WorldWideScience

Sample records for next-generation monoblock laser

  1. Next-generation fiber lasers enabled by high-performance components

    Science.gov (United States)

    Kliner, D. A. V.; Victor, B.; Rivera, C.; Fanning, G.; Balsley, D.; Farrow, R. L.; Kennedy, K.; Hampton, S.; Hawke, R.; Soukup, E.; Reynolds, M.; Hodges, A.; Emery, J.; Brown, A.; Almonte, K.; Nelson, M.; Foley, B.; Dawson, D.; Hemenway, D. M.; Urbanek, W.; DeVito, M.; Bao, L.; Koponen, J.; Gross, K.

    2018-02-01

    Next-generation industrial fiber lasers enable challenging applications that cannot be addressed with legacy fiber lasers. Key features of next-generation fiber lasers include robust back-reflection protection, high power stability, wide power tunability, high-speed modulation and waveform generation, and facile field serviceability. These capabilities are enabled by high-performance components, particularly pump diodes and optical fibers, and by advanced fiber laser designs. We summarize the performance and reliability of nLIGHT diodes, fibers, and next-generation industrial fiber lasers at power levels of 500 W - 8 kW. We show back-reflection studies with up to 1 kW of back-reflected power, power-stability measurements in cw and modulated operation exhibiting sub-1% stability over a 5 - 100% power range, and high-speed modulation (100 kHz) and waveform generation with a bandwidth 20x higher than standard fiber lasers. We show results from representative applications, including cutting and welding of highly reflective metals (Cu and Al) for production of Li-ion battery modules and processing of carbon fiber reinforced polymers.

  2. Compact 2100 nm laser diode module for next-generation DIRCM

    Science.gov (United States)

    Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas

    2017-10-01

    Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.

  3. Next Generation Driver for Attosecond and Laser-plasma Physics.

    Science.gov (United States)

    Rivas, D E; Borot, A; Cardenas, D E; Marcus, G; Gu, X; Herrmann, D; Xu, J; Tan, J; Kormin, D; Ma, G; Dallari, W; Tsakiris, G D; Földes, I B; Chou, S-W; Weidman, M; Bergues, B; Wittmann, T; Schröder, H; Tzallas, P; Charalambidis, D; Razskazovskaya, O; Pervak, V; Krausz, F; Veisz, L

    2017-07-12

    The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 10 20  W/cm 2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.

  4. Laser metrology for a next generation gravimetric mission

    Science.gov (United States)

    Mottini, Sergio; Biondetti, Giorgio; Cesare, Stefano; Castorina, Giuseppe; Musso, Fabio; Pisani, Marco; Leone, Bruno

    2017-11-01

    Within the ESA technology research project "Laser Interferometer High Precision tracking for LEO", Thales Alenia Space Italia is developing a laser metrology system for a Next Generation Gravimetric Mission (NGGM) based on satellite-to-satellite tracking. This technique is based on the precise measurement of the displacement between two satellites flying in formation at low altitude for monitoring the variations of Earth's gravity field at high resolution over a long time period. The laser metrology system that has been defined for this mission consists of the following elements: • an heterodyne Michelson interferometer for measuring the distance variation between retroreflectors positioned on the two satellites; • an angle metrology for measuring the orientation of the laser beam in the reference frames of the two satellites; • a lateral displacement metrology for measuring the deviations of the laser beam axis from the target retro-reflector. The laser interferometer makes use of a chopped measurement beam to avoid spurious signals and nonlinearity caused by the unbalance between the strong local beam and the weak return beam. The main results of the design, development and test activities performed on the breadboard of the metrology system are summarized in this paper.

  5. Performance analysis of next-generation lunar laser retroreflectors

    Science.gov (United States)

    Ciocci, Emanuele; Martini, Manuele; Contessa, Stefania; Porcelli, Luca; Mastrofini, Marco; Currie, Douglas; Delle Monache, Giovanni; Dell'Agnello, Simone

    2017-09-01

    Starting from 1969, Lunar Laser Ranging (LLR) to the Apollo and Lunokhod Cube Corner Retroreflectors (CCRs) provided several tests of General Relativity (GR). When deployed, the Apollo/Lunokhod CCRs design contributed only a negligible fraction of the ranging error budget. Today the improvement over the years in the laser ground stations makes the lunar libration contribution relevant. So the libration now dominates the error budget limiting the precision of the experimental tests of gravitational theories. The MoonLIGHT-2 project (Moon Laser Instrumentation for General relativity High-accuracy Tests - Phase 2) is a next-generation LLR payload developed by the Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory (SCF _ Lab) at the INFN-LNF in collaboration with the University of Maryland. With its unique design consisting of a single large CCR unaffected by librations, MoonLIGHT-2 can significantly reduce error contribution of the reflectors to the measurement of the lunar geodetic precession and other GR tests compared to Apollo/Lunokhod CCRs. This paper treats only this specific next-generation lunar laser retroreflector (MoonLIGHT-2) and it is by no means intended to address other contributions to the global LLR error budget. MoonLIGHT-2 is approved to be launched with the Moon Express 1(MEX-1) mission and will be deployed on the Moon surface in 2018. To validate/optimize MoonLIGHT-2, the SCF _ Lab is carrying out a unique experimental test called SCF-Test: the concurrent measurement of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of the CCR under thermal conditions produced with a close-match solar simulator and simulated space environment. The focus of this paper is to describe the SCF _ Lab specialized characterization of the performance of our next-generation LLR payload. While this payload will improve the contribution of the error budget of the space segment (MoonLIGHT-2

  6. Laser peening applications for next generation of nuclear power facilities

    International Nuclear Information System (INIS)

    Rankin, J.; Truong, C.; Walter, M.; Chen, H.-L.; Hackel, L.

    2008-01-01

    Generation of electricity by nuclear power can assist in achieving goals of reduced greenhouse gas emissions. Increased safety and reliability are necessary attributes of any new nuclear power plants. High pressure, hot water and radiation contribute to operating environments where Stress Corrosion Cracking (SCC) and hydrogen embrittlement can lead to potential component failures. Desire for improved steam conversion efficiency pushes the fatigue stress limits of turbine blades and other rotating equipment. For nuclear reactor facilities now being designed and built and for the next generations of designs, laser peening could be incorporated to provide significant performance life to critical subsystems and components making them less susceptible to fatigue, SCC and radiation induced embrittlement. These types of components include steam turbine blades, hubs and bearings as well as reactor components including cladding material, housings, welded assemblies, fittings, pipes, flanges, vessel penetrations, nuclear waste storage canisters. Laser peening has proven to be a commercial success in aerospace applications and has recently been put into use for gas and steam turbine generators and light water reactors. An expanded role for this technology for the broader nuclear power industry would be a beneficial extension. (author)

  7. Status of technology R&D for the ITER tungsten divertor monoblock

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Escourbiac, F.; Barabash, V.; Durocher, A.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Merola, M.; Carpentier-Chouchana, S. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Arkhipov, N. [Project Center ITER, 1, Building 3, Kurchatov Sq., 123182 Moscow (Russian Federation); Kuznetcov, V.; Volodin, A. [NIIEFA, 3 doroga na Metallostroy, Metallostroy, St. Petersburg 196641 (Russian Federation); Suzuki, S.; Ezato, K.; Seki, Y. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Riccardi, B.; Bednarek, M.; Gavila, P. [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain)

    2015-08-15

    In order to develop and validate the high performance tungsten monoblock technology, the full-tungsten divertor qualification program was defined. As the first step, small-scale mock-ups were manufactured and successfully tested under the required high heat flux loads. The test results demonstrated that the technology is available in Japan and Europe. Post-tests observation of the loaded W monoblocks showed generation of self-castellation – a crack along coolant tube axis. The cause of the self-castellation was discussed and a tungsten material characterization program is being developed with the objective to understand mechanical properties that influence the occurrence of the self-castellation.

  8. Laser-produced plasma-extreme ultraviolet light source for next generation lithography

    International Nuclear Information System (INIS)

    Nishihara, Katsunobu; Nishimura, Hiroaki; Gamada, Kouhei; Murakami, Masakatsu; Mochizuki, Takayasu; Sasaki, Akira; Sunahara, Atsushi

    2005-01-01

    Extreme ultraviolet (EUV) lithography is the most promising candidate for the next generation lithography for the 45 nm technology node and below. EUV light sources under consideration use 13.5 nm radiations from multicharged xenon, tin and lithium ions, because Mo/Si multiplayer mirrors have high reflectivity at this wavelength. A review of laser-produced plasma (LPP) EUV light sources is presented with a focus on theoretical and experimental studies under the auspices of the Leading Project promoted by MEXT. We discuss three theoretical topics: atomic processes in the LPP-EUV light source, conversion efficiency from laser light to EUV light at 13.5 nm wave-length with 2% bound width, and fast ion spectra. The properties of EUV emission from tin and xenon plasmas are also shown based on experimental results. (author)

  9. Manufacture of large monoblock LP rotor forgings and their quality

    International Nuclear Information System (INIS)

    Suzuki, Akira; Kinoshita, Shushi; Kohno, Masayoshi; Miyakawa, Mutsuhiro; Kikuchi, Hideo

    1986-01-01

    This paper describes the manufacturing and the quality of large monoblock low pressure rotors forged from 360 ton and 420 ton ingots. To obtain good and homogenous mechanical properties throughout a rotor, a computer was used to determine the heat treatment conditions. It was found that the technique was very effective at predicting mechanical properties of a monoblock rotor. Mechanical properties including the fracture toughness and fatigue crack propagation characteristics of monoblock rotor forgings proved satisfactory. (author)

  10. Development of residual thermal stress-relieving structure of CFC monoblock target for JT-60SA divertor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, Daigo, E-mail: tsuru.daigo@jaea.go.jp; Sakurai, Shinji; Nakamura, Shigetoshi; Ozaki, Hidetsugu; Seki, Yohji; Yokoyama, Kenji; Suzuki, Satoshi

    2015-10-15

    Highlights: • We carried out numerical simulations on residual thermal stress of targets for the JT-60SA divertor. • We developed three measures to reduce residual thermal stress. • We proposed two structures of CFC monoblock target for the JT-60SA divertor. • We confirmed the effectiveness of the structure by infrared thermography inspection and high heat flux test. - Abstract: Carbon fibre-reinforced carbon composite (CFC) monoblock target for JT-60SA divertor is under development towards the mass-production. CFC monoblocks, WCu interlayers and a CuCrZr cooling tube at the centre of the monoblocks were bonded by vacuum brazing in a high temperature, to a target. If residual thermal stress due to difference of thermal expansions between CFC and CuCrZr exceeds the maximum allowable stress of the CFC after the bonding, cracks are generated in the CFC monoblock and heat removal capacity of the target degrades. In this paper, new structures of the targets were proposed, to reduce residual thermal stress and to mitigate the degradation of heat removal capacity of the targets. Some measures, including slitting of the CFC monoblock aside of the cooling tube, replacement of the interlayer material and shifting the position of the cooling tube, were implemented. The effectiveness of the measures was evaluated by numerical simulations. Target mock-ups with the proposed structures were manufactured. Infrared thermography inspection and high heat flux test were carried out on the mock-ups in order to evaluate the heat removal capacity.

  11. International, private-public, multi-mission, next-generation lunar laser retroreflectors

    Science.gov (United States)

    Dell'Agnello, Simone

    2017-04-01

    for CNSA's Chang'E-4 mission). INRRI has been embarked on ESA's ExoMars lander "Schiaparelli" and it has been requested by NASA to ASI for the Mars 2020 Rover mission. LLR data are analized/simulated with the Planetary Ephemeris Program developed by CfA. INFN, UMD and MEI signed a private-public partnership, multi-mission agreement to deploy the big and the microreflectors on the Moon. Through existing MoUs between INFN and the Russian Academy of Sciences, international negotiations are also underway to propose the new lunar reflectors and the SCF_Lab services for the next robotic missions of the Russian space program. References: [1] Probing gravity with next-generation lunar la-ser ranging, M. Martini and S. Dell'Agnello, in R. Peron et al. (eds.), Gravity: Where Do We Stand?, DOI 10.1007/978-3-319-20224-2_5, Springer Inter-national Publishing, Switzerland (2016). [2] Formation flying, cosmology and general rel-ativity: a tribute to far-reaching dreams of Mino Freund, Currie, D.; Williams, J.; Dell'Agnello, S.; Monache, G.D.; Behr, B. and K. Zacny, in Springer Proceedings in Physics, vol. 150, ISBN-13: 978-3319022062, ISBN-10: 3319022067 (2014). [3] Williams, J. G., Turyshev, S. G., Boggs, D. H., Ratcliff, J. T., Lunar laser ranging science: Grav-itational physics and lunar interior and geodesy, Adv. Space Res. 37(1), 67-71 (2006). [4] Constraining spacetime torsion with Moon and Mercury, R. March, G. Bellettini, R. Taursaso, S. Dell'Agnello, Phys. Rev D 83, 104008 (2011). [5] Constraining nonminimally coupled gravity with laser ranging to the moon, N. Castel-Branco, J. Paramos, R. March and S. Dell'Agnello, in 3rd Euro-pean Lunar Symposium, Frascati, Italy (2014). [6] Creation of the new industry-standard space test of laser retroreflectors for the GNSS and LAGEOS, S. Dell'Agnello et al, Adv. Space Res. 47, 822-842 (2011). [7] Advanced Laser Retroreflectors for Astro-physics and Space Science, Dell'Agnello, S., et al, Journal of Applied Mathematics and Physics, 3

  12. Compact, diode-pumped, solid-state lasers for next generation defence and security sensors

    Science.gov (United States)

    Silver, M.; Lee, S. T.; Borthwick, A.; McRae, I.; Jackson, D.; Alexander, W.

    2015-06-01

    Low-cost semiconductor laser diode pump sources have made a dramatic impact in sectors such as advanced manufacturing. They are now disrupting other sectors, such as defence and security (D&S), where Thales UK is a manufacturer of sensor systems for application on land, sea, air and man portable. In this talk, we will first give an overview of the market trends and challenges in the D&S sector. Then we will illustrate how low cost pump diodes are enabling new directions in D&S sensors, by describing two diode pumped, solid- state laser products currently under development at Thales UK. The first is a new generation of Laser Target Designators (LTD) that are used to identify targets for the secure guiding of munitions. Current systems are bulky, expensive and require large battery packs to operate. The advent of low cost diode technology, merged with our novel solid-state laser design, has created a designator that will be the smallest, lowest cost, STANAG compatible laser designator on the market. The LTD delivers greater that 50mJ per pulse up to 20Hz, and has compact dimensions of 125×70×55mm. Secondly, we describe an ultra-compact, eye-safe, solid-state laser rangefinder (LRF) with reduced size, weight and power consumption compared to existing products. The LRF measures 100×55×34mm, weighs 200g, and can range to greater than 10km with a single laser shot and at a reprate of 1Hz. This also leverages off advances in laser pump diodes, but also utilises low cost, high reliability, packaging technology commonly found in the telecoms sector. As is common in the D&S sector, the products are designed to work in extreme environments, such as wide temperature range (-40 to +71°C) and high levels of shock and vibration. These disruptive products enable next- generation laser sensors such as rangefinders, target designators and active illuminated imagers.

  13. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO2 laser

    Science.gov (United States)

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; Polyanskiy, M. N.; Skaritka, J.; Tresca, O.; Dover, N. P.; Najmudin, Z.; Lu, W.; Cook, N.; Ting, A.; Chen, Y.-H.

    2016-03-01

    Expanding the scope of relativistic plasma research to wavelengths longer than the λ/≈   0.8-1.1 μm range covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ  =   9-11 μm CO2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time to molecular gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One example is shock-wave ion acceleration (SWA) from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at an energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR BESTIA will open up new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of laser wakefield accelerator (LWFA) studies into the unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100 TW CO2 laser beam will be capable of efficiently generating plasma ‘bubbles’ a thousand times greater in volume compared with a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate the study of external seeding and staging of LWFAs.

  14. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    OpenAIRE

    Panayotis, S.; Hirai, T.; Wirtz, Marius; Barabash, V.; Durocher, A.; Escourbiac, F.; Linke, J.; Loewenhoff, Th.; Merola, M.; Pintsuk, G.; Uytdenhouwen, I.

    2017-01-01

    In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highligh...

  15. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    Directory of Open Access Journals (Sweden)

    S. Panayotis

    2017-08-01

    Full Text Available In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highlighted that the higher the recrystallization resistance, the lower the number of cracks detected during high heat flux tests. Thermo-mechanical finite element modelling demonstrated that the maximum surface temperature ranges from 1800 °C to 2200 °C and in this range recrystallization of tungsten occurred. Furthermore, it indicated that loss of strength due to recrystallization is responsible for the development of macro-cracks in the tungsten monoblock.

  16. Synchronization System for Next Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zavriyev, Anton [MagiQ Technologies, Inc., Somerville, MA (United States)

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  17. Structural impact of armor monoblock dimensions on the failure behavior of ITER-type divertor target components: Size matters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; You, Jeong-Ha, E-mail: you@ipp.mpg.de

    2016-12-15

    Highlights: • Quantitative assessment of size effects was conducted numerically for W monoblock. • Decreasing the width of W monoblock leads to a lower risk of failure. • The Cu interlayer was not affected significantly by varying armor thickness. • The predicted trends were in line with the experimental observations. - Abstract: Plenty of high-heat-flux tests conducted on tungsten monoblock type divertor target mock-ups showed that the threshold heat flux density for cracking and fracture of tungsten armor seems to be related to the dimension of the monoblocks. Thus, quantitative assessment of such size effects is of practical importance for divertor target design. In this paper, a computational study about the thermal and structural impact of monoblock size on the plastic fatigue and fracture behavior of an ITER-type tungsten divertor target is reported. As dimensional parameters, the width and thickness of monoblock, the thickness of sacrificial armor, and the inner diameter of cooling tube were varied. Plastic fatigue lifetime was estimated for the loading surface of tungsten armor and the copper interlayer by use of a cyclic-plastic constitutive model. The driving force of brittle crack growth through the tungsten armor was assessed in terms of J-integral at the crack tip. Decrease of the monoblock width effectively reduced accumulation of plastic strain at the armor surface and the driving force of brittle cracking. Decrease of sacrificial armor thickness led to decrease of plastic deformation at the loading surface due to lower surface temperature, but the thermal and mechanical response of the copper interlayer was not affected by the variation of armor thickness. Monoblock with a smaller tube diameter but with the same armor thickness and shoulder thickness experienced lower fatigue load. The predicted trends were in line with the experimental observations.

  18. Modular EUV Source for the next generation lithography

    International Nuclear Information System (INIS)

    Sublemontier, O.; Rosset-Kos, M.; Ceccotti, T.; Hergott, J.F.; Auguste, Th.; Normand, D.; Schmidt, M.; Beaumont, F.; Farcage, D.; Cheymol, G.; Le Caro, J.M.; Cormont, Ph.; Mauchien, P.; Thro, P.Y.; Skrzypczak, J.; Muller, S.; Marquis, E.; Barthod, B.; Gaurand, I.; Davenet, M.; Bernard, R.

    2011-01-01

    The present work, performed in the frame of the EXULITE project, was dedicated to the design and characterization of a laser-plasma-produced extreme ultraviolet (EUV) source prototype at 13.5 nm for the next generation lithography. It was conducted in cooperation with two laboratories from CEA, ALCATEL and THALES. One of our approach originalities was the laser scheme modularity. Six Nd:YAG laser beams were focused at the same time on a xenon filament jet to generate the EUV emitting plasma. Multiplexing has important industrial advantages and led to interesting source performances in terms of in-band power, stability and angular emission properties with the filament jet target. A maximum conversion efficiency (CE) value of 0.44% in 2π sr and 2% bandwidth was measured, which corresponds to a maximum in band EUV mean power of 7.7 W at a repetition rate of 6 kHz. The EUV emission was found to be stable and isotropic in these conditions. (authors)

  19. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-01

    Pulse compressors for ultrafast lasers have been identified as a technology gap in the push towards high peak power systems with high average powers for industrial and scientific applications. Gratings for ultrashort (sub-150fs) pulse compressors are metallic and can absorb a significant percentage of laser energy resulting in up to 40% loss as well as thermal issues which degrade on-target performance. We have developed a next generation gold grating technology which we have scaled to the petawatt-size. This resulted in improvements in efficiency, uniformity and processing as compared to previous substrate etched gratings for high average power. This new design has a deposited dielectric material for the grating ridge rather than etching directly into the glass substrate. It has been observed that average powers as low as 1W in a compressor can cause distortions in the on-target beam. We have developed and tested a method of actively cooling diffraction gratings which, in the case of gold gratings, can support a petawatt peak power laser with up to 600W average power. We demonstrated thermo-mechanical modeling of a grating in its use environment and benchmarked with experimental measurement. Multilayer dielectric (MLD) gratings are not yet used for these high peak power, ultrashort pulse durations due to their design challenges. We have designed and fabricated broad bandwidth, low dispersion MLD gratings suitable for delivering 30 fs pulses at high average power. This new grating design requires the use of a novel Out Of Plane (OOP) compressor, which we have modeled, designed, built and tested. This prototype compressor yielded a transmission of 90% for a pulse with 45 nm bandwidth, and free of spatial and angular chirp. In order to evaluate gratings and compressors built in this project we have commissioned a joule-class ultrafast Ti:Sapphire laser system. Combining the grating cooling and MLD technologies developed here could enable petawatt laser systems to

  20. En Route: next-generation laser-plasma-based electron accelerators

    International Nuclear Information System (INIS)

    Hidding, Bernhard

    2008-05-01

    Accelerating electrons to relativistic energies is of fundamental interest, especially in particle physics. Today's accelerator technology, however, is limited by the maximum electric fields which can be created. This thesis presents results on various mechanisms aiming at exploiting the fields in focussed laser pulses and plasma waves for electron acceleration, which can be orders of magnitude higher than with conventional accelerators. With relativistic, underdense laser-plasma-interaction, quasimonoenergetic electron bunches with energies up to ∼50 MeV and normalized emittances of the order of 5mmmrad have been generated. This was achieved by focussing the ∼80 fs, 1 J pulses of the JETI-laser at the FSU Jena to intensities of several 10 19 W=cm 2 into gas jets. The experimental observations could be explained via ''bubble acceleration'', which is based on self-injection and acceleration of electrons in a highly nonlinear breaking plasma wave. For the rst time, this bubble acceleration was achieved explicitly in the self-modulated laser wakefield regime (SMLWFA). This quasimonoenergetic SMLWFA-regime stands out by relaxing dramatically the requirements on the driving laser pulse necessary to trigger bubble acceleration. This is due to self-modulation of the laser pulse in high-density gas jets, leading to ultrashort laser pulse fragments capable of initiating bubble acceleration. Electron bunches with durations < or similar 5 fs can thus be created, which is at least an order of magnitude shorter than with conventional accelerator technology. In addition, more than one laser pulse fragment can be powerful enough to drive a bubble. Distinct double peaks have been observed in the electron spectra, indicating that two quasimonoenergetic electron bunches separated by only few tens of fs have formed. This is backed up by PIC-Simulations (Particle-in-Cell). These results underline the feasibility of the construction of small table-top accelerators, while at the

  1. Next-generation phylogenomics

    Directory of Open Access Journals (Sweden)

    Chan Cheong Xin

    2013-01-01

    Full Text Available Abstract Thanks to advances in next-generation technologies, genome sequences are now being generated at breadth (e.g. across environments and depth (thousands of closely related strains, individuals or samples unimaginable only a few years ago. Phylogenomics – the study of evolutionary relationships based on comparative analysis of genome-scale data – has so far been developed as industrial-scale molecular phylogenetics, proceeding in the two classical steps: multiple alignment of homologous sequences, followed by inference of a tree (or multiple trees. However, the algorithms typically employed for these steps scale poorly with number of sequences, such that for an increasing number of problems, high-quality phylogenomic analysis is (or soon will be computationally infeasible. Moreover, next-generation data are often incomplete and error-prone, and analysis may be further complicated by genome rearrangement, gene fusion and deletion, lateral genetic transfer, and transcript variation. Here we argue that next-generation data require next-generation phylogenomics, including so-called alignment-free approaches. Reviewers Reviewed by Mr Alexander Panchin (nominated by Dr Mikhail Gelfand, Dr Eugene Koonin and Prof Peter Gogarten. For the full reviews, please go to the Reviewers’ comments section.

  2. Structural impact of creep in tungsten monoblock divertor target at 20 MW/m2

    Directory of Open Access Journals (Sweden)

    Muyuan Li

    2018-01-01

    Full Text Available In order to increase erosion lifetime of the divertor target, in the 2nd design phase of R&D work package ‘Divertor’ for European DEMO, armor thickness of tungsten monoblock divertor target is increased from 5 mm to 8 mm. By increasing armor thickness, surface temperature increases nearly linearly, which makes effect of creep no longer negligible at slow transients of 20 MW/m2. In this work, structural impact of creep in tungsten monoblock divertor target is for the first time quantitatively analyzed with the aid of finite element method. The numerical simulations have revealed that creep results in an increase of inelastic strain accumulation. With increasing armor thickness, tensile surface stress along x-axis (the longer edge at the plasma-facing surface of tungsten monoblock reduces, while surface stress along z-axis (axial direction of the cooling tube changes from tensile to compressive. Creep will accelerate this change. With increasing grain size, creep strain accumulation at loading surface increases due to higher creep rates, while plastic strain accumulation decreases. Creep can mitigate the risk of deep cracking by reducing the driving force for crack opening, and has a positive impact for preventing the contact between the upper parts of neighboring monoblocks in high heat flux tests.

  3. Results of high heat flux qualification tests of W monoblock components for WEST

    Science.gov (United States)

    Greuner, H.; Böswirth, B.; Lipa, M.; Missirlian, M.; Richou, M.

    2017-12-01

    One goal of the WEST project (W Environment in Steady-state Tokamak) is the manufacturing, quality assessment and operation of ITER-like actively water-cooled divertor plasma facing components made of tungsten. Six W monoblock plasma facing units (PFUs) from different suppliers have been successfully evaluated in the high heat flux test facility GLADIS at IPP. Each PFU is equipped with 35 W monoblocks of an ITER-like geometry. However, the W blocks are made of different tungsten grades and the suppliers applied different bonding techniques between tungsten and the inserted Cu-alloy cooling tubes. The intention of the HHF test campaign was to assess the manufacturing quality of the PFUs on the basis of a statistical analysis of the surface temperature evolution of the individual W monoblocks during thermal loading with 100 cycles at 10 MW m-2. These tests confirm the non-destructive examinations performed by the manufacturer and CEA prior to the installation of the WEST platform, and no defects of the components were detected.

  4. Results of high heat flux qualification tests of W monoblock components for WEST

    International Nuclear Information System (INIS)

    Greuner, H; Böswirth, B; Lipa, M; Missirlian, M; Richou, M

    2017-01-01

    One goal of the WEST project (W Environment in Steady-state Tokamak) is the manufacturing, quality assessment and operation of ITER-like actively water-cooled divertor plasma facing components made of tungsten. Six W monoblock plasma facing units (PFUs) from different suppliers have been successfully evaluated in the high heat flux test facility GLADIS at IPP. Each PFU is equipped with 35 W monoblocks of an ITER-like geometry. However, the W blocks are made of different tungsten grades and the suppliers applied different bonding techniques between tungsten and the inserted Cu-alloy cooling tubes. The intention of the HHF test campaign was to assess the manufacturing quality of the PFUs on the basis of a statistical analysis of the surface temperature evolution of the individual W monoblocks during thermal loading with 100 cycles at 10 MW m −2 . These tests confirm the non-destructive examinations performed by the manufacturer and CEA prior to the installation of the WEST platform, and no defects of the components were detected. (paper)

  5. Preparation of W/CuCrZr monoblock test mock-up using vacuum brazing technique

    International Nuclear Information System (INIS)

    Singh, Kongkham Premjit; Khirwadkar, Samir S.; Bhope, Kedar; Patel, Nikunj; Mokaria, Prakash K.; Mehta, Mayur

    2015-01-01

    Development of the joining for W/CuCrZr monoblock PFC test mock-up is an interest area in Fusion R and D. W/Cu bimetallic material has prepared using OFHC copper casting approach on the radial surface of W monoblock tile surface. The W/Cu bimetallic material has been joined with CuCrZr tube (heat sink) material with the vacuum brazing route. Vacuum brazing of W/Cu-CuCrZr has been performed @ 970 °C for 10 mins using NiCuMn-37 filler material under deep vacuum environment (10 -6 mbar). Graphite fixtures were used for OFHC copper casting and vacuum brazing experiments. The joint integrity of W/Cu-CuCrZr monoblock mock-up on W/Cu and Cu-CuCrZr has been checked using ultrasonic immersion technique. Micro-structural examination and Spot-wise elemental analysis have been carried out using HR-SEM and EDAX. The results of the experimental work will be discussed in the paper. (author)

  6. Numerical Calculation of the Peaking Factor of a Water-Cooled W/Cu Monoblock for a Divertor

    International Nuclear Information System (INIS)

    Han Le; Chang Haiping; Zhang Jingyang; Xu Tiejun

    2015-01-01

    In order to accurately predict the incident critical heat flux (ICHF, the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor, the exact knowledge of its peaking factors (f p ) under one-sided heating conditions with different design parameters is a key issue. In this paper, the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients (HTC) of the cooling wall to be functions of the local wall temperature, so as to obtain f p . The reliability of the calculation method is validated by an experimental example result, with the maximum error of 2.1% only. The effects of geometric and flow parameters on the f p of a water-cooled W/Cu monoblock are investigated. Within the scope of this study, it is shown that the f p increases with increasing dimensionless W/Cu monoblock width and armour thickness (the shortest distance between the heated surface and Cu layer), and the maximum increases are 43.8% and 22.4% respectively. The dimensionless W/Cu monoblock height and Cu thickness have little effect on f p . The increase of Reynolds number and Jakob number causes the increase of f p , and the maximum increases are 6.8% and 9.6% respectively. Based on the calculated results, an empirical correlation on peaking factor is obtained via regression. These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors. (paper)

  7. Next generation diode lasers with enhanced brightness

    Science.gov (United States)

    Ried, S.; Rauch, S.; Irmler, L.; Rikels, J.; Killi, A.; Papastathopoulos, E.; Sarailou, E.; Zimer, H.

    2018-02-01

    High-power diode lasers are nowadays well established manufacturing tools in high power materials processing, mainly for tactile welding, surface treatment and cladding applications. Typical beam parameter products (BPP) of such lasers range from 30 to 50 mm·mrad at several kilowatts of output power. TRUMPF offers a product line of diode lasers to its customers ranging from 150 W up to 6 kW of output power. These diode lasers combine high reliability with small footprint and high efficiency. However, up to now these lasers are limited in brightness due to the commonly used spatial and coarse spectral beam combining techniques. Recently diode lasers with enhanced brightness have been presented by use of dense wavelength multiplexing (DWM). In this paper we report on TRUMPF's diode lasers utilizing DWM. We demonstrate a 2 kW and a 4 kW system ideally suited for fine welding and scanner welding applications. The typical laser efficiency is in the range of 50%. The system offers plug and play exchange of the fiber beam delivery cable, multiple optical outputs and integrated cooling in a very compact package. An advanced control system offers flexible integration in any customer's shop floor environment and includes industry 4.0 capabilities (e.g. condition monitoring and predictive maintenance).

  8. Transient thermal finite element analysis of CFC–Cu ITER monoblock using X-ray tomography data

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Ll.M., E-mail: llion.evans@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Margetts, L. [School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Williamson Building, Manchester M13 9PL (United Kingdom); Casalegno, V. [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Lever, L.M. [IT Services for Research, University of Manchester, Devonshire House, Oxford Road, Manchester M13 9PL (United Kingdom); Bushell, J.; Lowe, T.; Wallwork, A. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Young, P. [Simpleware Ltd., Bradninch Hall, Castle Street, Exeter EX4 3PL (United Kingdom); Lindemann, A. [NETZSCH-Gerätebau GmbH, Wittelsbacherstraße 42, D-95100 Selb, Bayern (Germany); Schmidt, M.; Mummery, P.M. [School of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-11-15

    Highlights: • Thermal performance of a fusion power heat exchange component was investigated. • Microstructures effecting performance were determined using X-ray tomography. • This data was used to perform a microstructurally faithful finite element analysis. • FEA demonstrated that manufacturing defects had an appreciable effect on performance. • This image-based modelling showed which regions could be targeted for improvements. - Abstract: The thermal performance of a carbon fibre composite-copper monoblock, a sub-component of a fusion reactor divertor, was investigated by finite element analysis. High-accuracy simulations were created using an emerging technique, image-based finite element modelling, which converts X-ray tomography data into micro-structurally faithful models, capturing details such as manufacturing defects. For validation, a case study was performed where the thermal analysis by laser flash of a carbon fibre composite-copper disc was simulated such that computational and experimental results could be compared directly. Results showed that a high resolution image-based simulation (102 million elements of 32 μm width) provided increased accuracy over a low resolution image-based simulation (0.6 million elements of 194 μm width) and idealised computer aided design simulations. Using this technique to analyse a monoblock mock-up, it was possible to detect and quantify the effects of debonding regions at the carbon fibre composite-copper interface likely to impact both component performance and expected lifetime. These features would not have been accounted for in idealised computer aided design simulations.

  9. Transient thermal finite element analysis of CFC–Cu ITER monoblock using X-ray tomography data

    International Nuclear Information System (INIS)

    Evans, Ll.M.; Margetts, L.; Casalegno, V.; Lever, L.M.; Bushell, J.; Lowe, T.; Wallwork, A.; Young, P.; Lindemann, A.; Schmidt, M.; Mummery, P.M.

    2015-01-01

    Highlights: • Thermal performance of a fusion power heat exchange component was investigated. • Microstructures effecting performance were determined using X-ray tomography. • This data was used to perform a microstructurally faithful finite element analysis. • FEA demonstrated that manufacturing defects had an appreciable effect on performance. • This image-based modelling showed which regions could be targeted for improvements. - Abstract: The thermal performance of a carbon fibre composite-copper monoblock, a sub-component of a fusion reactor divertor, was investigated by finite element analysis. High-accuracy simulations were created using an emerging technique, image-based finite element modelling, which converts X-ray tomography data into micro-structurally faithful models, capturing details such as manufacturing defects. For validation, a case study was performed where the thermal analysis by laser flash of a carbon fibre composite-copper disc was simulated such that computational and experimental results could be compared directly. Results showed that a high resolution image-based simulation (102 million elements of 32 μm width) provided increased accuracy over a low resolution image-based simulation (0.6 million elements of 194 μm width) and idealised computer aided design simulations. Using this technique to analyse a monoblock mock-up, it was possible to detect and quantify the effects of debonding regions at the carbon fibre composite-copper interface likely to impact both component performance and expected lifetime. These features would not have been accounted for in idealised computer aided design simulations.

  10. Next generation initiation techniques

    Science.gov (United States)

    Warner, Tom; Derber, John; Zupanski, Milija; Cohn, Steve; Verlinde, Hans

    1993-01-01

    Four-dimensional data assimilation strategies can generally be classified as either current or next generation, depending upon whether they are used operationally or not. Current-generation data-assimilation techniques are those that are presently used routinely in operational-forecasting or research applications. They can be classified into the following categories: intermittent assimilation, Newtonian relaxation, and physical initialization. It should be noted that these techniques are the subject of continued research, and their improvement will parallel the development of next generation techniques described by the other speakers. Next generation assimilation techniques are those that are under development but are not yet used operationally. Most of these procedures are derived from control theory or variational methods and primarily represent continuous assimilation approaches, in which the data and model dynamics are 'fitted' to each other in an optimal way. Another 'next generation' category is the initialization of convective-scale models. Intermittent assimilation systems use an objective analysis to combine all observations within a time window that is centered on the analysis time. Continuous first-generation assimilation systems are usually based on the Newtonian-relaxation or 'nudging' techniques. Physical initialization procedures generally involve the use of standard or nonstandard data to force some physical process in the model during an assimilation period. Under the topic of next-generation assimilation techniques, variational approaches are currently being actively developed. Variational approaches seek to minimize a cost or penalty function which measures a model's fit to observations, background fields and other imposed constraints. Alternatively, the Kalman filter technique, which is also under investigation as a data assimilation procedure for numerical weather prediction, can yield acceptable initial conditions for mesoscale models. The

  11. Mock-up test results of monoblock-type CFC divertor armor for JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Higashijima, S. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)], E-mail: higashijima.satoru@jaea.go.jp; Sakurai, S.; Suzuki, S.; Yokoyama, K.; Kashiwa, Y.; Masaki, K.; Shibama, Y.K.; Takechi, M.; Shibanuma, K.; Sakasai, A.; Matsukawa, M.; Kikuchi, M. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2009-06-15

    The JT-60 Super Advanced (JT-60SA) tokamak project starts under both the Japanese domestic program and the international program 'Broader Approach'. The maximum heat flux to JT-60SA divertor is estimated to {approx}15 MW/m{sup 2} for 100 s. Japan Atomic Energy Agency (JAEA) has developed a divertor armor facing high heat flux in the engineering R and D for ITER, and it is concluded that monoblock-type CFC divertor armor is promising for JT-60SA. The JT-60SA armor consists of CFC monoblocks, a cooling CuCrZr screw-tube, and a thin oxygen-free high conductivity copper (OFHC-Cu) buffer layer between the CFC monoblock and the screw-tube. CFC/OFHC-Cu and OFHC-Cu/CuCrZr joints are essential for the armor, and these interfaces are brazed. Needed improvements from ITER engineering R and D are good CFC/OFHC-Cu and OFHC-Cu/CuCrZr interfaces and suppression of CFC cracking. For these purposes, metalization inside CFC monoblock is applied, and we confirmed again that the mock-up has heat removal capability in excess of ITER requirement. For optimization of the fabrication method and understanding of the production yield, the mock-ups corresponding to quantity produced in one furnace at the same time is also produced, and the half of the mock-ups could remove 15 MW/m{sup 2} as required. This paper summarizes the recent progress of design and mock-up test results for JT-60SA divertor armor.

  12. Metrology/viewing system for next generation fusion reactors

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.

    1997-01-01

    Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system

  13. Numerical Calculation of the Peaking Factor of a Water-Cooled W/Cu Monoblock for a Divertor

    Science.gov (United States)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun

    2015-09-01

    In order to accurately predict the incident critical heat flux (ICHF, the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor, the exact knowledge of its peaking factors (fp) under one-sided heating conditions with different design parameters is a key issue. In this paper, the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients (HTC) of the cooling wall to be functions of the local wall temperature, so as to obtain fp. The reliability of the calculation method is validated by an experimental example result, with the maximum error of 2.1% only. The effects of geometric and flow parameters on the fp of a water-cooled W/Cu monoblock are investigated. Within the scope of this study, it is shown that the fp increases with increasing dimensionless W/Cu monoblock width and armour thickness (the shortest distance between the heated surface and Cu layer), and the maximum increases are 43.8% and 22.4% respectively. The dimensionless W/Cu monoblock height and Cu thickness have little effect on fp. The increase of Reynolds number and Jakob number causes the increase of fp, and the maximum increases are 6.8% and 9.6% respectively. Based on the calculated results, an empirical correlation on peaking factor is obtained via regression. These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors. supported by National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005) and Funding of Jiangsu Innovation Program for Graduate Education, China (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China

  14. Production of quasi ellipsoidal laser pulses for next generation high brightness photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Rublack, T., E-mail: Tino.Rublack@desy.de [DESY, Zeuthen (Germany); Good, J.; Khojoyan, M.; Krasilnikov, M.; Stephan, F. [DESY, Zeuthen (Germany); Hartl, I.; Schreiber, S. [DESY, Hamburg (Germany); Andrianov, A.; Gacheva, E.; Khazanov, E.; Mironov, S.; Potemkin, A.; Zelenogorskii, V.V. [IAP/RAS, Nizhny Novgorod (Russian Federation); Syresin, E. [JINR, Dubna (Russian Federation)

    2016-09-01

    The use of high brightness electron beams in Free Electron Laser (FEL) applications is of increasing importance. One of the most promising methods to generate such beams is the usage of shaped photocathode laser pulses. It has already demonstrated that temporal and transverse flat-top laser pulses can produce very low emittance beams [1]. Nevertheless, based on beam simulations further improvements can be achieved using quasi-ellipsoidal laser pulses, e.g. 30% reduction in transverse projected emittance at 1 nC bunch charge. In a collaboration between DESY, the Institute of Applied Physics of the Russian Academy of Science (IAP RAS) in Nizhny Novgorod and the Joint Institute of Nuclear Research (JINR) in Dubna such a laser system capable of producing trains of laser pulses with a quasi-ellipsoidal distribution, has been developed. The prototype of the system was installed at the Photo Injector Test facility at DESY in Zeuthen (PITZ) and is currently in the commissioning phase. In the following, the laser system will be introduced, the procedure of pulse shaping will be described and the last experimental results will be shown.

  15. Single-step brazing process for mono-block joints and mechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Rizzo, S. [Politecnico di Torino, Materials Science and Chemical Engineering Dept., Torino (Italy); Merola, M. [ITER International Team, llER Joint Work Site, Cadarache, 13 - St Paul Lez Durance (France)

    2007-07-01

    Full text of publication follows: Plasma facing components act as actively cooled thermal shields to sustain thermal and particle loads during normal and transient operations in ITER (International Thermonuclear Experimental Reactor). The plasma-facing layer is referred to as 'armour', which is made of either carbon fibre reinforced carbon composite (CFC) or tungsten (W). CFC is the reference design solution for the lower part of the vertical target of the ITER divertor. The armour is joined onto an actively cooled substrate, the heat sink, made of precipitation hardened copper alloy CuCrZr through a thin pure copper interlayer to decrease, by plastic deformation, the joint interface stresses; in fact, the CFC to Cu joint is affected by the CTE mismatch between the ceramic and metallic material. A new method of joining CFC to copper and CFC/Cu to CuCrZr alloy was effectively developed for the flat-type configuration; the feasibility of this process also for mono-block geometry and the development of a procedure for testing mono-block-type mock-ups is described in this work. The mono-block configuration consists of copper alloy pipe shielded by CFC blocks. It is worth noting that in mono-block configuration, the large thermal expansion mismatch between CFC and copper alloy is more significant than for flat-tile configuration, due to curved interfaces. The joining technique foresees a single-step brazing process: the brazing of the three materials (CFC-Cu-CuCrZr) can be performed in a single heat treatment using the same Cu/Ge based braze. The composite surface was modified by solid state reaction with chromium with the purpose of increasing the wettability of CFC by the brazing alloy. The CFC substrate reacts with Cr which, forming a carbide layer, allows a large reduction of the contact angle; then, the brazing of CFC to pure copper and pure copper to CuCrZr by the same treatment is feasible. This process allows to obtain good joints using a non

  16. Single-step brazing process for mono-block joints and mechanical testing

    International Nuclear Information System (INIS)

    Casalegno, V.; Ferraris, M.; Salvo, M.; Rizzo, S.; Merola, M.

    2007-01-01

    Full text of publication follows: Plasma facing components act as actively cooled thermal shields to sustain thermal and particle loads during normal and transient operations in ITER (International Thermonuclear Experimental Reactor). The plasma-facing layer is referred to as 'armour', which is made of either carbon fibre reinforced carbon composite (CFC) or tungsten (W). CFC is the reference design solution for the lower part of the vertical target of the ITER divertor. The armour is joined onto an actively cooled substrate, the heat sink, made of precipitation hardened copper alloy CuCrZr through a thin pure copper interlayer to decrease, by plastic deformation, the joint interface stresses; in fact, the CFC to Cu joint is affected by the CTE mismatch between the ceramic and metallic material. A new method of joining CFC to copper and CFC/Cu to CuCrZr alloy was effectively developed for the flat-type configuration; the feasibility of this process also for mono-block geometry and the development of a procedure for testing mono-block-type mock-ups is described in this work. The mono-block configuration consists of copper alloy pipe shielded by CFC blocks. It is worth noting that in mono-block configuration, the large thermal expansion mismatch between CFC and copper alloy is more significant than for flat-tile configuration, due to curved interfaces. The joining technique foresees a single-step brazing process: the brazing of the three materials (CFC-Cu-CuCrZr) can be performed in a single heat treatment using the same Cu/Ge based braze. The composite surface was modified by solid state reaction with chromium with the purpose of increasing the wettability of CFC by the brazing alloy. The CFC substrate reacts with Cr which, forming a carbide layer, allows a large reduction of the contact angle; then, the brazing of CFC to pure copper and pure copper to CuCrZr by the same treatment is feasible. This process allows to obtain good joints using a non-active brazing

  17. Next generation Er:YAG fractional ablative laser

    Science.gov (United States)

    Heinrich, A.; Vizhanyo, A.; Krammer, P.; Summer, S.; Gross, S.; Bragagna, T.; Böhler, C.

    2011-03-01

    Pantec Biosolutions AG presents a portable fractional ablative laser system based on a miniaturized diode pumped Er:YAG laser. The system can operate at repetition rates up to 500 Hz and has an incorporated beam deflection unit. It is smaller, lighter and cost efficient compared to systems based on lamp pumped Er:YAG lasers and incorporates a skin layer detection to guarantee precise control of the microporation process. The pulse parameters enable a variety of applications in dermatology and in general medicine, as demonstrated by first results on transdermal drug delivery of FSH (follicle stimulating hormone).

  18. Control of ion beam generation in intense short pulse laser target interaction

    International Nuclear Information System (INIS)

    Nagashima, T.; Izumiyama, T.; Barada, D.; Kawata, S.; Gu, Y.J.; Wang, W.M.; Ma, Y.Y.; Kong, Q.

    2013-01-01

    In intense laser plasma interaction, several issues still remain to be solved for future laser particle acceleration. In this paper we focus on a control of generation of high-energy ions. In this study, near-critical density plasmas are employed and are illuminated by high intensity short laser pulses; we have successfully generated high-energy ions, and also controlled ion energy and the ion energy spectrum by multiple-stages acceleration. We performed particle-in-cell simulations in this paper. The first near-critical plasma target is illuminated by a laser pulse, and the ions accelerated are transferred to the next target. The next identical target is also illuminated by another identical large pulse, and the ion beam introduced is further accelerated and controlled. In this study four stages are employed, and finally a few hundreds of MeV of protons are realized. A quasi-monoenergetic energy spectrum is also obtained. (author)

  19. Next generation light water reactors

    International Nuclear Information System (INIS)

    Omoto, Akira

    1992-01-01

    In the countries where the new order of nuclear reactors has ceased, the development of the light water reactors of new type has been discussed, aiming at the revival of nuclear power. Also in Japan, since it is expected that light water reactors continue to be the main power reactor for long period, the technology of light water reactors of next generation has been discussed. For the development of nuclear power, extremely long lead time is required. The light water reactors of next generation now in consideration will continue to be operated till the middle of the next century, therefore, they must take in advance sufficiently the needs of the age. The improvement of the way men and the facilities should be, the simple design, the flexibility to the trend of fuel cycle and so on are required for the light water reactors of next generation. The trend of the development of next generation light water reactors is discussed. The construction of an ABWR was started in September, 1991, as No. 6 plant in Kashiwazaki Kariwa Power Station. (K.I.)

