Relativistic generalization of the Newtonian force
International Nuclear Information System (INIS)
Qadir, A.; Quamar, J.
1982-06-01
Whereas there is no denying the essential contribution of geometrodynamics, it must be admitted that our physical intuition is still firmly based in the Newtonian concept of force. Here we extend some earlier work re-introducing the Newtonian force concept into relativity theory. Some fundamentally new insights into the relativistic effects due to charge and rotation are presented. (author)
Force effects on rotor of squeeze film damper using Newtonian and non-Newtonian fluid
Dominik, Šedivý; Petr, Ferfecki; Simona, Fialová
2017-09-01
This article presents the evaluation of force effects on rotor of squeeze film damper. Rotor is eccentric placed and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were gained by using computational modeling. Two types of fluid were considered as filling of damper. First type of fluid is Newtonian (has constant viscosity) and second type is magnetorheological fluid (does not have constant viscosity). Viscosity of non-Newtonian fluid is given using Bingham rheology model. Yield stress is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width which is between rotor and stator. Comparison of application two given types of fluids is shown in results.
Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.
2016-04-01
In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.
Conceptual coherence of non-Newtonian worldviews in Force Concept Inventory data
Directory of Open Access Journals (Sweden)
Terry F. Scott
2017-05-01
Full Text Available The Force Concept Inventory is one of the most popular and most analyzed multiple-choice concept tests used to investigate students’ understanding of Newtonian mechanics. The correct answers poll a set of underlying Newtonian concepts and the coherence of these underlying concepts has been found in the data. However, this inventory was constructed after several years of research into the common preconceptions held by students and using these preconceptions as distractors in the questions. Their sole purpose is to deflect non-Newtonian candidates away from the correct answer. Alternatively, one can argue that the responses could also be treated as polling these preconceptions. In this paper we shift the emphasis of the analysis away from the correlation structure of the correct answers and look at the latent traits underlying the incorrect responses. Our analysis models the data employing exploratory factor analysis, which uses regularities in the data to suggest the existence of underlying structures in the cognitive processing of the students. This analysis allows us to determine whether the data support the claim that there are alternate non-Newtonian worldviews on which students’ incorrect responses are based. The existence of such worldviews, and their coherence, could explain the resilience of non-Newtonian preconceptions and would have significant implications to the design of instruction methods. We find that there are indeed coherent alternate conceptions of the world which can be categorized using the results of the research that led to the construction of the Force Concept Inventory.
The Newtonian force experienced by a point mass near a finite cylindrical source
International Nuclear Information System (INIS)
Selvaggi, Jerry P; Salon, Sheppard; Chari, M V K
2008-01-01
The Newtonian gravitational force experienced by a point mass located at some external point from a thick-walled, hollow and uniform finite circular cylindrical body was recently solved by Lockerbie, Veryaskin and Xu (1993 Class. Quantum Grav. 10 2419). Their method of attack relied on the introduction of the circular cylindrical free-space Green function representation for the inverse distance which appears in the formulation of the Newtonian potential function. This ultimately leads Lockerbie et al to a final expression for the Newtonian potential function which is expressed as a double summation of even-ordered Legendre polynomials. However, the kernel of the cylindrical free-space Green function which is represented by an infinite integral of the product of two Bessel functions and a decaying exponential can be analytically evaluated in terms of a toroidal function. This leads to a simplification in the mathematical analysis developed by Lockerbie et al. Also, each term in the infinite series solution for the Newtonian potential function can be expressed in closed form in terms of elementary functions. The authors develop the Newtonian potential function by employing toroidal functions of zeroth order or Legendre functions of half-integral degree, Q m-1/2 (β)(Bouwkamp and de Bruijn 1947 J. Appl. Phys.18 562, Cohl et al 2001 Phys. Rev.A 64 052509-1, Selvaggi et al 2004 IEEE Trans. Magn.40 3278). These functions are monotonically decreasing and converge rapidly (Moon and Spencer 1961 Field Theory for Engineers (New Jersey: Van Nostrand Company) pp 368-76, Cohl and Tohline 1999 Astrophys. J.527 86). The introduction of the toroidal harmonic expansion leads to an infinite series solution for which each term can be expressed as an elementary function. This enables one to easily compute the axial and radial forces experienced by an internal or an external point mass
International Nuclear Information System (INIS)
Breuer, R.A.; Rudolph, E.
1982-01-01
The force between two well-separated bodies is calculated in a fully dynamic system of two extended bodies up to and including the second post-Newtonian approximation (PNA). The iteration procedure as formulated by Anderson and Decanio is used in a version whose divergences have been pushed to the third PNA. The following are shown: (i) The force law assumes the ''Newtonian form'' if a second approximation in 1/(separation of the bodies) is made; (ii) the mass terms appearing in the force law are the (Tolman) masses of the individual bodies expanded up the second PNA; the internal masses equal the (passive and active) gravitational masses of the bodies in order considered; they are all constants of the motion; (iii) the self-fields of the bodies vanish in the second PNA; hence there is no Nordvedt effect in the second PNA; (iv) the compactness of the bodies, i.e., (gravitational radius)/(body size), does not appear in the force law; only the relation between mass and the matter variables is changed in the PNA as compared with the corresponding Newtonian result. (author)
International Nuclear Information System (INIS)
Singh, T.; Yadav, R.B.S.
1980-01-01
In the first part of the present paper the Newtonian analogue of force for the combined Kerr-NUT metric has been investigated. To the first order of approximation one component of the force vector corresponds to the Newtonian gravitational force. In the higher order of approximation the relativistic correction terms due to rotation and presence of gravitational analogue of a magnetic monopole are obtained. In the second part of the paper the motion of a freely falling body has been investigated. It is found that plane orbits are not possible. Also a radial fall is not possible and there is a rotational drag on the particle which has no Newtonian analogue. (author)
Tidal interaction of black holes and Newtonian viscous bodies
International Nuclear Information System (INIS)
Poisson, Eric
2009-01-01
The tidal interaction of a (rotating or nonrotating) black hole with nearby bodies produces changes in its mass, angular momentum, and surface area. Similarly, tidal forces acting on a Newtonian, viscous body do work on the body, change its angular momentum, and part of the transferred gravitational energy is dissipated into heat. The equations that describe the rate of change of the black-hole mass, angular momentum, and surface area as a result of the tidal interaction are compared with the equations that describe how the tidal forces do work, torque, and produce heat in the Newtonian body. The equations are strikingly similar, and unexpectedly, the correspondence between the Newtonian-body and black-hole results is revealed to hold in near-quantitative detail. The correspondence involves the combination k 2 τ of 'Love quantities' that incorporate the details of the body's internal structure; k 2 is the tidal Love number, and τ is the viscosity-produced delay between the action of the tidal forces and the body's reaction. The combination k 2 τ is of order GM/c 3 for a black hole of mass M; it does not vanish, in spite of the fact that k 2 is known to vanish individually for a nonrotating black hole.
Post-Newtonian reference ellipsoid for relativistic geodesy
Kopeikin, Sergei; Han, Wenbiao; Mazurova, Elena
2016-02-01
We apply general relativity to construct the post-Newtonian background manifold that serves as a reference spacetime in relativistic geodesy for conducting a relativistic calculation of the geoid's undulation and the deflection of the plumb line from the vertical. We chose an axisymmetric ellipsoidal body made up of a perfect homogeneous fluid uniformly rotating around a fixed axis, as a source generating the reference geometry of the background manifold through Einstein's equations. We then reformulate and extend hydrodynamic calculations of rotating fluids done by a number of previous researchers for astrophysical applications to the realm of relativistic geodesy to set up algebraic equations defining the shape of the post-Newtonian reference ellipsoid. To complete this task, we explicitly perform all integrals characterizing gravitational field potentials inside the fluid body and represent them in terms of the elementary functions depending on the eccentricity of the ellipsoid. We fully explore the coordinate (gauge) freedom of the equations describing the post-Newtonian ellipsoid and demonstrate that the fractional deviation of the post-Newtonian level surface from the Maclaurin ellipsoid can be made much smaller than the previously anticipated estimate based on the astrophysical application of the coordinate gauge advocated by Bardeen and Chandrasekhar. We also derive the gauge-invariant relations of the post-Newtonian mass and the constant angular velocity of the rotating fluid with the parameters characterizing the shape of the post-Newtonian ellipsoid including its eccentricity, a semiminor axis, and a semimajor axis. We formulate the post-Newtonian theorems of Pizzetti and Clairaut that are used in geodesy to connect the geometric parameters of the reference ellipsoid to the physically measurable force of gravity at the pole and equator of the ellipsoid. Finally, we expand the post-Newtonian geodetic equations describing the post-Newtonian ellipsoid to
Was Newtonian cosmology really inconsistent?
Vickers, Peter
This paper follows up a debate as to the consistency of Newtonian cosmology. Whereas Malament [(1995). Is Newtonian cosmology really inconsistent? Philosophy of Science 62, 489-510] has shown that Newtonian cosmology is not inconsistent, to date there has been no analysis of Norton's claim [(1995). The force of Newtonian cosmology: Acceleration is relative. Philosophy of Science 62, 511-522.] that Newtonian cosmology was inconsistent prior to certain advances in the 1930s, and in particular prior to Seeliger's seminal paper of Seeliger [(1895). Über das Newton'sche Gravitationsgesetz. Astronomische Nachrichten 137 (3273), 129-136.] In this paper I agree that there are assumptions, Newtonian and cosmological in character, and relevant to the real history of science, which are inconsistent. But there are some important corrections to make to Norton's account. Here I display for the first time the inconsistencies-four in total-in all their detail. Although this extra detail shows there to be several different inconsistencies, it also goes some way towards explaining why they went unnoticed for 200 years.
Newtonian and pseudo-Newtonian Hill problem
International Nuclear Information System (INIS)
Steklain, A.F.; Letelier, P.S.
2006-01-01
A pseudo-Newtonian Hill problem based on the Paczynski-Wiita pseudo-Newtonian potential that reproduces general relativistic effects is presented and compared with the usual Newtonian Hill problem. Poincare maps, Lyapunov exponents and fractal escape techniques are employed to study bounded and unbounded orbits. In particular we consider the systems composed by Sun, Earth and Moon and composed by the Milky Way, the M2 cluster and a star. We find that some pseudo-Newtonian systems-including the M2 system-are more stable than their Newtonian equivalent
Simulation of forced convection in non-Newtonian fluid through sandstones
Gokhale, M. Y.; Fernandes, Ignatius
2017-11-01
Numerical simulation is carried out to study forced convection in non-Newtonian fluids flowing through sandstones. Simulation is carried out using lattice Boltzmann method (LBM) for both shear-thinning and shear-thickening, by varying the power law index from 0.5 to 1.5 in Carreau-Yasuda model. Parameters involved in LBM and Carreau model are identified to achieve numerical convergence. Permeability and porosity are varied in the range of 10-10-10-6 and 0.1-0.7, respectively, to match actual geometrical properties of sandstone. Numerical technology is validated by establishing Darcy's law by plotting the graph between velocity and pressure gradient. Consequently, investigation is carried out to study the influence of material properties of porous media on flow properties such as velocity profiles, temperature profiles, and Nusselt number.
International Nuclear Information System (INIS)
Moh, Jeong Hah; Cho, Y. I.
2014-01-01
This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady
Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries
Directory of Open Access Journals (Sweden)
Luc Blanchet
2014-02-01
Full Text Available To be observed and analyzed by the network of gravitational wave detectors on ground (LIGO, VIRGO, etc. and by the future detectors in space (eLISA, etc., inspiralling compact binaries -- binary star systems composed of neutron stars and/or black holes in their late stage of evolution -- require high-accuracy templates predicted by general relativity theory. The gravitational waves emitted by these very relativistic systems can be accurately modelled using a high-order post-Newtonian gravitational wave generation formalism. In this article, we present the current state of the art on post-Newtonian methods as applied to the dynamics and gravitational radiation of general matter sources (including the radiation reaction back onto the source and inspiralling compact binaries. We describe the post-Newtonian equations of motion of compact binaries and the associated Lagrangian and Hamiltonian formalisms, paying attention to the self-field regularizations at work in the calculations. Several notions of innermost circular orbits are discussed. We estimate the accuracy of the post-Newtonian approximation and make a comparison with numerical computations of the gravitational self-force for compact binaries in the small mass ratio limit. The gravitational waveform and energy flux are obtained to high post-Newtonian order and the binary's orbital phase evolution is deduced from an energy balance argument. Some landmark results are given in the case of eccentric compact binaries -- moving on quasi-elliptical orbits with non-negligible eccentricity. The spins of the two black holes play an important role in the definition of the gravitational wave templates. We investigate their imprint on the equations of motion and gravitational wave phasing up to high post-Newtonian order (restricting to spin-orbit effects which are linear in spins, and analyze the post-Newtonian spin precession equations as well as the induced precession of the orbital plane.
Comparative PIV and LDA studies of Newtonian and non-Newtonian flows in an agitated tank.
Story, Anna; Jaworski, Zdzisław; Simmons, Mark J; Nowak, Emilia
2018-01-01
The paper presents results of an experimental study of the fluid velocity field in a stirred tank equipped with a Prochem Maxflo T (PMT) type impeller which was rotating at a constant frequency of N = 4.1 or 8.2 s -1 inducing transitional ( Re = 499 or 1307) or turbulent ( Re = 2.43 × 10 4 ) flow of the fluid. The experiments were performed for a Newtonian fluid (water) and a non-Newtonian fluid (0.2 wt% aqueous solution of carboxymethyl cellulose, CMC) exhibiting mild viscoelastic properties. Measurements were carried out using laser light scattering on tracer particles which follow the flow (2-D PIV). For both the water and the CMC solution one primary and two secondary circulation loops were observed within the fluid volume; however, the secondary loops were characterized by much lower intensity. The applied PMT-type impeller produced in the Newtonian fluid an axial primary flow, whilst in the non-Newtonian fluid the flow was more radial. The results obtained in the form of the local mean velocity components were in satisfactory agreement with the literature data from LDA. Distribution of the shear rate in the studied system was also analyzed. For the non-Newtonian fluid an area was computed where the elastic force dominates over the viscous one. The area was nearly matching the region occupied by the primary circulation loop.
Was Newton right? A search for non-Newtonian behavior of weak-field gravity
Directory of Open Access Journals (Sweden)
Boynton Paul
2014-06-01
Full Text Available Empirical tests of Einstein’s metric theory of gravitation, even in the non-relativistic, weak-field limit, could play an important role in judging theory-driven extensions of the current Standard Model of fundamental interactions. Guided by Galileo's work and his own experiments, Newton formulated a theory of gravity in which the force of attraction between two bodies is independent of composition and proportional to the inertia of each, thereby transparently satisfying Galileo's empirically informed conjecture regarding the Universality of Free Fall. Similarly, Einstein honored the manifest success of Newton’s theory by assuring that the linearized equations of GTR matched the Newtonian formalism under “classical” conditions. Each of these steps, however, was explicitly an approximation raised to the status of principle. Perhaps, at some level, Newtonian gravity does not accurately describe the physical interaction between uncharged, unmagnetized, macroscopic bits of ordinary matter. What if Newton were wrong? Detecting any significant deviation from Newtonian behavior, no matter how small, could provide new insights and possibly reveal new physics. In the context of physics as an empirical science, for us this yet unanswered question constitutes sufficient motivation to attempt precision measurements of the kind described here. In this paper we report the current status of a project to search for violation of the Newtonian inverse square law of gravity.
Spreading of Non-Newtonian and Newtonian Fluids on a Solid Substrate under Pressure
Energy Technology Data Exchange (ETDEWEB)
Choudhury, Moutushi Dutta; Chandra, Subrata; Nag, Soma; Tarafdar, Sujata [Condensed Matter Physics Research Centre, Physics Department, Jadavpur University, Kolkata 700032 (India); Das, Shantanu, E-mail: mou15july@gmail.com [Reactor Control Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India)
2011-09-15
Strongly non-Newtonian fluids namely, aqueous gels of starch, are shown to exhibit visco-elastic behavior, when subjected to a load. We study arrowroot and potato starch gels. When a droplet of the fluid is sandwiched between two glass plates and compressed, the area of contact between the fluid and plates increases in an oscillatory manner. This is unlike Newtonian fluids, where the area increases monotonically in a similar situation. The periphery moreover, develops an instability, which looks similar to Saffman Taylor fingers. This is not normally seen under compression. The loading history is also found to affect the manner of spreading. We attempt to describe the non-Newtonian nature of the fluid through a visco-elastic model incorporating generalized calculus. This is shown to reproduce qualitatively the oscillatory variation in the surface strain.
International Nuclear Information System (INIS)
Burko, Lior M
2006-01-01
Comparing the corrections to Kepler's law with orbital evolution under a self-force, we extract the finite, already regularized part of the latter in a specific gauge. We apply this method to a quasi-circular orbit around a Schwarzschild black hole of an extreme mass ratio binary, and determine the first- and second-order conservative gravitational self-force in a post-Newtonian expansion. We use these results in the construction of the gravitational waveform, and revisit the question of the relative contribution of the self-force and spin-orbit coupling
Non Newtonian gravity creeping flow
International Nuclear Information System (INIS)
Gratton, J.; Mahajan, S.M.; Minotti, F.
