEA General Conference in September 2002 addressed methods of knowledge transfer. This is the first IAEA report published on this specific topic. In 2000, the IAEA Technical Working Group on the Training and Qualification of NPP Personnel (TWG-T and Q) suggested that the IAEA should develop a publication on the definition of core competencies to be maintained by an NPP operating organization. The TWG-T and Q suggested that this TECDOC should provide additional detail beyond that specified in the recently revised Safety Guide NS-G-2.8, Recruitment, Qualification and Training of Personnel for Nuclear Power Plants. This task was included in the approved programme for 2002-2003. In March 2001, IAEA-TECDOC-1204, A Systematic Approach to Human Performance Improvement: Training Solutions was published. This TECDOC provides a comprehensive list of core competencies. These competencies provide the additional detail beyond that specified in Safety Guide NS-G-2.8 that the TWG-T and Q had suggested. The aspect of core competencies that is not addressed in IAEA-TECDOC-1204 is how to effectively transfer these competencies to the generation that replaces the workforce that

  14. Education and public relations in nuclear power toward the next generation in Korea

    International Nuclear Information System (INIS)

    I, Han-Joo; Seo, Doo-Han.

    1989-01-01

    The report outlines the education in nuclear engineering in colleges and universities in Korea, experiments and training in nuclear reactor operation, research project for education in peaceful utilization of nuclear power, and public relations activities and special plans intended for the new generation in the nation. Programs covering the education of students in nuclear engineering in colleges and universities in Korea, and public relations toward some selected groups and brackets have been conducted successfully, producing good results. On the other hand, some improvements in educational activities, including the revision of textbooks, are required in such a field of education of pupils in primary, middle and high schools. Specially-designed introductory courses and advanced courses in the peaceful utilization of nuclear power should be established to ensure that students in scientific or technological fields other than nuclear engineering will gain deeper understanding of the issue. For this, the preparation of textbooks are currently under way. It is hoped that public relations activities will be expanded on a more continuous and consistent basis, instead of the current intermittent basis, by making good use of the mass media to distribute information among the general public. (Nogami. K.)

  15. Education and public relations in nuclear power toward the next generation in Korea

    Energy Technology Data Exchange (ETDEWEB)

    I, Han-Joo; Seo, Doo-Han.

    1989-02-01

    The report outlines the education in nuclear engineering in colleges and universities in Korea, experiments and training in nuclear reactor operation, research project for education in peaceful utilization of nuclear power, and public relations activities and special plans intended for the new generation in the nation. Programs covering the education of students in nuclear engineering in colleges and universities in Korea, and public relations toward some selected groups and brackets have been conducted successfully, producing good results. On the other hand, some improvements in educational activities, including the revision of textbooks, are required in such a field of education of pupils in primary, middle and high schools. Specially-designed introductory courses and advanced courses in the peaceful utilization of nuclear power should be established to ensure that students in scientific or technological fields other than nuclear engineering will gain deeper understanding of the issue. For this, the preparation of textbooks are currently under way. It is hoped that public relations activities will be expanded on a more continuous and consistent basis, instead of the current intermittent basis, by making good use of the mass media to distribute information among the general public. (Nogami. K.).

  16. Nuclear power - a business driver for the next generation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.R. [American Nuclear Society, La Grange Park, Illinois (United States)

    2013-07-01

    This paper the business aspects of nuclear power. It gives a snapshot of energy sources in the US and the distribution of electricity generation between coal, natural gas, hydropower, renewables such as biomass, geothermal, solar, wind, petroleum and other gases. Nuclear power continues to be an important source of electricity. It outlines the impact of new construction in creating jobs, economics and price stability of electricity.

  17. Technology Road-map Update for Generation IV Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2014-01-01

    This Technology Road-map Update provides an assessment of progress made by the Generation IV International Forum (GIF) in the development of the six systems selected when the original Technology Road-map was published in 2002. More importantly, it provides an overview of the major R and D objectives and milestones for the coming decade, aiming to achieve the Generation IV goals of sustainability, safety and reliability, economic competitiveness, proliferation resistance and physical protection. Lessons learnt from the Fukushima Daiichi nuclear power plant accident are taken into account to ensure that Generation IV systems attain the highest levels of safety, with the development of specific safety design criteria that are applicable across the six systems. Accomplishing the ten-year R and D objectives set out in this new Road-map should allow the more advanced Generation IV systems to move towards the demonstration phase. (authors)

  18. Perspectives on the development of next generation reactor systems safety analysis codes

    International Nuclear Information System (INIS)

    Zhang, H.

    2015-01-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  19. Perspectives on the development of next generation reactor systems safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: Hongbin.Zhang@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-07-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  20. Next generation initiation techniques

    Science.gov (United States)

    Warner, Tom; Derber, John; Zupanski, Milija; Cohn, Steve; Verlinde, Hans

    1993-01-01

    Four-dimensional data assimilation strategies can generally be classified as either current or next generation, depending upon whether they are used operationally or not. Current-generation data-assimilation techniques are those that are presently used routinely in operational-forecasting or research applications. They can be classified into the following categories: intermittent assimilation, Newtonian relaxation, and physical initialization. It should be noted that these techniques are the subject of continued research, and their improvement will parallel the development of next generation techniques described by the other speakers. Next generation assimilation techniques are those that are under development but are not yet used operationally. Most of these procedures are derived from control theory or variational methods and primarily represent continuous assimilation approaches, in which the data and model dynamics are 'fitted' to each other in an optimal way. Another 'next generation' category is the initialization of convective-scale models. Intermittent assimilation systems use an objective analysis to combine all observations within a time window that is centered on the analysis time. Continuous first-generation assimilation systems are usually based on the Newtonian-relaxation or 'nudging' techniques. Physical initialization procedures generally involve the use of standard or nonstandard data to force some physical process in the model during an assimilation period. Under the topic of next-generation assimilation techniques, variational approaches are currently being actively developed. Variational approaches seek to minimize a cost or penalty function which measures a model's fit to observations, background fields and other imposed constraints. Alternatively, the Kalman filter technique, which is also under investigation as a data assimilation procedure for numerical weather prediction, can yield acceptable initial conditions for mesoscale models. The

  1. Overview of space nuclear technologies and the American Nuclear Society

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.

    2000-01-01

    The American Nuclear Society (ANS) has seen an aspect of the universe where nuclear technology is the best energy source available for power, transportation, etc. The National Aeronautics and Space Administration (NASA) has been exploiting this aspect of the universe by sending machines and humans into it and exploring, colonizing, industrializing, developing, inhabiting, etc. Space is the final frontier, and nuclear technology is the best suited for today's or the next century's space exploration and development. Many aspects of nuclear technology and its uses in space will be needed. ANS encompasses these and many more aspects of nuclear technology, and all have some role to play in the exploration and development of space. It should be ANS's intent to be an advisory body to NASA on the nuclear aspects of space exploration

  2. Developing the User Experience for a Next Generation Nuclear Fuel Cycle Simulator (NGFCS)

    International Nuclear Information System (INIS)

    Wilson, Paul H.; Schneider, Erich; Pascucci, Valerio; Livnat, Yarden; Hiromoto, Robert; Scopatz, Anthony; Brossard, Dominique; Scheufele, Dietram

    2017-01-01

    This project made substantial progress on its original aim for providing a modern user experience for nuclear fuel cycle analysis while also creating a robust and functional next- generation fuel cycle simulator. The Cyclus kernel experienced a dramatic clari cation of its interfaces and data model, becoming a full- edged agent-based framework, with strong support for third party developers of novel archetypes. The most important contribution of this project to the the development of Cyclus was the introduction of tools to facilitate archetype development. These include automated code generation of routine archetype components, metadata annotations to provide re ection and rich description of each data member's purpose, and mechanisms for input validation and output of complex data. A comprehensive social science investigation of decision makers' interests in nuclear fuel cycles, and speci cally their interests in nuclear fuel cycle simulators (NFCSs) as tools for understanding nuclear fuel cycle options, was conducted. This included document review and analysis, stakeholder interviews, and a survey of decision makers. This information was used to study the role of visualization formats and features in communicating information about nuclear fuel cycles. A exible and user-friendly tool was developed for building Cyclus analysis models, featuring a drag-and-drop interface and automatic input form generation for novel archetypes. Cycic allows users to design fuel cycles from arbitrary collections of facilities for the first time, with mechanisms that contribute to consistency within that fuel cycle. Interacting with some of the metadata capabilities introduced in the above-mentioned tools to support archetype development, Cycic also automates the generation of user input forms for novel archetypes with little to no special knowledge required by the archetype developers. Translation of the fundamental metrics of Cyclus into more interesting quantities is

  3. Developing the User Experience for a Next Generation Nuclear Fuel Cycle Simulator (NGFCS)

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Paul H. [Univ. of Wisconsin, Madison, WI (United States); Schneider, Erich [Univ. of Texas, Austin, TX (United States); Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States); Livnat, Yarden [Univ. of Utah, Salt Lake City, UT (United States); Hiromoto, Robert [Univ. of Idaho, Moscow, ID (United States); Scopatz, Anthony [Univ. of Wisconsin, Madison, WI (United States); Brossard, Dominique [Univ. of Wisconsin, Madison, WI (United States); Scheufele, Dietram [Univ. of Wisconsin, Madison, WI (United States)

    2017-07-30

    This project made substantial progress on its original aim for providing a modern user experience for nuclear fuel cycle analysis while also creating a robust and functional next- generation fuel cycle simulator. The Cyclus kernel experienced a dramatic clari cation of its interfaces and data model, becoming a full- edged agent-based framework, with strong support for third party developers of novel archetypes. The most important contribution of this project to the the development of Cyclus was the introduction of tools to facilitate archetype development. These include automated code generation of routine archetype components, metadata annotations to provide re ection and rich description of each data member's purpose, and mechanisms for input validation and output of complex data. A comprehensive social science investigation of decision makers' interests in nuclear fuel cycles, and speci cally their interests in nuclear fuel cycle simulators (NFCSs) as tools for understanding nuclear fuel cycle options, was conducted. This included document review and analysis, stakeholder interviews, and a survey of decision makers. This information was used to study the role of visualization formats and features in communicating information about nuclear fuel cycles. A exible and user-friendly tool was developed for building Cyclus analysis models, featuring a drag-and-drop interface and automatic input form generation for novel archetypes. Cycic allows users to design fuel cycles from arbitrary collections of facilities for the rst time, with mechanisms that contribute to consistency within that fuel cycle. Interacting with some of the metadata capabilities introduced in the above-mentioned tools to support archetype development, Cycic also automates the generation of user input forms for novel archetypes with little to no special knowledge required by the archetype developers. Translation of the fundamental metrics of Cyclus into more interesting quantities is

  4. Nuclear fission today and tomorrow: from renaissance to technological breakthrough (Generation IV)

    International Nuclear Information System (INIS)

    Van Goethem, G.

    2010-01-01

    This paper describes briefly the major scientific and technological challenges related to the very innovative nuclear fission reactor systems to be deployed at the horizon 2040 (called Generation IV). The paper focuses on the benefits of the Generation IV systems, according to criteria or technology goals established at the international level (Generation IV International Forum (GIF)). This goals are drastic improvements on four areas: sustainable development, industrial competitiveness, safety and reliability and proliferation resistance. The focus is on the design objectives and associated research issues that have been agreed upon internationally to meet these four ambitious goals. (author)

  5. Next generation solar energy. From fundamentals to applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the International Conference between 12th and 14th December, 2011 in Erlangen (Federal Republic of Germany) the following lectures were presented: (1) The opto-electronic physics required to approach the Shockley-Queisser efficiency limit (E. Yablonovitch); (2) The Shockley-Queisser-limit and beyond (G.H. Bauer); (3) Designing composite nanomaterials for photovoltaic devices (B. Rech); (4) Light-Material interactions in energy conversion (H. Atwater); (5) Functional imaging of hybrid nanostructures - Visualizing mechanisms of solar energy utilization (L. Lauhon); (6) Are photosynthetic proteins suitable for PV applications (Y. Rosenwaks); (7) Detailed balance limit in photovoltaic systems (U. Rau); (8) Plasmonics and nanophotonics for next generation photovoltaics (E. Garnett); (9) Dispersion, wave propagation and efficiency analysis of nanowire solar cells (B. Witzigmann); (10) Application of nanostructures to next generation photovoltaics - Opportunities and challenges from an industrial research perspective (L. Tsakalakos); (11) Triplet states in organic and organometallic photovoltaic cells (K.S. Schanze); (12) New photoelectrode architectures (J.T. Hupp); (13) Dendrimers for optoelectronic and photovoltaic applications (P. Ceroni); (14) Photon management with luminescent materials (J. Goldschmidt); (15) Economical aspects of next generation solar cell technologies (W. Hoffmann); (16) Scalability in solar energy conversion - First-row transition metal-based chromophores for dye-sensitized solar cells (J. McCusker); (17) Designing organic materials for photovoltaic devices (A. Harriman); (18) Molecular photovoltaics - What can we learn from model studies (B. Albinsson); (19) Porphyrin-sensitised titanium dioxide solar cells (D. Officer); (20) Light-harvesting: Charge separation, and charge-transportation properties of novel materials for organic photovoltaics (H. Imahori); (21) Phthalocyanines for molecular photovoltaics (T. Torres); (22) Photophysics of

  6. Nuclear science and technology in the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Alang Md Rashid, Nahrul Khair [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Selangor (Malaysia)

    1997-12-01

    The issues discussed were: Looking on the positive side, despite adverse public reaction, ns and t in general continues to gain followers and users. Nuclear power reactors are still generating electricity and its other peaceful applications are contributing to the development of the socioeconomic sectors of many countries. The network of international as wen as regional cooperation for nuclear safety and agreement for nuclear weapons free zones, among others, should provide the international administrative infrastructure for ns and t to continue serving humanity in the next century. In respect of nuclear power, the Asia and Pacific region is experiencing rapid growth. Its energy needs will increase in the future. At some point, nuclear power may become favorable again as the ability of conventional energy resources to fifflu energy needs decreases and the pressure to reduce environmental burden increases. Within the next century, other regions of the world is expected to be on the same path. The early starters of the West would experience capacity degradation due to aging of their nuclear reactors; this needs to be replaced. If the two coincides, then there would be enough motivation for further development and utilization of ns and t for power production. In the non-power applications, industrialization of countries in the developing regions will create new avenues for nuclear technology to grow. Efforts to demilitarized the technology would create new civilian applications. Again assuming they achieve a synergy, growth of ns and t in the future can be expected.

  7. Nuclear science and technology in the 21st century

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    1997-01-01

    The issues discussed were: Looking on the positive side, despite adverse public reaction, ns and t in general continues to gain followers and users. Nuclear power reactors are still generating electricity and its other peaceful applications are contributing to the development of the socioeconomic sectors of many countries. The network of international as wen as regional cooperation for nuclear safety and agreement for nuclear weapons free zones, among others, should provide the international administrative infrastructure for ns and t to continue serving humanity in the next century. In respect of nuclear power, the Asia and Pacific region is experiencing rapid growth. Its energy needs will increase in the future. At some point, nuclear power may become favorable again as the ability of conventional energy resources to fifflu energy needs decreases and the pressure to reduce environmental burden increases. Within the next century, other regions of the world is expected to be on the same path. The early starters of the West would experience capacity degradation due to aging of their nuclear reactors; this needs to be replaced. If the two coincides, then there would be enough motivation for further development and utilization of ns and t for power production. In the non-power applications, industrialization of countries in the developing regions will create new avenues for nuclear technology to grow. Efforts to demilitarized the technology would create new civilian applications. Again assuming they achieve a synergy, growth of ns and t in the future can be expected

  8. Beyond Human Capital Development: Balanced Safeguards Workforce Metrics and the Next Generation Safeguards Workforce

    International Nuclear Information System (INIS)

    2014-01-01

    Since its establishment in 2008, the Next Generation Safeguards Initiative (NGSI) has achieved a number of objectives under its five pillars: concepts and approaches, policy development and outreach, international nuclear safeguards engagement, technology development, and human capital development (HCD). As a result of these efforts, safeguards has become much more visible as a critical U.S. national security interest across the U.S. Department of Energy (DOE) complex. However, limited budgets have since created challenges in a number of areas. Arguably, one of the more serious challenges involves NGSI's ability to integrate entry-level staff into safeguards projects. Laissez fair management of this issue across the complex can lead to wasteful project implementation and endanger NGSI's long-term sustainability. The authors provide a quantitative analysis of this problem, focusing on the demographics of the current safeguards workforce and compounding pressures to operate cost-effectively, transfer knowledge to the next generation of safeguards professionals, and sustain NGSI safeguards investments.

  9. Role of nuclear energy in the next decades

    Energy Technology Data Exchange (ETDEWEB)

    Beckurts, K H [Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.)

    1978-01-01

    The dispute over nuclear energy has led in many countries to an extremely involved entanglement of technology, politics, economy, judiciary and ideology. The role of nuclear energy will be determined in the next decades more by politico-psychological factors than by economic-technical ones; predictions for the future are thus - as in many other fields - uncertain. However, as the case may be, the role of nuclear energy will very decisively depend on the state of development which the fuel cycle will have reached. The article concentrates therefore on this sector, and the questions of uranium supply, waste management and proliferation are dealt with in detail.

  10. On reactor type comparisons for the next generation of reactors

    International Nuclear Information System (INIS)

    Alesso, H.P.; Majumdar, K.C.

    1991-01-01

    In this paper, we present a broad comparison of studies for a selected set of parameters for different nuclear reactor types including the next generation. This serves as an overview of key parameters which provide a semi-quantitative decision basis for selecting nuclear strategies. Out of a number of advanced reactor designs of the LWR type, gas cooled type, and FBR type, currently on the drawing board, the Advanced Light Water Reactors (ALWR) seem to have some edge over other types of the next generation of reactors for the near-term application. This is based on a number of attributes related to the benefit of the vast operating experience with LWRs coupled with an estimated low risk profile, economics of scale, degree of utilization of passive systems, simplification in the plant design and layout, modular fabrication and manufacturing. 32 refs., 1 fig., 3 tabs

  11. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 3

    International Nuclear Information System (INIS)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2006-01-01

    This is the 2006 update (Revision 3) of the NGNP Materials Research and Development Program Plan. This law established that the U.S Department of Energy (DOE) Secretary of Energy shall establish a ''Next Generation Nuclear Plant'' (NGNP) project. The NGNP project named in the Act was given the following attributes and guiding principles to manage its development: (1) The NGNP consists of research, development, design (R and DD), construction, and operation of a prototype reactor to generate electricity and hydrogen; (2) The project shall be managed by the DOE Office of Nuclear Energy; (3) The Idaho National Laboratory (INL) shall be the lead DOE laboratory for the NGNP; (4) The INL shall establish collaborations with selected institutions of higher education, other research institutes and international researchers; (5) The INL shall organize an industrial consortium of partners for cost-shared R and DD, construction; (6) The project shall be sited at the INL; (7) The project shall be licensed by the Nuclear Regulatory Commission (NRC) and by July, 2008 the NRC and DOE shall jointly submit a licensing strategy to Congress; (8) The project shall be organized to maximize technical interchange with the nuclear power industry, nuclear power plant construction firms, the chemical process industry and to seek international cooperation, participation and contributions; (9) The Nuclear Energy Research Advisory Committee (NERAC) shall review all program plans for the NGNP; (10) Phase 1 of the project (selection of hydrogen production technology, conduct R and DD and initial design activities) shall be completed no later than September 30, 2011; (11) Phase 2 of the project (continue R and DD, develop final design, apply for a license, construct and start operations) shall be completed by September 30, 2021; and (12) Provision for authorization of appropriations was made. As a result of the direction provided, the INL and the DOE issued an NGNP Preliminary Project Management

  12. Nuclear material accounting: The next generation

    International Nuclear Information System (INIS)

    Kern, E.A.; McRae, L.P.; O'Callaghan, P.B.; Yearsley, D.

    1992-07-01

    The Westinghouse Hanford company (Westinghouse Hanford) and the Los Alamos National Laboratory (LANL) have undertaken a joint effort to develop a new generation material accounting system. The system will incorporate the latest advances in microcomputer hardware, software, and network technology. This system, the Local Area Network Material Accounting System (LANMAS), offers greater performance and functionality at a reduced overall cost. It also offers the possibility of establishing a standard among DOE and NRC facilities for material accounting. This report provides a discussion of this system

  13. Next Generation Safeguards Initiative: Human Capital Development

    International Nuclear Information System (INIS)

    Scholz, M.; Irola, G.; Glynn, K.

    2015-01-01

    Since 2008, the Human Capital Development (HCD) subprogramme of the U.S. National Nuclear Security Administration's (NNSA) Next Generation Safeguards Initiative (NGSI) has supported the recruitment, education, training, and retention of the next generation of international safeguards professionals to meet the needs of both the International Atomic Energy Agency (IAEA) and the United States. Specifically, HCD's efforts respond to data indicating that 82% of safeguards experts at U.S. Laboratories will have left the workforce within 15 years. This paper provides an update on the status of the subprogramme since its last presentation at the IAEA Safeguards Symposium in 2010. It highlights strengthened, integrated efforts in the areas of graduate and post-doctoral fellowships, young and midcareer professional support, short safeguards courses, and university engagement. It also discusses lessons learned from the U.S. experience in safeguards education and training as well as the importance of long-range strategies to develop a cohesive, effective, and efficient human capital development approach. (author)

  14. Final Report, Next-Generation Mega-Voltage Cargo-Imaging System for Cargo Conainer Inspection, March 2007

    Energy Technology Data Exchange (ETDEWEB)

    Dr. James Clayton, Ph.D., Varian Medical Systems-Security & Inspection Products; Dr. Emma Regentova, Ph.D, University of Nevada Las Vegas; Dr. Evangelos Yfantis, Ph.D., University of Nevada, Las Vegas

    2007-03-27

    The UNLV Research Foundation, as the primary award recipient, teamed with Varian Medical Systems-Security & Inspection Products and the University of Nevada Las Vegas (UNLV) for the purpose of conducting research and engineering related to a "next-generation" mega-voltage imaging (MVCI) system for inspection of cargo in large containers. The procurement and build-out of hardware for the MVCI project has been completed. The K-9 linear accelerator and an optimized X-ray detection system capable of efficiently detecting X-rays emitted from the accelerator after they have passed through the device is under test. The Office of Science financial assistance award has made possible the development of a system utilizing a technology which will have a profound positive impact on the security of U.S. seaports. The proposed project will ultimately result in critical research and development advances for the "next-generation" Linatron X-ray accelerator technology, thereby providing a safe, reliable and efficient fixed and mobile cargo inspection system, which will very significantly increase the fraction of cargo containers undergoing reliable inspection as the enter U.S. ports. Both NNSA/NA-22 and the Department of Homeland Security's Domestic Nuclear Detection Office are collaborating with UNLV and its team to make this technology available as soon as possible.

  15. Final Report, Next-Generation Mega-Voltage Cargo-Imaging System for Cargo Container Inspection, March 2007

    International Nuclear Information System (INIS)

    Dr. James Clayton, Ph.D., Varian Medical Systems-Security and Inspection Products; Dr. Emma Regentova, Ph.D, University of Nevada Las Vegas; Dr. Evangelos Yfantis, Ph.D., University of Nevada, Las Vegas

    2007-01-01

    The UNLV Research Foundation, as the primary award recipient, teamed with Varian Medical Systems-Security and Inspection Products and the University of Nevada Las Vegas (UNLV) for the purpose of conducting research and engineering related to a ''next-generation'' mega-voltage imaging (MVCI) system for inspection of cargo in large containers. The procurement and build-out of hardware for the MVCI project has been completed. The K-9 linear accelerator and an optimized X-ray detection system capable of efficiently detecting X-rays emitted from the accelerator after they have passed through the device is under test. The Office of Science financial assistance award has made possible the development of a system utilizing a technology which will have a profound positive impact on the security of U.S. seaports. The proposed project will ultimately result in critical research and development advances for the ''next-generation'' Linatron X-ray accelerator technology, thereby providing a safe, reliable and efficient fixed and mobile cargo inspection system, which will very significantly increase the fraction of cargo containers undergoing reliable inspection as the enter U.S. ports. Both NNSA/NA-22 and the Department of Homeland Security's Domestic Nuclear Detection Office are collaborating with UNLV and its team to make this technology available as soon as possible

  16. Next Generation Nuclear Plant Project 2009 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick; Jim Kinsey; Keith Perry; Dave Petti

    2010-05-01

    The mission of the NGNP Project is to broaden the environmental and economic benefits of nuclear energy technology to the United States and other economies by demonstrating its applicability to market sectors not served by light water reactors (LWRs). Those markets typically use fossil fuels to fulfill their energy needs, and high temperature gas-cooled reactors (HTGRs) like the NGNP can reduce this dependence and the resulting carbon footprint.

  17. The Coming Nuclear Renaissance for Next Generation Safeguards Specialists--Maximizing Potential and Minimizing the Risks

    International Nuclear Information System (INIS)

    Eipeldauer, Mary D.

    2009-01-01

    This document is intended to provide an overview of the workshop entitled 'The Coming Nuclear Renaissance for the Next Generation Safeguards Experts-Maximizing Benefits While Minimizing Proliferation Risks', conducted at Oak Ridge National Laboratory (ORNL) in partnership with the Y-12 National Security Complex (Y-12) and the Savannah River National Laboratory (SRNL). This document presents workshop objectives; lists the numerous participant universities and individuals, the nuclear nonproliferation lecture topics covered, and the facilities tours taken as part of the workshop; and discusses the university partnership sessions and proposed areas for collaboration between the universities and ORNL for 2009. Appendix A contains the agenda for the workshop; Appendix B lists the workshop attendees and presenters with contact information; Appendix C contains graphics of the evaluation form results and survey areas; and Appendix D summarizes the responses to the workshop evaluation form. The workshop was an opportunity for ORNL, Y-12, and SRNL staff with more than 30 years combined experience in nuclear nonproliferation to provide a comprehensive overview of their expertise for the university professors and their students. The overall goal of the workshop was to emphasize nonproliferation aspects of the nuclear fuel cycle and to identify specific areas where the universities and experts from operations and national laboratories could collaborate

  18. The Coming Nuclear Renaissance for Next Generation Safeguards Specialists--Maximizing Potential and Minimizing the Risks

    Energy Technology Data Exchange (ETDEWEB)

    Eipeldauer, Mary D [ORNL

    2009-01-01

    This document is intended to provide an overview of the workshop entitled 'The Coming Nuclear Renaissance for the Next Generation Safeguards Experts-Maximizing Benefits While Minimizing Proliferation Risks', conducted at Oak Ridge National Laboratory (ORNL) in partnership with the Y-12 National Security Complex (Y-12) and the Savannah River National Laboratory (SRNL). This document presents workshop objectives; lists the numerous participant universities and individuals, the nuclear nonproliferation lecture topics covered, and the facilities tours taken as part of the workshop; and discusses the university partnership sessions and proposed areas for collaboration between the universities and ORNL for 2009. Appendix A contains the agenda for the workshop; Appendix B lists the workshop attendees and presenters with contact information; Appendix C contains graphics of the evaluation form results and survey areas; and Appendix D summarizes the responses to the workshop evaluation form. The workshop was an opportunity for ORNL, Y-12, and SRNL staff with more than 30 years combined experience in nuclear nonproliferation to provide a comprehensive overview of their expertise for the university professors and their students. The overall goal of the workshop was to emphasize nonproliferation aspects of the nuclear fuel cycle and to identify specific areas where the universities and experts from operations and national laboratories could collaborate.

  19. Prediction of energy-related technology for next 30 years

    Energy Technology Data Exchange (ETDEWEB)

    Hashiguchi, Isao; Kondo, Satoru

    1987-12-01

    The report outlines major results of a survey concerning technologies expected to emerge during the next 30 years that was carried out by the Japan's Science and Technology Agency using the DELPHI method. The survey covered 51 technical issues in energy-related areas including fossil energy, nucler energy, natural energy, biomass and energy utilization techniques, and process-related areas including exploration, collection/extraction, transportation/storage, power generation, resources conversion and substitution. For each technical issue, investigation is made on its importance, time of realization, restrictions, procedure and responsible organization for promoting research and development, and government policy. Results show that the importance of nuclear energy will continue to increase and that diversification of energy sources, such as shift to coal, will also become more important. It is indicated that technological breakthroughs, such as the development of new superconducting materials, will accelerate the development of other techniques in related areas and simultaneously increase the importance of such techniques. The survey provides valuable basic data serving for predicting future social changes that may be caused by technical innovation or a shift in view on technology in the economic areas or in the society. (2 figs, 1 tab)

  20. EDF view on next generation reactor safety and operability issues

    International Nuclear Information System (INIS)

    Serviere, G.

    2002-01-01

    In the foreseeable future, EDF will have to compete in an economically de-regulated market. Nuclear currently accounts for more than 80% of the electricity generated by the company, and generation costs are quite competitive compared to that of other competing energies. It is so likely that nuclear units will remain the backbone of EDF generating fleet in the years to come. However, to remain a viable option for electricity generation in the longer term, nuclear will have to maintain both its cost-effectiveness and a very high safety level. This could seem quite straightforward considering the current situation where safety records are at an all time high and Operating and Maintenance costs are under tight control. In fact, it could be a real challenge. Competing fossil technologies progress and there is a concurrent trend to try and improve the performance of future nuclear units. However, in most cases, proposed designs depart from the well-known Light Water Reactor (LWR) technology. They are either new concepts or designs already tested in the past and modified to address some of their perceived drawbacks. Contrary to the prevailing situation where short-term alternatives like the EPR, the ABWR or the AP600 largely build upon experience gathered on operating units, most designs contemplated for implementation beyond 2020 or 2030 cannot be considered proven. Considering the above mentioned uncertainties, EDF have confirmed their preference for proven designs with higher outputs, such as the EPR. However, it would appear unreasonable to consider that new designs are doomed to fail: they could well turn out to be adequate for specific niches in a de-regulated market and provide reasonable alternatives for the utility. Nevertheless, for such an alternative to be considered, additional evidence is needed that utility preferences are reflected in the design, and that all potential technical issues have been identified, adequately addressed and resolved. Currently, EDF

  1. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Grover, S. Blaine

    2009-01-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  2. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  3. Examination of concept of next generation computer. Progress report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Hasegawa, Yukihiro; Hirayama, Toshio

    2000-12-01

    The Center for Promotion of Computational Science and Engineering has conducted R and D works on the technology of parallel processing and has started the examination of the next generation computer in 1999. This report describes the behavior analyses of quantum calculation codes. It also describes the consideration for the analyses and examination results for the method to reduce cash misses. Furthermore, it describes a performance simulator that is being developed to quantitatively examine the concept of the next generation computer. (author)

  4. China's nuclear technology for economy growth

    International Nuclear Information System (INIS)

    Lu, Yanxiao

    1998-01-01

    The transfer of nuclear technology to practical applications in energy, agriculture, food, industries and others has made important contributions to the prosperity of the national economy and the improvement of living standard of Chinese people in the past 40 years. Facing the great challenges in upcoming years, sustained efforts are needed to promote industrialization, commercialization and internationalization of nuclear technology. Rapid economic growth is providing the golden opportunities for the development of nuclear technology in China. With the trends to globalization of economic development, civilian applications of nuclear technology will have to be involved in international co-operation and competitive world markets to narrow the gap between China and other developed countries in the world in the next century. (author)

  5. Spallation-based science and technology and associated nuclear data requirements

    International Nuclear Information System (INIS)

    Bowman, C.D.; Lisowski, P.W.; Arthur, E.D.