  20. Challenges and opportunities for the next generation of photon regeneration experiments

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2010-03-01

    Photon regeneration experiments searching for signatures of oscillations of photons into hypothetical very weakly interacting ultra-light particles, such as axions, axion-like and hiddensector particles, have improved their sensitivity considerably in recent years. Important progress in laser and detector technology as well as recycling of available magnets from accelerators may allow a big further step in sensitivity such that, for the first time, laser light shining through a wall experiments will explore territory in parameter space that has not been excluded yet by astrophysics and cosmology.We review these challenges and opportunities for the next generation experiments. (orig.)

  1. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.

    2014-01-01

    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  2. En Route: next-generation laser-plasma-based electron accelerators; En Route: Elektronenbeschleuniger der naechsten Generation auf Laser-Plasma-Basis

    Energy Technology Data Exchange (ETDEWEB)

    Hidding, Bernhard

    2008-05-15

    Accelerating electrons to relativistic energies is of fundamental interest, especially in particle physics. Today's accelerator technology, however, is limited by the maximum electric fields which can be created. This thesis presents results on various mechanisms aiming at exploiting the fields in focussed laser pulses and plasma waves for electron acceleration, which can be orders of magnitude higher than with conventional accelerators. With relativistic, underdense laser-plasma-interaction, quasimonoenergetic electron bunches with energies up to {approx}50 MeV and normalized emittances of the order of 5mmmrad have been generated. This was achieved by focussing the {approx}80 fs, 1 J pulses of the JETI-laser at the FSU Jena to intensities of several 10{sup 19}W=cm{sup 2} into gas jets. The experimental observations could be explained via 'bubble acceleration', which is based on self-injection and acceleration of electrons in a highly nonlinear breaking plasma wave. For the rst time, this bubble acceleration was achieved explicitly in the self-modulated laser wakefield regime (SMLWFA). This quasimonoenergetic SMLWFA-regime stands out by relaxing dramatically the requirements on the driving laser pulse necessary to trigger bubble acceleration. This is due to self-modulation of the laser pulse in high-density gas jets, leading to ultrashort laser pulse fragments capable of initiating bubble acceleration. Electron bunches with durations laser pulse fragment can be powerful enough to drive a bubble. Distinct double peaks have been observed in the electron spectra, indicating that two quasimonoenergetic electron bunches separated by only few tens of fs have formed. This is backed up by PIC-Simulations (Particle-in-Cell). These results underline the feasibility of the construction of small table

  3. Generation Next

    Science.gov (United States)

    Hawkins, B. Denise

    2010-01-01

    There is a shortage of accounting professors with Ph.D.s who can prepare the next generation. To help reverse the faculty deficit, the American Institute of Certified Public Accountants (CPAs) has created the new Accounting Doctoral Scholars program by pooling more than $17 million and soliciting commitments from more than 70 of the nation's…

  4. Manufacturing and testing of W/Cu mono-block small scale mock-up for EAST by HIP and HRP technologies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China); Qin, Sigui [Advanced Technology and Materials Co., Ltd, Beijing (China); Wang, Wanjing; Qi, Pan [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China); Roccella, Selanna; Visca, Eliseo [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Liu, Guohui [Advanced Technology and Materials Co., Ltd, Beijing (China); Luo, Guang-Nan, E-mail: liqiang577@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, Anhui (China)

    2013-10-15

    ITER-like W/Cu mono-block plasma-facing components (PFCs) will be used in vertical target regions of the experimental advanced superconducting tokamak (EAST) divertor. The first W/Cu mono-block small scale mock-up with five W mono-blocks has been manufactured successfully by technological combination of hot isostatic pressing (HIP) and hot radial pressing (HRP). The joining of a W mono-block and a pure copper interlayer was achieved by means of HIP technology and the bonding strength was over 150 MPa. The good bonding between the pure copper interlayer and a CuCrZr cooling tube was obtained by means of HRP technology. In order to understand deeply the process of HRP, the stress distribution of the mock-up during HRP process was simulated using ANSYS code. Ultrasonic Nondestructive Testing (NDT) of the W/Cu and Cu/CuCrZr interfaces was performed, showing that excellent bonding of the W/Cu and Cu/CuCrZr interfaces. The thermal cycle fatigue testing of the mock-up has been carried out by means of an e-beam device in Southwest Institute of Physics, Chengdu (SWIP) and the mock-up withstood 1000 cycles of heat loads up to 8.4 MW/m{sup 2} with the cooling water of 2 m/s, 20 °C, 0.2 MPa.

  5. Monoblock Obturation Technique for Non-Vital Immature Permanent Maxillary Incisors Using Mineral Trioxide Aggregate: Results from Case Series

    International Nuclear Information System (INIS)

    Iqbal, Z.; Qureshi, A. H.

    2014-01-01

    Ten patients presented with non-vital immature teeth for root canal treatment. In all these cases the pre-operative clinical examination revealed apical periodontitis with a buccal sinus tract of endodontic origin. These cases were treated by a mineral trioxide aggregate (MTA) monoblock obturation technique. Follow-up evaluations were performed at 1 - 2 years after treatment. Eight out of 10 cases were associated with periradicular healing at follow-up evaluation. Mineral trioxide aggregate Monoblock obturation technique appears to be a valid material to obtain periradicular healing in teeth with open apices and necrotic pulps. (author)

  6. Next Generation Microshutter Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop the next generation MicroShutter Array (MSA) as a multi-object field selector for missions anticipated in the next two decades. For many...

  7. Project control - the next generation

    International Nuclear Information System (INIS)

    Iorii, V.F.; McKinnon, B.L.

    1993-01-01

    The Yucca Mountain Site Characterization Project (YMP) is the U.S. Department of Energy's (DOE) second largest Major System Acquisition Project. We have developed an integrated planning and control system (called PACS) that we believe represents the 'Next Generation' in project control. PACS integrates technical scope, cost, and schedule information for over 50 participating organizations and produces performances measurement reports for science and engineering managers at all levels. Our 'Next Generation' project control too, PACS, has been found to be in compliance with the new DOE Project Control System Guidelines. Additionally, the nuclear utility oversight group of the Edison Electric Institute has suggested PACS be used as a model for other civilian radioactive waste management projects. A 'Next Generation' project control tool will be necessary to do science in the 21st century

  8. The ArF laser for the next-generation multiple-patterning immersion lithography supporting green operations

    Science.gov (United States)

    Ishida, Keisuke; Ohta, Takeshi; Miyamoto, Hirotaka; Kumazaki, Takahito; Tsushima, Hiroaki; Kurosu, Akihiko; Matsunaga, Takashi; Mizoguchi, Hakaru

    2016-03-01

    Multiple patterning ArF immersion lithography has been expected as the promising technology to satisfy tighter leading edge device requirements. One of the most important features of the next generation lasers will be the ability to support green operations while further improving cost of ownership and performance. Especially, the dependence on rare gases, such as Neon and Helium, is becoming a critical issue for high volume manufacturing process. The new ArF excimer laser, GT64A has been developed to cope with the reduction of operational costs, the prevention against rare resource shortage and the improvement of device yield in multiple-patterning lithography. GT64A has advantages in efficiency and stability based on the field-proven injection-lock twin-chamber platform (GigaTwin platform). By the combination of GigaTwin platform and the advanced gas control algorithm, the consumption of rare gases such as Neon is reduced to a half. And newly designed Line Narrowing Module can realize completely Helium free operation. For the device yield improvement, spectral bandwidth stability is important to increase image contrast and contribute to the further reduction of CD variation. The new spectral bandwidth control algorithm and high response actuator has been developed to compensate the offset due to thermal change during the interval such as the period of wafer exchange operation. And REDeeM Cloud™, new monitoring system for managing light source performance and operations, is on-board and provides detailed light source information such as wavelength, energy, E95, etc.

  9. Development and Manufacturing Technology of Prototype Monoblock Low Pressure Rotor Shaft by 650ton Large Ingot

    Energy Technology Data Exchange (ETDEWEB)

    Song, Duk-Yong; Kim, Dong-Soo; Kim, Jungyeup; Lee, Jongwook; Ko, Seokhee [Doosan Heavy Industries and Construction, Changwon(Korea, Republic of)

    2016-10-15

    In order to establish the manufacturing technology for monoblock LP rotor shaft, DHI has produced the prototype monoblock LP rotor shaft with a maximum diameter of φ 2,800 mm using 650 ton ingot and investigated the mechanical properties and the internal quality of the ingot. As a result, the quality and mechanical properties required the large rotor shaft for nuclear power plant met a target. These results indicate that DHI can be contributed to increasing demands with high efficiency and capacity at the nuclear power plant. Additionally, some tests such as high cycle fatigue (HCF), low cycle fatigue (LCF), fracture toughness (K1C/J1C) and dynamic crack propagation velocity (da/dN) are in progress.

  10. Next-generation mid-infrared sources

    Science.gov (United States)

    Jung, D.; Bank, S.; Lee, M. L.; Wasserman, D.

    2017-12-01

    to provide a survey of the current state of the art for mid-IR sources, but instead looks primarily to provide a picture of potential next-generation optical and optoelectronic materials systems for mid-IR light generation.

  11. Next-Generation Tools For Next-Generation Surveys

    Science.gov (United States)

    Murray, S. G.

    2017-04-01

    The next generation of large-scale galaxy surveys, across the electromagnetic spectrum, loom on the horizon as explosively game-changing datasets, in terms of our understanding of cosmology and structure formation. We are on the brink of a torrent of data that is set to both confirm and constrain current theories to an unprecedented level, and potentially overturn many of our conceptions. One of the great challenges of this forthcoming deluge is to extract maximal scientific content from the vast array of raw data. This challenge requires not only well-understood and robust physical models, but a commensurate network of software implementations with which to efficiently apply them. The halo model, a semi-analytic treatment of cosmological spatial statistics down to nonlinear scales, provides an excellent mathematical framework for exploring the nature of dark matter. This thesis presents a next-generation toolkit based on the halo model formalism, intended to fulfil the requirements of next-generation surveys. Our toolkit comprises three tools: (i) hmf, a comprehensive and flexible calculator for halo mass functions (HMFs) within extended Press-Schechter theory, (ii) the MRP distribution for extremely efficient analytic characterisation of HMFs, and (iii) halomod, an extension of hmf which provides support for the full range of halo model components. In addition to the development and technical presentation of these tools, we apply each to the task of physical modelling. With hmf, we determine the precision of our knowledge of the HMF, due to uncertainty in our knowledge of the cosmological parameters, over the past decade of cosmic microwave background (CMB) experiments. We place rule-of-thumb uncertainties on the predicted HMF for the Planck cosmology, and find that current limits on the precision are driven by modeling uncertainties rather than those from cosmological parameters. With the MRP, we create and test a method for robustly fitting the HMF to observed

  12. Dynalight Next Generation

    DEFF Research Database (Denmark)

    Jørgensen, Bo Nørregaard; Ottosen, Carl-Otto; Dam-Hansen, Carsten

    2016-01-01

    The project aims to develop the next generation of energy cost-efficient artificial lighting control that enables greenhouse growers to adapt their use of artificial lighting dynamically to fluctuations in the price of electricity. This is a necessity as fluctuations in the price of electricity c...

  13. NASA's Next Generation Space Geodesy Program

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  14. Generation 'Next' and nuclear power

    International Nuclear Information System (INIS)

    Sergeev, A.A.

    2001-01-01

    My generation was labeled by Russian mass media as generation 'Next.' My technical education is above average. My current position is as a mechanical engineer in the leading research and development institute for Russian nuclear engineering for peaceful applications. It is noteworthy to point out that many of our developments were really first-of-a-kind in the history of engineering. However, it is difficult to grasp the importance of these accomplishments, especially since the progress of nuclear technologies is at a standstill. Can generation 'Next' be independent in their attitude towards nuclear power or shall we rely on the opinions of elder colleagues in our industry? (authors)

  15. Manufacturing of small scale W monoblock mockups by hot radial pressing

    International Nuclear Information System (INIS)

    Visca, Eliseo; Testani, C.; Libera, S.; Sacchetti, M.

    2003-01-01

    In the frame of the European Technology R and D programme for International thermonuclear experimental reactor (ITER) and in the area of high heat flux plasma facing components (HHFC), representative small-scale mock-ups were manufactured and tested to compare different concepts and joining technologies (i.e. active brazing, hot isostatic pressing (HIPping), diffusion bonding, etc.). On the basis of the results obtained by thermal fatigue tests, the monoblock concept resulted to be the most robust one, particularly when the HIPping manufacturing technology is used. Within this programme, ENEA developed an alternative technique for manufacturing plasma-facing components with a monoblock geometry of the ITER machine. The basic idea of this technique, named hot radial pressing (HRP), is to perform a radial diffusion bonding between the cooling tube and the armour tile by pressurising the internal tube only and by keeping the process parameters within the range in which the thermo-mechanical properties of the copper alloys are not yet degraded. The HRP is performed by a standard furnace, in which only a section of the canister is heated. The manufacturing procedure and the results of the screening and fatigue thermal tests performed on the ENEA mock-ups are reported in this paper

  16. The Next Great Generation?

    Science.gov (United States)

    Brownstein, Andrew

    2000-01-01

    Discusses ideas from a new book, "Millennials Rising: The Next Great Generation," (by Neil Howe and William Strauss) suggesting that youth culture is on the cusp of a radical shift with the generation beginning with this year's college freshmen who are typically team oriented, optimistic, and poised for greatness on a global scale. Includes a…

  17. Development of technology for next generation reactor - Development of next generation reactor in Korea -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); and others

    1993-09-01

    The project, development of next generation reactor, aims overall related technology development and obtainment of related license in 2001. The development direction is to determine the reactor type and to build up the design concept in 1994. For development trend analysis of foreign next generation reactor, level-1 PSA, fuel cycle analysis and computer code development are performed on System 80+ and AP 600. Especially for design characteristics analysis and volume upgrade of AP 600, nuclear fuel and reactor core design analysis, coolant circuit design analysis, mechanical structure design analysis and safety analysis etc. are performed. (Author).

  18. Tailoring next-generation biofuels and their combustion in next-generation engines

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wu, Weihua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taatjes, Craig A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scheer, Adam Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Kevin M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yu, Eizadora T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Bryan, Greg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Powell, Amy Jo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gao, Connie W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  19. Cluster cosmology with next-generation surveys.

    Science.gov (United States)

    Ascaso, B.

    2017-03-01

    The advent of next-generation surveys will provide a large number of cluster detections that will serve the basis for constraining cos mological parameters using cluster counts. The main two observational ingredients needed are the cluster selection function and the calibration of the mass-observable relation. In this talk, we present the methodology designed to obtain robust predictions of both ingredients based on realistic cosmological simulations mimicking the following next-generation surveys: J-PAS, LSST and Euclid. We display recent results on the selection functions for these mentioned surveys together with others coming from other next-generation surveys such as eROSITA, ACTpol and SPTpol. We notice that the optical and IR surveys will reach the lowest masses between 0.3next-generation surveys and introduce very preliminary results.

  20. Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, Pablo J. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia)]. E-mail: pbarriga@cyllene.uwa.edu.au; Zhao Chunnong [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia); Blair, David G. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia)

    2005-06-06

    Interferometric gravitational wave detectors use triangular ring cavities to filter spatial and frequency instabilities from the input laser beam. The next generation of interferometric detectors will use high laser power and greatly increased circulating power inside the cavities. The increased power inside the cavities increases thermal effects in their mirrors. The triangular configuration of conventional mode-cleaners creates an intrinsic astigmatism that can be corrected by using the thermal effects to advantage. In this Letter we show that an astigmatism free output beam can be created if the design parameters are correctly chosen.

  1. Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors

    International Nuclear Information System (INIS)

    Barriga, Pablo J.; Zhao Chunnong; Blair, David G.

    2005-01-01

    Interferometric gravitational wave detectors use triangular ring cavities to filter spatial and frequency instabilities from the input laser beam. The next generation of interferometric detectors will use high laser power and greatly increased circulating power inside the cavities. The increased power inside the cavities increases thermal effects in their mirrors. The triangular configuration of conventional mode-cleaners creates an intrinsic astigmatism that can be corrected by using the thermal effects to advantage. In this Letter we show that an astigmatism free output beam can be created if the design parameters are correctly chosen

  2. Next Generation Inverter

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zilai [General Motors LLC, Detroit, MI (United States); Gough, Charles [General Motors LLC, Detroit, MI (United States)

    2016-04-22

    The goal of this Cooperative Agreement was the development of a Next Generation Inverter for General Motors’ electrified vehicles, including battery electric vehicles, range extended electric vehicles, plug-in hybrid electric vehicles and hybrid electric vehicles. The inverter is a critical electronics component that converts battery power (DC) to and from the electric power for the motor (AC).

  3. Technical presentation: Next Generation Oscilloscopes

    CERN Multimedia

    PH Department

    2011-01-01

      Rohde & Schwarz "Next Generation Oscilloscopes" - Introduction and Presentation Agenda: Wednesday 23 March  -  09:30 to 11:30 (open end) Bldg. 13-2-005 Language: English 09.30 Presentation "Next Generation Oscilloscopes" from Rohde & Schwarz RTO / RTM in theory and practice Gerard Walker 10.15 Technical design details from R&D Dr. Markus Freidhof 10.45 Scope and Probe Roadmap (confidential) Guido Schulze 11.00 Open Discussion Feedback, first impression, wishes, needs and requirements from CERN All 11.30 Expert Talks, Hands on All Mr. Dr. Markus Freidhof, Head of R&D Oscilloscopes, Rohde & Schwarz, Germany; Mr. Guido Schulze, ...

  4. Next generation toroidal devices

    International Nuclear Information System (INIS)

    Yoshikawa, Shoichi

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one's view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  5. Next generation toroidal devices

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Shoichi [Princeton Plasma Physics Lab., Princeton Univ., NJ (United States)

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one`s view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  6. Laser capture microdissection followed by next-generation sequencing identifies disease-related microRNAs in psoriatic skin that reflect systemic microRNA changes in psoriasis

    DEFF Research Database (Denmark)

    Løvendorf, Marianne B; Mitsui, Hiroshi; Zibert, John R

    2015-01-01

    Psoriasis is a systemic disease with cutaneous manifestations. MicroRNAs (miRNAs) are small non-coding RNA molecules that are differentially expressed in psoriatic skin; however, only few cell- and region-specific miRNAs have been identified in psoriatic lesions. We used laser capture...... microdissection (LCM) and next-generation sequencing (NGS) to study the specific miRNA expression profiles in the epidermis (Epi) and dermal inflammatory infiltrates (RD) of psoriatic skin (N = 6). We identified 24 deregulated miRNAs in the Epi and 37 deregulated miRNAs in the RD of psoriatic plaque compared...... with normal psoriatic skin (FCH > 2, FDR

  7. A Next Generation BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Tauro, Sandeep

    2011-01-01

    We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials.......We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials....

  8. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  9. RES-E-NEXT: Next Generation of RES-E Policy Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.; Bird, L.; Cochran, J.; Milligan, M.; Bazilian, M. [National Renewable Energy Laboratory, Golden, CO (United States); Denny, E.; Dillon, J.; Bialek, J.; O’Malley, M. [Ecar Limited (Ireland); Neuhoff, K. [DIW Berlin (Germany)

    2013-07-04

    The RES-E-NEXT study identifies policies that are required for the next phase of renewable energy support. The study analyses policy options that secure high shares of renewable electricity generation and adequate grid infrastructure, enhance flexibility and ensure an appropriate market design. Measures have limited costs or even save money, and policies can be gradually implemented.

  10. Progress on next generation linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1989-01-01

    In this paper, I focus on reviewing the issues and progress on a next generation linear collider with the general parameters of energy, luminosity, length, power, technology. The energy range is dictated by physics with a mass reach well beyond LEP, although somewhat short of SSC. The luminosity is that required to obtain 10 3 /minus/ 10 4 units of R 0 per year. The length is consistent with a site on Stanford land with collisions occurring on the SLAC site. The power was determined by economic considerations. Finally, the technology was limited by the desire to have a next generation linear collider before the next century. 25 refs., 3 figs., 6 tabs

  11. Next generation of accelerators

    International Nuclear Information System (INIS)

    Richter, B.

    1979-01-01

    Existing high-energy accelerators are reviewed, along with those under construction or being designed. Finally, some of the physics issues which go into setting machine parameters, and some of the features of the design of next generation electron and proton machines are discussed

  12. Prospects for next-generation e+e- linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1990-02-01

    The purpose of this paper is to review progress in the US towards a next generation linear collider. During 1988, there were three workshops held on linear colliders: ''Physics of Linear Colliders,'' in Capri, Italy, June 14--18, 1988; Snowmass 88 (Linear Collider subsection) June 27--July 15, 1988; and SLAC International Workshop on Next Generation Linear Colliders, November 28--December 9, 1988. In this paper, I focus on reviewing the issues and progress on a next generation linear collider. The energy range is dictated by physics with a mass reach well beyond LEP, although somewhat short of SSC. The luminosity is that required to obtain 10 3 --10 4 units of R 0 per year. The length is consistent with a site on Stanford land with collision occurring on the SLAC site; the power was determined by economic considerations. Finally, the technology as limited by the desire to have a next generation linear collider by the next century. 37 refs., 3 figs., 6 tabs

  13. The next generation of LASIK patients.

    Science.gov (United States)

    Freeman, J Christopher; Chuck, Roy S

    2009-07-01

    With baby boomers aging, and despite a growing global population, there is a decreasing number of potential laser vision correction patients. Some believe that the worldwide economic downturn of these times will limit the number of potential patients as well. This article highlights looking to an alternative segment of the population to identify potential laser vision correction patients and the limitations of reaching this group. The group known as generation Y contains a large number of individuals who may be candidates for laser vision correction. Traditional marketing efforts present challenges in reaching this particular population segment. Many individuals in this group are already patients of eye doctors for contact lenses and glasses and can be reached by these eye doctors to address candidacy and education of laser vision correction. Generation Y represents a large population segment that contains technology-embracing individuals who, although hard to reach with traditional marketing efforts, may be reached by fellow eye doctors already managing these patients. There are many in this age group who would be good laser vision correction candidates.

  14. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    Science.gov (United States)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  15. Next Generation Social Networks

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Skouby, Knud Erik

    2008-01-01

    different online networks for communities of people who share interests or individuals who presents themselves through user produced content is what makes up the social networking of today. The purpose of this paper is to discuss perceived user requirements to the next generation social networks. The paper...

  16. Next generation CANDU plants

    International Nuclear Information System (INIS)

    Hedges, K.R.; Yu, S.K.W.

    1998-01-01

    Future CANDU designs will continue to meet the emerging design and performance requirements expected by the operating utilities. The next generation CANDU products will integrate new technologies into both the product features as well as into the engineering and construction work processes associated with delivering the products. The timely incorporation of advanced design features is the approach adopted for the development of the next generation of CANDU. AECL's current products consist of 700MW Class CANDU 6 and 900 MW Class CANDU 9. Evolutionary improvements are continuing with our CANDU products to enhance their adaptability to meet customers ever increasing need for higher output. Our key product drivers are for improved safety, environmental protection and improved cost effectiveness. Towards these goals we have made excellent progress in Research and Development and our investments are continuing in areas such as fuel channels and passive safety. Our long term focus is utilizing the fuel cycle flexibility of CANDU reactors as part of the long term energy mix

  17. Optical Subsystems for Next Generation Access Networks

    DEFF Research Database (Denmark)

    Lazaro, J.A; Polo, V.; Schrenk, B.

    2011-01-01

    Recent optical technologies are providing higher flexibility to next generation access networks: on the one hand, providing progressive FTTx and specifically FTTH deployment, progressively shortening the copper access network; on the other hand, also opening fixed-mobile convergence solutions...... in next generation PON architectures. It is provided an overview of the optical subsystems developed for the implementation of the proposed NG-Access Networks....

  18. Building next-generation converged networks theory and practice

    CERN Document Server

    Pathan, Al-Sakib Khan

    2013-01-01

    Supplying a comprehensive introduction to next-generation networks, Building Next-Generation Converged Networks: Theory and Practice strikes a balance between how and why things work and how to make them work. It compiles recent advancements along with basic issues from the wide range of fields related to next generation networks. Containing the contributions of 56 industry experts and researchers from 16 different countries, the book presents relevant theoretical frameworks and the latest research. It investigates new technologies such as IPv6 over Low Power Wireless Personal Area Network (6L

  19. Key thrusts in next generation CANDU. Annex 10

    International Nuclear Information System (INIS)

    Shalaby, B.A.; Torgerson, D.F.; Duffey, R.B.

    2002-01-01

    Current electricity markets and the competitiveness of other generation options such as CCGT have influenced the directions of future nuclear generation. The next generation CANDU has used its key characteristics as the basis to leap frog into a new design featuring improved economics, enhanced passive safety, enhanced operability and demonstrated fuel cycle flexibility. Many enabling technologies spinning of current CANDU design features are used in the next generation design. Some of these technologies have been developed in support of existing plants and near term designs while others will need to be developed and tested. This paper will discuss the key principles driving the next generation CANDU design and the fuel cycle flexibility of the CANDU system which provide synergism with the PWR fuel cycle. (author)

  20. Next Generation Biopharmaceuticals: Product Development.

    Science.gov (United States)

    Mathaes, Roman; Mahler, Hanns-Christian

    2018-04-11

    Therapeutic proteins show a rapid market growth. The relatively young biotech industry already represents 20 % of the total global pharma market. The biotech industry environment has traditionally been fast-pasted and intellectually stimulated. Nowadays the top ten best selling drugs are dominated by monoclonal antibodies (mABs).Despite mABs being the biggest medical breakthrough in the last 25 years, technical innovation does not stand still.The goal remains to preserve the benefits of a conventional mAB (serum half-life and specificity) whilst further improving efficacy and safety and to open new and better avenues for treating patients, e.g., improving the potency of molecules, target binding, tissue penetration, tailored pharmacokinetics, and reduced adverse effects or immunogenicity.The next generation of biopharmaceuticals can pose specific chemistry, manufacturing, and control (CMC) challenges. In contrast to conventional proteins, next-generation biopharmaceuticals often require lyophilization of the final drug product to ensure storage stability over shelf-life time. In addition, next-generation biopharmaceuticals require analytical methods that cover different ways of possible degradation patterns and pathways, and product development is a long way from being straight forward. The element of "prior knowledge" does not exist equally for most novel formats compared to antibodies, and thus the assessment of critical quality attributes (CQAs) and the definition of CQA assessment criteria and specifications is difficult, especially in early-stage development.

  1. Ultrafast disk technology enables next generation micromachining laser sources

    Science.gov (United States)

    Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk

    2013-02-01

    Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues

  2. NASA's Next Generation Space Geodesy Network

    Science.gov (United States)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  3. Next Generation Solar Collectors for CSP

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Attila [3M Company, St. Paul, MN (United States); Charles, Ruth [3M Company, St. Paul, MN (United States)

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  4. High heat flux testing of EU tungsten monoblock mock-ups for the ITER divertor

    International Nuclear Information System (INIS)

    Gavila, P.; Riccardi, B.; Pintsuk, G.; Ritz, G.; Kuznetsov, V.; Durocher, A.

    2015-01-01

    Highlights: • All the tested items sustained the ITER Full W divertor qualification program requirements. This confirms that the technology for the manufacturing of the first set of the ITER Divertor is available in Europe. • The surface roughening and local melting of the W surface under high heat flux was proven to be significantly reduced for an armour thickness lower or equal to 6 mm. • However, this campaign highlighted some specific areas of improvement to be implemented ideally before the upcoming ITER Divertor IVT serial production. • The issue of the self-castellation of the W monoblocks, which typically appears after a few tenths of cycles at 20 MW/m"2, is critical because it generates some uncontrolled defects at the amour to heat sink joints. Besides, they create a gap which exposure is almost perpendicular to the magnetic field lines and which might lead to local W melting in the strike point region. • This campaign also evidenced that the minimum IO requirements on the CuCrZr ductility could be revised to avoid the occurrence of rather early fatigue failures. Although the W material characterization program has been set up by the IO, the strategy on the CuCrZr still needs to be defined. - Abstract: With the aim to assess the option to start the ITER operation with a full tungsten divertor, an R&D program was launched in order to evaluate the performances of tungsten (W) armoured plasma facing components (PFCs) under high heat flux. The F4E program consisted in the manufacturing and high heat flux (HHF) testing of W monoblock mock-ups and medium scale prototypes up to 20 MW/m"2. During the test campaign, 26 W mock-ups and two medium scale prototypes manufactured by Plansee SE (Austria) and by Ansaldo Nucleare (Italy) have been tested at the FE200 (AREVA, Le Creusot, France) and ITER Divertor Test Facility (IDTF) (Efremov Institute Saint Petersburg, Russian Federation) electron beam test facilities. The high heat flux (HHF) testing program

  5. High heat flux testing of EU tungsten monoblock mock-ups for the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Gavila, P., E-mail: pierre.gavila@f4e.europa.eu [Fusion for Energy, 08019 Barcelona (Spain); Riccardi, B. [Fusion for Energy, 08019 Barcelona (Spain); Pintsuk, G. [Forschungszentrum Juelich, 52425 Juelich (Germany); Ritz, G. [AREVA NP, Centre Technique France, 71205 Le Creusot (France); Kuznetsov, V. [JCS “Efremov Institute”, Doroga na Metallostroy 3, Metallostroy, Saint-Petersburg 196641 (Russian Federation); Durocher, A. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 Saint Paul-lez-Durance (France)

    2015-10-15

    Highlights: • All the tested items sustained the ITER Full W divertor qualification program requirements. This confirms that the technology for the manufacturing of the first set of the ITER Divertor is available in Europe. • The surface roughening and local melting of the W surface under high heat flux was proven to be significantly reduced for an armour thickness lower or equal to 6 mm. • However, this campaign highlighted some specific areas of improvement to be implemented ideally before the upcoming ITER Divertor IVT serial production. • The issue of the self-castellation of the W monoblocks, which typically appears after a few tenths of cycles at 20 MW/m{sup 2}, is critical because it generates some uncontrolled defects at the amour to heat sink joints. Besides, they create a gap which exposure is almost perpendicular to the magnetic field lines and which might lead to local W melting in the strike point region. • This campaign also evidenced that the minimum IO requirements on the CuCrZr ductility could be revised to avoid the occurrence of rather early fatigue failures. Although the W material characterization program has been set up by the IO, the strategy on the CuCrZr still needs to be defined. - Abstract: With the aim to assess the option to start the ITER operation with a full tungsten divertor, an R&D program was launched in order to evaluate the performances of tungsten (W) armoured plasma facing components (PFCs) under high heat flux. The F4E program consisted in the manufacturing and high heat flux (HHF) testing of W monoblock mock-ups and medium scale prototypes up to 20 MW/m{sup 2}. During the test campaign, 26 W mock-ups and two medium scale prototypes manufactured by Plansee SE (Austria) and by Ansaldo Nucleare (Italy) have been tested at the FE200 (AREVA, Le Creusot, France) and ITER Divertor Test Facility (IDTF) (Efremov Institute Saint Petersburg, Russian Federation) electron beam test facilities. The high heat flux (HHF) testing

  6. High-performance ferroelectric and magnetoresistive materials for next-generation thermal detector arrays

    Science.gov (United States)

    Todd, Michael A.; Donohue, Paul P.; Watton, Rex; Williams, Dennis J.; Anthony, Carl J.; Blamire, Mark G.

    2002-12-01

    This paper discusses the potential thermal imaging performance achievable from thermal detector arrays and concludes that the current generation of thin-film ferroelectric and resistance bolometer based detector arrays are limited by the detector materials used. It is proposed that the next generation of large uncooled focal plane arrays will need to look towards higher performance detector materials - particularly if they aim to approach the fundamental performance limits and compete with cooled photon detector arrays. Two examples of bolometer thin-film materials are described that achieve high performance from operating around phase transitions. The material Lead Scandium Tantalate (PST) has a paraelectric-to-ferroelectric phase transition around room temperature and is used with an applied field in the dielectric bolometer mode for thermal imaging. PST films grown by sputtering and liquid-source CVD have shown merit figures for thermal imaging a factor of 2 to 3 times higher than PZT-based pyroelectric thin films. The material Lanthanum Calcium Manganite (LCMO) has a paramagnetic to ferromagnetic phase transition around -20oC. This paper describes recent measurements of TCR and 1/f noise in pulsed laser-deposited LCMO films on Neodymium Gallate substrates. These results show that LCMO not only has high TCR's - up to 30%/K - but also low 1/f excess noise, with bolometer merit figures at least an order of magnitude higher than Vanadium Oxide, making it ideal for the next generation of microbolometer arrays. These high performance properties come at the expense of processing complexities and novel device designs will need to be introduced to realize the potential of these materials in the next generation of thermal detectors.

  7. Next generation PWR

    International Nuclear Information System (INIS)

    Tanaka, Toshihiko; Fukuda, Toshihiko; Usui, Shuji

    2001-01-01

    Development of LWR for power generation in Japan has been intended to upgrade its reliability, safety, operability, maintenance and economy as well as to increase its capacity in order, since nuclear power generation for commercial use was begun on 1970, to steadily increase its generation power. And, in Japan, ABWR (advanced BWR) of the most promising LWR in the world, was already used actually and APWR (advanced PWR) with the largest output in the world is also at a step of its actual use. And, development of the APWR in Japan was begun on 1980s, and is at a step of plan on construction of its first machine at early of this century. However, by large change of social affairs, economy of nuclear power generation is extremely required, to be positioned at an APWR improved development reactor promoted by collaboration of five PWR generation companies and the Mitsubishi Electric Co., Ltd. Therefore, on its development, investigation on effect of change in social affairs on nuclear power stations was at first carried out, to establish a design requirement for the next generation PWR. Here were described on outline, reactor core design, safety concept, and safety evaluation of APWR+ and development of an innovative PWR. (G.K.)

  8. Advanced LIGO: the next generation of gravitational wave detectors

    International Nuclear Information System (INIS)

    Harry, Gregory M

    2010-01-01

    The Advanced LIGO gravitational wave detectors are next generation instruments which will replace the existing initial LIGO detectors. They are currently being constructed and installed. Advanced LIGO strain sensitivity is designed to be about a factor 10 better than initial LIGO over a broad band and usable to 10 Hz, in contrast to 40 Hz for initial LIGO. This is expected to allow for detections and significant astrophysics in most categories of gravitational waves. To achieve this sensitivity, all hardware subsystems are being replaced with improvements. Designs and expected performance are presented for the seismic isolation, suspensions, optics and laser subsystems. Possible enhancements to Advanced LIGO, either to resolve problems that may arise and/or to allow for improved performance, are now being researched. Some of these enhancements are discussed along with some potential technology being considered for detectors beyond Advanced LIGO.

  9. Real-Time Optimization and Control of Next-Generation Distribution

    Science.gov (United States)

    -Generation Distribution Infrastructure Real-Time Optimization and Control of Next-Generation Distribution developing a system-theoretic distribution network management framework that unifies real-time voltage and Infrastructure | Grid Modernization | NREL Real-Time Optimization and Control of Next

  10. Prospects of third-generation femtosecond laser technology in biological spectromicroscopy

    Science.gov (United States)

    Fattahi, Hanieh; Fattahi, Zohreh; Ghorbani, Asghar

    2018-05-01

    The next generation of biological imaging modalities will be a movement towards super-resolution, label-free approaches to realize subcellular images in a nonperturbative, non-invasive manner and towards new detection metrologies to reach a higher sensitivity and dynamic range. In this paper, we discuss how the third generation femtosecond laser technology in combination with the already existing concepts in time-resolved spectroscopy could fulfill the requirements of these exciting prospects. The expected enhanced specificity and sensitivity of the envisioned super-resolution microscope could lead us to a better understanding of the inter- and intra-cellular molecular transport and DNA-protein interaction.

  11. Hacking the next generation

    CERN Document Server

    Dhanjani, Nitesh; Hardin, Brett

    2009-01-01

    With the advent of rich Internet applications, the explosion of social media, and the increased use of powerful cloud computing infrastructures, a new generation of attackers has added cunning new techniques to its arsenal. For anyone involved in defending an application or a network of systems, Hacking: The Next Generation is one of the few books to identify a variety of emerging attack vectors. You'll not only find valuable information on new hacks that attempt to exploit technical flaws, you'll also learn how attackers take advantage of individuals via social networking sites, and abuse

  12. Physics conclusions in support of ITER W divertor monoblock shaping

    Directory of Open Access Journals (Sweden)

    R.A. Pitts

    2017-08-01

    Full Text Available The key remaining physics design issue for the ITER tungsten (W divertor is the question of monoblock (MB front surface shaping in the high heat flux target areas of the actively cooled targets. Engineering tolerance specifications impose a challenging maximum radial step between toroidally adjacent MBs of 0.3mm. Assuming optical projection of the parallel heat loads, magnetic shadowing of these edges is required if quasi-steady state melting is to be avoided under certain conditions during burning plasma operation and transiently during edge localized mode (ELM or disruption induced power loading. An experiment on JET in 2013 designed to investigate the consequences of transient W edge melting on ITER, found significant deficits in the edge power loads expected on the basis of simple geometric arguments, throwing doubt on the understanding of edge loading at glancing field line angles. As a result, a coordinated multi-experiment and simulation effort was initiated via the International Tokamak Physics Activity (ITPA and through ITER contracts, aimed at improving the physics basis supporting a MB shaping decision from the point of view both of edge power loading and melt dynamics. This paper reports on the outcome of this activity, concluding first that the geometrical approximation for leading edge power loading on radially misaligned poloidal leading edges is indeed valid. On this basis, the behaviour of shaped and unshaped monoblock surfaces under stationary and transient loads, with and without melting, is compared in order to examine the consequences of melting, or power overload in context of the benefit, or not, of shaping. The paper concludes that MB top surface shaping is recommended to shadow poloidal gap edges in the high heat flux areas of the ITER divertor targets.

  13. The NASA Next Generation Stirling Technology Program Overview

    Science.gov (United States)

    Schreiber, J. G.; Shaltens, R. K.; Wong, W. A.

    2005-12-01

    NASAs Science Mission Directorate is developing the next generation Stirling technology for future Radioisotope Power Systems (RPS) for surface and deep space missions. The next generation Stirling convertor is one of two advanced power conversion technologies currently being developed for future NASA missions, and is capable of operating for both planetary atmospheres and deep space environments. The Stirling convertor (free-piston engine integrated with a linear alternator) produces about 90 We(ac) and has a specific power of about 90 We/kg. Operating conditions of Thot at 850 degree C and Trej at 90 degree C results in the Stirling convertor estimated efficiency of about 40 per cent. Using the next generation Stirling convertor in future RPS, the "system" specific power is estimated at 8 We/kg. The design lifetime is three years on the surface of Mars and fourteen years in deep space missions. Electrical power of about 160 We (BOM) is produced by two (2) free-piston Stirling convertors heated by two (2) General Purpose Heat Source (GPHS) modules. This development is being performed by Sunpower, Athens, OH with Pratt & Whitney, Rocketdyne, Canoga Park, CA under contract to Glenn Research Center (GRC), Cleveland, Ohio. GRC is guiding the independent testing and technology development for the next generation Stirling generator.

  14. Rhamnolipids--next generation surfactants?

    Science.gov (United States)

    Müller, Markus Michael; Kügler, Johannes H; Henkel, Marius; Gerlitzki, Melanie; Hörmann, Barbara; Pöhnlein, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2012-12-31

    The demand for bio-based processes and materials in the petrochemical industry has significantly increased during the last decade because of the expected running out of petroleum. This trend can be ascribed to three main causes: (1) the increased use of renewable resources for chemical synthesis of already established product classes, (2) the replacement of chemical synthesis of already established product classes by new biotechnological processes based on renewable resources, and (3) the biotechnological production of new molecules with new features or better performances than already established comparable chemically synthesized products. All three approaches are currently being pursued for surfactant production. Biosurfactants are a very promising and interesting substance class because they are based on renewable resources, sustainable, and biologically degradable. Alkyl polyglycosides are chemically synthesized biosurfactants established on the surfactant market. The first microbiological biosurfactants on the market were sophorolipids. Of all currently known biosurfactants, rhamnolipids have the highest potential for becoming the next generation of biosurfactants introduced on the market. Although the metabolic pathways and genetic regulation of biosynthesis are known qualitatively, the quantitative understanding relevant for bioreactor cultivation is still missing. Additionally, high product titers have been exclusively described with vegetable oil as sole carbon source in combination with Pseudomonas aeruginosa strains. Competitive productivity is still out of reach for heterologous hosts or non-pathogenic natural producer strains. Thus, on the one hand there is a need to gain a deeper understanding of the regulation of rhamnolipid production on process and cellular level during bioreactor cultivations. On the other hand, there is a need for metabolizable renewable substrates, which do not compete with food and feed. A sustainable bioeconomy approach should

  15. Physical Configuration of the Next Generation Home Network

    Science.gov (United States)

    Terada, Shohei; Kakishima, Yu; Hanawa, Dai; Oguchi, Kimio

    The number of broadband users is rapidly increasing worldwide. Japan already has over 10 million FTTH users. Another trend is the rapid digitalization of home electrical equipment e. g. digital cameras and hard disc recorders. These trends will encourage the emergence of the next generation home network. In this paper, we introduce the next generation home network image and describe the five domains into which home devices can be classified. We then clarify the optimum medium with which to configure the network given the requirements imposed by the home environment. Wiring cable lengths for three network topologies are calculated. The results gained from the next generation home network implemented on the first phase testbed are shown. Finally, our conclusions are given.

  16. Generation of laser-induced fast neutron and its application

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Kwon, D. H.; Nam, S. M.

    2010-04-01

    The supply of high-efficiency neutron source is still problematic even though a fast neutron source is being accepted increasingly for industrial applications. Radioisotopes and a neutron tube are typically being used, but their neutron flux, lifetime, and price are the limiting factors for more diverse applications. As ultra high power, short pulse laser technologies have been developed, a neutron source generated via laser induced nuclear reaction comes to the fore. The laser induced neutron source has a high peak flux in comparison to the traditional neutron source and is like a point source with its diameter less than 1 mm. These properties can be utilized effectively for the analysis of pulsed fast neutron activation or the studies of a fast neutron material damage and/or recover. The purpose of R and D here is to develop a robust neutron source with a yield of 10 7 neutrons/s, and to carry out a preliminary research for application study in the next research stage

  17. Bunching and phase focusing of laser generated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dennis; Hofmann, Ingo; Blazevic, Abel; Deppert, Oliver [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Busold, Simon; Roth, Markus; Boine-Frankenheim, Oliver [TU Darmstadt (Germany); Brabetz, Christian [Universitaet Frankfurt, Frankfurt am Main (Germany); Zielbauer, Bernhard [HI Jena (Germany); Collaboration: LIGHT-Collaboration

    2013-07-01

    Laser accelerated proton beams can reach very high intensities and very low emittances. Therefore they are suitable as ion sources for many applications. One is the coupling into common ion accelerator structures to replace pre accelerators that are used so far. The LIGHT (Laser Ion Generation, Handling and Transport) collaboration has been founded to develop ion optics and targets and optimize laser parameter to make this coupling most efficient. In a first step a short pulse beam line for the PHELIX-laser at GSI to the experiment site Z6 has been build in order to laser accelerate protons here. In a second step a pulsed solenoid has been established to collimate the divergent ion beam. In a third step this collimated beam will be coupled into a bunching unit, which consists of a spiral resonator with three gaps which leads to an overall acceleration voltage of 1 MV. With this cavity it is not only possible to avoid the broadening of the pulse, but also to phase focus it. This talk presents also the progress towards the operation of the spiral resonator as buncher for a laser accelerated ion beam e.g. simulations, tests and performance data and shows the next steps of the beam shaping efforts.

  18. Next generation laser-based standoff spectroscopy techniques for Mars exploration.

    Science.gov (United States)

    Gasda, Patrick J; Acosta-Maeda, Tayro E; Lucey, Paul G; Misra, Anupam K; Sharma, Shiv K; Taylor, G Jeffrey

    2015-01-01

    In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy. We have developed a prototype remote LIBS-Raman-fluorescence instrument, Q-switched laser-induced time-resolved spectroscopy (QuaLITy), which is approximately 70 000 times more efficient at recording signals than a commercially available LIBS instrument. The increase in detection limits and sensitivity is due to our development of a directly coupled system, the use of an intensified charge-coupled device image detector, and a pulsed laser that allows for time-resolved measurements. We compare the LIBS capabilities of our system with an Ocean Optics spectrometer instrument at 7 m and 5 m distance. An increase in signal-to-noise ratio of at least an order of magnitude allows for greater quantitative analysis of the elements in a LIBS spectrum with 200-300 μm spatial resolution at 7 m, a Raman instrument capable of 1 mm spatial resolution at 3 m, and bioorganic fluorescence detection at longer distances. Thus, the new QuaLITy instrument fulfills all of the NASA expectations for proposed instruments.

  19. Next generation vaccines.

    Science.gov (United States)

    Riedmann, Eva M

    2011-07-01

    In February this year, about 100 delegates gathered for three days in Vienna (Austria) for the Next Generation Vaccines conference. The meeting held in the Vienna Hilton Hotel from 23rd-25th February 2011 had a strong focus on biotech and industry. The conference organizer Jacob Fleming managed to put together a versatile program ranging from the future generation of vaccines to manufacturing, vaccine distribution and delivery, to regulatory and public health issues. Carefully selected top industry experts presented first-hand experience and shared solutions for overcoming the latest challenges in the field of vaccinology. The program also included several case study presentations on novel vaccine candidates in different stages of development. An interactive pre-conference workshop as well as interactive panel discussions during the meeting allowed all delegates to gain new knowledge and become involved in lively discussions on timely, interesting and sometimes controversial topics related to vaccines.

  20. NOAA NEXt-Generation RADar (NEXRAD) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Level III weather radar products collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska,...

  1. The Next Generation Science Standards

    Science.gov (United States)

    Pruitt, Stephen L.

    2015-01-01

    The Next Generation Science Standards (NGSS Lead States 2013) were released almost two years ago. Work tied to the NGSS, their adoption, and implementation continues to move forward around the country. Stephen L. Pruitt, senior vice president, science, at Achieve, an independent, nonpartisan, nonprofit education reform organization that was a lead…

  2. Next generation laser optics for a hybrid fusion-fission power plant

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Latkowski, J T; Schaffers, K I

    2009-09-10

    The successful completion of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL), followed by a campaign to achieve ignition, creates the proper conditions to begin exploring what development work remains to construct a power plant based on Inertial Confinement Fusion (ICF) technology. Fundamentally, two distinct NIF laser properties must be overcome. The repetition rate must increase from a shot every four hours to several shots per second. Additionally, the efficiency of converting electricity to laser light must increase by 20x to roughly 10 percent. Solid state diode pumped lasers, commercially available for table top applications, have adequate repetition rates and power conversion efficiencies, however, they operate at a tiny fraction of the required energy for an ICF power plant so would need to be scaled in energy and aperture. This paper describes the optics and coatings that would be needed to support this type of laser architecture.

  3. Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics.