1988-11-01
We derive the governing equations for creeping gravity currents of non Newtonian liquids having a power law rheology, using a lubrication approximation. We consider unidirectional and axisymmetric currents. The equations differ from those for Newtonian liquids, being nonlinear in the spatial derivative of the thickness of the current. However, many solutions are closely analogous to those for Newtonian rheology; in particular the spreading relations can also be expressed as power laws of time, with exponents that depend on the rheological index. Similarity solutions for currents whose volume varies as a power of time are obtained. For the spread of a constant volume of liquid, analytic solutions are found. We also derive solutions of the waiting-time type, as well as the ones describing steady flows from a constant source to a sink. General travelling wave solutions are given, and analytic formulae for a simple case are derived. A phase plane formalism, that allows the systematic derivation of self similar solutions, is introduced. The application of the Boltzmann transform is briefly discussed. Present results are closely analogous to those for Newtonian liquids; all the solutions obtained here have their counterparts in Newtonian flows. This happens because the power law rheology, like the Newtonian constitutive relation, involves a single dimensional parameter. Thus one finds similarity solutions whenever the analogous Newtonian problem is self similar. Although the spreading relations are rheology-dependent, in most cases the dependence is rather weak. The present results may be of interest for geophysics since the lithosphere deforms according to an average power law rheology. (author). 17 refs
Pseudo-Newtonian planar circular restricted 3-body problem
International Nuclear Information System (INIS)
Dubeibe, F.L.; Lora-Clavijo, F.D.; González, Guillermo A.
2017-01-01
We study the dynamics of the planar circular restricted three-body problem in the context of a pseudo-Newtonian approximation. By using the Fodor–Hoenselaers–Perjés procedure, we perform an expansion in the mass potential of a static massive spherical source up to the first non-Newtonian term, giving place to a gravitational potential that includes first-order general relativistic effects. With this result, we model a system composed by two pseudo-Newtonian primaries describing circular orbits around their common center of mass, and a test particle orbiting the system in the equatorial plane. The dynamics of the new system of equations is studied in terms of the Poincaré section method and the Lyapunov exponents, where the introduction of a new parameter ϵ, allows us to observe the transition from the Newtonian to the pseudo-Newtonian regime. We show that when the Jacobian constant is fixed, a chaotic orbit in the Newtonian regime can be either chaotic or regular in the pseudo-Newtonian approach. As a general result, we find that most of the pseudo-Newtonian configurations are less stable than their Newtonian equivalent.
Pseudo-Newtonian planar circular restricted 3-body problem
Energy Technology Data Exchange (ETDEWEB)
Dubeibe, F.L., E-mail: fldubeibem@unal.edu.co [Facultad de Ciencias Humanas y de la Educación, Universidad de los Llanos, Villavicencio (Colombia); Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Lora-Clavijo, F.D., E-mail: fadulora@uis.edu.co [Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); González, Guillermo A., E-mail: guillermo.gonzalez@saber.uis.edu.co [Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)
2017-02-12
We study the dynamics of the planar circular restricted three-body problem in the context of a pseudo-Newtonian approximation. By using the Fodor–Hoenselaers–Perjés procedure, we perform an expansion in the mass potential of a static massive spherical source up to the first non-Newtonian term, giving place to a gravitational potential that includes first-order general relativistic effects. With this result, we model a system composed by two pseudo-Newtonian primaries describing circular orbits around their common center of mass, and a test particle orbiting the system in the equatorial plane. The dynamics of the new system of equations is studied in terms of the Poincaré section method and the Lyapunov exponents, where the introduction of a new parameter ϵ, allows us to observe the transition from the Newtonian to the pseudo-Newtonian regime. We show that when the Jacobian constant is fixed, a chaotic orbit in the Newtonian regime can be either chaotic or regular in the pseudo-Newtonian approach. As a general result, we find that most of the pseudo-Newtonian configurations are less stable than their Newtonian equivalent.
On Numerical Methods in Non-Newtonian Flows
International Nuclear Information System (INIS)
Fileas, G.
1982-12-01
The constitutive equations for non-Newtonian flows are presented and the various flow models derived from continuum mechanics and molecular theories are considered and evaluated. Detailed account is given of numerical simulation employing differential and integral models of different kinds of non-Newtonian flows using finite-difference and finite-element techniques. Appreciating the fact that no book or concentrated material on Numerical Non-Newtonian Fluid Flow exists at the present, procedures for computer set-ups are described and references are given for finite-difference, finite-element and molecular-theory based programmes for several kinds of flow. Achievements and unreached goals in the field of numerical simulation of non-Newtonian flows are discussed and the lack of numerical work in the fields of suspension flows and heat transfer is pointed out. Finally, FFOCUS is presented as a newly built computer program which can simulate freezing flows on Newtonian fluids through various geometries and is aimed to be further developed to handle non-Newtonian freezing flows and certain types of suspension phenomena involved in corium flow after a hypothetical core melt-down accident in a PWR. (author)
Newtonian and post-Newtonian approximations are asymptotic to general relativity
International Nuclear Information System (INIS)
Futamase, T.; Schutz, B.F.
1983-01-01
A precise definition of the Newtonian and post-Newtonian hierarchy of approximations to general relativity is given by studying a C/sup infinity/ sequence of solutions to Einstein's equations that is defined by initial data having the Newtonian scaling property: v/sup i/approx.epsilon, rhoapprox.epsilon 2 , papprox.epsilon 4 , where epsilon is the parameter along the sequence. We map one solution in the sequence to another by identifying them at constant spatial position x/sup i/ and Newtonian dynamical time tau = epsilont. This mapping defines a congruence parametrized by epsilon, and the various post-Newtonian approximations emerge as derivatives of the relativistic solutions along this congruence. We thereby show for the first time that the approximations are genuine asymptotic approximations to general relativity. The proof is given in detail up to first post-Newtonian order, but is easily extended. The results will be applied in the following paper to radiation reaction in binary star systems, to give a proof of the validity of the ''quadrupole formula'' free from any divergences
Presenting Newtonian gravitation
International Nuclear Information System (INIS)
Counihan, Martin
2007-01-01
The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g 2 /8πG, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry
CFD-PBM Coupled Simulation of an Airlift Reactor with Non-Newtonian Fluid
Directory of Open Access Journals (Sweden)
Han Mei
2017-09-01
Full Text Available Hydrodynamics of an AirLift Reactor (ALR with tap water and non-Newtonian fluid was studied experimentally and by numerical simulations. The Population Balance Model (PBM with multiple breakup and coalescence mechanisms was used to describe bubble size characteristics in the ALR. The interphase forces for closing the two-fluid model were formulated by considering the effect of Bubble Size Distribution (BSD. The BSD in the ALR obtained from the coupled Computational Fluid Dynamics (CFD-PBM model was validated against results from digital imaging measurements. The simulated velocity fields of both the gas and liquid phases were compared to measured fields obtained with Particle Image Velocimetry (PIV. The simulated results show different velocity field profile features at the top of the ALR between tap water and non-Newtonian fluid, which are in agreement with experiments. In addition, good agreement between simulations and experiments was obtained in terms of overall gas holdup and bubble Sauter mean diameter.
Verification of vertically rotating flume using non-newtonian fluids
Huizinga, R.J.
1996-01-01
Three tests on non-Newtonian fluids were used to verify the use of a vertically rotating flume (VRF) for the study of the rheological properties of debris flow. The VRF is described and a procedure for the analysis of results of tests made with the VRF is presented. The major advantages of the VRF are a flow field consistent with that found in nature, a large particle-diameter threshold, inexpensive operation, and verification using several different materials; the major limitations are a lack of temperature control and a certain error incurred from the use of the Bingham plastic model to describe a more complex phenomenon. Because the VRF has been verified with non-Newtonian fluids as well as Newtonian fluids, it can be used to measure the rheological properties of coarse-grained debris-flow materials.
Physics of Life: A Model for Non-Newtonian Properties of Living Systems
Zak, Michail
2010-01-01
the expected scenario is different from the originally planned one. This approach postulates that even a primitive living species possesses additional, non-Newtonian properties that are not included in the laws of Newtonian or statistical mechanics. These properties follow from a privileged ability of living systems to possess a self-image (a concept introduced in psychology) and to interact with it. The proposed mathematical system is based on the coupling of the classical dynamical system representing the motor dynamics with the corresponding Liouville equation describing the evolution of initial uncertainties in terms of the probability density and representing the mental dynamics. The coupling is implemented by the information-based supervising forces that can be associated with self-awareness. These forces fundamentally change the pattern of the probability evolution, and therefore, lead to a major departure of the behavior of living systems from the patterns of both Newtonian and statistical mechanics. This innovation is meant to capture the signature of life based only on observable behavior, not on any biochemistry. This will not prevent the use of this model for developing artificial living systems, as well as for studying some general properties of behavior of natural, living systems.
Applying Tiab’s direct synthesis technique to dilatant non-Newtonian/Newtonian fluids
Directory of Open Access Journals (Sweden)
Javier Andrés Martínez
2011-09-01
Full Text Available Non-Newtonian fluids, such as polymer solutions, have been used by the oil industry for many years as fracturing agents and drilling mud. These solutions, which normally include thickened water and jelled fluids, are injected into the formation to enhanced oil recovery by improving sweep efficiency. It is worth noting that some heavy oils behave non-Newtonianly. Non-Newtonian fluids do not have direct proportionality between applied shear stress and shear rate and viscosity varies with shear rate depending on whether the fluid is either pseudoplastic or dilatant. Viscosity decreases as shear rate increases for the former whilst the reverse takes place for dilatants. Mathematical models of conventional fluids thus fail when applied to non-Newtonian fluids. The pressure derivative curve is introduced in this descriptive work for a dilatant fluid and its pattern was observed. Tiab’s direct synthesis (TDS methodology was used as a tool for interpreting pressure transient data to estimate effective permeability, skin factors and non-Newtonian bank radius. The methodology was successfully verified by its application to synthetic examples. Also, comparing it to pseudoplastic behavior, it was found that the radial flow regime in the Newtonian zone of dilatant fluids took longer to form regarding both the flow behavior index and consistency factor.
Post-Newtonian celestial dynamics in cosmology: Field equations
Kopeikin, Sergei M.; Petrov, Alexander N.
2013-02-01
Post-Newtonian celestial dynamics is a relativistic theory of motion of massive bodies and test particles under the influence of relatively weak gravitational forces. The standard approach for development of this theory relies upon the key concept of the isolated astronomical system supplemented by the assumption that the background spacetime is flat. The standard post-Newtonian theory of motion was instrumental in the explanation of the existing experimental data on binary pulsars, satellite, and lunar laser ranging, and in building precise ephemerides of planets in the Solar System. Recent studies of the formation of large-scale structures in our Universe indicate that the standard post-Newtonian mechanics fails to describe more subtle dynamical effects in motion of the bodies comprising the astronomical systems of larger size—galaxies and clusters of galaxies—where the Riemann curvature of the expanding Friedmann-Lemaître-Robertson-Walker universe interacts with the local gravitational field of the astronomical system and, as such, cannot be ignored. The present paper outlines theoretical principles of the post-Newtonian mechanics in the expanding Universe. It is based upon the gauge-invariant theory of the Lagrangian perturbations of cosmological manifold caused by an isolated astronomical N-body system (the Solar System, a binary star, a galaxy, and a cluster of galaxies). We postulate that the geometric properties of the background manifold are described by a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker metric governed by two primary components—the dark matter and the dark energy. The dark matter is treated as an ideal fluid with the Lagrangian taken in the form of pressure along with the scalar Clebsch potential as a dynamic variable. The dark energy is associated with a single scalar field with a potential which is hold unspecified as long as the theory permits. Both the Lagrangians of the dark matter and the scalar field are
Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra
Knight, D. G.
2006-01-01
This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…
Nonrotating black hole in a post-Newtonian tidal environment
International Nuclear Information System (INIS)
Taylor, Stephanne; Poisson, Eric
2008-01-01
We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The black hole's gravity is described accurately to all orders in Gm/c 2 r, where m is the black-hole mass and r is the distance to the black hole. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces (i) a justification of the statement that a nonrotating black hole is a post-Newtonian monopole; (ii) a complete characterization of the coordinate transformation between the inertial, barycentric frame and the accelerated, black-hole frame; (iii) the equations of motion for the black hole; and (iv) the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter (so as to model a galactic core) or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.
Post-Newtonian parameter γ in generalized non-local gravity
Zhang, Xue; Wu, YaBo; Yang, WeiQiang; Zhang, ChengYuan; Chen, BoHai; Zhang, Nan
2017-10-01
We investigate the post-Newtonian parameter γ and derive its formalism in generalized non-local (GNL) gravity, which is the modified theory of general relativity (GR) obtained by adding a term m 2 n-2 R☐-n R to the Einstein-Hilbert action. Concretely, based on parametrizing the generalized non-local action in which gravity is described by a series of dynamical scalar fields ϕ i in addition to the metric tensor g μν, the post-Newtonian limit is computed, and the effective gravitational constant as well as the post-Newtonian parameters are directly obtained from the generalized non-local gravity. Moreover, by discussing the values of the parametrized post-Newtonian parameters γ, we can compare our expressions and results with those in Hohmann and Järv et al. (2016), as well as current observational constraints on the values of γ in Will (2006). Hence, we draw restrictions on the nonminimal coupling terms F̅ around their background values.
Newtonian cosmology Newton would understand
International Nuclear Information System (INIS)
Lemons, D.S.
1988-01-01
Isaac Newton envisioned a static, infinite, and initially uniform, zero field universe that was gravitationally unstable to local condensations of matter. By postulating the existence of such a universe and using it as a boundary condition on Newtonian gravity, a new field equation for gravity is derived, which differs from the classical one by a time-dependent cosmological term proportional to the average mass density of the universe. The new field equation not only makes Jeans' analysis of the gravitational instability of a Newtonian universe consistent, but also gives rise to a family of Newtonian evolutionary cosmologies parametrized by a time-invariant expansion velocity. This Newtonian cosmology contrasts with both 19th-century ones and with post general relativity Newtonian cosmology
Transport phenomena in Newtonian fluids a concise primer
Olsson, Per
2013-01-01
This short primer provides a concise and tutorial-style introduction to transport phenomena in Newtonian fluids , in particular the transport of mass, energy and momentum. The reader will find detailed derivations of the transport equations for these phenomena, as well as selected analytical solutions to the transport equations in some simple geometries. After a brief introduction to the basic mathematics used in the text, Chapter 2, which deals with momentum transport, presents a derivation of the Navier-Stokes-Duhem equation describing the basic flow in a Newtonian fluid. Also provided at
International Nuclear Information System (INIS)
Nazari, Elham; Kazemi, Ali; Roshan, Mahmood; Abbassi, Shahram
2017-01-01
The Jeans analysis is studied in the first post-Newtonian limit. In other words, the relativistic effects on local gravitational instability are considered for systems whose characteristic velocities and corresponding gravitational fields are higher than those permitted in the Newtonian limit. The dispersion relation for the propagation of small perturbations is found in the post-Newtonian approximation using two different techniques. A new Jeans mass is derived and compared to the standard Jeans mass. In this limit, the relativistic effects make the new Jeans mass smaller than the Newtonian Jeans mass. Furthermore, the fractional difference between these two masses increases when the temperature/pressure of the system increases. Interestingly, in this limit, pressure can enhance gravitational instability instead of preventing it. Finally, the results are applied to high-temperature astrophysical systems, and the possibility of local fragmentation in some relativistic systems is investigated.
Energy Technology Data Exchange (ETDEWEB)
Nazari, Elham; Kazemi, Ali; Roshan, Mahmood; Abbassi, Shahram, E-mail: mroshan@um.ac.ir [Department of Physics, Ferdowsi University of Mashhad, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)
2017-04-20
The Jeans analysis is studied in the first post-Newtonian limit. In other words, the relativistic effects on local gravitational instability are considered for systems whose characteristic velocities and corresponding gravitational fields are higher than those permitted in the Newtonian limit. The dispersion relation for the propagation of small perturbations is found in the post-Newtonian approximation using two different techniques. A new Jeans mass is derived and compared to the standard Jeans mass. In this limit, the relativistic effects make the new Jeans mass smaller than the Newtonian Jeans mass. Furthermore, the fractional difference between these two masses increases when the temperature/pressure of the system increases. Interestingly, in this limit, pressure can enhance gravitational instability instead of preventing it. Finally, the results are applied to high-temperature astrophysical systems, and the possibility of local fragmentation in some relativistic systems is investigated.
Stronger constraints on non-Newtonian gravity from the Casimir effect
Energy Technology Data Exchange (ETDEWEB)
Mostepanenko, V M; Klimchitskaya, G L [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, D-04009, Leipzig (Germany); Decca, R S [Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Fischbach, E; Krause, D E [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Lopez, D [Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974 (United States)
2008-04-25
We review new constraints on the Yukawa-type corrections to Newtonian gravity obtained recently from gravitational experiments and from the measurements of the Casimir force. Special attention is paid to the constraints following from the most precise dynamic determination of the Casimir pressure between the two parallel plates by means of a micromechanical torsional oscillator. The possibility of setting limits on the predictions of chameleon field theories using the results of gravitational experiments and Casimir force measurements is discussed.