    1990-01-01

    Rapid advances in accelerator technology in recent years promise average proton beam currents as high as 250 mA with energies greater than one GeV. Such an accelerator could produce very high intensities of neutrons and other nuclear particles thus opening up new areas of science and technology. An example is the efficient burning of transuranic and fission product waste. With such a spallation-burner it appears that high-level waste might be converted to low-level waste on a time scale comparable to the human lifespan at a reasonable additional cost for electric power generation. The emphasis of this paper is on the design of a high power proton target for neutron production, on the nuclear data needed to operate this target safely and effectively, and on data requirements for transmutation. It is suggested that a pilot facility consisting of a 1.6 GeV accelerator and target operating at 25 ma is the next major step in developing this technology. Bursts of protons near the terawatt level might also be generated using such an accelerator with a proton accumulator ring. Research prospects based on such proton bursts are briefly described. The status of established nuclear data needs and of accelerator-based sources for nuclear data measurements is reviewed. (author)

  6. A Next-Generation Automated Holdup Measurement System (HMS-5)

    International Nuclear Information System (INIS)

    Gariazzo, Claudio Andres; Smith, Steven E.; Solodov, Alexander A

    2007-01-01

    Holdup Measurement System 4 software (HMS4) has been in use at facilities to systematically measure and verify the amounts of uranium holdup in process facilities under safeguards since its release in 2004. It is a system for measuring uranium and plutonium and archiving holdup data (via barcoded locations with information) which is essential for any internationally safeguarded facility to monitor all amounts of residual special nuclear material (SNM). Additionally, HMS4 has been tested by sites in Russia, the United States, South Africa, and China for more effective application. Comments and lessons learned have been received over time and an updated version of the software would enable the international partners to use a wider variety of commercial equipment existing at these facilities. In June 2005, the Oak Ridge National Laboratory (ORNL) and Los Alamos National Laboratory conducted a holdup measurement training course on HMS4 for subject matter experts from the Ulba Metallurgical Facility at Ust-Kamenogorsk, Kazakhstan, which included an additional external software package for improved measurements of low-enriched uranium by using higher energy gamma-rays more readily found. Due to not being currently integrated into HMS4, it would be greatly beneficial to include this application in the next generation HMS software package (HMS-5). This software system upgrade would assist the International Atomic Energy Agency (IAEA) in having a more comprehensive software package and having it tested at several safeguarded locations. When released, HMS4 only supported AMETEK/ORTEC equipment despite many facilities currently utilizing Canberra Industries technology (detectors, multi-channel analyzers, other hardware, and software packages). For HMS-5 to support all available hardware systems and to benefit the majority of international partners and the IAEA, Canberra technology must be integrated because of such widespread use of its hardware. Furthermore, newly developed

  7. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  8. Reactor core and passive safety systems descriptions of a next generation pressure tube reactor - mechanical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Gaudet, M.; Rhodes, D.; Hamilton, H.; Pencer, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Canada has been developing a channel-type supercritical water-cooled nuclear reactor concept, often called the Canadian SCWR. The objective of this reactor concept is to meet the technology goals of the Generation IV International Forum (GIF) for the next generation nuclear reactor development, which include enhanced safety features (inherent safe operation and deploying passive safety features), improved resource utilization, sustainable fuel cycle, and greater proliferation resistance than Generation III nuclear reactors. The Canadian SCWR core concept consists of a high-pressure inlet plenum, a separate low-pressure heavy water moderator contained in a calandria vessel, and 336 pressure tubes surrounded by the moderator. The reactor uses supercritical water as a coolant, and a direct steam power cycle to generate electricity. The reactor concept incorporates advanced safety features such as passive core cooling, long-term decay heat rejection to the environment and fuel melt prevention via passive moderator cooling. These features significantly reduce core damage frequency relative to existing nuclear reactors. This paper presents a description of the design concepts for the Canadian SCWR core, reactor building layout and the plant layout. Passive safety concepts are also described that address containment and core cooling following a loss-of coolant accident, as well as long term reactor heat removal at station blackout conditions. (author)

  9. [Application of next-generation semiconductor sequencing technologies in genetic diagnosis of inherited cardiomyopathies].

    Science.gov (United States)

    Zhao, Yue; Zhang, Hong; Xia, Xue-shan

    2015-07-01

    Inherited cardiomyopathy is the most common hereditary cardiac disease. It also causes a significant proportion of sudden cardiac deaths in young adults and athletes. So far, approximately one hundred genes have been reported to be involved in cardiomyopathies through different mechanisms. Therefore, the identification of the genetic basis and disease mechanisms of cardiomyopathies are important for establishing a clinical diagnosis and genetic testing. Next-generation semiconductor sequencing (NGSS) technology platform is a high-throughput sequencer capable of analyzing clinically derived genomes with high productivity, sensitivity and specificity. It was launched in 2010 by Life Technologies of USA, and it is based on a high density semiconductor chip, which was covered with tens of thousands of wells. NGSS has been successfully used in candidate gene mutation screening to identify hereditary disease. In this review, we summarize these genetic variations, challenge and application of NGSS in inherited cardiomyopathy, and its value in disease diagnosis, prevention and treatment.

  10. Precision linac and laser technologies for nuclear photonics gamma-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.; Cross, R. R.; Gibson, D. J.; Hall, J.; Marsh, R. A.; Messerly, M.; Wu, S. S.; Siders, C. W.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East Avenue, Livermore, California 94550 (United States)

    2012-05-15

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratory is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.

  11. Nuclear renaissance and thorium as a brighten of the next nuclear era

    International Nuclear Information System (INIS)

    Uenak, T.

    2001-01-01

    evident that today's nuclear technology based on U-235 and Pu-239 fissile materials could not really guarantee these basic principles of nuclear renaissance for the next nuclear era. For this reason, it seems very probable that these handicaps will be eliminated by the use of thorium based nuclear fuels in the future nuclear energy production systems

  12. Carrier ethernet network control plane based on the Next Generation Network

    DEFF Research Database (Denmark)

    Fu, Rong; Wang, Yanmeng; Berger, Michael Stubert

    2008-01-01

    This paper contributes on presenting a step towards the realization of Carrier Ethernet control plane based on the next generation network (NGN). Specifically, transport MPLS (T-MPLS) is taken as the transport technology in Carrier Ethernet. It begins with providing an overview of the evolving...... architecture of the next generation network (NGN). As an essential candidate among the NGN transport technologies, the definition of Carrier Ethernet (CE) is also introduced here. The second part of this paper depicts the contribution on the T-MPLS based Carrier Ethernet network with control plane based on NGN...... at illustrating the improvement of the Carrier Ethernet network with the NGN control plane....

  13. Report on preceding surveys and researches in fiscal 1999. Surveys and researches on the next generation cold emission technology; 1999 nendo jisedai cold emission gijutsu no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The cold emission (CE) technology must be developed as the base technology to realize the next generation flat panel displays, fluorescent display tubes, communication use microwave tubes, electron microscopes, electric power conversion elements, image photographing tubes, and different kinds of sensors. Therefore, this paper describes surveys and researches performed on technological problems and technological seeds in a hyperfine processing technology for cold emitters, and technologies to control, evaluate and simulate solid surface of cold emitters. Different kinds of applied devices that can be realized by using the CE technology are also surveyed and researched. Section 1 summarizes the progress in information communicating technologies and the changes in terminal utilization environment. Section 2 describes the application of a display technology for information terminals and a cold cathode. Section 3 investigates elementary technologies for developing electric field radiation display. Section 4 investigates physics and an evaluation technology for the next generation cold cathode. Section 5 describes the result of the investigations re-commissioned to Tsukuba University for measuring microscopic work function on solid surface by using the scanning probe process. Section 6 proposes a research and development project for the 'next generation CE technology'. (NEDO)

  14. Unbundling in Current Broadband and Next-Generation Ultra-Broadband Access Networks

    Science.gov (United States)

    Gaudino, Roberto; Giuliano, Romeo; Mazzenga, Franco; Valcarenghi, Luca; Vatalaro, Francesco

    2014-05-01

    This article overviews the methods that are currently under investigation for implementing multi-operator open-access/shared-access techniques in next-generation access ultra-broadband architectures, starting from the traditional "unbundling-of-the-local-loop" techniques implemented in legacy twisted-pair digital subscriber line access networks. A straightforward replication of these copper-based unbundling-of-the-local-loop techniques is usually not feasible on next-generation access networks, including fiber-to-the-home point-to-multipoint passive optical networks. To investigate this issue, the article first gives a concise description of traditional copper-based unbundling-of-the-local-loop solutions, then focalizes on both next-generation access hybrid fiber-copper digital subscriber line fiber-to-the-cabinet scenarios and on fiber to the home by accounting for the mix of regulatory and technological reasons driving the next-generation access migration path, focusing mostly on the European situation.

  15. Next Generation Life Support (NGLS): Rapid Cycle Amine Swing Bed

    Data.gov (United States)

    National Aeronautics and Space Administration — The Rapid Cycle Amine (RCA) swingbed has been identified as a technology with high potential to meet the stringent requirements for the next generation spacesuit's...

  16. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study

    International Nuclear Information System (INIS)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-01-01

    Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning

  17. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning.

  18. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  19. Estabilishing requirements for the next generation of pressurized water reactors--reducing the uncertainty

    International Nuclear Information System (INIS)

    Chernock, W.P.; Corcoran, W.R.; Rasin, W.H.; Stahlkopf, K.E.

    1987-01-01

    The Electric Power Research Institute is managing a major effort to establish requirements for the next generation of U.S. light water reactors. This effort is the vital first step in preserving the viability of the nuclear option to contribute to meet U.S. national electric power capacity needs in the next century. Combustion Engineering, Inc. and Duke Power Company formed a team to participate in the EPRI program which is guided by a Utility Steering committee consisting of experienced utility technical executives. A major thrust of the program is to reduce the uncertainties which would be faced by the utility executives in choosing the nuclear option. The uncertainties to be reduced include those related to safety, economic, operational, and regulatory aspects of advanced light water reactors. This paper overviews the Requirements Document program as it relates to the U.S. Advanced Light Water Reactor (ALWR) effort in reducing these uncertainties and reports the status of efforts to establish requirements for the next generation of pressurized water reactors. It concentrates on progress made in reducing the uncertainties which would deter selection of the nuclear option for contributing to U.S. national electric power capacity needs in the next century and updates previous reports in the same area. (author)

  20. World nuclear generating capacity 1993/94

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is the annual summary of world nuclear generating capacity for 1994. A global summary is first provided, reviewing total installed capacity and growth in installed capacity over the next five years. A more detailed discussion of the nuclear efforts in 34 countries follows, with a tabular listing of nuclear projects in each of these countries. The listing includes reactor supplier, reactor type, size, current status, and date of commercial operation

  1. Next generation breeding.

    Science.gov (United States)

    Barabaschi, Delfina; Tondelli, Alessandro; Desiderio, Francesca; Volante, Andrea; Vaccino, Patrizia; Valè, Giampiero; Cattivelli, Luigi

    2016-01-01

    The genomic revolution of the past decade has greatly improved our understanding of the genetic make-up of living organisms. The sequencing of crop genomes has completely changed our vision and interpretation of genome organization and evolution. Re-sequencing allows the identification of an unlimited number of markers as well as the analysis of germplasm allelic diversity based on allele mining approaches. High throughput marker technologies coupled with advanced phenotyping platforms provide new opportunities for discovering marker-trait associations which can sustain genomic-assisted breeding. The availability of genome sequencing information is enabling genome editing (site-specific mutagenesis), to obtain gene sequences desired by breeders. This review illustrates how next generation sequencing-derived information can be used to tailor genomic tools for different breeders' needs to revolutionize crop improvement. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Development of Next-Generation LWR (Light Water Reactor) in Japan

    International Nuclear Information System (INIS)

    Yamamoto, T.; Kasai, S.

    2011-01-01

    The Next-Generation Light Water Reactor development program was launched in Japan in April 2008. The primary objective of the program is to cope with the need to replace existing nuclear power plants in Japan after 2030. The reactors to be developed are also expected to be a global standard design. Several innovative features are envisioned, including a reactor core system with uranium enrichment above 5%, a seismic isolation system, the use of long-life materials and innovative water chemistry, innovative construction techniques, safety systems with the best mix of passive and active concepts, and innovative digital technologies to further enhance reactor safety, reliability, economics, etc. In the first 3 years, a plant design concept with these innovative features is established and the effectiveness of the program is reevaluated. The major part of the program will be completed in 2015. (author)

  3. The contribution of next generation sequencing to epilepsy genetics

    DEFF Research Database (Denmark)

    Møller, Rikke S.; Dahl, Hans A.; Helbig, Ingo

    2015-01-01

    During the last decade, next generation sequencing technologies such as targeted gene panels, whole exome sequencing and whole genome sequencing have led to an explosion of gene identifications in monogenic epilepsies including both familial epilepsies and severe epilepsies, often referred to as ...

  4. Biomolecule Sequencer: Next-Generation DNA Sequencing Technology for In-Flight Environmental Monitoring, Research, and Beyond

    Science.gov (United States)

    Smith, David J.; Burton, Aaron; Castro-Wallace, Sarah; John, Kristen; Stahl, Sarah E.; Dworkin, Jason Peter; Lupisella, Mark L.

    2016-01-01

    On the International Space Station (ISS), technologies capable of rapid microbial identification and disease diagnostics are not currently available. NASA still relies upon sample return for comprehensive, molecular-based sample characterization. Next-generation DNA sequencing is a powerful approach for identifying microorganisms in air, water, and surfaces onboard spacecraft. The Biomolecule Sequencer payload, manifested to SpaceX-9 and scheduled on the Increment 4748 research plan (June 2016), will assess the functionality of a commercially-available next-generation DNA sequencer in the microgravity environment of ISS. The MinION device from Oxford Nanopore Technologies (Oxford, UK) measures picoamp changes in electrical current dependent on nucleotide sequences of the DNA strand migrating through nanopores in the system. The hardware is exceptionally small (9.5 x 3.2 x 1.6 cm), lightweight (120 grams), and powered only by a USB connection. For the ISS technology demonstration, the Biomolecule Sequencer will be powered by a Microsoft Surface Pro3. Ground-prepared samples containing lambda bacteriophage, Escherichia coli, and mouse genomic DNA, will be launched and stored frozen on the ISS until experiment initiation. Immediately prior to sequencing, a crew member will collect and thaw frozen DNA samples, connect the sequencer to the Surface Pro3, inject thawed samples into a MinION flow cell, and initiate sequencing. At the completion of the sequencing run, data will be downlinked for ground analysis. Identical, synchronous ground controls will be used for data comparisons to determine sequencer functionality, run-time sequence, current dynamics, and overall accuracy. We will present our latest results from the ISS flight experiment the first time DNA has ever been sequenced in space and discuss the many potential applications of the Biomolecule Sequencer for environmental monitoring, medical diagnostics, higher fidelity and more adaptable Space Biology Human

  5. Preparation of next generation set of group cross sections. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2002-03-01

    This fiscal year, based on the examination result about the evaluation energy range of heavy element unresolved resonance cross sections, the upper energy limit of the energy range, where ultra-fine group cross sections are produced, was raised to 50 keV, and an improvement of the group cross section processing system was promoted. At the same time, reflecting the result of studies carried out till now, a function producing delayed neutron data was added to the general-purpose group cross section processing system , thus the preparation of general purpose group cross section processing system has been completed. On the other hand, the energy structure, data constitution and data contents of next generation group cross section set were determined, and the specification of a 151 groups next generation group cross section set was defined. Based on the above specification, a concrete library format of the next generation cross section set has been determined. After having carried out the above-described work, using the general-purpose group cross section processing system , which was complete in this study, with use of the JENDL-3. 2 evaluated nuclear data, the 151 groups next generation group cross section of 92 nuclides and the ultra fine group resonance cross section library for 29 nuclides have been prepared. Utilizing the 151 groups next generation group cross section set and the ultra-fine group resonance cross-section library, a bench mark test calculation of fast reactors has been performed by using an advanced lattice calculation code. It was confirmed, by comparing the calculation result with a calculation result of continuous energy Monte Carlo code, that the 151 groups next generation cross section set has sufficient accuracy. (author)

  6. THE TRAINING OF NEXT GENERATION DATA SCIENTISTS IN BIOMEDICINE.

    Science.gov (United States)

    Garmire, Lana X; Gliske, Stephen; Nguyen, Quynh C; Chen, Jonathan H; Nemati, Shamim; VAN Horn, John D; Moore, Jason H; Shreffler, Carol; Dunn, Michelle

    2017-01-01

    With the booming of new technologies, biomedical science has transformed into digitalized, data intensive science. Massive amount of data need to be analyzed and interpreted, demand a complete pipeline to train next generation data scientists. To meet this need, the transinstitutional Big Data to Knowledge (BD2K) Initiative has been implemented since 2014, complementing other NIH institutional efforts. In this report, we give an overview the BD2K K01 mentored scientist career awards, which have demonstrated early success. We address the specific trainings needed in representative data science areas, in order to make the next generation of data scientists in biomedicine.

  7. Generation IV Nuclear Energy Systems Construction Cost Reductions Through the Use of Virtual Environments

    International Nuclear Information System (INIS)

    Timothy Shaw; Vaugh Whisker

    2004-01-01

    The objective of this multi-phase project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. The project will test the suitability of immersive virtual reality technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups. This report presents the results of the completed project

  8. Generation IV Nuclear Energy Systems Construction Cost Reductions Through the Use of Virtual Environments

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Vaugh Whisker

    2004-02-28

    The objective of this multi-phase project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. The project will test the suitability of immersive virtual reality technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups. This report presents the results of the completed project.

  9. Soviet steam generator technology: fossil fuel and nuclear power plants

    International Nuclear Information System (INIS)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins with a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references

  10. Indian Nuclear Society annual conference-1994 on advanced technologies related to nuclear power: proceedings

    International Nuclear Information System (INIS)

    Grover, R.B.

    1994-01-01

    The focal theme of the conference is advanced technologies related to nuclear power. Over the past three decades civilian nuclear power plants around the world have accumulated about 6000 reactor years of experience and have performed quite well. Overall safety record has been satisfactory. However, nuclear community is trying to compete with its own record by trying to enhance the safety characteristics of the best operating plant. A safety culture has been established in the nuclear establishments, which is providing impetus to advances in all aspects of nuclear technology all over the world. India has ongoing programmes for the development of advanced reactors and related advanced technologies. Evolution of pressurised heavy water reactors in India, developments made in the design of advanced heavy water reactor and the fast reactor programme, are some of the topics covered in addition to highlighting worldwide developments for the next generation of light water reactors. India is one of the few countries in the world where expertise about complete fuel cycle is available. Developments in the back end of the fuel cycle, use of thorium and plutonium and other related issues are also discussed. Technology control regimes being advocated and adopted by developed nations make it imperative for us to indigenise every equipment and component that goes into a power plant. In view of this, some aspects of manufacturing technologies, inspection techniques and maintenance problems are also covered. Relevant papers are processed separately for INIS. (M.K.V.)

  11. Major NSSS design features of the Korean next generation reactor

    International Nuclear Information System (INIS)

    Kim, Insk; Kim, Dong-Su

    1999-01-01

    In order to meet national needs for increasing electric power generation in the Republic of Korea in the 2000s, the Korean nuclear development group (KNDG) is developing a standardized evolutionary advanced light water reactor (ALWR), the Korean Next Generation Reactor (KNGR). It is an advanced version of the successful Korean Standard Nuclear Power Plant (KSNP) design, which meets utility needs for safety enhancement, performance improvement and ease of operation and maintenance. The KNGR design starts fro the proven design concept of the currently operating KSNPs with uprated power and advanced design features required by the utility. The KNGR design is currently in the final stage of the basic design, and the paper describes the major nuclear steam supply system (NSSS) design features of the KNGR together with introduction of the KNGR development program. (author)

  12. Nuclear technology for a sustainable future

    International Nuclear Information System (INIS)

    2012-06-01

    The IAEA helps its Member States to use nuclear technology for a broad range of applications, from generating electricity to increasing food production, from fighting cancer to managing fresh water resources and protecting the world's seas and oceans. Despite the Fukushima Daiichi accident in March 2011, nuclear power will remain an important option for many countries. Use of nuclear power will continue to grow in the next few decades, although growth will be slower than was anticipated before the accident. The factors contributing to the continuing interest in nuclear power include increasing global demand for energy, as well as concerns about climate change, volatile fossil fuel prices and security of energy supply. It will be difficult for the world to achieve the twin goals of ensuring sustainable energy supplies and curbing greenhouse gases without nuclear power. It is up to each country to choose its optimal energy mix. The IAEA helps countries which opt for nuclear power to use it safely and securely. Every day, millions of people throughout the world benefit from the use of nuclear technology. The IAEA helps to make these benefits available to developing countries through its extensive Technical Cooperation programme. For instance, we provide assistance in areas such as human health (through our Programme of Action for Cancer Therapy), animal health (we were active partners in the successful global campaign to eradicate the deadly cattle disease rinderpest), food, water and the environment. The IAEA contributes to the development of global policies to address the energy, food, water and environmental challenges the world faces. We look forward to helping to make Rio+20 a success. This brochure provides an overview of the many ways in which nuclear technology is contributing to building the future we want.

  13. Integration of microbiological, epidemiological and next generation sequencing technologies data for the managing of nosocomial infections

    Directory of Open Access Journals (Sweden)

    Matteo Brilli

    2018-02-01

    Full Text Available At its core, the work of clinical microbiologists consists in the retrieving of a few bytes of information (species identification; metabolic capacities; staining and antigenic properties; antibiotic resistance profiles, etc. from pathogenic agents. The development of next generation sequencing technologies (NGS, and the possibility to determine the entire genome for bacterial pathogens, fungi and protozoans will likely introduce a breakthrough in the amount of information generated by clinical microbiology laboratories: from bytes to Megabytes of information, for a single isolate. In parallel, the development of novel informatics tools, designed for the management and analysis of the so-called Big Data, offers the possibility to search for patterns in databases collecting genomic and microbiological information on the pathogens, as well as epidemiological data and information on the clinical parameters of the patients. Nosocomial infections and antibiotic resistance will likely represent major challenges for clinical microbiologists, in the next decades. In this paper, we describe how bacterial genomics based on NGS, integrated with novel informatic tools, could contribute to the control of hospital infections and multi-drug resistant pathogens.

  14. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

  15. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    International Nuclear Information System (INIS)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-01-01

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications

  16. Results of Analyses of the Next Generation Solvent for Parsons

    International Nuclear Information System (INIS)

    Peters, T.; Washington, A.; Fink, S.

    2012-01-01

    Savannah River National Laboratory (SRNL) prepared a nominal 150 gallon batch of Next Generation Solvent (NGS) for Parsons. This material was then analyzed and tested for cesium mass transfer efficiency. The bulk of the results indicate that the solvent is qualified as acceptable for use in the upcoming pilot-scale testing at Parsons Technology Center. This report describes the analysis and testing of a batch of Next Generation Solvent (NGS) prepared in support of pilot-scale testing in the Parsons Technology Center. A total of ∼150 gallons of NGS solvent was prepared in late November of 2011. Details for the work are contained in a controlled laboratory notebook. Analysis of the Parsons NGS solvent indicates that the material is acceptable for use. SRNL is continuing to improve the analytical method for the guanidine.

  17. Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Salomon, Jesper; Søkilde, Rolf

    2009-01-01

    Recently, next-generation sequencing has been introduced as a promising, new platform for assessing the copy number of transcripts, while the existing microarray technology is considered less reliable for absolute, quantitative expression measurements. Nonetheless, so far, results from the two...... technologies have only been compared based on biological data, leading to the conclusion that, although they are somewhat correlated, expression values differ significantly. Here, we use synthetic RNA samples, resembling human microRNA samples, to find that microarray expression measures actually correlate...... better with sample RNA content than expression measures obtained from sequencing data. In addition, microarrays appear highly sensitive and perform equivalently to next-generation sequencing in terms of reproducibility and relative ratio quantification....

  18. Next Generation Nuclear Plant Materials Research and Development Program Plan

    International Nuclear Information System (INIS)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-01-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R and D) Program is responsible for performing R and D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R and D Program includes the following elements: (1) Developing a specific approach, program plan and other project management

  19. Development of source term evaluation method for Korean Next Generation Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keon Jae; Cheong, Jae Hak; Park, Jin Baek; Kim, Guk Gee [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-10-15

    This project had investigate several design features of radioactive waste processing system and method to predict nuclide concentration at primary coolant basic concept of next generation reactor and safety goals at the former phase. In this project several prediction methods of source term are evaluated conglomerately and detailed contents of this project are : model evaluation of nuclide concentration at Reactor Coolant System, evaluation of primary and secondary coolant concentration of reference Nuclear Power Plant(NPP), investigation of prediction parameter of source term evaluation, basic parameter of PWR, operational parameter, respectively, radionuclide removal system and adjustment values of reference NPP, suggestion of source term prediction method of next generation NPP.

  20. Spallation-based science and technology and associated nuclear data requirements

    International Nuclear Information System (INIS)

    Bowman, C.D.; Lisowski, P.W.; Arthur, E.D.

    1990-01-01

    Rapid advances in accelerator technology in recent years promise average proton beam currents as high as 250 mA with energies greater than one GeV. Such an accelerator could produce very high intensities of neutrons and other nuclear particles thus opening up new areas of science and technology. An example is the efficient burning of transuranic and fission product waste. With such a spallation-burner it appears that high-level waste might be converted to low-level waste on a time scale comparable to the human lifespan at a reasonable additional cost for electric power generation. The emphasis of this paper is on the design of a high power proton target for neutron production, on the nuclear data needed to operate this target safely and effectively, and on data requirements for transmutation. It is suggested that a pilot facility consisting of a 1.6 GeV accelerator and target operating at 25 ma is the next major step in developing this technology. Bursts of protons near the terawatt level might also be generated using such an accelerator with a proton accumulator ring. Research prospects based on such proton bursts are briefly described. The status of established nuclear data needs and of accelerator-based sources for nuclear data measurements is reviewed. 6 refs., 8 figs., 2 tabs

  1. Diagnostics of Primary Immunodeficiencies through Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Vera Gallo

    2016-11-01

    Full Text Available Background: Recently, a growing number of novel genetic defects underlying primary immunodeficiencies (PID have been identified, increasing the number of PID up to more than 250 well-defined forms. Next-generation sequencing (NGS technologies and proper filtering strategies greatly contributed to this rapid evolution, providing the possibility to rapidly and simultaneously analyze large numbers of genes or the whole exome. Objective: To evaluate the role of targeted next-generation sequencing and whole exome sequencing in the diagnosis of a case series, characterized by complex or atypical clinical features suggesting a PID, difficult to diagnose using the current diagnostic procedures.Methods: We retrospectively analyzed genetic variants identified through targeted next-generation sequencing or whole exome sequencing in 45 patients with complex PID of unknown etiology. Results: 40 variants were identified using targeted next-generation sequencing, while 5 were identified using whole exome sequencing. Newly identified genetic variants were classified into 4 groups: I variations associated with a well-defined PID; II variations associated with atypical features of a well-defined PID; III functionally relevant variations potentially involved in the immunological features; IV non-diagnostic genotype, in whom the link with phenotype is missing. We reached a conclusive genetic diagnosis in 7/45 patients (~16%. Among them, 4 patients presented with a typical well-defined PID. In the remaining 3 cases, mutations were associated with unexpected clinical features, expanding the phenotypic spectrum of typical PIDs. In addition, we identified 31 variants in 10 patients with complex phenotype, individually not causative per se of the disorder.Conclusion: NGS technologies represent a cost-effective and rapid first-line genetic approaches for the evaluation of complex PIDs. Whole exome sequencing, despite a moderate higher cost compared to targeted, is

  2. Next-generation sequencing for endocrine cancers: Recent advances and challenges.

    Science.gov (United States)

    Suresh, Padmanaban S; Venkatesh, Thejaswini; Tsutsumi, Rie; Shetty, Abhishek

    2017-05-01

    Contemporary molecular biology research tools have enriched numerous areas of biomedical research that address challenging diseases, including endocrine cancers (pituitary, thyroid, parathyroid, adrenal, testicular, ovarian, and neuroendocrine cancers). These tools have placed several intriguing clues before the scientific community. Endocrine cancers pose a major challenge in health care and research despite considerable attempts by researchers to understand their etiology. Microarray analyses have provided gene signatures from many cells, tissues, and organs that can differentiate healthy states from diseased ones, and even show patterns that correlate with stages of a disease. Microarray data can also elucidate the responses of endocrine tumors to therapeutic treatments. The rapid progress in next-generation sequencing methods has overcome many of the initial challenges of these technologies, and their advantages over microarray techniques have enabled them to emerge as valuable aids for clinical research applications (prognosis, identification of drug targets, etc.). A comprehensive review describing the recent advances in next-generation sequencing methods and their application in the evaluation of endocrine and endocrine-related cancers is lacking. The main purpose of this review is to illustrate the concepts that collectively constitute our current view of the possibilities offered by next-generation sequencing technological platforms, challenges to relevant applications, and perspectives on the future of clinical genetic testing of patients with endocrine tumors. We focus on recent discoveries in the use of next-generation sequencing methods for clinical diagnosis of endocrine tumors in patients and conclude with a discussion on persisting challenges and future objectives.

  3. Next generation multi-material 3D food printer concept

    NARCIS (Netherlands)

    Klomp, D.J.; Anderson, P.D.

    2017-01-01

    3D food printing is a new rapidly developing technology capable of creating food structures that are impossible to create with normal processing techniques. Challenges in this field are creating texture and multi-material food products. To address these challenges a next generation food printer will

  4. Next-generation sequencing approaches to understanding the oral microbiome

    NARCIS (Netherlands)

    Zaura, E.

    2012-01-01

    Until recently, the focus in dental research has been on studying a small fraction of the oral microbiome—so-called opportunistic pathogens. With the advent of next-generation sequencing (NGS) technologies, researchers now have the tools that allow for profiling of the microbiomes and metagenomes at

  5. Nuclear power for the next generation. Proceedings. Kernenergie fuer die naechste Generation. Berichte

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The Chernobyl reactor accident was just the last but not the only occasion that threw out the question of whether nuclear power generation has reached its peak, or probably already is on the decline, or whether there will be new chances for nuclear energy on the power market. The answer to these questions depends on a variety of factors, among which the development of demand for energy, and especially electrical energy, certainly is the decisive factor. The summarizing statements published in the proceedings in hand have been written in January 1986, i.e. before the Chernobyl reactor accident; but they still are relevant, as the long-term problems of energy policy persist, and nuclear energy has to tackle the same problems as before.

  6. Power generation from nuclear reactors in aerospace applications

    International Nuclear Information System (INIS)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion

  7. Power Generation from Nuclear Reactors in Aerospace Applications

    Science.gov (United States)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  8. Cost and schedule reduction for next-generation Candu

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Yu, S.; Pakan, M.; Soulard, M.