    Science.gov (United States)

    Shah, Dhaval K

    2015-10-01

    Increasingly sophisticated protein engineering efforts have been undertaken lately to generate protein therapeutics with desired properties. This has resulted in the discovery of the next generation of protein therapeutics, which include: engineered antibodies, immunoconjugates, bi/multi-specific proteins, antibody mimetic novel scaffolds, and engineered ligands/receptors. These novel protein therapeutics possess unique physicochemical properties and act via a unique mechanism-of-action, which collectively makes their pharmacokinetics (PK) and pharmacodynamics (PD) different than other established biological molecules. Consequently, in order to support the discovery and development of these next generation molecules, it becomes important to understand the determinants controlling their PK/PD. This review discusses the determinants that a PK/PD scientist should consider during the design and development of next generation protein therapeutics. In addition, the role of systems PK/PD models in enabling rational development of the next generation protein therapeutics is emphasized.

  4. IPv6: The Next Generation Internet Protocol

    Indian Academy of Sciences (India)

    addressing, new generation internet. 2. ... required the creation of the next generation of Internet ... IPv6 standards have defined the following Extension headers ..... addresses are represented as x:x:x:x:x:x:x:x, where each x is the hexadecimal ...

  5. Pre-Brazed Casting and Hot Radial Pressing: A Reliable Process for the Manufacturing of CFC and W Monoblock Mockups

    International Nuclear Information System (INIS)

    Visca, E.; Libera, S.; Mancini, A.; Mazzone, G.; Pizzuto, A.; Testani, C.

    2006-01-01

    ENEA association is involved in the European International Thermonuclear Experimental Reactor (ITER) R-and-D activities and in particular for the manufacturing of high heat flux plasma-facing components (HHFC), such as the divertor targets, the baffles and the limiters: During the last years ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and hot isostatic pressing (HIPping). A new manufacturing process has been set up and tested. It was successfully applied for the manufacturing of W armoured monoblock mockups. This technique is the HRP (Hot Radial Pressing) based on performing a radial diffusion bonding between the cooling tube and the armour tile by pressurizing only the internal tube and by keeping the joining zone in vacuum and at the required bonding temperature. The heating is obtained by a standard air furnace. The next step was to apply the HRP technique for the manufacturing of CFC armoured monoblock components. For this purpose some issues have to be solved like as the low CFC tensile strength, the pure copper interlayer between the heat sink and the armour necessary to mitigate the stress at the joint interface and the low wettability of the pure copper on the CFC matrix. This paper reports the research path followed to manufacture a medium scale vertical target CFC and W armoured mockup by HRP. An ad hoc rig able to maintain the CFC in a compressive constant condition was also designed and tested. The casting of a soft copper interlayer between the tube and the tile was performed by a new technique: the Pre-Brazed Casting (PBC, ENEA patent). Some mock-ups with three NB31 CFC tiles were successfully manufactured and tested to thermal fatigue using electron beam facilities. They all reached at least 1000 cycles at 20 MW/m 2 without suffering any damage. The manufactured medium scale vertical target mock-up is now under testing at the FE2000 (France) facility. (author)

  6. Next-generation wireless technologies 4G and beyond

    CERN Document Server

    Chilamkurti, Naveen; Chaouchi, Hakima

    2013-01-01

    This comprehensive text/reference examines the various challenges to secure, efficient and cost-effective next-generation wireless networking. Topics and features: presents the latest advances, standards and technical challenges in a broad range of emerging wireless technologies; discusses cooperative and mesh networks, delay tolerant networks, and other next-generation networks such as LTE; examines real-world applications of vehicular communications, broadband wireless technologies, RFID technology, and energy-efficient wireless communications; introduces developments towards the 'Internet o

  7. Next Generation of Photovoltaics New Concepts

    CERN Document Server

    Vega, Antonio; López, Antonio

    2012-01-01

    This book presents new concepts for a next generation of PV. Among these concepts are: Multijunction solar cells, multiple excitation solar cells (or how to take benefit of high energy photons for the creation of more than one electron hole-pair), intermediate band solar cells (or how to take advantage of below band-gap energy photons) and related technologies (for quantum dots, nitrides, thin films), advanced light management approaches (plasmonics). Written by world-class experts in next generation photovoltaics this book is an essential reference guide accessible to both beginners and experts working with solar cell technology. The book deeply analyzes the current state-of-the-art of the new photovoltaic approaches and outlines the implementation paths of these advanced devices. Topics addressed range from the fundamentals to the description of state-of-the-art of the new types of solar cells.

  8. Next generation biofuel engineering in prokaryotes

    Science.gov (United States)

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  9. Next generation of photovoltaics. New concepts

    Energy Technology Data Exchange (ETDEWEB)

    Cristobal Lopez, Ana Belen; Marti Vega, Antonio; Luque Lopez, Antonio (eds.) [Univ. Politecnica de Madrid (Spain). Inst. de Energia Solar E.T.S.I. Telecomunicacion

    2012-07-01

    This book presents new concepts for a next generation of PV. Among these concepts are: Multijunction solar cells, multiple excitation solar cells (or how to take benefit of high energy photons for the creation of more than one electron hole-pair), intermediate band solar cells (or how to take advantage of below band-gap energy photons) and related technologies (for quantum dots, nitrides, thin films), advanced light management approaches (plasmonics). Written by world-class experts in next generation photovoltaics this book is an essential reference guide accessible to both beginners and experts working with solar cell technology. The book deeply analyzes the current state-of-the-art of the new photovoltaic approaches and outlines the implementation paths of these advanced devices. Topics addressed range from the fundamentals to the description of state-of-the-art of the new types of solar cells. (orig.)

  10. Galaxy LIMS for next-generation sequencing

    NARCIS (Netherlands)

    Scholtalbers, J.; Rossler, J.; Sorn, P.; Graaf, J. de; Boisguerin, V.; Castle, J.; Sahin, U.

    2013-01-01

    SUMMARY: We have developed a laboratory information management system (LIMS) for a next-generation sequencing (NGS) laboratory within the existing Galaxy platform. The system provides lab technicians standard and customizable sample information forms, barcoded submission forms, tracking of input

  11. Next-generation Digital Earth.

    Science.gov (United States)

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  12. Special Issue: Next Generation DNA Sequencing

    Directory of Open Access Journals (Sweden)

    Paul Richardson

    2010-10-01

    Full Text Available Next Generation Sequencing (NGS refers to technologies that do not rely on traditional dideoxy-nucleotide (Sanger sequencing where labeled DNA fragments are physically resolved by electrophoresis. These new technologies rely on different strategies, but essentially all of them make use of real-time data collection of a base level incorporation event across a massive number of reactions (on the order of millions versus 96 for capillary electrophoresis for instance. The major commercial NGS platforms available to researchers are the 454 Genome Sequencer (Roche, Illumina (formerly Solexa Genome analyzer, the SOLiD system (Applied Biosystems/Life Technologies and the Heliscope (Helicos Corporation. The techniques and different strategies utilized by these platforms are reviewed in a number of the papers in this special issue. These technologies are enabling new applications that take advantage of the massive data produced by this next generation of sequencing instruments. [...

  13. Next-Generation Sequencing of Tubal Intraepithelial Carcinomas.

    Science.gov (United States)

    McDaniel, Andrew S; Stall, Jennifer N; Hovelson, Daniel H; Cani, Andi K; Liu, Chia-Jen; Tomlins, Scott A; Cho, Kathleen R

    2015-11-01

    High-grade serous carcinoma (HGSC) is the most prevalent and lethal form of ovarian cancer. HGSCs frequently arise in the distal fallopian tubes rather than the ovary, developing from small precursor lesions called serous tubal intraepithelial carcinomas (TICs, or more specifically, STICs). While STICs have been reported to harbor TP53 mutations, detailed molecular characterizations of these lesions are lacking. We performed targeted next-generation sequencing (NGS) on formalin-fixed, paraffin-embedded tissue from 4 women, 2 with HGSC and 2 with uterine endometrioid carcinoma (UEC) who were diagnosed as having synchronous STICs. We detected concordant mutations in both HGSCs with synchronous STICs, including TP53 mutations as well as assumed germline BRCA1/2 alterations, confirming a clonal association between these lesions. Next-generation sequencing confirmed the presence of a STIC clonally unrelated to 1 case of UEC, and NGS of the other tubal lesion diagnosed as a STIC unexpectedly supported the lesion as a micrometastasis from the associated UEC. We demonstrate that targeted NGS can identify genetic alterations in minute lesions, such as TICs, and confirm TP53 mutations as early driving events for HGSC. Next-generation sequencing also demonstrated unexpected associations between presumed STICs and synchronous carcinomas, providing evidence that some TICs are actually metastases rather than HGSC precursors.

  14. Next Generation NASA Initiative for Space Geodesy

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Space geodesy measurement requirements have become more and more stringent as our understanding of the physical processes and our modeling techniques have improved. In addition, current and future spacecraft will have ever-increasing measurement capability and will lead to increasingly sophisticated models of changes in the Earth system. Ground-based space geodesy networks with enhanced measurement capability will be essential to meeting these oncoming requirements and properly interpreting the sate1!ite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation ofthe observed geophysical signals. These requirements have been articulated by the Global Geodetic Observing System (GGOS). The NASA Space Geodesy Project (SGP) is developing a prototype core site as the basis for a next generation Space Geodetic Network (SGN) that would be NASA's contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Each of the sites in the SGN would include co-located, state of-the-art systems from all four space geodetic observing techniques (GNSS, SLR, VLBI, and DORIS). The prototype core site is being developed at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center. The project commenced in 2011 and is scheduled for completion in late 2013. In January 2012, two multiconstellation GNSS receivers, GODS and GODN, were established at the prototype site as part of the local geodetic network. Development and testing are also underway on the next generation SLR and VLBI systems along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vector ties, and network design studies are being

  15. Analysis of the temperature and thermal stress in pure tungsten monoblock during heat loading and the influences of alloying and dispersion strengthening on these responses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Makoto, E-mail: makoto.fukuda@qse.tohoku.ac.jp [Tohoku University, 6-6-01-2 Aramaki-aza Aoba, Aobaku, Sendai, 980-8579 (Japan); Nogami, Shuhei; Guan, Wenhai; Hasegawa, Akira [Tohoku University, 6-6-01-2 Aramaki-aza Aoba, Aobaku, Sendai, 980-8579 (Japan); Muroga, Takeo [National Institute for Fusion Science, 322-6 Oroshi-cho, Gifu, 509-5292 (Japan)

    2016-06-15

    Highlights: • The heat load response of pure W and its alloys monoblock was investigated by FEA. • The effect of alloying on heat load response of W was not clearly observed. • The possibility of cracking during cooling phase after heat load was suggested. • The effects of recrystallization and irradiation embrittlement were discussed. • W alloys will show better reliability than pure W during fusion reactor operation. - Abstract: The effects of 3% Re addition and K-bubble dispersion on temperature and stress values and the distributions thereof in a W monoblock during heat loading were investigated using finite element analysis. K-doped W-3%Re exhibited the highest recrystallization resistance but showed a higher surface temperature than pure W or K-doped W during the heat loading. The effect of K-bubble dispersion and 3% Re addition on thermal stress distribution during heat loading was not clearly observed, and residual tensile stress after heat loading, which could possibly cause cracking, was observed at the top surfaces of all materials. Because of the higher strength and temperature at which recrystallization starts for the K-doped W-3%Re and K-doped W, the probability of crack formation at the top surface might be lower compared to that in pure W. The improvement in the material properties and resistance to crack initiation and propagation in W during cyclic heat loading is crucial for the design and development of plasma-facing components. This work suggests possibility of the crack formation in a pure W monoblock in the cooling phase after a 20 MW/m{sup 2} heat loading cycle and the effectiveness of K-bubble dispersion and Re addition for improving the heat loading resistance of monoblock W.

  16. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail: samokhvalov.itmo@gmail.com; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  17. AugerNext: innovative research studies for the next generation ground-based ultra-high energy cosmic ray experiment

    Directory of Open Access Journals (Sweden)

    Haungs Andreas

    2013-06-01

    Full Text Available The findings so far of the Pierre Auger Observatory and also of the Telescope Array define the requirements for a possible next generation experiment: it needs to be considerably increased in size, it needs a better sensitivity to composition, and it should cover the full sky. AugerNext aims to perform innovative research studies in order to prepare a proposal fulfilling these demands. Such R&D studies are primarily focused in the following areas iconsolidation of the detection of cosmic rays using MHz radio antennas; iiproof-of-principle of cosmic-ray microwave detection; iiitest of the large-scale application of a new generation photo-sensors; ivgeneralization of data communication techniques; vdevelopment of new ways of muon detection with surface arrays. These AugerNext studies on new innovative detection methods for a next generation cosmic-ray experiment are performed at the Pierre Auger Observatory. The AugerNext consortium consists presently of fourteen partner institutions from nine European countries supported by a network of European funding agencies and it is a principal element of the ASPERA/ApPEC strategic roadmaps.

  18. High-Power, Solid-State, Deep Ultraviolet Laser Generation

    Directory of Open Access Journals (Sweden)

    Hongwen Xuan

    2018-02-01

    Full Text Available At present, deep ultraviolet (DUV lasers at the wavelength of fourth harmonics of 1 μm (266 nm/258 nm and at the wavelength of 193 nm are widely utilized in science and industry. We review the generation of these DUV lasers by nonlinear frequency conversion processes using solid-state/fiber lasers as the fundamental frequency. A DUV laser at 258 nm by fourth harmonics generation (FHG could achieve an average power of 10 W with a beam quality of M2 < 1.5. Moreover, 1 W of average power at 193 nm was obtained by sum-frequency generation (SFG. A new concept of 193-nm DUV laser generation by use of the diamond Raman laser is also introduced. A proof-of-principle experiment of the diamond Raman laser is reported with the conversion efficiency of 23% from the pump to the second Stokes wavelength, which implies the potential to generate a higher power 193 nm DUV laser in the future.

  19. New materials for next-generation commercial transports

    National Research Council Canada - National Science Library

    Committee on New Materials for Advanced Civil Aircraft, Commission on Engineering and Technical Systems, National Research Council

    ... civil aircraft throughout their service life. The committee investigated the new materials and structural concepts that are likely to be incorporated into next generation commercial aircraft and the factors influencing application decisions...

  20. Preparation of next generation set of group cross sections. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2002-03-01

    This fiscal year, based on the examination result about the evaluation energy range of heavy element unresolved resonance cross sections, the upper energy limit of the energy range, where ultra-fine group cross sections are produced, was raised to 50 keV, and an improvement of the group cross section processing system was promoted. At the same time, reflecting the result of studies carried out till now, a function producing delayed neutron data was added to the general-purpose group cross section processing system , thus the preparation of general purpose group cross section processing system has been completed. On the other hand, the energy structure, data constitution and data contents of next generation group cross section set were determined, and the specification of a 151 groups next generation group cross section set was defined. Based on the above specification, a concrete library format of the next generation cross section set has been determined. After having carried out the above-described work, using the general-purpose group cross section processing system , which was complete in this study, with use of the JENDL-3. 2 evaluated nuclear data, the 151 groups next generation group cross section of 92 nuclides and the ultra fine group resonance cross section library for 29 nuclides have been prepared. Utilizing the 151 groups next generation group cross section set and the ultra-fine group resonance cross-section library, a bench mark test calculation of fast reactors has been performed by using an advanced lattice calculation code. It was confirmed, by comparing the calculation result with a calculation result of continuous energy Monte Carlo code, that the 151 groups next generation cross section set has sufficient accuracy. (author)

  1. Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits

    International Nuclear Information System (INIS)

    Borisov, V M; Vinokhodov, A Yu; Ivanov, A S; Kiryukhin, Yu B; Mishchenko, V A; Prokof'ev, A V; Khristoforov, O B

    2009-01-01

    The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz. (laser applications and other topics in quantum electronics)

  2. Future prospects of laser diodes and fiber lasers

    International Nuclear Information System (INIS)

    Ueda, Ken-ichi

    2000-01-01

    For the next century we should develop new concepts for coherent control of light generation and propagation. Owing to the recent development of ultra fine structures in semiconductor lasers, fiber lasers, and various kinds of waveguide structure, we can make optical devices which control the light propagation artificially. But, the phase locking and phase control of multiple laser oscillators are one of the most important directions of laser science and technology. The coherent summation has been a dream of laser since 1960. Is it possible to solve this old and quite challenging problem for laser science? This is also a very basic concept because the laser action based on the stimulated emission is the process of coherent summation of huge number of photons emitted from individual atoms. In this paper, I discuss the fundamental direction of laser research in the next ten or twenty years. The active optics and laser technology should be combined intrinsically in near future. (author)

  3. Next Generation Thermal Barrier Coatings for the Gas Turbine Industry

    Science.gov (United States)

    Curry, Nicholas; Markocsan, Nicolaie; Li, Xin-Hai; Tricoire, Aurélien; Dorfman, Mitch

    2011-01-01

    The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.

  4. Implementing the Next Generation Science Standards

    Science.gov (United States)

    Penuel, William R.; Harris, Christopher J.; DeBarger, Angela Haydel

    2015-01-01

    The Next Generation Science Standards embody a new vision for science education grounded in the idea that science is both a body of knowledge and a set of linked practices for developing knowledge. The authors describe strategies that they suggest school and district leaders consider when designing strategies to support NGSS implementation.

  5. Next-Generation Sequencing Platforms

    Science.gov (United States)

    Mardis, Elaine R.

    2013-06-01

    Automated DNA sequencing instruments embody an elegant interplay among chemistry, engineering, software, and molecular biology and have built upon Sanger's founding discovery of dideoxynucleotide sequencing to perform once-unfathomable tasks. Combined with innovative physical mapping approaches that helped to establish long-range relationships between cloned stretches of genomic DNA, fluorescent DNA sequencers produced reference genome sequences for model organisms and for the reference human genome. New types of sequencing instruments that permit amazing acceleration of data-collection rates for DNA sequencing have been developed. The ability to generate genome-scale data sets is now transforming the nature of biological inquiry. Here, I provide an historical perspective of the field, focusing on the fundamental developments that predated the advent of next-generation sequencing instruments and providing information about how these instruments work, their application to biological research, and the newest types of sequencers that can extract data from single DNA molecules.

  6. Prospect of laser fusion power generation

    International Nuclear Information System (INIS)

    Nakai, Sadao

    1998-01-01

    Inertial fusion ignition, burn and energy gain are expected to be achieved within the first decade of next century with new Megajoule laser facilities which are under construction in the USA and France. Fusion reactor design studies indicate that Inertial Fusion Energy(IFE) power plants are technically feasible and have attractive safety and environmental features. The recent progress on implosion physics and relevant technologies require us to consider a strategic approach toward IFE development. The design study for a laser fusion power plant KOYO has been conducted as a joint program of universities, national laboratories and industries in Japan and also with international collaborations. The progress of high power laser technology gives us feasible project toward a laser driven IFE Power Plant. The technical breakthrough in the field of diode pumped solid state laser (DPSSL) has opened wide application of power laser to industrial technologies. Laser fusion energy development will be proceeded jointly with industrial photonics research and development. International collaborations are also promoted for efficient progress and activation of R and D on advanced technologies which are required for IFE and also useful for modern industries. (author). 7 refs., 1 tab., 7 figs

  7. Unbundling in Current Broadband and Next-Generation Ultra-Broadband Access Networks

    Science.gov (United States)

    Gaudino, Roberto; Giuliano, Romeo; Mazzenga, Franco; Valcarenghi, Luca; Vatalaro, Francesco

    2014-05-01

    This article overviews the methods that are currently under investigation for implementing multi-operator open-access/shared-access techniques in next-generation access ultra-broadband architectures, starting from the traditional "unbundling-of-the-local-loop" techniques implemented in legacy twisted-pair digital subscriber line access networks. A straightforward replication of these copper-based unbundling-of-the-local-loop techniques is usually not feasible on next-generation access networks, including fiber-to-the-home point-to-multipoint passive optical networks. To investigate this issue, the article first gives a concise description of traditional copper-based unbundling-of-the-local-loop solutions, then focalizes on both next-generation access hybrid fiber-copper digital subscriber line fiber-to-the-cabinet scenarios and on fiber to the home by accounting for the mix of regulatory and technological reasons driving the next-generation access migration path, focusing mostly on the European situation.

  8. Next generation DIRCM for 2.1-2.3 micron wavelength based on direct-diode GaSb technology

    Science.gov (United States)

    Dvinelis, Edgaras; Naujokaitė, Greta; Greibus, Mindaugas; Trinkūnas, Augustinas; Vizbaras, Kristijonas; Vizbaras, Augustinas

    2018-02-01

    Continuous advances in low-cost MANPAD heat-seeking missile technology over the past 50 years remains the number one hostile threat to airborne platforms globally responsible for over 60 % of casualties. Laser based directional countermeasure (DIRCM) technology have been deployed to counter the threat. Ideally, a laser based DIRCM system must involve a number of lasers emitting at different spectral bands mimicking the spectral signature of the airborne platform. Up to now, near and mid infrared spectral bands have been covered with semiconductor laser technology and only SWIR band remained with bulky fiber laser technology. Recent technology developments on direct-diode GaSb laser technology at Brolis Semiconductors offer a replacement for the fiber laser source leading to significant improvements by few orders of magnitude in weight, footprint, efficiency and cost. We demonstrate that with careful engineering, several multimode emitters can be combined to provide a directional laser beam with radiant intensity from 10 kW/sr to 60 kW/sr in an ultra-compact hermetic package with weight < 30 g and overall efficiency of 15 % in the 2.1- 2.3 micron spectral band offering 150 times improvement in efficiency and reduction in footprint. We will discuss present results, challenges and future developments for such next-generation integrated direct diode DIRCM modules for SWIR band.

  9. Mobile e-Learning for Next Generation Communication Environment

    Science.gov (United States)

    Wu, Tin-Yu; Chao, Han-Chieh

    2008-01-01

    This article develops an environment for mobile e-learning that includes an interactive course, virtual online labs, an interactive online test, and lab-exercise training platform on the fourth generation mobile communication system. The Next Generation Learning Environment (NeGL) promotes the term "knowledge economy." Inter-networking…

  10. Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system.

    Science.gov (United States)

    Braun, Andreas; Krillke, Raphael Franz; Frentzen, Matthias; Bourauel, Christoph; Stark, Helmut; Schelle, Florian

    2015-02-01

    Heat generation during the removal of dental hard tissues may lead to a temperature increase and cause painful sensations or damage dental tissues. The aim of this study was to assess heat generation in dental hard tissues following laser ablation using an ultrashort pulse laser (USPL) system. A total of 85 specimens of dental hard tissues were used, comprising 45 specimens of human dentine evaluating a thickness of 1, 2, and 3 mm (15 samples each) and 40 specimens of human enamel with a thickness of 1 and 2 mm (20 samples each). Ablation was performed with an Nd:YVO4 laser at 1,064 nm, a pulse duration of 9 ps, and a repetition rate of 500 kHz with an average output power of 6 W. Specimens were irradiated for 0.8 s. Employing a scanner system, rectangular cavities of 1-mm edge length were generated. A temperature sensor was placed at the back of the specimens, recording the temperature during the ablation process. All measurements were made employing a heat-conductive paste without any additional cooling or spray. Heat generation during laser ablation depended on the dental hard tissue (enamel or dentine) and the thickness of the respective tissue (p dental hard tissues, heat generation has to be considered. Especially during laser ablation next to pulpal tissues, painful sensations and potential thermal injury of pulp tissue might occur.

  11. A Window Into Clinical Next-Generation Sequencing-Based Oncology Testing Practices.

    Science.gov (United States)

    Nagarajan, Rakesh; Bartley, Angela N; Bridge, Julia A; Jennings, Lawrence J; Kamel-Reid, Suzanne; Kim, Annette; Lazar, Alexander J; Lindeman, Neal I; Moncur, Joel; Rai, Alex J; Routbort, Mark J; Vasalos, Patricia; Merker, Jason D

    2017-12-01

    - Detection of acquired variants in cancer is a paradigm of precision medicine, yet little has been reported about clinical laboratory practices across a broad range of laboratories. - To use College of American Pathologists proficiency testing survey results to report on the results from surveys on next-generation sequencing-based oncology testing practices. - College of American Pathologists proficiency testing survey results from more than 250 laboratories currently performing molecular oncology testing were used to determine laboratory trends in next-generation sequencing-based oncology testing. - These presented data provide key information about the number of laboratories that currently offer or are planning to offer next-generation sequencing-based oncology testing. Furthermore, we present data from 60 laboratories performing next-generation sequencing-based oncology testing regarding specimen requirements and assay characteristics. The findings indicate that most laboratories are performing tumor-only targeted sequencing to detect single-nucleotide variants and small insertions and deletions, using desktop sequencers and predesigned commercial kits. Despite these trends, a diversity of approaches to testing exists. - This information should be useful to further inform a variety of topics, including national discussions involving clinical laboratory quality systems, regulation and oversight of next-generation sequencing-based oncology testing, and precision oncology efforts in a data-driven manner.

  12. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, Simon G., E-mail: simon.alcock@diamond.ac.uk; Nistea, Ioana; Sutter, John P.; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Fermé, Jean-Jacques; Thellièr, Christophe; Peverini, Luca [Thales-SESO, 305 rue Louis Armand, Pôle d’Activités d’Aix les Milles, Aix-en-Provence (France)

    2015-01-01

    A next-generation bimorph mirror with piezos bonded to the side faces of a monolithic substrate was created. When replacing a first-generation bimorph mirror suffering from the junction effect, the new type of mirror significantly improved the size and shape of the reflected synchrotron X-ray beam. No evidence of the junction effect was observed even after eight months of continuous beamline usage. Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  13. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines

    International Nuclear Information System (INIS)

    Alcock, Simon G.; Nistea, Ioana; Sutter, John P.; Sawhney, Kawal; Fermé, Jean-Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    A next-generation bimorph mirror with piezos bonded to the side faces of a monolithic substrate was created. When replacing a first-generation bimorph mirror suffering from the junction effect, the new type of mirror significantly improved the size and shape of the reflected synchrotron X-ray beam. No evidence of the junction effect was observed even after eight months of continuous beamline usage. Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the ‘junction effect’: a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts

  14. Next-generation mammalian genetics toward organism-level systems biology.

    Science.gov (United States)

    Susaki, Etsuo A; Ukai, Hideki; Ueda, Hiroki R

    2017-01-01

    Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.

  15. Towards Next Generation BI Systems

    DEFF Research Database (Denmark)

    Varga, Jovan; Romero, Oscar; Pedersen, Torben Bach

    2014-01-01

    Next generation Business Intelligence (BI) systems require integration of heterogeneous data sources and a strong user-centric orientation. Both needs entail machine-processable metadata to enable automation and allow end users to gain access to relevant data for their decision making processes....... This framework is based on the findings of a survey of current user-centric approaches mainly focusing on query recommendation assistance. Finally, we discuss the benefits of the framework and present the plans for future work....

  16. Ultrafast terawatt laser sources for high-field particle acceleration and short wavelength generation

    International Nuclear Information System (INIS)

    Downer, M.C.

    1996-01-01

    The Laser Sources working group concerned itself with recent advances in and future requirements for the development of laser sources relevant to high-energy physics (HEP) colliders, small scale accelerators, and the generation of short wave-length radiation. We heavily emphasized pulsed terawatt peak power laser sources for several reasons. First, their development over the past five years has been rapid and multi-faceted, and has made relativistic light intensity available to the advanced accelerator community, as well as the wider physics community, for the first time. Secondly, they have strongly impacted plasma-based accelerator research over the past two years, producing the first experimental demonstrations of the laser wakefield accelerator (LWFA) in both its resonantly-driven and self-modulated forms. Thirdly, their average power and wall-plug efficiency currently fall well short of projected requirements for future accelerators and other high average power applications, but show considerable promise for improving substantially over the next few years. A review of this rapidly emerging laser technology in the context of advanced accelerator research is therefore timely

  17. Data Analysis and Next Generation Assessments

    Science.gov (United States)

    Pon, Kathy

    2013-01-01

    For the last decade, much of the work of California school administrators has been shaped by the accountability of the No Child Left Behind Act. Now as they stand at the precipice of Common Core Standards and next generation assessments, it is important to reflect on the proficiency educators have attained in using data to improve instruction and…

  18. Pulse Compression Techniques for Laser Generated Ultrasound

    Science.gov (United States)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  19. Achieving universal access to next generation networks

    DEFF Research Database (Denmark)

    Falch, Morten; Henten, Anders

    The paper examines investment dimensions of next generation networks in a universal service perspective in a European context. The question is how new network infrastructures for getting access to communication, information and entertainment services in the present and future information society...

  20. Next generation breeding.

    Science.gov (United States)

    Barabaschi, Delfina; Tondelli, Alessandro; Desiderio, Francesca; Volante, Andrea; Vaccino, Patrizia; Valè, Giampiero; Cattivelli, Luigi

    2016-01-01

    The genomic revolution of the past decade has greatly improved our understanding of the genetic make-up of living organisms. The sequencing of crop genomes has completely changed our vision and interpretation of genome organization and evolution. Re-sequencing allows the identification of an unlimited number of markers as well as the analysis of germplasm allelic diversity based on allele mining approaches. High throughput marker technologies coupled with advanced phenotyping platforms provide new opportunities for discovering marker-trait associations which can sustain genomic-assisted breeding. The availability of genome sequencing information is enabling genome editing (site-specific mutagenesis), to obtain gene sequences desired by breeders. This review illustrates how next generation sequencing-derived information can be used to tailor genomic tools for different breeders' needs to revolutionize crop improvement. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. First demonstration of laser engagement of 1-Hz-injected flying pellets and neutron generation

    Science.gov (United States)

    Komeda, Osamu; Nishimura, Yasuhiko; Mori, Yoshitaka; Hanayama, Ryohei; Ishii, Katsuhiro; Nakayama, Suisei; Kitagawa, Yoneyoshi; Sekine, Takashi; Sato, Nakahiro; Kurita, Takashi; Kawashima, Toshiyuki; Kan, Hirofumi; Nakamura, Naoki; Kondo, Takuya; Fujine, Manabu; Azuma, Hirozumi; Motohiro, Tomoyoshi; Hioki, Tatsumi; Kakeno, Mitsutaka; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke

    2013-01-01

    Pellet injection and repetitive laser illumination are key technologies for realizing inertial fusion energy. Numerous studies have been conducted on target suppliers, injectors, and tracking systems for flying pellet engagement. Here we for the first time demonstrate the pellet injection, counter laser beams' engagement and neutron generation. Deuterated polystyrene (CD) bead pellets, after free-falling for a distance of 18 cm at 1 Hz, are successfully engaged by two counter laser beams from a diode-pumped, ultra-intense laser HAMA. The laser energy, pulse duration, wavelength, and the intensity are 0.63 J per beam, 104 fs, and 811 nm, 4.7 × 1018 W/cm2, respectively. The irradiated pellets produce D(d,n)3He-reacted neutrons with a maximum yield of 9.5 × 104/4π sr/shot. Moreover, the laser is found out to bore a straight channel with 10 μm-diameter through the 1-mm-diameter beads. The results indicate potentially useful technologies and findings for the next step in realizing inertial fusion energy. PMID:24008696

  2. Next-Generation Sequencing: From Understanding Biology to Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Benjamin Meder

    2013-03-01

    Full Text Available Within just a few years, the new methods for high-throughput next-generation sequencing have generated completely novel insights into the heritability and pathophysiology of human disease. In this review, we wish to highlight the benefits of the current state-of-the-art sequencing technologies for genetic and epigenetic research. We illustrate how these technologies help to constantly improve our understanding of genetic mechanisms in biological systems and summarize the progress made so far. This can be exemplified by the case of heritable heart muscle diseases, so-called cardiomyopathies. Here, next-generation sequencing is able to identify novel disease genes, and first clinical applications demonstrate the successful translation of this technology into personalized patient care.

  3. Next Generation Drivetrain Development and Test Program

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan; Erdman, Bill; Blodgett, Doug; Halse, Chris; Grider, Dave

    2015-11-03

    This presentation was given at the Wind Energy IQ conference in Bremen, Germany, November 30 through December 2, 2105. It focused on the next-generation drivetrain architecture and drivetrain technology development and testing (including gearbox and inverter software and medium-voltage inverter modules.

  4. Heterogeneous next-generation wireless network interference model-and its applications

    KAUST Repository

    Mahmood, Nurul Huda

    2014-04-01

    Next-generation wireless systems facilitating better utilisation of the scarce radio spectrum have emerged as a response to inefficient and rigid spectrum assignment policies. These are comprised of intelligent radio nodes that opportunistically operate in the radio spectrum of existing primary systems, yet unwanted interference at the primary receivers is unavoidable. In order to design efficient next-generation systems and to minimise the adverse effect of their interference, it is necessary to realise how the resulting interference impacts the performance of the primary systems. In this work, a generalised framework for the interference analysis of such a next-generation system is presented where the nextgeneration transmitters may transmit randomly with different transmit powers. The analysis is built around a model developed for the statistical representation of the interference at the primary receivers, which is then used to evaluate various performance measures of the primary system. Applications of the derived interference model in designing the next-generation network system parameters are also demonstrated. Such approach provides a unified and generalised framework, the use of which allows a wide range of performance metrics can be evaluated. Findings of the analytical performance analyses are confirmed through extensive computer-based Monte-Carlo simulations. © 2012 John Wiley & Sons, Ltd.

  5. Generation and detection technique of laser-ultrasonic

    International Nuclear Information System (INIS)

    Dho, Sang Whoe; Lee, Seung Seok

    1999-01-01

    A number of physical processes may take place when a solid surface is illuminated by a pulse laser. At lower power region these include heating, the generation of thermal waves, elastic waves (ultrasound). At higher powers, material may be ablated from the surface and a plasma formed, while in the sample there may be melting, plastic deformation and even the formation of cracks. In this letter we consider the generation techniques of laser-ultrasonic il all possible state. And we consider the measurement technique of laser-generated ultrasound based on the optical method.

  6. Optimization of multi-color laser waveform for high-order harmonic generation

    Science.gov (United States)

    Jin, Cheng; Lin, C. D.

    2016-09-01

    With the development of laser technologies, multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms. A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes. We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm. By choosing different fitness criteria, we demonstrate that: (i) harmonic yields can be enhanced by 10 to 100 times, (ii) harmonic cutoff energy can be substantially extended, (iii) specific harmonic orders can be selectively enhanced, and (iv) single attosecond pulses can be efficiently generated. The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed. The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-86ER13491), and Air Force Office of Scientific Research, USA (Grant No. FA9550-14-1-0255).

  7. 76 FR 49776 - The Development and Evaluation of Next-Generation Smallpox Vaccines; Public Workshop

    Science.gov (United States)

    2011-08-11

    ...] The Development and Evaluation of Next-Generation Smallpox Vaccines; Public Workshop AGENCY: Food and... Evaluation of Next-Generation Smallpox Vaccines.'' The purpose of the public workshop is to identify and discuss the key issues related to the development and evaluation of next-generation smallpox vaccines. The...

  8. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.

    Science.gov (United States)

    Elingaramil, Sauli; Li, Xiaolong; He, Nongyue

    2013-07-01

    Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.

  9. Next generation surveillance system (NGSS)

    International Nuclear Information System (INIS)

    Aparo, Massimo

    2006-01-01

    Development of 'functional requirements' for transparency systems may offer a near-term mode of regional cooperation. New requirements under development at the IAEA may provide a foundation for this potential activity. The Next Generation Surveillance System (NGSS) will become the new IAEA remote monitoring system Under new requirements the NGSS would attempt to use more commercial components to reduce cost, increase radiation survivability and further increase reliability. The NGSS must be available in two years due to rapidly approaching obsolescence in the existing DCM family. (author)

  10. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication technolog......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...... technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic...

  11. Generation of ultrasound in materials using continuous-wave lasers.

    Science.gov (United States)

    Caron, James N; DiComo, Gregory P; Nikitin, Sergei

    2012-03-01

    Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America

  12. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Optical and Microwave Communications

    Science.gov (United States)

    Israel, David J.; Shaw, Harry

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available.In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  13. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications

    Science.gov (United States)

    Israel, David J.

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available. In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  14. Optimizing the next generation optical access networks

    DEFF Research Database (Denmark)

    Amaya Fernández, Ferney Orlando; Soto, Ana Cardenas; Tafur Monroy, Idelfonso

    2009-01-01

    Several issues in the design and optimization of the next generation optical access network (NG-OAN) are presented. The noise, the distortion and the fiber optic nonlinearities are considered to optimize the video distribution link in a passive optical network (PON). A discussion of the effect...

  15. IPv6: The Next Generation Internet Protocol

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 3. IPv6: The Next Generation Internet Protocol - IPv4 and its Shortcomings. Harsha Srinath. General Article Volume 8 Issue 3 March 2003 pp 33-41. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. IPv6: The Next Generation Internet Protocol

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 4. IPv6: The Next Generation Internet Protocol - New Features in IPv6. Harsha Srinath. General Article Volume 8 Issue 4 April 2003 pp 8-16. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Next-Generation Sequencing for Binary Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Bernhard eSuter

    2015-12-01

    Full Text Available The yeast two-hybrid (Y2H system exploits host cell genetics in order to display binary protein-protein interactions (PPIs via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS, and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.

  18. Next Generation Safeguards Initiative: Human Capital Development

    International Nuclear Information System (INIS)

    Scholz, M.; Irola, G.; Glynn, K.

    2015-01-01

    Since 2008, the Human Capital Development (HCD) subprogramme of the U.S. National Nuclear Security Administration's (NNSA) Next Generation Safeguards Initiative (NGSI) has supported the recruitment, education, training, and retention of the next generation of international safeguards professionals to meet the needs of both the International Atomic Energy Agency (IAEA) and the United States. Specifically, HCD's efforts respond to data indicating that 82% of safeguards experts at U.S. Laboratories will have left the workforce within 15 years. This paper provides an update on the status of the subprogramme since its last presentation at the IAEA Safeguards Symposium in 2010. It highlights strengthened, integrated efforts in the areas of graduate and post-doctoral fellowships, young and midcareer professional support, short safeguards courses, and university engagement. It also discusses lessons learned from the U.S. experience in safeguards education and training as well as the importance of long-range strategies to develop a cohesive, effective, and efficient human capital development approach. (author)

  19. Next Generation Sequencing of Ancient DNA: Requirements, Strategies and Perspectives

    Directory of Open Access Journals (Sweden)

    Michael Knapp

    2010-07-01

    Full Text Available The invention of next-generation-sequencing has revolutionized almost all fields of genetics, but few have profited from it as much as the field of ancient DNA research. From its beginnings as an interesting but rather marginal discipline, ancient DNA research is now on its way into the centre of evolutionary biology. In less than a year from its invention next-generation-sequencing had increased the amount of DNA sequence data available from extinct organisms by several orders of magnitude. Ancient DNA  research is now not only adding a temporal aspect to evolutionary studies and allowing for the observation of evolution in real time, it also provides important data to help understand the origins of our own species. Here we review progress that has been made in next-generation-sequencing of ancient DNA over the past five years and evaluate sequencing strategies and future directions.

  20. NOAA Next Generation Radar (NEXRAD) Level 3 Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Level 3 weather radar products collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska,...

  1. Hollow laser plasma self-confined microjet generation

    Science.gov (United States)

    Sizyuk, Valeryi; Hassanein, Ahmed; CenterMaterials under Extreme Environment Team

    2017-10-01

    Hollow laser beam produced plasma (LPP) devices are being used for the generation of the self-confined cumulative microjet. Most important place by this LPP device construction is achieving of an annular distribution of the laser beam intensity by spot. An integrated model is being developed to detailed simulation of the plasma generation and evolution inside the laser beam channel. The model describes in two temperature approximation hydrodynamic processes in plasma, laser absorption processes, heat conduction, and radiation energy transport. The total variation diminishing scheme in the Lax-Friedrich formulation for the description of plasma hydrodynamic is used. Laser absorption and radiation transport models on the base of Monte Carlo method are being developed. Heat conduction part on the implicit scheme with sparse matrixes using is realized. The developed models are being integrated into HEIGHTS-LPP computer simulation package. The integrated modeling of the hollow beam laser plasma generation showed the self-confinement and acceleration of the plasma microjet inside the laser channel. It was found dependence of the microjet parameters including radiation emission on the hole and beam radiuses ratio. This work is supported by the National Science Foundation, PIRE project.

  2. The Next Generation of Heavy Ion Sources (447th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Okamura, Masahiro

    2009-01-01

    Imagine if, by staying in your lane when driving on the expressway, you could help fight cancer or provide a new, clean energy source. You would clench the steering wheel with both hands and stay in your lane, right? Unlike driving on the expressway where you intentionally avoid hitting other cars, scientists sometimes work to steer particle beams into head-on collisions with other oncoming particle beams. However, the particles must be kept 'in their lanes' for cleaner, more frequent collisions. Some scientists propose starting the whole process by using lasers to heat a fixed target as a way to get particles with higher charge, which are more steerable. These scientists believe the new methods could be used to develop particle beams for killing cancer cells or creating usable energy from fusion. Join Masahiro Okamura of Brookhaven's Collider-Accelerator Department for the 447th Brookhaven Lecture, titled 'The Next Generation of Heavy Ion Sources.' Okamura will explain how lasers can be used to create plasma, neutral mixtures of positive ions and negative electrons, from different materials, and how using this plasma leads to beams with higher charge states and currents. He will also discuss how this efficient, simpler method of producing particle beams might be used for cancer therapy, to develop new energy sources, or in synchrotrons.

  3. Potential of the FLASH FEL technology for the construction of a kW-scale light source for the next generation lithography

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Vogel, V.F.; Weise, H.; Yurkov, M.V.

    2011-08-15

    The driving engine of the Free Electron Laser in Hamburg (FLASH) is an L-band superconducting accelerator. It is designed to operate in burst mode with 800 microsecond pulse duration at a repetition rate of 10 Hz. The maximum accelerated beam current during the macropulse is 9 mA. Our analysis shows that the FLASH technology has great potential since it is possible to construct a FLASH like free electron laser operating at the wavelength of 13.5 and 6.8 nanometer with an average power up to 2.6 kW. Such a source meets the physical requirements for the light source for the next generation lithography. (orig.)

  4. Next generation sensors and systems

    CERN Document Server

    2016-01-01

    Written by experts in their area of research, this book has outlined the current status of the fundamentals and analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors and discussed about the trends of next generation of sensors and systems happening in the area of Sensing technology. This book will be useful as a reference book for engineers and scientist especially the post-graduate students find will this book as reference book for their research on wearable sensors, devices and technologies.  .

  5. Generation of optical frequencies out of the frequency comb of a femtosecond laser for DWDM telecommunication

    International Nuclear Information System (INIS)

    Kim, Y-J; Chun, B J; Kim, Y; Hyun, S; Kim, S-W

    2010-01-01

    We exploit the frequency comb of a fs laser as the frequency ruler to generate reference optical frequencies for multi-channel DWDM (dense wavelength-division-multiplexing) telecommunication. Our fiber-based scheme of single-mode extraction enables on-demand generation of optical frequencies within the telecommunication band with an absolute frequency uncertainty of 9.1×10 -13 . The linewidth of extracted optical modes is less than 1 Hz, and the instability is measured 2.3×10 -15 at 10 s averaging. This outstanding performance of optical frequency generation would lead to a drastic improvement of the spectral efficiency for the next-generation DWDM telecommunication

  6. Diagnostics of Primary Immunodeficiencies through Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Vera Gallo

    2016-11-01

    Full Text Available Background: Recently, a growing number of novel genetic defects underlying primary immunodeficiencies (PID have been identified, increasing the number of PID up to more than 250 well-defined forms. Next-generation sequencing (NGS technologies and proper filtering strategies greatly contributed to this rapid evolution, providing the possibility to rapidly and simultaneously analyze large numbers of genes or the whole exome. Objective: To evaluate the role of targeted next-generation sequencing and whole exome sequencing in the diagnosis of a case series, characterized by complex or atypical clinical features suggesting a PID, difficult to diagnose using the current diagnostic procedures.Methods: We retrospectively analyzed genetic variants identified through targeted next-generation sequencing or whole exome sequencing in 45 patients with complex PID of unknown etiology. Results: 40 variants were identified using targeted next-generation sequencing, while 5 were identified using whole exome sequencing. Newly identified genetic variants were classified into 4 groups: I variations associated with a well-defined PID; II variations associated with atypical features of a well-defined PID; III functionally relevant variations potentially involved in the immunological features; IV non-diagnostic genotype, in whom the link with phenotype is missing. We reached a conclusive genetic diagnosis in 7/45 patients (~16%. Among them, 4 patients presented with a typical well-defined PID. In the remaining 3 cases, mutations were associated with unexpected clinical features, expanding the phenotypic spectrum of typical PIDs. In addition, we identified 31 variants in 10 patients with complex phenotype, individually not causative per se of the disorder.Conclusion: NGS technologies represent a cost-effective and rapid first-line genetic approaches for the evaluation of complex PIDs. Whole exome sequencing, despite a moderate higher cost compared to targeted, is

  7. The Mercury Laser Advances Laser Technology for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C A; Caird, J; Moses, E

    2009-01-21

    The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.

  8. A next generation field-portable goniometer system

    Science.gov (United States)

    Harms, Justin D.; Bachmann, Charles M.; Faulring, Jason W.; Ruiz Torres, Andres J.

    2016-05-01

    Various field portable goniometers have been designed to capture in-situ measurements of a materials bi-directional reflectance distribution function (BRDF), each with a specific scientific purpose in mind.1-4 The Rochester Institute of Technology's (RIT) Chester F. Carlson Center for Imaging Science recently created a novel instrument incorporating a wide variety of features into one compact apparatus in order to obtain very high accuracy BRDFs of short vegetation and sediments, even in undesirable conditions and austere environments. This next generation system integrates a dual-view design using two VNIR/SWIR pectroradiometers to capture target reflected radiance, as well as incoming radiance, to provide for better optical accuracy when measuring in non-ideal atmospheric conditions or when background illumination effects are non-negligible. The new, fully automated device also features a laser range finder to construct a surface roughness model of the target being measured, which enables the user to include inclination information into BRDF post-processing and further allows for roughness effects to be better studied for radiative transfer modeling. The highly portable design features automatic leveling, a precision engineered frame, and a variable measurement plane that allow for BRDF measurements on rugged, un-even terrain while still maintaining true angular measurements with respect to the target, all without sacrificing measurement speed. Despite the expanded capabilities and dual sensor suite, the system weighs less than 75 kg, which allows for excellent mobility and data collection on soft, silty clay or fine sand.

  9. Examination of concept of next generation computer. Progress report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Hasegawa, Yukihiro; Hirayama, Toshio

    2000-12-01

    The Center for Promotion of Computational Science and Engineering has conducted R and D works on the technology of parallel processing and has started the examination of the next generation computer in 1999. This report describes the behavior analyses of quantum calculation codes. It also describes the consideration for the analyses and examination results for the method to reduce cash misses. Furthermore, it describes a performance simulator that is being developed to quantitatively examine the concept of the next generation computer. (author)

  10. Generation conditions of CW Diode Laser Sustained Plasma

    Science.gov (United States)

    Nishimoto, Koji; Matsui, Makoto; Ono, Takahiro

    2016-09-01

    Laser sustained plasma was generated using 1 kW class continuous wave diode laser. The laser beam was focused on the seed plasma generated by arc discharge in 1 MPa xenon lamp. The diode laser has advantages of high energy conversion efficiency of 80%, ease of maintenance, compact size and availability of conventional quartz based optics. Therefore, it has a prospect of further development compared with conventional CO2 laser. In this study, variation of the plasma shape caused by laser power is observed and also temperature distribution in the direction of plasma radius is measured by optical emission spectroscopy.