Adair, Aaron Michael
In order for Physics Education Research (PER) to achieve its goals of significant learning gains with efficient methods, it is necessary to figure out what are the sorts of preexisting issues that students have prior to instruction and then to create teaching methods that are best able to overcome those problems. This makes it necessary to figure out what is the nature of student physics misconceptions---prior beliefs that are both at variance to Newtonian mechanics and also prevent a student from properly cognizing Newtonian concepts. To understand the prior beliefs of students, it is necessary to uncover their origins, which may allow instructors to take into account the sources for ideas of physics that are contrary to Newtonian mechanics understanding. That form of instruction must also induce the sorts of metacognitive processes that allow students to transition from their previous conceptions to Newtonian ones, let alone towards those of modern physics. In this paper, the notions of basic dynamics that are common among first-year college students are studied and compared with previous literature. In particular, an analysis of historical documents from antiquity up to the early modern period shows that these conceptions were rather widespread and consistent over thousands of years and in numerous cultural contexts. This is one of the only analyses in PER that considers the original languages of some of these texts, along with appropriate historical scholarship. Based on the consistent appearance of these misconceptions, a test and interview module was devised to help elucidate the feelings students have that may relate to fictitious forces. The test looked at one-dimensional motion and forces. The first part of the interview asked each student about their answers to the test questions, while the second part asked how students felt when undergoing three cases of constant acceleration in a car. We determined that students confabulated relative motion with the
International Nuclear Information System (INIS)
Jones, K.R.W.
1995-01-01
We develop a nonlinear quantum theory of Newtonian gravity consistent with an objective interpretation of the wavefunction. Inspired by the ideas of Schroedinger, and Bell, we seek a dimensional reduction procedure to map complex wavefunctions in configuration space onto a family of observable fields in space-time. Consideration of quasi-classical conservation laws selects the reduced one-body quantities as the basis for an explicit quasi-classical coarse-graining. These we interpret as describing the objective reality of the laboratory. Thereafter, we examine what may stand in the role of the usual Copenhagen observer to localise this quantity against macroscopic dispersion. Only a tiny change is needed, via a generically attractive self-potential. A nonlinear treatment of gravitational self-energy is thus advanced. This term sets a scale for all wavepackets. The Newtonian cosmology is thus closed, without need of an external observer. Finally, the concept of quantisation is re-interpreted as a nonlinear eigenvalue problem. To illustrate, we exhibit an elementary family of gravitationally self-bound solitary waves. Contrasting this theory with its canonically quantised analogue, we find that the given interpretation is empirically distinguishable, in principle. This result encourages deeper study of nonlinear field theories as a testable alternative to canonically quantised gravity. (author). 46 refs., 5 figs
Gravitational radiation from nearly Newtonian systems
International Nuclear Information System (INIS)
Kirk, E.M.
1989-09-01
A method of examining gravitational radiation from nearly Newtonian systems is presented. Using the Cartan formulation of Newtonian gravity, a one parameter family of space-times which have a strict Newtonian limit is constructed. An expression for the initial null data in terms of the Newtonian potential is obtained in the Newtonian limit. Using this, the problem is formulated as a series in the Newtonian parameter. The series expansions for the sources of the Bianchi identities are obtained to third order in both the vacuum and non-vacuum cases. A simple technique is presented for determining whether a particular source term gives rise to asymptotically flat null data. The far field quadrupole formula is derived in a leading approximation and a method for obtaining error bounds is discussed. Additionally, a method for solving Einstein's equations is shown. This involves expressing the Ricci identities as a matrix, Riccati equation and a system of linear matrix equations. A comparison of the formalisms of Bondi and Newman Penrose is presented and explicit correspondences between the supersurface constrain equations and the Ricci identities are shown. (author)
Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces
International Nuclear Information System (INIS)
Zhu, Yingxi; Granick, Steve
2001-01-01
Newtonian fluids were placed between molecularly smooth surfaces whose spacing was vibrated at spacings where the fluid responded as a continuum. Hydrodynamic forces agreed with predictions from the no-slip boundary condition only provided that flow rate (peak velocity normalized by spacing) was low, but implied partial slip when it exceeded a critical level, different in different systems, correlated with contact angle (surface wettability). With increasing flow rate and partially wetted surfaces, hydrodynamic forces became up to 2--4 orders of magnitude less than expected by assuming the no-slip boundary condition that is commonly stated in textbooks
Solitons as Newtonian particles
International Nuclear Information System (INIS)
Eboli, O.J.P.; Marques, G.C.
1982-07-01
The effect of external electromagnetic fields on non relativistic solitons is studied. Although the solitons are distorted by external fields, they still exhibit a Newtonian behavior. Some explicit examples of such a phenomenon are given, presenting solutions which exhibit Newtonian behavior for simple external fields. Furthermore, general results like charge and flux quantization are shown. (Author) [pt
Post-Newtonian conservation laws in rigid quasilocal frames
International Nuclear Information System (INIS)
McGrath, Paul L; Chanona, Melanie; Epp, Richard J; Mann, Robert B; Koop, Michael J
2014-01-01
In recent work we constructed completely general conservation laws for energy (McGrath et al 2012 Class. Quantum Grav. 29 215012) and linear and angular momentum (Epp et al 2013 Class. Quantum Grav. 30 195019) of extended systems in general relativity based on the notion of a rigid quasilocal frame (RQF). We argued at a fundamental level that these RQF conservation laws are superior to conservation laws based on the local stress–energy–momentum tensor of matter because (1) they do not rely on spacetime symmetries and (2) they properly account for both matter and gravitational effects. Moreover, they provide simple, exact, operational expressions for fluxes of gravitational energy and linear and angular momentum. In this paper we derive the form of these laws in a general first post-Newtonian (1PN) approximation, and then apply these approximate laws to the problem of gravitational tidal interactions. We obtain formulas for tidal heating and tidal torque that agree with the literature, but without resorting to the use of pseudotensors. We describe the physical mechanism of these tidal interactions not in the traditional terms of a Newtonian gravitational force, but in terms of a much simpler and universal mechanism that is an exact, quasilocal manifestation of the equivalence principle in general relativity. As concrete examples, we look at the tidal heating of Jupiter’s moon Io and angular momentum transfer in the Earth–Moon system that causes a gradual spin-down of the Earth and recession of the Moon. In both examples we find agreement with observation. (paper)
Exact Descriptions of General Relativity Derived from Newtonian Mechanics within Curved Geometries
Savickas, David
2015-04-01
General relativity and Newtonian mechanics are shown to be exactly related when Newton's second law is written in a curved geometry by using the physical components of a vector as is defined in tensor calculus. By replacing length within the momentum's velocity by the vector metric in a curved geometry the second law can then be shown to be exactly identical to the geodesic equation of motion occurring in general relativity. When time's vector direction is constant, as similarly occurs in Newtonian mechanics, this equation can be reduced to a curved three-dimensional equation of motion that yields the the Schwarzschild equations of motion for an isolated particle. They can be used to describe gravitational behavior for any array of masses for which the Newtonian gravitational potential is known, and is shown to describe a mass particle's behavior in the gravitational field of a thin mass-rod. This use of Newton's laws allows relativistic behavior to be described in a physically comprehensible manner. D. Savickas, Int. J. Mod. Phys. D 23 1430018, (2014).
Post-Newtonian gravitational bremsstrahlung
International Nuclear Information System (INIS)
Turner, M.; Will, C.M.
1977-07-01
Formulae and numerical results are presented for the gravitational radiation emitted during a low-deflection encounter between two massive bodies. Results are valid through post-Newtonian order within general relativity. The gravitational waveform, the total luminosity and total emitted energy, the angular distribution of emitted energy, and the frequency spectrum are discussed in detail. A method boosting the accuracy of these quantities to post Newtonian order is also presented. A numerical comparison of results with those of Peters, and of Kovacs and Thorne shows that the post Newtonian method is reliable to better than 0.1 percent at v = 0.1 c, to a few percent at v = 0.35 c, and to 10 to 20 percent at v = 0.5 c
Frolov, S V; Sindeev, S V; Liepsch, D; Balasso, A
2016-05-18
According to the clinical data, flow conditions play a major role in the genesis of intracranial aneurysms. The disorder of the flow structure is the cause of damage of the inner layer of the vessel wall, which leads to the development of cerebral aneurysms. Knowledge of the alteration of the flow field in the aneurysm region is important for treatment. The aim is to study quantitatively the flow structure in an patient-specific aneurysm model of the internal carotid artery using both experimental and computational fluid dynamics (CFD) methods with Newtonian and non-Newtonian fluids. A patient-specific geometry of aneurysm of the internal carotid artery was used. Patient data was segmented and smoothed to obtain geometrical model. An elastic true-to-scale silicone model was created with stereolithography. For initial investigation of the blood flow, the flow was visualized by adding particles into the silicone model. The precise flow velocity measurements were done using 1D Laser Doppler Anemometer with a spatial resolution of 50 μ m and a temporal resolution of 1 ms. The local velocity measurements were done at a distance of 4 mm to each other. A fluid with non-Newtonian properties was used in the experiment. The CFD simulations for unsteady-state problem were done using constructed hexahedral mesh for Newtonian and non-Newtonian fluids. Using 1D laser Doppler Anemometer the minimum velocity magnitude at the end of systole -0.01 m/s was obtained in the aneurysm dome while the maximum velocity 1 m/s was at the center of the outlet segment. On central cross section of the aneurysm the maximum velocity value is only 20% of the average inlet velocity. The average velocity on the cross-section is only 11% of the inlet axial velocity. Using the CFD simulation the wall shear stresses for Newtonian and non-Newtonian fluid at the end of systolic phase (t= 0.25 s) were computed. The wall shear stress varies from 3.52 mPa (minimum value) to 10.21 Pa (maximum value) for the
Structural Optimization of non-Newtonian Microfluidics
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg; Okkels, Fridolin
2011-01-01
We present results for topology optimization of a non-Newtonian rectifier described with a differential constitutive model. The results are novel in the sense that a differential constitutive model has not been combined with topology optimization previously. We find that it is necessary to apply...... optimization of fluids. We test the method on a microfluidic rectifier and find solutions topologically different from experimentally realized designs....
Quasi-local mass in the covariant Newtonian spacetime
International Nuclear Information System (INIS)
Wu, Y-H; Wang, C-H
2008-01-01
In general relativity, quasi-local energy-momentum expressions have been constructed from various formulae. However, the Newtonian theory of gravity gives a well-known and a unique quasi-local mass expression (surface integration). Since geometrical formulation of Newtonian gravity has been established in the covariant Newtonian spacetime, it provides a covariant approximation from relativistic to Newtonian theories. By using this approximation, we calculate the Komar integral, the Brown-York quasi-local energy and the Dougan-Mason quasi-local mass in the covariant Newtonian spacetime. It turns out that the Komar integral naturally gives the Newtonian quasi-local mass expression; however, further conditions (spherical symmetry) need to be made for Brown-York and Dougan-Mason expressions
Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells
Directory of Open Access Journals (Sweden)
Dan Sui
2018-04-01
Full Text Available Having precise information of fluids' temperatures is a critical process during planning of drilling operations, especially for extended reach drilling (ERD. The objective of this paper is to develop an accurate temperature model that can precisely calculate wellbore temperature distributions. An established semi-transient temperature model for vertical wellbores is extended and improved to include deviated wellbores and more realistic scenarios using non-Newtonian fluids. The temperature model is derived based on an energy balance between the formation and the wellbore. Heat transfer is considered steady-state in the wellbore and transient in the formation through the utilization of a formation cooling effect. In this paper, the energy balance is enhanced by implementing heat generation from the drill bit friction and contact friction force caused by drillpipe rotation. A non-linear geothermal gradient as a function of wellbore inclination, is also introduced to extend the model to deviated wellbores. Additionally, the model is improved by considering temperature dependent drilling fluid transport and thermal properties. Transport properties such as viscosity and density are obtained by lab measurements, which allows for investigation of the effect of non-Newtonian fluid behavior on the heat transfer. Furthermore, applying a non-Newtonian pressure loss model enables an opportunity to evaluate the impact of viscous forces on fluid properties and thus the overall heat transfer. Results from sensitivity analysis of both drilling fluid properties and other relevant parameters will be presented. The main application area of this model is related to optimization of drilling fluid, hydraulics, and wellbore design parameters, ultimately leading to safe and cost efficient operations.
The Post-Newtonian Approximation for Relativistic Compact Binaries
Directory of Open Access Journals (Sweden)
Futamase Toshifumi
2007-03-01
Full Text Available We discuss various aspects of the post-Newtonian approximation in general relativity. After presenting the foundation based on the Newtonian limit, we show a method to derive post-Newtonian equations of motion for relativistic compact binaries based on a surface integral approach and the strong field point particle limit. As an application we derive third post-Newtonian equations of motion for relativistic compact binaries which respect the Lorentz invariance in the post-Newtonian perturbative sense, admit a conserved energy, and are free from any ambiguity.
Hyperdiffusive Dynamics in Newtonian Nanoparticle Fluids
Srivastava, Samanvaya
2015-10-20
© 2015 American Chemical Society. Hyperdiffusive relaxations in soft glassy materials are typically associated with out-of-equilibrium states, and nonequilibrium physics and aging are often invoked in explaining their origins. Here, we report on hyperdiffusive motion in model soft materials comprised of single-component polymer-tethered nanoparticles, which exhibit a readily accessible Newtonian flow regime. In these materials, polymer-mediated interactions lead to strong nanoparticle correlations, hyperdiffusive relaxations, and unusual variations of properties with temperature. We propose that hyperdiffusive relaxations in such materials can arise naturally from nonequilibrium or non-Brownian volume fluctuations forced by equilibrium thermal rearrangements of the particle pair orientations corresponding to equilibrated shear modes.
Hyperdiffusive Dynamics in Newtonian Nanoparticle Fluids
Srivastava, Samanvaya; Agarwal, Praveen; Mangal, Rahul; Koch, Donald L.; Narayanan, Suresh; Archer, Lynden A.
2015-01-01
© 2015 American Chemical Society. Hyperdiffusive relaxations in soft glassy materials are typically associated with out-of-equilibrium states, and nonequilibrium physics and aging are often invoked in explaining their origins. Here, we report on hyperdiffusive motion in model soft materials comprised of single-component polymer-tethered nanoparticles, which exhibit a readily accessible Newtonian flow regime. In these materials, polymer-mediated interactions lead to strong nanoparticle correlations, hyperdiffusive relaxations, and unusual variations of properties with temperature. We propose that hyperdiffusive relaxations in such materials can arise naturally from nonequilibrium or non-Brownian volume fluctuations forced by equilibrium thermal rearrangements of the particle pair orientations corresponding to equilibrated shear modes.
The significance of Newtonian cosmology
International Nuclear Information System (INIS)
Galletto, D.; Barberis, B.
1984-01-01
Starting from the hypotheses that the physical space is Euclidean, that the Universe is infinite and homogeneous and that with regard to our galaxy its behaviour is isotropic, without resorting to Newton's law of gravitation we deduce Hubble's law, the law of motion of a typical galaxy, the equation of evolution of the Universe, that the force at a distance exerted between any two galaxies is expressed by Newton's law of gravitation, etc. Adding the hypothesis that the velocity of light is independent of its source, we obtain that the metric of spacetime is necessarily given by the Einstein-de Sitter metric, that the tensorial form of the equations of Newtonian cosmology is given by Einstein's gravitational equations, etc. (Auth.)
Flocking particles in a non-Newtonian shear thickening fluid
Mucha, Piotr B.; Peszek, Jan; Pokorný, Milan
2018-06-01
We prove the existence of strong solutions to the Cucker–Smale flocking model coupled with an incompressible viscous non-Newtonian fluid with the stress tensor of a power–law structure for . The fluid part of the system admits strong solutions while the solutions to the CS part are weak. The coupling is performed through a drag force on a periodic spatial domain . Additionally, we construct a Lyapunov functional determining the large time behavior of solutions to the system.
Dynamics of continua and particles from general covariance of Newtonian gravitation theory
International Nuclear Information System (INIS)
Duval, C.; Kunzle, H.P.
1976-07-01
The principle of general covariance, which states that the total action functional in General Relativity is independent of coordinate transformations, is shown to be also applicable to the four-dimensional geometric theory of Newtonian gravitation. It leads to the correct conservation (or balance) equations of continuum mechanics as well as the equations of motion of test particles in a gravitational field. The degeneracy of the ''metric'' of Newtonian space-time forces to introduce a ''gauge field'' which fixes the connection and leads to a conserved current, the mass flow. The particle equations are also derived from an invariant Hamiltonian structure on the extended Galilei group and a minimal interaction principle. One not only finds the same equations of motion but even the same gauge fields
On approximation of non-Newtonian fluid flow by the finite element method
Svácek, Petr
2008-08-01
In this paper the problem of numerical approximation of non-Newtonian fluid flow with free surface is considered. Namely, the flow of fresh concrete is addressed. Industrial mixtures often behaves like non-Newtonian fluids exhibiting a yield stress that needs to be overcome for the flow to take place, cf. [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley, New York, 1987; R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries, Butterworth-Heinemann, London, 1999]. The main interest is paid to the mathematical formulation of the problem and to discretization with the aid of finite element method. The described numerical procedure is applied onto the solution of several problems.