    2002-01-01

    AECL has developed a suite of technologies for Candu R reactors that enable the next step in the evolution of the Candu family of heavy-water-moderated fuel-channel reactors. These technologies have been combined in the design for the Advanced Candu Reactor TM1 (ACRTM), AECL's next generation Candu power plant. The ACR design builds extensively on the existing Candu experience base, but includes innovations, in design and in delivery technology, that provide very substantial reductions in capital cost and in project schedules. In this paper, main features of next generation design and delivery are summarized, to provide the background basis for the cost and schedule reductions that have been achieved. In particular the paper outlines the impact of the innovative design steps for ACR: - Selection of slightly enriched fuel bundle design; - Use of light water coolant in place of traditional Candu heavy water coolant; - Compact core design with unique reactor physics benefits; - Optimized coolant and turbine system conditions. In addition to the direct cost benefits arising from efficiency improvement, and from the reduction in heavy water, the next generation Candu configuration results in numerous additional indirect cost benefits, including: - Reduction in number and complexity of reactivity mechanisms; - Reduction in number of heavy water auxiliary systems; - Simplification in heat transport and its support systems; - Simplified human-machine interface. The paper also describes the ACR approach to design for constructability. The application of module assembly and open-top construction techniques, based on Candu and other worldwide experience, has been proven to generate savings in both schedule durations and overall project cost, by reducing premium on-site activities, and by improving efficiency of system and subsystem assembly. AECL's up-to-date experience in the use of 3-D CADDS and related engineering tools has also been proven to reduce both engineering and

  9. Architectural and Algorithmic Requirements for a Next-Generation System Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Mousseau

    2010-05-01

    This document presents high-level architectural and system requirements for a next-generation system analysis code (NGSAC) to support reactor safety decision-making by plant operators and others, especially in the context of light water reactor plant life extension. The capabilities of NGSAC will be different from those of current-generation codes, not only because computers have evolved significantly in the generations since the current paradigm was first implemented, but because the decision-making processes that need the support of next-generation codes are very different from the decision-making processes that drove the licensing and design of the current fleet of commercial nuclear power reactors. The implications of these newer decision-making processes for NGSAC requirements are discussed, and resulting top-level goals for the NGSAC are formulated. From these goals, the general architectural and system requirements for the NGSAC are derived.

  10. The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach

    Science.gov (United States)

    Abdelhamid, Mohamed Ben; Aloui, Chaker; Chaton, Corinne; Souissi, Jomâa

    2010-04-01

    This paper applies real options and mean-variance portfolio theories to analyze the electricity generation planning into presence of nuclear power plant for the Tunisian case. First, we analyze the choice between fossil fuel and nuclear production. A dynamic model is presented to illustrate the impact of fossil fuel cost uncertainty on the optimal timing to switch from gas to nuclear. Next, we use the portfolio theory to manage risk of the electricity generation portfolio and to determine the optimal fuel mix with the nuclear alternative. Based on portfolio theory, the results show that there is other optimal mix than the mix fixed for the Tunisian mix for the horizon 2010-2020, with lower cost for the same risk degree. In the presence of nuclear technology, we found that the optimal generating portfolio must include 13% of nuclear power technology share.

  11. Evaluation Metrics for Intermediate Heat Exchangers for Next Generation Nuclear Reactors

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Kim, Eung Soo; Anderson, Nolan

    2011-01-01

    The Department of Energy (DOE) is working with industry to develop a next generation, high-temperature gas-cooled reactor (HTGR) as a part of the effort to supply the United States with abundant, clean, and secure energy as initiated by the Energy Policy Act of 2005 (EPAct; Public Law 109-58,2005). The NGNP Project, led by the Idaho National Laboratory (INL), will demonstrate the ability of the HTGR to generate hydrogen, electricity, and/or high-quality process heat for a wide range of industrial applications.

  12. What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research

    OpenAIRE

    Bräutigam, Andrea; Gowik, Udo

    2010-01-01

    Next generation sequencing (NGS) technologies have opened fascinating opportunities for the analysis of plants with and without a sequenced genome on a genomic scale. During the last few years, NGS methods have become widely available and cost effective. They can be applied to a wide variety of biological questions, from the sequencing of complete eukaryotic genomes and transcriptomes, to the genome-scale analysis of DNA-protein interactions. In this review, we focus on the use of NGS for pla...

  13. Nuclear development in Korea

    International Nuclear Information System (INIS)

    Lee Byong Whi

    1993-10-01

    The Korean research and development project ''evelopment of Next Generation Reactor Technology'' aimed at the 21st century is briefly outlined. Activities directed to improvement of public acceptance of nuclear energy, the public information and education on the advanced nuclear reactor and fuel cycle technology are described

  14. Next-Generation Sequencing for Binary Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Bernhard eSuter

    2015-12-01

    Full Text Available The yeast two-hybrid (Y2H system exploits host cell genetics in order to display binary protein-protein interactions (PPIs via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS, and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.

  15. Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology.

    Science.gov (United States)

    Tanase, Koji; Nishitani, Chikako; Hirakawa, Hideki; Isobe, Sachiko; Tabata, Satoshi; Ohmiya, Akemi; Onozaki, Takashi

    2012-07-02

    Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. We constructed a normalized cDNA library and a 3'-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.

  16. Transcriptome analysis of carnation (Dianthus caryophyllus L. based on next-generation sequencing technology

    Directory of Open Access Journals (Sweden)

    Tanase Koji

    2012-07-01

    Full Text Available Abstract Background Carnation (Dianthus caryophyllus L., in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. Results We constructed a normalized cDNA library and a 3’-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380 of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. Conclusions We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.

  17. Comparison of next generation sequencing technologies for transcriptome characterization

    Directory of Open Access Journals (Sweden)

    Soltis Douglas E

    2009-08-01

    Full Text Available Abstract Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19. We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica and the magnoliid avocado (Persea americana using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB, 119,518 (88.7% mapped exactly to known exons, while 1,117 (0.8% mapped to introns, 11,524 (8.6% spanned annotated intron/exon boundaries, and 3,066 (2.3% extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance

  18. Statistical Approaches for Next-Generation Sequencing Data

    OpenAIRE

    Qiao, Dandi

    2012-01-01

    During the last two decades, genotyping technology has advanced rapidly, which enabled the tremendous success of genome-wide association studies (GWAS) in the search of disease susceptibility loci (DSLs). However, only a small fraction of the overall predicted heritability can be explained by the DSLs discovered. One possible explanation for this ”missing heritability” phenomenon is that many causal variants are rare. The recent development of high-throughput next-generation sequencing (NGS) ...

  19. Power generation from nuclear reactors in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  20. Technology for the Next-Generation-Mobile User Experience

    Science.gov (United States)

    Delagi, Greg

    The current mobile-handset market is a vital and growing one, being driven by technology advances, including increased bandwidth and processing performance, as well as reduced power consumption and improved screen technologies. The 3G/4G handsets of today are multimedia internet devices with increased screen size, HD video and gaming, interactive touch screens, HD camera and camcorders, as well as incredible social, entertainment, and productivity applications. While mobile-technology advancements to date have made us more social in many ways, new advancements over the next decade will bring us to the next level, allowing mobile users to experience new types of "virtual" social interactions with all the senses. The mobile handsets of the future will be smart autonomous-lifestyle devices with a multitude of incorporated sensors, applications and display options, all designed to make your life easier and more productive! With future display media, including 3D imaging, virtual interaction and conferencing will be possible, making every call feel like you are in the same room, providing an experience far beyond today's video conferencing technology. 3D touch-screen with integrated image-projection technologies will work in conjunction with gesturing to bring a new era of intuitive mobile device applications, interaction, and information sharing. Looking to the future, there are many challenges to be faced in delivering a smart mobile companion device that will meet the user demands. One demand will be for the availability of new and compelling services, and features on the "mobile companion". These mobile companions will be more than just Internet devices, and will function as on-the-go workstations, allowing users to function as if they were sitting in front of their computer in the office or at home. The massive amounts of data that will be transmitted through, to and from these mobile companions will require immense improvements in system performance, including

  1. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at

  2. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  3. NEXT GENERATION TURBINE SYSTEM STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  4. Generation Next

    Science.gov (United States)

    Hawkins, B. Denise

    2010-01-01

    There is a shortage of accounting professors with Ph.D.s who can prepare the next generation. To help reverse the faculty deficit, the American Institute of Certified Public Accountants (CPAs) has created the new Accounting Doctoral Scholars program by pooling more than $17 million and soliciting commitments from more than 70 of the nation's…

  5. Bioinformatics for Next Generation Sequencing Data

    Directory of Open Access Journals (Sweden)

    Alberto Magi

    2010-09-01

    Full Text Available The emergence of next-generation sequencing (NGS platforms imposes increasing demands on statistical methods and bioinformatic tools for the analysis and the management of the huge amounts of data generated by these technologies. Even at the early stages of their commercial availability, a large number of softwares already exist for analyzing NGS data. These tools can be fit into many general categories including alignment of sequence reads to a reference, base-calling and/or polymorphism detection, de novo assembly from paired or unpaired reads, structural variant detection and genome browsing. This manuscript aims to guide readers in the choice of the available computational tools that can be used to face the several steps of the data analysis workflow.

  6. The applied research program of the High Flux Neutron Generator at the National Nuclear Center, Havana

    International Nuclear Information System (INIS)

    Perez, G.; Martin, G.; Ceballos, C.; Padron, I.; Shtejer, K.; Perez, N.; Guibert, R.; Ledo, L.M.; Cruz Inclan, Carlos

    2001-01-01

    The Havana High Flux Neutron Generator facility is an intense neutron source based on a 20 mA duoplasmatron ion source and a 250 kV high voltage power supply. It has been installed in the Neutron Generator Laboratory at the Center of Applied Technologies and Nuclear Research in 1997. This paper deal outlined the future applied program to be carried out in this facility in the next years. The Applied Research Program consists on install two nuclear analytic techniques: the PELAN technique which uses the neutron generator in the pulse mode and the Low Energy PIXE technique which uses the same facility as a low energy proton accelerator for PIXE analysis. (author)

  7. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; hide

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  8. Semantic e-Learning: Next Generation of e-Learning?

    Science.gov (United States)

    Konstantinos, Markellos; Penelope, Markellou; Giannis, Koutsonikos; Aglaia, Liopa-Tsakalidi

    Semantic e-learning aspires to be the next generation of e-learning, since the understanding of learning materials and knowledge semantics allows their advanced representation, manipulation, sharing, exchange and reuse and ultimately promote efficient online experiences for users. In this context, the paper firstly explores some fundamental Semantic Web technologies and then discusses current and potential applications of these technologies in e-learning domain, namely, Semantic portals, Semantic search, personalization, recommendation systems, social software and Web 2.0 tools. Finally, it highlights future research directions and open issues of the field.

  9. Convergence of wireless, wireline, and photonics next generation networks

    CERN Document Server

    Iniewski, Krzysztof

    2010-01-01

    Filled with illustrations and practical examples from industry, this book provides a brief but comprehensive introduction to the next-generation wireless networks that will soon replace more traditional wired technologies. Written by a mixture of top industrial experts and key academic professors, it is the only book available that covers both wireless networks (such as wireless local area and personal area networks) and optical networks (such as long-haul and metropolitan networks) in one volume. It gives engineers and engineering students the necessary knowledge to meet challenges of next-ge

  10. Next-Generation Sequencing of Antibody Display Repertoires

    Directory of Open Access Journals (Sweden)

    Romain Rouet

    2018-02-01

    Full Text Available In vitro selection technology has transformed the development of therapeutic monoclonal antibodies. Using methods such as phage, ribosome, and yeast display, high affinity binders can be selected from diverse repertoires. Here, we review strategies for the next-generation sequencing (NGS of phage- and other antibody-display libraries, as well as NGS platforms and analysis tools. Moreover, we discuss recent examples relating to the use of NGS to assess library diversity, clonal enrichment, and affinity maturation.

  11. Next-generation digital information storage in DNA.

    Science.gov (United States)

    Church, George M; Gao, Yuan; Kosuri, Sriram

    2012-09-28

    Digital information is accumulating at an astounding rate, straining our ability to store and archive it. DNA is among the most dense and stable information media known. The development of new technologies in both DNA synthesis and sequencing make DNA an increasingly feasible digital storage medium. We developed a strategy to encode arbitrary digital information in DNA, wrote a 5.27-megabit book using DNA microchips, and read the book by using next-generation DNA sequencing.

  12. 78 FR 52941 - Cooperative Research and Development Agreement: Next Generation Arctic Navigational Safety...

    Science.gov (United States)

    2013-08-27

    ... advantages, disadvantages, required technology enhancements, performance, costs, and other issues associated... technology approach to the ``Next Generation Arctic Maritime Navigational Safety Information System,'' which... Federal Technology Transfer Act of 1986 (Pub. L. 99-502, codified at 15 U.S.C. 3710(a)). A CRADA [[Page...

  13. The whiteStar development project: Westinghouse's next generation core design simulator and core monitoring software to power the nuclear renaissance

    International Nuclear Information System (INIS)

    Boyd, W. A.; Mayhue, L. T.; Penkrot, V. S.; Zhang, B.

    2009-01-01

    The WhiteStar project has undertaken the development of the next generation core analysis and monitoring system for Westinghouse Electric Company. This on-going project focuses on the development of the ANC core simulator, BEACON core monitoring system and NEXUS nuclear data generation system. This system contains many functional upgrades to the ANC core simulator and BEACON core monitoring products as well as the release of the NEXUS family of codes. The NEXUS family of codes is an automated once-through cross section generation system designed for use in both PWR and BWR applications. ANC is a multi-dimensional nodal code for all nuclear core design calculations at a given condition. ANC predicts core reactivity, assembly power, rod power, detector thimble flux, and other relevant core characteristics. BEACON is an advanced core monitoring and support system which uses existing instrumentation data in conjunction with an analytical methodology for on-line generation and evaluation of 3D core power distributions. This new system is needed to design and monitor the Westinghouse AP1000 PWR. This paper describes provides an overview of the software system, software development methodologies used as well some initial results. (authors)

  14. Next generation environment for collaborative research

    International Nuclear Information System (INIS)

    Collados, D.; Denis, G.; Galvez, P.; Newman, H.

    2001-01-01

    Collaborative environments supporting point to point and multipoint video-conferencing, document and application sharing across both local and wide area networks, video on demand (broadcast and playback) and interactive text facilities will be a crucial element for the development of the next generation of HEP experiments by geographically dispersed collaborations. The 'Virtual Room Video conferencing System' (VRVS) has been developed since 1995, in order to provide a low cost, bandwidth-efficient, extensible means for video conferencing and remote collaboration over networks within the High Energy and Nuclear Physics communities. The VRVS provides worldwide videoconferencing service and collaborative environment to the research and education communities. VRVS uses the Internet2 and ESnet high-performance networks infrastructure to deploy its Web-based system, which now includes more than 5790 registered hosts running VRVS software in more than 50 different countries. VRVS hosts an average of 100-multipoint videoconference and collaborative sessions worldwide every month. There are around 35 reflectors that manage the traffic flow, at HENP labs and universities in the US and Europe. So far, there are 7 Virtual Rooms for World Wide Conferences (involving more than one continent), and 4 Virtual Rooms each for intra-continental conferences in the US, Europe and Asia. VRVS continues to expand and implement new digital video technologies, including H.323 ITU standard integration, MPEG-2 videoconferencing integration, shared environments, and Quality of Service

  15. Applying Next Generation Sequencing to Skeletal Development and Disease

    OpenAIRE

    Bowen, Margot Elizabeth

    2013-01-01

    Next Generation Sequencing (NGS) technologies have dramatically increased the throughput and lowered the cost of DNA sequencing. In this thesis, I apply these technologies to unresolved questions in skeletal development and disease. Firstly, I use targeted re-sequencing of genomic DNA to identify the genetic cause of the cartilage tumor syndrome, metachondromatosis (MC). I show that the majority of MC patients carry heterozygous loss-of-function mutations in the PTPN11 gene, which encodes a p...

  16. Next Generation Safeguards Initiative: 2010 and Beyond

    International Nuclear Information System (INIS)

    Whitney, J.M.; LaMontagne, S.; Sunshine, A.; Lockwood, D.; Peranteau, D.; Dupuy, G.

    2010-01-01

    Strengthening the international safeguards system is a key element of the U.S. non-proliferation policy agenda as evidenced by President Obama's call for more 'resources and authority to strengthen international inspections' in his April 2009 Prague speech. Through programs such as the recently-launched Next Generation Safeguards Initiative (NGSI) and the long standing U.S. Program of Technical Assistance to IAEA Safeguards, the United States is working to implement this vision. The U.S. Department of Energy's National Nuclear Security Administration launched NGSI in 2008 to develop the policies, concepts, technologies, expertise, and international safeguards infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to meet new challenges. Following a successful 2009, NGSI has made significant progress toward these goals in 2010. NGSI has recently completed a number of policy studies on advanced safeguards concepts and sponsored several workshops, including a second international meeting on Harmonization of International Safeguards Infrastructure Development in Vienna. The program is also continuing multi-year projects to investigate advanced non-destructive assay techniques, enhance recruitment and training efforts, and strengthen international cooperation on safeguards. In December 2010, NGSI will host the Third Annual International Meeting on International Safeguards in Washington, DC, which will draw together key stakeholders from government, the nuclear industry, and the IAEA to further develop and promote a common understanding of Safeguards by Design principles and goals, and to identify opportunities for practical application of the concept. This paper presents a review of NGSI program activities in 2010 and previews plans for upcoming activities. (author)

  17. A large capacity turbine generator for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Susumu; Miki, Takahiro; Suzuki, Kazuichi

    2000-01-01

    In future large capacity nuclear power plant, capacity of a generator to be applied will be 1800 MVA of the largest class in the world. In response to this, the Mitsubishi Electric Co., Ltd. began to carry out element technology verification of a four-pole large capacity turbine generator mainly using upgrading technique of large capacity, since 1994 fiscal year. And, aiming at reliability verification of the 1800 MVA class generator, a model generator with same cross-section as that of an actual one was manufactured, to carry out some verifications on its electrified tests, and so on. Every performance evaluation result of tests on the model generator were good, and high reliability to design and manufacturing technique of the 1800 MVA class generator could be verified. In future, on the base of these technologies, further upgrading of reliability on the large capacity turbine generator for nuclear power generation is intended to be carried out. (G.K.)

  18. Korean efforts for education and training network in nuclear technology

    International Nuclear Information System (INIS)

    Han, Kyong-Won; Lee, Eui-Jin

    2007-01-01

    Nuclear energy has been a backbone for Korea's remarkable economic growth, and will continue its essential role with 18 nuclear power plants in operation, 2 more units under construction, 6 more units in planning. Korea is operating its own designed nuclear power plants, such as KSNP, 1400, as well as self-design and operation of 30 MW Hanaro research reactor. Korea makes strong efforts to develop future nuclear technology. They are the System-Integrated Modular Advanced Reactor, SMART, Korea Advanced Liquid Metal reactor, KALIMER, Hydrogen Production reactor, and Proliferation-resistant Nuclear Fuel Cycle. In parallel, Korea is establishing an Advanced Radiation Technology R and D Center and a High Power Proton Accelerator Center. International, next generation nuclear power technologies are being developed through projects such as the IAEA Innovative Nuclear Reactors and Fuel Cycle, INPRO, Generation IV International Forum, GIF, and International thermonuclear Experimental reactor, ITER. In the new millennium, Korea expects that radiation technology combined with bio, nano, and space technology will sustain our civilization. About 21,000 qualified nuclear human resources are engaged in power and non-power fields such as design and manufacturing of equipment, plant operation and maintenance, safety, RI production, R and D, etc. However, it is recognized that the first generation of nuclear work force is getting older and retired, less of our youth are studying nuclear science and engineering. Korean Government has established a promotion program on nuclear human resources development, which is needed until 2010. For the sustainable development of nuclear science and technology, it calls for more qualified human resources. We ought to encourage our youth to become more interested in nuclear studies and careers. Korea is making strong efforts to support nuclear education and training for young generations. It is believed that internationally accepted advanced

  19. Next Generation Microshutter Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop the next generation MicroShutter Array (MSA) as a multi-object field selector for missions anticipated in the next two decades. For many...

  20. China's nuclear technology for economy growth

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanxiao [China Nuclear Information Center (China)

    1998-07-01

    The transfer of nuclear technology to practical applications in energy, agriculture, food, industries and others has made important contributions to the prosperity of the national economy and the improvement of living standard of Chinese people in the past 40 years. Facing the great challenges in upcoming years, sustained efforts are needed to promote industrialization, commercialization and internationalization of nuclear technology. Rapid economic growth is providing the golden opportunities for the development of nuclear technology in China. With the trends to globalization of economic development, civilian applications of nuclear technology will have to be involved in international co-operation and competitive world markets to narrow the gap between China and other developed countries in the world in the next century. (author)

  1. NIRS report of investigations for the development of the next generation PET apparatus. FY 2000

    International Nuclear Information System (INIS)

    2001-03-01

    This is a summary of study reports from representative technology fields for the development of the next generation PET apparatus directing to 3-D images, and is hoped to be useful for future smooth cooperation between the fields. The investigation started from April 2000 in National Institute of Radiological Sciences (NIRS) with cooperation of other facilities, universities and companies. The report involves chapters of: Detector volume and geometrical efficiency- Design criterion for the next generation PET; Scintillator for PET; An investigation of detector and front-end electronics for the next generation PET; A measurement system of depth of interaction; Detector simulator; Development of an evaluation system for PET detector; On the signal processing system for the next generation PET; List-mode data acquisition method for the next generation PET; List-mode data acquisition simulator; Image reconstruction; A Monte Carlo simulator for the next generation PET scanners; Out-of-field of view (FOV) radioactivity; and Published papers and presentations. (N.I.)

  2. Towards Next Generation Internet Management:CNGI-CERNET2EXPERIENCES

    Institute of Scientific and Technical Information of China (English)

    Jia-Hai Yang; Hui Zhang; Jin-Xiang Zhang; Chang-Qing An

    2009-01-01

    Manageability is an important feature of next generation Internet; management and monitoring of IPv6-based networks are proving a big challenge. While leveraging current IPv4-based SNMP management scheme to IPv6 networks'management need is necessary, it is more urgent to coin a new network management architecture to accommodate the scalability and extensibility requirements of next generation Internet management. The paper proposes a novel network management architecture, IMN (Internet Management Network), which creates an overlay network of management nodes.While each management node can perform management tasks autonomously and independently, it can finish more sophis-ticated management tasks by collaboratively invoking management operations or sharing information provided by other management nodes. P2P-based communication services are introduced in IMN to enable such collaboration. The paper presents a prototyping implementation based on the Web service related technology, as well as some of the key technologies,especially solutions to those issues arising from the management practice of CERNET2. Experiences of deployment of CERNET2 operation and lessons learned from the management practice are discussed.

  3. Fuel cycle technologies - The next 50 years

    International Nuclear Information System (INIS)

    Chamberlain, L.N.; Ion, S.E.; Patterson, J.

    1997-01-01

    World energy demands are set to increase through the next Millennium. As fossil fuel reserves fall and environmental concerns increase there is likely to be a growing dependence on nuclear and renewable sources for electricity generation. This paper considers some of the desirable attributes of the nuclear fuel cycle in the year 2050 and emphasises the importance of considering the whole of the fuel cycle in an integrated way - the concept of the 'holistic' fuel cycle. We then consider how some sectors of the fuel cycle will develop, through a number of multi- national contributions covering: enrichment, fuel, aqueous reprocessing, non-aqueous reprocessing, P and T, MOX, direct disposal, waste. Finally, we summarize some of the key technical and institutional challenges that lie ahead if nuclear power is going to play its part in ensuring that planet Earth is a safe and hospitable place to live. (author)

  4. Comparison of nuclear reactor types of the next generation; Komparativni prikaz novih tipova reaktorskih komercijalnih postrojenja slijedece generacije

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Z; Kastelan, M [NPP Krsko (Slovenia)

    1992-07-01

    The paper presents a comparison for a selected relevant set of parameters for different commercial nuclear reactor types at the next generation. This parameters overview could serve as the base for the semi-quantitative decision bases for the selection of the future nuclear strategy. The number of advanced reactor designs of the LWR, HWR, GCR and LMR type are presented. Even currently many of them are still on the drawing boards, the concepts and designs should be assessed in the sense of sensible approach for planning the possible future nuclear strategy. (author) Clanek predstavlja usporedbu odabranih bitnih parametara karakteristicnih za razlicite tipove energetskih nuklearnih postrojenja slijedece generacije. Prikazani pregled parametara omogucava osnov za polu kvantitativnu osnovu za odlucivanje u svrhu donosenja odluke oko odrednica buduce strategije uporabe nuklearne energije. Brojni koncepti naprednih nuklearnih reaktora tipa LWR, HWR, GCR i LMR su prezentirani. S obzirom na cinjenicu da se mnogi of prezentiranih nalaze jos uvijek na crtacim daskama projektanata, koncepti i projekti koji su iz njih proizasli zahtijevaju analizu u smislu kvalitativnog pristupa planiranja moguce buduce nuklearne startegije. (author)

  5. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Mower, Jeffrey P; Jansen, Robert K

    2013-12-29

    Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition

  6. The Next Nuclear Gamble. Transportation and storage of nuclear waste

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1985-01-01

    The Next Nuclear Gamble examines risks, costs, and alternatives in handling irradiated nuclear fuel. The debate over nuclear power and the disposal of its high-level radioactive waste is now nearly four decades old. Ever larger quantities of commercial radioactive fuel continue to accumulate in reactor storage pools throughout the country and no permanent storage solution has yet been designated. As an interim solution, the government and utilities prefer that radioactive wastes be transported to temporary storage facilities and subsequently to a permanent depository. If this temporary and centralized storage system is implemented, however, the number of nuclear waste shipments on the highway will increase one hundredfold over the next fifteen years. The question directly addressed is whether nuclear transport is safe or represents the American public's domestic nuclear gamble. This Council on Economic Priorities study, directed by Marvin Resnikoff, shows on the basis of hundreds of government and industry reports, interviews and surveys, and original research, that transportation of nuclear materials as currently practiced is unsafe

  7. Nuclear power generation and nuclear non-proliferation

    International Nuclear Information System (INIS)

    Rathjens, G.

    1979-01-01

    The main points existing between nuclear energy development and nuclear non-proliferation policy are reviewed. The solar energy and other energy will replace for nuclear fission energy in the twenty first century, but it may not occur in the first half, and the structure has to be established to continue the development of nuclear fission technology, including breeder reactor technology. In the near future, it should be encouraged to use advanced thermal reactors if they are economic and operated with safety. Miserable results may be created in the worldwide scale, if a serious accident occurs anywhere or nuclear power reactors are utilized for military object. It is estimated to be possible to develop the ability of manufacturing nuclear weapons within two or three years in the countries where the industry is highly developed so as to generate nuclear power. It is also difficult to take measures so that nuclear power generation does not increase nuclear proliferation problems, and it is necessary to mitigate the motive and to establish the international organization. Concensus exists that as the minimum security action, the storage and transportation of materials, which can be directly utilized for nuclear weapons, should be decided by the international system. The most portions of sensitive nuclear fuel cycle should be put under the international management, as far as possible. This problem is discussed in INFCE. Related to the nuclear nonproliferation, the difference of policy in fuel cycle problems between USA and the other countries, the enrichment of nuclear fuel material, especially the reasons to inhibit the construction of additional enrichment facilities, nuclear fuel reprocessing problems, radioactive waste disposal, plutonium stock and plutonium recycle problems are reviewed. (Nakai, Y.)

  8. Fiscal Year 2014 Annual Report on BNLs Next Generation Safeguards Initiative Human Capital Development Activities

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, Susan E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-10-10

    Brookhaven National Laboratory’s (BNL’s) Nonproliferation and National Security Department contributes to the National Nuclear Security Administration Office of Nonproliferation and International Security Next Generation Safeguards Initiative (NGSI) through university engagement, safeguards internships, safeguards courses, professional development, recruitment, and other activities aimed at ensuring the next generation of international safeguards professionals is adequately prepared to support the U.S. safeguards mission. This report is a summary of BNL s work under the NGSI program in Fiscal Year 2014.

  9. The next generation of technologies for industrie 4.0: Presentation held at La prossima generazione di tecnologie per le strategie 4.0, 31 gennaio 2018, Bologna

    OpenAIRE

    Bauernhansl, Thomas

    2018-01-01

    The presentation "The next Generation of Technologies for Industrie 4.0" deals with the following aspects: - Overview: Fraunhofer IPA - Digital Transformation - Overview - 10 Guidelines for Optimization of Value-Adding Systems - Core Technology - Machine Learning - Core Technology - Realtime Communication - Core Technology - Cloud/Edge Platforms - Industrie 4.0 - Impact on Business Models - Effects on Employment

  10. Need for Strengthening Nuclear Non-Proliferation and Safeguards Education to Prepare the Next Generation of Experts

    International Nuclear Information System (INIS)

    Janssens, W.A.M.; Peerani, P.; ); Gariazzo, C.; Ward, S.; Crete, J.-M.; Braunegger-Guelich, A.

    2015-01-01

    Although nuclear non-proliferation and safeguards are a continuous concern of the international community and discussed frequently at international fora and conferences, the academic world is not really on board with these topics. What we mean by this is that nuclear non-proliferation and safeguards is only very seldom part of a university curriculum. In the few cases where it does appear in the curriculum, whether in a nuclear engineering course or a political sciences master programme, it is typically covered only partially. Nuclear non-proliferation and safeguards are multidisciplinary and embrace, inter alia, historical, legal, technical, and political aspects. This is perhaps the reason why it is challenging for a single professor or university to develop and implement a comprehensive academic course or programme in this area. Professional organizations in this field, like the European Safeguards Research and Development Association (ESARDA) and the Institute for Nuclear Materials Management (INMM), have made first steps to address this issue by implementing specific educational activities. However, much more needs to be done. Therefore, ESARDA, INMM and the International Atomic Energy Agency (IAEA) are in the process of joining efforts to identify key elements and priorities to support universities in establishing appropriate and effective academic programmes in this area. This paper will share best practices, achievements and lessons learned by ESARDA, INMM and the IAEA in providing education and training to develop and maintain the expertise of nuclear non-proliferation and safeguards professionals. In addition, it will suggest potential ways on how to assist universities to get prepared for building-up the next generation of experts able to meet any future challenges in the area of non-proliferation and safeguards. (author)

  11. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs

    International Nuclear Information System (INIS)

    Burchell, Timothy D.; Bratton, Rob; Marsden, Barry; Srinivasan, Makuteswara; Penfield, Scott; Mitchell, Mark; Windes, Will

    2008-01-01

    Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version (a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version (a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV

  12. Next-generation storm tracking for minimizing service interruption

    Energy Technology Data Exchange (ETDEWEB)

    Sznaider, R. [Meteorlogix, Minneapolis, MN (United States)

    2002-08-01

    Several technological changes have taken place in the field of weather radar since its discovery during World War II. A wide variety of industries have benefited over the years from conventional weather radar displays, providing assistance in forecasting and estimating the potential severity of storms. The characteristics of individual storm cells can now be derived from the next-generation of weather radar systems (NEXRAD). The determination of which storm cells possess distinct features such as large hail or developing tornadoes was made possible through the fusing of various pieces of information with radar pictures. To exactly determine when and where a storm will hit, this data can be combined and overlaid into a display that includes the geographical physical landmarks of a specific region. Combining Geographic Information Systems (GIS) and storm tracking provides a more complete, timely and accurate forecast, which clearly benefits the electric utilities industries. The generation and production of energy are dependent on how hot or cold it will be today and tomorrow. The author described each major feature of this next-generation weather radar system. 9 figs.