  11. Next-Generation Pathology.

    Science.gov (United States)

    Caie, Peter D; Harrison, David J

    2016-01-01

    The field of pathology is rapidly transforming from a semiquantitative and empirical science toward a big data discipline. Large data sets from across multiple omics fields may now be extracted from a patient's tissue sample. Tissue is, however, complex, heterogeneous, and prone to artifact. A reductionist view of tissue and disease progression, which does not take this complexity into account, may lead to single biomarkers failing in clinical trials. The integration of standardized multi-omics big data and the retention of valuable information on spatial heterogeneity are imperative to model complex disease mechanisms. Mathematical modeling through systems pathology approaches is the ideal medium to distill the significant information from these large, multi-parametric, and hierarchical data sets. Systems pathology may also predict the dynamical response of disease progression or response to therapy regimens from a static tissue sample. Next-generation pathology will incorporate big data with systems medicine in order to personalize clinical practice for both prognostic and predictive patient care.

  12. Potential of OFDM for next generation optical access

    Science.gov (United States)

    Fritzsche, Daniel; Weis, Erik; Breuer, Dirk

    2011-01-01

    This paper shows the requirements for next generation optical access (NGOA) networks and analyzes the potential of OFDM (orthogonal frequency division multiplexing) for the use in such network scenarios. First, we show the motivation for NGOA systems based on the future requirements on FTTH access systems and list the advantages of OFDM in such scenarios. In the next part, the basics of OFDM and different methods to generate and detect optical OFDM signals are explained and analyzed. At the transmitter side the options include intensity modulation and the more advanced field modulation of the optical OFDM signal. At the receiver there is the choice between direct detection and coherent detection. As the result of this discussion we show our vision of the future use of OFDM in optical access networks.

  13. Low Power Consumption Laser for Next Generation Miniature Optical Spectrometers for Trace Gas Analysis

    Science.gov (United States)

    Forouhar, S.; Frez, C.; Franz, K. J.; Ksendzov, A.; Qiu, Y.; Soibel, K. A.; Chen, J.; Hosoda, T.; Kipshidze, G.; Shterengas, L.; hide

    2011-01-01

    The air quality of any manned spacecraft needs to be continuously monitored in order to safeguard the health of the crew. Air quality monitoring grows in importance as mission duration increases. Due to the small size, low power draw, and performance reliability, semiconductor laser-based instruments are viable candidates for this purpose. Achieving a minimum instrument size requires lasers with emission wavelength coinciding with the absorption of the fundamental absorption lines of the target gases, which are mostly in the 3.0-5.0 mu m wavelength range. In this paper we report on our progress developing high wall plug efficiency type-I quantum-well GaSb-based diode lasers operating at room temperatures in the spectral region near 3.0-3.5 mu m and quantum cascade (QC) lasers in the 4.0-5.0 mu m range. These lasers will enable the development of miniature, low-power laser spectrometers for environmental monitoring of the spacecraft

  14. Neutronics activities for next generation devices

    International Nuclear Information System (INIS)

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized

  15. High-order harmonic generation in laser plasma plumes

    CERN Document Server

    Ganeev, Rashid A

    2013-01-01

    This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...

  16. THE TRAINING OF NEXT GENERATION DATA SCIENTISTS IN BIOMEDICINE.

    Science.gov (United States)

    Garmire, Lana X; Gliske, Stephen; Nguyen, Quynh C; Chen, Jonathan H; Nemati, Shamim; VAN Horn, John D; Moore, Jason H; Shreffler, Carol; Dunn, Michelle

    2017-01-01

    With the booming of new technologies, biomedical science has transformed into digitalized, data intensive science. Massive amount of data need to be analyzed and interpreted, demand a complete pipeline to train next generation data scientists. To meet this need, the transinstitutional Big Data to Knowledge (BD2K) Initiative has been implemented since 2014, complementing other NIH institutional efforts. In this report, we give an overview the BD2K K01 mentored scientist career awards, which have demonstrated early success. We address the specific trainings needed in representative data science areas, in order to make the next generation of data scientists in biomedicine.

  17. A two-stage flow-based intrusion detection model for next-generation networks.

    Science.gov (United States)

    Umer, Muhammad Fahad; Sher, Muhammad; Bi, Yaxin

    2018-01-01

    The next-generation network provides state-of-the-art access-independent services over converged mobile and fixed networks. Security in the converged network environment is a major challenge. Traditional packet and protocol-based intrusion detection techniques cannot be used in next-generation networks due to slow throughput, low accuracy and their inability to inspect encrypted payload. An alternative solution for protection of next-generation networks is to use network flow records for detection of malicious activity in the network traffic. The network flow records are independent of access networks and user applications. In this paper, we propose a two-stage flow-based intrusion detection system for next-generation networks. The first stage uses an enhanced unsupervised one-class support vector machine which separates malicious flows from normal network traffic. The second stage uses a self-organizing map which automatically groups malicious flows into different alert clusters. We validated the proposed approach on two flow-based datasets and obtained promising results.

  18. Radio resource management for next generation mobile communication systems

    DEFF Research Database (Denmark)

    Wang, Hua

    The key feature of next generation (4G) mobile communication system is the ability to deliver a variety of multimedia services with different Quality-of-Service (QoS) requirements. Compared to the third generation (3G) mobile communication systems, 4G mobile communication system introduces several...

  19. Second generation X-ray lasers

    Czech Academy of Sciences Publication Activity Database

    Fajardo, M.; Zeitoun, P.; Faivre, G.; Sebban, S.; Mocek, Tomáš; Hallou, A.; Aubert, D.; Balcou, P.; Burgy, F.; Douillet, D.; Mercere, P.; Morlens, A.S.; Rousseau, J. P.; Valentin, C.; Kazamias, S.; de Lachéze-Murel, G.; Lefrou, T.; Merdji, H.; Le Pape, S.; Ravet, M.F.; Delmotte, F.; Gautier, J.

    2006-01-01

    Roč. 99, 1-3 (2006), s. 142-152 ISSN 0022-4073 Grant - others:NEST-ADVENTURE FP6 EC(XE) project 012841 (TUIXS) Institutional research plan: CEZ:AV0Z10100523 Keywords : X-ray laser * amplification * high harmonic generation * optical field ionization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.599, year: 2006

  20. Energy and luminosity requirements for the next generation of linear colliders

    International Nuclear Information System (INIS)

    Amaldi, U.

    1987-01-01

    In order to gain new knowledge ('new physics') from 'next generation' linear colliders energy and luminosity are important variables when considering the design of these new elementary particle probes. The standard model of the electroweak interaction is reviewed and stipulations for postulated Higgs particle, a new neutral Z particle, and a new quark and a neutral lepton searches with next generation colliders are given

  1. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  2. Perspectives on the development of next generation reactor systems safety analysis codes

    International Nuclear Information System (INIS)

    Zhang, H.

    2015-01-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  3. Perspectives on the development of next generation reactor systems safety analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H., E-mail: Hongbin.Zhang@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-07-01

    'Full text:' Existing reactor system analysis codes, such as RELAP5-3D and TRAC, have gained worldwide success in supporting reactor safety analyses, as well as design and licensing of new reactors. These codes are important assets to the nuclear engineering research community, as well as to the nuclear industry. However, most of these codes were originally developed during the 1970s', and it becomes necessary to develop next-generation reactor system analysis codes for several reasons. Firstly, as new reactor designs emerge, there are new challenges emerging in numerical simulations of reactor systems such as long lasting transients and multi-physics phenomena. These new requirements are beyond the range of applicability of the existing system analysis codes. Advanced modeling and numerical methods must be taken into consideration to improve the existing capabilities. Secondly, by developing next-generation reactor system analysis codes, the knowledge (know how) in two phase flow modeling and the highly complex constitutive models will be transferred to the young generation of nuclear engineers. And thirdly, all computer codes have limited shelf life. It becomes less and less cost-effective to maintain a legacy code, due to the fast change of computer hardware and software environment. There are several critical perspectives in terms of developing next-generation reactor system analysis codes: 1) The success of the next-generation codes must be built upon the success of the existing codes. The knowledge of the existing codes, not just simply the manuals and codes, but knowing why and how, must be transferred to the next-generation codes. The next-generation codes should encompass the capability of the existing codes. The shortcomings of existing codes should be identified, understood, and properly categorized, for example into model deficiencies or numerical method deficiencies. 2) State-of-the-art models and numerical methods must be considered to

  4. Fiscal 1998 research report. Application technology of next-generation high-density energy beams; 1998 nendo chosa hokokusho. Jisedai komitsudo energy beam riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Survey was made on application technologies of next- generation high-density energy beams. For real application of laser power, application to not exciting source of YAG crystal but machining directly is highly efficient. For generation of semiconductor laser high-power coherent beam, phase synchronization and summing are large technological walls. Short pulse, high intensity and high repeatability are also important. Since ultra-short pulse laser ends before heat transfer to the periphery, it is suitable for precise machining, in particular, ultra-fine machining. To use beam sources as tool for production process, development of transmission, focusing and control technologies, and optical fiber and device is indispensable. Applicable fields are as follows: machining (more than pico seconds), surface modification (modification and functionalization of tribo- materials and biocompatible materials), complex machining, fabrication of quantum functional structured materials (thin film, ultra-fine particle), agriculture, ultra-precise measurement, non-destructive measurement, and coherent chemistry in chemical and environment fields. (NEDO)

  5. Mobility Models for Next Generation Wireless Networks Ad Hoc, Vehicular and Mesh Networks

    CERN Document Server

    Santi, Paolo

    2012-01-01

    Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks provides the reader with an overview of mobility modelling, encompassing both theoretical and practical aspects related to the challenging mobility modelling task. It also: Provides up-to-date coverage of mobility models for next generation wireless networksOffers an in-depth discussion of the most representative mobility models for major next generation wireless network application scenarios, including WLAN/mesh networks, vehicular networks, wireless sensor networks, and

  6. Precision medicine for cancer with next-generation functional diagnostics.

    Science.gov (United States)

    Friedman, Adam A; Letai, Anthony; Fisher, David E; Flaherty, Keith T

    2015-12-01

    Precision medicine is about matching the right drugs to the right patients. Although this approach is technology agnostic, in cancer there is a tendency to make precision medicine synonymous with genomics. However, genome-based cancer therapeutic matching is limited by incomplete biological understanding of the relationship between phenotype and cancer genotype. This limitation can be addressed by functional testing of live patient tumour cells exposed to potential therapies. Recently, several 'next-generation' functional diagnostic technologies have been reported, including novel methods for tumour manipulation, molecularly precise assays of tumour responses and device-based in situ approaches; these address the limitations of the older generation of chemosensitivity tests. The promise of these new technologies suggests a future diagnostic strategy that integrates functional testing with next-generation sequencing and immunoprofiling to precisely match combination therapies to individual cancer patients.

  7. Next-generation storm tracking for minimizing service interruption

    Energy Technology Data Exchange (ETDEWEB)

    Sznaider, R. [Meteorlogix, Minneapolis, MN (United States)

    2002-08-01

    Several technological changes have taken place in the field of weather radar since its discovery during World War II. A wide variety of industries have benefited over the years from conventional weather radar displays, providing assistance in forecasting and estimating the potential severity of storms. The characteristics of individual storm cells can now be derived from the next-generation of weather radar systems (NEXRAD). The determination of which storm cells possess distinct features such as large hail or developing tornadoes was made possible through the fusing of various pieces of information with radar pictures. To exactly determine when and where a storm will hit, this data can be combined and overlaid into a display that includes the geographical physical landmarks of a specific region. Combining Geographic Information Systems (GIS) and storm tracking provides a more complete, timely and accurate forecast, which clearly benefits the electric utilities industries. The generation and production of energy are dependent on how hot or cold it will be today and tomorrow. The author described each major feature of this next-generation weather radar system. 9 figs.

  8. Educating the next generation of nature entrepreneurs

    Science.gov (United States)

    Judith C. Jobse; Loes Witteveen; Judith Santegoets; Daan van der Linde

    2015-01-01

    With this paper, it is illustrated that a focus on entrepreneurship training in the nature and wilderness sector is relevant for diverse organisations and situations. The first curricula on nature entrepreneurship are currently being developed. In this paper the authors describe a project that focusses on educating the next generation of nature entrepreneurs, reflect...

  9. The Next Generation: Students Discuss Archaeology in the 21st Century

    OpenAIRE

    Sands, Ashley; Butler, Kristin

    2010-01-01

    The Next Generation Project is a multi-agent, multi-directional cultural diplomacy effort. The need for communication among emerging archaeologists has never been greater. Increasingly, archaeological sites are impacted by military activity, destroyed through the development of dams and building projects, and torn apart through looting. The Next Generation Project works to develop communication via social networking sites online and through in-person meetings at international conferences. As ...

  10. Optical vortex generation from a diode-pumped alexandrite laser

    Science.gov (United States)

    Thomas, G. M.; Minassian, A.; Damzen, M. J.

    2018-04-01

    We present the demonstration of an optical vortex mode directly generated from a diode-pumped alexandrite slab laser, operating in the bounce geometry. This is the first demonstration of an optical vortex mode generated from an alexandrite laser or from any other vibronic laser. An output power of 2 W for a vortex mode with a ‘topological charge’ of 1 was achieved and the laser was made to oscillate with both left- and right-handed vorticity. The laser operated at two distinct wavelengths simultaneously, 755 and 759 nm, due to birefringent filtering in the alexandrite gain medium. The result offers the prospect of broadly wavelength tunable vortex generation directly from a laser.

  11. NIRS report of investigations for the development of the next generation PET apparatus. FY 2000

    International Nuclear Information System (INIS)

    2001-03-01

    This is a summary of study reports from representative technology fields for the development of the next generation PET apparatus directing to 3-D images, and is hoped to be useful for future smooth cooperation between the fields. The investigation started from April 2000 in National Institute of Radiological Sciences (NIRS) with cooperation of other facilities, universities and companies. The report involves chapters of: Detector volume and geometrical efficiency- Design criterion for the next generation PET; Scintillator for PET; An investigation of detector and front-end electronics for the next generation PET; A measurement system of depth of interaction; Detector simulator; Development of an evaluation system for PET detector; On the signal processing system for the next generation PET; List-mode data acquisition method for the next generation PET; List-mode data acquisition simulator; Image reconstruction; A Monte Carlo simulator for the next generation PET scanners; Out-of-field of view (FOV) radioactivity; and Published papers and presentations. (N.I.)

  12. The next generation of power reactors - safety characteristics

    International Nuclear Information System (INIS)

    Modro, S.M.

    1995-01-01

    The next generation of commercial nuclear power reactors is characterized by a new approach to achieving reliability of their safety systems. In contrast to current generation reactors, these designs apply passive safety features that rely on gravity-driven transfer processes or stored energy, such as gas-pressurized accumulators or electric batteries. This paper discusses the passive safety system of the AP600 and Simplified Boiling Water Reactor (SBWR) designs

  13. Next generation solar energy. From fundamentals to applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the International Conference between 12th and 14th December, 2011 in Erlangen (Federal Republic of Germany) the following lectures were presented: (1) The opto-electronic physics required to approach the Shockley-Queisser efficiency limit (E. Yablonovitch); (2) The Shockley-Queisser-limit and beyond (G.H. Bauer); (3) Designing composite nanomaterials for photovoltaic devices (B. Rech); (4) Light-Material interactions in energy conversion (H. Atwater); (5) Functional imaging of hybrid nanostructures - Visualizing mechanisms of solar energy utilization (L. Lauhon); (6) Are photosynthetic proteins suitable for PV applications (Y. Rosenwaks); (7) Detailed balance limit in photovoltaic systems (U. Rau); (8) Plasmonics and nanophotonics for next generation photovoltaics (E. Garnett); (9) Dispersion, wave propagation and efficiency analysis of nanowire solar cells (B. Witzigmann); (10) Application of nanostructures to next generation photovoltaics - Opportunities and challenges from an industrial research perspective (L. Tsakalakos); (11) Triplet states in organic and organometallic photovoltaic cells (K.S. Schanze); (12) New photoelectrode architectures (J.T. Hupp); (13) Dendrimers for optoelectronic and photovoltaic applications (P. Ceroni); (14) Photon management with luminescent materials (J. Goldschmidt); (15) Economical aspects of next generation solar cell technologies (W. Hoffmann); (16) Scalability in solar energy conversion - First-row transition metal-based chromophores for dye-sensitized solar cells (J. McCusker); (17) Designing organic materials for photovoltaic devices (A. Harriman); (18) Molecular photovoltaics - What can we learn from model studies (B. Albinsson); (19) Porphyrin-sensitised titanium dioxide solar cells (D. Officer); (20) Light-harvesting: Charge separation, and charge-transportation properties of novel materials for organic photovoltaics (H. Imahori); (21) Phthalocyanines for molecular photovoltaics (T. Torres); (22) Photophysics of

  14. Next Generation, Si-Compatible Materials and Devices in the Si-Ge-Sn System

    Science.gov (United States)

    2015-10-09

    and conclusions The work initially focused on growth of next generation Ge1-ySny alloys on Ge buffered Si wafers via UHV CVD depositions of Ge3H8...Abstract The work initially focused on growth of next generation Ge1-ySny alloys on Ge buffered Si wafers via UHV CVD depositions of Ge3H8, SnD4. The...AFRL-AFOSR-VA-TR-2016-0044 Next generation, Si -compatible materials and devices in the Si - Ge -Sn system John Kouvetakis ARIZONA STATE UNIVERSITY Final

  15. Control of the droplet generation by an infrared laser

    Directory of Open Access Journals (Sweden)

    Zhibin Wang

    2018-01-01

    Full Text Available In this work, the control of the droplet generation by a focused infrared (IR laser with a wavelength of 1550 nm was studied, in which the liquid water and the oil with the surfactant of Span 80 were employed as the disperse and continuous phases, respectively. The characteristics of the droplet generation controlled by the laser was explored under various flow rates, laser powers and spot positions and the comparison between the cases with/without the laser was also performed. The results showed that when the laser was focused on the region away from the outlet of the liquid water inflow channel, the droplet shedding was blocked due to the IR laser heating induced thermocapillary flow, leading to the increase of the droplet volume and the cycle time of the droplet generation as compared to the case without the laser. Decreasing the continuous phase flow rate led to the increase of the droplet volume, cycle time of the droplet generation and the volume increase ratio, while increasing the disperse phase flow rate led to the increase of the droplet volume and the decrease of the cycle time and volume increase ratio. For a given flow rate ratio between the continuous and disperse phases, the increase of the flow rates decreased the volume increase ratio. In addition, it is also found that the droplet volume, the cycle time and the volume increase ratio all increased with the laser power. When the laser was focused at the inlet of the downstream channel, the droplet volume, the cycle time and the volume increase ratio were the largest. Moving the laser spot to the downstream or upstream led to the decrease of them. When the laser was focused on the outlet of the liquid water inflow channel, the generated droplet volume and cycle time of the droplet generation were even lower than the case without the laser because of the lowered viscosity. This works provides a comprehensive understanding of the characteristics of the droplet generation controlled

  16. Development status of oxygen solid electrolyte sensors in HLMC in respect to monoblock reactor facilities

    International Nuclear Information System (INIS)

    Martynov, P.N.; Askhadullin, R.Sh.; Storozhenko, A.N.; Shelemet'ev, V.M.; Sadovnichij, R.P.; Ivanov, I.I.

    2014-01-01

    The results of developing sensors on the base of solid electrolytes to control oxygen in lead and lead-bismuth coolants are considered. It is found out that ceramic detecting elements on the base of solid electrolytes from oxide ceramics are able to work a long time in conditions of high temperatures and thermal shocks in molten metals (in gases). They show stable conducting and mechanical properties, thermal resistance, low gas permeability. Using considered detecting elements different sensors, including ones for monoblock reactors and facilities, are developed and manufactured. The given sensors can be used for both continuous and periodical oxygen control in heavy liquid metal coolants [ru

  17. HLA typing: Conventional techniques v.next-generation sequencing

    African Journals Online (AJOL)

    The existing techniques have contributed significantly to our current knowledge of allelic diversity. At present, sequence-based typing (SBT) methods, in particular next-generation sequencing. (NGS), provide the highest possible resolution. NGS platforms were initially only used for genomic sequencing, but also showed.

  18. Next-generation sequencing for endocrine cancers: Recent advances and challenges.

    Science.gov (United States)

    Suresh, Padmanaban S; Venkatesh, Thejaswini; Tsutsumi, Rie; Shetty, Abhishek

    2017-05-01

    Contemporary molecular biology research tools have enriched numerous areas of biomedical research that address challenging diseases, including endocrine cancers (pituitary, thyroid, parathyroid, adrenal, testicular, ovarian, and neuroendocrine cancers). These tools have placed several intriguing clues before the scientific community. Endocrine cancers pose a major challenge in health care and research despite considerable attempts by researchers to understand their etiology. Microarray analyses have provided gene signatures from many cells, tissues, and organs that can differentiate healthy states from diseased ones, and even show patterns that correlate with stages of a disease. Microarray data can also elucidate the responses of endocrine tumors to therapeutic treatments. The rapid progress in next-generation sequencing methods has overcome many of the initial challenges of these technologies, and their advantages over microarray techniques have enabled them to emerge as valuable aids for clinical research applications (prognosis, identification of drug targets, etc.). A comprehensive review describing the recent advances in next-generation sequencing methods and their application in the evaluation of endocrine and endocrine-related cancers is lacking. The main purpose of this review is to illustrate the concepts that collectively constitute our current view of the possibilities offered by next-generation sequencing technological platforms, challenges to relevant applications, and perspectives on the future of clinical genetic testing of patients with endocrine tumors. We focus on recent discoveries in the use of next-generation sequencing methods for clinical diagnosis of endocrine tumors in patients and conclude with a discussion on persisting challenges and future objectives.

  19. Facial resurfacing with a monoblock full-thickness skin graft after multiple malignant melanomas excision in xeroderma pigmentosum.

    Science.gov (United States)

    Ozmen, Selahattin; Uygur, Safak; Eryilmaz, Tolga; Ak, Betul

    2012-09-01

    Xeroderma pigmentosum is an autosomal recessive disease, characterized by vulnerability of the skin to solar radiation. Increase in sunlight-induced cancer is a direct consequence of an increase in mutated cells of the skin of patients with xeroderma pigmentosum. There is no specific technique for facial resurfacing in patients with xeroderma pigmentosum. In this article, a patient with xeroderma pigmentosum with multiple malignant melanomas on her face and radical excision of total facial skin followed by facial resurfacing with monoblock full-thickness skin graft from the abdomen is presented.

  20. The next generation CANDU 6

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    1999-01-01

    AECL's product line of CANDU 6 and CANDU 9 nuclear power plants are adapted to respond to changing market conditions, experience feedback and technological development by a continuous improvement process of design evolution. The CANDU 6 Nuclear Power Plant design is a successful family of nuclear units, with the first four units entering service in 1983, and the most recent entering service this year. A further four CANDU 6 units are under construction. Starting in 1996, a focused forward-looking development program is under way at AECL to incorporate a series of individual improvements and integrate them into the CANDU 6, leading to the evolutionary development of the next-generation enhanced CANDU 6. The CANDU 6 improvements program includes all aspects of an NPP project, including engineering tools improvements, design for improved constructability, scheduling for faster, more streamlined commissioning, and improved operating performance. This enhanced CANDU 6 product will combine the benefits of design provenness (drawing on the more than 70 reactor-years experience of the seven operating CANDU 6 units), with the advantages of an evolutionary next-generation design. Features of the enhanced CANDU 6 design include: Advanced Human Machine Interface - built around the Advanced CANDU Control Centre; Advanced fuel design - using the newly demonstrated CANFLEX fuel bundle; Improved Efficiency based on improved utilization of waste heat; Streamlined System Design - including simplifications to improve performance and safety system reliability; Advanced Engineering Tools, -- featuring linked electronic databases from 3D CADDS, equipment specification and material management; Advanced Construction Techniques - based on open top equipment installation and the use of small skid mounted modules; Options defined for Passive Heat Sink capability and low-enrichment core optimization. (author)

  1. Bioinformatics for Next Generation Sequencing Data

    Directory of Open Access Journals (Sweden)

    Alberto Magi

    2010-09-01

    Full Text Available The emergence of next-generation sequencing (NGS platforms imposes increasing demands on statistical methods and bioinformatic tools for the analysis and the management of the huge amounts of data generated by these technologies. Even at the early stages of their commercial availability, a large number of softwares already exist for analyzing NGS data. These tools can be fit into many general categories including alignment of sequence reads to a reference, base-calling and/or polymorphism detection, de novo assembly from paired or unpaired reads, structural variant detection and genome browsing. This manuscript aims to guide readers in the choice of the available computational tools that can be used to face the several steps of the data analysis workflow.

  2. Introductory study of super survey (next generation underground exploration technology); Super survey (jisedai chika tansa gijutsu) no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    An investigational study was conducted on the R and D trend of innovative technology aiming at high-accuracy/high-efficiency next generation underground exploration technology (super survey technology). Paying attention to the seismic survey and electromagnetic survey, the study was made on technical characteristics, the utilization status and the needs at sites, the R and D trend, etc. As to the present R and D, the development is proceeded with of the time domain method in the electromagnetic survey, the effective quantity data processing/analysis method and the indication method using the reflection method in the elastic survey. As new technology to be noticed, the following are cited: SQUID magnetometer, underground analysis using magnetic deviation data, electromagnetic migration, ACROSS, rotating seismometer, laser Doppler vibrator, etc. Concerning the course of the next generation underground survey technology, a system of the integrated underground exploration theory is considered which is based on a combination of the electromagnetic survey and seismic exploration. In the study, a plan is worked out for research/development of a technology of analyzing the different data obtained. 49 figs., 13 tabs.

  3. Next Generation HeliMag UXO Mapping Technology

    Science.gov (United States)

    2010-01-01

    Ancillary instrumentation records aircraft height above ground and attitude. A fluxgate magnetometer is used to allow for aeromagnetic compensation of... Magnetometer System WWII World War II WAA wide area assessment ACKNOWLEDGEMENTS This Next Generation HeliMag Unexploded Ordnance (UXO) Mapping...for deployment of seven total-field magnetometers on a Kevlar reinforced boom mounted on a Bell 206L helicopter. The objectives of this

  4. Application of Next Generation Sequencing on Genetic Testing

    DEFF Research Database (Denmark)

    Li, Jian

    The discovery of genetic factors behind increasing number of human diseases and the growth of education of genetic knowledge to the public make demands for genetic testing increase rapidly. However, traditional genetic testing methods cannot meet all kinds of the requirements. Next generation seq...

  5. HLA typing: Conventional techniques v. next-generation sequencing ...

    African Journals Online (AJOL)

    Background. The large number of population-specific polymorphisms present in the HLA complex in the South African (SA) population reduces the probability of finding an adequate HLA-matched donor for individuals in need of an unrelated haematopoietic stem cell transplantation (HSCT). Next-generation sequencing ...

  6. NGSS and the Next Generation of Science Teachers

    Science.gov (United States)

    Bybee, Rodger W.

    2014-01-01

    This article centers on the "Next Generation Science Standards" (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts--interconnecting science and engineering…

  7. The Next Generation Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Dennis Thomas; /Stanford U., Appl. Phys. Dept.

    2005-09-12

    This dissertation will elucidate the design, construction, theory, and operation of the Next Generation Photoinjector (NGP). This photoinjector is comprised of the BNL/SLAC/UCLA 1.6 cell symmetrized S-band photocathode radio frequency (rf) electron gun and a single emittance-compensation solenoidal magnet. This photoinjector is a prototype for the Linear Coherent Light Source X-ray Free Electron Laser operating in the 1.5 {angstrom} range. Simulations indicate that this photoinjector is capable of producing a 1nC electron bunch with transverse normalized emittance less than 1 {pi} mm mrad were the cathode is illuminated with a 10 psec longitudinal flat top pulse. Using a Gaussian longitudinal laser profile with a full width half maximum (FWHM) of 10 psec, simulation indicates that the NGP is capable of producing a normalized rms emittance of 2.50 {pi} mm mrad at 1 nC. Using the removable cathode plate we have studied the quantum efficiency (QE) of both copper and magnesium photo-cathodes. The Cu QE was found to be 4.5 x 10{sup -5} with a 25% variation in the QE across the emitting surface of the cathode, while supporting a field gradient of 125 MV/m. At low charge, the transverse normalized rms emittance, {epsilon}{sub n,rms}, produced by the NGP is {epsilon}{sub n,rms} = 1.2 {pi} mm mrad for Q{sub T} = 0.3 nC. The 95% electron beam bunch length was measured to 10.9 psec. The emittance due to the finite magnetic field at the cathode has been studied. The scaling of this magnetic emittance term as a function of cathode magnetic field was found to be 0.01 {pi} mm mrad per Gauss. The 1.6 cell rf gun has been designed to reduce the dipole field asymmetry of the longitudinal accelerating field. Low level rf measurements show that this has in fact been accomplished, with an order of magnitude decrease in the dipole field. High power beam studies also show that the dipole field has been decreased. An upper limit of the intrinsic non-reducible thermal emittance of a

  8. Next-generation sequencing offers new insights into DNA degradation

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Orlando, Ludovic Antoine Alexandre; Willerslev, Eske

    2012-01-01

    The processes underlying DNA degradation are central to various disciplines, including cancer research, forensics and archaeology. The sequencing of ancient DNA molecules on next-generation sequencing platforms provides direct measurements of cytosine deamination, depurination and fragmentation...... rates that previously were obtained only from extrapolations of results from in vitro kinetic experiments performed over short timescales. For example, recent next-generation sequencing of ancient DNA reveals purine bases as one of the main targets of postmortem hydrolytic damage, through base...... elimination and strand breakage. It also shows substantially increased rates of DNA base-loss at guanosine. In this review, we argue that the latter results from an electron resonance structure unique to guanosine rather than adenosine having an extra resonance structure over guanosine as previously suggested....

  9. NOAA Next Generation Radar (NEXRAD) Level 2 Base Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Level II weather radar data collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska, Hawaii,...

  10. 76 FR 77939 - Proposed Provision of Navigation Services for the Next Generation Air Transportation System...

    Science.gov (United States)

    2011-12-15

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 91, 121, 125, 129, and 135 Proposed Provision of Navigation Services for the Next Generation Air Transportation System (Next...) navigation infrastructure to enable performance-based navigation (PBN) as part of the Next Generation Air...

  11. Gamma beams generation with high intensity lasers for two photon Breit-Wheeler pair production

    Science.gov (United States)

    D'Humieres, Emmanuel; Ribeyre, Xavier; Jansen, Oliver; Esnault, Leo; Jequier, Sophie; Dubois, Jean-Luc; Hulin, Sebastien; Tikhonchuk, Vladimir; Arefiev, Alex; Toncian, Toma; Sentoku, Yasuhiko

    2017-10-01

    Linear Breit-Wheeler pair creation is the lowest threshold process in photon-photon interaction, controlling the energy release in Gamma Ray Bursts and Active Galactic Nuclei, but it has never been directly observed in the laboratory. Using numerical simulations, we demonstrate the possibility to produce collimated gamma beams with high energy conversion efficiency using high intensity lasers and innovative targets. When two of these beams collide at particular angles, our analytical calculations demonstrate a beaming effect easing the detection of the pairs in the laboratory. This effect has been confirmed in photon collision simulations using a recently developed innovative algorithm. An alternative scheme using Bremsstrahlung radiation produced by next generation high repetition rate laser systems is also being explored and the results of first optimization campaigns in this regime will be presented.

  12. Laser-generated magnetic fields in quasi-hohlraum geometries

    Science.gov (United States)

    Pollock, Bradley; Turnbull, David; Ross, Steven; Hazi, Andrew; Ralph, Joseph; Lepape, Sebastian; Froula, Dustin; Haberberger, Dan; Moody, John

    2014-10-01

    Laser-generated magnetic fields of 10--40 T have been produced with 100--4000 J laser drives at Omega EP and Titan. The fields are generated using the technique described by Daido et al. [Phys. Rev. Lett. 56, 846 (1986)], which works by directing a laser through a hole in one plate to strike a second plate. Hot electrons generated in the laser-produced plasma on the second plate collect on the first plate. A strap connects the two plates allowing a current of 10 s of kA to flow and generate a solenoidal magnetic field. The magnetic field is characterized using Faraday rotation, b-dot probes, and proton radiography. Further experiments to study the effect of the magnetic field on hohlraum performance are currently scheduled for Omega. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA-27344.

  13. Cloud Sourcing – Next Generation Outsourcing?

    OpenAIRE

    Muhic, Mirella; Johansson, Björn

    2014-01-01

    Although Cloud Sourcing has been around for some time it could be questioned what actually is known about it. This paper presents a literature review on the specific question if Cloud Sourcing could be seen as the next generation of outsourcing. The reason for doing this is that from an initial sourcing study we found that the sourcing decisions seems to go in the direction of outsourcing as a service which could be described as Cloud Sourcing. Whereas some are convinced that Cloud Sourcing r...

  14. Securing Networks from Modern Threats using Next Generation Firewalls

    OpenAIRE

    Delgiusto, Valter

    2016-01-01

    Classic firewalls have long been unable to cope with modern threats that ordinary Internet users are exposed to. This thesis discusses their successors - the next-generation firewalls. The first part of the thesis describes modern threats and attacks. We described in detail the DoS and APT attacks, which are among the most frequent and which may cause most damage to the system under attack. Then we explained the theoretical basics of firewalls and described the functionalities of next gen...

  15. Next generation of energy production systems

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Carre, F.

    2003-01-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources

  16. Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields

    Science.gov (United States)

    Yao, Jinping; Chu, Wei; Liu, Zhaoxiang; Xu, Bo; Chen, Jinming; Cheng, Ya

    2018-03-01

    Atmospheric lasing has aroused much interest in the past few years. The ‘air–laser’ opens promising potential for remote chemical sensing of trace gases with high sensitivity and specificity. At present, several approaches have been successfully implemented for generating highly coherent laser beams in atmospheric condition, including both amplified-spontaneous emission, and narrow-bandwidth stimulated emission in the forward direction in the presence of self-generated or externally injected seed pulses. Here, we report on generation of multiple-wavelength Raman lasers from nitrogen molecular ions ({{{N}}}2+), driven by intense mid-infrared laser fields. Intuitively, the approach appears problematic for the small nonlinear susceptibility of {{{N}}}2+ ions, whereas the efficiency of Raman laser can be significantly promoted in near-resonant condition. More surprisingly, a Raman laser consisting of a supercontinuum spanning from ∼310 to ∼392 nm has been observed resulting from a series near-resonant nonlinear processes including four-wave mixing, stimulated Raman scattering and cross phase modulation. To date, extreme nonlinear optics in molecular ions remains largely unexplored, which provides an alternative means for air–laser-based remote sensing applications.

  17. Application of laser-based profilometry to tubing in power generating utilities

    Science.gov (United States)

    Doyle, James L.

    1995-05-01

    Over the past several years lasers have been employed in an ever widening number of applications in an incredibly diverse set of markets. In the area of nondestructive testing, however, laser-based systems have only recently made inroads into the commercial markets. About ten years ago QUEST Integrated, Inc., began working with the U.S. Navy to adapt the principal of laser triangulation to solve a serious maintenance related problem. The internal surfaces of marine boiler tubes were experiencing pitting and corrosion which had resulted in catastrophic shipboard failures. At that time, conventional visual methods only allowed operators to inspect the first eighteen inches of the tube using a rigid borescope. If any pits were located, a mechanical stylus mechanism was used to obtain an approximate depth measurement of the pit. The condition of the balance of the tube was then extrapolated based on this extremely limited amount of information. Often the worst pitting was found in the bends of the tube, which could not be inspected by the visual method. Finally, a catastrophic boiler failure on an aircraft carrier resulted in the initiation of a search by the U.S. Navy for a better solution. Quest was contracted to develop an articulated probe which could negotiate the full length of a boiler tube with multiple bends, and generate a complete digital map of the inside surface. A key requirement of this probe would be rapid and quantitative measurement of internal features such as ID pits and corrosion. In 1987 QUEST delivered the first laser- optic tube inspection system to the U.S. Navy for use in marine boiler tubes. The Laser Optic Tube Inspection System (LOTISTM) was immediately put to use and paid for itself many times over in reduced maintenance costs. Over the next six years several generations of LOTIS were developed for the U.S. Navy, each one providing more capabilities, improved inspection speeds, and more user friendly operator interface. Today, LOTIS is

  18. A Study on non-contact measurements of laser-generated lamb waves

    International Nuclear Information System (INIS)

    Jang, Tae Seong; Lee, Jung Ju; Lee, Seung Seok

    2002-01-01

    Generation and detection of Lamb waves offer an effective non-destructive testing technique that will detect defects quickly and reliably. Lamb waves are generated in a thin plate by Q-switched Nd:YAG pulsed laser. Symmetric and antisymmetric Lamb modes in low-frequency-thickness regime are excited by illuminating a thin plate with an array of laser-generated line sources. The propagation of laser-generated Lamb waves is detected by measuring the out-of-plane displacements in a non-contact manner using the fiber optic Sagnac interferometer and all commercial adaptive reference-beam interferometer. The characteristics of laser-generated Lamb wave due to its frequency are investigated. Fundamental understanding of laser-generated Lamb modes is presented.

  19. Novel nanostructures for next generation dye-sensitized solar cells

    KAUST Repository

    Té treault, Nicolas; Grä tzel, Michael

    2012-01-01

    Herein, we review our latest advancements in nanostructured photoanodes for next generation photovoltaics in general and dye-sensitized solar cells in particular. Bottom-up self-assembly techniques are developed to fabricate large-area 3D

  20. Next generation HOM-damping

    Science.gov (United States)

    Marhauser, Frank

    2017-06-01

    Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it

  1. Preparing the Next Generation of Educators for Democracy

    Science.gov (United States)

    Embry-Jenlink, Karen

    2018-01-01

    In the keynote address of the 42nd annual meeting of the Southeastern Regional Educators Association (SRATE), ATE President Karen Embry-Jenlink examines the critical role of teacher educators in preparing the next generation of citizens and leaders to sustain democracy. Drawing from historic and current events and personal experience,…

  2. Next Generation Science Standards: All Standards, All Students

    Science.gov (United States)

    Lee, Okhee; Miller, Emily C.; Januszyk, Rita

    2014-01-01

    The Next Generation Science Standards (NGSS) offer a vision of science teaching and learning that presents both learning opportunities and demands for all students, particularly student groups that have traditionally been underserved in science classrooms. The NGSS have addressed issues of diversity and equity from their inception, and the NGSS…

  3. Start-to-end simulation of x-ray radiation of a next generation light source using the real number of electrons

    Directory of Open Access Journals (Sweden)

    J. Qiang

    2014-03-01

    Full Text Available In this paper we report on start-to-end simulation of a next generation light source based on a high repetition rate free electron laser (FEL driven by a CW superconducting linac. The simulation integrated the entire system in a seamless start-to-end model, including birth of photoelectrons, transport of electron beam through 600 m of the accelerator beam delivery system, and generation of coherent x-ray radiation in a two-stage self-seeding undulator beam line. The entire simulation used the real number of electrons (∼2 billion electrons/bunch to capture the details of the physical shot noise without resorting to artificial filtering to suppress numerical noise. The simulation results shed light on several issues including the importance of space-charge effects near the laser heater and the reliability of x-ray radiation power predictions when using a smaller number of simulation particles. The results show that the microbunching instability in the linac can be controlled with 15 keV uncorrelated energy spread induced by a laser heater and demonstrate that high brightness and flux 1 nm x-ray radiation (∼10^{12}  photons/pulse with fully spatial and temporal coherence is achievable.

  4. Next generation advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Turgut, M. H.

    2009-01-01

    Growing energy demand by technological developments and the increase of the world population and gradually diminishing energy resources made nuclear power an indispensable option. The renewable energy sources like solar, wind and geothermal may be suited to meet some local needs. Environment friendly nuclear energy which is a suitable solution to large scale demands tends to develop highly economical, advanced next generation reactors by incorporating technological developments and years of operating experience. The enhancement of safety and reliability, facilitation of maintainability, impeccable compatibility with the environment are the goals of the new generation reactors. The protection of the investment and property is considered as well as the protection of the environment and mankind. They became economically attractive compared to fossil-fired units by the use of standard designs, replacing some active systems by passive, reducing construction time and increasing the operation lifetime. The evolutionary designs were introduced at first by ameliorating the conventional plants, than revolutionary systems which are denoted as generation IV were verged to meet future needs. The investigations on the advanced, proliferation resistant fuel cycle technologies were initiated to minimize the radioactive waste burden by using new generation fast reactors and ADS transmuters.

  5. Next-Generation Sequencing in the Mycology Lab.

    Science.gov (United States)

    Zoll, Jan; Snelders, Eveline; Verweij, Paul E; Melchers, Willem J G

    New state-of-the-art techniques in sequencing offer valuable tools in both detection of mycobiota and in understanding of the molecular mechanisms of resistance against antifungal compounds and virulence. Introduction of new sequencing platform with enhanced capacity and a reduction in costs for sequence analysis provides a potential powerful tool in mycological diagnosis and research. In this review, we summarize the applications of next-generation sequencing techniques in mycology.

  6. Fiber to the home: next generation network

    Science.gov (United States)

    Yang, Chengxin; Guo, Baoping

    2006-07-01

    Next generation networks capable of carrying converged telephone, television (TV), very high-speed internet, and very high-speed bi-directional data services (like video-on-demand (VOD), Game etc.) strategy for Fiber To The Home (FTTH) is presented. The potential market is analyzed. The barriers and some proper strategy are also discussed. Several technical problems like various powering methods, optical fiber cables, and different network architecture are discussed too.

  7. Next generation multi-particle event generators for the MSSM

    International Nuclear Information System (INIS)

    Reuter, J.; Kilian, W.; Hagiwara, K.; Krauss, F.; Schumann, S.; Rainwater, D.

    2005-12-01

    We present a next generation of multi-particle Monte Carlo (MC) Event generators for LHC and ILC for the MSSM, namely the three program packages Madgraph/MadEvent, WHiZard/O'Mega and Sherpa/Amegic++. The interesting but difficult phenomenology of supersymmetric models at the upcoming colliders demands a corresponding complexity and maturity from simulation tools. This includes multi-particle final states, reducible and irreducible backgrounds, spin correlations, real emission of photons and gluons, etc., which are incorporated in the programs presented here. The framework of a model with such a huge particle content and as complicated as the MSSM makes strenuous tests and comparison of codes inevitable. Various tests show agreement among the three different programs; the tables of cross sections produced in these tests may serve as a future reference for other codes. Furthermore, first MSSM physics analyses performed with these programs are presented here. (orig.)

  8. Next-Generation Thermal Infrared Multi-Body Radiometer Experiment (TIMBRE)

    Science.gov (United States)

    Kenyon, M.; Mariani, G.; Johnson, B.; Brageot, E.; Hayne, P.

    2016-10-01

    We have developed an instrument concept called TIMBRE which belongs to the important class of instruments called thermal imaging radiometers (TIRs). TIMBRE is the next-generation TIR with unparalleled performance compared to the state-of-the-art.

  9. Next generation ATCA control infrastructure for the CMS Phase-2 upgrades

    CERN Document Server

    Smith, Wesley; Svetek, Aleš; Tikalsky, Jes; Fobes, Robert; Dasu, Sridhara; Smith, Wesley; Vicente, Marcelo

    2017-01-01

    A next generation control infrastructure to be used in Advanced TCA (ATCA) blades at CMS experiment is being designed and tested. Several ATCA systems are being prepared for the High-Luminosity LHC (HL-LHC) and will be installed at CMS during technical stops. The next generation control infrastructure will provide all the necessary hardware, firmware and software required in these systems, decreasing development time and increasing flexibility. The complete infrastructure includes an Intelligent Platform Management Controller (IPMC), a Module Management Controller (MMC) and an Embedded Linux Mezzanine (ELM) processing card.

  10. What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research

    OpenAIRE

    Bräutigam, Andrea; Gowik, Udo

    2010-01-01

    Next generation sequencing (NGS) technologies have opened fascinating opportunities for the analysis of plants with and without a sequenced genome on a genomic scale. During the last few years, NGS methods have become widely available and cost effective. They can be applied to a wide variety of biological questions, from the sequencing of complete eukaryotic genomes and transcriptomes, to the genome-scale analysis of DNA-protein interactions. In this review, we focus on the use of NGS for pla...

  11. Targeted enrichment strategies for next-generation plant biology

    Science.gov (United States)

    Richard Cronn; Brian J. Knaus; Aaron Liston; Peter J. Maughan; Matthew Parks; John V. Syring; Joshua. Udall

    2012-01-01

    The dramatic advances offered by modem DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome...

  12. Next Generation Science Standards: Adoption and Implementation Workbook

    Science.gov (United States)

    Peltzman, Alissa; Rodriguez, Nick

    2013-01-01

    The Next Generation Science Standards (NGSS) represent the culmination of years of collaboration and effort by states, science educators and experts from across the United States. Based on the National Research Council's "A Framework for K-12 Science Education" and developed in partnership with 26 lead states, the NGSS, when…

  13. Framework for Leading Next Generation Science Standards Implementation

    Science.gov (United States)

    Stiles, Katherine; Mundry, Susan; DiRanna, Kathy

    2017-01-01

    In response to the need to develop leaders to guide the implementation of the Next Generation Science Standards (NGSS), the Carnegie Corporation of New York provided funding to WestEd to develop a framework that defines the leadership knowledge and actions needed to effectively implement the NGSS. The development of the framework entailed…

  14. Mobility management techniques for the next-generation wireless networks

    Science.gov (United States)

    Sun, Junzhao; Howie, Douglas P.; Sauvola, Jaakko J.

    2001-10-01

    The tremendous demands from social market are pushing the booming development of mobile communications faster than ever before, leading to plenty of new advanced techniques emerging. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Mobility management is an important issue in the area of mobile communications, which can be best solved at the network layer. One of the key features of the next generation wireless networks is all-IP infrastructure. This paper discusses the mobility management schemes for the next generation mobile networks through extending IP's functions with mobility support. A global hierarchical framework model for the mobility management of wireless networks is presented, in which the mobility management is divided into two complementary tasks: macro mobility and micro mobility. As the macro mobility solution, a basic principle of Mobile IP is introduced, together with the optimal schemes and the advances in IPv6. The disadvantages of the Mobile IP on solving the micro mobility problem are analyzed, on the basis of which three main proposals are discussed as the micro mobility solutions for mobile communications, including Hierarchical Mobile IP (HMIP), Cellular IP, and Handoff-Aware Wireless Access Internet Infrastructure (HAWAII). A unified model is also described in which the different micro mobility solutions can coexist simultaneously in mobile networks.