Relativistic gravitation theory for the modified Newtonian dynamics paradigm
International Nuclear Information System (INIS)
Bekenstein, Jacob D.
2004-01-01
The modified Newtonian dynamics (MOND) paradigm of Milgrom can boast of a number of successful predictions regarding galactic dynamics; these are made without the assumption that dark matter plays a significant role. MOND requires gravitation to depart from Newtonian theory in the extragalactic regime where dynamical accelerations are small. So far relativistic gravitation theories proposed to underpin MOND have either clashed with the post-Newtonian tests of general relativity, or failed to provide significant gravitational lensing, or violated hallowed principles by exhibiting superluminal scalar waves or an a priori vector field. We develop a relativistic MOND inspired theory which resolves these problems. In it gravitation is mediated by metric, a scalar, and a 4-vector field, all three dynamical. For a simple choice of its free function, the theory has a Newtonian limit for nonrelativistic dynamics with significant acceleration, but a MOND limit when accelerations are small. We calculate the β and γ parameterized post-Newtonian coefficients showing them to agree with solar system measurements. The gravitational light deflection by nonrelativistic systems is governed by the same potential responsible for dynamics of particles. To the extent that MOND successfully describes dynamics of a system, the new theory's predictions for lensing by that system's visible matter will agree as well with observations as general relativity's predictions made with a dynamically successful dark halo model. Cosmological models based on the theory are quite similar to those based on general relativity; they predict slow evolution of the scalar field. For a range of initial conditions, this last result makes it easy to rule out superluminal propagation of metric, scalar, and vector waves
Post-Newtonian gravitational bremsstrahlung
International Nuclear Information System (INIS)
Turner, M.; Will, C.M.
1978-01-01
We present formulae and numerical results for the gravitational radiation emitted during a low-deflection encounter between two massive bodies (''gravitational bremsstrahlung''). Our results are valid through post-Newtonian order within general relativity. We discuss in detail the gravitational waveform (transverse-traceless part of the metric perturbation tensor), the toal luminosity and total emitted energy, the angular distribution of emitted energy (antenna pattern), and the frequency spectrum. We also present a method of ''boosting'' the accuracy of these quantities to post-3/2-Newtonian order. A numerical comparison of our results with those of Peters and of Kovacs and Thorne shows that the post-Newtonian method is reliable to better than 0.1% at v=0.1c, to a few percent at v=0.35c, and to 10--20% at v=0.5c. We also compare our results with those of Smarr
Impinging jet spray formation using non-Newtonian liquids
Rodrigues, Neil S.
and drop velocity mean values and distribution of several non-Newtonian liquids using a like-on-like impinging jet doublet. The drop size and drop velocity are important areas of study because of the effect on mass transfer and mass dispersal. Phase Doppler Anemometry (PDA) is used to measure the drop diameter and drop velocity. The drop diameter is measured by finding a phase difference between two signals. The drop velocity is measured using Laser Doppler Anemometry (LDA), which is based on the Doppler shift. Parametric studies are conducted based on dimensionless groups, impinging jet geometry, and spatial position. The investigated non-Newtonian liquids collapse onto a single mean diameter versus Reynolds number curve. However, this behavior is not observed for the gels due to differences in surface tension and molecular structure. In general, increasing the inertial force results in smaller drops and greater drop velocities. The different geometric parameters are observed to have varying degrees of influence, based on the propellant simulant considered. Larger drops with lower axial velocities are generally observed with increasing transverse distances from the centerline of the impinging jet spray.
Non-Newtonian Aspects of Artificial Intelligence
Zak, Michail
2016-05-01
The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.
Force sensor for chameleon and Casimir force experiments with parallel-plate configuration
Almasi, A.; Brax, P.; Iannuzzi, D.; Sedmik, R.
2015-01-01
The search for non-Newtonian forces has been pursued following many different paths. Recently it was suggested that hypothetical chameleon interactions, which might explain the mechanisms behind dark energy, could be detected in a high-precision force measurement. In such an experiment, interactions
General relativistic continuum mechanics and the post-Newtonian equations of motion
International Nuclear Information System (INIS)
Morrill, T.H.
1991-01-01
Aspects are examined of general relativistic continuum mechanics. Perfectly elastic materials are dealt with but not exclusively. The derivation of their equations of motion is emphasized, in the post-Newtonian approximation. A reformulation is presented based on the tetrad formalism, of Carter and Quintana's theory of general relativistic elastic continua. A field Lagrangian is derived describing perfect material media; show that the usual covariant conservations law for perfectly elastic media is fully equivalent to the Euler-Lagrange equations describing these same media; and further show that the equations of motion for such materials follow directly from Einstein's field equations. In addition, a version of this principle shows that the local mass density in curved space-time partially depends on the amount and distribution of mass energy in the entire universe and is related to the mass density that would occur if space-time were flat. The total Lagrangian was also expanded in an EIH (Einstein, Infeld, Hoffmann) series to obtain a total post-Newtonian Lagrangian. The results agree with those found by solving Einstein's equations for the metric coefficients and by deriving the post-Newtonian equations of motion from the covariant conservation law
Nesvizhevsky, V V; Protasov, K V
2005-01-01
An upper limit to non-Newtonian attractive forces is obtained from the measurement of quantum states of neutrons in the Earth's gravitational field. This limit improves the existing constraints in the nanometer range.
Cosmology with modified Newtonian dynamics (MOND)
Sanders, R. H.
1998-01-01
It is well known that the application of Newtonian dynamics to an expanding spherical region leads to the correct relativistic expression (the Friedmann equation) for the evolution of the cosmic scalefactor. Here, the cosmological implications of Milgrom's modified Newtonian dynamics (MOND) are
Modeling of flow of particles in a non-Newtonian fluid using lattice Boltzmann method
DEFF Research Database (Denmark)
Skocek, Jan; Svec, Oldrich; Spangenberg, Jon
2011-01-01
is necessary. In this contribution, the model at the scale of aggregates is introduced. The conventional lattice Boltzmann method for fluid flow is enriched with the immersed boundary method with direct forcing to simulate the flow of rigid particles in a non- Newtonian liquid. Basic ingredients of the model...
Lie group analysis of flow and heat transfer of non-Newtonian
Indian Academy of Sciences (India)
law nanofluid over a stretching surface under convective boundary conditions and temperature-dependent fluid viscosity has been numerically investigated. The power-law rheology is adopted to describe non-Newtonian characteristics of the ...
Seduced by logic Emilie du Chatelet, Mary Somerville and the Newtonian revolution
Arianrhod, Robyn
2012-01-01
Newton's explanation of the natural law of universal gravity shattered the way mankind perceived the universe, and hence it was not immediately embraced. After all, how can anyone warm to a force that cannot be seen or touched? But for two women, separated by time and space but joined in their passion for Newtonian physics, the intellectual power of that force drove them to great achievements. Brilliant, determined, and almost entirely self-taught, they dedicated their lives to explaining and disseminating Newton's discoveries.Robyn Arianrhod's Seduced by Logic tells the story of Emilie du Cha
Negative wake behind bubbles in non-newtonian liquids
DEFF Research Database (Denmark)
Hassager, Ole
1979-01-01
Gas bubbles rising by gravity in non-Newtonian elastic liquids are different to gas bubbles in viscous Newtonian fluids in at least two ways. First, the bubbles in the non-Newtonian liquids often have a peculiar tip at the rear pole, and second, the terminal rise velocity versus volume curve ofte...
Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow
Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.
2000-09-01
We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.
Directory of Open Access Journals (Sweden)
Sivakumar Venkatachalam
2011-09-01
Full Text Available Many experiments have been conducted to study the hydrodynamic characteristics of column reactors and loop reactors. In this present work, a novel combined loop airlift fluidized bed reactor was developed to study the effect of superficial gas and liquid velocities, particle diameter, fluid properties on gas holdup by using Newtonian and non-Newtonian liquids. Compressed air was used as gas phase. Water, 5% n-butanol, various concentrations of glycerol (60 and 80% were used as Newtonian liquids, and different concentrations of carboxy methyl cellulose aqueous solutions (0.25, 0.6 and 1.0% were used as non-Newtonian liquids. Different sizes of spheres, Bearl saddles and Raschig rings were used as solid phases. From the experimental results, it was found that the increase in superficial gas velocity increases the gas holdup, but it decreases with increase in superficial liquid velocity and viscosity of liquids. Based on the experimental results a correlation was developed to predict the gas hold-up for Newtonian and non-Newtonian liquids for a wide range of operating conditions at a homogeneous flow regime where the superficial gas velocity is approximately less than 5 cm/s
Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines
Energy Technology Data Exchange (ETDEWEB)
Poloski, Adam P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abrefah, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hohimer, Ryan E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nigl, Franz [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toth, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tingey, Joel M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yokuda, Satoru T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2009-03-01
correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 μm or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.
External gear pumps operating with non-Newtonian fluids: Modelling and experimental validation
Rituraj, Fnu; Vacca, Andrea
2018-06-01
External Gear Pumps are used in various industries to pump non-Newtonian viscoelastic fluids like plastics, paints, inks, etc. For both design and analysis purposes, it is often a matter of interest to understand the features of the displacing action realized by meshing of the gears and the description of the behavior of the leakages for this kind of pumps. However, very limited work can be found in literature about methodologies suitable to model such phenomena. This article describes the technique of modelling external gear pumps that operate with non-Newtonian fluids. In particular, it explains how the displacing action of the unit can be modelled using a lumped parameter approach which involves dividing fluid domain into several control volumes and internal flow connections. This work is built upon the HYGESim simulation tool, conceived by the authors' research team in the last decade, which is for the first time extended for the simulation of non-Newtonian fluids. The article also describes several comparisons between simulation results and experimental data obtained from numerous experiments performed for validation of the presented methodology. Finally, operation of external gear pump with fluids having different viscosity characteristics is discussed.
Empirical resistive-force theory for slender biological filaments in shear-thinning fluids
Riley, Emily E.; Lauga, Eric
2017-06-01
Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids. While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically and to interpret physically. An application of the models to recent experimental results on the locomotion of Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics of swimming in shear-thinning fluids.
Ignatenko, Yaroslav; Bocharov, Oleg; May, Roland
2017-10-01
Solids transport is a major issue in high angle wells. Bed-load forms by sediment while transport and accompanied by intermittent contact with stream-bed by rolling, sliding and bouncing. The study presents the results of a numerical simulation of a laminar steady-state flow around a particle at rest and in free motion in a shear flow of Herschel-Bulkley fluid. The simulation was performed using the OpenFOAM open-source CFD package. A criterion for particle incipient motion and entrainment into suspension from cuttings bed (Shields criteria) based on forces and torques balance is discussed. Deflection of the fluid parameters from the ones of Newtonian fluid leads to decreasing of the drag and lift forces and the hydrodynamic moment. Thus, the critical shear stress (Shields parameter) for the considered non-Newtonian fluid must be greater than the one for a Newtonian fluid.
Newtonian versus black-hole scattering
International Nuclear Information System (INIS)
Siopsis, G.
1999-01-01
We discuss non-relativistic scattering by a Newtonian potential. We show that the gray-body factors associated with scattering by a black hole exhibit the same functional dependence as scattering amplitudes in the Newtonian limit, which should be the weak-field limit of any quantum theory of gravity. This behavior arises independently of the presence of supersymmetry. The connection to two-dimensional conformal field theory is also discussed. copyright 1999 The American Physical Society
Unexpected properties of the centrifugal force
International Nuclear Information System (INIS)
Abramowicz, M.A.
1990-01-01
Contrary to what is stated in the Newtonian dynamics, rotation of a reference frame is not sufficient for the occurrence of the centrifugal force. Instead, the necessary and sufficient condition is a motion along a path different from that of a photon trajectory in space. This calls for a rather fundamental change in understanding of the very nature of the centrifugal force. It also has important practical physical consequences: in a strong gravitational field, where light trajectories are substantially curved, centrifugal force is much weaker than the Newtonian theory predicts. In addition, when there are closed (circular) photon trajectories in space, the centrifugal force may reverse its direction - it attracts towards the rotation axis!. The weakening of the centrifugal force in strong gravitational fields and the reversal of its direction in the neighbourhood of close photon trajectories in space fully and clearly explain puzzling examples of counter intuitive behaviour of dynamical effects of rotation found previously by several authors: e.g. reversal of the ellipticity behaviour of the relativistic Maclaurin spheroids (Chandrasekhar and Miller, 1974), reversal of the viscous torque action (Anderson and Lemos, 1988), or the fact that rotation increases internal pressure of a sufficiently compact star (Abramowicz and Wagoner, 1974). Weakening of the centrifugal force implies that rotating neutron stars are less oblate (and probably more stable) than the Newtonian theory predicts. This is important for the recently discussed question of how fast can pulsars spin. (author). 23 refs, 3 figs
Unexpected properties of the centrifugal force
International Nuclear Information System (INIS)
Abramowicz, M.A.
1990-01-01
Contrary to what is stated in the Newtonian dynamics, rotation of a reference frame is not sufficient for the occurrence of the centrifugal force. Instead, the necessary and sufficient condition is a motion along a path different from that of a photon trajectory in space. This calls for a rather fundamental change in understanding of the very nature of the centrifugal force. It also has important practical physical consequences: in a strong gravitational field, where light trajectories are substantially curved, centrifugal force is much weaker than the Newtonian theory predicts. In addition, when there are closed (circular) photon trajectories in space, the centrifugal force may reverse its direction - it attracts towards the rotation axis. The weakening of the centrifugal force in strong gravitational fields and the reversal of its direction in the neighborhood of close photon trajectories in space fully and clearly explain puzzling examples of counter intuitive behaviour of dynamical effects of rotation found previously by several authors: e.g. reversal of the ellipticity behaviour of the relativistic Maclaurin spheroids (Chandrasekhar and Miller, 1974), reversal of the viscous torque action (Anderson and Lemos, 1988) or the fact that rotation increases internal pressure of a sufficiently compact star (Abramowicz and Wagoner, 1974). Weakening of the centrifugal force implies that rotating neutron stars are less oblate (and probably more stable) than the Newtonian theory predicts. This is important for the recently discussed question of how fast can pulsars spins. (author). 31 refs, 3 figs
Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries
Directory of Open Access Journals (Sweden)
Blanchet Luc
2006-06-01
Full Text Available The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.
Does general relativity theory possess the classical newtonian limit
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.
1980-01-01
A detailed comparison of newtonian approximation of the Einstein theory and the Newton theory of gravity is made. A difference of principle between these two theories is clarified at the stage of obtaining integrals of motion. Exact eqautions of motion and Einstein equations shows the existence only zero integrals of motion as well as in the newtonian approximation. A conclusion is that GRT has no classical newtonian limit, since the integrals of motion in the Newton theory of gravity and in the newtonian approximation of the Einstein theory do not coincide [ru
The Common Forces: Conservative or Nonconservative?
Keeports, David
2006-01-01
Of the forces commonly encountered when solving problems in Newtonian mechanics, introductory texts usually limit illustrations of the definitions of conservative and nonconservative forces to gravity, spring forces, kinetic friction and fluid resistance. However, at the expense of very little class time, the question of whether each of the common…
Non-Newtonian fluid flow in 2D fracture networks
Zou, L.; Håkansson, U.; Cvetkovic, V.
2017-12-01
Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.
Attractors of equations of non-Newtonian fluid dynamics
International Nuclear Information System (INIS)
Zvyagin, V G; Kondrat'ev, S K
2014-01-01
This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles
Studying mixing in Non-Newtonian blue maize flour suspensions using color analysis.
Directory of Open Access Journals (Sweden)
Grissel Trujillo-de Santiago
Full Text Available BACKGROUND: Non-Newtonian fluids occur in many relevant flow and mixing scenarios at the lab and industrial scale. The addition of acid or basic solutions to a non-Newtonian fluid is not an infrequent operation, particularly in Biotechnology applications where the pH of Non-Newtonian culture broths is usually regulated using this strategy. METHODOLOGY AND FINDINGS: We conducted mixing experiments in agitated vessels using Non-Newtonian blue maize flour suspensions. Acid or basic pulses were injected to reveal mixing patterns and flow structures and to follow their time evolution. No foreign pH indicator was used as blue maize flours naturally contain anthocyanins that act as a native, wide spectrum, pH indicator. We describe a novel method to quantitate mixedness and mixing evolution through Dynamic Color Analysis (DCA in this system. Color readings corresponding to different times and locations within the mixing vessel were taken with a digital camera (or a colorimeter and translated to the CIELab scale of colors. We use distances in the Lab space, a 3D color space, between a particular mixing state and the final mixing point to characterize segregation/mixing in the system. CONCLUSION AND RELEVANCE: Blue maize suspensions represent an adequate and flexible model to study mixing (and fluid mechanics in general in Non-Newtonian suspensions using acid/base tracer injections. Simple strategies based on the evaluation of color distances in the CIELab space (or other scales such as HSB can be adapted to characterize mixedness and mixing evolution in experiments using blue maize suspensions.