  13. Nuclear technology options

    International Nuclear Information System (INIS)

    Salvatores, Massimo

    2013-01-01

    Different strategies and motivations in different countries have led to diverse options. In Europe the SNETP (Sustainable Nuclear Energy Technology Platform) has the objective of developing R&D supporting GEN-II (present) and GEN-III nuclear systems under development; allowing sustainability and minimisation of waste burden, promoting advanced Gen-IV Fast Reactors; and accounting for a Nuclear Cogeneration Industrial Initiative. A remarkable initiative in the USA has been the promotion of small modular reactors (SMRs) – at less than 300 MWe in capacity, much smaller than typical reactors – which can be an ideal choice for (remote) areas which cannot support a larger reactor. Compact scalable design offers a host of potential safety, construction and economic benefits. More “upbeat” strategies are expected in other areas of the world where significant increase in nuclear energy demand is predicted in the next decades. If this growth materialises, future fuel cycles characteristics, feasibility and acceptability will be crucial. This paper will discuss different scenarios for future fuel cycles, resources optimisation and/or waste minimization, the range from full fast reactor deployment to phase-out, management of spent nuclear fuel and the significant potential benefits of advanced cycles. The next 45 years will be dominated by deployment of standard large or medium size plants operating for 60 years. Available resources do allow it. However, fuel cycle will be a growing and most challenging issue and early assessments will be needed for public acceptance and policy decisions.

  14. Generation IV Nuclear Energy Systems Construction Cost Reductions through the use of Virtual Environments: Task 1 Completion Report

    International Nuclear Information System (INIS)

    Whisker, V.E.; Baratta, A.J.; Shaw, T.S.; Winters, J.W.; Trikouros, N.; Hess, C.

    2002-01-01

    OAK B204 The objective of this project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. Specifically, this project will test the suitability of Immersive Projection Display (IPD) technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups

  15. Generation IV Nuclear Energy Systems Construction Cost Reductions through the use of Virtual Environments: Task 1 Completion Report

    Energy Technology Data Exchange (ETDEWEB)

    Whisker, V.E.; Baratta, A.J.; Shaw, T.S.; Winters, J.W.; Trikouros, N.; Hess, C.

    2002-11-26

    OAK B204 The objective of this project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. Specifically, this project will test the suitability of Immersive Projection Display (IPD) technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups.

  16. Canada's commitment to nuclear technology

    International Nuclear Information System (INIS)

    Stewart, Murray J.

    1998-01-01

    This paper gives a broad update on all facets of the Canadian nuclear industry and demonstrates Canada's continuing commitment to nuclear technology. Canada has developed a global leadership position in nuclear technology for power generation, uranium production and isotope supply. This commitment is being further enhanced by successes in international markets with Candu technology, new uranium mine developments in our province of Saskatchewan, and expanding isotope capabilities including the construction of two new production reactors. Korea's economy is benefiting through collaboration with Canada's leading nuclear companies, both in Korea and Canada. These collaborations have the potential to expand considerably with the implementation of the Kyoto Framework Convention on Climate Change and the anticipated increased demand for new nuclear power generation installations in all major global markets. Much has been publicized about the situation surrounding Ontario Hydro Nuclear and its nuclear recovery program. This paper gives the background and highlights the actions within Ontario and Ontario Hydro designed to ensure the long term recovery of all twenty nuclear units in Ontario. The presentation at the conference will bring the audience completely up-to-date on recent events. (author)

  17. NREL-Prime Next-Generation Drivetrain Dynamometer Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Erdman, Bill [Cinch, Inc., Moraga, CA (United States); Blodgett, Douglas [DNV KEMA Renewables, Burlington, VT (United States); Halse, Christopher [Romax Technology, Boulder, CO (United States)

    2016-08-01

    Advances in wind turbine drivetrain technologies are necessary to improve reliability and reduce the cost of energy for land-based and offshore wind turbines. The NREL-Prime Next-Generation Drivetrain team developed a geared, medium-speed drivetrain that is lighter, more reliable and more efficient than existing designs. One of the objectives of Phase II of the project was to complete the detailed design, fabrication, and dynamometer testing of a 750 kilowatt (kW) drivetrain that includes the key gearbox innovations designed by Romax Technology and power converter innovations designed by DNV Kema Renewables. The purpose of this document is to summarize these tests completed in NREL's National Wind Technology Center 2.5 megawatt (MW) dynamometer.

  18. Gas-fired electric power generating technologies

    International Nuclear Information System (INIS)

    1994-09-01

    The workshop that was held in Madrid 25-27 May 1994 included participation by experts from 16 countries. They represented such diverse fields and disciplines as technology, governmental regulation, economics, and environment. Thus, the participants provided an excellent cross section of key areas and a diversity of viewpoints. At the workshop, a broad range of topics regarding gas-fired electric power generation was discussed. These included political, regulatory and financial issues as well as more specific technical questions regarding the environment, energy efficiency, advanced generation technologies and the status of competitive developments. Important technological advances in gas-based power and CHP technologies have already been achieved including higher energy efficiency and lower emissions, with further improvements expected in the near future. Advanced technology trends include: (a) The use of gas technology to reduce emissions from existing coal-fired power plants. (b) The wide-spread application of combined-cycle gas turbines in new power plants and the growing use of aero-derivative gas turbines in CHP applications. (c) Phosphoric acid fuel cells that are being introduced commercially. Their market penetration will grow over the next 10 years. The next generation of fuel cells (solid oxide and molten carbonate) is expected to enter the market around the year 2000. (EG)

  19. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report

    International Nuclear Information System (INIS)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-01-01

    Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models

  20. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models.

  1. Planning and Programming of Education and Training Courses on the Radiation Fusion Technologies for Next Generations

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Nam, Y. M.; Choi, P. H.

    2009-06-01

    In order to program education and training courses on the radiation technologies and to have the WNU RT School to be held in Korea, this project was carried out. It was also done to make a strategy for running the programmed courses, and to build and knit a global network among radiation specialists such as international advisory board, domestic advisory board and steering committee. A plan for the WNU RT School in Korea was made under this project. Curricula in all subjects related to radiation technology and the lecture materials were prepared, which are essential for education and training courses on radiation technologies for next generations. Lecturers were selected among global CEOs and professionals in radiation industries and university professors and radiation specialists. In addition, a global network among radiation specialists such as international advisory board, domestic advisory board and steering committee was built and organized. As a model for the international education and training courses in RT field as well as the other fields, it can be used for making fundamentals of technology exports and promoting Korea's national image in science and technology

  2. Next-Generation Tools For Next-Generation Surveys

    Science.gov (United States)

    Murray, S. G.

    2017-04-01

    The next generation of large-scale galaxy surveys, across the electromagnetic spectrum, loom on the horizon as explosively game-changing datasets, in terms of our understanding of cosmology and structure formation. We are on the brink of a torrent of data that is set to both confirm and constrain current theories to an unprecedented level, and potentially overturn many of our conceptions. One of the great challenges of this forthcoming deluge is to extract maximal scientific content from the vast array of raw data. This challenge requires not only well-understood and robust physical models, but a commensurate network of software implementations with which to efficiently apply them. The halo model, a semi-analytic treatment of cosmological spatial statistics down to nonlinear scales, provides an excellent mathematical framework for exploring the nature of dark matter. This thesis presents a next-generation toolkit based on the halo model formalism, intended to fulfil the requirements of next-generation surveys. Our toolkit comprises three tools: (i) hmf, a comprehensive and flexible calculator for halo mass functions (HMFs) within extended Press-Schechter theory, (ii) the MRP distribution for extremely efficient analytic characterisation of HMFs, and (iii) halomod, an extension of hmf which provides support for the full range of halo model components. In addition to the development and technical presentation of these tools, we apply each to the task of physical modelling. With hmf, we determine the precision of our knowledge of the HMF, due to uncertainty in our knowledge of the cosmological parameters, over the past decade of cosmic microwave background (CMB) experiments. We place rule-of-thumb uncertainties on the predicted HMF for the Planck cosmology, and find that current limits on the precision are driven by modeling uncertainties rather than those from cosmological parameters. With the MRP, we create and test a method for robustly fitting the HMF to observed

  3. New long-range speed record with next-generation internet

    CERN Multimedia

    2003-01-01

    "Scientists at CERN and the California Institute of Technology have set a new Internet2 land speed record using the next-generation Internet protocol IPv6. The team sustained a single stream Transfer Control Protocol (TCP) rate of 983 megabits per second for more than one hour between CERN and Chicago, a distance of more than 7,000 kilometres" (1 page).

  4. Designing Next Generation Telecom Regulation

    DEFF Research Database (Denmark)

    Henten, Anders; Samarajiva, Rohan

    – ICT convergence regulation and multisector utility regulation. Whatever structure of next generation telecom regulation is adopted, all countries will need to pay much greater attention to the need for increased coordination of policy directions and regulatory activities both across the industries......Continuously expanding applications of information and communication technologies (ICT) are transforming local, national, regional and international economies into network economies, the foundation for information societies. They are being built upon expanded and upgraded national telecom networks...... to creating an environment to foster a massive expansion in the coverage and capabilities of the information infrastructure networks, with national telecom regulators as the key implementers of the policies of reform. The first phase of reform has focused on industry specific telecom policy and regulation...

  5. The potential of nuclear energy to generate clean electric power in Brazil

    International Nuclear Information System (INIS)

    Stecher, Luiza C.; Sabundjian, Gaiane; Menzel, Francine; Giarola, Rodrigo S.; Coelho, Talita S.

    2013-01-01

    The generation of electricity in Brazil is concentrated in hydroelectric generation, renewable and clean source, but that does not satisfy all the demand and leads to necessity of a supplementary thermal sources portion. Considering the predictions of increase in demand for electricity in the next years, it becomes necessary to insert new sources to complement the production taking into account both the volume being produced and the needs of environmental preservation. Thus, nuclear power can be considered a potential supplementary source for electricity generation in Brazil as well as the country has large reserves of fissile material, the generation emits no greenhouse gases, the country has technological mastery of the fuel cycle and it enables the production of large volumes of clean energy. The objective of this study is to demonstrate the potential of nuclear energy in electricity production in Brazil cleanly and safely, ensuring the supplies necessary to maintain the country's economic growth and the increased demand sustainable. For this, will be made an analysis of economic and social indicators of the characteristics of our energy matrix and the availability of our sources, as well as a description of the nuclear source and arguments that justify a higher share of nuclear energy in the matrix of the country. Then, after these analysis, will notice that the generation of electricity from nuclear source has all the conditions to supplement safely and clean supply of electricity in Brazil. (author)

  6. Next generation of energy production systems; Lancement pour les systemes du futur

    Energy Technology Data Exchange (ETDEWEB)

    Rouault, J.; Garnier, J.C. [CEA Saclay Dir. de l' Energie Nucleaire DEN, 91 - Gif sur Yvette (France); Carre, F. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares - DDIN, 91 - Gif Sur Yvette (France)] [and others

    2003-07-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources.

  7. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    International Nuclear Information System (INIS)

    Doherty, M.P.

    1993-05-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities

  8. Dynalight Next Generation

    DEFF Research Database (Denmark)

    Jørgensen, Bo Nørregaard; Ottosen, Carl-Otto; Dam-Hansen, Carsten

    2016-01-01

    The project aims to develop the next generation of energy cost-efficient artificial lighting control that enables greenhouse growers to adapt their use of artificial lighting dynamically to fluctuations in the price of electricity. This is a necessity as fluctuations in the price of electricity c...

  9. R&D, Marketing, and the Success of Next-Generation Products

    OpenAIRE

    Elie Ofek; Miklos Sarvary

    2003-01-01

    This paper studies dynamic competition in markets characterized by the introduction of technologically advanced next-generation products. Firms invest in new product effort in an attempt to attain industry leadership, thus securing high profits and benefiting from advantages relevant for the success of future product generations. The analysis reveals that when the current leader possesses higher research and development (R&D) competence, it tends to investin R&D than rivals and to retain its ...

  10. NASA's Next Generation Space Geodesy Program

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  11. Advanced optical components for next-generation photonic networks

    Science.gov (United States)

    Yoo, S. J. B.

    2003-08-01

    Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies

  12. Bringing Next-Generation Sequencing into the Classroom through a Comparison of Molecular Biology Techniques

    Science.gov (United States)

    Bowling, Bethany; Zimmer, Erin; Pyatt, Robert E.

    2014-01-01

    Although the development of next-generation (NextGen) sequencing technologies has revolutionized genomic research and medicine, the incorporation of these topics into the classroom is challenging, given an implied high degree of technical complexity. We developed an easy-to-implement, interactive classroom activity investigating the similarities…

  13. Challenges in education and qualification of human resources for next nuclear generation

    International Nuclear Information System (INIS)

    Pupak, Marcia Orrico

    2009-01-01

    The general goal of this paper is to present an overview of Higher Education and personnel qualification for Nuclear Field by the perspective of the International Atomic Energy Agency (IAEA), also by the Organization for Economic Co-operation and Development (OECD and by the United Nations Educational Scientific and Cultural Organization (UNESCO). On the other hand to present the challenge of the Brazilian Government in redesigning, since 2003, the role of the state in order to make it active for younger generations, while promoting growth and social justice, has guided in all actions carried out under the Policy of Human Resources Management of public personnel. The government should be able to formulate and implement public policies and decide among various options, what is the most appropriate for its Human Resources. For this, they require the strengthening of strategic intelligence and government adoption of new ways of interaction and participation. The role played by the Brazilian Nuclear Energy Commission (CNEN) in looking forward to replace and qualify its nuclear staff, as soon as up, since that the qualification of a human resource in this field demands more than one decade. Last but not least the proactive work of IPEN-CNEN/SP to encourage young generation to enter nuclear area, and the efforts of the Brazilian government to implement an integrated Nuclear Programme to form human resources, to attract and retain students in nuclear engineering and related specialized fields, and how this problem should attract the attention of the entire nuclear community, government and industry. (author)

  14. Next Generation Surfactants for Improved Chemical Flooding Technology

    Energy Technology Data Exchange (ETDEWEB)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies

  15. Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

  16. Oak Ridge National Laboratory Next Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL; Eipeldauer, Mary D [ORNL; Whitaker, J Michael [ORNL

    2011-12-01

    In 2007, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events impacting the mission of international safeguards and the implications of expanding and evolving mission requirements on the legal authorities and institutions that serve as the foundation of the international safeguards system, as well as the technological, financial, and human resources required for effective safeguards implementation. The review's findings and recommendations were summarized in the report, 'International Safeguards: Challenges and Opportunities for the 21st Century (October 2007)'. One of the report's key recommendations was for DOE/NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency's General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: (1) Policy development and outreach; (2) Concepts and approaches; (3) Technology and analytical methodologies; (4) Human resource development; and (5) Infrastructure development. The ensuing report addresses the 'Human Resource Development (HRD)' component of NGSI. The goal of the HRD as defined in the NNSA Program Plan (November 2008) is 'to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.' One of the major objectives listed in the HRD goal includes education and training, outreach to universities, professional societies, postdoctoral appointments, and summer internships at national laboratories. ORNL is a participant in the NGSI program, together

  17. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy - Technology Summary

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; McKellar, M.G.; Harvego, E.A.; Sohal, M.S.; Condie, K.G.

    2010-01-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  18. The Next Great Generation?

    Science.gov (United States)

    Brownstein, Andrew

    2000-01-01

    Discusses ideas from a new book, "Millennials Rising: The Next Great Generation," (by Neil Howe and William Strauss) suggesting that youth culture is on the cusp of a radical shift with the generation beginning with this year's college freshmen who are typically team oriented, optimistic, and poised for greatness on a global scale. Includes a…

  19. Tailoring next-generation biofuels and their combustion in next-generation engines

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wu, Weihua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taatjes, Craig A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scheer, Adam Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Kevin M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yu, Eizadora T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Bryan, Greg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Powell, Amy Jo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gao, Connie W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  20. The Nuclear option for U.S. electrical generating capacity additions utilizing boiling water reactor technology

    International Nuclear Information System (INIS)

    Garrity, T.F.; Wilkins, D.R.

    1993-01-01

    The technology status of the Advanced Boiling Water (ABWR) and Simplified Boiling Water (SBWR) reactors are presented along with an analysis of the economic potential of advanced nuclear power generation systems based on BWR technology to meet the projected domestic electrical generating capacity need through 2005. The forecasted capacity needs are determined for each domestic North American Electric Reliability Council (NERC) region. Extensive data sets detailing each NERC region's specific generation and load characteristics, and capital and fuel cost parameters are utilized in the economic analysis of the optimal generation additions to meet this need by use of an expansion planning model. In addition to a reference case, several sensitivity cases are performed with regard to capital costs and fuel price escalation

  1. Fear of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Higson, D.J. [Paddington, NSW (Australia)

    2014-07-01

    Communicating the benefits of nuclear power generation, although essential, is unlikely to be sufficient by itself to counter the misconceptions which hinder the adoption of this technology, viz: that it is unsafe, generates intractable waste, facilitates the proliferation of nuclear weapons, etc. Underlying most of these objections is the fear of radiation, engendered by misunderstandings of the effects of exposure - not the actual risks of radiation exposure themselves. Unfortunately, some aspects of current radiation protection practices promote the misconception that there is no safe dose. A prime purpose of communications from the nuclear industry should be to dispel these misconceptions. (author)

  2. Next Generation Reactors in Korea

    International Nuclear Information System (INIS)

    Oh, Yongshick; Choi, Youngsang; Park, Keecheol

    1990-01-01

    In Korea, nuclear power will be continuously needed to meet the trend of steady increase in electricity demand. But in relation to the further development of nuclear energy, there are still many uncertainties to be solved such as power demand forecast, site availability, thermal energy utilization and technology enhancement for economic and safety. To cope with those uncertainties effectively and to proceed the nuclear projects uninterruptedly, KEPCO decided to initiate two research project. i. e., one is 'the outlook and developmental strategy of nuclear energy for the early 21st century in the R. O. K' and the other is 'the feasibility study on the advanced reactors in Korea. Prospects of nuclear energy in Korea was overviewed and recommendations from the industry were introduced. It is strong opinion of Korea nuclear industry that nuclear policy should be changed from the support policy to the target management policy. In the point of reactor strategy, the life of light water reactor technology might be longer than expected before in Korea and it is emphasized that good maintenance of light water reactor technology and smooth transition program to the advanced technologies should be carefully considered. There are differences in the opinions between preferences to the evolutionary and/or passive, inherently safe reactors but, in the long-term point of view, it is judged to be desirable to have alternatives

  3. Prospect on nuclear energy and promotion strategy for next 50 years

    International Nuclear Information System (INIS)

    Lee, Chang Gun

    1996-10-01

    This book describes prospect for nuclear energy and promotion strategy for next 50 years, which has four part ; summary, prospect on nuclear energy for next 50 years with wealth, quality of the life and energy, available energy, future power and energy, nuclear power except as using energy, promotion strategy for nuclear energy for next 50 year with current situation and the rule of nuclear energy in the future, international situation and effect on environment, nuclear reactor and strategy for nuclear fuel cycle, international, institutional and social problems, using nuclear energy except power, precondition for international use of nuclear power, use of nuclear energy for extra field and conclusion.

  4. Cluster cosmology with next-generation surveys.

    Science.gov (United States)

    Ascaso, B.

    2017-03-01

    The advent of next-generation surveys will provide a large number of cluster detections that will serve the basis for constraining cos mological parameters using cluster counts. The main two observational ingredients needed are the cluster selection function and the calibration of the mass-observable relation. In this talk, we present the methodology designed to obtain robust predictions of both ingredients based on realistic cosmological simulations mimicking the following next-generation surveys: J-PAS, LSST and Euclid. We display recent results on the selection functions for these mentioned surveys together with others coming from other next-generation surveys such as eROSITA, ACTpol and SPTpol. We notice that the optical and IR surveys will reach the lowest masses between 0.3next-generation surveys and introduce very preliminary results.

  5. Research and engineering application of coordinated instrumentation control and protection technology between reactor and steam turbine generator on nuclear power plant

    International Nuclear Information System (INIS)

    Sun Xingdong

    2014-01-01

    The coordinated instrumentation control and protection technology between reactor and steam turbine generator (TG) usually is very significant and complicated for a new construction of nuclear power plant, because it carries the safety, economy and availability of nuclear power plant. Based on successful practice of a nuclear power plant, the experience on interface design and hardware architecture of coordinated instrumentation control and protection technology between reactor and steam turbine generator was abstracted and researched. In this paper, the key points and engineering experience were introduced to give the helpful instructions for the new project. (author)

  6. Situation of nuclear power generation in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, S [Swedish Atomic Forum

    1978-01-01

    In Sweden, nuclear power generation was received initially favorably. In the end of 1960s, however, nuclear power generation got involved in the activities of environment preservation. Then, political parties became opposed to nuclear power generation, and now, the need of nuclear power generation itself is regarded as questionable. In the general election in 1976, the Government opposing the nuclear power generation won. As the result, the conditional nuclear power development law and the energy committee were set up. The committee composed of parliament members, experts, and representatives of enterprises and trade unions is to submit its report so that the parliament can prepare a new energy program in the fall of 1978. Meanwhile, the nuclear fuel safety project formed newly has studied to satisfy the conditions of the law. In Sweden, which has developed nuclear reactors independently from the technology of USA, the oppositions are on the decrease, however. It is awaited what decision will be made by the Government in this fall.

  7. The first FDA marketing authorizations of next-generation sequencing technology and tests: challenges, solutions and impact for future assays.

    Science.gov (United States)

    Bijwaard, Karen; Dickey, Jennifer S; Kelm, Kellie; Težak, Živana

    2015-01-01

    The rapid emergence and clinical translation of novel high-throughput sequencing technologies created a need to clarify the regulatory pathway for the evaluation and authorization of these unique technologies. Recently, the US FDA authorized for marketing four next generation sequencing (NGS)-based diagnostic devices which consisted of two heritable disease-specific assays, library preparation reagents and a NGS platform that are intended for human germline targeted sequencing from whole blood. These first authorizations can serve as a case study in how different types of NGS-based technology are reviewed by the FDA. In this manuscript we describe challenges associated with the evaluation of these novel technologies and provide an overview of what was reviewed. Besides making validated NGS-based devices available for in vitro diagnostic use, these first authorizations create a regulatory path for similar future instruments and assays.

  8. Nuclear power as an option in electrical generation planning for Croatia

    International Nuclear Information System (INIS)

    Feretic, D.; Tomsic, Z.; Cavlina, N.; Kovacevic, T.

    2000-01-01

    The expected increase of electricity consumption in the next two decades, if covered mainly by domestic production, will require roughly 4500 MW of new installed capacity. The question is which resource mix would be optimal for the future power plants. Taking into account lack of domestic resources for electricity generation, current trends in the European energy markets, and environmental impact of various energy technologies, it seems reasonable for Croatia to keep the nuclear option open in the future energy planning. In line with that conclusion, this paper analyzes how the introduction of nuclear power plants would influence future power system expansion plans in Croatia, and the possibility to meet the Kyoto requirement. The effects of CO 2 emission tax and external costs on the optimal capacity mix and the emissions levels are also examined. (author)

  9. Introduction to nuclear technology

    International Nuclear Information System (INIS)

    Goldsmith, M.W.

    1985-01-01

    In the late 1940s and early 1950s when nuclear technology emerged, there was no oil embargo or any obvious signs of an energy crisis. The driving forces for the rapid development of the atom were its fuel efficiency and its potential cost-effectiveness compared to its alternatives. Uranium was a cheap and abundant domestic fuel and the development of the technology provided new vistas and challenges for the engineering community. It was the goal of providing environmentally clean, abundant, and reasonably priced energy that motivated engineers then as now. Nuclear technology developed under a mixture of government regulation and promotion and utility industry commercialization. This paper discusses the development and implementation of a technology largely resulting from the efforts of government to make the production of nuclear-powered electricity a commercial enterprise. This effort has largely succeeded, as greater than 10% of the electricity generated nationally is now provided by nuclear power

  10. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  11. Advanced ceramic materials for next-generation nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  12. Nuclear hydrogen production programme in the United States

    International Nuclear Information System (INIS)

    Sink, C.

    2010-01-01

    The Nuclear Hydrogen Initiative (NHI) is focused on demonstrating the economic, commercial-scale production of hydrogen using process heat derived from nuclear energy. NHI-supported research has concentrated to date on three technologies compatible with the Next Generation Nuclear Plant (NGNP): high temperature steam electrolysis (HTE); sulphur-iodine (S-I) thermochemical; and hybrid sulphur (HyS) thermochemical. In 2009 NHI will down select to a single technology on which to focus its future development efforts, for which the next step will be a pilot-scale experiment. (author)

  13. Interferometric detectors of gravitational waves on Earth: the next generations

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, G [INFN Firenze - Via G.Sansone 1, 50019 - Sesto F., Firenze (Italy)], E-mail: losurdo@fi.infn.it

    2008-05-15

    First generation long-baseline interferometric detectors of gravitational waves are now taking data. A first detection might be possible with these instruments, but more sensitive detectors will be needed to start the field of gravitational wave astronomy. Second generation interferometers will improve the sensitivity by a factor ten, allowing to explore a universe volume 1000 times larger. The technology is almost ready and the construction will start at the beginning of the next decade. The community of the physicists involved in the field has also started to make plans for third generation detectors, for which a long term technology development program will be required. The plans for the upgrades of the existing detectors and the scenario for the evolution of the field will be reviewed in this paper.

  14. Experimental and computational studies of thermal mixing in next generation nuclear reactors

    Science.gov (United States)

    Landfried, Douglas Tyler

    The Very High Temperature Reactor (VHTR) is a proposed next generation nuclear power plant. The VHTR utilizes helium as a coolant in the primary loop of the reactor. Helium traveling through the reactor mixes below the reactor in a region known as the lower plenum. In this region there exists large temperature and velocity gradients due to non-uniform heat generation in the reactor core. Due to these large gradients, concern should be given to reducing thermal striping in the lower plenum. Thermal striping is the phenomena by which temperature fluctuations in the fluid and transferred to and attenuated by surrounding structures. Thermal striping is a known cause of long term material failure. To better understand and predict thermal striping in the lower plenum two separate bodies of work have been conducted. First, an experimental facility capable of predictably recreating some aspects of flow in the lower plenum is designed according to scaling analysis of the VHTR. Namely the facility reproduces jets issuing into a crossflow past a tube bundle. Secondly, extensive studies investigate the mixing of a non-isothermal parallel round triple-jet at two jet-to-jet spacings was conducted. Experimental results were validation with an open source computational fluid dynamics package, OpenFOAMRTM. Additional care is given to understanding the implementation of the realizable k-a and Launder Gibson RSM turbulence Models in OpenFOAMRTM. In order to measure velocity and temperature in the triple-jet experiment a detailed investigation of temperature compensated hotwire anemometry is carried out with special concern being given to quantify the error with the measurements. Finally qualitative comparisons of trends in the experimental results and the computational results is conducted. A new and unexpected physical behavior was observed in the center jet as it appeared to spread unexpectedly for close spacings (S/Djet = 1.41).

  15. The technology of the bearings used in the nuclear power generation system turbine generator units

    International Nuclear Information System (INIS)

    Vialettes, J.M.; Rossato, M.

    1997-01-01

    A bearing consists of all the stationary part which allow the relative motion in rotation or in translation, of a shaft line. Inside the bearing there is a journal bearing with a metallic anti-friction coating (the babbitt metal). The high power turbine generator unit rotors are supported by smooth transversal journal bearings fed with oil which fills the empty space and runs along the shaft. The technologies used for the bearings and the thrust bearings of the turbine generator units and the various shaft lines of the French CP0/CP1- and CP2/1300 MW-type nuclear power plants are described. The experience feedback is then discussed in terms of the dynamics of the shaft line, i.e. vibrational problems, the influence of the alignment and the babbitt metal incidents. (author)

  16. JVM: Java Visual Mapping tool for next generation sequencing read.

    Science.gov (United States)

    Yang, Ye; Liu, Juan

    2015-01-01

    We developed a program JVM (Java Visual Mapping) for mapping next generation sequencing read to reference sequence. The program is implemented in Java and is designed to deal with millions of short read generated by sequence alignment using the Illumina sequencing technology. It employs seed index strategy and octal encoding operations for sequence alignments. JVM is useful for DNA-Seq, RNA-Seq when dealing with single-end resequencing. JVM is a desktop application, which supports reads capacity from 1 MB to 10 GB.

  17. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.

    Science.gov (United States)

    Li, Yi-Chen; Zhang, Yu Shrike; Akpek, Ali; Shin, Su Ryon; Khademhosseini, Ali

    2016-12-02

    Four-dimensional (4D) bioprinting, encompassing a wide range of disciplines including bioengineering, materials science, chemistry, and computer sciences, is emerging as the next-generation biofabrication technology. By utilizing stimuli-responsive materials and advanced three-dimensional (3D) bioprinting strategies, 4D bioprinting aims to create dynamic 3D patterned biological structures that can transform their shapes or behavior under various stimuli. In this review, we highlight the potential use of various stimuli-responsive materials for 4D printing and their extension into biofabrication. We first discuss the state of the art and limitations associated with current 3D printing modalities and their transition into the inclusion of the additional time dimension. We then suggest the potential use of different stimuli-responsive biomaterials as the bioink that may achieve 4D bioprinting where transformation of fabricated biological constructs can be realized. We finally conclude with future perspectives.

  18. Next Generation Inverter

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zilai [General Motors LLC, Detroit, MI (United States); Gough, Charles [General Motors LLC, Detroit, MI (United States)

    2016-04-22

    The goal of this Cooperative Agreement was the development of a Next Generation Inverter for General Motors’ electrified vehicles, including battery electric vehicles, range extended electric vehicles, plug-in hybrid electric vehicles and hybrid electric vehicles. The inverter is a critical electronics component that converts battery power (DC) to and from the electric power for the motor (AC).

  19. Next Generation Melter Optioneering Study - Interim Report

    International Nuclear Information System (INIS)

    Gray, M.F.; Calmus, R.B.; Ramsey, G.; Lomax, J.; Allen, H.

    2010-01-01

    The next generation melter (NOM) development program includes a down selection process to aid in determining the recommended vitrification technology to implement into the WTP at the first melter change-out which is scheduled for 2025. This optioneering study presents a structured value engineering process to establish and assess evaluation criteria that will be incorporated into the down selection process. This process establishes an evaluation framework that will be used progressively throughout the NGM program, and as such this interim report will be updated on a regular basis. The workshop objectives were achieved. In particular: (1) Consensus was reached with stakeholders and technology providers represented at the workshop regarding the need for a decision making process and the application of the D 2 0 process to NGM option evaluation. (2) A framework was established for applying the decision making process to technology development and evaluation between 2010 and 2013. (3) The criteria for the initial evaluation in 2011 were refined and agreed with stakeholders and technology providers. (4) The technology providers have the guidance required to produce data/information to support the next phase of the evaluation process. In some cases it may be necessary to reflect the data/information requirements and overall approach to the evaluation of technology options against specific criteria within updated Statements of Work for 2010-2011. Access to the WTP engineering data has been identified as being very important for option development and evaluation due to the interface issues for the NGM and surrounding plant. WRPS efforts are ongoing to establish precisely data that is required and how to resolve this Issue. It is intended to apply a similarly structured decision making process to the development and evaluation of LAW NGM options.

  20. Technical presentation: Next Generation Oscilloscopes

    CERN Multimedia

    PH Department

    2011-01-01

      Rohde & Schwarz "Next Generation Oscilloscopes" - Introduction and Presentation Agenda: Wednesday 23 March  -  09:30 to 11:30 (open end) Bldg. 13-2-005 Language: English 09.30 Presentation "Next Generation Oscilloscopes" from Rohde & Schwarz RTO / RTM in theory and practice Gerard Walker 10.15 Technical design details from R&D Dr. Markus Freidhof 10.45 Scope and Probe Roadmap (confidential) Guido Schulze 11.00 Open Discussion Feedback, first impression, wishes, needs and requirements from CERN All 11.30 Expert Talks, Hands on All Mr. Dr. Markus Freidhof, Head of R&D Oscilloscopes, Rohde & Schwarz, Germany; Mr. Guido Schulze, ...