  15. Designing Next Generation Massively Multithreaded Architectures for Irregular Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tumeo, Antonino; Secchi, Simone; Villa, Oreste

    2012-08-31

    Irregular applications, such as data mining or graph-based computations, show unpredictable memory/network access patterns and control structures. Massively multi-threaded architectures with large node count, like the Cray XMT, have been shown to address their requirements better than commodity clusters. In this paper we present the approaches that we are currently pursuing to design future generations of these architectures. First, we introduce the Cray XMT and compare it to other multithreaded architectures. We then propose an evolution of the architecture, integrating multiple cores per node and next generation network interconnect. We advocate the use of hardware support for remote memory reference aggregation to optimize network utilization. For this evaluation we developed a highly parallel, custom simulation infrastructure for multi-threaded systems. Our simulator executes unmodified XMT binaries with very large datasets, capturing effects due to contention and hot-spotting, while predicting execution times with greater than 90% accuracy. We also discuss the FPGA prototyping approach that we are employing to study efficient support for irregular applications in next generation manycore processors.

  16. Next Generation Summer School

    Science.gov (United States)

    Eugenia, Marcu

    2013-04-01

    On 21.06.2010 the "Next Generation" Summer School has opened the doors for its first students. They were introduced in the astronomy world by astronomical observations, astronomy and radio-astronomy lectures, laboratory projects meant to initiate them into modern radio astronomy and radio communications. The didactic programme was structure as fallowing: 1) Astronomical elements from the visible spectrum (lectures + practical projects) 2) Radio astronomy elements (lectures + practical projects) 3) Radio communication base (didactic- recreative games) The students and professors accommodation was at the Agroturistic Pension "Popasul Iancului" situated at 800m from the Marisel Observatory. First day (summer solstice day) began with a practical activity: determination of the meridian by measurements of the shadow (the direction of one vertical alignment, when it has the smallest length). The experiment is very instructive and interesting because combines notions of physics, spatial geometry and basic astronomy elements. Next day the activities took place in four stages: the students processed the experimental data obtained on first day (on sheets of millimetre paper they represented the length of the shadow alignments according the time), each team realised its own sun quadrant, point were given considering the design and functionality of these quadrant, the four teams had to mimic important constellations on carton boards with phosphorescent sticky stars and the students, accompanied by the professors took a hiking trip to the surroundings, marking the interest point coordinates, using a GPS to establish the geographical coronations and at the end of the day the students realised a small map of central Marisel area based on the GPS data. On the third day, the students were introduced to basic notions of radio astronomy, the principal categories of artificial Earth satellites: low orbit satellites (LEO), Medium orbit satellites (MEO) and geostationary satellites (GEO

  17. Generation of nanoparticles of bronze and brass by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Sukhov, I.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A., E-mail: Shafeev@kapella.gpi.ru [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Voronov, V.V. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Sygletou, M. [Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece); Department of Physics, University of Crete, Vassilika Vouton, GR-711 10, Heraklion (Greece); Stratakis, E.; Fotakis, C. [Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece)

    2014-05-01

    Nanoparticles of brass and bronze are generated by ablation of corresponding bulk targets in liquid ethanol. The experiments were performed using three pulsed lasers with different pulse duration: ytterbium fiber laser (80 ns), a Neodymium:YAG laser (10 ps), and femtosecond Ti:sapphire laser (200 fs). The generated nanoparticles (NPs) are characterized by UV–vis absorption spectroscopy, X-ray diffractometry, Raman scattering, and Transmission Electron Microscopy. The size of generated NPs lies in the range 10–25 nm depending on the laser source. The X-ray diffractometry reveals the change of phase composition of brass NPs compared to the initial target in case of ablation with 80 ns laser source, while with 10 ps laser pulses this effect is less pronounced. Brass NPs generated with pico- and femtosecond laser radiation show the plasmon resonance in the vicinity of 560 nm and no plasmon peak for NPs generated with longer laser pulses. Raman analysis shows the presence of Cu{sub 2}O in generated NPs. The stability of generated NPs of both brass and bronze to oxidation is compared to that of Cu NPs generated in similar experimental conditions.

  18. Next-generation batteries and fuel cells for commercial, military, and space applications

    CERN Document Server

    Jha, A R

    2012-01-01

    Distilling complex theoretical physical concepts into an understandable technical framework, Next-Generation Batteries and Fuel Cells for Commercial, Military, and Space Applications describes primary and secondary (rechargeable) batteries for various commercial, military, spacecraft, and satellite applications for covert communications, surveillance, and reconnaissance missions. It emphasizes the cost, reliability, longevity, and safety of the next generation of high-capacity batteries for applications where high energy density, minimum weight and size, and reliability in harsh conditions are

  19. Study of electrons distribution produced by laser-plasma interaction on x-ray generation

    International Nuclear Information System (INIS)

    Nikzad, L.; Sadighi-Bonabi, R.

    2010-01-01

    samples and thicknesses. The next-generation compact laser-based sources of energetic high-quality electrons and x-ray radiation can provide more effective technique for various applications in physics, chemistry, biology and medicine.

  20. Residual stress control and design of next-generation ultra-hard gear steels

    Science.gov (United States)

    Qian, Yana

    In high power density transmission systems, Ni-Co secondary hardening steels have shown great potential for next-generation gear applications due to their excellent strength, toughness and superior fatigue performance. Study of residual stress generation and evolution in Ferrium C61 and C67 gear steels revealed that shot peening and laser peening processes effectively produce desired beneficial residual stress in the steels for enhanced fatigue performance. Surface residual stress levels of -1.4GPa and -1.5GPa were achieved in shot peened C61 and laser peened C67, respectively, without introducing large surface roughness or defects. Higher compressive residual stress is expected in C67 according to a demonstrated correlation between attainable residual stress and material hardness. Due to the lack of appropriate shot media, dual laser peening is proposed for future peening optimization in C67. A novel non-destructive synchrotron radiation technique was implemented and applied for the first time for residual stress distribution analysis in gear steels with large composition and property gradients. Observed substantial residual stress redistribution and material microstructure change during the rolling contact fatigue screening test with extremely high 5.4GPa load indicates the unsuitability of the test as a fatigue life predictor. To exploit benefits of higher case hardness and associated residual stress, a new material and process (CryoForm70) aiming at 70Rc surface hardness was designed utilizing the systems approach based on thermodynamics and secondary hardening mechanisms. The composition design was first validated by the excellent agreement between experimental and theoretical core martensite start temperature in the prototype. A novel cryogenic deformation process was concurrently designed to increase the case martensite volume fraction from 76% to 92% for enhanced strengthening efficiency and surface hardness. High temperature vacuum carburizing was

  1. Coherent laser beam combining

    CERN Document Server

    Brignon, Arnaud

    2013-01-01

    Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme

  2. Convergence of wireless, wireline, and photonics next generation networks

    CERN Document Server

    Iniewski, Krzysztof

    2010-01-01

    Filled with illustrations and practical examples from industry, this book provides a brief but comprehensive introduction to the next-generation wireless networks that will soon replace more traditional wired technologies. Written by a mixture of top industrial experts and key academic professors, it is the only book available that covers both wireless networks (such as wireless local area and personal area networks) and optical networks (such as long-haul and metropolitan networks) in one volume. It gives engineers and engineering students the necessary knowledge to meet challenges of next-ge

  3. Efficient Cryptography for the Next Generation Secure Cloud

    Science.gov (United States)

    Kupcu, Alptekin

    2010-01-01

    Peer-to-peer (P2P) systems, and client-server type storage and computation outsourcing constitute some of the major applications that the next generation cloud schemes will address. Since these applications are just emerging, it is the perfect time to design them with security and privacy in mind. Furthermore, considering the high-churn…

  4. The renaissance and bright future of fibre lasers

    International Nuclear Information System (INIS)

    Tuennermann, A; Schreiber, T; Roeser, F; Liem, A; Hoefer, S; Zellmer, H; Nolte, S; Limpert, J

    2005-01-01

    The first rare-earth-doped fibre lasers were operated in the early 1960s and produced a few milliwatts at a wavelength around 1 μm. For the next several decades, fibre lasers were little more than a low-power laboratory curiosity. Recently, however, fibre lasers have entered the realm of kilowatt powers with diffraction-limited beam quality. In this paper we review the reasons for this power evolution. Beyond this, we will discuss how the next generation of fibres, so-called photonic crystal fibres, enable upward power scaling and therefore open up the avenue to new performance levels of solid-state lasers

  5. Statistical Approaches for Next-Generation Sequencing Data

    OpenAIRE

    Qiao, Dandi

    2012-01-01

    During the last two decades, genotyping technology has advanced rapidly, which enabled the tremendous success of genome-wide association studies (GWAS) in the search of disease susceptibility loci (DSLs). However, only a small fraction of the overall predicted heritability can be explained by the DSLs discovered. One possible explanation for this ”missing heritability” phenomenon is that many causal variants are rare. The recent development of high-throughput next-generation sequencing (NGS) ...

  6. Architectural and Algorithmic Requirements for a Next-Generation System Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Mousseau

    2010-05-01

    This document presents high-level architectural and system requirements for a next-generation system analysis code (NGSAC) to support reactor safety decision-making by plant operators and others, especially in the context of light water reactor plant life extension. The capabilities of NGSAC will be different from those of current-generation codes, not only because computers have evolved significantly in the generations since the current paradigm was first implemented, but because the decision-making processes that need the support of next-generation codes are very different from the decision-making processes that drove the licensing and design of the current fleet of commercial nuclear power reactors. The implications of these newer decision-making processes for NGSAC requirements are discussed, and resulting top-level goals for the NGSAC are formulated. From these goals, the general architectural and system requirements for the NGSAC are derived.

  7. Designing Next Generation Telecom Regulation

    DEFF Research Database (Denmark)

    Henten, Anders; Samarajiva, Rohan

    – ICT convergence regulation and multisector utility regulation. Whatever structure of next generation telecom regulation is adopted, all countries will need to pay much greater attention to the need for increased coordination of policy directions and regulatory activities both across the industries......Continuously expanding applications of information and communication technologies (ICT) are transforming local, national, regional and international economies into network economies, the foundation for information societies. They are being built upon expanded and upgraded national telecom networks...... to creating an environment to foster a massive expansion in the coverage and capabilities of the information infrastructure networks, with national telecom regulators as the key implementers of the policies of reform. The first phase of reform has focused on industry specific telecom policy and regulation...

  8. ERP II: Next-generation Extended Enterprise Resource Planning

    DEFF Research Database (Denmark)

    Møller, Charles

    2004-01-01

    ERP II (ERP/2) systems is a new concept introduced by Gartner Group in 2000 in order to label the latest extensions of the ERP-systems. The purpose of this paper is to explore the next-generation of ERP systems, the Extended Enterprise Resource Planning (EERP or as we prefer to use: e...... impact on extended enterprise architecture.....

  9. ERP II - Next-generation Extended Enterprise Resource Planning

    DEFF Research Database (Denmark)

    Møller, Charles

    2003-01-01

    ERP II (ERP/2) systems is a new concept introduced by Gartner Group in 2000 in order to label the latest extensions of the ERP-systems. The purpose of this paper is to explore the next-generation of ERP systems, the Extended Enterprise Resource Planning (EERP or as we prefer to use: e...... impact on extended enterprise architecture....

  10. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  11. Environmental Information for the U.S. Next Generation Air Transportation System (NextGen)

    Science.gov (United States)

    Murray, J.; Miner, C.; Pace, D.; Minnis, P.; Mecikalski, J.; Feltz, W.; Johnson, D.; Iskendarian, H.; Haynes, J.

    2009-09-01

    It is estimated that weather is responsible for approximately 70% of all air traffic delays and cancellations in the United States. Annually, this produces an overall economic loss of nearly 40B. The FAA and NASA have determined that weather impacts and other environmental constraints on the U.S. National Airspace System (NAS) will increase to the point of system unsustainability unless the NAS is radically transformed. A Next Generation Air Transportation System (NextGen) is planned to accommodate the anticipated demand for increased system capacity and the super-density operations that this transformation will entail. The heart of the environmental information component that is being developed for NextGen will be a 4-dimensional data cube which will include a single authoritative source comprising probabilistic weather information for NextGen Air Traffic Management (ATM) systems. Aviation weather constraints and safety hazards typically comprise meso-scale, storm-scale and microscale observables that can significantly impact both terminal and enroute aviation operations. With these operational impacts in mind, functional and performance requirements for the NextGen weather system were established which require significant improvements in observation and forecasting capabilities. This will include satellite observations from geostationary and/or polar-orbiting hyperspectral sounders, multi-spectral imagers, lightning mappers, space weather monitors and other environmental observing systems. It will also require improved in situ and remotely sensed observations from ground-based and airborne systems. These observations will be used to better understand and to develop forecasting applications for convective weather, in-flight icing, turbulence, ceilings and visibility, volcanic ash, space weather and the environmental impacts of aviation. Cutting-edge collaborative research efforts and results from NASA, NOAA and the FAA which address these phenomena are summarized

  12. The contribution of next generation sequencing to epilepsy genetics

    DEFF Research Database (Denmark)

    Møller, Rikke S.; Dahl, Hans A.; Helbig, Ingo

    2015-01-01

    During the last decade, next generation sequencing technologies such as targeted gene panels, whole exome sequencing and whole genome sequencing have led to an explosion of gene identifications in monogenic epilepsies including both familial epilepsies and severe epilepsies, often referred to as ...

  13. Converged Wireless Networking and Optimization for Next Generation Services

    Directory of Open Access Journals (Sweden)

    J. Rodriguez

    2010-01-01

    Full Text Available The Next Generation Network (NGN vision is tending towards the convergence of internet and mobile services providing the impetus for new market opportunities in combining the appealing services of internet with the roaming capability of mobile networks. However, this convergence does not go far enough, and with the emergence of new coexistence scenarios, there is a clear need to evolve the current architecture to provide cost-effective end-to-end communication. The LOOP project, a EUREKA-CELTIC driven initiative, is one piece in the jigsaw by helping European industry to sustain a leading role in telecommunications and manufacturing of high-value products and machinery by delivering pioneering converged wireless networking solutions that can be successfully demonstrated. This paper provides an overview of the LOOP project and the key achievements that have been tunneled into first prototypes for showcasing next generation services for operators and process manufacturers.

  14. Cost and schedule reduction for next-generation Candu

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Yu, S.; Pakan, M.; Soulard, M.

    2002-01-01

    AECL has developed a suite of technologies for Candu R reactors that enable the next step in the evolution of the Candu family of heavy-water-moderated fuel-channel reactors. These technologies have been combined in the design for the Advanced Candu Reactor TM1 (ACRTM), AECL's next generation Candu power plant. The ACR design builds extensively on the existing Candu experience base, but includes innovations, in design and in delivery technology, that provide very substantial reductions in capital cost and in project schedules. In this paper, main features of next generation design and delivery are summarized, to provide the background basis for the cost and schedule reductions that have been achieved. In particular the paper outlines the impact of the innovative design steps for ACR: - Selection of slightly enriched fuel bundle design; - Use of light water coolant in place of traditional Candu heavy water coolant; - Compact core design with unique reactor physics benefits; - Optimized coolant and turbine system conditions. In addition to the direct cost benefits arising from efficiency improvement, and from the reduction in heavy water, the next generation Candu configuration results in numerous additional indirect cost benefits, including: - Reduction in number and complexity of reactivity mechanisms; - Reduction in number of heavy water auxiliary systems; - Simplification in heat transport and its support systems; - Simplified human-machine interface. The paper also describes the ACR approach to design for constructability. The application of module assembly and open-top construction techniques, based on Candu and other worldwide experience, has been proven to generate savings in both schedule durations and overall project cost, by reducing premium on-site activities, and by improving efficiency of system and subsystem assembly. AECL's up-to-date experience in the use of 3-D CADDS and related engineering tools has also been proven to reduce both engineering and

  15. Next-Generation Sequencing of Antibody Display Repertoires

    Directory of Open Access Journals (Sweden)

    Romain Rouet

    2018-02-01

    Full Text Available In vitro selection technology has transformed the development of therapeutic monoclonal antibodies. Using methods such as phage, ribosome, and yeast display, high affinity binders can be selected from diverse repertoires. Here, we review strategies for the next-generation sequencing (NGS of phage- and other antibody-display libraries, as well as NGS platforms and analysis tools. Moreover, we discuss recent examples relating to the use of NGS to assess library diversity, clonal enrichment, and affinity maturation.

  16. Next-generation digital information storage in DNA.

    Science.gov (United States)

    Church, George M; Gao, Yuan; Kosuri, Sriram

    2012-09-28

    Digital information is accumulating at an astounding rate, straining our ability to store and archive it. DNA is among the most dense and stable information media known. The development of new technologies in both DNA synthesis and sequencing make DNA an increasingly feasible digital storage medium. We developed a strategy to encode arbitrary digital information in DNA, wrote a 5.27-megabit book using DNA microchips, and read the book by using next-generation DNA sequencing.

  17. Popular Imagination and Identity Politics: Reading the Future in "Star Trek: The Next Generation."

    Science.gov (United States)

    Ott, Brian L.; Aoki, Eric

    2001-01-01

    Analyzes the television series "Star Trek: The Next Generation." Theorizes the relationship between collective visions of the future and the identity politics of the present. Argues that "The Next Generation" invites audiences to participate in a shared sense of the future that constrains human agency and (re)produces the…

  18. Beam diagnostics for Laser-induced proton generation at KAERI

    International Nuclear Information System (INIS)

    Kim, Dong Heun; Park, Seong Hee; Jeong, Young Uk; Lee, Ki Tae; Chan, Young Ho; Lee, Byung Cheol; Yoo, Byeong Duk

    2005-01-01

    With an advent of femto-second lasers, a laseraccelerated ion generation has been world-widely studied for medical and nuclear applications. It is known that protons with the energy from several tens MeV to a few hundreds MeV require for a cancer therapy and nuclear reaction. Even though, up to present, the maximum energy of laser-accelerated proton is about 60 MeV, it is expected that the energy of protons generated can be obtained at least up to 150 MeV. According to theoretical and experimental works, it turns out the energy distribution and the flux of ions strongly depends on the intensity of a fs laser at a target. However, physics on laser-plasma interaction is still not clear. The precise measurements of parameters of a fs laser and ions are important to figure out the physics and develop the theoretical interpretation. Typically, beam diagnostic system includes measurements and/or monitoring of the temporal and spatial profiles of lasers at the target as well as the energy spectrum and density profile of protons, which are critical for the analysis of mechanism and the characterization of protons generated. We fabricated and installed the target chamber for laser-accelerated proton generation and are now integrating beam diagnostic system. For laser diagnostics, beam monitoring and alignment system has been installed. For a charged particle, CR-39 detectors, Thomson parabola spectrometer, and Si charged particle detectors are installed for density profile and energy spectrum. In this paper, we discuss the laser beam monitoring and alignment system. We also estimates expected spectrum of protons from Thomson parabola spectrometer, depending on the parameters of protons

  19. Next Generation Life Support (NGLS): Rapid Cycle Amine Swing Bed

    Data.gov (United States)

    National Aeronautics and Space Administration — The Rapid Cycle Amine (RCA) swingbed has been identified as a technology with high potential to meet the stringent requirements for the next generation spacesuit's...

  20. Modelling of control system architecture for next-generation accelerators

    International Nuclear Information System (INIS)

    Liu, Shi-Yao; Kurokawa, Shin-ichi

    1990-01-01

    Functional, hardware and software system architectures define the fundamental structure of control systems. Modelling is a protocol of system architecture used in system design. This paper reviews various modellings adopted in past ten years and suggests a new modelling for next generation accelerators. (author)

  1. Next Generation UV Coronagraph Instrumentation for Solar Cycle-24

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... New concepts for next generation instrumentation include imaging ultraviolet spectrocoronagraphs and large aperture ultraviolet coronagraph spectrometers. An imaging instrument would be the first to obtain absolute spectral line intensities of the extended corona over a wide field of view. Such images ...

  2. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    This book presents recent studies on the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving the critical performances of the wind power converters have been proposed and established. The book addresses some emerging problems...

  3. Development of a framework for the neutronics analysis system for next generation (3)

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hirai, Yasushi; Hyoudou, Hideaki; Tatsumi, Masahiro

    2010-02-01

    Development of innovative analysis methods and models in fundamental studies for next-generation nuclear reactor systems is in progress. In order to efficiently and effectively reflect the latest analysis methods and models to primary design of commercial reactor and/or in-core fuel management for power reactors, a next-generation analysis system MARBLE has been developed. The next-generation analysis system provides solutions to the following requirements: (1) flexibility, extensibility and user-friendliness that can apply new methods and models rapidly and effectively for fundamental studies, (2) quantitative proof of solution accuracy and adaptive scoping range for design studies, (3) coupling analysis among different study domains for the purpose of rationalization of plant systems and improvement of reliability, (4) maintainability and reusability for system extensions for the purpose of total quality management and development efficiency. The next-generation analysis system supports many fields, such as thermal-hydraulic analysis, structure analysis, reactor physics etc., and now we are studying reactor physics analysis system for fast reactor in advance. As for reactor physics analysis methods for fast reactor, we have established the JUPITER standard analysis methods based on the past study. But, there has been a problem of extreme inefficiency due to lack of functionality in the conventional analysis system when changing analysis targets and/or modeling levels. That is why, we have developed the next-generation analysis system for reactor physics which reproduces the JUPITER standard analysis method that has been developed so far and newly realizes burnup and design analysis for fast reactor and functions for cross section adjustment. In the present study, we examined in detail the existing design and implementation of ZPPR critical experiment analysis database followed by unification of models within the framework of the next-generation analysis system by

  4. Fast physical random bit generation with chaotic semiconductor lasers

    Science.gov (United States)

    Uchida, Atsushi; Amano, Kazuya; Inoue, Masaki; Hirano, Kunihito; Naito, Sunao; Someya, Hiroyuki; Oowada, Isao; Kurashige, Takayuki; Shiki, Masaru; Yoshimori, Shigeru; Yoshimura, Kazuyuki; Davis, Peter

    2008-12-01

    Random number generators in digital information systems make use of physical entropy sources such as electronic and photonic noise to add unpredictability to deterministically generated pseudo-random sequences. However, there is a large gap between the generation rates achieved with existing physical sources and the high data rates of many computation and communication systems; this is a fundamental weakness of these systems. Here we show that good quality random bit sequences can be generated at very fast bit rates using physical chaos in semiconductor lasers. Streams of bits that pass standard statistical tests for randomness have been generated at rates of up to 1.7 Gbps by sampling the fluctuating optical output of two chaotic lasers. This rate is an order of magnitude faster than that of previously reported devices for physical random bit generators with verified randomness. This means that the performance of random number generators can be greatly improved by using chaotic laser devices as physical entropy sources.

  5. Next-generation Sequencing-based genomic profiling: Fostering innovation in cancer care?

    Directory of Open Access Journals (Sweden)

    Gustavo S. Fernandes

    Full Text Available OBJECTIVES: With the development of next-generation sequencing (NGS technologies, DNA sequencing has been increasingly utilized in clinical practice. Our goal was to investigate the impact of genomic evaluation on treatment decisions for heavily pretreated patients with metastatic cancer. METHODS: We analyzed metastatic cancer patients from a single institution whose cancers had progressed after all available standard-of-care therapies and whose tumors underwent next-generation sequencing analysis. We determined the percentage of patients who received any therapy directed by the test, and its efficacy. RESULTS: From July 2013 to December 2015, 185 consecutive patients were tested using a commercially available next-generation sequencing-based test, and 157 patients were eligible. Sixty-six patients (42.0% were female, and 91 (58.0% were male. The mean age at diagnosis was 52.2 years, and the mean number of pre-test lines of systemic treatment was 2.7. One hundred and seventy-seven patients (95.6% had at least one identified gene alteration. Twenty-four patients (15.2% underwent systemic treatment directed by the test result. Of these, one patient had a complete response, four (16.7% had partial responses, two (8.3% had stable disease, and 17 (70.8% had disease progression as the best result. The median progression-free survival time with matched therapy was 1.6 months, and the median overall survival was 10 months. CONCLUSION: We identified a high prevalence of gene alterations using an next-generation sequencing test. Although some benefit was associated with the matched therapy, most of the patients had disease progression as the best response, indicating the limited biological potential and unclear clinical relevance of this practice.

  6. Development of a Laser Driven Photocathode Injector and Femtosecond Scale Laser Electron Synchronization for Next Generation Light Sources

    CERN Document Server

    Le Sage, G P; Ditmire, T R; Rosenzweig, J

    2000-01-01

    A high brightness photoinjector has been developed at LLNL. This injector combined with the 100 TW FALCON laser and the LLNL 100 MeV S-Band RF linac will enable development of a high brightness, femtosecond-scale, tunable, hard x-ray probe for time-resolved material measurements, based on Thomson scattering. Short pulse x-rays enable time-resolved characterization of shock dynamics, and examination of materials under extremes of pressure and temperature. Examples include Equation of State characterization on high-density materials, Crystal disorganization and re-growth in shocked and heated materials, and measurement of short time scale phase transition phenomena. Single shot evaluation, requiring high peak flux, is important for complex experiments such as probing of laser shocked actinides. A low emittance electron beam synchronized with femtosecond accuracy to an intense laser will revolutionize x-ray dynamics studies of materials. This project will lead development of ultrafast x-ray dynamics research on ...

  7. Developing the next generation of nuclear workers at OPG

    International Nuclear Information System (INIS)

    Spekkens, P.

    2007-01-01

    This presentation is about developing the next generation of nuclear workers at Ontario Power Generation (OPG). Industry developments are creating urgent need to hire, train and retain new staff. OPG has an aggressive hiring campaign. Training organization is challenged to accommodate influx of new staff. Collaborating with colleges and universities is increasing the supply of qualified recruits with an interest in nuclear. Program for functional and leadership training have been developed. Knowledge retention is urgently required

  8. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.

    Science.gov (United States)

    Alcock, Simon G; Nistea, Ioana; Sutter, John P; Sawhney, Kawal; Fermé, Jean Jacques; Thellièr, Christophe; Peverini, Luca

    2015-01-01

    Piezo bimorph mirrors are versatile active optics used on many synchrotron beamlines. However, many bimorphs suffer from the `junction effect': a periodic deformation of the optical surface which causes major aberrations to the reflected X-ray beam. This effect is linked to the construction of such mirrors, where piezo ceramics are glued directly below the thin optical substrate. In order to address this problem, a next-generation bimorph with piezos bonded to the side faces of a monolithic substrate was developed at Thales-SESO and optimized at Diamond Light Source. Using metrology feedback from the Diamond-NOM, the optical slope error was reduced to ∼ 0.5 µrad r.m.s. for a range of ellipses. To maximize usability, a novel holder was built to accommodate the substrate in any orientation. When replacing a first-generation bimorph on a synchrotron beamline, the new mirror significantly improved the size and shape of the reflected X-ray beam. Most importantly, there was no evidence of the junction effect even after eight months of continuous beamline usage. It is hoped that this new design will reinvigorate the use of active bimorph optics at synchrotron and free-electron laser facilities to manipulate and correct X-ray wavefronts.

  9. Heterogeneous next-generation wireless network interference model-and its applications

    KAUST Repository

    Mahmood, Nurul Huda; Yilmaz, Ferkan; Alouini, Mohamed-Slim; Ø ien, Geir Egil

    2014-01-01

    Next-generation wireless systems facilitating better utilisation of the scarce radio spectrum have emerged as a response to inefficient and rigid spectrum assignment policies. These are comprised of intelligent radio nodes that opportunistically

  10. Epidemiological Studies to Support the Development of Next Generation Influenza Vaccines.

    Science.gov (United States)

    Petrie, Joshua G; Gordon, Aubree

    2018-03-26

    The National Institute of Allergy and Infectious Diseases recently published a strategic plan for the development of a universal influenza vaccine. This plan focuses on improving understanding of influenza infection, the development of influenza immunity, and rational design of new vaccines. Epidemiological studies such as prospective, longitudinal cohort studies are essential to the completion of these objectives. In this review, we discuss the contributions of epidemiological studies to our current knowledge of vaccines and correlates of immunity, and how they can contribute to the development and evaluation of the next generation of influenza vaccines. These studies have been critical in monitoring the effectiveness of current influenza vaccines, identifying issues such as low vaccine effectiveness, reduced effectiveness among those who receive repeated vaccination, and issues related to egg adaptation during the manufacturing process. Epidemiological studies have also identified population-level correlates of protection that can inform the design and development of next generation influenza vaccines. Going forward, there is an enduring need for epidemiological studies to continue advancing knowledge of correlates of protection and the development of immunity, to evaluate and monitor the effectiveness of next generation influenza vaccines, and to inform recommendations for their use.

  11. Next generation multi-material 3D food printer concept

    NARCIS (Netherlands)

    Klomp, D.J.; Anderson, P.D.

    2017-01-01

    3D food printing is a new rapidly developing technology capable of creating food structures that are impossible to create with normal processing techniques. Challenges in this field are creating texture and multi-material food products. To address these challenges a next generation food printer will

  12. Next-generation sequencing approaches to understanding the oral microbiome

    NARCIS (Netherlands)

    Zaura, E.

    2012-01-01

    Until recently, the focus in dental research has been on studying a small fraction of the oral microbiome—so-called opportunistic pathogens. With the advent of next-generation sequencing (NGS) technologies, researchers now have the tools that allow for profiling of the microbiomes and metagenomes at

  13. Design and Study of a Next-Generation Computer-Assisted System for Transoral Laser Microsurgery

    Directory of Open Access Journals (Sweden)

    Nikhil Deshpande PhD

    2018-05-01

    Full Text Available Objective To present a new computer-assisted system for improved usability, intuitiveness, efficiency, and controllability in transoral laser microsurgery (TLM. Study Design Pilot technology feasibility study. Setting A dedicated room with a simulated TLM surgical setup: surgical microscope, surgical laser system, instruments, ex vivo pig larynxes, and computer-assisted system. Subjects and Methods The computer-assisted laser microsurgery (CALM system consists of a novel motorized laser micromanipulator and a tablet- and stylus-based control interface. The system setup includes the Leica 2 surgical microscope and the DEKA HiScan Surgical laser system. The system was validated through a first-of-its-kind observational study with 57 international surgeons with varied experience in TLM. The subjects performed real surgical tasks on ex vivo pig larynxes in a simulated TLM scenario. The qualitative aspects were established with a newly devised questionnaire assessing the usability, efficiency, and suitability of the system. Results The surgeons evaluated the CALM system with an average score of 6.29 (out of 7 in ease of use and ease of learning, while an average score of 5.96 was assigned for controllability and safety. A score of 1.51 indicated reduced workload for the subjects. Of 57 subjects, 41 stated that the CALM system allows better surgical quality than the existing TLM systems. Conclusions The CALM system augments the usability, controllability, and efficiency in TLM. It enhances the ergonomics and accuracy beyond the current state of the art, potentially improving the surgical safety and quality. The system offers the intraoperative automated scanning of customized long incisions achieving uniform resections at the surgical site.

  14. Big Data Perspective and Challenges in Next Generation Networks

    Directory of Open Access Journals (Sweden)

    Kashif Sultan

    2018-06-01

    Full Text Available With the development towards the next generation cellular networks, i.e., 5G, the focus has shifted towards meeting the higher data rate requirements, potential of micro cells and millimeter wave spectrum. The goals for next generation networks are very high data rates, low latency and handling of big data. The achievement of these goals definitely require newer architecture designs, upgraded technologies with possible backward support, better security algorithms and intelligent decision making capability. In this survey, we identify the opportunities which can be provided by 5G networks and discuss the underlying challenges towards implementation and realization of the goals of 5G. This survey also provides a discussion on the recent developments made towards standardization, the architectures which may be potential candidates for deployment and the energy concerns in 5G networks. Finally, the paper presents a big data perspective and the potential of machine learning for optimization and decision making in 5G networks.

  15. Recent progress in nanostructured next-generation field emission devices

    International Nuclear Information System (INIS)

    Mittal, Gaurav; Lahiri, Indranil

    2014-01-01

    Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40–50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices. (topical review)

  16. Recent progress in nanostructured next-generation field emission devices

    Science.gov (United States)

    Mittal, Gaurav; Lahiri, Indranil

    2014-08-01

    Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.

  17. Carrier ethernet network control plane based on the Next Generation Network

    DEFF Research Database (Denmark)

    Fu, Rong; Wang, Yanmeng; Berger, Michael Stubert

    2008-01-01

    This paper contributes on presenting a step towards the realization of Carrier Ethernet control plane based on the next generation network (NGN). Specifically, transport MPLS (T-MPLS) is taken as the transport technology in Carrier Ethernet. It begins with providing an overview of the evolving...... architecture of the next generation network (NGN). As an essential candidate among the NGN transport technologies, the definition of Carrier Ethernet (CE) is also introduced here. The second part of this paper depicts the contribution on the T-MPLS based Carrier Ethernet network with control plane based on NGN...... at illustrating the improvement of the Carrier Ethernet network with the NGN control plane....

  18. Development of source term evaluation method for Korean Next Generation Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keon Jae; Cheong, Jae Hak; Park, Jin Baek; Kim, Guk Gee [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-10-15

    This project had investigate several design features of radioactive waste processing system and method to predict nuclide concentration at primary coolant basic concept of next generation reactor and safety goals at the former phase. In this project several prediction methods of source term are evaluated conglomerately and detailed contents of this project are : model evaluation of nuclide concentration at Reactor Coolant System, evaluation of primary and secondary coolant concentration of reference Nuclear Power Plant(NPP), investigation of prediction parameter of source term evaluation, basic parameter of PWR, operational parameter, respectively, radionuclide removal system and adjustment values of reference NPP, suggestion of source term prediction method of next generation NPP.

  19. Next generation of relativistic heavy ion accelerators

    International Nuclear Information System (INIS)

    Grunder, H.; Leemann, C.; Selph, F.

    1978-06-01

    Results are presented of exploratory and preliminary studies of a next generation of heavy ion accelerators. The conclusion is reached that useful luminosities are feasible in a colliding beam facility for relativistic heavy ions. Such an accelerator complex may be laid out in such a way as to provide extractebeams for fixed target operation, therefore allowing experimentation in an energy region overlapping with that presently available. These dual goals seem achievable without undue complications, or penalties with respect to cost and/or performance

  20. Thermonuclear ignition in the next generation tokamaks

    International Nuclear Information System (INIS)

    Johner, J.

    1989-04-01

    The extrapolation of experimental rules describing energy confinement and magnetohydrodynamic - stability limits, in known tokamaks, allow to show that stable thermonuclear ignition equilibria should exist in this configuration, if the product aB t x of the dimensions by a magnetic-field power is large enough. Quantitative application of this result to several next-generation tokamak projects show that those kinds of equilibria could exist in such devices, which would also have enough additional heating power to promote an effective accessible ignition

  1. Micro-fresnel structures for microscopy of laser generated bright x-ray sources

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Shavers, D.C.; Flanders, D.C.; Smith, H.I.

    1979-01-01

    A brief parametric survey of the x-ray characteristics of a gold micro-disk irradiated at 3 x 10 14 watt/cm 2 by a 1 nsec Nd-glass laser pulse has been provided as an example of a laser generated bright x-ray source. It was shown that a simple phenomenological model of the laser generated x-ray source as a microscopic equilibrium plasma radiating as a blackbody for a finite time determined by its hydrodynamic disassembly and radiation losses, serves to provide an adequate approximation to the x-ray characteristics of such sources. The current state of x-ray microscopy within the LLL laser fusion program was briefly reviewed. Kirpatrick--Baez grazing incidence reflection x-ray microscopes are being used to provide 3 to 5 μm resolution, broadband images (ΔE/E approx. 0.3) over a spectral range from .6 keV to 3.5 keV. Zone Plate Coded Imaging is used to provide 5 to 10 μm resolution, broadband (ΔE/E approx. 0.5) images over a spectral range from 3 keV to 50 keV. Efficient x-ray lensing elements with anticipated submicron resolution are being developed for narrowband (ΔE/E approx. 10 -2 ) imaging applications over a spectral range .1 keV to 8 keV. The x-ray lens design is that of a transmission blazed Fresnel phase plate. Micro--Fresnel zone plates with 3200 A minimum linewidth have been fabricated and preliminary resolution tests begun. The first resolution test pattern, having minimum linewidth of 2.5 μm, was imaged in lambda = 8.34 A light with no difficulty. Newer test patterns with submicron minimum line are being prepared for the next stage of resolution testing. An off-axis Fresnel zone plate with 1600 A minimum linewidth is presently being fabricated for use as an imaging spectrometer in order to provide spatially separated, chromatically distinct images of characteristic line emissions from laser fusion targets

  2. Next Generation Antibody Therapeutics Using Bispecific Antibody Technology.

    Science.gov (United States)

    Igawa, Tomoyuki

    2017-01-01

    Nearly fifty monoclonal antibodies have been approved to date, and the market for monoclonal antibodies is expected to continue to grow. Since global competition in the field of antibody therapeutics is intense, we need to establish novel antibody engineering technologies to provide true benefit for patients, with differentiated product values. Bispecific antibodies are among the next generation of antibody therapeutics that can bind to two different target antigens by the two arms of immunoglobulin G (IgG) molecule, and are thus believed to be applicable to various therapeutic needs. Until recently, large scale manufacturing of human IgG bispecific antibody was impossible. We have established a technology, named asymmetric re-engineering technology (ART)-Ig, to enable large scale manufacturing of bispecific antibodies. Three examples of next generation antibody therapeutics using ART-Ig technology are described. Recent updates on bispecific antibodies against factor IXa and factor X for the treatment of hemophilia A, bispecific antibodies against a tumor specific antigen and T cell surface marker CD3 for cancer immunotherapy, and bispecific antibodies against two different epitopes of soluble antigen with pH-dependent binding property for the elimination of soluble antigen from plasma are also described.

  3. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    Science.gov (United States)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  4. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; He, Hao, E-mail: haohe@tju.edu.cn; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China)

    2014-02-24

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  5. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    International Nuclear Information System (INIS)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-01-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca 2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging

  6. Feasibility and application on steam injector for next-generation reactor

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Ishiyama, Takenori; Miyano, Hiroshi; Nei, Hiromichi; Shioiri, Akio

    1991-01-01

    A feasibility study has been conducted on steam injector for a next generation reactor. The steam injector is a simple, compact passive device for water injection, such as Passive Core Injection System (PCIS) of Passive Containment Cooling System (PCCS), because of easy start-up without an AC power. An analysis model for a steam injector characteristics has been developed, and investigated with a visualized fundamental test for a two-stage Steam Injector System (SIS) for PCIS and a one-stage low pressure SIS for PCCS. The test results showed good agreement with the analysis results. The analysis and the test results showed the SIS could work over a very wide range of the steam pressure, and is applicable for PCIS or PCCS in the next generation reactors. (author)

  7. Results of Analyses of the Next Generation Solvent for Parsons

    International Nuclear Information System (INIS)

    Peters, T.; Washington, A.; Fink, S.

    2012-01-01

    Savannah River National Laboratory (SRNL) prepared a nominal 150 gallon batch of Next Generation Solvent (NGS) for Parsons. This material was then analyzed and tested for cesium mass transfer efficiency. The bulk of the results indicate that the solvent is qualified as acceptable for use in the upcoming pilot-scale testing at Parsons Technology Center. This report describes the analysis and testing of a batch of Next Generation Solvent (NGS) prepared in support of pilot-scale testing in the Parsons Technology Center. A total of ∼150 gallons of NGS solvent was prepared in late November of 2011. Details for the work are contained in a controlled laboratory notebook. Analysis of the Parsons NGS solvent indicates that the material is acceptable for use. SRNL is continuing to improve the analytical method for the guanidine.

  8. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    NARCIS (Netherlands)

    K.M. Hettne (Kristina); J. Boorsma (Jeffrey); D.A.M. van Dartel (Dorien A M); J.J. Goeman (Jelle); E.C. de Jong (Esther); A.H. Piersma (Aldert); R.H. Stierum (Rob); J. Kleinjans (Jos); J.A. Kors (Jan)

    2013-01-01

    textabstractBackground: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with

  9. The "Next Generation Science Standards" and the Life Sciences

    Science.gov (United States)

    Bybee, Rodger W.

    2013-01-01

    Publication of the "Next Generation Science Standards" will be just short of two decades since publication of the "National Science Education Standards" (NRC 1996). In that time, biology and science education communities have advanced, and the new standards will reflect that progress (NRC 1999, 2007, 2009; Kress and Barrett…

  10. Electric vehicle charge patterns and the electricity generation mix and competitiveness of next generation vehicles

    International Nuclear Information System (INIS)

    Masuta, Taisuke; Murata, Akinobu; Endo, Eiichi

    2014-01-01

    Highlights: • The energy system of whole of Japan is analyzed in this study. • An advanced model based on MARKAL is used for the energy system analysis. • The impact of charge patterns of EVs on electricity generation mix is evaluated. • Technology competitiveness of the next generation vehicles is also evaluated. - Abstract: The nuclear accident of 2011 brought about a reconsideration of the future electricity generation mix of power systems in Japan. A debate on whether to phase out nuclear power plants and replace them with renewable energy sources is taking place. Demand-side management becomes increasingly important in future Japanese power systems with a large-scale integration of renewable energy sources. This paper considers the charge control of electric vehicles (EVs) through demand-side management. There have been many studies of the control or operation methods of EVs known as vehicle-to-grid (V2G), and it is important to evaluate both their short-term and long-term operation. In this study, we employ energy system to evaluate the impact of the charge patterns of EVs on both the electricity generation mix and the technology competitiveness of the next generation vehicles. An advanced energy system model based on Market Allocation (MARKAL) is used to consider power system control in detail

  11. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    International Nuclear Information System (INIS)

    Das, Rupali; Navas, M. P.; Soni, R. K.

    2016-01-01

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions were investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.

  12. New generation of compact high power disk lasers

    Science.gov (United States)

    Feuchtenbeiner, Stefanie; Zaske, Sebastian; Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Kumkar, Sören; Metzger, Bernd; Killi, Alexander; Haug, Patrick; Speker, Nicolai

    2018-02-01

    New technological developments in high power disk lasers emitting at 1030 nm are presented. These include the latest generation of TRUMPF's TruDisk product line offering high power disk lasers with up to 6 kW output power and beam qualities of up to 4 mm*mrad. With these compact devices a footprint reduction of 50% compared to the previous model could be achieved while at the same time improving robustness and increasing system efficiency. In the context of Industry 4.0, the new generation of TruDisk lasers features a synchronized data recording of all sensors, offering high-quality data for virtual analyses. The lasers therefore provide optimal hardware requirements for services like Condition Monitoring and Predictive Maintenance. We will also discuss its innovative and space-saving cooling architecture. It allows operation of the laser under very critical ambient conditions. Furthermore, an outlook on extending the new disk laser platform to higher power levels will be given. We will present a disk laser with 8 kW laser power out of a single disk with a beam quality of 5 mm*mrad using a 125 μm fiber, which makes it ideally suited for cutting and welding applications. The flexibility of the disk laser platform also enables the realization of a wide variety of beam guiding setups. As an example a new scheme called BrightLine Weld will be discussed. This technology allows for an almost spatter free laser welding process, even at high feed rates.

  13. Modeling the video distribution link in the Next Generation Optical Access Networks

    International Nuclear Information System (INIS)

    Amaya, F; Cardenas, A; Tafur, I

    2011-01-01

    In this work we present a model for the design and optimization of the video distribution link in the next generation optical access network. We analyze the video distribution performance in a SCM-WDM link, including the noise, the distortion and the fiber optic nonlinearities. Additionally, we consider in the model the effect of distributed Raman amplification, used to extent the capacity and the reach of the optical link. In the model, we use the nonlinear Schroedinger equation with the purpose to obtain capacity limitations and design constrains of the next generation optical access networks.

  14. The study of methodologies of software development for the next generation of HEP detector software

    International Nuclear Information System (INIS)

    Ding Yuzheng; Wang Taijie; Dai Guiliang

    1997-01-01

    The author discusses the characteristics of the next generation of HEP (High Energy Physics) detector software, and describes the basic strategy for the usage of object oriented methodologies, languages and tools in the development of the next generation of HEP detector software

  15. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    NARCIS (Netherlands)

    Hettne, K.M.; Boorsma, A.; Dartel, D.A. van; Goeman, J.J.; Jong, E. de; Piersma, A.H.; Stierum, R.H.; Kleinjans, J.C.; Kors, J.A.

    2013-01-01

    BACKGROUND: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set

  16. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    NARCIS (Netherlands)

    Hettne, K.M.; Boorsma, A.; Dartel, van D.A.M.; Goeman, J.J.; Jong, de E.; Piersma, A.H.; Stierum, R.H.; Kleinjans, J.C.; Kors, J.A.

    2013-01-01

    Background: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set

  17. Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Shree Krishna Sharma

    2016-01-01

    Full Text Available The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks.

  18. Next generation science standards available for comment

    Science.gov (United States)

    Asher, Pranoti

    2012-05-01

    The first public draft of the Next Generation Science Standards (NGSS) is now available for public comment. Feedback on the standards is sought from people who have a stake in science education, including individuals in the K-12, higher education, business, and research communities. Development of NGSS is a state-led effort to define the content and practices students need to learn from kindergarten through high school. NGSS will be based on the U.S. National Research Council's reportFramework for K-12 Science Education.

  19. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    Science.gov (United States)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2017-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  20. Design Principles of Next-Generation Digital Gaming for Education.

    Science.gov (United States)

    Squire, Kurt; Jenkins, Henry; Holland, Walter; Miller, Heather; O'Driscoll, Alice; Tan, Katie Philip; Todd, Katie.

    2003-01-01

    Discusses the rapid growth of digital games, describes research at MIT that is exploring the potential of digital games for supporting learning, and offers hypotheses about the design of next-generation educational video and computer games. Highlights include simulations and games; and design principles, including context and using information to…

  1. Identification and Characterization of Key Human Performance Issues and Research in the Next Generation Air Transportation System (NextGen)

    Science.gov (United States)

    Lee, Paul U.; Sheridan, Tom; Poage, james L.; Martin, Lynne Hazel; Jobe, Kimberly K.

    2010-01-01

    This report identifies key human-performance-related issues associated with Next Generation Air Transportation System (NextGen) research in the NASA NextGen-Airspace Project. Four Research Focus Areas (RFAs) in the NextGen-Airspace Project - namely Separation Assurance (SA), Airspace Super Density Operations (ASDO), Traffic Flow Management (TFM), and Dynamic Airspace Configuration (DAC) - were examined closely. In the course of the research, it was determined that the identified human performance issues needed to be analyzed in the context of NextGen operations rather than through basic human factors research. The main gaps in human factors research in NextGen were found in the need for accurate identification of key human-systems related issues within the context of specific NextGen concepts and better design of the operational requirements for those concepts. By focusing on human-system related issues for individual concepts, key human performance issues for the four RFAs were identified and described in this report. In addition, mixed equipage airspace with components of two RFAs were characterized to illustrate potential human performance issues that arise from the integration of multiple concepts.

  2. 75 FR 82387 - Next Generation Risk Assessment Public Dialogue Conference

    Science.gov (United States)

    2010-12-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9246-7] Next Generation Risk Assessment Public Dialogue Conference AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Public Dialogue Conference... methods with the National Institutes of Environmental Health Sciences' National Toxicology Program, Center...

  3. GENERATION OF HIGH SHOCK PRESSURES BY LASER PULSES

    OpenAIRE

    Romain , J.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 µm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of ...

  4. Laser generation in opal-like single-crystal and heterostructure photonic crystals

    Science.gov (United States)

    Kuchyanov, A. S.; Plekhanov, A. I.