Front‐tracking simulations of bubbles rising in non‐Newtonian fluids
Battistella, Alessandro; Van Schijndel, J.G.; Baltussen, Maike W.
2017-01-01
In the wide and complex field of multiphase flows, bubbly flows with non-Newtonian liquids are encountered in several important applications, such as in polymer solutions or fermentation broths. Despite the widespread application of non-Newtonian liquids, most of the models and closures used in industry are valid for Newtonian fluids only, if not even restricted to air-water systems. However, it is well known that the non-Newtonian rheology significantly influences the liquid and bubble behav...
Energy Technology Data Exchange (ETDEWEB)
Guenther, Chris [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Garg, Rahul [National Energy Technology Lab. (NETL), Morgantown, WV (United States)
2013-08-19
The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.
Orbital motions as gradiometers for post-Newtonian tidal effects
Energy Technology Data Exchange (ETDEWEB)
Iorio, Lorenzo, E-mail: lorenzo.iorio@libero.it [Ministero dell' Istruzione, dell' Università e della Ricerca, Istruzione, Bari (Italy)
2014-08-14
The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system S due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle m rapidly orbiting with orbital frequency n{sub b} an astronomical body of mass M which, in turn, slowly revolves around a distant object of mass M′ with orbital frequency n{sub b}′ « n{sub b} is considered. The characteristic frequencies of the non-Keplerian orbital variations of m and of M itself are assumed to be negligible with respect to both n{sub b} and n{sub b}′. General expressions for the resulting Newtonian and post-Newtonian tidal orbital shifts of m are obtained. The future missions BepiColombo and JUICE to Mercury and Ganymede, respectively, are considered in view of a possible detection. The largest effects, of the order of ≈ 0.1-0.5 milliarcseconds per year (mas yr{sup −1}), occur for the Ganymede orbiter of the JUICE mission. Although future improvements in spacecraft tracking and orbit determination might, perhaps, reach the required sensitivity, the systematic bias represented by the other known orbital perturbations of both Newtonian and post-Newtonian origin would be overwhelming. The realization of a dedicated artificial mini-planetary system to be carried onboard and Earth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as ≈ 1−10{sup 2} mas yr{sup −1} could be obtained, but the quite larger Newtonian tidal effects would be a major source of systematic bias because of the present-day percent uncertainty in the product of the Earth's mass times the Newtonian gravitational parameter.
Slip-flow and heat transfer of a non-newtonian nanofluid in a microtube.
Niu, Jun; Fu, Ceji; Tan, Wenchang
2012-01-01
The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared.
Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field
Directory of Open Access Journals (Sweden)
Lin Yang
2015-03-01
Full Text Available In view of the limitations of the existing Newton fluid effects on the vortex flow mechanism study, numerical analysis of non Newton fluid effects was presented. Using Reynolds stress turbulence model (RSM and mixed multiphase flow model (Mixture of FLUENT (fluid calculation software and combined with the constitutive equation of apparent viscosity of non-Newtonian fluid, the typical non-Newtonian fluid (drilling fluid, polymer flooding sewage and crude oil as medium and Newton flow field (water as medium were compared by quantitative analysis. Based on the research results of water, the effects of non-Newtonian rheology on the key parameters including the combined vortex motion index n and tangential velocity were analyzed. The study shows that: non-Newtonian rheology has a great effect on tangential velocity and n value, and tangential velocity decreases with non-Newtonian increasing. The three kinds of n values (constant segment are: 0.564(water, 0.769(polymer flooding sewage, 0.708(drilling fluid and their variation amplitudes are larger than Newtonian fluid. The same time, non-Newtonian rheology will lead to the phenomenon of turbulent drag reduction in the vortex flow field. Compared with the existing formula calculation results shown, the calculation result of non-Newtonian rheology is most consistent with the simulation result, and the original theory has large deviations. The study provides reference for theory research of non-Newtonian cyclone separation flow field.
On a modification of the Newtonian particle view of rays
International Nuclear Information System (INIS)
Ben-Benjamin, J S; Cohen, L
2015-01-01
We have developed a simple Newtonian dynamics for the motion of rays as particles that are governed by Snell’s law. In Newton’s original formulation, the particle moves faster in a relatively higher index of refraction medium. We show that it is the constant mass assumption that leads to this conclusion. We derive an explicit expression for the mass as a function of position and show that the formulation leads to the conclusion that indeed the particle moves slower in a relatively higher index of refraction medium. Our approach leads to a simple Newtonian particle picture where the equations of motion may be simply written. We obtain explicit expressions for the velocity, acceleration, and forces which allow one to write the equations of motion. We also formulate the dynamics in terms of the Lagrangian and Hamiltonian formulations, taking variable mass into account. The solutions to the dynamics are such that the particle always follows Snell’s law in a variable index of refraction medium. Exactly solvable analytic examples are given. We also we show that the SOFAR channel phenomenon, where a wave is trapped between two regions, is easily explained in the particle picture. (invited comment)
Dynamic characteristics of Non Newtonian fluid Squeeze film damper
Palaksha, C. P.; Shivaprakash, S.; Jagadish, H. P.
2016-09-01
The fluids which do not follow linear relationship between rate of strain and shear stress are termed as non-Newtonian fluid. The non-Newtonian fluids are usually categorized as those in which shear stress depends on the rates of shear only, fluids for which relation between shear stress and rate of shear depends on time and the visco inelastic fluids which possess both elastic and viscous properties. It is quite difficult to provide a single constitutive relation that can be used to define a non-Newtonian fluid due to a great diversity found in its physical structure. Non-Newtonian fluids can present a complex rheological behaviour involving shear-thinning, viscoelastic or thixotropic effects. The rheological characterization of complex fluids is an important issue in many areas. The paper analyses the damping and stiffness characteristics of non-Newtonian fluids (waxy crude oil) used in squeeze film dampers using the available literature for viscosity characterization. Damping and stiffness characteristic will be evaluated as a function of shear strain rate, temperature and percentage wax concentration etc.
Orbital motions as gradiometers for post-Newtonian tidal effects
Directory of Open Access Journals (Sweden)
Lorenzo eIorio
2014-08-01
Full Text Available The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system S due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle m rapidly orbiting with orbital frequency nb an astronomical body of mass M which, in turn, slowly revolves around a distantobject of mass M with orbital frequency nb'<< □ nb is considered. The characteristic frequenciesof the non-Keplerian orbital variations of m and of M itself are assumed to be negligible withrespect to both nb and nb'. General expressions for the resulting Newtonian and post-Newtoniantidal orbital shifts of m are obtained. The future missions BepiColombo and JUICE to Mercuryand Ganymede, respectively, are considered in view of a possible detection. The largest effects,of the order of □ 0:1 □□ 0:5 milliarcseconds per year (mas yr□□1, occur for the Ganymede orbiterof the JUICE mission. Although future improvements in spacecraft tracking and orbit determina14tion might, perhaps, reach the required sensitivity, the systematic bias represented by the otherknown orbital perturbations of both Newtonian and post-Newtonian origin would be overwhel16ming. The realization of a dedicated artificial mini-planetary system to be carried onboard andEarth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as1 □□ 102 mas yr□□1 could be obtained, but the quite larger Newtonian tidal effects would be amajor source of systematic bias because of the present-day percent uncertainty in the product of the Earth’s mass times the Newtonian gravitational parameter.
Quantitative modelling of HDPE spurt experiments using wall slip and generalised Newtonian flow
Doelder, den C.F.J.; Koopmans, R.J.; Molenaar, J.
1998-01-01
A quantitative model to describe capillary rheometer experiments is presented. The model can generate ‘two-branched' discontinuous flow curves and the associated pressure oscillations. Polymer compressibility in the barrel, incompressible axisymmetric generalised Newtonian flow in the die, and a
Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids.
Etemad, S Gh; Thibault, J; Hashemabadi, S H
2003-10-01
This paper presents the numerical investigation performed to calculate the correction factor for Pitot tubes. The purely viscous non-Newtonian fluids with the power-law model constitutive equation were considered. It was shown that the power-law index, the Reynolds number, and the distance between the impact and static tubes have a major influence on the Pitot tube correction factor. The problem was solved for a wide range of these parameters. It was shown that employing Bernoulli's equation could lead to large errors, which depend on the magnitude of the kinetic energy and energy friction loss terms. A neural network model was used to correlate the correction factor of a Pitot tube as a function of these three parameters. This correlation is valid for most Newtonian, pseudoplastic, and dilatant fluids at low Reynolds number.
RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS
Energy Technology Data Exchange (ETDEWEB)
Naoz, Smadar; Kocsis, Bence; Loeb, Abraham [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Yunes, Nicolas, E-mail: snaoz@cfa.harvard.edu [Department of Physics, Montana State University, Bozeman, MT 59718 (United States)
2013-08-20
We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai-Lidov mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effects suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the eccentric Kozai-Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular Kozai-Lidov quadrupole perturbations.
Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids
Najjari, Mohammad Reza; Plesniak, Michael W.
2016-11-01
Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.
Modified Newtonian Dynamics (MOND: Observational Phenomenology and Relativistic Extensions
Directory of Open Access Journals (Sweden)
Stacy S. McGaugh
2012-09-01
Full Text Available A wealth of astronomical data indicate the presence of mass discrepancies in the Universe. The motions observed in a variety of classes of extragalactic systems exceed what can be explained by the mass visible in stars and gas. Either (i there is a vast amount of unseen mass in some novel form - dark matter - or (ii the data indicate a breakdown of our understanding of dynamics on the relevant scales, or (iii both. Here, we first review a few outstanding challenges for the dark matter interpretation of mass discrepancies in galaxies, purely based on observations and independently of any alternative theoretical framework. We then show that many of these puzzling observations are predicted by one single relation - Milgrom's law - involving an acceleration constant a_0 (or a characteristic surface density Σ_† = a_0∕G on the order of the square-root of the cosmological constant in natural units. This relation can at present most easily be interpreted as the effect of a single universal force law resulting from a modification of Newtonian dynamics (MOND on galactic scales. We exhaustively review the current observational successes and problems of this alternative paradigm at all astrophysical scales, and summarize the various theoretical attempts (TeVeS, GEA, BIMOND, and others made to effectively embed this modification of Newtonian dynamics within a relativistic theory of gravity.
Experimental investigation of non-Newtonian droplet collisions : the role of extensional viscosity
Finotello, Giulia; De, Shauvik; Vrouwenvelder, Jeroen C.R.; Padding, J.T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J.
2018-01-01
We investigate the collision behaviour of a shear thinning non-Newtonian fluid xanthan, by binary droplet collision experiments. Droplet collisions of non-Newtonian fluids are more complex than their Newtonian counterpart as the viscosity no longer remains constant during the collision process.
Newtonian cosmology with a quantum bounce
Energy Technology Data Exchange (ETDEWEB)
Bargueno, P.; Bravo Medina, S.; Nowakowski, M. [Universidad de los Andes, Departamento de Fisica, Bogota (Colombia); Batic, D. [University of West Indies, Department of Mathematics, Kingston 6 (Jamaica)
2016-10-15
It has been known for some time that the cosmological Friedmann equation deduced from general relativity can also be obtained within the Newtonian framework under certain assumptions. We use this result together with quantum corrections to the Newtonian potentials to derive a set a of quantum corrected Friedmann equations. We examine the behavior of the solutions of these modified cosmological equations paying special attention to the sign of the quantum corrections. We find different quantum effects crucially depending on this sign. One such a solution displays a qualitative resemblance to other quantum models like Loop quantum gravity or non-commutative geometry. (orig.)
Binous, Housam
2007-01-01
We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…
Directory of Open Access Journals (Sweden)
Jamshid M. Nouri
2008-03-01
Full Text Available Mean and rms velocity characteristics of two Newtonian flows at Reynolds numbers of 12,800 (glycerin solution and 48,000 (water and of a non-Newtonian flow (0.2% CMC solution, at a power number similar to the Newtonian glycerin flow in a mixing vessel stirred by a 60° pitched blade impeller have been measured by laser Doppler velocimetry (LDV. The velocity measurements, resolved over 360° and 1.08° of impeller rotation, showed that the mean flow of the two power number matched glycerin and CMC flows were similar to within 3% of the impeller tip velocity and the turbulence intensities generally lower in the CMC flow by up to 5% of the tip velocity. The calculated mean flow quantities showed similar discharge coefficient and pumping efficiency in all three flows and similar strain rate between the two power number matched glycerin and CMC flows; the strain rate of the higher Reynolds number Newtonian flow was found to be slightly higher. The energy balance around the impeller indicated that the CMC flow dissipated up to 9% more of the total input power and converted 7% less into the turbulence compared to the glycerin flow with the same power input which could lead to less effective mixing processes where the micro-mixing is important.
Effect of non-Newtonian viscosity on the fluid-dynamic characteristics in stenotic vessels
Huh, Hyung Kyu; Ha, Hojin; Lee, Sang Joon
2015-08-01
Although blood is known to have shear-thinning and viscoelastic properties, the effects of such properties on the hemodynamic characteristics in various vascular environments are not fully understood yet. For a quantitative hemodynamic analysis, the refractive index of a transparent blood analogue needs to be matched with that of the flowing conduit in order to minimize the errors according to the distortion of the light. In this study, three refractive index-matched blood analogue fluids with different viscosities are prepared—one Newtonian and two non-Newtonian analogues—which correspond to healthy blood with 45 % hematocrit (i.e., normal non-Newtonian) and obese blood with higher viscosity (i.e., abnormal non-Newtonian). The effects of the non-Newtonian rheological properties of the blood analogues on the hemodynamic characteristics in the post-stenosis region of an axisymmetric stenosis model are experimentally investigated using particle image velocimetry velocity field measurement technique and pathline flow visualization. As a result, the centerline jet flow from the stenosis apex is suppressed by the shear-thinning feature of the blood analogues when the Reynolds number is smaller than 500. The lengths of the recirculation zone for abnormal and normal non-Newtonian blood analogues are 3.67 and 1.72 times shorter than that for the Newtonian analogue at Reynolds numbers smaller than 200. The Reynolds number of the transition from laminar to turbulent flow for all blood analogues increases as the shear-thinning feature increases, and the maximum wall shear stresses in non-Newtonian fluids are five times greater than those in Newtonian fluids. However, the shear-thinning effect on the hemodynamic characteristics is not significant at Reynolds numbers higher than 1000. The findings of this study on refractive index-matched non-Newtonian blood analogues can be utilized in other in vitro experiments, where non-Newtonian features dominantly affect the flow
International Nuclear Information System (INIS)
Munera, Hector A.
2010-01-01
Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.
A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow
Toose, E.M.; Geurts, B.J.; Kuerten, J.G.M.
1995-01-01
A boundary integral method for the simulation of the time-dependent deformation of Newtonian or non-Newtonian drops suspended in a Newtonian fluid is developed. The boundary integral formulation for Stokes flow is used and the non-Newtonian stress is treated as a source term which yields an extra
Precision force sensing with optically-levitated nanospheres
Geraci, Andrew
2017-04-01
In high vacuum, optically-trapped dielectric nanospheres achieve excellent decoupling from their environment and experience minimal friction, making them ideal for precision force sensing. We have shown that 300 nm silica spheres can be used for calibrated zeptonewton force measurements in a standing-wave optical trap. In this optical potential, the known spacing of the standing wave anti-nodes can serve as an independent calibration tool for the displacement spectrum of the trapped particle. I will describe our progress towards using these sensors for tests of the Newtonian gravitational inverse square law at micron length scales. Optically levitated dielectric objects also show promise for a variety of other precision sensing applications, including searches for gravitational waves and other experiments in quantum optomechanics. National Science Foundation PHY-1205994, PHY-1506431, PHY-1509176.
Instrumentation to Monitor Transient Periodic Developing Flow in Non-Newtonian Slurries
Energy Technology Data Exchange (ETDEWEB)
Bamberger, Judith A.; Enderlin, Carl W.
2013-11-15
Staff at Pacific Northwest National Laboratory have conducted mixing and mobilization experiments with non-Newtonian slurries that exhibit Bingham plastic and shear thinning behavior and shear strength. This paper describes measurement techniques applied to identify the interface between flowing and stationary regions of non-Newtonian slurries that are subjected to transient, periodic, developing flows. Techniques were developed to identify the boundary between the flowing and stationary regions, time to mix, characteristic velocities of the flow field produced by the symmetrically spaced nozzles, and the velocity of the upwell formed in the center of the tank by the intersection of flow from four symmetrically spaced nozzles that impinge upon the tank floor. Descriptions of the instruments and instrument performance are presented. These techniques were an effective approach to characterize mixing phenomena, determine mixing energy required to fully mobilize vessel contents and to determine mixing times for process evaluation.