  1. Design reliability assurance program for Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Beom-Su; Han, Jin-Kyu; Na, Jang Hwan; Yoo, Kyung Yeong

    1997-01-01

    The Korean Next Generation Reactor (KNGR) project is to develop standardized nuclear power plant design for the construction of future nuclear power plants in Korea. The main purpose of the KNGR project is to develop the advanced nuclear power plants, which enhance safety and economics significantly through the incorporation of design concepts for severe accident prevention and mitigation, supplementary passive safety concept, simplification and application of modularization and so on. For those, Probabilistic Safety Assessment (PSA) and availability study will be performed at the early stage of the design, and the Design Reliability Assurance Program (D-RAP) is applied in the development of the KNGR to ensure that the safety and availability evaluated in the PSA and availability study at the early phase of the design is maintained through the detailed design, construction, procurement and operation of the plants. This paper presents the D-RAP concept that could be applied at the stage of the basic design of the nuclear power plants, based on the models for the reference plants and/or similar plants. 4 refs., 1 fig

  2. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies

    Directory of Open Access Journals (Sweden)

    Yu Cao

    2017-09-01

    Full Text Available The development of next generation sequencing (NGS techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents or a food manufacturing facility econiche (e.g., floor drain. To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods.

  3. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies

    Science.gov (United States)

    Cao, Yu; Fanning, Séamus; Proos, Sinéad; Jordan, Kieran; Srikumar, Shabarinath

    2017-01-01

    The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods. PMID:29033905

  4. The role of next generation sequencing for the development and testing of veterinary biologics

    Science.gov (United States)

    Next generation sequencing technology has become widely available and it offers many new opportunities in vaccine technology. Both human and veterinary medicine has numerous examples of adventitious agents being found in live vaccines. In veterinary medicine a continuing trend is the use of viral ...

  5. Read length and repeat resolution: Exploring prokaryote genomes using next-generation sequencing technologies

    KAUST Repository

    Cahill, Matt J.

    2010-07-12

    Background: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. Methodology/Principal Findings: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. Conclusions: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length. 2010 Cahill et al.

  6. Read length and repeat resolution: exploring prokaryote genomes using next-generation sequencing technologies.

    Directory of Open Access Journals (Sweden)

    Matt J Cahill

    Full Text Available BACKGROUND: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. METHODOLOGY/PRINCIPAL FINDINGS: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. CONCLUSIONS: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length.

  7. Read length and repeat resolution: Exploring prokaryote genomes using next-generation sequencing technologies

    KAUST Repository

    Cahill, Matt J.; Kö ser, Claudio U.; Ross, Nicholas E.; Archer, John A.C.

    2010-01-01

    Background: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. Methodology/Principal Findings: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. Conclusions: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length. 2010 Cahill et al.

  8. Next generation toroidal devices

    International Nuclear Information System (INIS)

    Yoshikawa, Shoichi

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one's view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  9. Next generation toroidal devices

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Shoichi [Princeton Plasma Physics Lab., Princeton Univ., NJ (United States)

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one`s view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  10. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.

  11. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  12. Nuclear technology programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  13. Safety reviews of next-generation light-water reactors

    International Nuclear Information System (INIS)

    Kudrick, J.A.; Wilson, J.N.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) is reviewing three applications for design certification under its new licensing process. The U.S. Advanced Boiling Water Reactor (ABWR) and System 80+ designs have received final design approvals. The AP600 design review is continuing. The goals of design certification are to achieve early resolution of safety issues and to provide a more stable and predictable licensing process. NRC also reviewed the Utility Requirements Document (URD) of the Electric Power Research Institute (EPRI) and determined that its guidance does not conflict with NRC requirements. This review led to the identification and resolution of many generic safety issues. The NRC determined that next-generation reactor designs should achieve a higher level of safety for selected technical and severe accident issues. Accordingly, NRC developed new review standards for these designs based on (1) operating experience, including the accident at Three Mile Island, Unit 2; (2) the results of probabilistic risk assessments of current and next-generation reactor designs; (3) early efforts on severe accident rulemaking; and (4) research conducted to address previously identified generic safety issues. The additional standards were used during the individual design reviews and the resolutions are documented in the design certification rules. 12 refs

  14. Relationship between students' interests in science and attitudes toward nuclear power generation

    International Nuclear Information System (INIS)

    Komiya, Izumi; Torii, Hiroyuki; Fujii, Yasuhiko; Hayashizaki, Noriyosu

    2008-01-01

    In order to study the following two points, we conducted an attitude survey among senior high school students. Study 1 The differences in attitudes between nuclear power generation and other science and technologies. Study 2 The relationship between student's interest in science and attitudes toward nuclear power generation. In the questionnaire, the attitude toward nuclear power generation consisted of four questions: (1) pros and cons, (2) safety, (3) necessity, (4) reliability of scientists and engineers who are involved in nuclear power; and we treat four science and technology issues: (1) genetically modified foods, (2) nuclear power generation, (3) humanoid and pet robots, (4) crone technology. From study 1, on attitude to security toward nuclear power generation, about 80% of respondents answered negatively and on attitude to necessity toward it, about 75% of respondents answered positively. Therefore, we found that the structure of attitude was complicated and that it was specific to nuclear power generation. From study 2, we found students' interests in science that influence the attitude toward nuclear power generation. (author)

  15. A Survey on 5G: The Next Generation of Mobile Communication

    OpenAIRE

    Panwar, Nisha; Sharma, Shantanu; Singh, Awadhesh Kumar

    2015-01-01

    The rapidly increasing number of mobile devices, voluminous data, and higher data rate are pushing to rethink the current generation of the cellular mobile communication. The next or fifth generation (5G) cellular networks are expected to meet high-end requirements. The 5G networks are broadly characterized by three unique features: ubiquitous connectivity, extremely low latency, and very high-speed data transfer. The 5G networks would provide novel architectures and technologies beyond state...

  16. Big Data Perspective and Challenges in Next Generation Networks

    Directory of Open Access Journals (Sweden)

    Kashif Sultan

    2018-06-01

    Full Text Available With the development towards the next generation cellular networks, i.e., 5G, the focus has shifted towards meeting the higher data rate requirements, potential of micro cells and millimeter wave spectrum. The goals for next generation networks are very high data rates, low latency and handling of big data. The achievement of these goals definitely require newer architecture designs, upgraded technologies with possible backward support, better security algorithms and intelligent decision making capability. In this survey, we identify the opportunities which can be provided by 5G networks and discuss the underlying challenges towards implementation and realization of the goals of 5G. This survey also provides a discussion on the recent developments made towards standardization, the architectures which may be potential candidates for deployment and the energy concerns in 5G networks. Finally, the paper presents a big data perspective and the potential of machine learning for optimization and decision making in 5G networks.

  17. A Next Generation BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Tauro, Sandeep

    2011-01-01

    We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials.......We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials....

  18. Energy Efficient Glass Melting - The Next Generation Melter

    Energy Technology Data Exchange (ETDEWEB)

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  19. Outlook of nuclear power generation and international situation

    Energy Technology Data Exchange (ETDEWEB)

    Ekulund, S [International Atomic Energy Agency, Vienna (Austria)

    1978-01-01

    Nuclear power generation is advancing at rapid rate over the world, without any major accident. For the base load of electric power, when choice is made between nuclear energy and petroleum, Nuclear energy has larger economic advantages over petroleum as compared with the days before the oil crisis. The costs of its fuel and fuel cycle technology are reasonable. However, nuclear power generation currently has a number of problems. What causes this uncertainty is not technological, but political, i.e. governmental policy changes, and this is based on the apprehension about nuclear proliferation. What is necessary is to strengthen the existing international framework of nuclear nonproliferation. In this respect, IAEA through comprehensive safeguards will make contributions largely to reduction of the political uncertainty. It is important that the new initiatives toward international nuclear cooperation should eliminate the current trends of restraint and denial.

  20. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  1. Generation IV nuclear energy systems: road map and concepts. 2. Generation II Measurement Systems for Generation IV Nuclear Power Plants

    International Nuclear Information System (INIS)

    Miller, Don W.

    2001-01-01

    Instrumentation and Control (I and C) systems in current operating plants have not changed appreciably since their original design in the 1950's. These systems depend on a variety of traditional process and radiation sensors for the measurement of safety and control variables such as temperature, pressure, and neutron flux. To improve their performance and to make them more robust, many plant control systems have been upgraded from analog to digital; most of them continue to utilize traditional single-input single-output architecture. Transmission of data, for the most part, continues to employ large coaxial cables. These cables are not the small cables used in a laboratory (i.e., RG-58 or RG-59). Because of concern about electromagnetic and radio frequency interference and other environmental effects, bulky triax cables, which are cables with two outer shields separated by an insulator, are used. In a nuclear plant there are literally miles of cables and hundreds of specialized penetrations for cables going through containment or pressure vessel walls. The I and C systems in the advanced light water reactor (ALWR) designs, i.e., Generation III reactors, do employ more advanced technology than current plants; however, they do not incorporate new technology on a broad scale. This in part is a consequence of the ALWR design philosophy that discouraged use of advanced technology if current technology was adequate. As a consequence, the I and C systems in the ALWRs continue to make use of current technology. There are two exceptions, however, which include the broad use of software-based digital systems and fiber optics for signal isolation and data transmission in nonradioactive areas. The ALWR design philosophy was a justifiably low-risk approach when considering the overall objective of 'capturing' lessons learned from current operating plants to design a plant that would exhibit performance superior to current plants and would be relatively easy to license without

  2. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1996-01-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I ampersand C) systems for the next generation of reactors and in older plants which are retrofitted with new I ampersand C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment

  3. RES-E-NEXT: Next Generation of RES-E Policy Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.; Bird, L.; Cochran, J.; Milligan, M.; Bazilian, M. [National Renewable Energy Laboratory, Golden, CO (United States); Denny, E.; Dillon, J.; Bialek, J.; O’Malley, M. [Ecar Limited (Ireland); Neuhoff, K. [DIW Berlin (Germany)

    2013-07-04

    The RES-E-NEXT study identifies policies that are required for the next phase of renewable energy support. The study analyses policy options that secure high shares of renewable electricity generation and adequate grid infrastructure, enhance flexibility and ensure an appropriate market design. Measures have limited costs or even save money, and policies can be gradually implemented.

  4. Next generation sequencing reveals the hidden diversity of zooplankton assemblages.

    Directory of Open Access Journals (Sweden)

    Penelope K Lindeque

    Full Text Available BACKGROUND: Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel next generation sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify richness and diversity of a mixed zooplankton assemblage from a productive time series site in the Western English Channel. METHODOLOGY/PRINCIPLE FINDINGS: Plankton net hauls (200 µm were taken at the Western Channel Observatory station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,041 sequences were obtained for all samples. The sequences clustered into 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 135 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 58 taxonomic groups. CONCLUSIONS: Metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and hard-to-identify meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for elucidating the true diversity and species richness of zooplankton communities. While this approach allows for broad diversity assessments of plankton it may

  5. Third International Meeting on Next Generation Safeguards: Safeguards-by-Design at Enrichment Facilities

    International Nuclear Information System (INIS)

    Long, Jon D.; McGinnis, Brent R.; Morgan, James B.; Whitaker, Michael; Lockwood, Dunbar; Shipwash, Jacqueline L.

    2011-01-01

    The Third International Meeting on Next Generation Safeguards (NGS3) was hosted by the U.S. Department of Energy (DOE)/National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) in Washington, D.C. on 14-15 December 2010; this meeting focused on the Safeguards-by-Design (SBD) concept. There were approximately 100 participants from 13 countries, comprised of safeguards policy and technical experts from government and industry. Representatives also were present from the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), the European Atomic Energy Agency (Euratom), and the International Atomic Energy Agency (IAEA). The primary objective of this meeting was to exchange views and provide recommendations on implementation of the SBD concept for four specific nuclear fuel cycle facility types: gas centrifuge enrichment plants (GCEPs), GEN III and GEN IV reactors, aqueous reprocessing plants, and mixed oxide fuel fabrication facilities. The general and facility-specific SBD documents generated from the four working groups, which were circulated for comment among working group participants, are intended to provide a substantive contribution to the IAEA's efforts to publish SBD guidance for these specific types of nuclear facilities in the near future. The IAEA has described the SBD concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' As part of the Next Generation Safeguards Initiative (NGSI), the DOE is working to establish SBD as a global norm through DOE laboratory studies, international workshops, engagement with industry and the IAEA, and setting an example through its use in new nuclear facilities in the United States. This paper describes the discussion topics and final recommendations of the Enrichment Facilities Working

  6. Molecular Diagnostics in Pathology: Time for a Next-Generation Pathologist?

    Science.gov (United States)

    Fassan, Matteo

    2018-03-01

    - Comprehensive molecular investigations of mainstream carcinogenic processes have led to the use of effective molecular targeted agents in most cases of solid tumors in clinical settings. - To update readers regarding the evolving role of the pathologist in the therapeutic decision-making process and the introduction of next-generation technologies into pathology practice. - Current literature on the topic, primarily sourced from the PubMed (National Center for Biotechnology Information, Bethesda, Maryland) database, were reviewed. - Adequate evaluation of cytologic-based and tissue-based predictive diagnostic biomarkers largely depends on both proper pathologic characterization and customized processing of biospecimens. Moreover, increased requests for molecular testing have paralleled the recent, sharp decrease in tumor material to be analyzed-material that currently comprises cytology specimens or, at minimum, small biopsies in most cases of metastatic/advanced disease. Traditional diagnostic pathology has been completely revolutionized by the introduction of next-generation technologies, which provide multigene, targeted mutational profiling, even in the most complex of clinical cases. Combining traditional and molecular knowledge, pathologists integrate the morphological, clinical, and molecular dimensions of a disease, leading to a proper diagnosis and, therefore, the most-appropriate tailored therapy.

  7. Efforts of development on the next generation nuclear reactor in the Mitsubishi Heavy Industries, Ltd

    International Nuclear Information System (INIS)

    Mukai, Hiroshi

    2002-01-01

    At present, the Mitsubishi Heavy Industry, Ltd. (MHI) enters to development on APWR+ for a large-scale reactor, AP1000 and pebble bed modular reactor (PBMR) for middle- and small-scale one, and innovative one, under cooperation of power industries, manufacturers and institutes in and out of Japan. On APWR+, MHI occupies the most advanced position of conventional large-scale route, intends to carry out further upgrading of large capacity on a base of already developed 1500 MWe class APWR, and aims at further upgrading of economical efficiency. On the other reactor, as it becomes possible to perform value addition specific to the small-scale reactor with smaller output, it is planned to overcome its scale demerit by introducing more innovative techniques. And, on AP1000, it is intended to remove dynamic safety system by introducing a static one, to upgrade simplification of apparatus and reliability of safety system and to reduce its human factors. In addition, here was described on the next generation nuclear reactors under development. (G.K.)

  8. Compact 2100 nm laser diode module for next-generation DIRCM

    Science.gov (United States)

    Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas

    2017-10-01

    Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.

  9. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  10. technical guidelines for the design and construction of the next generation of nuclear power plants with pressurized water reactors

    International Nuclear Information System (INIS)

    2009-01-01

    These technical guidelines present the opinion of the French 'Groupe Permanent charge des Reacteurs nucleaires' (GPR) concerning the safety philosophy and approach as well as the general safety requirements to be applied for the design and construction of the next generation of nuclear power plants of the PWR (pressurized water reactor) type, assuming the construction of the first units of this generation would start at the beginning of the 21. century. These technical guidelines are based on common work of the French Institut de Protection et de Surete Nucleaire (IPSN) and of the German Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS). Moreover, these technical guidelines were extensively discussed with members of the German Reaktor Sicherheitskommission (RSK) until the end of 1998 and further with German experts. The context of these technical guidelines must be clearly understood. Faced with the current situation of nuclear energy in the world, the various nuclear steam supply system designers are developing new products, all of them claiming their intention of obtaining a higher safety level, by various ways. GPR believes that, for the operation of a new series of nuclear power plants at the beginning of the next century, the adequate way is to derive the design of these plants in an 'evolutionary' way from the design of existing plants, taking into account the operating experience and the in-depth studies conducted for such plants. Nevertheless, introduction of innovative features must also be considered in the frame of the design of the new generation of plants, especially in preventing and mitigating severe accidents. GPR underlines here that a significant improvement of the safety of the next generation of nuclear power plants at the design stage is necessary, compared to existing plants. If the search for improvement is a permanent concern in the field of safety, the necessity of a significant step at the design stage clearly derives from better

  11. New reactor technology: safety improvements in nuclear power systems.

    Science.gov (United States)

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  12. Next generation of accelerators

    International Nuclear Information System (INIS)

    Richter, B.

    1979-01-01

    Existing high-energy accelerators are reviewed, along with those under construction or being designed. Finally, some of the physics issues which go into setting machine parameters, and some of the features of the design of next generation electron and proton machines are discussed

  13. FY 1999 Report on feasibility research and development for next generation liquid crystal process basic technologies; 1999 nendo jisedai ekisho process kiban gijutsu ni kakawaru sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Described herein are the FY 1999 results of the feasibility study on the next generation liquid crystal processes. Technology for low-temperature thin film formation fabricates high-purity, high-density Si films useful as the laser annealing (crystallization) precursor by the IBD method, without using thermal annealing. Formation of thin films of a-Si and SiNx on substrates kept at 200 degrees C or lower is studied using a high-density plasma source, and the surface conditions are uniformly controlled over a large area of the film precursor. The new technology needs less power to produce the film than the conventional CVD method which uses parallel flat plates by controlling the plasma-generating region. Resources- and energy-saving using the TFT method are essential for production of liquid-crystal displays, and the techniques for forming the thin films at low temperature are studied. Reduction in wiring resistance (signal transmission delay) is studied for the next generation TFT, and it is found that the Cu film is selectively formed on TiN but not on SiO{sub 2} by the MOCVD method at 150 to 180 degrees C. Similarly, the selective film formation is confirmed in the plating technology. The comprehensive investigations for the next generation liquid crystal process technologies cover high-quality polycrystalline Si films and lithography (exposed to light). (NEDO)

  14. Education and Training Activities of the SCK-CEN Academy for Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Coeck, M.; Kesteloot, N.; Clarijs, T.

    2016-01-01

    Full text: In 2012, The Belgian Nuclear Research Centre SCK-CEN officially launched its “Academy for Nuclear Science and Technology”. Thanks to its thorough experience in the field of nuclear science and technology, its innovative research and the availability of large and unique nuclear facilities, SCK-CEN is not only a renowned nuclear research institution, but also an important partner for nuclear education and training in Belgium as well as at international level. Within the SCK-CEN Academy, more than 60 years of nuclear expertise and experience gained from our different research projects is collected and transferred. In order to maintain and extend a competent workforce in nuclear industry, healthcare, research, and governmental organizations, and to transfer this nuclear knowledge to the next generations, the mission of the SCK-CEN Academy comprises four main tasks: (i) providing guidance to young scientists, (ii) organizing of courses, (iii) providing policy support and (iv) caring for critical-intellectual capacities. (author

  15. Third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1988-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached or are about to step into the third generation phase of development. The paper concludes that to achieve the objectives of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry

  16. Securing the nuclear fuel cycle: What next?

    International Nuclear Information System (INIS)

    Ruchkin, S.V.; Loginov, V.Y.

    2006-01-01

    The greatest challenge to the international nuclear non-proliferation regime is posed by nuclear energy's dual nature for both peaceful and military purposes. Uranium enrichment and spent nuclear fuel (SNF) reprocessing (here after called s ensitive nuclear technologies ) are critical from the non-proliferation viewpoint because they may be used to produce weapons-grade nuclear materials: highly enriched uranium and separated plutonium. Alongside measures to limit the spread of sensitive nuclear technologies, multilateral approaches to the nuclear fuel cycle (NFC) started to be discussed. Spiralling prices for hydrocarbons and prospects of their imminent extinction are encouraging more and more countries to look at nuclear energy as an alternative means to ensure their sustainable development. To this end, it's becoming increasingly important to link the objective need for an expanded use of nuclear energy with strengthening nuclear non-proliferation by, in particular, preventing the spread of sensitive nuclear technologies and securing access for interested countries to NFC products and services. With this in mind, at the IAEA General Conference in 2003, IAEA Director General Mohamed ElBaradei called for establishing an international experts group on multilateral nuclear approaches. The proposal was supported, and in February 2005 the international experts, headed by Bruno Pellaud, issued a report (published by the IAEA as INFCIRC-640; see www.iaea.org) with recommendations on different multilateral approaches. The recommendations can be generalized as follows: reinforcement of existing market mechanisms; involvement of governments and the IAEA in the assurance of supply, including the establishment of low-enriched uranium (LEU) stocks as reserves; conversion of existing national uranium enrichment and SNF reprocessing enterprises into multilateral ones under international management and control, and setting up new multilateral enterprises on regional and

  17. Next Generation Campus Network Deployment Project Based on Softswitch

    OpenAIRE

    HU Feng; LIU Ziyan

    2011-01-01

    After analyzing the current networks of Guizhou University,we brought forward a scheme of next generation campus networks based on softswitch technology by choosing SoftX3000 switching system of HuaWei and provided the specific solution of accessing campus networks in this paper. It is proved that this scheme is feasible by using OPNET, which not only accomplished the integration of the PSTN and IP networks but also achieved the combining of voice services and data services.

  18. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1972-01-01

    Advances in Nuclear Science and Technology, Volume 6 provides information pertinent to the fundamental aspects of nuclear science and technology. This book covers a variety of topics, including nuclear steam generator, oscillations, fast reactor fuel, gas centrifuge, thermal transport system, and fuel cycle.Organized into six chapters, this volume begins with an overview of the high standards of technical safety for Europe's first nuclear-propelled merchant ship. This text then examines the state of knowledge concerning qualitative results on the behavior of the solutions of the nonlinear poin

  19. Status of core nuclear design technology for future fuel

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Jung, Hyung Guk; Noh, Jae Man; Kim, Yeong Il; Kim, Taek Kyum; Gil, Choong Sup; Kim, Jung Do; Kim, Young Jin; Sohn, Dong Seong

    1997-01-01

    The effective utilization of nuclear resource is more important factor to be considered in the design of next generation PWR in addition to the epochal consideration on economics and safety. Assuming that MOX fuel can be considered as one of the future fuel corresponding to the above request, the establishment of basic technology for the MOX core design has been performed : : the specification of the technical problem through the preliminary core design and nuclear characteristic analysis of MOX, the development and verification of the neutron library for lattice code, and the acquisition of data to be used for verification of lattice and core analysis codes. The following further studies will be done in future: detailed verification of library E63LIB/A, development of the spectral history effect treatment module, extension of decay chain, development of new homogenization for the MOX fuel assembly. (author). 6 refs., 7 tabs., 2 figs

  20. The Next-Generation U.S. Retail Electricity Market with Customers and Prosumers—A Bibliographical Survey

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-12-01

    Full Text Available Due to the rapidly-changing technologies in the power industry, many new references addressing the frameworks and business models of the next-generation retail electricity market are entering the research community. In particular, considering new customers with considerable demand response awareness and so-called prosumers with localized power generation based on distributed energy resources (DERs, the next-generation retail electricity market infrastructure will be a level playing field for local energy transactions, strategic pricing scheme design, new business model design and building an innovative energy ecosystem. Consequently, there is an urgent need to keep track of international experiences and activities taking place in the field of the market mechanism design problem at the distribution level. This paper provides a comprehensive survey of recent technology developments and aims to inspire awareness of the further deregulation of the electricity market, especially in areas close to customers. We mainly bring attention to the more than 90 articles published during the past five years. The collected literature has been divided into different sections to discuss different aspects of the next-generation retail electricity market under the deregulated power industry.

  1. Next-Generation Mitogenomics: A Comparison of Approaches Applied to Caecilian Amphibian Phylogeny

    OpenAIRE

    Maddock, Simon T.; Briscoe, Andrew G.; Wilkinson, Mark; Waeschenbach, Andrea; San Mauro, Diego; Day, Julia J.; Littlewood, D. Tim J.; Foster, Peter G.; Nussbaum, Ronald A.; Gower, David J.

    2016-01-01

    Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a ‘traditional’ Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing pla...

  2. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    Science.gov (United States)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  3. Next Generation Social Networks

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Skouby, Knud Erik

    2008-01-01

    different online networks for communities of people who share interests or individuals who presents themselves through user produced content is what makes up the social networking of today. The purpose of this paper is to discuss perceived user requirements to the next generation social networks. The paper...

  4. Next generation DIRCM for 2.1-2.3 micron wavelength based on direct-diode GaSb technology

    Science.gov (United States)

    Dvinelis, Edgaras; Naujokaitė, Greta; Greibus, Mindaugas; Trinkūnas, Augustinas; Vizbaras, Kristijonas; Vizbaras, Augustinas

    2018-02-01

    Continuous advances in low-cost MANPAD heat-seeking missile technology over the past 50 years remains the number one hostile threat to airborne platforms globally responsible for over 60 % of casualties. Laser based directional countermeasure (DIRCM) technology have been deployed to counter the threat. Ideally, a laser based DIRCM system must involve a number of lasers emitting at different spectral bands mimicking the spectral signature of the airborne platform. Up to now, near and mid infrared spectral bands have been covered with semiconductor laser technology and only SWIR band remained with bulky fiber laser technology. Recent technology developments on direct-diode GaSb laser technology at Brolis Semiconductors offer a replacement for the fiber laser source leading to significant improvements by few orders of magnitude in weight, footprint, efficiency and cost. We demonstrate that with careful engineering, several multimode emitters can be combined to provide a directional laser beam with radiant intensity from 10 kW/sr to 60 kW/sr in an ultra-compact hermetic package with weight < 30 g and overall efficiency of 15 % in the 2.1- 2.3 micron spectral band offering 150 times improvement in efficiency and reduction in footprint. We will discuss present results, challenges and future developments for such next-generation integrated direct diode DIRCM modules for SWIR band.

  5. NEXT GENERATION TURBINE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which

  6. Development of a framework for the neutronics analysis system for next generation (3)

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hirai, Yasushi; Hyoudou, Hideaki; Tatsumi, Masahiro

    2010-02-01

    Development of innovative analysis methods and models in fundamental studies for next-generation nuclear reactor systems is in progress. In order to efficiently and effectively reflect the latest analysis methods and models to primary design of commercial reactor and/or in-core fuel management for power reactors, a next-generation analysis system MARBLE has been developed. The next-generation analysis system provides solutions to the following requirements: (1) flexibility, extensibility and user-friendliness that can apply new methods and models rapidly and effectively for fundamental studies, (2) quantitative proof of solution accuracy and adaptive scoping range for design studies, (3) coupling analysis among different study domains for the purpose of rationalization of plant systems and improvement of reliability, (4) maintainability and reusability for system extensions for the purpose of total quality management and development efficiency. The next-generation analysis system supports many fields, such as thermal-hydraulic analysis, structure analysis, reactor physics etc., and now we are studying reactor physics analysis system for fast reactor in advance. As for reactor physics analysis methods for fast reactor, we have established the JUPITER standard analysis methods based on the past study. But, there has been a problem of extreme inefficiency due to lack of functionality in the conventional analysis system when changing analysis targets and/or modeling levels. That is why, we have developed the next-generation analysis system for reactor physics which reproduces the JUPITER standard analysis method that has been developed so far and newly realizes burnup and design analysis for fast reactor and functions for cross section adjustment. In the present study, we examined in detail the existing design and implementation of ZPPR critical experiment analysis database followed by unification of models within the framework of the next-generation analysis system by

  7. Safeguards and security by design support for the next generation nuclear plant project - Progress in safeguards by design (SBD) by the United States National Nuclear Security Administration (NNSA)

    International Nuclear Information System (INIS)

    Bjornard, T.; Casey Durst, P.

    2013-01-01

    The Next Generation Nuclear Plant (NGNP) project was authorized by the United States Energy Policy Act of 2005 with the principal objective of designing, licensing, and building a Generation IV nuclear plant capable of producing both high-temperature process heat and electricity. The two candidate NGNP reactor concepts are pebble- and prismatic-fueled high-temperature gas reactors that will be licensed by the U.S. Nuclear Regulatory Commission (NRC). The conceptual design phase of the project was completed in December 2010. This paper summarizes support provided to the NGNP project to facilitate consideration of international safeguards during the design phase, or safeguards by design (SBD). Additional support was provided for domestic safeguards (material control and accounting) and physical protection, or safeguards and security by design (2SBD). The main focus of this paper is on SBD and international safeguards. Included is an overview of the international safeguards guidance contained in guidance reports for SBD. These reports contain guidance and suggestions intended to be useful to the industry design teams, but they do not contain ready-made solutions. Early and frequent interaction of design stakeholders with the International Atomic Energy Agency and the NRC are essential to a successful endeavor. The paper is followed by the slides of the presentation. (author)

  8. Safety design criteria for the next generation Sodium-cooled fast reactors based on lessons learned from the Fukushima NPS accident

    International Nuclear Information System (INIS)

    Sakai, Takaaki

    2012-01-01

    In this presentation, architecture of the safety design criteria as requirements for SFR system and the activities on safety research works to establish safety evaluation methods for the next generation SFRs are summarized with the basis on lessons learned from the Fukushima NPS accident. Nuclear safety is a grovel issue which should be achieved by the international cooperation. In respect of the development for the next generation reactor, it is necessary to build the harmonized safety criteria and evaluation methods to establish the next level of safety

  9. Recommended numerical nuclear physics data for cutting-edge nuclear technology applications

    International Nuclear Information System (INIS)

    Ganesan, S.; Srivenkatesan, R.; Anek Kumar; Murthy, C.S.R.C.; Dhekne, P.S.

    2005-01-01

    This paper introduces some aspects of online nuclear data services at Mumbai as part of today's technology of sharing knowledge of the recommended numerical nuclear physics data for nuclear applications. The physics foundation for cutting-edge technology applications is significantly strengthened by such knowledge generation and sharing techniques. A BARC server is presently mirroring the nuclear data services of the IAEA, Vienna. The users can get all the nuclear data information much faster from the BARC nuclear data mirror website that is now fully operational. The nuclear community is encouraged to develop the habit of accessing the website for recommended values of nuclear data for use in research and applications. The URL is: www-nds.indcentre.org.in (author)

  10. Application of Next-generation Sequencing in Clinical Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Morteza Seifi

    2017-05-01

    Full Text Available ABSTRACT Next-generation sequencing (NGS is the catch all terms that used to explain several different modern sequencing technologies which let us to sequence nucleic acids much more rapidly and cheaply than the formerly used Sanger sequencing, and as such have revolutionized the study of molecular biology and genomics with excellent resolution and accuracy. Over the past years, many academic companies and institutions have continued technological advances to expand NGS applications from research to the clinic. In this review, the performance and technical features of current NGS platforms were described. Furthermore, advances in the applying of NGS technologies towards the progress of clinical molecular diagnostics were emphasized. General advantages and disadvantages of each sequencing system are summarized and compared to guide the selection of NGS platforms for specific research aims.