    2016-11-01

    This study describes the laser generation of a 6Zh rhodamine in artificial opals representing single-crystal and heterostructure films. The spectral and angular properties of emission and the threshold characteristics of generation are investigated. In the case where the 6Zh rhodamine was in a bulk opal, the so-called random laser generation was observed. In contrast to this, the laser generation caused by a distributed feedback inside the structure of the photonic bandgap was observed in photonic-crystal opal films.

  5. Arbitrary waveform generator to improve laser diode driver performance

    Science.gov (United States)

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  6. Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Salomon, Jesper; Søkilde, Rolf

    2009-01-01

    Recently, next-generation sequencing has been introduced as a promising, new platform for assessing the copy number of transcripts, while the existing microarray technology is considered less reliable for absolute, quantitative expression measurements. Nonetheless, so far, results from the two...... technologies have only been compared based on biological data, leading to the conclusion that, although they are somewhat correlated, expression values differ significantly. Here, we use synthetic RNA samples, resembling human microRNA samples, to find that microarray expression measures actually correlate...... better with sample RNA content than expression measures obtained from sequencing data. In addition, microarrays appear highly sensitive and perform equivalently to next-generation sequencing in terms of reproducibility and relative ratio quantification....

  7. ITER-W monoblocks under high pulse number transient heat loads at high temperature

    International Nuclear Information System (INIS)

    Loewenhoff, Th.; Linke, J.; Pintsuk, G.; Pitts, R.A.; Riccardi, B.

    2015-01-01

    In the context of using a full-tungsten (W) divertor for ITER, thermal shock resistance has become even more important as an issue that may potentially influence the long term performance. To address this issue a unique series of experiments has been performed on ITER-W monoblock mock ups in three EU high heat flux facilities: GLADIS (neutral beam), JUDITH 2 (electron beam) and Magnum-PSI (plasma beam). This paper discusses the JUDITH 2 experiments. Two different base temperatures, 1200 °C and 1500 °C, were chosen superimposed by ∼18,000/100,000 transient events (Δt = 0.48 ms) of 0.2 and 0.6 GW/m 2 . Results showed a stronger surface deterioration at higher base temperature, quantified by an increase in roughening. This is intensified if the same test is done after preloading (exposure to high temperature without transients), especially at higher base temperature when the material recrystallizes

  8. RIPng- A next Generation Routing Protocal (IPv6) | Falaye | Journal ...

    African Journals Online (AJOL)

    ... Information Protocol Next Generation (RIPng) owing to the current depletion rate of IPv4. ... that support the Internet Protocol Version 6 (IPv6).addressing scheme. ... A brief history is given; its various versions are discussed, and detailed ...

  9. Clinical utility of a 377 gene custom next-generation sequencing ...

    Indian Academy of Sciences (India)

    JEN BEVILACQUA

    2017-07-26

    Jul 26, 2017 ... Clinical utility of a 377 gene custom next-generation sequencing epilepsy panel ... number of genes, making it a very attractive option for a condition as .... clinical value of various test offerings to guide decision making.

  10. AgMIP: Next Generation Models and Assessments

    Science.gov (United States)

    Rosenzweig, C.

    2014-12-01

    Next steps in developing next-generation crop models fall into several categories: significant improvements in simulation of important crop processes and responses to stress; extension from simplified crop models to complex cropping systems models; and scaling up from site-based models to landscape, national, continental, and global scales. Crop processes that require major leaps in understanding and simulation in order to narrow uncertainties around how crops will respond to changing atmospheric conditions include genetics; carbon, temperature, water, and nitrogen; ozone; and nutrition. The field of crop modeling has been built on a single crop-by-crop approach. It is now time to create a new paradigm, moving from 'crop' to 'cropping system.' A first step is to set up the simulation technology so that modelers can rapidly incorporate multiple crops within fields, and multiple crops over time. Then the response of these more complex cropping systems can be tested under different sustainable intensification management strategies utilizing the updated simulation environments. Model improvements for diseases, pests, and weeds include developing process-based models for important diseases, frameworks for coupling air-borne diseases to crop models, gathering significantly more data on crop impacts, and enabling the evaluation of pest management strategies. Most smallholder farming in the world involves integrated crop-livestock systems that cannot be represented by crop modeling alone. Thus, next-generation cropping system models need to include key linkages to livestock. Livestock linkages to be incorporated include growth and productivity models for grasslands and rangelands as well as the usual annual crops. There are several approaches for scaling up, including use of gridded models and development of simpler quasi-empirical models for landscape-scale analysis. On the assessment side, AgMIP is leading a community process for coordinated contributions to IPCC AR6

  11. The Next Generation Science Standards: The Features and Challenges

    Science.gov (United States)

    Pruitt, Stephen L.

    2014-01-01

    Beginning in January of 2010, the Carnegie Corporation of New York funded a two-step process to develop a new set of state developed science standards intended to prepare students for college and career readiness in science. These new internationally benchmarked science standards, the Next Generation Science Standards (NGSS) were completed in…

  12. Manufacturing and testing of relevant scale mockup based on monoblock concept

    International Nuclear Information System (INIS)

    Di Pietro, E.; Orsini, A.; Sacchetti, M.; Libera, S.; Cardella, A.; Vieider, G.

    1993-01-01

    The results obtained from small-scale mockups manufactured on the monoblock design concept have proven that the solution appears promising for a conventional divertor operating with heat fluxes in the range 10 to 15 MW/m 2 with a thermal fatigue cycle exceeding 1000 cycles at full power. The divertor mock-up consists of six half meter-long armored tubes obtained by brazing CFC to TZM molybdenum alloy. Two types of CFC were used to investigate the advantages of 3-d CFCs with respect to more conventional and cheaper 2-d CFC. The brazing process utilizes three variants of a process developed in laboratory trials and based on selected combinations of active braze filler/CFC surface conditioning procedures. The supporting structure is based on the sliding support concept intended to assure a compromise between the requested thermal stability of the component and the buildup of secondary stresses deriving from mechanical constraints. The FE thermal and thermal mechanical analysis of the divertor mockup structure is reported and the critical areas of sliding support are highlighted for comparison with experimental results. The main results of NDE and experimental high heat flux tests are reported and discussed

  13. Career Advancement: Meeting the Challenges Confronting the Next Generation of Endocrinologists and Endocrine Researchers.

    Science.gov (United States)

    Santen, Richard J; Joham, Anju; Fishbein, Lauren; Vella, Kristen R; Ebeling, Peter R; Gibson-Helm, Melanie; Teede, Helena

    2016-12-01

    Challenges and opportunities face the next generation (Next-Gen) of endocrine researchers and clinicians, the lifeblood of the field of endocrinology for the future. A symposium jointly sponsored by The Endocrine Society and the Endocrine Society of Australia was convened to discuss approaches to addressing the present and future Next-Gen needs. Data collection by literature review, assessment of previously completed questionnaires, commissioning of a new questionnaire, and summarization of symposium discussions were studied. Next-Gen endocrine researchers face diminishing grant funding in inflation-adjusted terms. The average age of individuals being awarded their first independent investigator funding has increased to age 45 years. For clinicians, a workforce gap exists between endocrinologists needed and those currently trained. Clinicians in practice are increasingly becoming employees of integrated hospital systems, resulting in greater time spent on nonclinical issues. Workforce data and published reviews identify challenges specifically related to early career women in endocrinology. Strategies to Address Issues: Recommendations encompassed the areas of grant support for research, mentoring, education, templates for career development, specific programs for Next-Gen members by senior colleagues as outlined in the text, networking, team science, and life/work integration. Endocrine societies focusing on Next-Gen members provide a powerful mechanism to support these critical areas. A concerted effort to empower, train, and support the next generation of clinical endocrinologists and endocrine researchers is necessary to ensure the viability and vibrancy of our discipline and to optimize our contributions to improving health outcomes. Collaborative engagement of endocrine societies globally will be necessary to support our next generation moving forward.

  14. Generation of electromagnetic radiation in laser action with solids

    International Nuclear Information System (INIS)

    Aref'ev, K.P.; Vorob'ev, S.A.; Kuznetsov, M.F.; Mastov, Sh.R.; Pogrebnyak, A.D.

    1984-01-01

    A new effect of electromagnetic pulse generation in solids, exposed to laser irradiation was revealed experimentally. The ruby laser with 694.36 nm wave length was used in the experiments. Monocrystals of Si, GaAs, KCl, LiF, polycrystals of Cu, Al, metals, the rocks-calcite, marble, natural quartz, feldspar - were used as samples. The effect of electromagnetic pulse generation, which is characterized by sharp threshold dependence on the density of laser radiation power, as well as on the type of material and its characteristics was observed for each material. The possibility of using the method of electromagnetic pulse detection during laser irradiation for evaluation of defectiveness degree and strength characteristics of investigated materials was shown

  15. "ASTRO 101" Course Materials 2.0: Next Generation Lecture Tutorials and Beyond

    Science.gov (United States)

    Slater, Stephanie; Grazier, Kevin

    2015-01-01

    Early efforts to create course materials were often local in scale and were based on "gut instinct," and classroom experience and observation. While subsequent efforts were often based on those same instincts and observations of classrooms, they also incorporated the results of many years of education research. These "second generation" course materials, such as lecture tutorials, relied heavily on research indicating that instructors need to actively engage students in the learning process. While imperfect, these curricular innovations, have provided evidence that research-based materials can be constructed, can easily be disseminated to a broad audience, and can provide measureable improvement in student learning across many settings. In order to improve upon this prior work, next generation materials must build upon the strengths of these innovations while engineering in findings from education research, cognitive science, and instructor feedback. A next wave of materials, including a set of next generation lecture tutorials, have been constructed with attention to the body of research on student motivation, and cognitive load; and they are responsive to our body of knowledge on learning difficulties related to specific content in the domain. From instructor feedback, these materials have been constructed to have broader coverage of the materials typically taught in an ASTRO 101 course, to take less class time, and to be more affordable for students. This next generation of lecture tutorials may serve as a template of the ways in which course materials can be reengineered to respond to current instructor and student needs.

  16. Next generation Zero-Code control system UI

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Developing ergonomic user interfaces for control systems is challenging, especially during machine upgrade and commissioning where several small changes may suddenly be required. Zero-code systems, such as *Inspector*, provide agile features for creating and maintaining control system interfaces. More so, these next generation Zero-code systems bring simplicity and uniformity and brake the boundaries between Users and Developers. In this talk we present *Inspector*, a CERN made Zero-code application development system, and we introduce the major differences and advantages of using Zero-code control systems to develop operational UI.

  17. Beamstrahlung spectra in next generation linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.; Chen, P. (Stanford Linear Accelerator Center, Menlo Park, CA (United States)); Kozanecki, W. (DAPNIA-SPP, CEN-Saclay (France))

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  18. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  19. Proceedings of the international workshop on next-generation linear colliders

    International Nuclear Information System (INIS)

    Riordan, M.

    1988-12-01

    This report contains papers on the next-generation of linear colliders. The particular areas of discussion are: parameters; beam dynamics and wakefields; damping rings and sources; rf power sources; accelerator structures; instrumentation; final focus; and review of beam-beam interaction

  20. C-Arc: A Novel Architecture for Next Generation Context- Aware ...

    African Journals Online (AJOL)

    In this paper, the common architecture principles of context-aware systems are presented and the crucial contextaware architecture issues to support the next generation context-aware systems which will enable seamless service provisioning in heterogeneous, dynamically varying computing and communication ...

  1. Proceedings of the international workshop on next-generation linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, M. (ed.)

    1988-12-01

    This report contains papers on the next-generation of linear colliders. The particular areas of discussion are: parameters; beam dynamics and wakefields; damping rings and sources; rf power sources; accelerator structures; instrumentation; final focus; and review of beam-beam interaction.

  2. Tablet—next generation sequence assembly visualization

    Science.gov (United States)

    Milne, Iain; Bayer, Micha; Cardle, Linda; Shaw, Paul; Stephen, Gordon; Wright, Frank; Marshall, David

    2010-01-01

    Summary: Tablet is a lightweight, high-performance graphical viewer for next-generation sequence assemblies and alignments. Supporting a range of input assembly formats, Tablet provides high-quality visualizations showing data in packed or stacked views, allowing instant access and navigation to any region of interest, and whole contig overviews and data summaries. Tablet is both multi-core aware and memory efficient, allowing it to handle assemblies containing millions of reads, even on a 32-bit desktop machine. Availability: Tablet is freely available for Microsoft Windows, Apple Mac OS X, Linux and Solaris. Fully bundled installers can be downloaded from http://bioinf.scri.ac.uk/tablet in 32- and 64-bit versions. Contact: tablet@scri.ac.uk PMID:19965881

  3. Modeling the video distribution link in the Next Generation Optical Access Networks

    DEFF Research Database (Denmark)

    Amaya, F.; Cárdenas, A.; Tafur Monroy, Idelfonso

    2011-01-01

    In this work we present a model for the design and optimization of the video distribution link in the next generation optical access network. We analyze the video distribution performance in a SCM-WDM link, including the noise, the distortion and the fiber optic nonlinearities. Additionally, we...... consider in the model the effect of distributed Raman amplification, used to extent the capacity and the reach of the optical link. In the model, we use the nonlinear Schrödinger equation with the purpose to obtain capacity limitations and design constrains of the next generation optical access networks....

  4. NEXT GENERATION TURBINE SYSTEM STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  5. Promising Practices: Building the Next Generation of School Leaders

    Science.gov (United States)

    Bryant, Jennifer Edic; Escalante, Karen; Selva, Ashley

    2017-01-01

    This study applies transformational leadership theory practices to examine the purposeful ways in which principals work to build the next generation of teacher leaders in response to the shortage of K-12 principals. Given the impact principals have on student development and the shortage of those applying for the principalship, the purpose of this…

  6. Pseudo-Random Modulation of a Laser Diode for Generating Ultrasonic Longitudinal Waves

    Science.gov (United States)

    Madaras, Eric I.; Anatasi, Robert F.

    2004-01-01

    Laser generated ultrasound systems have historically been more complicated and expensive than conventional piezoelectric based systems, and this fact has relegated the acceptance of laser based systems to niche applications for which piezoelectric based systems are less suitable. Lowering system costs, while improving throughput, increasing ultrasound signal levels, and improving signal-to-noise are goals which will help increase the general acceptance of laser based ultrasound. One current limitation with conventional laser generated ultrasound is a material s damage threshold limit. Increasing the optical power to generate more signal eventually damages the material being tested due to rapid, high heating. Generation limitations for laser based ultrasound suggests the use of pulse modulation techniques as an alternate generation method. Pulse modulation techniques can spread the laser energy over time or space, thus reducing laser power densities and minimizing damage. Previous experiments by various organizations using spatial or temporal pulse modulation have been shown to generate detectable surface, plate, and bulk ultrasonic waves with narrow frequency bandwidths . Using narrow frequency bandwidths improved signal detectability, but required the use of expensive and powerful lasers and opto-electronic systems. The use of a laser diode to generate ultrasound is attractive because of its low cost, small size, light weight, simple optics and modulation capability. The use of pulse compression techniques should allow certain types of laser diodes to produce usable ultrasonic signals. The method also does not need to be limited to narrow frequency bandwidths. The method demonstrated here uses a low power laser diode (approximately 150 mW) that is modulated by controlling the diode s drive current and the resulting signal is recovered by cross correlation. A potential application for this system which is briefly demonstrated is in detecting signals in thick

  7. Cascade generation in Al laser induced plasma

    Science.gov (United States)

    Nagli, Lev; Gaft, Michael; Raichlin, Yosef; Gornushkin, Igor

    2018-05-01

    We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s 25s 2S1/2 → 3s24p 2P1/2,3/2 → 3s24s 2S1/2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312-1315 nm. The 3s25s2S 1/2 starting IR generation level is directly pumped from the 3s23p 2P3/2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1/2 → 4p 2P3/2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma.

  8. Safety reviews of next-generation light-water reactors

    International Nuclear Information System (INIS)

    Kudrick, J.A.; Wilson, J.N.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) is reviewing three applications for design certification under its new licensing process. The U.S. Advanced Boiling Water Reactor (ABWR) and System 80+ designs have received final design approvals. The AP600 design review is continuing. The goals of design certification are to achieve early resolution of safety issues and to provide a more stable and predictable licensing process. NRC also reviewed the Utility Requirements Document (URD) of the Electric Power Research Institute (EPRI) and determined that its guidance does not conflict with NRC requirements. This review led to the identification and resolution of many generic safety issues. The NRC determined that next-generation reactor designs should achieve a higher level of safety for selected technical and severe accident issues. Accordingly, NRC developed new review standards for these designs based on (1) operating experience, including the accident at Three Mile Island, Unit 2; (2) the results of probabilistic risk assessments of current and next-generation reactor designs; (3) early efforts on severe accident rulemaking; and (4) research conducted to address previously identified generic safety issues. The additional standards were used during the individual design reviews and the resolutions are documented in the design certification rules. 12 refs

  9. Standardization and quality management in next-generation sequencing.

    Science.gov (United States)

    Endrullat, Christoph; Glökler, Jörn; Franke, Philipp; Frohme, Marcus

    2016-09-01

    DNA sequencing continues to evolve quickly even after > 30 years. Many new platforms suddenly appeared and former established systems have vanished in almost the same manner. Since establishment of next-generation sequencing devices, this progress gains momentum due to the continually growing demand for higher throughput, lower costs and better quality of data. In consequence of this rapid development, standardized procedures and data formats as well as comprehensive quality management considerations are still scarce. Here, we listed and summarized current standardization efforts and quality management initiatives from companies, organizations and societies in form of published studies and ongoing projects. These comprise on the one hand quality documentation issues like technical notes, accreditation checklists and guidelines for validation of sequencing workflows. On the other hand, general standard proposals and quality metrics are developed and applied to the sequencing workflow steps with the main focus on upstream processes. Finally, certain standard developments for downstream pipeline data handling, processing and storage are discussed in brief. These standardization approaches represent a first basis for continuing work in order to prospectively implement next-generation sequencing in important areas such as clinical diagnostics, where reliable results and fast processing is crucial. Additionally, these efforts will exert a decisive influence on traceability and reproducibility of sequence data.

  10. Towards Next Generation Internet Management:CNGI-CERNET2EXPERIENCES

    Institute of Scientific and Technical Information of China (English)

    Jia-Hai Yang; Hui Zhang; Jin-Xiang Zhang; Chang-Qing An

    2009-01-01

    Manageability is an important feature of next generation Internet; management and monitoring of IPv6-based networks are proving a big challenge. While leveraging current IPv4-based SNMP management scheme to IPv6 networks'management need is necessary, it is more urgent to coin a new network management architecture to accommodate the scalability and extensibility requirements of next generation Internet management. The paper proposes a novel network management architecture, IMN (Internet Management Network), which creates an overlay network of management nodes.While each management node can perform management tasks autonomously and independently, it can finish more sophis-ticated management tasks by collaboratively invoking management operations or sharing information provided by other management nodes. P2P-based communication services are introduced in IMN to enable such collaboration. The paper presents a prototyping implementation based on the Web service related technology, as well as some of the key technologies,especially solutions to those issues arising from the management practice of CERNET2. Experiences of deployment of CERNET2 operation and lessons learned from the management practice are discussed.

  11. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila

    Directory of Open Access Journals (Sweden)

    Patrice D. Cani

    2017-09-01

    Full Text Available Metabolic disorders associated with obesity and cardiometabolic disorders are worldwide epidemic. Among the different environmental factors, the gut microbiota is now considered as a key player interfering with energy metabolism and host susceptibility to several non-communicable diseases. Among the next-generation beneficial microbes that have been identified, Akkermansia muciniphila is a promising candidate. Indeed, A. muciniphila is inversely associated with obesity, diabetes, cardiometabolic diseases and low-grade inflammation. Besides the numerous correlations observed, a large body of evidence has demonstrated the causal beneficial impact of this bacterium in a variety of preclinical models. Translating these exciting observations to human would be the next logic step and it now appears that several obstacles that would prevent the use of A. muciniphila administration in humans have been overcome. Moreover, several lines of evidence indicate that pasteurization of A. muciniphila not only increases its stability but more importantly increases its efficacy. This strongly positions A. muciniphila in the forefront of next-generation candidates for developing novel food or pharma supplements with beneficial effects. Finally, a specific protein present on the outer membrane of A. muciniphila, termed Amuc_1100, could be strong candidate for future drug development. In conclusion, as plants and its related knowledge, known as pharmacognosy, have been the source for designing drugs over the last century, we propose that microbes and microbiomegnosy, or knowledge of our gut microbiome, can become a novel source of future therapies.

  12. Next-Generation Ultra-Compact Stowage/Lightweight Solar Array System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) has developed a next-generation high performance solar array system that has game-changing performance metrics in terms of...

  13. The Dynamic Pricing of Next Generation Consumer Durables

    OpenAIRE

    Barry L. Bayus

    1992-01-01

    Learning curve effects, aspects of consumer demand models (e.g., reservation price distributions, intertemporal utility maximizing behavior), and competitive activity are reasons which have been offered to explain why prices of new durables decline over time. This paper presents an alternative rationale based on the buying behavior for products with overlapping replacement cycles (i.e., next generation products). A model for consumer sales of a new durable is developed by incorporating the re...

  14. On reactor type comparisons for the next generation of reactors

    International Nuclear Information System (INIS)

    Alesso, H.P.; Majumdar, K.C.

    1991-01-01

    In this paper, we present a broad comparison of studies for a selected set of parameters for different nuclear reactor types including the next generation. This serves as an overview of key parameters which provide a semi-quantitative decision basis for selecting nuclear strategies. Out of a number of advanced reactor designs of the LWR type, gas cooled type, and FBR type, currently on the drawing board, the Advanced Light Water Reactors (ALWR) seem to have some edge over other types of the next generation of reactors for the near-term application. This is based on a number of attributes related to the benefit of the vast operating experience with LWRs coupled with an estimated low risk profile, economics of scale, degree of utilization of passive systems, simplification in the plant design and layout, modular fabrication and manufacturing. 32 refs., 1 fig., 3 tabs

  15. R&D, Marketing, and the Success of Next-Generation Products

    OpenAIRE

    Elie Ofek; Miklos Sarvary

    2003-01-01

    This paper studies dynamic competition in markets characterized by the introduction of technologically advanced next-generation products. Firms invest in new product effort in an attempt to attain industry leadership, thus securing high profits and benefiting from advantages relevant for the success of future product generations. The analysis reveals that when the current leader possesses higher research and development (R&D) competence, it tends to investin R&D than rivals and to retain its ...

  16. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    International Nuclear Information System (INIS)

    Busold, S.; Almomani, A.; Bagnoud, V.; Barth, W.; Bedacht, S.; Blažević, A.; Boine-Frankenheim, O.

    2014-01-01

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies

  17. Shaping laser accelerated ions for future applications – The LIGHT collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Busold, S., E-mail: s.busold@gsi.de [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Almomani, A. [Institut für angewandte Physik, Johann-Wolfgang-Goethe-Universität Frankfurt, Max von Laue Straße 1, D-60438 Frankfurt (Germany); Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Barth, W. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Bedacht, S. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstraße 9, D-64289 Darmstadt (Germany); Blažević, A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Fröbelstieg 3, D-07734 Jena (Germany); Boine-Frankenheim, O. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schloßgartenstraße 8, D-64289 Darmstadt (Germany); and others

    2014-03-11

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies.

  18. Generation and transport of laser accelerated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Peter; Boine-Frankenheim, Oliver [Technische Univ. Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Kornilov, Vladimir; Spaedtke, Peter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Collaboration: LIGHT-Collaboration

    2013-07-01

    Currently the LIGHT- Project (Laser Ion Generation, Handling and Transport) is performed at the GSI Helmholtzzentrum fuer Schwerionenforschung GmbH Darmstadt. Within this project, intense proton beams are generated by laser acceleration, using the TNSA mechanism. After the laser acceleration the protons are transported through the beam pipe by a pulsed power solenoid. To study the transport a VORPAL 3D simulation is compared with CST simulation. A criterion as a function of beam parameters was worked out, to rate the importance of space charge. Furthermore, an exemplary comparison of the solenoid with a magnetic quadrupole-triplet was carried out. In the further course of the LIGHT-Project, it is planned to generate ion beams with higher kinetic energies, using ultra-thin targets. The acceleration processes that can appear are: RPA (Radiation Pressure Acceleration) and BOA (Break-Out Afterburner). Therefore the transport of an ion distribution will be studied, as it emerges from a RPA acceleration.

  19. Efficient second- and third-harmonic radiation generation from relativistic laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, H. [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2015-06-15

    We propose an idea to enhance the efficiency of second- and third-harmonic generation by considering the amplitude-modulation of the fundamental laser pulse. A short-pulse laser of finite spot size is modeled as amplitude modulated in time. Amplitude-modulation of fundamental laser contributes in quiver velocity of the plasma electrons and produces the strong plasma-density perturbations, thereby increase in current density at second- and third-harmonic frequency. In a result, the conversion efficiency of harmonic generation increases significantly. Power conversion efficiency of harmonic generation process is the increasing function of the amplitude-modulation parameter of the fundamental laser beam. Harmonic power generated by an amplitude modulated laser is many folds higher than the power obtained in an ordinary case.

  20. Efficient second- and third-harmonic radiation generation from relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Singh, Mamta; Gupta, D. N.; Suk, H.

    2015-01-01

    We propose an idea to enhance the efficiency of second- and third-harmonic generation by considering the amplitude-modulation of the fundamental laser pulse. A short-pulse laser of finite spot size is modeled as amplitude modulated in time. Amplitude-modulation of fundamental laser contributes in quiver velocity of the plasma electrons and produces the strong plasma-density perturbations, thereby increase in current density at second- and third-harmonic frequency. In a result, the conversion efficiency of harmonic generation increases significantly. Power conversion efficiency of harmonic generation process is the increasing function of the amplitude-modulation parameter of the fundamental laser beam. Harmonic power generated by an amplitude modulated laser is many folds higher than the power obtained in an ordinary case

  1. Next-Generation Sequencing in Neuropathologic Diagnosis of Infections of the Nervous System (Open Access)

    Science.gov (United States)

    2016-06-13

    nervous system ABSTRACT Objective: To determine the feasibility of next-generation sequencing (NGS) microbiome ap- proaches in the diagnosis of infectious...V, van Doorn HR, Nghia HD, et al. Identification of a new cyclovirus in cerebrospinal fluid of patients with acute central nervous system infections...Kumar, et al. system Next-generation sequencing in neuropathologic diagnosis of infections of the nervous This information is current as of June 13

  2. Next generation in-situ optical Raman sensor for seawater investigations

    Science.gov (United States)

    Kolomijeca, A.; Kwon, Y.-H.; Ahmad, H.; Kronfeldt, H.-D.

    2012-04-01

    We introduce the next generation of optical sensors based on a combination of surfaced enhanced Raman scattering (SERS) and shifted excitation Raman difference spectroscopy (SERDS) suited for investigations of tiny concentrations of pollutions in the seawater. First field measurements were carried out in the Arctic area which is of global interest since it is more affected by global warming caused climatic changes than any other areas of our planet and it is a recipient for many toxic organic pollutants. A significant long-range atmospheric transport of pollutants to Svalbard is mainly originated from industrialized countries in Europe and North America during the last decades. Therefore, the main interest is to investigate the Arctic water column and also the sediments. Standard chemical methods for water/sediment analysis are extremely accurate but complex and time-consuming. The primary objective of our study was to develop a fast response in-situ optical sensor for easy to use and quick analysis. The system comprises several components: a handheld measurement head containing a 671 nm microsystem diode laser and the Raman optical bench, a laser driver electronics board, a custom-designed miniature spectrometer with an optical resolution of 8 cm-1 and a netbook to control the spectrometer as well as for data evaluation. We introduced for the first time the portable Raman sensor system on an Artic sea-trial during a three week cruise on board of the James Clark Ross research vessel in August 2011. Numerous Raman and SERS measurements followed by SERDS evaluations were taken around locations 78° N and 9° E. Different SERS substrates developed for SERS measurements in sea-water were tested for their capability to detect different substances (PAHs) in the water down to very small (nmol/l) concentrations. Stability tests of the substrates were carried out also for the applicability of our system e.g. on a mooring. Details of the in-situ Raman sensor were presented

  3. Constellations of Next Generation Gravity Missions: Simulations regarding optimal orbits and mitigation of aliasing errors

    Science.gov (United States)

    Hauk, M.; Pail, R.; Gruber, T.; Purkhauser, A.

    2017-12-01

    The CHAMP and GRACE missions have demonstrated the tremendous potential for observing mass changes in the Earth system from space. In order to fulfil future user needs a monitoring of mass distribution and mass transport with higher spatial and temporal resolution is required. This can be achieved by a Bender-type Next Generation Gravity Mission (NGGM) consisting of a constellation of satellite pairs flying in (near-)polar and inclined orbits, respectively. For these satellite pairs the observation concept of the GRACE Follow-on mission with a laser-based low-low satellite-to-satellite tracking (ll-SST) system and more precise accelerometers and state-of-the-art star trackers is adopted. By choosing optimal orbit constellations for these satellite pairs high frequency mass variations will be observable and temporal aliasing errors from under-sampling will not be the limiting factor anymore. As part of the European Space Agency (ESA) study "ADDCON" (ADDitional CONstellation and Scientific Analysis Studies of the Next Generation Gravity Mission) a variety of mission design parameters for such constellations are investigated by full numerical simulations. These simulations aim at investigating the impact of several orbit design choices and at the mitigation of aliasing errors in the gravity field retrieval by co-parametrization for various constellations of Bender-type NGGMs. Choices for orbit design parameters such as altitude profiles during mission lifetime, length of retrieval period, value of sub-cycles and choice of prograde versus retrograde orbits are investigated as well. Results of these simulations are presented and optimal constellations for NGGM's are identified. Finally, a short outlook towards new geophysical applications like a near real time service for hydrology is given.

  4. Laser ablation of microparticles for nanostructure generation

    International Nuclear Information System (INIS)

    Waraich, Palneet Singh; Tan, Bo; Venkatakrishnan, Krishnan

    2011-01-01

    The process of laser ablation of microparticles has been shown to generate nanoparticles from microparticles; but the generation of nanoparticle networks from microparticles has never been reported before. We report a unique approach for the generation of nanoparticle networks through ablation of microparticles. Using this approach, two samples containing microparticles of lead oxide (Pb 3 O 4 ) and nickel oxide (NiO), respectively, were ablated under ambient conditions using a femtosecond laser operating in the MHz repetition rate regime. Nanoparticle networks with particle diameter ranging from 60 to 90 nm were obtained by ablation of microparticles without use of any specialized equipment, catalysts or external stimulants. The formation of finer nanoparticle networks has been explained by considering the low pressure region created by the shockwave, causing rapid condensation of microparticles into finer nanoparticles. A comparison between the nanostructures generated by ablating microparticle and those by ablating bulk substrate was carried out; and a considerable reduction in size and narrowed size distribution was observed. Our nanostructure fabrication technique will be a unique process for nanoparticle network generation from a vast array of materials.

  5. Conceptual design of next generation MTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Hiroshi; Yamaura, Takayuki; Naka, Michihiro; Kawamata, Kazuo; Izumo, Hironobu; Hori, Naohiko; Nagao, Yoshiharu; Kusunoki, Tsuyoshi; Kaminaga, Masanori; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Mine, M [Hitachi-GE Nuclear Energy, Ltd., Hitachi, Ibaraki (Japan); Yamazaki, S [Kawasaki Heavy Industries, Ltd., Kobe, Hyogo (Japan); Ishikawa, S [NGK Insulators, Ltd., Nagoya, Aichi (Japan); Miura, K [Sukegawa Electric Co., Ltd., Takahagi, Ibaraki (Japan); Nakashima, S [Fuji Electric Co., Ltd., Tokyo (Japan); Yamaguchi, K [Chiyoda Technol Corp., Tokyo (Japan)

    2012-03-15

    Conceptual design of the high-performance and low-cost next generation materials testing reactor (MTR) which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  6. WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope : The next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott C.; Abrams, Don Carlos; Carter, David; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; MacIntosh, Mike; Evans, Chris; Lewis, Ian; Navarro, Ramon; Agocs, Tibor; Dee, Kevin; Rousset, Sophie; Tosh, Ian; Middleton, Kevin; Pragt, Johannes; Terrett, David; Brock, Matthew; Benn, Chris; Verheijen, Marc; Cano Infantes, Diego; Bevil, Craige; Steele, Iain; Mottram, Chris; Bates, Stuart; Gribbin, Francis J.; Rey, Jürg; Rodriguez, Luis Fernando; Delgado, Jose Miguel; Guinouard, Isabelle; Walton, Nic; Irwin, Michael J.; Jagourel, Pascal; Stuik, Remko; Gerlofsma, Gerrit; Roelfsma, Ronald; Skillen, Ian; Ridings, Andy; Balcells, Marc; Daban, Jean-Baptiste; Gouvret, Carole; Venema, Lars; Girard, Paul

    We present the preliminary design of the WEAVE next generation spectroscopy facility for the William Herschel Telescope (WHT), principally targeting optical ground-based follow up of upcoming ground-based (LOFAR) and spacebased (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing

  7. New long-range speed record with next-generation internet

    CERN Multimedia

    2003-01-01

    "Scientists at CERN and the California Institute of Technology have set a new Internet2 land speed record using the next-generation Internet protocol IPv6. The team sustained a single stream Transfer Control Protocol (TCP) rate of 983 megabits per second for more than one hour between CERN and Chicago, a distance of more than 7,000 kilometres" (1 page).

  8. Laser-capture micro dissection combined with next-generation sequencing analysis of cell type-specific deafness gene expression in the mouse cochlea.

    Science.gov (United States)

    Nishio, Shin-Ya; Takumi, Yutaka; Usami, Shin-Ichi

    2017-05-01

    Cochlear implantation (CI), which directly stimulates the cochlear nerves, is the most effective and widely used medical intervention for patients with severe to profound sensorineural hearing loss. The etiology of the hearing loss is speculated to have a major influence of CI outcomes, particularly in cases resulting from mutations in genes preferentially expressed in the spiral ganglion region. To elucidate precise gene expression levels in each part of the cochlea, we performed laser-capture micro dissection in combination with next-generation sequencing analysis and determined the expression levels of all known deafness-associated genes in the organ of Corti, spiral ganglion, lateral wall, and spiral limbs. The results were generally consistent with previous reports based on immunocytochemistry or in situ hybridization. As a notable result, the genes associated with many kinds of syndromic hearing loss (such as Clpp, Hars2, Hsd17b4, Lars2 for Perrault syndrome, Polr1c and Polr1d for Treacher Collins syndrome, Ndp for Norrie Disease, Kal for Kallmann syndrome, Edn3 and Snai2 for Waardenburg Syndrome, Col4a3 for Alport syndrome, Sema3e for CHARGE syndrome, Col9a1 for Sticker syndrome, Cdh23, Cib2, Clrn1, Pcdh15, Ush1c, Ush2a, Whrn for Usher syndrome and Wfs1 for Wolfram syndrome) showed higher levels of expression in the spiral ganglion than in other parts of the cochlea. This dataset will provide a base for more detailed analysis in order to clarify gene functions in the cochlea as well as predict CI outcomes based on gene expression data. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. The construction of next-generation matrices for compartmental epidemic models

    NARCIS (Netherlands)

    Diekmann, O.|info:eu-repo/dai/nl/071896856; Heesterbeek, J.A.P.|info:eu-repo/dai/nl/073321427; Roberts, M.G.

    2010-01-01

    The basic reproduction number R0 is arguably the most important quantity in infectious disease epidemiology. The next-generation matrix (NGM) is the natural basis for the definition and calculation of R0 where finitely many different categories of individuals are recognized. We clear up confusion

  10. Impact of ectopic pregnancy for reproductive prognosis in next generation

    DEFF Research Database (Denmark)

    Kårhus, Line Lund; Egerup, Pia; Skovlund, Charlotte Wessel

    2014-01-01

    The impact of an ectopic pregnancy in the next generation is unknown. Our aim was to compare reproductive outcomes in daughters of women with and without ectopic pregnancy. Designed as a historical prospective controlled cohort study with data collected in four Danish registries from 1977-2009, w...

  11. Statistical analysis of next generation sequencing data

    CERN Document Server

    Nettleton, Dan

    2014-01-01

    Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized med...

  12. Blue laser phase change recording system

    International Nuclear Information System (INIS)

    Hofmann, Holger; Dambach, S.Soeren; Richter, Hartmut

    2002-01-01

    The migration paths from DVD phase change recording with red laser to the next generation optical disk formats with blue laser and high NA optics are discussed with respect to optical aberration margins and disc capacities. A test system for the evaluation of phase change disks with more than 20 GB capacity is presented and first results of the recording performance are shown

  13. INL Human Resource Development and the Next-Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia, Fernando; Metcalf, Richard Royce Madison

    2010-07-01

    It is the stated goal of the Next Generation Safeguards Initiative (NGSI) to promote the development of a strengthened nuclear safeguards base, one with the potential to advance the secure and peaceful implementation of nuclear energy world-wide. To meet this goal, the initiative, among other things, has sought to develop a revitalized effort to ensure the continued availability of next generation safeguards professionals. Accordingly, this paper serves to outline the human capital building strategies taken by Idaho National Laboratory (INL) in line with the NGSI. Various components are presented in detail, including INL’s efforts directed at university outreach, in particular the laboratory’s summer internship program, along with the development of various innovative training programs and long-term oriented strategies for student professional development. Special highlights include a video training series, developed by INL in cooperation with LLNL and other laboratories, which sought to expose students and entry-level professionals to the concept and practice of international nuclear safeguards.

  14. Next Generation Workload Management and Analysis System for Big Data

    Energy Technology Data Exchange (ETDEWEB)

    De, Kaushik [Univ. of Texas, Arlington, TX (United States)

    2017-04-24

    We report on the activities and accomplishments of a four-year project (a three-year grant followed by a one-year no cost extension) to develop a next generation workload management system for Big Data. The new system is based on the highly successful PanDA software developed for High Energy Physics (HEP) in 2005. PanDA is used by the ATLAS experiment at the Large Hadron Collider (LHC), and the AMS experiment at the space station. The program of work described here was carried out by two teams of developers working collaboratively at Brookhaven National Laboratory (BNL) and the University of Texas at Arlington (UTA). These teams worked closely with the original PanDA team – for the sake of clarity the work of the next generation team will be referred to as the BigPanDA project. Their work has led to the adoption of BigPanDA by the COMPASS experiment at CERN, and many other experiments and science projects worldwide.

  15. Low Power Consumption Lasers for Next Generation Miniature Optical Spectrometers for Major Constituent and Trace Gas Analysis

    Science.gov (United States)

    Forouhar, Siamak; Soibel, Alexander; Frez, Clifford; Qiu, Yueming; Chen, J.; Hosoda, T.; Kipshidze, G.; Shterengas, L.; Tsvid, G.; Belenky, G.; hide

    2010-01-01

    The air quality of any manned spacecraft needs to be continuously monitored in order to safeguard the health of the crew. Air quality monitoring grows in importance as mission duration increases. Due to the small size, low power draw, and performance reliability, semiconductor laser-based instruments are viable candidates for this purpose. The minimum instrument size requires lasers with emission wavelength coinciding with the absorption of the fundamental frequency of the target gases which are mostly in the 3.0-5.0 micrometers wavelength range. In this paper we report on our progress developing high wall plug efficiency type-I quantum-well GaSb-based diode lasers operating at room temperatures in the spectral region near 3.0-3.5 micrometers and quantum cascade (QC) lasers in the 4.0-5.0 micrometers range. These lasers will enable the development of miniature, low-power laser spectrometers for environmental monitoring of the spacecraft.

  16. Laser propagation and soliton generation in strongly magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W.; Li, J. Q.; Kishimoto, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-03-15

    The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Most interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.

  17. Singly-resonant sum frequency generation of visible light in a semiconductor disk laser

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Schlosser, P.J.; Hastie, J.E.

    2009-01-01

    In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a singlepass of the solid......-state laser light. This exploits the good beam quality and high intra-cavity power present in the semiconductor disk laser to achieve high conversion efficiency. Combining sum frequency mixing and semiconductor disk lasers in this manner allows in principle for generation of any wavelength within the visible...

  18. Generation of high shock pressures by laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P. (GRECO ILM, Laboratoire d' Energetique et Detonique, E.N.S.M.A., 86 - Poitiers (France))

    1984-11-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 ..mu..m wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined.

  19. Formation and decay of laser-generated shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Cottet, F.; Romain, J.P.

    1982-01-01

    The process of formation and decay of laser-generated shock waves is described by a hydrodynamic model. Measurements of shock velocities are performed on copper foils for incident intensities between 3 x 10/sup 11/ and 3 x 10/sup 12/ W/cm/sup 2/, with the use of piezoelectric detectors. Maximum induced pressures are found between 0.5 and 1.2 Mbar in the intensity range considered. Analysis of the results with the shock-evolution model outlines the importance of the decay process of laser-generated shocks.

  20. Generation of high shock pressures by laser pulses

    International Nuclear Information System (INIS)

    Romain, J.P.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 μm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined

  1. Addressing Three Common Myths about the Next Generation Science Standards

    Science.gov (United States)

    Huff, Kenneth L.

    2016-01-01

    Although the "Next Generation Science Standards" (NGSS Lead States 2013) were released over two years ago, misconceptions about what they are--and are not--persist. The "NGSS" provide for consistent science education opportunities for all students--regardless of demographics--with a level of rigor expected in every location and…

  2. Next-generation genome-scale models for metabolic engineering

    DEFF Research Database (Denmark)

    King, Zachary A.; Lloyd, Colton J.; Feist, Adam M.

    2015-01-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict...... examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering....

  3. Towards next-generation biodiversity assessment using DNA metabarcoding

    DEFF Research Database (Denmark)

    Taberlet, Pierre; Coissac, Eric; Pompanon, Francois

    2012-01-01

    Virtually all empirical ecological studies require species identification during data collection. DNA metabarcoding refers to the automated identification of multiple species from a single bulk sample containing entire organisms or from a single environmental sample containing degraded DNA (soil......, water, faeces, etc.). It can be implemented for both modern and ancient environmental samples. The availability of next-generation sequencing platforms and the ecologists need for high-throughput taxon identification have facilitated the emergence of DNA metabarcoding. The potential power of DNA...

  4. JVM: Java Visual Mapping tool for next generation sequencing read.

    Science.gov (United States)

    Yang, Ye; Liu, Juan

    2015-01-01

    We developed a program JVM (Java Visual Mapping) for mapping next generation sequencing read to reference sequence. The program is implemented in Java and is designed to deal with millions of short read generated by sequence alignment using the Illumina sequencing technology. It employs seed index strategy and octal encoding operations for sequence alignments. JVM is useful for DNA-Seq, RNA-Seq when dealing with single-end resequencing. JVM is a desktop application, which supports reads capacity from 1 MB to 10 GB.

  5. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    Science.gov (United States)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  6. Laser light absorption and harmonic generation due to self-generated magnetic fields

    International Nuclear Information System (INIS)

    Kruer, W.L.; Estabrook, K.G.

    1977-01-01

    It is shown that self-generated magnetic fields can play a significant role in laser light absorption. Even normally incident light will then be resonantly absorbed. Computer simulations and theoretical estimates for this absorption and the concomitant harmonic generation are given for parameters characteristic of some recent experiments

  7. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  8. Generating higher-order radial Laguerre-Gaussian modes using a digital laser

    CSIR Research Space (South Africa)

    Bell, Teboho

    2015-07-01

    Full Text Available Using the digital laser one can generate various types of modes, like, Laguerre-Gaussian modes. The digital laser was forced to generate high-order radial Laguerre-Gaussian modes, LGp , with zero azimuthal order, by loading a digital hologram...

  9. Next Generation Carbon-Nitrogen Dynamics Model

    Science.gov (United States)

    Xu, C.; Fisher, R. A.; Vrugt, J. A.; Wullschleger, S. D.; McDowell, N. G.

    2012-12-01

    Nitrogen is a key regulator of vegetation dynamics, soil carbon release, and terrestrial carbon cycles. Thus, to assess energy impacts on the global carbon cycle and future climates, it is critical that we have a mechanism-based and data-calibrated nitrogen model that simulates nitrogen limitation upon both above and belowground carbon dynamics. In this study, we developed a next generation nitrogen-carbon dynamic model within the NCAR Community Earth System Model (CESM). This next generation nitrogen-carbon dynamic model utilized 1) a mechanistic model of nitrogen limitation on photosynthesis with nitrogen trade-offs among light absorption, electron transport, carboxylation, respiration and storage; 2) an optimal leaf nitrogen model that links soil nitrogen availability and leaf nitrogen content; and 3) an ecosystem demography (ED) model that simulates the growth and light competition of tree cohorts and is currently coupled to CLM. Our three test cases with changes in CO2 concentration, growing temperature and radiation demonstrate the model's ability to predict the impact of altered environmental conditions on nitrogen allocations. Currently, we are testing the model against different datasets including soil fertilization and Free Air CO2 enrichment (FACE) experiments across different forest types. We expect that our calibrated model will considerably improve our understanding and predictability of vegetation-climate interactions.itrogen allocation model evaluations. The figure shows the scatter plots of predicted and measured Vc,max and Jmax scaled to 25 oC (i.e.,Vc,max25 and Jmax25) at elevated CO2 (570 ppm, test case one), reduced radiation in canopy (0.1-0.9 of the radiation at the top of canopy, test case two) and reduced growing temperature (15oC, test case three). The model is first calibrated using control data under ambient CO2 (370 ppm), radiation at the top of the canopy (621 μmol photon/m2/s), the normal growing temperature (30oC). The fitted model

  10. Nuclear Knowledge to the Next Generation

    International Nuclear Information System (INIS)

    Mazour, Thomas; Kossilov, Andrei

    2004-01-01

    The safe, reliable, and cost-effective operation of Nuclear Power Plants (NPPs) requires that personnel possess and maintain the requisite knowledge, skills, and attitudes to do their jobs properly. Such knowledge includes not only the technical competencies required by the nature of the technology and particular engineering designs, but also the softer competencies associated with effective management, communication and teamwork. Recent studies have shown that there has been a loss of corporate knowledge and memory. Both explicit knowledge and tacit knowledge must be passed on to the next generation of workers in the industry to ensure a quality workforce. New and different techniques may be required to ensure timely and effective knowledge retention and transfer. The IAEA prepared a report on this subject. The main conclusions from the report regarding strategies for managing the aging workforce are included. Also included are main conclusions from the report regarding the capture an d preservation of mission critical knowledge, and the effective transfer of this knowledge to the next generation of NPP personnel. The nuclear industry due to its need for well-documented procedures, specifications, design basis, safety analyses, etc., has a greater fraction of its mission critical knowledge as explicit knowledge than do many other industries. This facilitates the task of knowledge transfer. For older plants in particular, there may be a need for additional efforts to transfer tacit knowledge to explicit knowledge to support major strategic initiatives such as plant license extensions/renewals, periodic safety reviews, major plant upgrades, and plant specific control room simulator development. The challenge in disseminating explicit knowledge is to make employees aware that it is available and provide easy access in formats and forms that are usable. Tacit knowledge is more difficult to identify and disseminate. The challenge is to identify what can be converted to

  11. Using Digital Watermarking for Securing Next Generation Media Broadcasts

    Science.gov (United States)

    Birk, Dominik; Gaines, Seán

    The Internet presents a problem for the protection of intellectual property. Those who create content must be adequately compensated for the use of their works. Rights agencies who monitor the use of these works exist in many jurisdictions. In the traditional broadcast environment this monitoring is a difficult task. With Internet Protocol Television (IPTV) and Next Generation Networks (NGN) this situation is further complicated.