Walker, Andrew M; Johnston, Clifton R; Rival, David E
2012-11-01
Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the
General Relativity Exactly Described by Use of Newton's Laws within a Curved Geometry
Savickas, David
2014-03-01
The connection between general relativity and Newtonian mechanics is shown to be much closer than generally recognized. When Newton's second law is written in a curved geometry by using the physical components of a vector as defined in tensor calculus, and by replacing distance within the momentum's velocity by the vector metric ds in a curved geometry, the second law can then be easily shown to be exactly identical to the geodesic equation of motion occurring in general relativity. By using a time whose vector direction is constant, as similarly occurs in Newtonian mechanics, this equation can be separated into two equations one of which is a curved three-dimensional equation of motion and the other is an equation for energy. For the gravitational field of an isolated particle, they yield the Schwarzschild equations. They can be used to describe gravitation for any array of masses for which the Newtonian gravitational potential is known, and is applied here to describe motion in the gravitational field of a thin mass-rod.
DEFF Research Database (Denmark)
Ratkovich, Nicolas Rios; Majumder, S.K.; Bentzen, Thomas Ruby
2013-01-01
Gas-Newtonian liquid two-phase flows (TPFs) are presented in several industrial processes (e.g. oil-gas industry). In spite of the common occurrence of these TPFs, the understanding of them is limited compared to single-phase flows. Various studies on TPF focus on developing empirical correlations...... based on large sets of experimental data for void fraction, which have proven accurate for specific conditions for which they were developed limiting their applicability. On the other hand, few studies focus on gas-non-Newtonian liquids TPFs, which are very common in chemical processes. The main reason...... is due to the characterization of the viscosity, which determines the hydraulic regime and flow behaviours of the system. The focus of this study is the analysis of the TPF (slug flow) for Newtonian and non-Newtonian liquids in a vertical pipe in terms of void fraction using computational fluid dynamics...
On the origin of the inertia: The modified Newtonian dynamics theory
International Nuclear Information System (INIS)
Gine, Jaume
2009-01-01
It is shown that the identity between inertial mass and gravitational mass is an assumption to establish the equivalence principle. In the context of Sciama's inertia theory, the identity between the inertial mass and the gravitational mass is discussed and a certain condition which must be experimentally satisfied is given. The inertial force proposed by Sciama, in a simple case, is derived from Assis' inertia theory based in the introduction of a Weber type force. The origin of the inertial force is totally justified taking into account that the Weber force is, in fact, an approximation of a simple retarded potential, see [Gine J. On the origin of the anomalous precession of Mercury's perihelion. . Gine J. On the origin of deflection of the light. Chaos, Solitons and Fractals 2008;35(1):1-6]. The way how the inertial forces are also derived from some solutions of the general relativistic equations is presented. We wonder whether the theory of inertia of Assis is included in the framework the General Relativity. In the context of the inertia developed in the present paper, we establish the relation between the constant acceleration a 0 , that appears in the classical modified Newtonian dynamics (MOND) theory, with the Hubble constant H 0 , i.e. a 0 ∼ cH 0 .
Gauge unification of basic forces, particularly of gravitation with strong interactions
International Nuclear Information System (INIS)
Salam, A.
1977-01-01
An attempt is made to present a case for the use of both the Einstein--Weyl spin-two and the Yang--Mills spin-one gauge structures for describing strong interactions. By emphasizing both spin-one and -two aspects of this force, it is hoped that a unification of this force, on the one hand, with gravity theory and, on the other, with the electromagnetic and weak interactions can be achieved. A Puppi type of tetrahedral interralation of fundamental forces, with the strong force playing a pivotal role due to its mediation through both spin-one and -two quanta, is proposed. It is claimed that the gauge invariance of gravity theory permits the use of ambuguity-free nonpolynomial techniques and thereby the securing of relistic regularization in gravity-modified field theories with the Newtonian constant G/sub N/ providing a relistic cutoff. 37 references
Free surface flow of a suspension of rigid particles in a non-Newtonian fluid
DEFF Research Database (Denmark)
Svec, Oldrich; Skocek, Jan; Stang, Henrik
2012-01-01
A numerical framework capable of predicting the free surface flow of a suspension of rigid particles in a non-Newtonian fluid is described. The framework is a combination of the lattice Boltzmann method for fluid flow, the mass tracking algorithm for free surface representation, the immersed...
Pseudo-Newtonian Equations for Evolution of Particles and Fluids in Stationary Space-times
Energy Technology Data Exchange (ETDEWEB)
Witzany, Vojtěch; Lämmerzahl, Claus, E-mail: vojtech.witzany@zarm.uni-bremen.de, E-mail: claus.laemmerzahl@zarm.uni-bremen.de [ZARM, Universität Bremen, Am Fallturm, D-28359 Bremen (Germany)
2017-06-01
Pseudo-Newtonian potentials are a tool often used in theoretical astrophysics to capture some key features of a black hole space-time in a Newtonian framework. As a result, one can use Newtonian numerical codes, and Newtonian formalism, in general, in an effective description of important astrophysical processes such as accretion onto black holes. In this paper, we develop a general pseudo-Newtonian formalism, which pertains to the motion of particles, light, and fluids in stationary space-times. In return, we are able to assess the applicability of the pseudo-Newtonian scheme. The simplest and most elegant formulas are obtained in space-times without gravitomagnetic effects, such as the Schwarzschild rather than the Kerr space-time; the quantitative errors are smallest for motion with low binding energy. Included is a ready-to-use set of fluid equations in Schwarzschild space-time in Cartesian and radial coordinates.
Theoretical frameworks for testing relativistic gravity. V - Post-Newtonian limit of Rosen's theory
Lee, D. L.; Ni, W.-T.; Caves, C. M.; Will, C. M.
1976-01-01
The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the post-Newtonian parameter alpha sub 2 (which is related to the difference in propagation speeds for gravitational and electromagnetic waves). Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific (but presumably special) form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity - and standard solar system experiments cannot distinguish between the two theories.
Parameterized Post-Newtonian Expansion of Scalar-Vector-Tensor Theory of Gravity
International Nuclear Information System (INIS)
Arianto; Zen, Freddy P.; Gunara, Bobby E.; Hartanto, Andreas
2010-01-01
We investigate the weak-field, post-Newtonian expansion to the solution of the field equations in scalar-vector-tensor theory of gravity. In the calculation we restrict ourselves to the first post Newtonian. The parameterized post Newtonian (PPN) parameters are determined by expanding the modified field equations in the metric perturbation. Then, we compare the solution to the PPN formalism in first PN approximation proposed by Will and Nordtvedt and read of the coefficients (the PPN parameters) of post Newtonian potentials of the theory. We find that the values of γ PPN and β PPN are the same as in General Relativity but the coupling functions β 1 , β 2 , and β 3 are the effect of the preferred frame.
Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system
Zotos, Euaggelos E.; Dubeibe, F. L.; González, Guillermo A.
2018-04-01
The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modeled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) displaying close encounters. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.
Characteristics of gas-liquid dynamics in operation of oil fields producing non-Newtonian crude oils
Energy Technology Data Exchange (ETDEWEB)
Mirzadzhanzade, A Kh; Khasaev, A M; Gurbanov, R S; Akhmedov, Z M
1968-08-01
Experimental studies have shown that crude oils from Azerbaidzhan, Uzbekistan, Tataria, Kazakhstan and other areas have anomalous properties under reservoir conditions. Such crude oils are non-Newtonian and (1) obey Darcys Law at low velocities; (2) obey an exponential law at higher velocities; and (3) obey a modified Darcys Law at most velocities. A discussion is given of (1) flow of non-Newtonian crude oils together with gas or water; (2) flow of non-Newtonian crude oils in well tubing; (3) behavior of wells producing non-Newtonian crude oils; and (4) pumping of non-Newtonian oils in wells. Experiments have shown that a visco-plastic liquid does not fill pump inlets completely; as the diameter of the pump inlet decreases so also does the degree of liquid filling. A statistical analysis of production data from 160 fields with Newtonian oil and 129 fields with non- Newtonian oil has shown that much higher production is obtained from fields with Newtonian crude oils.
Newtonian hydrodynamic equations with relativistic pressure and velocity
Energy Technology Data Exchange (ETDEWEB)
Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Fabris, Júlio; Piattella, Oliver F.; Zimdahl, Winfried, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: fabris@pq.cnpq.br, E-mail: oliver.piattella@pq.cnpq.br, E-mail: winfried.zimdahl@pq.cnpq.br [Departamento de Fisica, Universidade Federal do Espirito Santo, Vitória (Brazil)
2016-07-01
We present a new approximation to include fully general relativistic pressure and velocity in Newtonian hydrodynamics. The energy conservation, momentum conservation and two Poisson's equations are consistently derived from Einstein's gravity in the zero-shear gauge assuming weak gravity and action-at-a-distance limit. The equations show proper special relativity limit in the absence of gravity. Our approximation is complementary to the post-Newtonian approximation and the equations are valid in fully nonlinear situations.
Possible evidence for non-Newtonian gravity in the Greenland ice gap
International Nuclear Information System (INIS)
Ander, M.E.
1988-01-01
An Airy-type geophysical experiment was conducted down a 2 km deep hole in the Greenland ice cap in order to test for possible violations of Newton's inverse square law by making gravity measurements over a range of 213 m to 1460 m. A significant departure from Newtonian gravity was observed. This result can be explained by the existence of an attractive non-Newtonian component of gravity with a strength of about 3.4% that of Newtonian gravity at a scale of 1460 m. Unfortunately, we cannot completely, unambiguously attribute it to a breakdown of Newtonian gravity because we have shown that lateral density variations in the bedrock beneath the ice can cause such apparent departures. If such variations existed, they would have to be rather unusual but certainly no impossible. 8 refs
DEFF Research Database (Denmark)
Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby; Majumder, S.K.
2012-01-01
Gas-Newtonian liquid two-phase flows (TPFs) are presented in several industrial processes (i.e. oil-gas industry). In spite of the common occurrence of these TPFs, their understanding is limited compared to single-phase flows. Different studies on TPF have focus on developing empirical correlations...... based in large sets of experiment data for void fraction and pressure drop which have proven to be accurate for specific condition that their where developed for, which limit their applicability. On the other hand, scarce studies focus on gas-non-Newtonian liquids TPFs, which are very common in chemical...... processes. The main reason for it is due to the characterization of the viscosity, which determines the hydraulic regime and flow behaviours on the system. The focus of this study is the analysis of the TPF for Newtonian and non-Newtonian liquids in a vertical pipe in terms of void fraction and total...
The parameterized post-Newtonian limit of bimetric theories of gravity
International Nuclear Information System (INIS)
Clifton, Timothy; Banados, Maximo; Skordis, Constantinos
2010-01-01
We consider the post-Newtonian limit of a general class of bimetric theories of gravity, in which both metrics are dynamical. The established parameterized post-Newtonian approach is followed as closely as possible, although new potentials are found that do not exist within the standard framework. It is found that these theories can evade solar system tests of post-Newtonian gravity remarkably well. We show that perturbations about Minkowski space in these theories contain both massless and massive degrees of freedom, and that in general there are two different types of massive mode, each with a different mass parameter. If both of these masses are sufficiently large then the predictions of the most general class of theories we consider are indistinguishable from those of general relativity, up to post-Newtonian order in a weak-field, low-velocity expansion. In the limit that the massive modes become massless, we find that these general theories do not exhibit a van Dam-Veltman-Zakharov-like discontinuity in their γ parameter, although there are discontinuities in other post-Newtonian parameters as the massless limit is approached. This smooth behaviour in γ is due to the discontinuities from each of the two different massive modes cancelling each other out. Such cancellations cannot occur in special cases with only one massive mode, such as the Isham-Salam-Strathdee theory.
Second post-Newtonian Lagrangian dynamics of spinning compact binaries
Energy Technology Data Exchange (ETDEWEB)
Huang, Li; Wu, Xin [Nanchang University, Department of Physics and Institute of Astronomy, Nanchang (China); Ma, DaZhu [Hubei University for Nationalities, School of Science, Enshi (China)
2016-09-15
The leading-order spin-orbit coupling is included in a post-Newtonian Lagrangian formulation of spinning compact binaries, which consists of the Newtonian term, first post-Newtonian (1PN) and 2PN non-spin terms and 2PN spin-spin coupling. This leads to a 3PN spin-spin coupling occurring in the derived Hamiltonian. The spin-spin couplings are mainly responsible for chaos in the Hamiltonians. However, the 3PN spin-spin Hamiltonian is small and has different signs, compared with the 2PN spin-spin Hamiltonian equivalent to the 2PN spin-spin Lagrangian. As a result, the probability of the occurrence of chaos in the Lagrangian formulation without the spin-orbit coupling is larger than that in the Lagrangian formulation with the spin-orbit coupling. Numerical evidences support this claim. (orig.)
Topics in the Foundations of General Relativity and Newtonian Gravitation Theory
Malament, David B
2012-01-01
In Topics in the Foundations of General Relativity and Newtonian Gravitation Theory, David B. Malament presents the basic logical-mathematical structure of general relativity and considers a number of special topics concerning the foundations of general relativity and its relation to Newtonian gravitation theory. These special topics include the geometrized formulation of Newtonian theory (also known as Newton-Cartan theory), the concept of rotation in general relativity, and Gödel spacetime. One of the highlights of the book is a no-go theorem that can be understood to show that there is
Computational force, mass, and energy
International Nuclear Information System (INIS)
Numrich, R.W.
1997-01-01
This paper describes a correspondence between computational quantities commonly used to report computer performance measurements and mechanical quantities from classical Newtonian mechanics. It defines a set of three fundamental computational quantities that are sufficient to establish a system of computational measurement. From these quantities, it defines derived computational quantities that have analogous physical counterparts. These computational quantities obey three laws of motion in computational space. The solutions to the equations of motion, with appropriate boundary conditions, determine the computational mass of the computer. Computational forces, with magnitudes specific to each instruction and to each computer, overcome the inertia represented by this mass. The paper suggests normalizing the computational mass scale by picking the mass of a register on the CRAY-1 as the standard unit of mass
On Laminar Flow of Non-Newtonian Fluids in Porous Media
Fayed, Hassan E.
2015-10-20
Flow of generalized Newtonian fluids in porous media can be modeled as a bundle of capillary tubes or a pore-scale network. In general, both approaches rely on the solution of Hagen–Poiseuille equation using power law to estimate the variations in the fluid viscosity due to the applied shear rate. Despite the effectiveness and simplicity, power law tends to provide unrealistic values for the effective viscosity especially in the limits of zero and infinite shear rates. Here, instead of using power law, Carreau model (bubbles, drops, and particles in non-Newtonian fluids. Taylor & Francis Group, New York, 2007) is used to determine the effective viscosity as a function of the shear strain rate. Carreau model can predict accurately the variation in the viscosity at all shear rates and provide more accurate solution for the flow physics in a single pore. Using the results for a single pore, normalized Fanning friction coefficient has been calculated and plotted as a function of the newly defined Reynolds number based on pressure gradient. For laminar flow, the variation in the friction coefficient with Reynolds number has been plotted and scaled. It is observed that generalized Newtonian fluid flows show Newtonian nature up to a certain Reynolds number. At high Reynolds number, deviation from the Newtonian behavior is observed. The main contribution of this paper is to present a closed-form solution for the flow in a single pore using Carreau model, which allows for fast evaluation of the relationship between flux and pressure gradient in an arbitrary pore diameter. In this way, we believe that our development will open the perspectives for using Carreau models in pore-network simulations at low computational costs to obtain more accurate prediction for generalized Newtonian fluid flows in porous media.
On Laminar Flow of Non-Newtonian Fluids in Porous Media
Fayed, Hassan E.; Sheikh, Nadeem A.; Iliev, Oleg
2015-01-01
Flow of generalized Newtonian fluids in porous media can be modeled as a bundle of capillary tubes or a pore-scale network. In general, both approaches rely on the solution of Hagen–Poiseuille equation using power law to estimate the variations in the fluid viscosity due to the applied shear rate. Despite the effectiveness and simplicity, power law tends to provide unrealistic values for the effective viscosity especially in the limits of zero and infinite shear rates. Here, instead of using power law, Carreau model (bubbles, drops, and particles in non-Newtonian fluids. Taylor & Francis Group, New York, 2007) is used to determine the effective viscosity as a function of the shear strain rate. Carreau model can predict accurately the variation in the viscosity at all shear rates and provide more accurate solution for the flow physics in a single pore. Using the results for a single pore, normalized Fanning friction coefficient has been calculated and plotted as a function of the newly defined Reynolds number based on pressure gradient. For laminar flow, the variation in the friction coefficient with Reynolds number has been plotted and scaled. It is observed that generalized Newtonian fluid flows show Newtonian nature up to a certain Reynolds number. At high Reynolds number, deviation from the Newtonian behavior is observed. The main contribution of this paper is to present a closed-form solution for the flow in a single pore using Carreau model, which allows for fast evaluation of the relationship between flux and pressure gradient in an arbitrary pore diameter. In this way, we believe that our development will open the perspectives for using Carreau models in pore-network simulations at low computational costs to obtain more accurate prediction for generalized Newtonian fluid flows in porous media.
Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel
International Nuclear Information System (INIS)
Xiang, Hao; Chen, Bin
2015-01-01
The moving particle semi-implicit (MPS) method and smoothed particle hydrodynamics (SPH) are commonly used mesh-free particle methods for free surface flows. The MPS method has superiority in incompressible flow simulation and simple programing. However, the crude kernel function is not accurate enough for the discretization of the divergence of the shear stress tensor by the particle inconsistency when the MPS method is extended to non-Newtonian flows. This paper presents an improved MPS method with an SPH kernel to simulate non-Newtonian flows. To improve the consistency of the partial derivative, the SPH cubic spline kernel and the Taylor series expansion are combined with the MPS method. This approach is suitable for all non-Newtonian fluids that can be described with τ = μ(|γ|) Δ (where τ is the shear stress tensor, μ is the viscosity, |γ| is the shear rate, and Δ is the strain tensor), e.g., the Casson and Cross fluids. Two examples are simulated including the Newtonian Poiseuille flow and container filling process of the Cross fluid. The results of Poiseuille flow are more accurate than the traditional MPS method, and different filling processes are obtained with good agreement with previous results, which verified the validation of the new algorithm. For the Cross fluid, the jet fracture length can be correlated with We 0.28 Fr 0.78 (We is the Weber number, Fr is the Froude number). (paper)
A note on the post-Newtonian limit of quasi-local energy expressions
International Nuclear Information System (INIS)
Frauendiener, Jörg; Szabados, László B
2011-01-01
An 'effective' quasi-local energy expression, motivated by the (relativistically corrected) Newtonian theory, is introduced in exact general relativity as the volume integral of all the source terms in the field equation for the Newtonian potential in static spacetimes. In particular, we exhibit a new post-Newtonian correction in the source term in the field equation for the Newtonian gravitational potential. In asymptotically flat spacetimes, this expression tends to the Arnowitt-Deser-Misner energy at spatial infinity as a monotonically decreasing set function. We prove its positivity in spherically symmetric spacetimes under certain energy conditions, and that its vanishing characterizes flatness. We argue that any physically acceptable quasi-local energy expression should behave qualitatively like this 'effective' energy expression in this limit. (paper)
Non-Newtonian ink transfer in gravure-offset printing
International Nuclear Information System (INIS)
Ghadiri, Fatemeh; Ahmed, Dewan Hasan; Sung, Hyung Jin; Shirani, Ebrahim
2011-01-01
The inks used in gravure-offset printing are non-Newtonian fluids with higher viscosities and lower surface tensions than Newtonian fluids. This paper examines the transfer of a non-Newtonian ink between a flat plate and a groove when the plate is moved upward with a constant velocity while the groove is held fixed. Numerical simulations were carried out with the Carreau model to explore the behavior of this non-Newtonian ink in gravure-offset printing. The volume of fluid (VOF) method was implemented to capture the interface during the ink transfer process. The effects of varying the contact angle of the ink on the flat plate and groove walls and geometrical parameters such as the groove angle and the groove depth on the breakup time of the liquid filament that forms between the plate and the groove and the ink transfer ratio were determined. Our results indicate that increasing the groove contact angle and decreasing the flat plate contact angle enhance the ink transfer ratio and the breakup time. However, increasing the groove depth and the groove angle decreases the transfer ratio and the breakup time. By optimizing these parameters, it is possible to achieve an ink transfer from the groove to the flat plate of approximately 92%. Moreover, the initial width and the vertical velocity of the neck of the ink filament have significant influences on the ink transfer ratio and the breakup time.
Energy Technology Data Exchange (ETDEWEB)
Mey, Paula; Varges, Priscilla R.; Mendes, Paulo R. de Souza [Dept. of Mechanical Engineering. Pontificia Universidade Catolica do RJ (PUC-Rio), RJ (Brazil)], e-mails: prvarges@puc-rio.br, pmendes@puc-rio.br
2010-07-01
This research looked for a method to determine the binary diffusion coefficient D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water.D of salts in liquids (especially in drilling fluids) not only accurately, but in a reasonable time. We chose to use the Taylor Dispersion Method. This technique has been used for measuring binary diffusion coefficients in gaseous, liquid and supercritical fluids, due to its simplicity and accuracy. In the method, the diffusion coefficient is determined by the analysis of the dispersion of a pulse of soluble material in a solvent flowing laminarly through a tube. This work describes the theoretical basis and the experimental requirements for the application of the Taylor Dispersion Method, emphasizing the description of our experiment. A mathematical formulation for both Newtonian and non-Newtonian fluids is presented. The relevant sources of errors are discussed. The experimental procedure and associated analysis are validated by applying the method in well known systems, such as NaCl in water. (author)
Unsteady non-Newtonian hydrodynamics in granular gases.
Astillero, Antonio; Santos, Andrés
2012-02-01
The temporal evolution of a dilute granular gas, both in a compressible flow (uniform longitudinal flow) and in an incompressible flow (uniform shear flow), is investigated by means of the direct simulation Monte Carlo method to solve the Boltzmann equation. Emphasis is laid on the identification of a first "kinetic" stage (where the physical properties are strongly dependent on the initial state) subsequently followed by an unsteady "hydrodynamic" stage (where the momentum fluxes are well-defined non-Newtonian functions of the rate of strain). The simulation data are seen to support this two-stage scenario. Furthermore, the rheological functions obtained from simulation are well described by an approximate analytical solution of a model kinetic equation. © 2012 American Physical Society
Parameterised post-Newtonian expansion in screened regions
McManus, Ryan; Lombriser, Lucas; Peñarrubia, Jorge
2017-12-01
The parameterised post-Newtonian (PPN) formalism has enabled stringent tests of static weak-field gravity in a theory-independent manner. Here we incorporate screening mechanisms of modified gravity theories into the framework by introducing an effective gravitational coupling and defining the PPN parameters as functions of position. To determine these functions we develop a general method for efficiently performing the post-Newtonian expansion in screened regimes. For illustration, we derive all the PPN functions for a cubic galileon and a chameleon model. We also analyse the Shapiro time delay effect for these two models and find no deviations from General Relativity insofar as the signal path and the perturbing mass reside in a screened region of space.
Atom-Interferometry Tests of the Isotropy of Post-Newtonian Gravity
International Nuclear Information System (INIS)
Mueller, Holger; Chiow, Sheng-wey; Herrmann, Sven; Chu, Steven; Chung, Keng-Yeow
2008-01-01
We present a test of the local Lorentz invariance of post-Newtonian gravity by monitoring Earth's gravity with a Mach-Zehnder atom interferometer that features a resolution of up to 8x10 -9 g/√(Hz), the highest reported thus far. Expressed within the standard model extension (SME) or Nordtvedt's anisotropic universe model, the analysis limits four coefficients describing anisotropic gravity at the ppb level and three others, for the first time, at the 10 ppm level. Using the SME we explicitly demonstrate how the experiment actually compares the isotropy of gravity and electromagnetism
A relativistic gauge model describing N particles bound by harmonic forces
International Nuclear Information System (INIS)
Filippov, A.T.
1987-01-01
Application of the principle of gauging to linear canonical symmetries of simplest/rudimentary/bilinear lagrangians is shown to produce a relativistic version of the Lagrangian describing N particles bound by harmonic forces. For pairwise coupled identical particles the gauge group is T 1 xU 1 , xSU N-1 . A model for the relativistic discrete string (a chain of N particles) is also discussed. All these gauge theoried of particles can be quantized by standard methods
Theoretical frameworks for testing relativistic gravity. 5: Post-Newtonian limit of Rosen's theory
Lee, D. L.; Caves, C. M.
1974-01-01
The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the PPN parameter alpha sub 2, which is related to the difference in propagation speeds for gravitational and electromagnetic waves. Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific but presumably special form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity--and standard solar system experiments cannot distinguish between the two theories.
Post-Newtonian approximation of the maximum four-dimensional Yang-Mills gauge theory
International Nuclear Information System (INIS)
Smalley, L.L.
1982-01-01
We have calculated the post-Newtonian approximation of the maximum four-dimensional Yang-Mills theory proposed by Hsu. The theory contains torsion; however, torsion is not active at the level of the post-Newtonian approximation of the metric. Depending on the nature of the approximation, we obtain the general-relativistic values for the classical Robertson parameters (γ = β = 1), but deviations for the Nordtvedt effect and violations of post-Newtonian conservation laws. We conclude that in its present form the theory is not a viable theory of gravitation
Centrifugal force: a few surprises
International Nuclear Information System (INIS)
Abramowicz, M.A.; Max-Planck-Institut fuer Physik und Astrophysik, Garching
1990-01-01
The need for a rather fundamental revision in understanding of the nature of the centrifugal force is discussed. It is shown that in general relativity (and contrary to the situation in Newtonian theory) rotation of a reference frame is a necessary but not sufficient condition for the centrifugal force to appear. A sufficient condition for its appearance, in the instantaneously corotating reference frame of a particle, is that the particle motion in space (observed in the global rest frame) differs from a photon trajectory. The direction of the force is the same as that of the gradient of the effective potential for photon motion. In some cases, the centrifugal force will attract towards the axis of rotation. (author)
Boundary layer for non-newtonian fluids on curved surfaces
International Nuclear Information System (INIS)
Stenger, N.
1981-04-01
By using the basic equation of fluid motion (conservation of mass and momentum) the boundary layer parameters for a Non-Newtonian, incompressible and laminar fluid flow, has been evaluated. As a test, the flat plate boundary layer is first analized and afterwards, a case with pressure gradient, allowing separation, is studied. In the case of curved surfaces, the problem is first developed in general and afterwards particularized to a circular cylinder. Finally suction and slip in the flow interface are examined. The power law model is used to represent the stress strain relationship in Non-Newtonian flow. By varying the fluid exponent one can then, have an idea of how the Non-Newtonian behavior of the flow influences the parameters of the boundary layer. Two equations, in an appropriate coordinate system have been obtained after an order of magnitude analysis of the terms in the equations of motion is performed. (Author) [pt
Non-Newtonian fluid structure interaction in flexible biomimetic microchannels
Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman
2017-11-01
To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.
Newtonian gravity and the Bargmann algebra
Andringa, Roel; Bergshoeff, Eric; Panda, Sudhakar; de Roo, Mees
2011-01-01
We show how the Newton-Cartan formulation of Newtonian gravity can be obtained from gauging the Bargmann algebra, i.e. the centrally extended Galilean algebra. In this gauging procedure several curvature constraints are imposed. These convert the spatial (time) translational symmetries of the
Directory of Open Access Journals (Sweden)
Roberto Mei
2018-01-01
Full Text Available The application of a multivariable predictive controller to the mixing process for the production of a non-Newtonian fluid is discussed in this work. A data-driven model has been developed to describe the dynamic behaviour of the rheological properties of the fluid as a function of the operating conditions using experimental data collected in a pilot plant. The developed model provides a realistic process representation and it is used to test and verify the multivariable controller, which has been designed to maintain viscosity curves of the non-Newtonian fluid within a given region of the viscosity-vs-shear rate plane in presence of process disturbances occurring in the mixing process.
Structural Optimization of Non-Newtonian Rectifiers
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg; Okkels, Fridolin
When the size of fluidic devices is scaled down, inertial effects start to vanish such that the governing equation becomes linear. Some microfluidic devices rely on the non-linear term related to the inertia of the fluid, and one example is fluid rectifiers (diodes) e.g. related to some micropumps....... These rectifiers rely on the device geometry for their working mechanism, but on further downscaling the inertial effect vanishes and the governing equation starts to show symmetry properties. These symmetry properties reduce the geometry influence to the point where fluid rectifiers cease to function....... In this context it is natural to look for other sources of non-linearity and one possibility is to introduce a non-Newtonian working fluid. Non-Newtonian properties are due to stretching of large particles/molecules in the fluid and this is commonly seen for biological samples in “lab-on-a-chip” systems...
Newtonian nudging for a Richards equation-based distributed hydrological model
Paniconi, Claudio; Marrocu, Marino; Putti, Mario; Verbunt, Mark
The objective of data assimilation is to provide physically consistent estimates of spatially distributed environmental variables. In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimilation scheme. Nudging is shown to be successful in improving the hydrological simulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitivity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexible, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be readily extended to any of these features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation
Numerical methods for multi-scale modeling of non-Newtonian flows
Symeonidis, Vasileios
This work presents numerical methods for the simulation of Non-Newtonian fluids in the continuum as well as the mesoscopic level. The former is achieved with Direct Numerical Simulation (DNS) spectral h/p methods, while the latter employs the Dissipative Particle Dynamics (DPD) technique. Physical results are also presented as a motivation for a clear understanding of the underlying numerical approaches. The macroscopic simulations employ two non-Newtonian models, namely the Reiner-Ravlin (RR) and the viscoelastic FENE-P model. (1) A spectral viscosity method defined by two parameters ε, M is used to stabilize the FENE-P conformation tensor c. Convergence studies are presented for different combinations of these parameters. Two boundary conditions for the tensor c are also investigated. (2) Agreement is achieved with other works for Stokes flow of a two-dimensional cylinder in a channel. Comparison of the axial normal stress and drag coefficient on the cylinder is presented. Further, similar results from unsteady two- and three-dimensional turbulent flows past a flat plate in a channel are shown. (3) The RR problem is formulated for nearly incompressible flows, with the introduction of a mathematically equivalent tensor formulation. A spectral viscosity method and polynomial over-integration are studied. Convergence studies, including a three-dimensional channel flow with a parallel slot, investigate numerical problems arising from elemental boundaries and sharp corners. (4) The round hole pressure problem is presented for Newtonian and RR fluids in geometries with different hole sizes. Comparison with experimental data is made for the Newtonian case. The flaw in the experimental assumptions of undisturbed pressure opposite the hole is revealed, while good agreement with the data is shown. The Higashitani-Pritchard kinematical theory for RR, fluids is recovered for round holes and an approximate formula for the RR Stokes hole pressure is presented. The mesoscopic
Constraining Relativistic Generalizations of Modified Newtonian Dynamics with Gravitational Waves.
Chesler, Paul M; Loeb, Abraham
2017-07-21
In the weak-field limit of general relativity, gravitational waves obey linear equations and propagate at the speed of light. These properties of general relativity are supported by the observation of ultrahigh-energy cosmic rays as well as by LIGO's recent detection of gravitation waves. We argue that two existing relativistic generalizations of modified Newtonian dynamics, namely, the generalized Einstein-aether theory and bimetric modified Newtonian dynamics, display fatal inconsistencies with these observations.
Nonlinear convective flow of Powell-Erying magneto nanofluid with Newtonian heating
Directory of Open Access Journals (Sweden)
Sajid Qayyum
Full Text Available Objective of present article is to describe magnetohydrodynamic (MHD non-linear convective flow of Powell-Erying nanofluid over a stretching surface. Characteristics of Newtonian heat and mass conditions in this attempt is given attention. Heat and mass transfer analysis is examined in the frame of thermal radiation and chemical reaction. Brownian motion and thermophoresis concept is introduced due to presence of nanoparticles. Nonlinear equations of momentum, energy and concentration are transformed into dimensionless expression by invoking suitable variables. The series solutions are obtained through homotopy analysis method (HAM. Impact of embedded variables on the velocity, temperature and nanoparticles concentration is graphically presented. Numerical values of skin friction coefficient, local Nusselt and Sherwood numbers are computed and analyzed. It is concluded that velocity field enhances for fluid variable while reverse situation is noticed regarding Hartman number. Temperature and heat transfer rate behave quite reverse for Prandtl number. It is also noted that the concentration and local Sherwood number have opposite behavior in the frame of Brownian motion. Keywords: Powell-Erying nanofluid, Magnetohydrodynamic (MHD, Nonlinear convection, Thermal radiation, Chemical reaction, Newtonian heat and mass conditions
Friction Force: From Mechanics to Thermodynamics
Ferrari, Christian; Gruber, Christian
2010-01-01
We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…
The effect of the expansion ratio on a turbulent non-Newtonian recirculating flow
Energy Technology Data Exchange (ETDEWEB)
Pereira, A.S. [Departamento de Engenharia Quimica Instituto Superior de Engenharia do Porto (Portugal); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto (Portugal)
2002-04-01
Measurements of the mean and turbulent flow characteristics of shear-thinning moderately elastic 0.1% and 0.2% xanthan gum aqueous solutions were carried out in a sudden expansion having a diameter ratio of 2. The inlet flow was turbulent and fully developed, and the results were compared with data for water in the same geometry and with previous published Newtonian and non-Newtonian data in a smaller expansion of diameter ratio equal to 1.538. An increase in expansion ratio led to an increase in the recirculation length and in the axial normal Reynolds stress at identical normalised locations, but the difference between Newtonian and non-Newtonian characteristics was less intense than in the smaller expansion. An extensive comparison of mean and turbulent flow characteristics was carried out in order to understand the variation of flow features. (orig.)
The Newtonian Moment - Isaac Newton and the Making of Modern Culture
Feingold, Mordechai
2004-12-01
Isaac Newton is a legendary figure whose mythical dimension threatens to overshadow the actual man. The story of the apple falling from the tree may or may not be true, but Isaac Newton's revolutionary discoveries and their importance to the Enlightenment era and beyond are undeniable. The Newtonian Moment , a companion volume to a forthcoming exhibition by the New York Public Library, investigates the effect that Newton's theories and discoveries had, not only on the growth of science, but also on the very shape of modern culture and thought. Newton's scientific work at Cambridge was groundbreaking. From his optical experiments with prisms during the 1660s to the publication of both Principia (1687) and Opticks (1704), Newton's achievements were widely disseminated, inciting tremendous interest and excitement. Newtonianism developed into a worldview marked by many tensions: between modernity and the old guard, between the humanities and science, and the public battles between great minds. The Newtonian Moment illuminates the many facets of his colossal accomplishments, as well as the debates over the kind of knowledge that his accomplishments engendered. The book contributes to a greater understanding of the world today by offering a panoramic view of the profound impact of Newtonianism on the science, literature, art, and religion of the Enlightenment. Copiously illustrated with items drawn from the collections of the New York Public Library as well as numerous other libraries and museums, The Newtonian Moment enlightens its audience with a guided and in-depth look at the man, his world, and his enduring legacy.