  11. Assessment of the Capability of Molten Salt Reactors as a Next Generation High Temperature Reactors

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2017-01-01

    Molten Salt Reactor according to Aircraft Reactor Experiment (ARE) and the Molten Salt Reactor Experiment (MSRE) programs, was designed to be the first full-scale, commercial nuclear power plant utilizing molten salt liquid fuels that can be used for producing electricity, and producing fissile fuels (breeding)burning actinides. The high temperature in the primary cycle enables the realization of efficient thermal conversion cycles with net thermal efficiencies reach in some of the designs of nuclear reactors greater than 45%. Molten salts and liquid salt because of their low vapor pressure are excellent candidates for meeting most of the requirements of these high temperature reactors. There is renewed interest in MSRs because of changing goals and new technologies in the use of high-temperature reactors. Molten Salt Reactors for high temperature create substantial technical challenges to have high effectiveness intermediate heat transfer loop components. This paper will discuss and investigate the capability and compatibility of molten salt reactors, toward next generation high temperature energy system and its technical challenges

  12. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    International Nuclear Information System (INIS)

    Doherty, M.P.

    1993-01-01

    This paper presents the status of technology program planning to achieve readiness of Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies of significant maturity: ion electric propulsion and the SP-100 space nulcear power technologies. Detailed plans are presented herein for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities

  13. Passing the torch: ANENT- The Asian network for education in nuclear technology

    International Nuclear Information System (INIS)

    Fatimah Mohd Amin; Gowin, Peter; Han, K.W.

    2004-01-01

    Recent trends show that the nuclear industry is poised for expansion for the first time in decades. The greatest expansion is seen in Asia. Out of 15 new nuclear power plants connected to the grid during the period 2000-2002, 12 are in Asia. In 2002, all new nuclear plant construction was in Asia. Besides energy generation, nuclear technology has an important role in meeting basic human needs - clean water, modern health care and food security. The expansion in the nuclear industry requires a sustainable, qualified and experienced workforce to ensure a high level of safety and performance as well as the next generation of innovative technologies. Even where no expansion is foreseen, it is vital that steps are taken to prevent the loss of accumulated knowledge to ensure that the operation of existing nuclear facilities meets the highest safety requirements and to prepare for decommissioning activities. Ageing of the nuclear workforce in many countries has prompted the nuclear community to initiate various programmes to address the issue of the ageing workforce, which is worsened by the declining interest in the nuclear field among the young. In 2002, the IAEA General Conference adopted a resolution on 'Nuclear Knowledge' (GC(46)/RES/11B), which was reiterated in the 2003 General Conference (GC(47)/ RES/10B). These resolutions emphasized the importance of nuclear knowledge management and called on Member States to strengthen their efforts in this activity. In response to the resolutions, the Agency convened a consultancy meeting to prepare the groundwork for the establishment of the Asian Network for Education in Nuclear Technology (ANENT). ANENT was established in 2004 to promote, manage and preserve nuclear knowledge and to ensure the continued availability of talented and qualified human resources in the nuclear field in the Asian region. The First Coordinating Committee meeting in February 2004 in Kuala Lumpur, Malaysia, marked the official formation of ANENT

  14. Statistical analysis of next generation sequencing data

    CERN Document Server

    Nettleton, Dan

    2014-01-01

    Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized med...

  15. Research on Key Technologies of the next generation mobile communication%关于下一代移动通信的关键技术探究

    Institute of Scientific and Technical Information of China (English)

    黄美华

    2015-01-01

    当今社会的竞争,在一定程度上是信息的竞争,随着网络技术和科学技术的发展,人们对于网络协作性和速度性的要求越来越高,因此,改进通信技术对于社会的发展和人们生活水平的提高具有十分重要的意义.下一代移动通信的发展需要更多技术的支持,当然各通信公司也在集中力量发展技术,希望在下一代技术改革中抢占市场,就目前而言,下一代无线通信技术中最关键最受人瞩目的要属多入多出(MIMO)技术,在实际应用中,系统经常需要在一个基点和多个移动台之间进行通信, MIMO技术的产生为多点之间的联系提供了更大的便利,本文将对MIMO系统进行简单介绍,分析其存在的问题,并进行相关应用的研究,希望为下一代移动通信技术的发展提供参考.%Competition in today's society,in a certain extent,is the competition of information,with the development of network technology and science and technology,people for network collaboration and speed requirements more and more high.Therefore,improved communication technology for the development of the society and people's life level of with high is very important significance.The link is the most popular in the development of next generation mobile communication need more technical support,of course,the communication company concentrate on technology development,in the hope that the next generation of technology reform to seize the market,at present,the next generation of wireless communication technology in the most critical attention to multiple input multiple (MIMO) technology in the practical application, the system is often needed in a base and a plurality of mobile stations between communication, MIMO technology to provide greater convenience,this paper will be of MIMO system are simple introduced, analyzed the existing problems and the related application research,hope for the next generation mobile communication technology development

  16. The European fusion nuclear technology effort

    International Nuclear Information System (INIS)

    Darvas, J.

    1989-01-01

    The role of fusion technology in the European fusion development strategy is outlined. The main thrust of the present fusion technology programme is responding to development needs of the Next European Torus. A smaller, but important and growing R and D effort is dealing with problems specific to the Demonstration, or Fusion Power, Reactor. The part of the programme falling under the somewhat arbitrarily defined category of 'fusion nuclear technology' is reviewed and an outlook to future activities is given. The review includes tritium technology, blanket technology and breeder materials development, technology and materials for the protection of the first wall and of other plasma facing components, remote handling technology, and safety and environmental impact studies. A few reflections are offered on the future long-term developments in fusion technology. (orig.)

  17. Overview of the CEA R and D support to generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Carre, Frank; Anzieu, Pascal; Billot, Philippe; Brossard, Philippe; Fiorini, Gian-Luigi

    2004-01-01

    As a result of an early technology road-map performed at the end of 2000, the CEA selected a sequenced development of advanced gas cooled high temperature nuclear systems as main focus for its R and D programme on future nuclear energy systems. The selection of this research objectives originates both from the significance of fast neutrons and high temperature for nuclear energy to meet the needs anticipated beyond 2020/2030, and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR likely to meet international market needs around 2020. The second step is a Very High Temperature Reactor (> 950 deg. C) to efficiently produce, among others, hydrogen though thermo-chemical water splitting or to generate electricity with an efficiency above 50%. The third step of the Path is a Gas Fast Reactor that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct-cycle helium turbine for electricity production and full recycle of actinides. The paper succinctly presents the R and D program launched in 2001 by the CEA with industrial partners on the 'Gas Technology Path', which is destined to become the contribution of France to the development of the VHTR and the GFR within the next phase of the Generation IV Forum

  18. Overview of the CEA R and D support to generation IV nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Carre, Frank; Anzieu, Pascal; Billot, Philippe; Brossard, Philippe; Fiorini, Gian-Luigi

    2004-07-01

    As a result of an early technology road-map performed at the end of 2000, the CEA selected a sequenced development of advanced gas cooled high temperature nuclear systems as main focus for its R and D programme on future nuclear energy systems. The selection of this research objectives originates both from the significance of fast neutrons and high temperature for nuclear energy to meet the needs anticipated beyond 2020/2030, and from the significant common R and D pathway that supports both medium term industrial projects and more advanced versions of gas cooled reactors. The first step of the 'Gas Technology Path' aims to support the development of a modular HTR likely to meet international market needs around 2020. The second step is a Very High Temperature Reactor (> 950 deg. C) to efficiently produce, among others, hydrogen though thermo-chemical water splitting or to generate electricity with an efficiency above 50%. The third step of the Path is a Gas Fast Reactor that features a fast-spectrum helium-cooled reactor and closed fuel cycle, with a direct-cycle helium turbine for electricity production and full recycle of actinides. The paper succinctly presents the R and D program launched in 2001 by the CEA with industrial partners on the 'Gas Technology Path', which is destined to become the contribution of France to the development of the VHTR and the GFR within the next phase of the Generation IV Forum.

  19. Reducing regulatory and economic uncertainty in the next generation of U.S. nuclear power plants

    International Nuclear Information System (INIS)

    Simard, R.L.; Bell, R.J.

    1998-01-01

    Nuclear Power Plants have accounted for 40% of all new electricity supplied in the last 25 years. Nuclear energy and coal fired plants together account for approximately three quarters of the current electricity supply.In addition to assuring reliability and diversity of energy supply, U.S. nuclear plants proved their value in another critical area of the national energy policy-managing environmental impacts.Since 1973, the use of nuclear energy in lieu of fossil fuels has prevented the emission of more than 2 billion tons of carbon in the form of carbon dioxide, 80 million tons of sulfur dioxide and 35 million tons of nitrogen oxides. Now looking ahead to the next 25 years, the challenge is to maintain reliability of energy supply, while meeting increasingly urgent needs to minimize environmental impacts from the electricity sector. Fossil fired power plants face increasing regulatory requirements and constraints on emissions.The response to the challenges of the future must include aggressive development of renewable energy sources and increased reliance on nuclear energy-the only non-emitting sources of electricity available for deployment in the near term.(DM)

  20. Strategy for Nuclear Technology Education at Uppsala University

    International Nuclear Information System (INIS)

    Osterlund, M.; Hakansson, A.; Tengborn, E.

    2010-01-01

    undergraduate students follows at least one nuclear technology course each year and about 25 students conduct their Diploma work within nuclear technology annually. Meanwhile about 150 persons from the nuclear industry follow the 'industrial' courses and an increasing amount of undergraduate students chose to follow also these courses. The volume goal has now been reached and the next step is to launch a Bachelor program in nuclear technology during second part of 2010. (author)

  1. Is nuclear energy power generation more dangerous than power generation by wind and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y

    1979-03-01

    Since the occurrence of the petroleum crisis, many countries have devoted a great deal of effort to search for substitute energy sources. Aside from nuclear energy, forms of power generation with wind, solar energy, and geothermal energy have all been actually adopted in one place or another. Most recently, a research report was published by the Canadian Bureau of Nuclear Energy Management stating that the use of wind and solar energy to generate electricity is much more dangerous than power generation with nuclear energy. When mining, transportation, machine manufacturing, etc. are included in the process of producing unit power, i.e. kilowatt/year, the data of various risks of death, injury, and diseases are computed in terms of man/day losses by the bureau. They indicate that of the ten forms of power generation, the danger is the least with natural gas, only about a 6 man/day, and nuclear energy is the next least dangerous, about 10 man/day. The danger of using temperature differential of sea water to generate electricity is about 25 man/day, and the most dangerous form of power generation is coal, amounting to three thousand man/day.

  2. Research and Development Supporting a Next Generation Germanium Double Beta Decay Experiment

    Science.gov (United States)

    Rielage, Keith; Elliott, Steve; Chu, Pinghan; Goett, Johnny; Massarczyk, Ralph; Xu, Wenqin

    2015-10-01

    To improve the search for neutrinoless double beta decay, the next-generation experiments will increase in source mass and continue to reduce backgrounds in the region of interest. A promising technology for the next generation experiment is large arrays of Germanium p-type point contact detectors enriched in 76-Ge. The experience, expertise and lessons learned from the MAJORANA DEMONSTRATOR and GERDA experiments naturally lead to a number of research and development activities that will be useful in guiding a future experiment utilizing Germanium. We will discuss some R&D activities including a hybrid cryostat design, background reduction in cabling, connectors and electronics, and modifications to reduce assembly time. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  3. Next Generation Biopharmaceuticals: Product Development.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian

    2018-04-11

    Therapeutic proteins show a rapid market growth. The relatively young biotech industry already represents 20 % of the total global pharma market. The biotech industry environment has traditionally been fast-pasted and intellectually stimulated. Nowadays the top ten best selling drugs are dominated by monoclonal antibodies (mABs).Despite mABs being the biggest medical breakthrough in the last 25 years, technical innovation does not stand still.The goal remains to preserve the benefits of a conventional mAB (serum half-life and specificity) whilst further improving efficacy and safety and to open new and better avenues for treating patients, e.g., improving the potency of molecules, target binding, tissue penetration, tailored pharmacokinetics, and reduced adverse effects or immunogenicity.The next generation of biopharmaceuticals can pose specific chemistry, manufacturing, and control (CMC) challenges. In contrast to conventional proteins, next-generation biopharmaceuticals often require lyophilization of the final drug product to ensure storage stability over shelf-life time. In addition, next-generation biopharmaceuticals require analytical methods that cover different ways of possible degradation patterns and pathways, and product development is a long way from being straight forward. The element of "prior knowledge" does not exist equally for most novel formats compared to antibodies, and thus the assessment of critical quality attributes (CQAs) and the definition of CQA assessment criteria and specifications is difficult, especially in early-stage development.

  4. Korean experiences on nuclear power technology

    International Nuclear Information System (INIS)

    Kim, H.; Yang, H.

    1994-01-01

    This paper describes the outstanding performance of the indigenous development program of nuclear power technology such as the design and fabrication of both CANDU and PWR fuel and in the design and construction of nuclear steam supply system in Korea. The success has been accomplished through the successful technology transfer from foreign suppliers and efficient utilization of R and D manpower in the design and engineering of nuclear power projects. In order to implement the technology transfer successfully, the joint design concept has been introduced along with effective on-the-job training and the transfer of design documents and computer codes. Korea's successful development of nuclear power program has resulted in rapid expansion of nuclear power generation capacity in a short time, and the nuclear power has contributed to the national economy through lowering electricity price by about 50 % as well as stabilizing electricity supply in 1980s. The nuclear power is expected to play a key role in the future electricity supply in Korea. Now Korea is under way of taking a step toward advanced nuclear technology. The national electricity system expansion plan includes 18 more units of NPPs to be constructed by the year 2006. In this circumstance, the country has fixed the national long-term nuclear R and D program (lgg2-2001) to enhance the national capability of nuclear technology. This paper also briefly describes future prospects of nuclear technology development program in Korea

  5. FY 2000 report on the results of the development of the next generation chemical process technology; 2000 nendo jisedai kagaku process gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The R and D were conducted on the next generation chemical process by which no energy losses are produced and the amount of the waste is made extremely small by the new catalytic reaction, the reaction using next generation separation/reaction membrane, etc., and the FY 2000 results were summed up. As to the development of the selective oxidation technology of saturated hydrocarbon, the basic knowledge/information were obtained on the following: construction of the catalytic principle toward the highly selective catalytic partial oxidation, elucidation of the reaction mechanism in alkane oxidation and design of the high functional catalyst, functional design in butane oxidation, characterization of the alkane oxidation catalyst and the application to the catalytic development, synthesis of the alkane selective oxidation catalyst, etc. Relating to the development of the process technology using the new reaction mechanism, a target value of equilibrium conversion of 10% or more was achieved using membrane reactor in the dehydrogenation of ethyl benzene. Further, as to the high performance selective membrane and low temperature active catalyst that are indispensable to the element technology, the continuous study was made, and at the same time themes in this study were arranged. (NEDO)

  6. NASA's Next Generation Space Geodesy Network

    Science.gov (United States)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  7. Next-generation air measurement technologies | Science ...

    Science.gov (United States)

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology. This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology.

  8. Steam generator asset management: integrating technology and asset management

    International Nuclear Information System (INIS)

    Shoemaker, P.; Cislo, D.

    2006-01-01

    Asset Management is an established but often misunderstood discipline that is gaining momentum within the nuclear generation industry. The global impetus behind the movement toward asset management is sustainability. The discipline of asset management is based upon three fundamental aspects; key performance indicators (KPI), activity-based cost accounting, and cost benefits/risk analysis. The technology associated with these three aspects is fairly well-developed, in all but the most critical area; cost benefits/risk analysis. There are software programs that calculate, trend, and display key-performance indicators to ensure high-level visibility. Activity-based costing is a little more difficult; requiring a consensus on the definition of what comprises an activity and then adjusting cost accounting systems to track. In the United States, the Nuclear Energy Institute's Standard Nuclear Process Model (SNPM) serves as the basis for activity-based costing. As a result, the software industry has quickly adapted to develop tracking systems that include the SNPM structure. Both the KPI's and the activity-based cost accounting feed the cost benefits/risk analysis to allow for continuous improvement and task optimization; the goal of asset management. In the case where the benefits and risks are clearly understood and defined, there has been much progress in applying technology for continuous improvement. Within the nuclear generation industry, more specialized and unique software systems have been developed for active components, such as pumps and motors. Active components lend themselves well to the application of asset management techniques because failure rates can be established, which serves as the basis to quantify risk in the cost-benefits/risk analysis. A key issue with respect to asset management technologies is only now being understood and addressed, that is how to manage passive components. Passive components, such as nuclear steam generators, reactor vessels

  9. Universal Intelligent Small Cell (UnISCell for next generation cellular networks

    Directory of Open Access Journals (Sweden)

    Mohammad Patwary

    2016-11-01

    Full Text Available Exploring innovative cellular architectures to achieve enhanced system capacity and good coverage has become a critical issue towards realizing the next generation of wireless communications. In this context, this paper proposes a novel concept of Universal Intelligent Small Cell (UnISCell for enabling the densification of the next generation of cellular networks. The proposed novel concept envisions an integrated platform of providing a strong linkage between different stakeholders such as street lighting networks, landline telephone networks and future wireless networks, and is universal in nature being independent of the operating frequency bands and traffic types. The main motivating factors for the proposed small cell concept are the need of public infrastructure re-engineering, and the recent advances in several enabling technologies. First, we highlight the main concepts of the proposed UnISCell platform. Subsequently, we present two deployment scenarios for the proposed UnISCell concept considering infrastructure sharing and service sharing as important aspects. We then describe the key future technologies for enabling the proposed UnISCell concept and present a use case example with the help of numerical results. Finally, we conclude this article by providing some interesting future recommendations.

  10. Designs and Architectures for the Next Generation of Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Kang-Shyang Liao

    2010-06-01

    Full Text Available Organic solar cells show great promise as an economically and environmentally friendly technology to utilize solar energy because of their simple fabrication processes and minimal material usage. However, new innovations and breakthroughs are needed for organic solar cell technology to become competitive in the future. This article reviews research efforts and accomplishments focusing on three issues: power conversion efficiency, device stability and processability for mass production, followed by an outlook for optimizing OSC performance through device engineering and new architecture designs to realize next generation organic solar cells.

  11. NextGEOSS: The Next Generation Data Hub For Earth Observations

    Science.gov (United States)

    Lilja Bye, Bente; De Lathouwer, Bart; Catarino, Nuno; Concalves, Pedro; Trijssenaar, Nicky; Grosso, Nuno; Meyer-Arnek, Julian; Goor, Erwin

    2017-04-01

    The Group on Earth observation embarked on the next 10 year phase with an ambition to streamline and further develop its achievements in building the Global Earth Observing System of Systems (GEOSS). The NextGEOSS project evolves the European vision of GEOSS data exploitation for innovation and business, relying on the three main pillars of engaging communities, delivering technological developments and advocating the use of GEOSS, in order to support the creation and deployment of Earth observation based innovative research activities and commercial services. In this presentation we will present the NextGEOSS concept, a concept that revolves around providing the data and resources to the users communities, together with Cloud resources, seamlessly connected to provide an integrated ecosystem for supporting applications. A central component of NextGEOSS is the strong emphasis put on engaging the communities of providers and users, and bridging the space in between.

  12. Development of generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Oka, Yoshiaki; Ogawa, Masuro; Ichimiya, Masakazu; Noda, Hiroshi

    2003-01-01

    The fifth 'Generation IV International Forum (GIF), Policy Group Meetings' was held at the Zen-Nikku Hotel in Tokyo, on September 19-20, 2002, under participations of Abraham, Secretary of DOE in U.S.A., Columbani, Secretary of CEA in France, Fujiie, Chairman of CAE in Japan, Kano, Parliamental Minister of MIS in Japan, and so on. Ten nations entering GIF (Argentina, Brazil, Canada, France, Japan, Korea, South Africa, Switzerland, U.K., and U.S.A.) selected six next generation nuclear energy concepts for objects of international cooperative research and development aiming at its practice by 2030. These concepts applicable to not only power generation, but also hydrogen production, sea water purification, and so on, are sodium liquid metal cooled reactor (Japan), high temperature gas cooled reactor (France), Super-critical pressure water cooled reactor (SCWR: Canada), Lead metal cooled reactor (Switzerland), Gas cooled fast reactor (U.S.A.), and molten salts reactor. On the generation IV nuclear reactor systems aiming to further upgrade their sustainability, safety, economical efficiency, and nuclear non proliferation, the 'Plans on Technical Development' (Road-map) to decide priority of their R and Ds has been cooperatively discussed under frameworks of international research cooperation by the GIF members nations. Here were shared descriptions on nuclear fuel cycle as a remise of technical evaluation and adopted concepts by Japanese participants contributing to making up the Road-map. (G.K.)

  13. 48{sup th} Annual meeting on nuclear technology (AMNT 2017). Workshop: Preserving competence in nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Steinwarz, Wolfgang

    2017-10-15

    On the 19{sup th} workshop ''Preserving Competence in Nuclear Technology'' 17 young scientists presented the results from their thesis work for a diploma, mastership or a PhD covering a broad spectrum of technical areas. This demonstrated again the strong engagement of the younger generation for the nuclear technology and the significant support by the involved German institutions. The jury awarded Thomas Schaefer (Helmholtz-Zentrum Dresden- Rossendorf) with the Siempelkamp Competence Price 2017.

  14. Factors affecting the next generation of nuclear power

    International Nuclear Information System (INIS)

    Remick, F.J.

    1990-01-01

    For both financial, environmental and health reasons, and because of external and internal factors affecting this nation's energy supply, nuclear power will likely play a part in supplying this nation's energy in the coming decades. I believe this to be true for some other parts of the world as well. Even some severe critics of the nuclear power industry and the NRC might agree with me on this point. Increasing concern with the environmental consequences of the burning of fossil fuels has led some former opponents of the use of nuclear power to balance anew the risks and benefits of nuclear power and to modify to some degree their former opposition. A related concern with the adequacy of the energy supply is leading others to modify their positions. According to analyses done by the U.S. Department of Energy, after 1994 the United States will no longer be able to assure all its citizens a reliable supply of electricity. Already, many areas of the country are in need of additional electric capacity. In both Sweden and Switzerland, similar concerns have led to the adoption by many of more compromising positions. Some critics of nuclear power may in the end still reject it as an alternative, but, with the increased pressures on the environment and on our energy supply, nuclear power is an alternative which cannot be rejected without the most serious consideration. This should be, I believe, a point of consensus among us. In sum, there is a future for nuclear power in the sense that there is a use for it

  15. Factors affecting the next generation of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Remick, F J [Nuclear Regulatory Commission, Washington, DC (United States)

    1990-07-01

    For both financial, environmental and health reasons, and because of external and internal factors affecting this nation's energy supply, nuclear power will likely play a part in supplying this nation's energy in the coming decades. I believe this to be true for some other parts of the world as well. Even some severe critics of the nuclear power industry and the NRC might agree with me on this point. Increasing concern with the environmental consequences of the burning of fossil fuels has led some former opponents of the use of nuclear power to balance anew the risks and benefits of nuclear power and to modify to some degree their former opposition. A related concern with the adequacy of the energy supply is leading others to modify their positions. According to analyses done by the U.S. Department of Energy, after 1994 the United States will no longer be able to assure all its citizens a reliable supply of electricity. Already, many areas of the country are in need of additional electric capacity. In both Sweden and Switzerland, similar concerns have led to the adoption by many of more compromising positions. Some critics of nuclear power may in the end still reject it as an alternative, but, with the increased pressures on the environment and on our energy supply, nuclear power is an alternative which cannot be rejected without the most serious consideration. This should be, I believe, a point of consensus among us. In sum, there is a future for nuclear power in the sense that there is a use for it.

  16. New nuclear power generation in the UK: Cost benefit analysis

    International Nuclear Information System (INIS)

    Kennedy, David

    2007-01-01

    This paper provides an economic analysis of possible nuclear new build in the UK. It compares costs and benefits of nuclear new build against conventional gas-fired generation and low carbon technologies (CCS, wind, etc.). A range of scenarios are considered to allow for uncertainty as regards nuclear and other technology costs, gas prices and carbon prices. In the base case, the analysis suggests that there is a small cost penalty for new nuclear generation relative to conventional gas-fired generation, but that this is offset by environmental and security of supply benefits. More generally nuclear new build has a positive net benefit for a range of plausible nuclear costs, gas prices and carbon prices. This supports the UK policy of developing an enabling framework for nuclear new build in a market-based context. To the extent that assumptions in the analysis are not borne out in reality (e.g. as regards nuclear cost), this is a no regrets policy, given that the market would not invest in nuclear if it is prohibitively costly. (author)

  17. Experimental study on ceramic membrane technology for onboard oxygen generation

    OpenAIRE

    Jiang Dongsheng; Bu Xueqin; Sun Bing; Lin Guiping; Zhao Hongtao; Cai Yan; Fang Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure d...

  18. Next generation HOM-damping

    Science.gov (United States)

    Marhauser, Frank

    2017-06-01

    Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it

  19. Benchmark problem suite for reactor physics study of LWR next generation fuels

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Ikehara, Tadashi; Ito, Takuya; Saji, Etsuro

    2002-01-01

    This paper proposes a benchmark problem suite for studying the physics of next-generation fuels of light water reactors. The target discharge burnup of the next-generation fuel was set to 70 GWd/t considering the increasing trend in discharge burnup of light water reactor fuels. The UO 2 and MOX fuels are included in the benchmark specifications. The benchmark problem consists of three different geometries: fuel pin cell, PWR fuel assembly and BWR fuel assembly. In the pin cell problem, detailed nuclear characteristics such as burnup dependence of nuclide-wise reactivity were included in the required calculation results to facilitate the study of reactor physics. In the assembly benchmark problems, important parameters for in-core fuel management such as local peaking factors and reactivity coefficients were included in the required results. The benchmark problems provide comprehensive test problems for next-generation light water reactor fuels with extended high burnup. Furthermore, since the pin cell, the PWR assembly and the BWR assembly problems are independent, analyses of the entire benchmark suite is not necessary: e.g., the set of pin cell and PWR fuel assembly problems will be suitable for those in charge of PWR in-core fuel management, and the set of pin cell and BWR fuel assembly problems for those in charge of BWR in-core fuel management. (author)

  20. The third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1987-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached of are about to step into the third generation phase of development. The paper concludes that to achieve the objective of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry. (author)

  1. Next-generation Sequencing-based genomic profiling: Fostering innovation in cancer care?

    Directory of Open Access Journals (Sweden)

    Gustavo S. Fernandes

    Full Text Available OBJECTIVES: With the development of next-generation sequencing (NGS technologies, DNA sequencing has been increasingly utilized in clinical practice. Our goal was to investigate the impact of genomic evaluation on treatment decisions for heavily pretreated patients with metastatic cancer. METHODS: We analyzed metastatic cancer patients from a single institution whose cancers had progressed after all available standard-of-care therapies and whose tumors underwent next-generation sequencing analysis. We determined the percentage of patients who received any therapy directed by the test, and its efficacy. RESULTS: From July 2013 to December 2015, 185 consecutive patients were tested using a commercially available next-generation sequencing-based test, and 157 patients were eligible. Sixty-six patients (42.0% were female, and 91 (58.0% were male. The mean age at diagnosis was 52.2 years, and the mean number of pre-test lines of systemic treatment was 2.7. One hundred and seventy-seven patients (95.6% had at least one identified gene alteration. Twenty-four patients (15.2% underwent systemic treatment directed by the test result. Of these, one patient had a complete response, four (16.7% had partial responses, two (8.3% had stable disease, and 17 (70.8% had disease progression as the best result. The median progression-free survival time with matched therapy was 1.6 months, and the median overall survival was 10 months. CONCLUSION: We identified a high prevalence of gene alterations using an next-generation sequencing test. Although some benefit was associated with the matched therapy, most of the patients had disease progression as the best response, indicating the limited biological potential and unclear clinical relevance of this practice.

  2. The importance of collaboration in the advancement of current and next generation reactors

    International Nuclear Information System (INIS)

    Jackson, Kate; Goossen, John; Anness, Mike; Meston, Tom

    2010-01-01

    The sections of the contribution are as follows: Tradition of innovation. Growing demand for nuclear power; Collaboration drivers; Responses. Knowledge transfer and management is critical. What kind of focus? Equipment reliability. Advanced repair, replacement and construction approaches. Materials. Plant safety margins. Spent fuel management. Examples of European collaboration. Zorita materials examination. Collaboration in the development of next generation reactors; Westinghouse R and D priorities; A look to the future. (P.A.)

  3. The nuclear industry and the young generation

    International Nuclear Information System (INIS)

    Hanti, A.

    2000-01-01

    The European Nuclear Society was founded in 1975. It is a federation of 25 nuclear societies from 24 countries-stretching from the Atlantic to the Urals and on across Russia to the Pacific. Through Russia's membership in the Pacific Nuclear Council. ENS is directly linked to that area, too. ENS comprises more than 20 000 professionals from industry, power stations, research centers and authorities, working to advance nuclear energy. ENS has three Member Societies in Australia, Israel and Morocco. Also it has collaboration agreements with the American Nuclear Society, the Argentinean Nuclear Energy Association, the Canadian and the Chinese Nuclear Societies. ENS is doing pioneering work with its Young Generation Network, standing for positive measures to recruit and educate young people as engineers, technicians and skilled staff ion the nuclear field: from school to university and in industry. The goals of the YGN are: to promote the establishment of national Young Generation networks; to promote the exchange of knowledge between older and younger generation cross-linked all over Europe; to encourage young people in nuclear technology to provide a resource for the future; to communicate nuclear issues to the public (general public, media, politicians). (N.C.)

  4. NASA/DARPA advanced communications technology satellite project for evaluation of telemedicine outreach using next-generation communications satellite technology: Mayo Foundation participation.

    Science.gov (United States)

    Gilbert, B K; Mitchell, M P; Bengali, A R; Khandheria, B K

    1999-08-01

    To describe the development of telemedicine capabilities-application of remote consultation and diagnostic techniques-and to evaluate the feasibility and practicality of such clinical outreach to rural and underserved communities with limited telecommunications infrastructures. In 1992, Mayo Foundation (Rochester, Minn, Jacksonville, Fla, and Scottsdale, Ariz), the National Aeronautics and Space Administration, and the Defense Advanced Research Projects Agency collaborated to create a complex network of fiberoptic landlines, video recording systems, satellite terminals, and specially developed data translators linking Mayo sites with other locations in the continental United States on an on-demand basis. The purpose was to transmit data via the asynchronous transfer mode (ATM) digital communications protocol over the Advanced Communications Technology Satellite. The links were intended to provide a conduit for transmission of data for patient-specific consultations between physicians, evaluation of medical imagery, and medical education for clinical staffs at remote sites. Low-data-rate (LDR) experiments went live late in 1993. Mayo Clinic Rochester successfully provided medical consultation and services to 2 small regional medical facilities. High-data-rate (HDR) experiments included studies of remote digital echocardiography, store-and-forward telemedicine, cardiac catheterization, and teleconsultation for congenital heart disease. These studies combined landline data transmission with use of the satellite. The complexity of the routing paths and network components, immaturity of available software, and inexperience with existing telecommunications caused significant study delays. These experiments demonstrated that next-generation satellite technology can provide batch and real-time imagery for telemedicine. The first-generation of the ATM and satellite network technology used in these experiments created several technical problems and inconveniences that should

  5. Next-generation science information network for leading-edge applications

    International Nuclear Information System (INIS)

    Urushidani, S.; Matsukata, J.