  12. High Throughput Line-of-Sight MIMO Systems for Next Generation Backhaul Applications

    Science.gov (United States)

    Song, Xiaohang; Cvetkovski, Darko; Hälsig, Tim; Rave, Wolfgang; Fettweis, Gerhard; Grass, Eckhard; Lankl, Berthold

    2017-09-01

    The evolution to ultra-dense next generation networks requires a massive increase in throughput and deployment flexibility. Therefore, novel wireless backhaul solutions that can support these demands are needed. In this work we present an approach for a millimeter wave line-of-sight MIMO backhaul design, targeting transmission rates in the order of 100 Gbit/s. We provide theoretical foundations for the concept showcasing its potential, which are confirmed through channel measurements. Furthermore, we provide insights into the system design with respect to antenna array setup, baseband processing, synchronization, and channel equalization. Implementation in a 60 GHz demonstrator setup proves the feasibility of the system concept for high throughput backhauling in next generation networks.

  13. Relativistically Self-Channeled Femtosecond Terawatt Lasers for High-Field Physics and X-Ray Generation

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, A.B.; Boyer, K.; Cameron, S.M.; Luk, T.S.; McPherson, A.; Nelson, T.; Rhodes, C.K.

    1999-01-01

    Optical channeling or refractive guiding processes involving the nonlinear interaction of intense femtosecond optical pulses with matter in the self-focussing regime has created exciting opportunities for next-generation laser plasma-based x-ray sources and directed energy applications. This fundamentally new form of extended paraxial electromagnetic propagation in nonlinear dispersive media such as underdense plasma is attributed to the interplay between normal optical diffraction and intensity-dependent nonlinear focussing and refraction contributions in the dielectric response. Superposition of these mechanisms on the intrinsic index profile acts to confine the propagating energy in a dynamic self-guiding longitudinal waveguide structure which is stable for power transmission and robust compression. The laser-driven channels are hypothesized to support a degree of solitonic transport behavior, simultaneously stable in the space and time domains (group velocity dispersion balances self-phase modulation), and are believed to be self-compensating for diffraction and dispersion over many Rayleigh lengths in contrast with the defining characteristics of conventional diffractive imaging and beamforming. By combining concentrated power deposition with well-ordered spatial localization, this phenomena will also create new possibilities for production and regulation of physical interactions, including electron beams, enhanced material coupling, and self-modulated plasma wakefields, over extended gain distances with unprecedented energy densities. Harmonious combination of short-pulse x-ray production with plasma channeling resulting from a relativistic charge displacement nonlinearity mechanism in the terawatt regime (10{sup 18} W/cm{sup 2}) has been shown to generate high-field conditions conducive to efficient multi-kilovolt x-ray amplification and peak spectral brightness. Channeled optical propagation with intense short-pulse lasers is expected to impact several

  14. Generation of various carbon nanostructures in water using IR/UV laser ablation

    International Nuclear Information System (INIS)

    Mortazavi, Seyedeh Zahra; Parvin, Parviz; Reyhani, Ali; Mirershadi, Soghra; Sadighi-Bonabi, Rasoul

    2013-01-01

    A wide variety of carbon nanostructures were generated by a Q-switched Nd : YAG laser (1064 nm) while mostly nanodiamonds were created by an ArF excimer laser (193 nm) in deionized water. They were characterized by transmission electron microscopy, Raman spectroscopy and x-ray photoelectron spectroscopy. It was found that the IR laser affected the morphology and structure of the nanostructures due to the higher inverse bremsstrahlung absorption rate within the plasma plume with respect to the UV laser. Moreover, laser-induced breakdown spectroscopy was carried out so that the plasma created by the IR laser was more energetic than that generated by the UV laser. (paper)

  15. Generation After Next Propulsor Research: Robust Design for Embedded Engine Systems

    Science.gov (United States)

    Arend, David J.; Tillman, Gregory; O'Brien, Walter F.

    2012-01-01

    The National Aeronautics and Space Administration, United Technologies Research Center and Virginia Polytechnic and State University have contracted to pursue multi-disciplinary research into boundary layer ingesting (BLI) propulsors for generation after next environmentally responsible subsonic fixed wing aircraft. This Robust Design for Embedded Engine Systems project first conducted a high-level vehicle system study based on a large commercial transport class hybrid wing body aircraft, which determined that a 3 to 5 percent reduction in fuel burn could be achieved over a 7,500 nanometer mission. Both pylon-mounted baseline and BLI propulsion systems were based on a low-pressure-ratio fan (1.35) in an ultra-high-bypass ratio engine (16), consistent with the next generation of advanced commercial turbofans. An optimized, coupled BLI inlet and fan system was subsequently designed to achieve performance targets identified in the system study. The resulting system possesses an inlet with total pressure losses less than 0.5%, and a fan stage with an efficiency debit of less than 1.5 percent relative to the pylon-mounted, clean-inflow baseline. The subject research project has identified tools and methodologies necessary for the design of next-generation, highly-airframe-integrated propulsion systems. These tools will be validated in future large-scale testing of the BLI inlet / fan system in NASA's 8 foot x 6 foot transonic wind tunnel. In addition, fan unsteady response to screen-generated total pressure distortion is being characterized experimentally in a JT15D engine test rig. These data will document engine sensitivities to distortion magnitude and spatial distribution, providing early insight into key physical processes that will control BLI propulsor design.

  16. Microscale vortex laser with controlled topological charge

    Science.gov (United States)

    Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min

    2016-12-01

    A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).

  17. Looking ahead to our next generation of nurse leaders: Generation X Nurse Managers.

    Science.gov (United States)

    Keys, Yolanda

    2014-01-01

    The present inquiry identifies elements of professional success, and personal and professional fulfilment as defined by Generation X Nurse Managers. Although work concerning Nurse Manager preparation has been documented, there is a paucity of research specific to the generation of nurses next in line to assume leadership roles. For the purposes of this study, a qualitative approach was used to develop insight regarding Generation X Nurse Managers and their perspectives on professional success, personal and professional fulfilment, and organisational environments that are conducive to loyalty and long-term professional commitment. Findings from this study reinforced those identified in the original study in that inflexible organisational cultures, a lack of opportunities for upward mobility, the need to be available at all times, feeling stereotyped or undervalued can all be barriers to members of Generation X perceptions of professional success and professional and personal fulfilment. Study findings suggest that Generation X Nurse Managers would benefit from initiatives focused on better preparation for the Nurse Manager role, openness to innovative scheduling alternatives and tailored support and feedback. © 2014 John Wiley & Sons Ltd.

  18. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    International Nuclear Information System (INIS)

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-01-01

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach

  19. Fetal Kidney Anomalies: Next Generation Sequencing

    DEFF Research Database (Denmark)

    Rasmussen, Maria; Sunde, Lone; Nielsen, Marlene Louise

    Aim and Introduction Identification of abnormal kidneys in the fetus may lead to termination of the pregnancy and raises questions about the underlying cause and recurrence risk in future pregnancies. In this study, we investigate the effectiveness of targeted next generation sequencing in fetuses...... with prenatally detected kidney anomalies in order to uncover genetic explanations and assess recurrence risk. Also, we aim to study the relation between genetic findings and post mortem kidney histology. Methods The study comprises fetuses diagnosed prenatally with bilateral kidney anomalies that have undergone...... postmortem examination. The approximately 110 genes included in the targeted panel were chosen on the basis of their potential involvement in embryonic kidney development, cystic kidney disease, or the renin-angiotensin system. DNA was extracted from fetal tissue samples or cultured chorion villus cells...

  20. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits

    Science.gov (United States)

    Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.

    2009-10-01

    The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.

  1. Next Generation Nuclear Plant System Requirements Manual

    International Nuclear Information System (INIS)

    Not Listed

    2008-01-01

    System Requirements Manual for the NGNP Project. The Energy Policy Act of 2005 (H.R. 6; EPAct), which was signed into law by President George W. Bush in August 2005, required the Secretary of the U.S. Department of Energy (DOE) to establish a project to be known as the Next Generation Nuclear Plant (NGNP) Project. According to the EPAct, the NGNP Project shall consist of the research, development, design, construction, and operation of a prototype plant (to be referred to herein as the NGNP) that (1) includes a nuclear reactor based on the research and development (R and D) activities supported by the Generation IV Nuclear Energy Systems initiative, and (2) shall be used to generate electricity, to produce hydrogen, or to both generate electricity and produce hydrogen. The NGNP Project supports both the national need to develop safe, clean, economical nuclear energy and the Nuclear Hydrogen Initiative (NHI), which has the goal of establishing greenhouse-gas-free technologies for the production of hydrogen. The DOE has selected the helium-cooled High Temperature Gas-Cooled Reactor (HTGR) as the reactor concept to be used for the NGNP because it is the only near-term Generation IV concept that has the capability to provide process heat at high-enough temperatures for highly efficient production of hydrogen. The EPAct also names the Idaho National Laboratory (INL), the DOE's lead national laboratory for nuclear energy research, as the site for the prototype NGNP

  2. Statistical spatial properties of speckle patterns generated by multiple laser beams

    International Nuclear Information System (INIS)

    Le Cain, A.; Sajer, J. M.; Riazuelo, G.

    2011-01-01

    This paper investigates hot spot characteristics generated by the superposition of multiple laser beams. First, properties of speckle statistics are studied in the context of only one laser beam by computing the autocorrelation function. The case of multiple laser beams is then considered. In certain conditions, it is shown that speckles have an ellipsoidal shape. Analytical expressions of hot spot radii generated by multiple laser beams are derived and compared to numerical estimates made from the autocorrelation function. They are also compared to numerical simulations performed within the paraxial approximation. Excellent agreement is found for the speckle width as well as for the speckle length. Application to the speckle patterns generated in the Laser MegaJoule configuration in the zone where all the beams overlap is presented. Influence of polarization on the size of the speckles as well as on their abundance is studied.

  3. NextGEOSS: The Next Generation Data Hub For Earth Observations

    Science.gov (United States)

    Lilja Bye, Bente; De Lathouwer, Bart; Catarino, Nuno; Concalves, Pedro; Trijssenaar, Nicky; Grosso, Nuno; Meyer-Arnek, Julian; Goor, Erwin

    2017-04-01

    The Group on Earth observation embarked on the next 10 year phase with an ambition to streamline and further develop its achievements in building the Global Earth Observing System of Systems (GEOSS). The NextGEOSS project evolves the European vision of GEOSS data exploitation for innovation and business, relying on the three main pillars of engaging communities, delivering technological developments and advocating the use of GEOSS, in order to support the creation and deployment of Earth observation based innovative research activities and commercial services. In this presentation we will present the NextGEOSS concept, a concept that revolves around providing the data and resources to the users communities, together with Cloud resources, seamlessly connected to provide an integrated ecosystem for supporting applications. A central component of NextGEOSS is the strong emphasis put on engaging the communities of providers and users, and bridging the space in between.

  4. Laser generated soliton waveguides in photorefractive crystals

    International Nuclear Information System (INIS)

    Vlad, V.I.; Fazio, E.; Bertolotti, M.; Bosco, A.; Petris, A.

    2005-01-01

    Non-linear photo-excited processes using the photorefractive effect are revisited with emphasis on spatial soliton generation in special laser beam propagation conditions. The soliton beams can create reversible or irreversible single-mode waveguides in the propagating materials. The important features are the 3D orientation and graded index profile matched to the laser fundamental mode. Bright spatial solitons are theoretically demonstrated and experimentally observed for the propagation of c.w. and pulsed femtosecond laser beams in photorefractive materials such as Bi 12 SiO 20 (BSO) and lithium niobate crystals. Applications in high coupling efficiency, adaptive optical interconnections and photonic crystal production are possible

  5. Super- and Transcritical Fluid Expansions for Next-Generation Energy Conversion Systems

    NARCIS (Netherlands)

    Harinck, J.

    2010-01-01

    The next generation of thermodynamic power cycles offers great potential as the conceptual basis for sustainable energy converters. Examples are the supercritical and superheated Organic Rankine cycle, the transcritical condensation cycle, the supercritical Brayton cycle, the Organic Stirling cycle

  6. Porous nanoparticles of Al and Ti generated by laser ablation in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, P.G. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991, Moscow (Russian Federation); Shafeev, G.A., E-mail: shafeev@kapella.gpi.ru [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991, Moscow (Russian Federation); Viau, G. [Universite de Toulouse, INSA, LPCNO, 135 avenue de Rangueil, 31077 Toulouse Cedex 4 (France); Warot-Fonrose, B. [CEMES, UPR CNRS 8011, 29, rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex4 (France); Barberoglou, M.; Stratakis, E.; Fotakis, C. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1527, Heraklion 711 10 (Greece)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Nanoparticles of either Al or Ti are generated by laser ablation in hydrogen-saturated liquids. Black-Right-Pointing-Pointer Nanoparticles contain cavities. Black-Right-Pointing-Pointer The morphology of generated particles depends on the laser pulse duration. - Abstract: Experimental results are presented on the generation of porous nanoparticles of either Al or Ti by laser ablation of solid targets in ethanol, water, and n-propanol saturated with hydrogen. The nanoparticles are characterized by high resolution transmission electron microscopy (HR TEM) and optical absorption spectroscopy. Saturation of the liquid with gaseous hydrogen leads to the formation of internal cavities in nanoparticles. In the case of short laser pulses (180 fs, Ti:sapphire laser at 800 nm wavelength), the nanoparticles are mostly spherical with the size of 30-50 nm at concentration about 10{sup 15} cm{sup -3}. The cavity occupies from 20 to 50% of the particle volume. Longer laser pulses (70 ns, Nd:YAG laser at 1064 nm wavelength) generate facetted nanoparticles with facetted cavities inside. The mechanism of formation of cavities is discussed on the basis of temperature-dependent solubility of hydrogen in metals.

  7. Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system

    Science.gov (United States)

    Nguendon Kenhagho, Hervé K.; Rauter, Georg; Guzman, Raphael; C. Cattin, Philippe; Zam, Azhar

    2018-02-01

    Characterization of acoustic shock wave will guarantee efficient tissue differentiation as feedback to reduce the probability of undesirable damaging (i.e. cutting) of tissues in laser surgery applications. We ablated hard (bone) and soft (muscle) tissues using a nanosecond pulsed Nd:YAG laser at 532 nm and a microsecond pulsed Er:YAG laser at 2.94 μm. When the intense short ns-pulsed laser is applied to material, the energy gain causes locally a plasma at the ablated spot that expands and propagates as an acoustic shock wave with a rarefaction wave behind the shock front. However, when using a μs-pulsed Er:YAG laser for material ablation, the acoustic shock wave is generated during the explosion of the ablated material. We measured and compared the emitted acoustic shock wave generated by a ns-pulsed Nd:YAG laser and a μs-pulsed Er:YAG laser measured by a calibrated microphone. As the acoustic shock wave attenuates as it propagates through air, the distance between ablation spots and a calibrated microphone was at 5 cm. We present the measurements on the propagation characteristics of the laser generated acoustic shock wave by measuring the arrival time-of-flight with a calibrated microphone and the energy-dependent evolution of acoustic parameters such as peak-topeak pressure, the ratio of the peak-to-peak pressures for the laser induced breakdown in air, the ablated muscle and the bone, and the spectral energy.

  8. Generating a high brightness multi-kilowatt laser by dense spectral combination of VBG stabilized single emitter laser diodes

    Science.gov (United States)

    Fritsche, H.; Koch, Ralf; Krusche, B.; Ferrario, F.; Grohe, Andreas; Pflueger, S.; Gries, W.

    2014-05-01

    Generating high power laser radiation with diode lasers is commonly realized by geometrical stacking of diode bars, which results in high output power but poor beam parameter product (BPP). The accessible brightness in this approach is limited by the fill factor, both in slow and fast axis. By using a geometry that accesses the BPP of the individual diodes, generating a multi kilowatt diode laser with a BPP comparable to fiber lasers is possible. We will demonstrate such a modular approach for generating multi kilowatt lasers by combining single emitter diode lasers. Single emitter diodes have advantages over bars, mainly a simplified cooling, better reliability and a higher brightness per emitter. Additionally, because single emitters can be arranged in many different geometries, they allow building laser modules where the brightness of the single emitters is preserved. In order to maintain the high brightness of the single emitter we developed a modular laser design which uses single emitters in a staircase arrangement, then coupling two of those bases with polarization combination which is our basic module. Those modules generate up to 160 W with a BPP better than 7.5 mm*mrad. For further power scaling wavelength stabilization is crucial. The wavelength is stabilized with only one Volume Bragg Grating (VBG) in front of a base providing the very same feedback to all of the laser diodes. This results in a bandwidth of BPP better than 7.5 mm*mrad, which can easily coupled into a 100 μm fiber and 0.15 NA.

  9. Improvements of high-power diode laser line generators open up new application fields

    Science.gov (United States)

    Meinschien, J.; Bayer, A.; Bruns, P.; Aschke, L.; Lissotschenko, V. N.

    2009-02-01

    Beam shaping improvements of line generators based on high power diode lasers lead to new application fields as hardening, annealing or cutting of various materials. Of special interest is the laser treatment of silicon. An overview of the wide variety of applications is presented with special emphasis of the relevance of unique laser beam parameters like power density and beam uniformity. Complementary to vision application and plastic processing, these new application markets become more and more important and can now be addressed by high power diode laser line generators. Herewith, a family of high power diode laser line generators is presented that covers this wide spectrum of application fields with very different requirements, including new applications as cutting of silicon or glass, as well as the beam shaping concepts behind it. A laser that generates a 5m long and 4mm wide homogeneous laser line is shown with peak intensities of 0.2W/cm2 for inspection of railway catenaries as well as a laser that generates a homogeneous intensity distribution of 60mm x 2mm size with peak intensities of 225W/cm2 for plastic processing. For the annealing of silicon surfaces, a laser was designed that generates an extraordinary uniform intensity distribution with residual inhomogeneities (contrast ratio) of less than 3% over a line length of 11mm and peak intensities of up to 75kW/cm2. Ultimately, a laser line is shown with a peak intensity of 250kW/cm2 used for cutting applications. Results of various application tests performed with the above mentioned lasers are discussed, particularly the surface treatment of silicon and the cutting of glass.

  10. Energy Efficient Glass Melting - The Next Generation Melter

    Energy Technology Data Exchange (ETDEWEB)

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  11. MiSeq: A Next Generation Sequencing Platform for Genomic Analysis.

    Science.gov (United States)

    Ravi, Rupesh Kanchi; Walton, Kendra; Khosroheidari, Mahdieh

    2018-01-01

    MiSeq, Illumina's integrated next generation sequencing instrument, uses reversible-terminator sequencing-by-synthesis technology to provide end-to-end sequencing solutions. The MiSeq instrument is one of the smallest benchtop sequencers that can perform onboard cluster generation, amplification, genomic DNA sequencing, and data analysis, including base calling, alignment and variant calling, in a single run. It performs both single- and paired-end runs with adjustable read lengths from 1 × 36 base pairs to 2 × 300 base pairs. A single run can produce output data of up to 15 Gb in as little as 4 h of runtime and can output up to 25 M single reads and 50 M paired-end reads. Thus, MiSeq provides an ideal platform for rapid turnaround time. MiSeq is also a cost-effective tool for various analyses focused on targeted gene sequencing (amplicon sequencing and target enrichment), metagenomics, and gene expression studies. For these reasons, MiSeq has become one of the most widely used next generation sequencing platforms. Here, we provide a protocol to prepare libraries for sequencing using the MiSeq instrument and basic guidelines for analysis of output data from the MiSeq sequencing run.

  12. Answers to Teachers' Questions about the Next Generation Science Standards

    Science.gov (United States)

    Workosky, Cindy; Willard, Ted

    2015-01-01

    K-12 teachers of science have been digging into the "Next Generation Science Standards" ("NGSS") (NGSS Lead States 2013) to begin creating plans and processes for translating them for classroom instruction. As teachers learn about the NGSS, they have asked about the general structure of the standards document and how to read…

  13. The Next Generation of Science Standards: Implications for Biology Education

    Science.gov (United States)

    Bybee, Rodger W.

    2012-01-01

    The release of A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (NRC, 2012) provides the basis for the next generation of science standards. This article first describes that foundation for the life sciences; it then presents a draft standard for natural selection and evolution. Finally, there is a…

  14. Quasi-CW Laser Diode Bar Life Tests

    Science.gov (United States)

    Stephen, Mark A.; Krainak, Michael A.; Dallas, Joseph L.

    1997-01-01

    NASA's Goddard Space Flight Center is developing technology for satellite-based, high peak power, LIDAR transmitters requiring 3-5 years of reliable operation. Semi-conductor laser diodes provide high efficiency pumping of solid state lasers with the promise of long-lived, reliable operation. 100-watt quasi- CW laser diode bars have been baselined for the next generation laser altimeters. Multi-billion shot lifetimes are required. The authors have monitored the performance of several diodes for billions of shots and investigated operational modes for improving diode lifetime.

  15. Laser-generated plasmas by graphene nanoplatelets embedded into polyethylene

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Ceccio, G.; Restuccia, N.; Messina, E.; Gucciardi, P. G.; Cutroneo, Mariapompea

    2017-01-01

    Roč. 35, č. 2 (2017), s. 294-303 ISSN 0263-0346 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : advanced targets * Au NP * graphene * laser-generated plasma * time-of-flight measurements Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.420, year: 2016

  16. Physics of frequency-modulated comb generation in quantum-well diode lasers

    Science.gov (United States)

    Dong, Mark; Cundiff, Steven T.; Winful, Herbert G.

    2018-05-01

    We investigate the physical origin of frequency-modulated combs generated from single-section semiconductor diode lasers based on quantum wells, isolating the essential physics necessary for comb generation. We find that the two effects necessary for comb generation—spatial hole burning (leading to multimode operation) and four-wave mixing (leading to phase locking)—are indeed present in some quantum-well systems. The physics of comb generation in quantum wells is similar to that in quantum dot and quantum cascade lasers. We discuss the nature of the spectral phase and some important material parameters of these diode lasers.

  17. Process Improvement for Next Generation Space Flight Vehicles: MSFC Lessons Learned

    Science.gov (United States)

    Housch, Helen

    2008-01-01

    This viewgraph presentation reviews the lessons learned from process improvement for Next Generation Space Flight Vehicles. The contents include: 1) Organizational profile; 2) Process Improvement History; 3) Appraisal Preparation; 4) The Appraisal Experience; 5) Useful Tools; and 6) Is CMMI working?

  18. Application of next generation sequencing in clinical microbiology and infection prevention

    NARCIS (Netherlands)

    Deurenberg, Ruud H.; Bathoorn, Erik; Chlebowicz, Monika A.; Couto, Natacha; Ferdous, Mithila; Garcia-Cobos, Silvia; Kooistra-Smid, Anna M. D.; Raangs, Erwin C.; Rosema, Sigrid; Veloo, Alida C. M.; Zhou, Kai; Friedrich, Alexander W.; Rossen, John W. A.

    2017-01-01

    Current molecular diagnostics of human pathogens provide limited information that is often not sufficient for outbreak and transmission investigation. Next generation sequencing (NGS) determines the DNA sequence of a complete bacterial genome in a single sequence run, and from these data,

  19. Towards the next generation of simplified Dark Matter models

    Science.gov (United States)

    Albert, Andreas; Bauer, Martin; Brooke, Jim; Buchmueller, Oliver; Cerdeño, David G.; Citron, Matthew; Davies, Gavin; de Cosa, Annapaola; De Roeck, Albert; De Simone, Andrea; Du Pree, Tristan; Flaecher, Henning; Fairbairn, Malcolm; Ellis, John; Grohsjean, Alexander; Hahn, Kristian; Haisch, Ulrich; Harris, Philip C.; Khoze, Valentin V.; Landsberg, Greg; McCabe, Christopher; Penning, Bjoern; Sanz, Veronica; Schwanenberger, Christian; Scott, Pat; Wardle, Nicholas

    2017-06-01

    This White Paper is an input to the ongoing discussion about the extension and refinement of simplified Dark Matter (DM) models. It is not intended as a comprehensive review of the discussed subjects, but instead summarises ideas and concepts arising from a brainstorming workshop that can be useful when defining the next generation of simplified DM models (SDMM). In this spirit, based on two concrete examples, we show how existing SDMM can be extended to provide a more accurate and comprehensive framework to interpret and characterise collider searches. In the first example we extend the canonical SDMM with a scalar mediator to include mixing with the Higgs boson. We show that this approach not only provides a better description of the underlying kinematic properties that a complete model would possess, but also offers the option of using this more realistic class of scalar mixing models to compare and combine consistently searches based on different experimental signatures. The second example outlines how a new physics signal observed in a visible channel can be connected to DM by extending a simplified model including effective couplings. In the next part of the White Paper we outline other interesting options for SDMM that could be studied in more detail in the future. Finally, we review important aspects of supersymmetric models for DM and use them to propose how to develop more complete SDMMs. This White Paper is a summary of the brainstorming meeting "Next generation of simplified Dark Matter models" that took place at Imperial College, London on May 6, 2016, and corresponding follow-up studies on selected subjects.

  20. Generation of monoenergetic ion beams with a laser accelerator

    International Nuclear Information System (INIS)

    Pfotenhauer, Sebastian M.

    2009-01-01

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  1. Generation of monoenergetic ion beams with a laser accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, Sebastian M.

    2009-01-29

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  2. DARC: Next generation decentralized control framework for robot applications

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Andersen, Nils Axel; Ravn, Ole

    2013-01-01

    This paper presents DARC, a next generation control framework for robot applications. It is designed to be equally powerful in prototyping research projects and for building serious commercial robots running on low powered embedded hardware, thus closing the gab between research and industry....... It incorporates several new techniques such as a decentralized peer-to-peer architecture, transparent network distribution of the control system, and automatic run-time supervision to guarantee robustness....

  3. Micro-bubble generated by laser irradiation on an individual carbon nanocoil

    International Nuclear Information System (INIS)

    Sun, Yanming; Pan, Lujun; Liu, Yuli; Sun, Tao

    2015-01-01

    Highlights: • We have investigated laser irradiated microbubbles which can be generated at fixed point on surface of an individual carbon nanocoil (CNC) immerged in deionized water. • The microbubble can be operated easily and flexibly. • Based on classical heat and mass transfer theories, the bubble growth data is in good agreement with the simplified model. - Abstract: We have investigated the micro-bubbles generated by laser induction on an individual carbon nanocoil (CNC) immerged in deionized water. The photon energy of the incident focused laser beam is absorbed by CNC and converted to thermal energy, which efficiently vaporizes the surrounding water, and subsequently a micro-bubble is generated at the laser location. The dynamics behavior of bubble generation, including its nucleation, expansion and steady-state, has been studied experimentally and theoretically. We have derived equations to analyze the expansion process of a bubble based on classical heat and mass transfer theories. The conclusion is in good agreement with the experiment. CNC, which acts as a realistic micro-bubble generator, can be operated easily and flexibly

  4. Gain-switched all-fiber lasers and quasi-continuous wave supercontinuum generation

    DEFF Research Database (Denmark)

    Larsen, Casper

    The extreme broadening phenomenon of supercontinuum (SC) generation in optical fibers is the basis of SC laser sources. These sources have numerous applications in areas, such as spectroscopy and microscopy due to the unique combination of extremely broad spectral bandwidths, high spectral power...... densities, and high spatial coherence. In this work the feasibility of applying gain-switched all-fiber lasers to SC generation is investigated. It is motivated by the simplicity of the architecture and the ability to scale the optical output power of such fiber lasers. The physics of fiber lasers......-switching of fiber lasers with a variety of different configurations are carried out. The peak power, pulse duration, bandwidth, and scaling with repetition rate are thoroughly described. General guidelines are submitted to enable designing of gainswitched fiber lasers with specifically tailored properties...

  5. Bringing Next-Generation Sequencing into the Classroom through a Comparison of Molecular Biology Techniques

    Science.gov (United States)

    Bowling, Bethany; Zimmer, Erin; Pyatt, Robert E.

    2014-01-01

    Although the development of next-generation (NextGen) sequencing technologies has revolutionized genomic research and medicine, the incorporation of these topics into the classroom is challenging, given an implied high degree of technical complexity. We developed an easy-to-implement, interactive classroom activity investigating the similarities…

  6. Engineered CRISPR Systems for Next Generation Gene Therapies.

    Science.gov (United States)

    Pineda, Michael; Moghadam, Farzaneh; Ebrahimkhani, Mo R; Kiani, Samira

    2017-09-15

    An ideal in vivo gene therapy platform provides safe, reprogrammable, and precise strategies which modulate cell and tissue gene regulatory networks with a high temporal and spatial resolution. Clustered regularly interspaced short palindromic repeats (CRISPR), a bacterial adoptive immune system, and its CRISPR-associated protein 9 (Cas9), have gained attention for the ability to target and modify DNA sequences on demand with unprecedented flexibility and precision. The precision and programmability of Cas9 is derived from its complexation with a guide-RNA (gRNA) that is complementary to a desired genomic sequence. CRISPR systems open-up widespread applications including genetic disease modeling, functional screens, and synthetic gene regulation. The plausibility of in vivo genetic engineering using CRISPR has garnered significant traction as a next generation in vivo therapeutic. However, there are hurdles that need to be addressed before CRISPR-based strategies are fully implemented. Some key issues center on the controllability of the CRISPR platform, including minimizing genomic-off target effects and maximizing in vivo gene editing efficiency, in vivo cellular delivery, and spatial-temporal regulation. The modifiable components of CRISPR systems: Cas9 protein, gRNA, delivery platform, and the form of CRISPR system delivered (DNA, RNA, or ribonucleoprotein) have recently been engineered independently to design a better genome engineering toolbox. This review focuses on evaluating CRISPR potential as a next generation in vivo gene therapy platform and discusses bioengineering advancements that can address challenges associated with clinical translation of this emerging technology.

  7. Direct target NOTES: prospective applications for next generation robotic platforms.

    Science.gov (United States)

    Atallah, S; Hodges, A; Larach, S W

    2018-05-01

    A new era in surgical robotics has centered on alternative access to anatomic targets and next generation designs include flexible, single-port systems which follow circuitous rather than straight pathways. Such systems maintain a small footprint and could be utilized for specialized operations based on direct organ target natural orifice transluminal endoscopic surgery (NOTES), of which transanal total mesorectal excision (taTME) is an important derivative. During two sessions, four direct target NOTES operations were conducted on a cadaveric model using a flexible robotic system to demonstrate proof-of-concept of the application of a next generation robotic system to specific types of NOTES operations, all of which required removal of a direct target organ through natural orifice access. These four operations were (a) robotic taTME, (b) robotic transvaginal hysterectomy in conjunction with (c) robotic transvaginal salpingo-oophorectomy, and in an ex vivo model, (d) trans-cecal appendectomy. Feasibility was demonstrated in all cases using the Flex ® Robotic System with Colorectal Drive. During taTME, the platform excursion was 17 cm along a non-linear path; operative time was 57 min for the transanal portion of the dissection. Robotic transvaginal hysterectomy was successfully completed in 78 min with transvaginal extraction of the uterus, although laparoscopic assistance was required. Robotic transvaginal unilateral salpingo-oophorectomy with transvaginal extraction of the ovary and fallopian tube was performed without laparoscopic assistance in 13.5 min. In an ex vivo model, a robotic trans-cecal appendectomy was also successfully performed for the purpose of demonstrating proof-of-concept only; this was completed in 24 min. A flexible robotic system has the potential to access anatomy along circuitous paths, making it a suitable platform for direct target NOTES. The conceptual operations posed could be considered suitable for next generation robotics once

  8. The Next Generation Science Standards: A Focus on Physical Science

    Science.gov (United States)

    Krajcik, Joe

    2013-01-01

    This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…

  9. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...

  10. Research and Development Supporting a Next Generation Germanium Double Beta Decay Experiment

    Science.gov (United States)

    Rielage, Keith; Elliott, Steve; Chu, Pinghan; Goett, Johnny; Massarczyk, Ralph; Xu, Wenqin

    2015-10-01

    To improve the search for neutrinoless double beta decay, the next-generation experiments will increase in source mass and continue to reduce backgrounds in the region of interest. A promising technology for the next generation experiment is large arrays of Germanium p-type point contact detectors enriched in 76-Ge. The experience, expertise and lessons learned from the MAJORANA DEMONSTRATOR and GERDA experiments naturally lead to a number of research and development activities that will be useful in guiding a future experiment utilizing Germanium. We will discuss some R&D activities including a hybrid cryostat design, background reduction in cabling, connectors and electronics, and modifications to reduce assembly time. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  11. Embedded model control GNC for the Next Generation Gravity Mission

    Science.gov (United States)

    Colangelo, Luigi; Massotti, Luca; Canuto, Enrico; Novara, Carlo

    2017-11-01

    A Next Generation Gravity Mission (NGGM) concept for measuring the Earth's variable gravity field has been recently proposed by ESA. The mission objective consists in measuring the temporal variations of the Earth gravity field over a long-time span, with very high spatial and temporal resolutions. This paper focuses on the guidance, navigation and control (GNC) design for the science phase of the NGGM mission. NGGM will consist of a two-satellite long-distance formation like GRACE, where each satellite will be controlled to be drag-free like GOCE. Satellite-to-satellite distance variations, encoding gravity anomalies, will be measured by laser interferometry. The formation satellites, distant up to 200 km, will fly in a quasi-polar orbit at an Earth altitude between 300 and 450 km. Orbit and formation control counteract bias and drift of the residual drag-free accelerations, in order to reach orbit/formation long-term stability. Drag-free control allows the formation to fly counteracting the atmospheric drag, ideally subject only to gravity. Orbit and formation control, designed through the innovative Integrated Formation Control (IFC), have been integrated into a unique control system, aiming at stabilizing the formation triangle consisting of satellites and Earth Center of Masses. In addition, both spacecraft must align their control axis to the satellite-to-satellite line (SSL) with micro-radian accuracy. This is made possible by specific optical sensors and the inter-satellite laser interferometer, capable of materializing the SSL. Such sensors allow each satellite to pursue an autonomous alignment after a suitable acquisition procedure. Pointing control is severely constrained by the angular drag-free control, which must ideally zero the angular acceleration vector, in the science frequency band. The control unit has been designed according to the Embedded Model Control methodology and is organized in a hierarchical way, where the drag-free control plays the

  12. An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing.

    Science.gov (United States)

    Amini, Parisa; Ettlin, Julia; Opitz, Lennart; Clementi, Elena; Malbon, Alexandra; Markkanen, Enni

    2017-08-23

    Formalin-fixed paraffin embedded (FFPE) tissue constitutes a vast treasury of samples for biomedical research. Thus far however, extraction of RNA from FFPE tissue has proved challenging due to chemical RNA-protein crosslinking and RNA fragmentation, both of which heavily impact on RNA quantity and quality for downstream analysis. With very small sample sizes, e.g. when performing Laser-capture microdissection (LCM) to isolate specific subpopulations of cells, recovery of sufficient RNA for analysis with reverse-transcription quantitative PCR (RT-qPCR) or next-generation sequencing (NGS) becomes very cumbersome and difficult. We excised matched cancer-associated stroma (CAS) and normal stroma from clinical specimen of FFPE canine mammary tumours using LCM, and compared the commonly used protease-based RNA isolation procedure with an adapted novel technique that additionally incorporates a focused ultrasonication step. We successfully adapted a protocol that uses focused ultrasonication to isolate RNA from small amounts of deparaffinised, stained, clinical LCM samples. Using this approach, we found that total RNA yields could be increased by 8- to 12-fold compared to a commonly used protease-based extraction technique. Surprisingly, RNA extracted using this new approach was qualitatively at least equal if not superior compared to the old approach, as Cq values in RT-qPCR were on average 2.3-fold lower using the new method. Finally, we demonstrate that RNA extracted using the new method performs comparably in NGS as well. We present a successful isolation protocol for extraction of RNA from difficult and limiting FFPE tissue samples that enables successful analysis of small sections of clinically relevant specimen. The possibility to study gene expression signatures in specific small sections of archival FFPE tissue, which often entail large amounts of highly relevant clinical follow-up data, unlocks a new dimension of hitherto difficult-to-analyse samples which now

  13. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  14. Beamstrahlung spectra in next generation linear colliders. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.; Chen, P. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Kozanecki, W. [DAPNIA-SPP, CEN-Saclay (France)

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  15. Semantic e-Learning: Next Generation of e-Learning?

    Science.gov (United States)

    Konstantinos, Markellos; Penelope, Markellou; Giannis, Koutsonikos; Aglaia, Liopa-Tsakalidi

    Semantic e-learning aspires to be the next generation of e-learning, since the understanding of learning materials and knowledge semantics allows their advanced representation, manipulation, sharing, exchange and reuse and ultimately promote efficient online experiences for users. In this context, the paper firstly explores some fundamental Semantic Web technologies and then discusses current and potential applications of these technologies in e-learning domain, namely, Semantic portals, Semantic search, personalization, recommendation systems, social software and Web 2.0 tools. Finally, it highlights future research directions and open issues of the field.

  16. A Survey on 5G: The Next Generation of Mobile Communication

    OpenAIRE

    Panwar, Nisha; Sharma, Shantanu; Singh, Awadhesh Kumar

    2015-01-01

    The rapidly increasing number of mobile devices, voluminous data, and higher data rate are pushing to rethink the current generation of the cellular mobile communication. The next or fifth generation (5G) cellular networks are expected to meet high-end requirements. The 5G networks are broadly characterized by three unique features: ubiquitous connectivity, extremely low latency, and very high-speed data transfer. The 5G networks would provide novel architectures and technologies beyond state...

  17. Hologaphy of a CO2 laser generated plasma

    International Nuclear Information System (INIS)

    Elkerbout, A.C.H.; Van Dijk, J.W.; Donaldson, T.P.

    1976-01-01

    An expermental technique for generating holographic interferograms is discussed and illustrated with results obtained on a plasma generated by a 75 J CO 2 laser pulse incident at intensities of approximately 9 x 10 12 W/cm 2 on a plane carbon target. (author)

  18. Software R&D for Next Generation of HEP Experiments, Inspired by Theano

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    In the next decade, the frontiers of High Energy Physics (HEP) will be explored by three machines: the High Luminosity Large Hadron Collider (HL-LHC) in Europe, the Long Base Neutrino Facility (LBNF) in the US, and the International Linear Collider (ILC) in Japan. These next generation experiments must address two fundamental problems in the current generation of HEP experimental software: the inability to take advantage and adapt to the rapidly evolving processor landscape, and the difficulty in developing and maintaining increasingly complex software systems by physicists. I will propose a strategy, inspired by the automatic optimization and code generation in Theano, to simultaneously address both problems. I will describe three R&D projects with short-term physics deliverables aimed at developing this strategy. The first project is to develop maximally sensitive General Search for New Physics at the LHC by applying the Matrix Element Method running GPUs of HPCs. The second is to classify and reconstru...

  19. Laser ion source with solenoid field

    Science.gov (United States)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  20. SMITH: a LIMS for handling next-generation sequencing workflows

    OpenAIRE

    Venco, Francesco; Vaskin, Yuriy; Ceol, Arnaud; Muller, Heiko

    2014-01-01

    Background Life-science laboratories make increasing use of Next Generation Sequencing (NGS) for studying bio-macromolecules and their interactions. Array-based methods for measuring gene expression or protein-DNA interactions are being replaced by RNA-Seq and ChIP-Seq. Sequencing is generally performed by specialized facilities that have to keep track of sequencing requests, trace samples, ensure quality and make data available according to predefined privileges. An integrated tool helps to ...

  1. Benchmark problem suite for reactor physics study of LWR next generation fuels

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Ikehara, Tadashi; Ito, Takuya; Saji, Etsuro

    2002-01-01

    This paper proposes a benchmark problem suite for studying the physics of next-generation fuels of light water reactors. The target discharge burnup of the next-generation fuel was set to 70 GWd/t considering the increasing trend in discharge burnup of light water reactor fuels. The UO 2 and MOX fuels are included in the benchmark specifications. The benchmark problem consists of three different geometries: fuel pin cell, PWR fuel assembly and BWR fuel assembly. In the pin cell problem, detailed nuclear characteristics such as burnup dependence of nuclide-wise reactivity were included in the required calculation results to facilitate the study of reactor physics. In the assembly benchmark problems, important parameters for in-core fuel management such as local peaking factors and reactivity coefficients were included in the required results. The benchmark problems provide comprehensive test problems for next-generation light water reactor fuels with extended high burnup. Furthermore, since the pin cell, the PWR assembly and the BWR assembly problems are independent, analyses of the entire benchmark suite is not necessary: e.g., the set of pin cell and PWR fuel assembly problems will be suitable for those in charge of PWR in-core fuel management, and the set of pin cell and BWR fuel assembly problems for those in charge of BWR in-core fuel management. (author)

  2. A study of particle generation during laser ablation with applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunyi [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    A study has been made of the generation of particles during laser ablation and has included size distribution measurements and observation of the formation processes. The particle size distribution with respect to different laser parameters was obtained in-line using a differential mobility analyzer (DMA) and a particle counter. The experimental results show that the particle size varies with laser energy, laser pulsewidth, ambient gas flow rate and sample properties. The results serve as a basis for controlling the size of nanoparticles generated by laser ablation. Laser shadowgraph imaging was used to study mass ejection processes and mechanisms. At higher laser irradiance, some particles were ejected in the liquid and even in the solid phase. Time-resolved images show the propagation of the shockwaves: external shockwaves propagate outward and decelerate, and internal shockwaves reflect back and forth between the gas contact surface and the sample surface. The internal shockwave is proposed to cause the ejection of liquid particles when the internal shockwave strikes the liquid molten layer. A simulation based on vapor plume expansion was carried out and provides satisfactory agreement with experimental results. Different material properties result in different particle ejection behavior:particle ejection for most materials including metals result in a conically shaped envelope for the ejected material while ejection for silicon resembles a liquid jet. The difference in density change when the materials melt was proposed to be an important factor in the different ejection behavior. The characteristics of particles generated by laser ablation have a strong influence on the chemical analysis of the irradiated sample. Large particles are more difficult to completely vaporize and ionize, and induced preferential vaporization causes fractionation (i.e. a detected chemical composition that differs from the sample material). Large particles also result in spikes in

  3. Microring Diode Laser for THz Generation

    DEFF Research Database (Denmark)

    Mariani, S.; Andronico, A.; Favero, I.

    2013-01-01

    We report on the modeling and optical characterization of AlGaAs/InAs quantum-dot microring diode lasers designed for terahertz (THz) difference frequency generation (DFG) between two whispering gallery modes (WGMs) around 1.3 $\\mu$m. In order to investigate the spectral features of this active...

  4. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  5. Full C-band Tunable MEMS-VCSEL for Next Generation G.metro Mobile Front- and Backhauling

    DEFF Research Database (Denmark)

    Wagner, Christoph; Zou, Shihuan Jim; Ortsiefer, Markus

    2017-01-01

    We report full C-band tunable, 10 Gbit/s capability, directly modulated MEMS-VCSEL for next generation converged mobile fronthaul and backhaul applications. Bit error rates below 10(-9) were achieved over up to 40 km SSMF.......We report full C-band tunable, 10 Gbit/s capability, directly modulated MEMS-VCSEL for next generation converged mobile fronthaul and backhaul applications. Bit error rates below 10(-9) were achieved over up to 40 km SSMF....

  6. The "Next Generation Science Standards" and the Earth and Space Sciences

    Science.gov (United States)

    Wysession, Michael E.

    2013-01-01

    The "Next Generation Science Standards" ("NGSS"), due to be released this spring, represents a revolutionary step toward establishing modern, national K-12 science education standards. Based on the recommendations of the National Research Council's "A Framework for K-12 Science Education: Practices, Crosscutting…

  7. A framework for QoS & mobility in the Internet next generation

    NARCIS (Netherlands)

    Rexhepi, Vlora; Karagiannis, Georgios; Heijenk, Geert; Pras, Aiko

    2000-01-01

    It is expected that the Internet next generation architecture will support applications with different quality of service requirements, independently of whether their location is fixed or mobile. However, enabling QoS in Internet is a tough challenge, and it gets even tougher when the mobile

  8. A framework for QoS & mobility in the Internet next generation

    NARCIS (Netherlands)

    Karagiannis, Georgios; Rexhepi, Vlora; Heijenk, Geert

    It is expected that the next generation Internet architecture will support applications with different quality of service requirements, independently of whether their location is fixed or movable. However, enabling QoS in Internet is a tough challenge, and it gets even tougher when the mobile

  9. Multi-Stage Admission Control for Load Balancing in Next Generation Systems

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Anggorojati, Bayu; Luo, Jijun

    2008-01-01

    This paper describes a load-dependent multi-stage admission control suitable for next generation systems. The concept uses decision polling in entities located at different levels of the architecture hierarchy and based on the load to activate a sequence of actions related to the admission...

  10. Implementation of defence in depth for next generation light water reactors

    International Nuclear Information System (INIS)

    1997-12-01

    The publication of this IAEA technical document represents the conclusion of a task, initiated in 1995, devoted to defence in depth in future reactors. It focuses mainly on the next generation of LWRs, although many general considerations may also apply to other types of reactors

  11. 1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd

    2009-01-01

    More than 1.5 W of green light at 531 nm is generated by singlepass second harmonic generation in periodically poled MgO:LiNbO3. The pump laser is a high power tapered laser with a distributed Bragg reflector etched in the ridge section of the laser to provide wavelength selectivity. The output...... power of the single-frequency tapered laser is 9.3 W in continuous wave operation. A conversion efficiency of 18.5 % was achieved in the experiments....

  12. Next Generation Science Partnerships

    Science.gov (United States)

    Magnusson, J.

    2016-02-01

    I will provide an overview of the Next Generation Science Standards (NGSS) and demonstrate how scientists and educators can use these standards to strengthen and enhance their collaborations. The NGSS are rich in content and practice and provide all students with an internationally-benchmarked science education. Using these state-led standards to guide outreach efforts can help develop and sustain effective and mutually beneficial teacher-researcher partnerships. Aligning outreach with the three dimensions of the standards can help make research relevant for target audiences by intentionally addressing the science practices, cross-cutting concepts, and disciplinary core ideas of the K-12 science curriculum that drives instruction and assessment. Collaborations between researchers and educators that are based on this science framework are more sustainable because they address the needs of both scientists and educators. Educators are better able to utilize science content that aligns with their curriculum. Scientists who learn about the NGSS can better understand the frameworks under which educators work, which can lead to more extensive and focused outreach with teachers as partners. Based on this model, the International Ocean Discovery Program (IODP) develops its education materials in conjunction with scientists and educators to produce accurate, standards-aligned activities and curriculum-based interactions with researchers. I will highlight examples of IODP's current, successful teacher-researcher collaborations that are intentionally aligned with the NGSS.

  13. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  14. A free-electron laser fourth-generation X-ray source

    International Nuclear Information System (INIS)

    Moncton, D. E.