    2008-01-01

    High-speed networks are definitely essential tools for leading-edge applications in many research areas, including nuclear fusion research. This paper describes a number of advanced features in the Japanese next-generation science information network, called SINET3, and gives researchers clues on the uses of advanced high-speed network for their applications. The network services have four categories, multiple layer transfer, enriched virtual private network, enhanced quality-of-service, and bandwidth on demand services, and comprise a versatile service platform. The paper also describes the network architecture and advanced networking capabilities that enable economical service accommodation and flexible network resource assignment as well as effective use of Japan's first 40-Gbps lines

  6. Next-generation science information network for leading-edge applications

    Energy Technology Data Exchange (ETDEWEB)

    Urushidani, S. [National Institute of Informatics, 2-1-2 Hitotsubashi Chiyoda-ku, Tokyo 101-8430 (Japan)], E-mail: urushi@nii.ac.jp; Matsukata, J. [National Institute of Informatics, 2-1-2 Hitotsubashi Chiyoda-ku, Tokyo 101-8430 (Japan)

    2008-04-15

    High-speed networks are definitely essential tools for leading-edge applications in many research areas, including nuclear fusion research. This paper describes a number of advanced features in the Japanese next-generation science information network, called SINET3, and gives researchers clues on the uses of advanced high-speed network for their applications. The network services have four categories, multiple layer transfer, enriched virtual private network, enhanced quality-of-service, and bandwidth on demand services, and comprise a versatile service platform. The paper also describes the network architecture and advanced networking capabilities that enable economical service accommodation and flexible network resource assignment as well as effective use of Japan's first 40-Gbps lines.

  7. How is Electricity Generated from Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lajnef, D.

    2015-01-01

    Nuclear power is a proven, safe and clean source of power generation. A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As is typical in all conventional thermal power stations the heat is used to generate steam which drives a steam turbine: the energy released from continuous fission of the atoms of the fuel is harnessed as heat in either a gas or water, and is used to produce steam. Nuclear Reactors are classified by several methods. It can be classified by type of nuclear reaction, by the moderator material, by coolant or by generation. There are several components common to most types of reactors: fuel, moderator, control rods, coolant, and containment. Nuclear reactor technology has been under continuous development since the first commercial exploitation of civil nuclear power in the 1950s. We can mention seven key reactor attributes that illuminate the essential differences between the various generations of reactors: cost effectiveness, safety, security and non-proliferation, fuel cycle, grid appropriateness and Economics. Today there are about 437 nuclear power reactors that are used to generate electricity in about 30 countries around the world. (author)

  8. Nuclear technology competence pool. An interim balance covering the period 2000 to 2004

    International Nuclear Information System (INIS)

    Fritz, P.; Kuczera, B.

    2004-01-01

    One of the energy policy goals of the Red-Green federal government is opting out of the peaceful use of nuclear power. In line with the 'Act on the Regulated Termination of the Use of Nuclear Power for Electricity Generation' of July 25, 2002, nuclear power plants in Germany will be operated for electricity generation roughly up until 2022. For two more decades, competent personnel is required for the operation and government oversight of plants alone and, on top of that, for dismantling these nuclear power plants and for their safe disposal and final storage. Against this background, the federal government in the fall of 1999 appointed an Evaluation Committee which paid special attention to the preservation of functioning capabilities in research and to ensuring the protection of know-how in the fields of reactor safety and final storage. In its final report dated January 21, 2000, the Committee arrived at this conclusion: 'Irrespective of the conditions implied in the political decision to discontinue the use of nuclear power in Germany, competence in nuclear safety must be preserved over the next few decades. Only if this condition is met, the protective function of government provisions can be fulfilled and the safety of nuclear facilities and disposal pathways in accordance with the international state of the art guaranteed'. In the spirit of the recommendations by the Committee, the Nuclear Technology Competence Pool has been established; its members are the two research centers of the Helmholtz Association, i.e. FZJ and FZK; the FZR Center of the Leibniz Science Association; GRS as an expert consultant organization; and the respective neighboring universities. An account is presented of the strategic objectives of the Nuclear Technology Competence Pool as resulting from a detailed analysis of the situation, among other sources, and of the planned activities and the work and the projects completed to date. (orig.) [de

  9. Nuclear power and sustainable development. Maintaining and increasing the overall assets available to future generations

    International Nuclear Information System (INIS)

    2002-01-01

    has grown in extending NPP operating life-times and actual licensed life-time extensions of up to 60 years are already a reality. Currently nuclear power is most suitable for electricity production, as are hydro, wind, and solar power. However, technological progress is likely to make possible the eventual cost-effective production of chemical fuels, including hydrogen, from all these sources. They could thus help meet transportation energy needs now largely met by oil. Nuclear power plants, whose comparative advantage is base-load electricity production around the clock, would be well suited to producing, while the cities sleep, the hydrogen transport fuel to keep them moving the next day. Finally, nuclear power might also be extensively used in the future for seawater desalination, thereby helping to address another pressing challenge of sustainable development - the provision of plentiful, safe, and secure supplies of clean fresh water for a growing global population. The choice of technologies to advance sustainable development in any given country is a sovereign choice, and each country will need a mix of technologies suited to its situation and needs. Given the advantages of nuclear power in contributing to sustainable development objectives, it should be an important part of the mix in many countries. The essence of the Brundtland Report's definition of sustainable development is the importance of expanding possibilities and keeping options open - not foreclosing them for future generations. In line with the Agenda 21 principle of differentiated responsibilities among countries, those countries who are able and willing have a particularly important role to play in keeping the nuclear option open, broadening the resource base, reducing harmful emissions, expanding electricity supplies, and increasing the world's technological and human capital

  10. Next nuclear gamble: transportation and storage of nuclear waste

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1983-01-01

    Accidents during transport of nuclear waste are more threatening - though less likely - than a reactor meltdown because transportation accidents could occur in the middle of a populous city, affecting more people and property than a plant accident, according to the Council on Economic Priorities, a non-profit public service research organization. Transportation, as presently practiced, is unsafe. Shipping containers, called casks, are poorly designed and constructed, CEP says. The problem needs attention because the number of casks filled with nuclear waste on the nation's highways could increase a hundred times during the next 15 years under the Nuclear Waste Policy Act of 1982, which calls for storage areas. Recommendations, both technical and regulatory, for reducing the risks are presented

  11. Real-Time Optimization and Control of Next-Generation Distribution

    Science.gov (United States)

    -Generation Distribution Infrastructure Real-Time Optimization and Control of Next-Generation Distribution developing a system-theoretic distribution network management framework that unifies real-time voltage and Infrastructure | Grid Modernization | NREL Real-Time Optimization and Control of Next

  12. Creating Next Generation Blended Learning Environments Using Mixed Reality, Video Games and Simulations

    Science.gov (United States)

    Kirkley, Sonny E.; Kirkley, Jamie R.

    2005-01-01

    In this article, the challenges and issues of designing next generation learning environments using current and emerging technologies are addressed. An overview of the issues is provided as well as design principles that support the design of instruction and the overall learning environment. Specific methods for creating cognitively complex,…

  13. Economics issues - nuclear power generation in North America

    International Nuclear Information System (INIS)

    Jones, R.; Taylor, J.; Santucci, J.

    1996-01-01

    The structure of the US utility industry is in transition. Political, social, and economic factors are contributing to a rapid shift from a monopoly structure (captive markets, cost-plus prices, negotiated rate of return on capital) to a highly competitive one (choices for customers, prices determined by the market place, earnings based on market price less cost). The rate of change has been accelerating. For example, what just two years ago would have been thought of as highly unlikely -- competition for the individual electric customer -- is now part of the plan in California and other states. In our view, technology is at the root of many of these structural changes with more to come. Yet another round of technological change is afoot, involving even more efficient gas turbines, new methods of utilizing transmission lines, distributed generation, and new opportunities for electricity use and service. It can be argued that the restructuring of the marketplace reflects, in some measure, anticipation for these advances. For the foreseeable future, nuclear energy will continue to play a significant role in the generating grid of North America. However, new nuclear generation will be held to standards of competition that are dictated by market forces, and by advances in competing technologies for base load generation. It is important to understand these forces, and devise a response which ensures that nuclear energy will continue to provide a viable, competitive, and environmentally superior option for generating electricity in the 21st century. The EPRI Nuclear Power program is focused on achieving these goals. (author)

  14. Hacking the next generation

    CERN Document Server

    Dhanjani, Nitesh; Hardin, Brett

    2009-01-01

    With the advent of rich Internet applications, the explosion of social media, and the increased use of powerful cloud computing infrastructures, a new generation of attackers has added cunning new techniques to its arsenal. For anyone involved in defending an application or a network of systems, Hacking: The Next Generation is one of the few books to identify a variety of emerging attack vectors. You'll not only find valuable information on new hacks that attempt to exploit technical flaws, you'll also learn how attackers take advantage of individuals via social networking sites, and abuse

  15. Wireless and wireline service convergence in next generation optical access networks - the FP7 WISCON project

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Pang, Xiaodan; Lebedev, Alexander

    2014-01-01

    The next generation of information technology demands both high capacity and mobility for applications such as high speed wireless access capable of supporting broadband services. The transport of wireless and wireline signals is converging into a common telecommunication infrastructure....... In this paper, we will present the Marie Curie Framework Program 7 project “Wireless and wireline service convergence in next generation optical access networks” (WISCON), which focuses on the conception and study of novel architectures for wavelength-division-multiplexing (WDM) optical multi-modulation format...

  16. Economic factors for the next generation NPPs

    International Nuclear Information System (INIS)

    Bengt, I.; Matzie, R.A.

    1996-01-01

    This paper has summarized the major economic factors that will impact the economic viability of the next generation of nuclear power plants. To make these plants competitive with other sources of electric power, they must have a large plant output (1000 - 1400 M We), be constructed over a short time period (on the order of four years or less), be standardized designs which are pre-licensed, and achieve high availability through the use of long operating cycles and short refueling outages. Many features in the design of these plants can promote these attributes. This is the task of the designer in concert with the plant constructor and equipment supplier to work in a concurrent manner to obtain an integrated design that achieves these goals. It is important from the beginning that all interested parties recognize that there must be a balance between the desire for improved safety and the cost to achieve this safety. Similarly, there must be a recognition that the economics of nuclear power plants are based on power generation costs over a sixty year period, not on the initial capital cost of the plant. The initial capital cost of the plant is only about one-third of the total cost of running the plant for its life time. Thus, focusing on the initial capital costs may drive the designers to incorporate features that adversely affect its future operation. Features such as compact plant designs that have restricted access to components, and the use of highly interconnected systems that perform multiple functions, result in increased difficulty of operating and maintaining the plant. Exhaustive planning in all phases of the plant life cycle will reap dramatic dividends in the reduction of power generation costs. The planning done in the design phase by utilizing designers, constructors, and operators will result in a plant that has lower power generation costs. Planning during the construction phase can result in a shorter schedule, by eliminating essentially all rework

  17. Technology development for nuclear power generation for space application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  18. Technology development for nuclear power generation for space application

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M.

    2015-01-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  19. External costs of nuclear-generated electricity

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Popescu, D.; Andrei, V.

    2004-01-01

    in market prices, such as security of supply, cost stability and broad economic impacts on employment and balance of trade. If such externalities would be internalized, the effect would be positive for nuclear energy in Romania. In conclusion, like other energy sources, nuclear energy has risks and benefits that need to be fully recognized and assessed to evaluate its external costs. Both internalized (direct) costs and externalities vary from country to country, and from technology to technology. For fossil fuels and biomass, external costs may be of the same order of magnitude as direct cost. Nuclear electricity, solar photovoltaic and wind power have external costs at least one order of magnitude lower than the direct cost. Beyond the competitive generation costs of existing nuclear power plants in most markets, benefits of nuclear power, that are not reflected currently in prices, include: security of supply, cost stability and the quasi absence of atmospheric emissions of greenhouse gases, other pollutant gases and particulates. The capital and operating costs of nuclear power plants and fuel cycle facilities already internalize a major portion of the potential external costs, and these are reflected in the prices paid by consumers of nuclear-generated electricity. The internalization of external costs for all electricity generating technologies will help nuclear energy to be more competitive. (authors)

  20. Next Generation Sequencing and ALS: known genes, different phenotyphes.

    Science.gov (United States)

    Campopiano, Rosa; Ryskalin, Larisa; Giardina, Emiliano; Zampatti, Stefania; Busceti, Carla L; Biagioni, Francesca; Ferese, Rosangela; Storto, Marianna; Gambardella, Stefano; Fornai, Francesco

    2017-12-01

    Amyotrophic lateral sclerosis (ALS) is fatal neurodegenerative disease clinically characterized by upper and lower motor neuron dysfunction resulting in rapidly progressive paralysis and death from respiratory failure. Most cases appear to be sporadic, but 5-10 % of cases have a family history of the disease, and over the last decade, identification of mutations in about 20 genes predisposing to these disorders has provided the means to better understand their pathogenesis. Next Generation sequencing (NGS) is an advanced high-throughput DNA sequencing technology which have rapidly contributed to an acceleration in the discovery of genetic risk factors for both familial and sporadic neurological and neurodegenerative diseases. These strategies allowed to rapidly identify disease-associated variants and genetic risk factors for both familial (fALS) and sporadic ALS (sALS), strongly contributing to the knowledge of the genetic architecture of ALS. Moreover, as the number of ALS genes grows, many of the proteins they encode are in intracellular processes shared with other known diseases, suggesting an overlapping of clinical and phatological features between different diseases. To emphasize this concept, the review focuses on genes coding for Valosin-containing protein (VPC) and two Heterogeneous nuclear RNA-binding proteins (HNRNPA1 and hnRNPA2B1), recently idefied through NGS, where different mutations have been associated in both ALS and other neurological and neurodegenerative diseases.

  1. Improving the physics impact of next-generation 76Ge neutrinoless double-beta decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hossbach, Todd W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-01-01

    It was shown that segmentation and pulse-shape discrimination can improve the discovery sensitivity of a next-gen 0vBB-decay experiment by 90%. - However, when practical aspects are considered (such as instrumenting each segment with front-end electronics), the discovery sensitivity is decreased by 19%. - This has extremely important consequences to proposed next-gen experiments since the two active collaborations have strongly advocated the use of segmented detectors for all or part of the experiment. - New germanium detector technology, currently under development, has demonstrated excellent multi-site background rejection capabilities without the complexity of segmentation or complicated PSD algorithms. - The physically-segmented p-type germanium detector technology has proven to be a useful and practical tool in modern nuclear physics. The PSEG technology deserves further development as it has the potential for use in a variety of applications.

  2. Next Generation Safeguards Initiative Workshop on Enhanced Recruiting for International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Pepper,S.; Rosenthal, M.; Fishbone, L.; Occhiogrosso, D.; Carroll, C.; Dreicer, M.; Wallace, R.; Rankhauser, J.

    2008-10-22

    In 2007, the National Nuclear Security Administration's Office of Nonproliferation and International Security (NA-24) completed a yearlong review of the challenges facing the international safeguards system today and over the next 25 years. The study found that without new investment in international safeguards, the U.S. safeguards technology base, and our ability to support International Atomic Energy Agency (IAEA) safeguards, will continue to erode and soon may be at risk. To reverse this trend, the then U.S. Secretary of Energy, Samuel Bodman, announced at the 2007 IAEA General Conference that the Department of Energy (DOE) would launch the Next Generation Safeguards Initiative (NGSI). He stated 'IAEA safeguards must be robust and capable of addressing proliferation threats. Full confidence in IAEA safeguards is essential for nuclear power to grow safely and securely. To this end, the U.S. Department of Energy will seek to ensure that modern technology, the best scientific expertise, and adequate resources are available to keep pace with expanding IAEA responsibilities.' To meet this goal, the NGSI objectives include the recruitment of international safeguards experts to work at the U.S. national laboratories and to serve at the IAEA's headquarters. Part of the latter effort will involve enhancing our existing efforts to place well-qualified Americans in a sufficient number of key safeguards positions within the IAEA's Department of Safeguards. Accordingly, the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) hosted a Workshop on Enhanced Recruiting for International Safeguards (ERIS) on October 22 and 23, 2008. The ISPO used a workshop format developed earlier with Sonalysts, Inc., that was followed at the U.S. Support Program's (USSP's) technology road-mapping sessions. ISPO invited participants from the U.S. DOE, the IAEA, the U.S. national laboratories, private industry, academia, and

  3. Preliminary nuclear power reactor technology qualitative assessment for Malaysia

    International Nuclear Information System (INIS)

    Shamsul Amri Sulaiman

    2011-01-01

    Since the worlds first nuclear reactor major breakthrough in December 02, 1942, the nuclear power industry has undergone tremendous development and evolution for more than half a century. After surpassing moratorium of nuclear power plant construction caused by catastrophic accidents at Three-mile island (1979) and Chernobyl (1986), today, nuclear energy is back on the policy agendas of many countries, both developed and developing, signaling nuclear revival or nuclear renaissance. Selection of suitable nuclear power technology has thus been subjected to primary attention. This short paper attempts to draw preliminary technology assessment for the first nuclear power reactor technology for Malaysia. Methodology employed is qualitative analysis collating recent finding of tnb-kepco preliminary feasibility study for nuclear power program in peninsular malaysia and other published presentations and/or papers by multiple experts. The results suggested that pressurized water reactor (PWR) is the prevailing technology in terms of numbers and plant performances, and while the commercialization of generation IV reactors is remote (e.g. Not until 2030), generation III/ III+ NPP models are commercially available on the market today. Five (5) major steps involved in reactor technology selection were introduced with a focus on introducing important aspects of selection criteria. Three (3) categories for the of reactor technology selection were used for the cursory evaluation. The outcome of these analyses shall lead to deeper and full analyses of the recommended reactor technologies for a comprehensive feasibility study in the near future. Recommendations for reactor technology option were also provided for both strategic and technical recommendations. The paper shall also implore the best way to select systematically the first civilian nuclear power reactor. (Author)

  4. Nuclear Power as a Basis for Future Electricity Generation

    Science.gov (United States)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  5. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  6. Next-generation sequencing in NSCLC and melanoma patients : A cost and budget impact analysis

    NARCIS (Netherlands)

    Van Amerongen, Rosa A.; Retèl, Valesca P.; Coupé, Veerle M.H.; Nederlof, Petra M.; Vogel, Maartje J.; Van Harten, Wim H.

    2016-01-01

    Next-generation sequencing (NGS) has reached the molecular diagnostic laboratories. Although the NGS technology aims to improve the effectiveness of therapies by selecting the most promising therapy, concerns are that NGS testing is expensive and that the 'benefits' are not yet in relation to these

  7. Fiscal 1998 research report. Application technology of next-generation high-density energy beams; 1998 nendo chosa hokokusho. Jisedai komitsudo energy beam riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Survey was made on application technologies of next- generation high-density energy beams. For real application of laser power, application to not exciting source of YAG crystal but machining directly is highly efficient. For generation of semiconductor laser high-power coherent beam, phase synchronization and summing are large technological walls. Short pulse, high intensity and high repeatability are also important. Since ultra-short pulse laser ends before heat transfer to the periphery, it is suitable for precise machining, in particular, ultra-fine machining. To use beam sources as tool for production process, development of transmission, focusing and control technologies, and optical fiber and device is indispensable. Applicable fields are as follows: machining (more than pico seconds), surface modification (modification and functionalization of tribo- materials and biocompatible materials), complex machining, fabrication of quantum functional structured materials (thin film, ultra-fine particle), agriculture, ultra-precise measurement, non-destructive measurement, and coherent chemistry in chemical and environment fields. (NEDO)

  8. Rhamnolipids--next generation surfactants?

    Science.gov (United States)

    Müller, Markus Michael; Kügler, Johannes H; Henkel, Marius; Gerlitzki, Melanie; Hörmann, Barbara; Pöhnlein, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2012-12-31

    The demand for bio-based processes and materials in the petrochemical industry has significantly increased during the last decade because of the expected running out of petroleum. This trend can be ascribed to three main causes: (1) the increased use of renewable resources for chemical synthesis of already established product classes, (2) the replacement of chemical synthesis of already established product classes by new biotechnological processes based on renewable resources, and (3) the biotechnological production of new molecules with new features or better performances than already established comparable chemically synthesized products. All three approaches are currently being pursued for surfactant production. Biosurfactants are a very promising and interesting substance class because they are based on renewable resources, sustainable, and biologically degradable. Alkyl polyglycosides are chemically synthesized biosurfactants established on the surfactant market. The first microbiological biosurfactants on the market were sophorolipids. Of all currently known biosurfactants, rhamnolipids have the highest potential for becoming the next generation of biosurfactants introduced on the market. Although the metabolic pathways and genetic regulation of biosynthesis are known qualitatively, the quantitative understanding relevant for bioreactor cultivation is still missing. Additionally, high product titers have been exclusively described with vegetable oil as sole carbon source in combination with Pseudomonas aeruginosa strains. Competitive productivity is still out of reach for heterologous hosts or non-pathogenic natural producer strains. Thus, on the one hand there is a need to gain a deeper understanding of the regulation of rhamnolipid production on process and cellular level during bioreactor cultivations. On the other hand, there is a need for metabolizable renewable substrates, which do not compete with food and feed. A sustainable bioeconomy approach should

  9. Physical Configuration of the Next Generation Home Network

    Science.gov (United States)

    Terada, Shohei; Kakishima, Yu; Hanawa, Dai; Oguchi, Kimio

    The number of broadband users is rapidly increasing worldwide. Japan already has over 10 million FTTH users. Another trend is the rapid digitalization of home electrical equipment e. g. digital cameras and hard disc recorders. These trends will encourage the emergence of the next generation home network. In this paper, we introduce the next generation home network image and describe the five domains into which home devices can be classified. We then clarify the optimum medium with which to configure the network given the requirements imposed by the home environment. Wiring cable lengths for three network topologies are calculated. The results gained from the next generation home network implemented on the first phase testbed are shown. Finally, our conclusions are given.

  10. Nuclear power: A look at the future. International Conference on Fifty Years of Nuclear Power: The Next Fifty Years, 27 June 2004, Moscow, Russia

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2004-01-01

    other electricity sources. Critical Issues in Shaping the Future are: Carbon Emissions and the Growth in Demand; Security of Supply; Public Perceptions and Misconceptions: Shaping National Choices; Performance in Addressing Key Concerns: Nuclear Safety, Management and Disposal of Spent Nuclear Fuel, Nuclear Security, Technological and Policy Innovation, Fuel for Transportation (Growing Interest in the Potential for a 'Hydrogen Economy'). Although it is difficult to predict with any confidence what the next fifty years holds for nuclear power, the factors that will shape the future of nuclear power are relatively evident, and action should ne taken to address those factors, to enhance the prospects that nuclear energy remains a viable source of safe, secure and environmentally benign energy

  11. Promoting the acceptance of nuclear technology

    International Nuclear Information System (INIS)

    Rueckl, E.

    1998-01-01

    Restoring the public acceptance of nuclear technology requires optimized public relations work and an enhanced interaction among the nuclear industry and schools and universities. Thinking in contexts needs to be promoted, also in order to improve knowledge of mass flows. Specific terms often mean different things to experts and to the public. This can be corrected by careful use of language and precision in public relations work. The young generation is more openminded towards technology now than it was in the seventies and eighties. This is a point of departure in winning young people also for nuclear technology. For this to happen, science education in schools needs to be improved and the appropriate courses need to be introduced. (orig.) [de

  12. Next Generation Agricultural System Data, Models and Knowledge Products: Introduction

    Science.gov (United States)

    Antle, John M.; Jones, James W.; Rosenzweig, Cynthia E.

    2016-01-01

    Agricultural system models have become important tools to provide predictive and assessment capability to a growing array of decision-makers in the private and public sectors. Despite ongoing research and model improvements, many of the agricultural models today are direct descendants of research investments initially made 30-40 years ago, and many of the major advances in data, information and communication technology (ICT) of the past decade have not been fully exploited. The purpose of this Special Issue of Agricultural Systems is to lay the foundation for the next generation of agricultural systems data, models and knowledge products. The Special Issue is based on a 'NextGen' study led by the Agricultural Model Intercomparison and Improvement Project (AgMIP) with support from the Bill and Melinda Gates Foundation.

  13. Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Rama R Gullapalli

    2012-01-01

    Full Text Available The Human Genome Project (HGP provided the initial draft of mankind′s DNA sequence in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing of mapped regions as well as shotgun sequencing techniques in a process that occupied 13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS techniques represent the next phase in the evolution of DNA sequencing technology at dramatically reduced cost compared to traditional Sanger sequencing. A single laboratory today can sequence the entire human genome in a few days for a few thousand dollars in reagents and staff time. Routine whole exome or even whole genome sequencing of clinical patients is well within the realm of affordability for many academic institutions across the country. This paper reviews current sequencing technology methods and upcoming advancements in sequencing technology as well as challenges associated with data generation, data manipulation and data storage. Implementation of routine NGS data in cancer genomics is discussed along with potential pitfalls in the interpretation of the NGS data. The overarching importance of bioinformatics in the clinical implementation of NGS is emphasized. [7] We also review the issue of physician education which also is an important consideration for the successful implementation of NGS in the clinical workplace. NGS technologies represent a golden opportunity for the next generation of pathologists to be at the leading edge of the personalized medicine approaches coming our way. Often under-emphasized issues of data access and control as well as potential ethical implications of whole genome NGS sequencing are also discussed. Despite some challenges, it′s hard not to be optimistic about the future of personalized genome sequencing and its potential impact on patient care and the advancement of knowledge of human biology and disease in the near future.

  14. STEAMakers- a global initiative to connect STEM career professionals with the public to inspire the next generation and nurture a creative approach to science, technology, maths & engineering

    Science.gov (United States)

    Shaw, Niamh; Sorkhabi, Elburz; Gasquez, Oriol; Yajima, Saho

    2016-04-01

    STEAMakers is a global initiative founded by Niamh Shaw, Elburz Sorkhabi, Oriol Gasquez & Saho Yajima, four alumni of The International Space University's Space Studies Programme 2015 who each shared a vision to inspire the next generation to embrace science, technology, engineering & maths (STEM) in new ways, by embedding the Arts within STEM, putting the 'A' in STEAM. STEAMakers invited STEM professionals around the world to join their community, providing training and a suite of STEAM events, specially designed to encourage students to perceive science, technology, engineering & maths as a set of tools with which to create, design, troubleshoot, innovate, and imagine. The ultimate goal of STEAMakers is to grow this community and create a global culture of non-linear learning among the next generation, to nurture within them a new multidisciplinary mindset and incubate new forms of innovation and thought leadership required for the future through the power of inspiration and creativity.

  15. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... conversion is pushed to multi-MW level with high power density requirement. It has also been revealed that thermal stress in the power semiconductors is closely related to many determining factors in the wind power application like the reliability, cost, power density, etc. therefore it is an important......The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...

  16. Next-Generation Bio-Products Sowing the Seeds of Success for Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Henry Müller

    2013-10-01

    Full Text Available Plants have recently been recognized as meta-organisms due to a close symbiotic relationship with their microbiome. Comparable to humans and other eukaryotic hosts, plants also harbor a “second genome” that fulfills important host functions. These advances were driven by both “omics”-technologies guided by next-generation sequencing and microscopic insights. Additionally, these new results influence applied fields such as biocontrol and stress protection in agriculture, and new tools may impact (i the detection of new bio-resources for biocontrol and plant growth promotion, (ii the optimization of fermentation and formulation processes for biologicals, (iii stabilization of the biocontrol effect under field conditions, and (iv risk assessment studies for biotechnological applications. Examples are presented and discussed for the fields mentioned above, and next-generation bio-products were found as a sustainable alternative for agriculture.

  17. A Framework for the Next Generation of Risk Science

    Science.gov (United States)

    Krewski, Daniel; Andersen, Melvin E.; Paoli, Gregory M.; Chiu, Weihsueh A.; Al-Zoughool, Mustafa; Croteau, Maxine C.; Burgoon, Lyle D.; Cote, Ila

    2014-01-01

    Objectives: In 2011, the U.S. Environmental Protection Agency initiated the NexGen project to develop a new paradigm for the next generation of risk science. Methods: The NexGen framework was built on three cornerstones: the availability of new data on toxicity pathways made possible by fundamental advances in basic biology and toxicological science, the incorporation of a population health perspective that recognizes that most adverse health outcomes involve multiple determinants, and a renewed focus on new risk assessment methodologies designed to better inform risk management decision making. Results: The NexGen framework has three phases. Phase I (objectives) focuses on problem formulation and scoping, taking into account the risk context and the range of available risk management decision-making options. Phase II (risk assessment) seeks to identify critical toxicity pathway perturbations using new toxicity testing tools and technologies, and to better characterize risks and uncertainties using advanced risk assessment methodologies. Phase III (risk management) involves the development of evidence-based population health risk management strategies of a regulatory, economic, advisory, community-based, or technological nature, using sound principles of risk management decision making. Conclusions: Analysis of a series of case study prototypes indicated that many aspects of the NexGen framework are already beginning to be adopted in practice. Citation: Krewski D, Westphal M, Andersen ME, Paoli GM, Chiu WA, Al-Zoughool M, Croteau MC, Burgoon LD, Cote I. 2014. A framework for the next generation of risk science. Environ Health Perspect 122:796–805; http://dx.doi.org/10.1289/ehp.1307260 PMID:24727499

  18. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    International Nuclear Information System (INIS)

    Leahy, Timothy J.

    2010-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated 'toolkit' consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  19. COSINE software development based on code generation technology

    International Nuclear Information System (INIS)

    Ren Hao; Mo Wentao; Liu Shuo; Zhao Guang

    2013-01-01

    The code generation technology can significantly improve the quality and productivity of software development and reduce software development risk. At present, the code generator is usually based on UML model-driven technology, which can not satisfy the development demand of nuclear power calculation software. The feature of scientific computing program was analyzed and the FORTRAN code generator (FCG) based on C# was developed in this paper. FCG can generate module variable definition FORTRAN code automatically according to input metadata. FCG also can generate memory allocation interface for dynamic variables as well as data access interface. FCG was applied to the core and system integrated engine for design and analysis (COSINE) software development. The result shows that FCG can greatly improve the development efficiency of nuclear power calculation software, and reduce the defect rate of software development. (authors)

  20. FY 1999 report on the results of the development of technology of the environmentally friendly next generation small incinerator; 1999 nendo kankyo taio jisedai kogata shokyakuro gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The development was proceeded with of a next generation small incinerator of low dioxin emission. Concretely, the technology to be developed is for a next generation small incinerator of low dioxin emission in which the exhaust gas treatment system enabling various kinds of heat utilization is connected to the small incinerator mixing the fixed bed two stage combustion technology of industrial waste use low dioxin oxygen concentration control system and the high performance industrial furnace heat storage combustion technology. The trial-manufactured small incinerator has characteristics as follows: The incinerator can complement the decrease in efficiency in the wide-area refuse collection. It can remarkably reduce the emission of environmental pollutants such as CO2. It contributes to reduction in CO2 emission and reduction in fossil fuel consumption amount by effective utilization of exhaust heat. The incinerator is lower in price than the existing one of low dioxin emission type. The subjects are verification of the overall effect of the lower dioxin emission, verification of effects of reduction in CO2 emission and reduction in fossil fuel consumption amount by heat utilization, and study of the spread/promotion system. The report contains items of the development of an environmentally friendly next generation small incinerator and the evaluation survey for the commercialization, and photos as supplementary data. (NEDO)

  1. A Next Generation Digital Counting System For Low-Level Tritium Studies (Project Report)

    International Nuclear Information System (INIS)

    Bowman, P.