    1999-01-01

    The field of synchrotrons radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research those beams make possible. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the.optical laser. Theoretical work over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission in free electron lasers. The use of a superconducting linac could produce a major, cost-effective facility that spans wavelengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotron facilities, immense new scientific opportunities from fourth-generation sources

  15. Super fast physical-random number generation using laser diode frequency noises

    Science.gov (United States)

    Ushiki, Tetsuro; Doi, Kohei; Maehara, Shinya; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2011-02-01

    Random numbers can be classified as either pseudo- or physical-random in character. Pseudo-random numbers' periodicity renders them inappropriate for use in cryptographic applications, but naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideally-suited to the task. The laser diode naturally produces a wideband "noise" signal that is believed to have tremendous capacity and great promise, for the rapid generation of physical-random numbers for use in cryptographic applications. We measured a laser diode's output, at a fast photo detector and generated physical-random numbers from frequency noises. We then identified and evaluated the binary-number-line's statistical properties. The result shows that physical-random number generation, at speeds as high as 40Gbps, is obtainable, using the laser diode's frequency noise characteristic.

  16. The "Next Generation Science Standards" and the Earth and Space Sciences

    Science.gov (United States)

    Wysession, Michael E.

    2013-01-01

    In this article, Michael E. Wysession comments on the "Next Generation Science Standards" (NGSS), which are based on the recommendations of the National Research Council and represent a revolutionary step toward establishing modern, national K-12 science education standards. The NGSS involves significant changes from traditional…

  17. Thermally assisted nanosecond laser generation of ferric nanoparticles

    Science.gov (United States)

    Kurselis, K.; Kozheshkurt, V.; Kiyan, R.; Chichkov, B.; Sajti, L.

    2018-03-01

    A technique to increase nanosecond laser based production of ferric nanoparticles by elevating temperature of the iron target and controlling its surface exposure to oxygen is reported. High power near-infrared laser ablation of the iron target heated up to 600 °C enhances the particle generation efficiency by more than tenfold exceeding 6 μg/J. Temporal and thermal dependencies of the particle generation process indicate correlation of this enhancement with the oxidative processes that take place on the iron surface during the per spot interpulse delay. Nanoparticles, produced using the heat-assisted ablation technique, are examined using scanning electron and transmission electron microscopy confirming the presence of 1-100 nm nanoparticles with an exponential size distribution that contain multiple randomly oriented magnetite nanocrystallites. The described process enables the application of high power lasers and facilitates precise, uniform, and controllable direct deposition of ferric nanoparticle coatings at the industry-relevant rates.

  18. Informing the next nuclear generation - how does the Ginna plant branch do it?

    International Nuclear Information System (INIS)

    Saavedra, A.

    1995-01-01

    Most of us are familiar with the latest advertising phrase, ''Our children are our future.'' This phrase has been used in so many instances - from concerns about waste, Social Security, and the federal deficit to drug abuse and violence. One more area can be added to the list and advertised nuclear power. Since the establishment of the Ginna plant branch (GPB) in 1992, our target audience has been the next nuclear generation (our children), but our vehicle for dissemination has been the current generation (the adults). Have you ever thought about how often your opinions affect the children you come in contact with? One of GPB's goals is to provide as much information as possible to teachers, neighbors, and civic organizations of our community so that there is a nuclear future that can be carried on by the next generation

  19. Towards identifying the next generation of superfund and hazardous waste site contaminants

    Science.gov (United States)

    Ela, Wendell P.; Sedlak, David L.; Barlaz, Morton A.; Henry, Heather F.; Muir, Derek C.G.; Swackhamer, Deborah L.; Weber, Eric J.; Arnold, Robert G.; Ferguson, P. Lee; Field, Jennifer A.; Furlong, Edward T.; Giesy, John P.; Halden, Rolf U.; Henry, Tala; Hites, Ronald A.; Hornbuckle, Keri C.; Howard, Philip H.; Luthy, Richard G.; Meyer, Anita K.; Saez, A. Eduardo; vom Saal, Frederick S.; Vulpe, Chris D.; Wiesner, Mark R.

    2011-01-01

    Background This commentary evolved from a workshop sponsored by the National Institute of Environmental Health Sciences titled "Superfund Contaminants: The Next Generation" held in Tucson, Arizona, in August 2009. All the authors were workshop participants.

  20. Fiscal Year 2014 Annual Report on BNLs Next Generation Safeguards Initiative Human Capital Development Activities

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, Susan E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-10-10

    Brookhaven National Laboratory’s (BNL’s) Nonproliferation and National Security Department contributes to the National Nuclear Security Administration Office of Nonproliferation and International Security Next Generation Safeguards Initiative (NGSI) through university engagement, safeguards internships, safeguards courses, professional development, recruitment, and other activities aimed at ensuring the next generation of international safeguards professionals is adequately prepared to support the U.S. safeguards mission. This report is a summary of BNL s work under the NGSI program in Fiscal Year 2014.

  1. Effects of external magnetic field on harmonics generated in laser interaction with underdense plasma

    International Nuclear Information System (INIS)

    Faghihi-Nik, M.; Ghorbanalilu, M.; Shokri, B.

    2010-01-01

    Complete text of publication follows. Generation of harmonic radiation is an important subject of laser plasma interaction and attracts great attention due to a wide range of applications. It has been seen that intense electromagnetic and quasi-static transverse magnetic fields are generated in laser plasma interaction. An extremely intense magnetic field (up to hundreds of MG) has been observed by experimental measurements in interaction of short laser pulses with plasma. These self-generated or applied magnetic fields affect the propagation of the laser pulses. In most laser interactions with homogeneous plasma, odd harmonics of laser frequency are generated. In this paper, we point out the possibility of even harmonics generation when a linearly polarized laser beam propagates in homogeneous plasma in the presence of a transverse magnetic field. It is shown that applying external field induces a transverse current density oscillating twice of the laser field which leds to generation of second harmonic radiation. This current density is derived using the perturbation method, and the steady state amplitude of the second harmonic obtained by solution of the wave equation. By the same procedure the current density and then the steady state amplitude of higher order harmonics are calculated. The efficiency of harmonic generation (the ratio of harmonic power to incident power) is a drastically function of the strength of external magnetic field. It is found that the efficiency of even harmonics is zero in the absence of magnetic field and increases as the magnetic field is increased. For odd harmonics, applying the external magnetic field enhances the generated harmonics as well. The conversion efficiency also increases with increase in plasma density and intensity of the laser beam.

  2. On the ergodic capacity of legacy systems in the presence of next generation interference

    KAUST Repository

    Mahmood, Nurul Huda

    2011-11-01

    Next generation wireless systems facilitating better utilization of the scarce radio spectrum have emerged as a response to inefficient rigid spectrum assignment policies. These are comprised of intelligent radio nodes that opportunistically operate in the radio spectrum of existing legacy systems; yet unwanted interference at the legacy receivers is unavoidable. In order to design efficient next generation systems and to minimize their harmful consequences, it is necessary to realize their impact on the performance of legacy systems. In this work, a generalized framework for the ergodic capacity analysis of such legacy systems in the presence of interference from next generation systems is presented. The analysis is built around a model developed for the statistical representation of the interference at the legacy receivers, which is then used to evaluate the ergodic capacity of the legacy system. Moreover, this analysis is not limited to the context of legacy systems, and is in fact applicaple to any interference limited system. Findings of analytical performance analyses are confirmed through selected computer-based Monte-Carlo simulations. © 2011 IEEE.

  3. Design optimization of single-main-amplifier KrF laser-fusion systems

    International Nuclear Information System (INIS)

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    KrF lasers appear to be a very promising laser fusion driver for commercial applications. The Large Amplifier Module for the Aurora Laser System at Los Alamos is the largest KrF laser in the world and is currently operating at 5 kJ with 10 to 15 kJ eventually expected. The next generation system is anticipated to be a single-main-amplifier system that generates approximately 100 kJ. This paper examines the cost and efficiency tradeoffs for a complete single-main-amplifier KrF laser fusion experimental facility. It has been found that a 7% efficient $310/joule complete laser-fusion system is possible by using large amplifier modules and high optical fluences

  4. Next Generation Campus Network Deployment Project Based on Softswitch

    OpenAIRE

    HU Feng; LIU Ziyan

    2011-01-01

    After analyzing the current networks of Guizhou University,we brought forward a scheme of next generation campus networks based on softswitch technology by choosing SoftX3000 switching system of HuaWei and provided the specific solution of accessing campus networks in this paper. It is proved that this scheme is feasible by using OPNET, which not only accomplished the integration of the PSTN and IP networks but also achieved the combining of voice services and data services.

  5. Applying Next Generation Sequencing to Skeletal Development and Disease

    OpenAIRE

    Bowen, Margot Elizabeth

    2013-01-01

    Next Generation Sequencing (NGS) technologies have dramatically increased the throughput and lowered the cost of DNA sequencing. In this thesis, I apply these technologies to unresolved questions in skeletal development and disease. Firstly, I use targeted re-sequencing of genomic DNA to identify the genetic cause of the cartilage tumor syndrome, metachondromatosis (MC). I show that the majority of MC patients carry heterozygous loss-of-function mutations in the PTPN11 gene, which encodes a p...

  6. Next Generation Qualification: Nanometrics T120PH Seismometer Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Slad, George William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sandia National Laboratories has tested and evaluated three seismometers, the Trillium 120PH, manufactured by Nanometrics. These seismometers measure broadband ground velocity using a UVW configuration with feedback control in a mechanically levelled borehole package. The purpose of the seismometer evaluation was to determine a measured sensitivity, response, self- noise, dynamic range, and self-calibration ability. The Nanometrics Trillium 120PH seismometers are being evaluated for the U.S. Air Force as part of their Next Generation Qualification effort.

  7. QED effects induced harmonics generation in extreme intense laser foil interaction

    Science.gov (United States)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  8. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... conversion is pushed to multi-MW level with high power density requirement. It has also been revealed that thermal stress in the power semiconductors is closely related to many determining factors in the wind power application like the reliability, cost, power density, etc. therefore it is an important......The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...

  9. Detection of TET2, KRAS and CBL variants by Next Generation ...

    African Journals Online (AJOL)

    Dilara Fatma Akin

    2015-10-01

    Oct 1, 2015 ... sarcoma viral oncogene homolog (KRAS), and Casitas B-cell ... AML by screening hot-spot exons of TET2, KRAS, and CBL using Next Generation Sequencing ... Methods: Eight patients who were diagnosed with pediatric AML at Losante ..... mutations in pre-leukemic stem cells in acute myeloid leukemia.

  10. Teaching the "Geo" in Geography with the Next Generation Science Standards

    Science.gov (United States)

    Wysession, Michael E.

    2016-01-01

    The Next Generation Science Standards (NGSS; Achieve 2014, 532; Figure 1A) represent a new approach to K-12 science education that involves the interweaving of three educational dimensions: Science and Engineering Practices (SEPs), Disciplinary Core Ideas (DCIs), and Crosscutting Concepts (CCCs). Unlike most preexisting state science standards for…

  11. Next Generation Science Standards: Considerations for Curricula, Assessments, Preparation, and Implementation

    Science.gov (United States)

    Best, Jane; Dunlap, Allison

    2014-01-01

    This policy brief provides an overview of the Next Generation Science Standards (NGSS), discusses policy considerations for adopting or adapting the new standards, and presents examples from states considering or implementing the NGSS. Changing academic standards is a complex process that requires significant investments of time, money, and human…

  12. Am I my Family's Keeper? : Disclosure Dilemmas in Next Generation Sequencing

    NARCIS (Netherlands)

    Wouters, Roel H P; Bijlsma, Rhodé M; Ausems, Margreet G E M; van Delden, Johannes J M; Voest, Emile E; Bredenoord, Annelien L

    2016-01-01

    Ever since genetic testing is possible for specific mutations, ethical debate has sparked on the question of whether professionals have a duty to warn not only patients but also their relatives that might be at risk for hereditary diseases. As next generation sequencing swiftly finds its way into

  13. Report on the September 2011 Meeting of the Next Generation Safegaurds Professional Network

    Energy Technology Data Exchange (ETDEWEB)

    Gitau, Ernest TN; Benz, Jacob M.

    2011-12-19

    The Next Generation Safeguards Professional Network (NGSPN) was established in 2009 by Oak Ridge National Laboratory targeted towards the engagement of young professionals employed in safeguards across the many national laboratories. NGSPN focuses on providing a mechanism for young safeguards professionals to connect and foster professional relationships, facilitating knowledge transfer between current safeguards experts and the next generation of experts, and acting as an entity to represent the interests of the international community of young and mid-career safeguards professionals. This is accomplished in part with a yearly meeting held at a national laboratory site. In 2011, this meeting was held at Pacific Northwest National Laboratory. This report documents the events and results of that meeting.

  14. Diamond Light Source - A Next Generation SR Facility

    International Nuclear Information System (INIS)

    Materlik, G.

    2004-01-01

    After the very successful start and the by now almost 10 years operation of the 3rd generation x-ray sources ESRF, APS and Spring-8 smaller storage rings are being planned and constructed with properties emphasising applications with photon energies around the 10 keV spectral region. In the UK the Government and the medical foundation Wellcome Trust have decided to build the Diamond Light Source Facility in the South of Oxfordshire right next to the Rutherford Appleton Laboratory. The joint venture company Diamond Light Source Limited has been created to plan, construct, and operate this facility. (author)

  15. Next generation framework for aquatic modeling of the Earth System

    Science.gov (United States)

    Fekete, B. M.; Wollheim, W. M.; Wisser, D.; Vörösmarty, C. J.

    2009-03-01

    Earth System model development is becoming an increasingly complex task. As scientists attempt to represent the physical and bio-geochemical processes and various feedback mechanisms in unprecedented detail, the models themselves are becoming increasingly complex. At the same time, the complexity of the surrounding IT infrastructure is growing as well. Earth System models must manage a vast amount of data in heterogeneous computing environments. Numerous development efforts are on the way to ease that burden and offer model development platforms that reduce IT challenges and allow scientists to focus on their science. While these new modeling frameworks (e.g. FMS, ESMF, CCA, OpenMI) do provide solutions to many IT challenges (performing input/output, managing space and time, establishing model coupling, etc.), they are still considerably complex and often have steep learning curves. The Next generation Framework for Aquatic Modeling of the Earth System (NextFrAMES, a revised version of FrAMES) have numerous similarities to those developed by other teams, but represents a novel model development paradigm. NextFrAMES is built around a modeling XML that lets modelers to express the overall model structure and provides an API for dynamically linked plugins to represent the processes. The model XML is executed by the NextFrAMES run-time engine that parses the model definition, loads the module plugins, performs the model I/O and executes the model calculations. NextFrAMES has a minimalistic view representing spatial domains and treats every domain (regardless of its layout such as grid, network tree, individual points, polygons, etc.) as vector of objects. NextFrAMES performs computations on multiple domains and interactions between different spatial domains are carried out through couplers. NextFrAMES allows processes to operate at different frequencies by providing rudimentary aggregation and disaggregation facilities. NextFrAMES was designed primarily for

  16. Safety design philosophy of the ABWR for the next generation LWRs

    International Nuclear Information System (INIS)

    Sato, Takashi; Akinaga, Makoto; Kojima, Yoshihiro

    2009-01-01

    The paper presents safety design philosophy of the advanced boiling water reactor (ABWR) to be reflected in developing the next generation light water reactors (LWRs). The basic policy of the ABWR safety design was to improve safety and reduce cost simultaneously by reflecting lessons learned of precursors, incidents and accidents that were beyond the design basis such as the Three Mile Island Unit 2 (TMI 2) accident. The ABWR is a fully active safety plant. The ABWR enhanced redundancy and diversity of active safety systems using probabilistic safety assessment (PSA) insights. It adopted a complete three division active emergency core cooling system (ECCS) and attained a very low core damage frequency (CDF) value of less than 10 -7 /ry for internal events. Only very small residual risks, if any, rather exist in external events such as an extremely large earthquake beyond the design basis. This is because external events can constitute a common cause that disables all the redundant active safety systems. Therefore, it is useless to add one more ECCS train and make a four division active ECCS for external events. Nowadays, however, fully passive safety LWRs are already established. Incorporating some of these passive safety systems we can also establish the next generation LWRs that are truly strong against external events. We can establish a plant that can survive a giant earthquake at least three days without AC power source, SA proof safety design that enables no containment failure and no evacuation to eliminate the residual risks. The same basic policy as the ABWR to improve safety and reduce cost simultaneously is again effective for the next generation LWRs. (author)

  17. Interpretation of the deep cracking phenomenon of tungsten monoblock targets observed in high-heat-flux fatigue tests at 20 MW/m"2

    International Nuclear Information System (INIS)

    Li, Muyuan; You, Jeong-Ha

    2015-01-01

    Highlights: • A theoretical interpretation is presented for deep crack of W monoblocks at 20 MW/m"2. • A consecutive process of crack initiation and growth was modeled in two stages. • The lifetime to crack initiation and the driving force of fracture are assessed. • Numerical predictions in this study agree well with the experimental findings. - Abstract: The HHF qualification tests conducted on the ITER divertor target prototypes showed that the tungsten monoblock armor suffered from deep cracking due to fatigue, when the applied high-heat-flux load approaches 20 MW/m"2. In spite of the critical implication of the deep cracking of armor on the structural integrity of a whole target component, no rigorous interpretation has been given to date. In this paper, a theoretical interpretation of the observed deep cracking feature is presented. A two-stage modeling approach is employed where deep cracking is thought to be a consecutive process of crack initiation and crack growth, which is assumed to be caused by plastic fatigue and brittle facture, respectively. The fatigue lifetime to crack initiation on the armor surface and the crack tip load of brittle fracture are assessed as a function of crack length and heat flux loads. The potential mechanisms of deep cracking are discussed for a typical slow transient high-heat-flux load cycle. It is shown that the quantitative predictions delivered in this study agree well with the observed findings offering insight into the nature of tungsten armor failure.

  18. Molecular Diagnostics in Pathology: Time for a Next-Generation Pathologist?

    Science.gov (United States)

    Fassan, Matteo

    2018-03-01

    - Comprehensive molecular investigations of mainstream carcinogenic processes have led to the use of effective molecular targeted agents in most cases of solid tumors in clinical settings. - To update readers regarding the evolving role of the pathologist in the therapeutic decision-making process and the introduction of next-generation technologies into pathology practice. - Current literature on the topic, primarily sourced from the PubMed (National Center for Biotechnology Information, Bethesda, Maryland) database, were reviewed. - Adequate evaluation of cytologic-based and tissue-based predictive diagnostic biomarkers largely depends on both proper pathologic characterization and customized processing of biospecimens. Moreover, increased requests for molecular testing have paralleled the recent, sharp decrease in tumor material to be analyzed-material that currently comprises cytology specimens or, at minimum, small biopsies in most cases of metastatic/advanced disease. Traditional diagnostic pathology has been completely revolutionized by the introduction of next-generation technologies, which provide multigene, targeted mutational profiling, even in the most complex of clinical cases. Combining traditional and molecular knowledge, pathologists integrate the morphological, clinical, and molecular dimensions of a disease, leading to a proper diagnosis and, therefore, the most-appropriate tailored therapy.

  19. Data-Driven Handover Optimization in Next Generation Mobile Communication Networks

    Directory of Open Access Journals (Sweden)

    Po-Chiang Lin

    2016-01-01

    Full Text Available Network densification is regarded as one of the important ingredients to increase capacity for next generation mobile communication networks. However, it also leads to mobility problems since users are more likely to hand over to another cell in dense or even ultradense mobile communication networks. Therefore, supporting seamless and robust connectivity through such networks becomes a very important issue. In this paper, we investigate handover (HO optimization in next generation mobile communication networks. We propose a data-driven handover optimization (DHO approach, which aims to mitigate mobility problems including too-late HO, too-early HO, HO to wrong cell, ping-pong HO, and unnecessary HO. The key performance indicator (KPI is defined as the weighted average of the ratios of these mobility problems. The DHO approach collects data from the mobile communication measurement results and provides a model to estimate the relationship between the KPI and features from the collected dataset. Based on the model, the handover parameters, including the handover margin and time-to-trigger, are optimized to minimize the KPI. Simulation results show that the proposed DHO approach could effectively mitigate mobility problems.

  20. Emissions generated during laser cutting; safety precautions; Emissions produits lors du coupage au laser; mesures de securite

    Energy Technology Data Exchange (ETDEWEB)

    Haferkamp, H.; Goede, M.; Puster, T.; Seebaum, D. [Laser Eentrum, Hanovre (Germany); Bach, F. [Institut fur Werkstoffkunde, Universite de Hanovre (Germany)

    1999-07-01

    The generation of particulate and gaseous emissions from metals and organic materials during CO{sub 2} and Nd:YAG laser cutting is described. The laser-generated air contaminants (LGAC's) are characterised in terms of their quantity, composition, and chemical complexity, and the emissions are assessed on an occupational medicine basis. The hazard potential of LGAC's are mentioned, and safety systems are discussed.

  1. Fast random-number generation using a diode laser's frequency noise characteristic

    Science.gov (United States)

    Takamori, Hiroki; Doi, Kohei; Maehara, Shinya; Kawakami, Kohei; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2012-02-01

    Random numbers can be classified as either pseudo- or physical-random, in character. Pseudo-random numbers are generated by definite periodicity, so, their usefulness in cryptographic applications is somewhat limited. On the other hand, naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideal for the task. Diode lasers' considerable wideband noise gives them tremendous capacity for generating physical-random numbers, at a high rate of speed. We measured a diode laser's output with a fast photo detector, and evaluated the binary-numbers from the diode laser's frequency noise characteristics. We then identified and evaluated the binary-number-line's statistical properties. We also investigate the possibility that much faster physical-random number parallel-generation is possible, using separate outputs of different optical-path length and character, which we refer to as "coherence collapse".

  2. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz

    2012-01-01

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power signific......In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power...... significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5–3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept...

  3. Estabilishing requirements for the next generation of pressurized water reactors--reducing the uncertainty

    International Nuclear Information System (INIS)

    Chernock, W.P.; Corcoran, W.R.; Rasin, W.H.; Stahlkopf, K.E.

    1987-01-01

    The Electric Power Research Institute is managing a major effort to establish requirements for the next generation of U.S. light water reactors. This effort is the vital first step in preserving the viability of the nuclear option to contribute to meet U.S. national electric power capacity needs in the next century. Combustion Engineering, Inc. and Duke Power Company formed a team to participate in the EPRI program which is guided by a Utility Steering committee consisting of experienced utility technical executives. A major thrust of the program is to reduce the uncertainties which would be faced by the utility executives in choosing the nuclear option. The uncertainties to be reduced include those related to safety, economic, operational, and regulatory aspects of advanced light water reactors. This paper overviews the Requirements Document program as it relates to the U.S. Advanced Light Water Reactor (ALWR) effort in reducing these uncertainties and reports the status of efforts to establish requirements for the next generation of pressurized water reactors. It concentrates on progress made in reducing the uncertainties which would deter selection of the nuclear option for contributing to U.S. national electric power capacity needs in the next century and updates previous reports in the same area. (author)

  4. NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets

    OpenAIRE

    Breese, Marcus R.; Liu, Yunlong

    2013-01-01

    Summary: NGSUtils is a suite of software tools for manipulating data common to next-generation sequencing experiments, such as FASTQ, BED and BAM format files. These tools provide a stable and modular platform for data management and analysis.

  5. Laser ion source with solenoid field

    International Nuclear Information System (INIS)

    Kanesue, Takeshi; Okamura, Masahiro; Fuwa, Yasuhiro; Kondo, Kotaro

    2014-01-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10 11 , which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator

  6. Laser ion source with solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue, Takeshi, E-mail: tkanesue@bnl.gov; Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Fuwa, Yasuhiro [Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-7501 (Japan); RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kondo, Kotaro [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550 (Japan)

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10{sup 11}, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  7. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  8. Next-Generation Bio-Products Sowing the Seeds of Success for Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Henry Müller

    2013-10-01

    Full Text Available Plants have recently been recognized as meta-organisms due to a close symbiotic relationship with their microbiome. Comparable to humans and other eukaryotic hosts, plants also harbor a “second genome” that fulfills important host functions. These advances were driven by both “omics”-technologies guided by next-generation sequencing and microscopic insights. Additionally, these new results influence applied fields such as biocontrol and stress protection in agriculture, and new tools may impact (i the detection of new bio-resources for biocontrol and plant growth promotion, (ii the optimization of fermentation and formulation processes for biologicals, (iii stabilization of the biocontrol effect under field conditions, and (iv risk assessment studies for biotechnological applications. Examples are presented and discussed for the fields mentioned above, and next-generation bio-products were found as a sustainable alternative for agriculture.

  9. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces

    International Nuclear Information System (INIS)

    Sprangle, P.; Penano, J.R.; Hafizi, B.; Kapetanakos, C.A.

    2004-01-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, -8 . Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated

  10. Nucleic acid reactivity : challenges for next-generation semiempirical quantum models

    OpenAIRE

    Huang, Ming; Giese, Timothy J.; York, Darrin M.

    2015-01-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity in order to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic diffierential overlap (...

  11. NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Halse, C.

    2014-05-01

    The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.

  12. NNSA Program Develops the Next Generation of Nuclear Security Experts

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.; Disney, Maren V.

    2015-09-02

    NNSA is fostering the next generation of nuclear security experts is through its successful NNSA Graduate Fellowship Program (NGFP). NGFP offers its Fellows an exceptional career development opportunity through hands-on experience supporting NNSA mission areas across policy and technology disciplines. The one-year assignments give tomorrow’s leaders in global nuclear security and nonproliferation unparalleled exposure through assignments to Program Offices across NNSA.

  13. Next Generation Qualification: Kinemetrics STS-5A Seismometer Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Slad, George William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sandia National Laboratories has tested and evaluated two seismometers, the STS-5A, manufactured by Kinemetrics. These seismometers measure three axes of broadband ground velocity using a UVW configuration with feedback control in a mechanically levelled borehole package. The purpose of the seismometer evaluation was to determine a measured sensitivity, response, self-noise, dynamic range, and self-calibration ability. The Kinemetrics STS-5A seismometers are being evaluated for the U.S. Air Force as part of their Next Generation Qualification effort.

  14. Laser-generated acoustic wave studies on tattoo pigment

    Science.gov (United States)

    Paterson, Lorna M.; Dickinson, Mark R.; King, Terence A.

    1996-01-01

    A Q-switched alexandrite laser (180 ns at 755 nm) was used to irradiate samples of agar embedded with red, black and green tattoo dyes. The acoustic waves generated in the samples were detected using a PVDF membrane hydrophone and compared to theoretical expectations. The laser pulses were found to generate acoustic waves in the black and green samples but not in the red pigment. Pressures of up to 1.4 MPa were produced with irradiances of up to 96 MWcm-2 which is comparable to the irradiances used to clear pigment embedded in skin. The pressure gradient generated across pigment particles was approximately 1.09 X 1010 Pam-1 giving a pressure difference of 1.09 +/- 0.17 MPa over a particle with mean diameter 100 micrometers . This is not sufficient to permanently damage skin which has a tensile strength of 7.4 MPa.

  15. FY 1999 Report on feasibility research and development for next generation liquid crystal process basic technologies; 1999 nendo jisedai ekisho process kiban gijutsu ni kakawaru sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Described herein are the FY 1999 results of the feasibility study on the next generation liquid crystal processes. Technology for low-temperature thin film formation fabricates high-purity, high-density Si films useful as the laser annealing (crystallization) precursor by the IBD method, without using thermal annealing. Formation of thin films of a-Si and SiNx on substrates kept at 200 degrees C or lower is studied using a high-density plasma source, and the surface conditions are uniformly controlled over a large area of the film precursor. The new technology needs less power to produce the film than the conventional CVD method which uses parallel flat plates by controlling the plasma-generating region. Resources- and energy-saving using the TFT method are essential for production of liquid-crystal displays, and the techniques for forming the thin films at low temperature are studied. Reduction in wiring resistance (signal transmission delay) is studied for the next generation TFT, and it is found that the Cu film is selectively formed on TiN but not on SiO{sub 2} by the MOCVD method at 150 to 180 degrees C. Similarly, the selective film formation is confirmed in the plating technology. The comprehensive investigations for the next generation liquid crystal process technologies cover high-quality polycrystalline Si films and lithography (exposed to light). (NEDO)

  16. Estimation of allele frequency and association mapping using next-generation sequencing data

    DEFF Research Database (Denmark)

    Kim, Su Yeon; Lohmueller, Kirk E; Albrechtsen, Anders

    2011-01-01

    Estimation of allele frequency is of fundamental importance in population genetic analyses and in association mapping. In most studies using next-generation sequencing, a cost effective approach is to use medium or low-coverage data (e.g., frequency estimation...

  17. Second harmonic generation in Te crystal using free electron laser

    CERN Document Server

    Yamauchi, T; Minehara, E J

    2002-01-01

    The second harmonic generation signal converted from the fundamental wavelength of 22 mu m of a free electron laser was observed for the first time using a birefringent Te crystal. The experimental conversion efficiency of Te crystal for second harmonic generation is 0.53%, which is equivalent to the theoretical value within a factor of 2. The Te crystal has been incorporated into an autocorrelator system to measure the micro-pulse width of infrared free electron laser successfully. (author)

  18. Short-pulse generation in a diode-end-pumped solid-state laser

    CSIR Research Space (South Africa)

    Ngcobo, S

    2010-09-01

    Full Text Available , Development of High Average Power Picosecond Laser Systems, Opto- Electronic Devices, (2002). INTRODUCTION A Nd:YVO4 modelocked laser has been constructed using a resonator designed according to the theoretical parameters. The laser produced pulses... theoretical PQSML,th of 2.08W. Short-Pulse Generation in a Diode-End-Pumped Solid-State Laser S. Ngcobo1,2, C. Bollig1 and H. Von Bergmann2 1CSIR National Laser Centre, PO Box 395, Pretoria, 0001, South Africa 2Laser Research Center, University...

  19. Quantum cascade laser infrared spectroscopy of single cancer cells

    KAUST Repository

    Patel, Imran; Rajamanickam, Vijayakumar Palanisamy; Bertoncini, Andrea; Pagliari, Francesca; Tirinato, Luca; Laptenok, Sergey P.; Liberale, Carlo

    2017-01-01

    Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.

  20. Quantum cascade laser infrared spectroscopy of single cancer cells

    KAUST Repository

    Patel, Imran

    2017-03-27

    Quantum cascade laser infrared spectroscopy is a next generation novel imaging technique allowing high resolution spectral imaging of cells. We show after spectral pre-processing, identification of different cancer cell populations within minutes.

  1. Morphology of magnetic fields generated in laser-produced plasmas

    International Nuclear Information System (INIS)

    Boyd, T.J.M.; Cooke, D.

    1988-01-01

    Magnetic fields in the megagauss range have been measured in experiments on plasmas generated by irradiating targets with high power lasers. A study of the morphology of these self-generated fields is important not only for its intrinsic interest but for possible implications in laser--target physics. In this paper work on the numerical modeling of large magnetic fields generated in target experiments is reported. The results show generally satisfactory agreement with the fields measured experimentally both in terms of the magnitude of the peak fields and their morphology. In the numerical model the contribution from the Hall term in describing the evolution of the magnetic field is shown to be important especially in short pulse (≅100 psec) experiments

  2. Pre-brazed casting and hot radial pressing: A reliable process for the manufacturing of CFC and W monoblock mock-ups

    International Nuclear Information System (INIS)

    Visca, Eliseo; Libera, S.; Mancini, A.; Mazzone, G.; Pizzuto, A.; Testani, C.

    2007-01-01

    ENEA is involved in the European International Thermonuclear Experimental Reactor (ITER) R and D activities and, in particular, for the manufacturing of high heat flux plasma-facing components (HHFC), such as the divertor targets, the baffles and the limiters. During last years, ENEA has manufactured actively cooled mock-ups by using different technologies, namely brazing, diffusion bonding and hot isostatic pressing (HIPping). A new manufacturing process has been set up and tested. It was successfully applied for the manufacturing of W armoured monoblock mock-ups. This technique is the HRP (hot radial pressing) based on performing a radial diffusion bonding between the cooling tube and the armour tile by pressurizing only internal tube and by keeping the joining zone in vacuum at the required bonding temperature. The heating is obtained by a standard air furnace. The HRP technique is now used for the manufacturing of CFC armoured monoblock components. For this purpose, some issues have to be faced, like the low CFC tensile strength, the pure copper interlayer between the heat sink and the armour necessary to mitigate the stress at the joint interface, and the low wettability of the pure copper on the CFC matrix. This paper reports the research path followed to manufacture a medium scale vertical target CFC and W armoured mock-up by HRP. A casting of a soft copper interlayer between the tube and the tile was obtained by a new technique: the pre-brazed casting (PBC, ENEA patent). Some preliminary mock-ups with three NB31 CFC tiles were successfully manufactured and tested to thermal fatigue using electron beam facilities. They all reached at least 1000 cycles at 20 MW/m 2 without suffering any damage. The manufactured medium scale vertical target mock-up is now under testing at the FE2000 (France) facility. These activities were performed in the frame of ITER-EFDA contracts

  3. Generation of high-power terahertz radiation by femtosecond-terawatt lasers

    International Nuclear Information System (INIS)

    Nashima, Shigeki; Hosoda, Makoto; Daido, Hiroyuki

    2007-01-01

    We observed electromagnetic waves in the terahertz (THz) frequency range from a Ti foil excited by tabletop terawatt (T-cube) laser pulses. The radiation power was increased drastically with increasing its laser power. We also investigated the polarization characteristics of the sub-terahertz wave. It is found that the polarization of the radiated sub-terahertz waves was parallel to the incident beam plane, which is independent on the pump laser polarization. These results indicate transient electric field to the incident plane is generated by laser-plasma interaction, i.e., laser wake field and coherent plasma wave. (author)

  4. Next Generation Agricultural System Data, Models and Knowledge Products: Introduction

    Science.gov (United States)

    Antle, John M.; Jones, James W.; Rosenzweig, Cynthia E.

    2016-01-01

    Agricultural system models have become important tools to provide predictive and assessment capability to a growing array of decision-makers in the private and public sectors. Despite ongoing research and model improvements, many of the agricultural models today are direct descendants of research investments initially made 30-40 years ago, and many of the major advances in data, information and communication technology (ICT) of the past decade have not been fully exploited. The purpose of this Special Issue of Agricultural Systems is to lay the foundation for the next generation of agricultural systems data, models and knowledge products. The Special Issue is based on a 'NextGen' study led by the Agricultural Model Intercomparison and Improvement Project (AgMIP) with support from the Bill and Melinda Gates Foundation.

  5. Next-Generation Mitogenomics: A Comparison of Approaches Applied to Caecilian Amphibian Phylogeny

    OpenAIRE

    Maddock, Simon T.; Briscoe, Andrew G.; Wilkinson, Mark; Waeschenbach, Andrea; San Mauro, Diego; Day, Julia J.; Littlewood, D. Tim J.; Foster, Peter G.; Nussbaum, Ronald A.; Gower, David J.

    2016-01-01

    Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a ‘traditional’ Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing pla...

  6. On the theory of magnetic field generation by relativistically strong laser radiation

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Shatashvili, N.L.; Mahajan, S.M.

    1996-07-01

    The authors consider the interaction of subpicosecond relativistically strong short laser pulses with an underdense cold unmagnetized electron plasma. It is shown that the strong plasma inhomogeneity caused by laser pulses results in the generation of a low frequency (quasistatic) magnetic field. Since the electron density distribution is determined completely by the pump wave intensity, the generated magnetic field is negligibly small for nonrelativistic laser pulses but increases rapidly in the ultrarelativistic case. Due to the possibility of electron cavitation (complete expulsion of electrons from the central region) for narrow and intense beams, the increase in the generated magnetic field slows down as the beam intensity is increased. The structure of the magnetic field closely resembles that of the field produced by a solenoid; the field is maximum and uniform in the cavitation region, then it falls, changes polarity and vanishes. In extremely dense plasmas, highly intense laser pulses in the self-channeling regime can generate magnetic fields ∼ 100 Mg and greater

  7. Evaluation Metrics for Intermediate Heat Exchangers for Next Generation Nuclear Reactors

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Kim, Eung Soo; Anderson, Nolan

    2011-01-01

    The Department of Energy (DOE) is working with industry to develop a next generation, high-temperature gas-cooled reactor (HTGR) as a part of the effort to supply the United States with abundant, clean, and secure energy as initiated by the Energy Policy Act of 2005 (EPAct; Public Law 109-58,2005). The NGNP Project, led by the Idaho National Laboratory (INL), will demonstrate the ability of the HTGR to generate hydrogen, electricity, and/or high-quality process heat for a wide range of industrial applications.

  8. Astro Data Science: The Next Generation

    Science.gov (United States)

    Mentzel, Chris

    2018-01-01

    Astronomers have been at the forefront of data-driven discovery since before the days of Kepler. Using data in the scientific inquiry into the workings of the the universe is the lifeblood of the field. This said, data science is considered a new thing, and researchers from every discipline are rushing to learn data science techniques, train themselves on data science tools, and even leaving academia to become data scientists. It is undeniable that our ability to harness new computational and statistical methods to make sense of today’s unprecedented size, complexity, and fast streaming data is helping scientists make new discoveries. The question now is how to ensure that researchers can employ these tools and use them appropriately. This talk will cover the state of data science as it relates to scientific research and the role astronomers play in its development, use, and training the next generation of astro-data scientists.

  9. Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing

    DEFF Research Database (Denmark)

    Weisschuh, Nicole; Mayer, Anja K; Strom, Tim M

    2016-01-01

    Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing...

  10. A bibliometric analysis of the development of next generation active nanotechnologies

    International Nuclear Information System (INIS)

    Suominen, Arho; Li, Yin; Youtie, Jan; Shapira, Philip

    2016-01-01

    Delineating the emergence of nanotechnologies that offer new functionalities is an important element in an anticipatory approach to the governance of nanotechnology and its potential impacts. This paper examines the transition to next generation active nanotechnologies which incorporate functions that respond to the environment or systems concepts that combine devices and structures that are dynamic and which may change their states in use. We develop an approach to identifying these active nanotechnologies and then use bibliometric analysis to examine the extent of research papers and patents involving these concepts. We also examine references to environmental, health, and safety concepts in these papers, given that these next generation nanotechnologies are likely to have risk profiles that are different from those of first-generation passive nanomaterials. Our results show a steady growth overall in focus on active nanotechnologies in the research literature and in patents over the study period of 1990–2010. We also find an increase in consideration given to environmental, health, and safety topics. While gaps are highlighted in our understanding of research and innovation in active nanotechnologies, the results suggest that there is beginning to be a shift to active nanotechnologies, with the implication that governance processes need to be conscious of this shift and to prepare for it.

  11. A bibliometric analysis of the development of next generation active nanotechnologies

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, Arho [VTT Technical Research Centre of Finland (Finland); Li, Yin; Youtie, Jan, E-mail: jan.youtie@innovate.gatech.edu; Shapira, Philip [Georgia Institute of Technology (United States)

    2016-09-15

    Delineating the emergence of nanotechnologies that offer new functionalities is an important element in an anticipatory approach to the governance of nanotechnology and its potential impacts. This paper examines the transition to next generation active nanotechnologies which incorporate functions that respond to the environment or systems concepts that combine devices and structures that are dynamic and which may change their states in use. We develop an approach to identifying these active nanotechnologies and then use bibliometric analysis to examine the extent of research papers and patents involving these concepts. We also examine references to environmental, health, and safety concepts in these papers, given that these next generation nanotechnologies are likely to have risk profiles that are different from those of first-generation passive nanomaterials. Our results show a steady growth overall in focus on active nanotechnologies in the research literature and in patents over the study period of 1990–2010. We also find an increase in consideration given to environmental, health, and safety topics. While gaps are highlighted in our understanding of research and innovation in active nanotechnologies, the results suggest that there is beginning to be a shift to active nanotechnologies, with the implication that governance processes need to be conscious of this shift and to prepare for it.

  12. Automotive Radar and Lidar Systems for Next Generation Driver Assistance Functions

    Directory of Open Access Journals (Sweden)

    R. H. Rasshofer

    2005-01-01

    Full Text Available Automotive radar and lidar sensors represent key components for next generation driver assistance functions (Jones, 2001. Today, their use is limited to comfort applications in premium segment vehicles although an evolution process towards more safety-oriented functions is taking place. Radar sensors available on the market today suffer from low angular resolution and poor target detection in medium ranges (30 to 60m over azimuth angles larger than ±30°. In contrast, Lidar sensors show large sensitivity towards environmental influences (e.g. snow, fog, dirt. Both sensor technologies today have a rather high cost level, forbidding their wide-spread usage on mass markets. A common approach to overcome individual sensor drawbacks is the employment of data fusion techniques (Bar-Shalom, 2001. Raw data fusion requires a common, standardized data interface to easily integrate a variety of asynchronous sensor data into a fusion network. Moreover, next generation sensors should be able to dynamically adopt to new situations and should have the ability to work in cooperative sensor environments. As vehicular function development today is being shifted more and more towards virtual prototyping, mathematical sensor models should be available. These models should take into account the sensor's functional principle as well as all typical measurement errors generated by the sensor.

  13. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  14. Detection of TET2 , KRAS and CBL variants by Next Generation ...

    African Journals Online (AJOL)

    Aim: In this study, we aimed to find possible genetic markers for molecular analysis in childhood AML by screening hot-spot exons of TET2, KRAS, and CBL using Next Generation Sequencing (NGS) analysis. In addition, association between found variants and mutations of Januse Kinase-2 (JAK2) and Fms Related ...

  15. Addressing Next Generation Science Standards: A Method for Supporting Classroom Teachers

    Science.gov (United States)

    Pellien, Tamara; Rothenburger, Lisa

    2014-01-01

    The Next Generation Science Standards (NGSS) will define science education for the foreseeable future, yet many educators struggle to see the bridge between current practice and future practices. The inquiry-based methods used by Extension professionals (Kress, 2006) can serve as a guide for classroom educators. Described herein is a method of…

  16. The next generation of Palapa satellite (Palapa-C)

    Science.gov (United States)

    Setiawan, Bambang

    The Indonesian Palapa Communication Satellite System was established in Aug. 1976 when the first satellite of Palapa A series (Palapa A1) began operation. The system is owned and operated by PT. Telekomunikasi Indonesia (Telkom), which is a state owned company. The purpose of the system was to unify the telecommunications of the nation. Many years of operation have shown that satellite technology is the best solution for improving telecommunications in Indonesia. The system was started with 2 (two) satellites, each with 12 transponders (for a total of 24), and 40 earth stations. Now the system has 3 (three) satellites, each with 24 transponders (for a total of 72 transponders), and thousands of earth stations. The services have been extended to satisfy the requirements of the region as well as the original objectives. The use of satellite transponders in the region is increasing rapidly. In the next ten years, opportunities in the satellite communications business will become even more attractive. The next generation Palapa-C will incorporate improvements in capacity, quality, and coverage. The new frequency bands (ku- and Extended-C Band) will be used to meet the new transponder capacity requirements.

  17. Generation and amplification of nanaosecond duration multiline hf laser pulses

    International Nuclear Information System (INIS)

    Getzinger, R.L.; Ware, K.D.; Carpenter, J.P.

    1976-01-01

    High-power, fast-rising pulses of hydrogen fluoride laser energy suitable for laser-fusion target interaction experiments can in principle be generated by directing an electro-optically shuttered oscillator pulse through one or more electron-beam driven amplifiers. A three-stage HF master oscillator-power amplifier (MOPA) configuration was constructed and tested using SF 6 -C 2 H 6 in which an E-O generated 4-ns-FWHM pulse was amplified in an electron-beam-excited third stage and subsequently isolated with a Brewster angle splitter. Independent experiments in which a 100-ns-FWHM pilot pulse interacted with the power amplifier demonstrated for the first time complete extraction of the available laser energy. These two results provide strong evidence that with upgrading to H 2 -F 2 , it should be possible to obtain nanosecond duration pulses with power levels sufficient for meaningful laser fusion target coupling experiments

  18. Soft x-ray generation in gases with an ultrashort pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, Todd Raymond [Univ. of California, Davis, CA (United States)

    1996-01-08

    An experimental investigation of soft x-ray production resulting from the interaction of intense near infra-red laser radiation with gases is presented in this thesis. Specifically, soft x-ray generation through high order harmonic generation or exploiting intense inverse bremsstrahlung heating is examined. Most of these studies are conducted with femtosecond, terawatt class Cr:LiSrAlF6 (LiSAF) laser, though results derived from studies with other laser systems are presented as well. The majority of this work is devoted to experimental investigations, however, theoretical and computational models are developed to interpret the data. These studies are motivated by the possibility of utilizing the physics of intense laser/matter interactions as a potential compact source of bright x-rays. Consequently, the thrust of many of the experiments conducted is aimed at characterizing the x-rays produced for possible use in applications. In general, the studies of this manuscript fall into three categories. First, a unique 130 fs, 8 TW laser that is based on chirped pulse amplification, is described, and its performance is evaluated. The generation of x-rays through high order harmonics is then discussed with emphasis on characterizing and optimizing harmonic generation. Finally, the generation of strong, incoherent x-ray radiation by the intense irradiation of large (>1,000 atom) clusters in gas jets, is explored. The physics of laser energy absorption by clusters illuminated with intensities of 1015 to 1017 W/cm2 is considered in detail. X-ray spectroscopy of the hot plasmas that result from the irradiation of the clusters is conducted, and energy transport and kinetics issues in these plasmas are discussed.

  19. Next-generation approaches to the microbial ecology of food fermentations

    Directory of Open Access Journals (Sweden)

    Nicholas A. Bokulich1,2,3 & David A. Mills1,2,3*

    2012-07-01

    Full Text Available Food fermentations have enhanced human health since the dawnof time and remain a prevalent means of food processing andpreservation. Due to their cultural and nutritional importance,many of these foods have been studied in detail using moleculartools, leading to enhancements in quality and safety. Furthermore,recent advances in high-throughput sequencing technologyare revolutionizing the study of food microbial ecology,deepening insight into complex fermentation systems. Thisreview provides insight into novel applications of selectmolecular techniques, particularly next-generation sequencingtechnology, for analysis of microbial communities in fermentedfoods. We present a guideline for integrated molecular analysis offood microbial ecology and a starting point for implementingnext-generation analysis of food systems.

  20. Methodology on the sparger development for Korean next generation reactor

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Hwang, Y.D.; Kang, H.S.; Cho, B.H.; Park, J.K.

    1999-06-01

    In case of an accident, the safety depressurization system of Korean Next Generation Reactor (KNGR) efficiently depressurize the reactor pressure by directly discharge steam of high pressure and temperature from the pressurizer into the in-containment refuelling water storage tank (IRWST) through spargers. This report was generated for the purpose of developing the sparger of KNGR. This report presents the methodology on application of ABB-Atom. Many thermal hydraulic parameters affecting the maximum bubble could pressure were obtained and the maximum bubble cloud pressure transient curve so called forcing function of KNGR was suggested and design inputs for IRWST (bubble cloud radius vs. time, bubble cloud velocity vs. time, bubble cloud acceleration vs. time, etc.) were generated by the analytic using Rayleigh-Plesset equation. (author). 17 refs., 6 tabs., 27 figs