    2016-01-01

    Since the early seventies, SRNL has pioneered low-level tritium analysis using various nuclear counting technologies and techniques. Since 1999, SRNL has successfully performed routine low-level tritium analyses with counting systems based on digital signal processor (DSP) modules developed in the late 1990s. Each of these counting systems are complex, unique to SRNL, and fully dedicated to performing routine tritium analyses of low-level environmental samples. It is time to modernize these systems due to a variety of issues including (1) age, (2) lack of direct replacement electronics modules and (3) advances in digital signal processing and computer technology. There has been considerable development in many areas associated with the enterprise of performing low-level tritium analyses. The objective of this LDRD project was to design, build, and demonstrate a Next Generation Tritium Counting System (NGTCS), while not disrupting the routine low-level tritium analyses underway in the facility on the legacy counting systems. The work involved (1) developing a test bed for building and testing new counting system hardware that does not interfere with our routine analyses, (2) testing a new counting system based on a modern state of the art DSP module, and (3) evolving the low-level tritium counter design to reflect the state of the science.

  2. Quantifying population genetic differentiation from next-generation sequencing data

    DEFF Research Database (Denmark)

    Fumagalli, Matteo; Garrett Vieira, Filipe Jorge; Korneliussen, Thorfinn Sand

    2013-01-01

    method for quantifying population genetic differentiation from next-generation sequencing data. In addition, we present a strategy to investigate population structure via Principal Components Analysis. Through extensive simulations, we compare the new method herein proposed to approaches based...... on genotype calling and demonstrate a marked improvement in estimation accuracy for a wide range of conditions. We apply the method to a large-scale genomic data set of domesticated and wild silkworms sequenced at low coverage. We find that we can infer the fine-scale genetic structure of the sampled......Over the last few years, new high-throughput DNA sequencing technologies have dramatically increased speed and reduced sequencing costs. However, the use of these sequencing technologies is often challenged by errors and biases associated with the bioinformatical methods used for analyzing the data...

  3. Innovation in nuclear energy technology

    International Nuclear Information System (INIS)

    Dujardin, Th.; Bertel, E.; Kwang Seok, Lee; Foskolos, K.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its sustainable future. Many research and development programmes focus on enhancing the performance of power plants in operation, current fuel design and characteristics, and fuel cycle processes used in existing facilities. Generally performed under the leadership of the industry. Some innovation programmes focus on evolutionary reactors and fuel cycles, derived from systems of the current generation. Such programmes aim at achieving significant improvements, in the field of economics or resource management for example, in the medium term. Often, they are undertaken by the industry with some governmental support as they require basic research together with technological development and adaptation. Finally, large programmes, often undertaken in an international, intergovernmental framework are devoted to design and development of a new generation of systems meeting the goals of sustainable development in the long term. Driving forces for nuclear innovation vary depending on the target technology, the national framework and the international context surrounding the research programme. However, all driving factors can be grouped in three categories: market drivers, political drivers and technology drivers. Globally, innovation in the nuclear energy sector is a success story but is a lengthy process that requires careful planning and adequate funding to produce successful outcomes

  4. Assessment of U.S. Manufacturing Capability for Next-Generation Wind Turbine Drivetrains

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stelhy, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    Robust U.S. wind turbine manufacturing capabilities and supply chains are important for the United States to reduce the cost of electricity generated from wind turbines. These capabilities and supply chains are also critical to the invention and commercialization of new wind turbine technologies while providing high-quality jobs. The development of advanced drivetrain technologies for windturbine applications is advancing the state of the art for drivetrain design by producing higher capacity and operating reliability than conventional drivetrains. Advanced drivetrain technologies such as medium-speed and direct-drive generators, silicon-carbide (SiC) IGBT-based power electronics, and high torque density speed increasers require different manufacturing and supply chaincapabilities that present both risks and opportunities for U.S. wind turbine manufacturers and the wind industry as a whole. The primary objective of this project is to assess how advanced drivetrain technologies and trends will impact U.S. wind turbine manufacturing and its supply chains. The U.S. Department of Energy and other industry participants will use the information from this study toidentify domestic manufacturing gaps, barriers, and opportunities for developing U.S. wind turbine manufacturing capabilities and supply chains for next-generation drivetrain technologies. This report also includes recommendations for prioritizing technology areas for possible investments by public, private, or nonprofit entities that will reduce the cost of wind-generated electricity. Suchinvestments foster opportunities to invent and commercialize new wind turbine technologies, and provide high-quality jobs in the United States.

  5. Next-generation sequencing in schizophrenia and other neuropsychiatric disorders.

    Science.gov (United States)

    Schreiber, Matthew; Dorschner, Michael; Tsuang, Debby

    2013-10-01

    Schizophrenia is a debilitating lifelong illness that lacks a cure and poses a worldwide public health burden. The disease is characterized by a heterogeneous clinical and genetic presentation that complicates research efforts to identify causative genetic variations. This review examines the potential of current findings in schizophrenia and in other related neuropsychiatric disorders for application in next-generation technologies, particularly whole-exome sequencing (WES) and whole-genome sequencing (WGS). These approaches may lead to the discovery of underlying genetic factors for schizophrenia and may thereby identify and target novel therapeutic targets for this devastating disorder. © 2013 Wiley Periodicals, Inc.

  6. Mobile location services over the next generation IP core network

    DEFF Research Database (Denmark)

    Thongthammachart, Saowanee; Olesen, Henning

    2003-01-01

    network is changing from circuit-switched to packet-switched technology and evolving to an IP core network based on IPv6. The IP core network will allow all IP devices to be connected seamlessly. Due to the movement detection mechanism of Mobile IPv6, mobile terminals will periodically update....... The concept of mobile location services over the next generation IP networks is described. We also discuss the effectiveness of the short-range wireless network regarding a mobile user's position inside buildings and hotspot areas....

  7. CANDU technology for generation III + AND IV reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    2005-01-01

    Atomic Energy of Canada Limited (AECL) is the original developer of the CANDU?reactor, one of the three major commercial power reactor designs now used throughout the world. For over 60 years, AECL has continued to evolve the CANDU design from the CANDU prototypes in the 1950s and 1960s through to the second generation reactors now in operation, including the Generation II+ CANDU 6. The next phase of this evolution, the Generation III+ Advanced CANDU ReactorTM (ACRTM), continues the strategy of basing next generation technology on existing CANDU reactors. Beyond the ACR, AECL is developing the Generation IV CANDU Super Critical Water Reactor. Owing to the evolutionary nature of these advanced reactors, advanced technology from the development programs is also being applied to operating CANDU plants, for both refurbishments and upgrading of existing systems and components. In addition, AECL is developing advanced technology that covers the entire life cycle of the CANDU plant, including waste management and decommissioning. Thus, AECL maintains state-of-the-art expertise and technology to support both operating and future CANDU plants. This paper outlines the scale of the current core knowledge base that is the foundation for advancement and support of CANDU technology. The knowledge base includes advancements in materials, fuel, safety, plant operations, components and systems, environmental technology, waste management, and construction. Our approach in each of these areas is to develop the underlying science, carry out integrated engineering scale tests, and perform large-scale demonstration testing. AECL has comprehensive R and D and engineering development programs to cover all of these elements. The paper will show how the ongoing expansion of the CANDU knowledge base has led to the development of the Advanced CANDU Reactor. The ACR is a Generation III+ reactor with substantially reduced costs, faster construction, and enhanced passive safety and operating

  8. MiSeq: A Next Generation Sequencing Platform for Genomic Analysis.

    Science.gov (United States)

    Ravi, Rupesh Kanchi; Walton, Kendra; Khosroheidari, Mahdieh

    2018-01-01

    MiSeq, Illumina's integrated next generation sequencing instrument, uses reversible-terminator sequencing-by-synthesis technology to provide end-to-end sequencing solutions. The MiSeq instrument is one of the smallest benchtop sequencers that can perform onboard cluster generation, amplification, genomic DNA sequencing, and data analysis, including base calling, alignment and variant calling, in a single run. It performs both single- and paired-end runs with adjustable read lengths from 1 × 36 base pairs to 2 × 300 base pairs. A single run can produce output data of up to 15 Gb in as little as 4 h of runtime and can output up to 25 M single reads and 50 M paired-end reads. Thus, MiSeq provides an ideal platform for rapid turnaround time. MiSeq is also a cost-effective tool for various analyses focused on targeted gene sequencing (amplicon sequencing and target enrichment), metagenomics, and gene expression studies. For these reasons, MiSeq has become one of the most widely used next generation sequencing platforms. Here, we provide a protocol to prepare libraries for sequencing using the MiSeq instrument and basic guidelines for analysis of output data from the MiSeq sequencing run.

  9. Next Generation Launch Technology Program Lessons Learned

    Science.gov (United States)

    Cook, Stephen; Tyson, Richard

    2005-01-01

    In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.

  10. Rucio, the next-generation Data Management system in ATLAS

    Science.gov (United States)

    Serfon, C.; Barisits, M.; Beermann, T.; Garonne, V.; Goossens, L.; Lassnig, M.; Nairz, A.; Vigne, R.; ATLAS Collaboration

    2016-04-01

    Rucio is the next-generation of Distributed Data Management (DDM) system benefiting from recent advances in cloud and ;Big Data; computing to address HEP experiments scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quixote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 160 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio addresses these issues by relying on new technologies to ensure system scalability, cover new user requirements and employ new automation framework to reduce operational overheads. This paper shows the key concepts of Rucio, details the Rucio design, and the technology it employs, the tests that were conducted to validate it and finally describes the migration steps that were conducted to move from DQ2 to Rucio.

  11. Rucio, the next-generation Data Management system in ATLAS

    CERN Document Server

    Serfon, C; Beermann, T; Garonne, V; Goossens, L; Lassnig, M; Nairz, A; Vigne, R

    2016-01-01

    Rucio is the next-generation of Distributed Data Management (DDM) system benefiting from recent advances in cloud and "Big Data" computing to address HEP experiments scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quijote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 160 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio addresses these issues by relying on new technologies to ensure system scalability, cover new user requirements and employ new automation framework to reduce operational overheads. This paper shows the key concepts of Rucio, details the Rucio design, and the technology it employs, the tests that were conducted to validate it and finally describes the migration steps that were conducted to move from DQ2 to Rucio.

  12. Rucio, the next-generation Data Management system in ATLAS

    CERN Document Server

    Serfon, C; The ATLAS collaboration; Beermann, T; Garonne, V; Goossens, L; Lassnig, M; Nairz, A; Vigne, R

    2014-01-01

    Rucio is the next-generation of Distributed Data Management (DDM) system benefiting from recent advances in cloud and "Big Data" computing to address HEP experiments scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quijote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 160 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio addresses these issues by relying on new technologies to ensure system scalability, cover new user requirements and employ new automation framework to reduce operational overheads. In this talk, we will present the history of the DDM project and the experience of data management operation in ATLAS computing. Thus, We will show the key concepts of Rucio, including its data organization. The Rucio design, and the technology it e...

  13. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    International Nuclear Information System (INIS)

    Herbst, A.K.

    2000-01-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state

  14. Achievement report for fiscal 1998. Development of next-generation chemical process technologies; 1998 nendo jisedai kagaku process gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Researches are conducted on the development of a technology of catalytic cracking of naphtha, technology relative to selective oxidation reaction of saturated hydrocarbons, process technology utilizing solid-phase reaction field, and a process technology utilizing novel reaction mechanism. Also, a survey is conducted on chemical processes of the next generation. Concerning the catalytic cracking of naphtha, reaction systems are roughly divided into two groups by whether or not they proceed in the presence of oxygen. As for rare earth oxide catalyst systems and zeolitic catalyst systems, their performance is confirmed and their reaction mechanisms are estimated. Concerning the selective oxidation reaction of hydrocarbons, studies are made to enhance the performance of catalytic systems that have been selected in researches conducted in the past. Concerning the process of solid phase reaction field utilization, the project is summarized and a concept is constructed of 'solid phase catalyst.' Concerning novel reaction mechanism utilizing process technologies, development is discussed of a novel process using membrane reactor, a highly functional hydrogen permeable membrane, a low-temperature dehydrogenation catalyst, etc., and a dehydrogenation membrane reactor is experimentally built. (NEDO)

  15. Review of Current Nuclear Vacuum System Technologies

    International Nuclear Information System (INIS)

    Carroll, M.; McCracken, J.; Shope, T.

    2003-01-01

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested

  16. The risk of nuclear power in Germany compared with the risk other electricity generating technologies

    International Nuclear Information System (INIS)

    Preiss, P.; Wissel, S.; Fahl, U.; Friedrich, R.; Voss, A.

    2013-01-01

    The report shows that no electricity generation technology is without risk and without environmental impact. Taking into account the quantifiable risks of loss expenses in case of accidents the study shows that the health hazards and economical risk are by trend about equal for nuclear power and renewable energy sources. The study is based on the statement that the severe accident in Fukushima-Daiichi cannot be ascribed to so-called remaining risk since the NPP was not designed for tsunamis of the size that occurred in 2011 although this size was of high probability and that the calculated very low probabilities for severe accidents in German nuclear power plants correspond to the reality.

  17. The European nuclear future

    Energy Technology Data Exchange (ETDEWEB)

    Noon, F [Energy Industries, Canterbury, Kent (United Kingdom)

    1990-06-01

    The Nuclear Industry, both reactor manufacturers and generating companies, have a responsibility to make the case for Nuclear Energy in very positive terms if Western Europe is to avoid the economic trap of serious power deficits in the early part of the next century. Significant progress will not be made without public consent, and the public must be made aware of the real needs for the future: A Commitment to Safe Nuclear Energy Utilising Economical Designs Based Upon Proven Technology. However some re-thinking of accepted energy philosophy is also called for, and the speculation here as to what could happen in Europe over the next thirty years, is one possible scenario. (author)

  18. The European nuclear future

    International Nuclear Information System (INIS)

    Noon, F.

    1990-01-01

    The Nuclear Industry, both reactor manufacturers and generating companies, have a responsibility to make the case for Nuclear Energy in very positive terms if Western Europe is to avoid the economic trap of serious power deficits in the early part of the next century. Significant progress will not be made without public consent, and the public must be made aware of the real needs for the future: A Commitment to Safe Nuclear Energy Utilising Economical Designs Based Upon Proven Technology. However some re-thinking of accepted energy philosophy is also called for, and the speculation here as to what could happen in Europe over the next thirty years, is one possible scenario. (author)

  19. Next generation vaccines.

    Science.gov (United States)

    Riedmann, Eva M

    2011-07-01

    In February this year, about 100 delegates gathered for three days in Vienna (Austria) for the Next Generation Vaccines conference. The meeting held in the Vienna Hilton Hotel from 23rd-25th February 2011 had a strong focus on biotech and industry. The conference organizer Jacob Fleming managed to put together a versatile program ranging from the future generation of vaccines to manufacturing, vaccine distribution and delivery, to regulatory and public health issues. Carefully selected top industry experts presented first-hand experience and shared solutions for overcoming the latest challenges in the field of vaccinology. The program also included several case study presentations on novel vaccine candidates in different stages of development. An interactive pre-conference workshop as well as interactive panel discussions during the meeting allowed all delegates to gain new knowledge and become involved in lively discussions on timely, interesting and sometimes controversial topics related to vaccines.

  20. A roadmap for nuclear energy technology

    Science.gov (United States)

    Sofu, Tanju

    2018-01-01

    The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge

  1. Nuclear Research and Development Capabilities Needed to Support Future Growth

    Energy Technology Data Exchange (ETDEWEB)

    Wham, Robert M. [ORNL, P.O. Box 2008, Oak Ridge, TN 37831-6154 (United States); Kearns, Paul [Battelle Memorial Institute (United States); Marston, Ted [Marston Consulting (United States)

    2009-06-15

    The energy crisis looming before the United States can be resolved only by an approach that integrates a 'portfolio' of options. Nuclear energy, already an important element in the portfolio, should play an even more significant role in the future as the U.S. strives to attain energy independence and reduce carbon emissions. The DOE Office of Nuclear Energy asked Battelle Memorial Institute to obtain input from the commercial power generation industry on industry's vision for nuclear energy over the next 30-50 years. With this input, Battelle was asked to generate a set of research and development capabilities necessary for DOE to support the anticipated growth in nuclear power generation. This presentation, based on the report generated for the Office of Nuclear Energy, identifies the current and future nuclear research and development capabilities required to make this happen. The capabilities support: (1) continued, safe operation of the current fleet of nuclear plants; (2) the availability of a well qualified and trained workforce; (3) demonstration of the next generation nuclear plants; (4) development of a sustainable fuel cycle; (5) advanced technologies for maximizing resource utilization and minimization of waste and (6) advanced modeling and simulation for rapid and reliable development and deployment of new nuclear technologies. In order to assure these capabilities are made available, a Strategic Nuclear Energy Capability Initiative is proposed to provide the required resources during this critical period of time. (authors)

  2. NOAA NEXt-Generation RADar (NEXRAD) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Level III weather radar products collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska,...

  3. AgMIP: Next Generation Models and Assessments

    Science.gov (United States)

    Rosenzweig, C.

    2014-12-01

    Next steps in developing next-generation crop models fall into several categories: significant improvements in simulation of important crop processes and responses to stress; extension from simplified crop models to complex cropping systems models; and scaling up from site-based models to landscape, national, continental, and global scales. Crop processes that require major leaps in understanding and simulation in order to narrow uncertainties around how crops will respond to changing atmospheric conditions include genetics; carbon, temperature, water, and nitrogen; ozone; and nutrition. The field of crop modeling has been built on a single crop-by-crop approach. It is now time to create a new paradigm, moving from 'crop' to 'cropping system.' A first step is to set up the simulation technology so that modelers can rapidly incorporate multiple crops within fields, and multiple crops over time. Then the response of these more complex cropping systems can be tested under different sustainable intensification management strategies utilizing the updated simulation environments. Model improvements for diseases, pests, and weeds include developing process-based models for important diseases, frameworks for coupling air-borne diseases to crop models, gathering significantly more data on crop impacts, and enabling the evaluation of pest management strategies. Most smallholder farming in the world involves integrated crop-livestock systems that cannot be represented by crop modeling alone. Thus, next-generation cropping system models need to include key linkages to livestock. Livestock linkages to be incorporated include growth and productivity models for grasslands and rangelands as well as the usual annual crops. There are several approaches for scaling up, including use of gridded models and development of simpler quasi-empirical models for landscape-scale analysis. On the assessment side, AgMIP is leading a community process for coordinated contributions to IPCC AR6

  4. Current Status of Advanced Nuclear Fuel Cycle technologies

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Lee, Jong Hyun

    2009-07-01

    To expand the use of nuclear energy, SNF from nuclear power plants must be managed in a safe and environmental friendly and the problem of decreasing uranium should be solved. To resolve this, a dry processing technology Pyroprocessing is focused on. The government started to develop of Pyroprocessing technology in 1997. According to the decision of government based of Atomic Energy Commission in December 2008, the Korea Atomic Energy Research Institute will construct PRIDE (Pyroprocess Integrated Inactive DEmonstration Facility) by 2011 to prove a consistent process. If Pyroprocessing technology will be developed in the near future, the size of radioactive waste disposal site can be reduced to 100 times compared to the direct disposal. When this technology will be connected to Fast Reactor. high level nuclear waste management of Hundreds of thousands of years may be reduced to hundreds years. However for the commercialization of Pyroprocessing technology, there are some problems to solve. First, because of none commercial facilities in the world of executive experience, so that the facility design, measurement. management and material flow, the critical need for data accumulation. Second, High-level nuclear waste have been known to generate more than the wet methods, it should continue to reduce technology development. In addition, a careful consideration of the residual uranium generating on process also can maximize the efficiency of reducing. The new concept is being developed in Korea Atomic Energy Research Institute Pyroprocessing technology and nuclear waste processing technology to overcome these drawbacks sUQQested a way

  5. Development of digital plant protection system for Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Suk-Joon Park

    1998-01-01

    A Digital Plant Protection System (DPPS) for Korean Next Generation Reactor (KNGR) is being developed using the Programmable Logic Controller (PLC) technology. For the design verification, the development of the DPPS prototype is progressing at this time. The prototype hardware equipment is installed and software coding is started. DPPS software is being coded by strict software V and V activities and function block language that uses simple graphical symbols. By adopting the PLC technology, the design of DPPS is possible to take full advantages in areas such as automatic testing, simplified calibration, improved isolation between redundant channels, reduced internal and external wiring and increased plant availability. (author)

  6. The Next Generation Science Standards

    Science.gov (United States)

    Pruitt, Stephen L.

    2015-01-01

    The Next Generation Science Standards (NGSS Lead States 2013) were released almost two years ago. Work tied to the NGSS, their adoption, and implementation continues to move forward around the country. Stephen L. Pruitt, senior vice president, science, at Achieve, an independent, nonpartisan, nonprofit education reform organization that was a lead…

  7. (U) Ristra Next Generation Code Report

    Energy Technology Data Exchange (ETDEWEB)

    Hungerford, Aimee L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Daniel, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-22

    LANL’s Weapons Physics management (ADX) and ASC program office have defined a strategy for exascale-class application codes that follows two supportive, and mutually risk-mitigating paths: evolution for established codes (with a strong pedigree within the user community) based upon existing programming paradigms (MPI+X); and Ristra (formerly known as NGC), a high-risk/high-reward push for a next-generation multi-physics, multi-scale simulation toolkit based on emerging advanced programming systems (with an initial focus on data-flow task-based models exemplified by Legion [5]). Development along these paths is supported by the ATDM, IC, and CSSE elements of the ASC program, with the resulting codes forming a common ecosystem, and with algorithm and code exchange between them anticipated. Furthermore, solution of some of the more challenging problems of the future will require a federation of codes working together, using established-pedigree codes in partnership with new capabilities as they come on line. The role of Ristra as the high-risk/high-reward path for LANL’s codes is fully consistent with its role in the Advanced Technology Development and Mitigation (ATDM) sub-program of ASC (see Appendix C), in particular its emphasis on evolving ASC capabilities through novel programming models and data management technologies.

  8. Next Generation Germanium Systems for Safeguards Applications

    International Nuclear Information System (INIS)

    Dreyer, J.; Burks, M.; Hull, E.

    2015-01-01

    We are developing the latest generation of highly portable, mechanically cooled germanium systems for safeguard applications. In collaboration with our industrial partner, Ph.D.s Co, we have developed the Germanium Gamma Ray Imager (GeGI), an imager with a 2π field of view. This instrument has been thoroughly field tested in a wide range of environments and have performed reliably even in the harshest conditions. The imaging capability of GeGI complements existing safeguards techniques by allowing for the spatial detection, identification, and characterization of nuclear material. Additionally, imaging can be used in design information verification activities to address potential material diversions. Measurements conducted at the Paducah Gaseous Diffusion Plant highlight the advantages this instrument offers in the identification and localization of LEU, HEU and Pu holdup. GeGI has also been deployed to the Savannah River Site for the measurement of radioactive waste canisters, providing information valuable for waste characterization and inventory accountancy. Measuring 30 x 15 x 23 cm and weighing approximately 15 kg, this instrument is the first portable germanium-based imager. GeGI offers high reliability with the convenience of mechanical cooling, making this instrument ideal for the next generation of safeguards instrumentation. (author)

  9. Reflexions on the expansion of nuclear generation in Brazil

    International Nuclear Information System (INIS)

    Freitas, Juliana de Moraes Marreco de

    2006-01-01

    This article analyses the pros and cons of the nuclear generation in Brazil, involving in a large discussion the technological perspectives both economic, social and environmental. The objective is to rise the main questions about the polemical nuclear expansion in Brazil

  10. Development of next BWR plant

    International Nuclear Information System (INIS)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke

    1995-01-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.)

  11. Development of next BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Kumiaki; Tanikawa, Naoshi; Kinoshita, Shoichiro; Utena, Shunsuke [Hitachi Ltd., Ibaraki (Japan). Hitachi Works

    1995-04-01

    It is expected that BWR power generation will be main nuclear power generation for long period hereafter, and in the ABWRs being constructed at present, the safety, reliability, operation performance, economical efficiency and so on are further heightend as compared with conventional BWRs. On the other hand, in order to cope with future social change, the move to develop the next reactor type following ABWRs was begun already by the cooperation of electirc power companies and plant manufacturers. Hitachi Ltd. has advanced eagerly the development of new light water reactors. Also the objective of BWR power generation hereafter is to heighten the safety, reliability, operation performance and economical efficiency, and the development has been advanced, aiming at bearing the main roles of nuclear power generation. At present, ABWRs are under construction as No. 6 and 7 plants in Kashiwazaki Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. In order to let ABWRs take root, the further improvement of economy by the standardization, the rationalization by revising the specification and the improvement of machinery and equipment is necessary. As the needs of the development of next generation BWRs, the increase of power output, the heightening of safety and economical efficiency are discussed. The concept of the next generation BWR plant aiming at the start of operation around 2010 is shown. (K.I.).

  12. Nuclear technology and materials science

    International Nuclear Information System (INIS)

    Olander, D.R.

    1992-01-01

    Current and expected problems in the materials of nuclear technology are reviewed. In the fuel elements of LWRs, cladding waterside corrosion, secondary hydriding and pellet-cladding interaction may be significant impediments to extended burnup. In the fuel, fission gas release remains a key issue. Materials issues in the structural alloys of the primary system include stress-corrosion cracking of steel, corrosion of steam generator tubing and pressurized thermal shock of the reactor vessel. Prediction of core behavior in severe accidents requires basic data and models for fuel liquefaction, aerosol formation, fission product transport and core-concrete interaction. Materials questions in nuclear waste management and fusion technology are briefly reviewed. (author)

  13. Nuclear power development on the basis of new concepts of nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    Adamov, E.O.; Orlov, V.V.

    2001-01-01

    Current state of nuclear power in the world has been considered and the reasons for its falling short of the great expectations relating to its vigorous development in the outgoing century are considered. Anticipated energy demand of the mankind in the next century is evaluated, suggesting that with exhausted resources of cheap fossil fuel and ecological restrictions it can be satisfied by means of a new nuclear technology meeting the requirements of large-scale power generation in terms of safety and economic indices, moreover, the technology can be elaborated in the context of achievements made in civil and military nuclear engineering. Since the developing countries are the most interested parties, it is just their initiative in the development of nuclear technology at the next stage that could provide an impetus for its actual advance. It is shown that large-scale development of nuclear power, being adequate to increase in energy demand, is possible even if solely large NPP equipped with breeders providing BR (1 are constructed). Requirements for the reactor and fuel cycle technologies are made, their major aspects being: efficient utilization of Pu accumulated and reduction of U specific consumption by at least an order of magnitude, natural inherent safety and deterministic elimination of accidents involving high radioactive releases, assurance of a balance between radiation hazard posed by radioactive wastes disposed and uranium extracted from the ground, nuclear weapons nonproliferation due to fuel reprocessing ruling out potentiality of Pu diversion, reduction of the new generation reactor costs below the costs of today's LWR. (authors)

  14. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  15. Next generation sequencing and its applications in forensic genetics

    DEFF Research Database (Denmark)

    Børsting, Claus; Morling, Niels

    2015-01-01

    articles and presentations at conferences with forensic aspects of NGS. These contributions have demonstrated that NGS offers new possibilities for forensic genetic case work. More information may be obtained from unique samples in a single experiment by analyzing combinations of markers (STRs, SNPs......It has been almost a decade since the first next generation sequencing (NGS) technologies emerged and quickly changed the way genetic research is conducted. Today, full genomes are mapped and published almost weekly and with ever increasing speed and decreasing costs. NGS methods and platforms have...... matured during the last 10 years, and the quality of the sequences has reached a level where NGS is used in clinical diagnostics of humans. Forensic genetic laboratories have also explored NGS technologies and especially in the last year, there has been a small explosion in the number of scientific...

  16. Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics.

    Science.gov (United States)

    Shah, Dhaval K

    2015-10-01

    Increasingly sophisticated protein engineering efforts have been undertaken lately to generate protein therapeutics with desired properties. This has resulted in the discovery of the next generation of protein therapeutics, which include: engineered antibodies, immunoconjugates, bi/multi-specific proteins, antibody mimetic novel scaffolds, and engineered ligands/receptors. These novel protein therapeutics possess unique physicochemical properties and act via a unique mechanism-of-action, which collectively makes their pharmacokinetics (PK) and pharmacodynamics (PD) different than other established biological molecules. Consequently, in order to support the discovery and development of these next generation molecules, it becomes important to understand the determinants controlling their PK/PD. This review discusses the determinants that a PK/PD scientist should consider during the design and development of next generation protein therapeutics. In addition, the role of systems PK/PD models in enabling rational development of the next generation protein therapeutics is emphasized.

  17. Next-generation mid-infrared sources

    Science.gov (United States)

    Jung, D.; Bank, S.; Lee, M. L.; Wasserman, D.

    2017-12-01

    to provide a survey of the current state of the art for mid-IR sources, but instead looks primarily to provide a picture of potential next-generation optical and optoelectronic materials systems for mid-IR light generation.

  18. Young generation in Romanian nuclear system - Romanian nuclear organizations implication in nuclear knowledge management at University 'Politehnica' of Bucharest - Results and expectations

    International Nuclear Information System (INIS)

    Ghizdeanu, E.N.; Dumitrescu, M.C.; Budu, A.R.; Pavelescu, A.O.

    2004-01-01

    The knowledge management should be assumed by the major players within the nuclear community: government, industry and university. Starting from these problems this article gives an overview about Romanian nuclear knowledge management and the Young Generation implications. In Romania there are many government and non-government nuclear institutions such: CNCAN (Romanian Regulatory Body), ROMATOM (Romanian Atomic Forum), AREN (Romanian 'Nuclear Energy' Association), and companies: SNN ('Nuclearelectrica' SA National Company), CITON (Centre of Technology and Engineering for Nuclear Projects), SCN (Institute for Nuclear Research), ROMAG - PROD (Romanian Heavy Water Plant). All these institutes and companies are sustaining the national nuclear program and promoting the new technologies in the nuclear industry according with CNCAN and ROMATOM regulations. University 'POLITEHNICA' of Bucharest - Power Engineering Faculty - through Nuclear Power Plant Department is the promoter of nuclear knowledge management. It is implied in assuring and maintaining a high-quality training for young staff. Young Generation is implicated in nuclear knowledge management through University 'Politehnica' of Bucharest - Power Engineering Faculty - Nuclear Power Plant Department and AREN (Romanian 'Nuclear Energy' Association). Young Generation Department has special educational programs for attracting and supporting students. It provides adequate information and interacts with potential students. Moreover the article gives results about Romanian nuclear engineers since 1970 till now. An analysis of these data is done. Also it is discussed how University 'Politehnica' of Bucharest, the Romanian Government and the Industry work together to co-ordinate more effectively their efforts to encourage the young generation. (author)

  19. IPv6: The Next Generation Internet Protocol

    Indian Academy of Sciences (India)

    addressing, new generation internet. 2. ... required the creation of the next generation of Internet ... IPv6 standards have defined the following Extension headers ..... addresses are represented as x:x:x:x:x:x:x:x, where each x is the hexadecimal ...

  20. Application of plasma technology to nuclear engineering fields

    International Nuclear Information System (INIS)

    Suzuki, Masaaki; Akatsuka, Hiroshi

    1996-01-01

    In order to discuss about the application of the plasma technology to nuclear engineering fields, we mention two subjects, the oxygenation of metal chloride waste by oxygen plasma and the characterization of fine particles generated in the plasma process. Through the experimental results of two subjects, both of the advantage and the disadvantage of the plasma technology and their characteristics are shown and discussed. The following conclusions are obtained. The reactive plasma is effective to oxygenate the chloride wastes. The particle generation which is one of the disadvantages must not be specialized and its characteristics can be estimated. Consequently, the plasma technology should be applicable to nuclear engineering fields adopting its advantage and overcoming its disadvantage. (author)