Sivaiah, R.; Hemadri Reddy, R.
2017-11-01
In this paper, we investigate the peristaltic transport of a conducting Newtonian fluid bounded by permeable walls with suction and injection moving with constant velocity of the wave in the wave frame of reference under the consideration of long wavelength and low Reynolds number. The analytical solution for the velocity field, pressure gradient and the frictional force are obtained. The effect of suction/injection parameter, amplitude ratio and the permeability parameter including slip on the flow quantities are discussed graphically. It is found that the greater the suction/injection parameter, the smaller the pressure rise against the pump works. Further, the pressure rise increases with increasing Magnetic parameter.
Actual Romanian research in post-newtonian dynamics
Mioc, V.; Stavinschi, M.
2007-05-01
We survey the recent Romanian results in the study of the two-body problem in post-Newtonian fields. Such a field is characterized, in general, by a potential of the form U(q)=|q|^{-1}+ something (small, but not compulsorily). We distinguish some classes of post-Newtonian models: relativistic (Schwarzschild, Fock, Einstein PN, Reissner-Nordström, Schwarzschild - de Sitter, etc.) and nonrelativistic (Manev, Mücket-Treder, Seeliger, gravito-elastic, etc.). Generalized models (the zonal-satellite problem, quasihomogeneous fields), as well as special cases (anisotropic Manev-type and Schwarzschild-type models, Popovici or Popovici-Manev photogravitational problem), were also tackled. The methods used in such studies are various: analytical (using mainly the theory of perturbations, but also other theories: functions of complex variable, variational calculus, etc.), geometric (qualitative approach of the theory of dynamical systems), and numerical (especially using the Poincaré-section technique). The areas of interest and the general results obtained focus on: exact or approximate analytical solutions; characteristics of local flows (especially at limit situations: collision and escape); quasiperiodic and periodic orbits; equilibria; symmetries; chaoticity; geometric description of the global flow (and physical interpretation of the phase-space structure). We emphasize some special features, which cannot be met within the Newtonian framework: black-hole effect, oscillatory collisions, radial librations, bounded orbits for nonnegative energy, existence of unstable circular motion (or unstable rest), symmetric periodic orbits within anisotropic models, etc.
Generation of Oil Droplets in a Non-Newtonian Liquid Using a Microfluidic T-Junction
Directory of Open Access Journals (Sweden)
Enrico Chiarello
2015-11-01
Full Text Available We have compared the formation of oil drops in Newtonian and non-Newtonian fluids in a T-junction microfluidic device. As Newtonian fluids, we used aqueous solutions of glycerol, while as non-Newtonian fluids we prepared aqueous solutions of xanthan, a stiff rod-like polysaccharide, which exhibit strong shear-thinning effects. In the squeezing regime, the formation of oil droplets in glycerol solutions is found to scale with the ratio of the dispersed flow rate to the continuous one and with the capillary number associated to the continuous phase. Switching to xanthan solutions does not seem to significantly alter the droplet formation process. Any quantitative difference with respect to the Newtonian liquid can be accounted for by a suitable choice of the capillary number, corresponding to an effective xanthan viscosity that depends on the flow rates. We have deduced ample variations in the viscosity, on the order of 10 and more, during normal operation conditions of the T-junction. This allowed estimating the actual shear rates experienced by the xanthan solutions, which go from tens to hundreds of s−1.
Time in Newtonian physics and special relativity
International Nuclear Information System (INIS)
Kichenassamy, S.
1980-01-01
The Newtonian point of view is presented as is the relativist one over time: concepts of guide-marks, clocks and setting to time. One of the consequences of Einstein's theory, the dilation of durations, is developed in particular [fr
A two-phase theory for non-Newtonian suspensions
Varsakelis, Christos
In this talk, a continuum and thermodynamically consistent theory for macroscopic particles immersed in a non-Newtonian fluid is presented. According to the employed methodology, each phase of the mixture is treated as a thermodynamic system, endowed with its own set of thermodynamic and kinetic variables, and is required to separately satisfy the equations for the balance of mass, momentum and energy. As both constituents of the mixture are not simple fluids, additional degrees of freedom are introduced for the proper description of their thermodynamic state. A subsequent exploitation of the entropy inequality asserts that the accommodation of the complicated rheological characteristics of both phases requires a departure from a linear current-force relationship. For this reason, a subtle nonlinear representation of the stress tensors is employed. Importantly, the inclusion of additional degrees of freedom allows us to obtain a rate equation for the evolution of the volume fraction of the particulate phase. Following a delineation of the fundamentals of the proposed theory, the talk concludes with the presentation of some limiting cases that also serve as preliminary, sanity tests.
International Nuclear Information System (INIS)
Li, Si-Ning; Zhang, Hong-Na; Li, Xiao-Bin; Li, Qian; Li, Feng-Chen; Qian, Shizhi; Joo, Sang Woo
2017-01-01
Highlights: • Heat transfer performance of non-Newtonian fluid flow in a MHS is studied. • Pseudo-plastic fluid flow can clearly promote the heat transfer efficiency in MMC. • Heat transfer enhancement is attributed to the emergence of secondary flow. • The heat transfer uniformity can also be improved by pseudo-plastic fluid flow. - Abstract: As the miniaturization and integration become the leading trend of the micro-electro-mechanical systems, it is of great significance to improve the microscaled heat transfer performance. This paper presents a three-dimensional (3D) numerical simulation on the flow characteristics and heat transfer performance of non-Newtonian fluid flow in a manifold microchannel (MMC) heat sink and traditional microchannel (TMC) heat sink. The non-Newtonian fluid was described by the power-law model. The analyses concentrated on the non-Newtonian fluid effect on the heat transfer performance, including the heat transfer efficiency and uniformity of temperature distribution, as well as the influence of inlet/outlet configurations on fluid flow and heat transfer. Comparing with Newtonian fluid flow, pseudo-plastic fluid could reduce the drag resistance in both MMC and TMC, while the dilatant fluid brought in quite larger drag resistance. For the heat transfer performance, the introduction of pseudo-plastic fluid flow greatly improved the heat transfer efficiency owing to the generation of secondary flow due to the shear-thinning property. Besides, the temperature distribution in MMC was more uniform by using pseudo-plastic fluid. Moreover, the inlet/outlet configuration was also important for the design and arrangement of microchannel heat sinks, since the present work showed that the maximum temperature was prone to locating in the corners near the inlet and outlet. This work provides guidance for optimal design of small-scale heat transfer devices in many cooling applications, such as biomedical chips, electronic systems, and
Novel test of modified Newtonian dynamics with gas rich galaxies.
McGaugh, Stacy S
2011-03-25
The current cosmological paradigm, the cold dark matter model with a cosmological constant, requires that the mass-energy of the Universe be dominated by invisible components: dark matter and dark energy. An alternative to these dark components is that the law of gravity be modified on the relevant scales. A test of these ideas is provided by the baryonic Tully-Fisher relation (BTFR), an empirical relation between the observed mass of a galaxy and its rotation velocity. Here, I report a test using gas rich galaxies for which both axes of the BTFR can be measured independently of the theories being tested and without the systematic uncertainty in stellar mass that affects the same test with star dominated spirals. The data fall precisely where predicted a priori by the modified Newtonian dynamics. The scatter in the BTFR is attributable entirely to observational uncertainty, consistent with a single effective force law.
Dynamics of Newtonian annular jets
International Nuclear Information System (INIS)
Paul, D.D.
1978-12-01
The main objectives of this investigation are to identify the significant parameters affecting the dynamics of Newtonian annular jets, and to develop theoretical models for jet break-up and collapse. This study has been motivated by recent developments in laser-fusion reactor designs; one proposed cavity design involves the use of an annular lithium jet to protect the cavity wall from the pellet debris emanating from the microexplosion
Parameterized post-Newtonian cosmology
International Nuclear Information System (INIS)
Sanghai, Viraj A A; Clifton, Timothy
2017-01-01
Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC). (paper)
Parameterized post-Newtonian cosmology
Sanghai, Viraj A. A.; Clifton, Timothy
2017-03-01
Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC).
Variational formulation for the Newtonian cosmology
Energy Technology Data Exchange (ETDEWEB)
De Ritis, R [Naples Univ. (Italy). Ist. di Fisica Teorica; Istituto Nazionale di Fisica Nucleare, Naples (Italy)); Pisello, D [Istituto Nazionale di Fisica Nucleare, Naples (Italy); Platania, G [Naples Univ. (Italy). Ist. di Fisica Sperimentale; C.N.R. Gruppo Nazionale di Astronomia, U.d.R., Napoli (Italy)); Scudellaro, P [Naples Univ. (Italy). Scuola di Perfezionamento in Fisica Teorica e Nucleare
1979-12-11
Using the ''generalized Clebsch representation'' for the velocity field of a fluid in the Eulerian description, an action principle for the equation of the Newtonian cosmology has been found. The invariance group of the equation results a generalization of the Heckmann-Schuking group; in this case, the action and the conserved currents are studied.
How can rainbow gravity affect on gravitational force?
Sefiedgar, A. S.
2015-01-01
According to Verlinde's recent proposal, the gravity is originally an entropic force. In this work, we obtain the corrections to the entropy-area law of black holes within rainbow gravity. The corrected entropy-area law leads to the modifications of the number of bits $N$. Inspired by Verlinde's argument on the entropic force, and using the modified number of bits, we can investigate the effects of rainbow gravity on the modified Newtonian dynamics, Newton's law of gravitation, and Einstein's...
On preconditioning incompressible non-Newtonian flow problems
He, X.; Neytcheva, M.; Vuik, C.
2013-01-01
This paper deals with fast and reliable numerical solution methods for the incompressible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing equations, the Picard and Newton methods are used to linearize these coupled partial differential equations. For space
On the mass of rotating stars in Newtonian gravity and GR
International Nuclear Information System (INIS)
Reina, Borja; Vera, Raül
2016-01-01
We show how the correction to the calculation of the mass in the original relativistic model of a rotating star by Hartle (1967 Astrophys. J. 150 1005–29), found recently by Reina and Vera (2015 Class. Quantum Grav. 32 155008), appears in the Newtonian limit, and that the correcting term is indeed present, albeit hidden, in the original Newtonian approach by Chandrasekhar (1933 Mon. Not. Roy. Astr. Soc. 93 390–406). (note)
Conceptual Models of the Climate 2003 Program of Study: Non-Newtonian Geophysical Fluid Dynamics
National Research Council Canada - National Science Library
Balmforth, NeiI
2004-01-01
Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties...
Parametrized post-Newtonian approximation and Rastall's gravitational field equations
International Nuclear Information System (INIS)
Smalley, L.L.
1978-01-01
The parametrized post-Newtonian (PPN) approximation is generalized to accomodate Rastall's modification of Einstein's theory of gravity, which allows nonzero divergence of the energy-momentum tensor. Rastall's theory is then shown to have consistent field equations, gauge conditions, and the correct Newtonian limit of the equations of motion. The PPN parameters are obtained and shown to agree experimentally with those for the Einstein theory. In light of the nonzero divergence condition, integral conservation laws are investigated and shown to yield conserved energy-momentum and angular-momentum. We conclude that the above generalization of metric theories, within the PPN framework, is a natural extension of the concept of metric theories
Post-Newtonian N-body simulations
Aarseth, Sverre J.
2007-06-01
We report on the first fully consistent conventional cluster simulation which includes terms up to the third-order post-Newtonian approximation. Numerical problems for treating extremely energetic binaries orbiting a single massive object are circumvented by employing the special `wheel-spoke' regularization method of Zare which has not been used in large-N simulations before. Idealized models containing N = 1 × 105 particles of mass 1Msolar with a central black hole (BH) of 300Msolar have been studied on GRAPE-type computers. An initial half-mass radius of rh ~= 0.1 pc is sufficiently small to yield examples of relativistic coalescence. This is achieved by significant binary shrinkage within a density cusp environment, followed by the generation of extremely high eccentricities which are induced by Kozai cycles and/or resonant relaxation. More realistic models with white dwarfs and 10 times larger half-mass radii also show evidence of general relativity effects before disruption. An experimentation with the post-Newtonian terms suggests that reducing the time-scales for activating the different orders progressively may be justified for obtaining qualitatively correct solutions without aiming for precise predictions of the final gravitational radiation wave form. The results obtained suggest that the standard loss-cone arguments underestimate the swallowing rate in globular clusters containing a central BH.
Borehole guided waves in a non-Newtonian (Maxwell) fluid-saturated porous medium
International Nuclear Information System (INIS)
Zhi-Wen, Cui; Jin-Xia, Liu; Ke-Xie, Wang; Gui-Jin, Yao
2010-01-01
The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated. The influence of non-Newtonian effects on acoustic guided waves such as Stoneley waves, pseudo-Rayleigh waves, flexural waves, and screw waves propagations in a fluid-filled borehole is demonstrated based on the generalized Biot–Tsiklauri model by calculating their velocity dispersion and attenuation coefficients. The corresponding acoustic waveforms illustrate their properties in time domain. The results are also compared with those based on generalized Biot's theory. The results show that the influence of non-Newtonian effect on acoustic guided wave, especially on the attenuation coefficient of guided wave propagation in borehole is noticeable. (classical areas of phenomenology)
Gass-Assisted Displacement of Non-Newtonian Fluids
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Eriksson, Torbjörn Gerhard
2003-01-01
in a circular cylinder. This is a simple model system used to investigate the gas-fluid displacement, as the problem is reduced to an axis-symmetric flow problem. The understanding of this process is relevant for the geometrically much more complex polymer processing operation Gas-assisted injection moulding...... (GAIM). This is a process, where a mould is filled partly with a polymer melt followed by the injection of inert gas into the core of the polymer melt. The numerical analysis of the fluid flow concerning the experimental observations data in these publications is all based on Newtonian or general...... equation of Boger fluids is the Oldroyd-B model. This model has, with success, been able to describe the complex flow behaviours of Boger fluid. Though, refinements in the flow analysis can be obtained using more complex constitutive models. To keep the flow analysis as simple as possible the Oldroyd...
Comparing scalar-tensor gravity and f(R)-gravity in the Newtonian limit
International Nuclear Information System (INIS)
Capozziello, S.; Stabile, A.; Troisi, A.
2010-01-01
Recently, a strong debate has been pursued about the Newtonian limit (i.e. small velocity and weak field) of fourth order gravity models. According to some authors, the Newtonian limit of f(R)-gravity is equivalent to the one of Brans-Dicke gravity with ω BD =0, so that the PPN parameters of these models turn out to be ill-defined. In this Letter, we carefully discuss this point considering that fourth order gravity models are dynamically equivalent to the O'Hanlon Lagrangian. This is a special case of scalar-tensor gravity characterized only by self-interaction potential and that, in the Newtonian limit, this implies a non-standard behavior that cannot be compared with the usual PPN limit of General Relativity. The result turns out to be completely different from the one of Brans-Dicke theory and in particular suggests that it is misleading to consider the PPN parameters of this theory with ω BD =0 in order to characterize the homologous quantities of f(R)-gravity. Finally the solutions at Newtonian level, obtained in the Jordan frame for an f(R)-gravity, reinterpreted as a scalar-tensor theory, are linked to those in the Einstein frame.
Tazraei, Pedram; Riasi, Alireza; Takabi, Behrouz
2015-06-01
This work investigates a two dimensional numerical analysis of blood hammer through the posterior cerebral artery. The non-Newtonian and usual Newtonian blood models are compared in the case of blood hammer through the posterior cerebral artery to quantify the differences between the models. In this way, a validated CFD simulation is used to study non-Newtonian shear-thinning effects of blood. The governing equations for the modeling of two-dimensional transient flow are solved using a combination of characteristics and central finite difference methods, respectively for the hyperbolic and parabolic parts. Herein, the non-Newtonian viscosity characteristic of blood is incorporated by using the Carreau model. To convert the nonlinear terms available in the characteristics equation into the linear ones, the Newton-Kantorovich method is implemented. The verification and validation of the numerical results are carried out in detail. Hemodynamic characteristics of blood hammer through the posterior cerebral artery are derived with both the Newtonian and non-Newtonian models, and the results are meticulously compared and discussed. The results show that when blood hammer occurs, the non-Newtonian properties greatly influence the velocity and shear stress profiles. At the early stages of blood hammer, there is a 64% difference between magnitudes of wall shear stress in these two models, and the magnitude of the wall shear stress for the shear-thinning blood flow is lower than the Newtonian one. Copyright © 2015 Elsevier Inc. All rights reserved.
Symposium on the Foundations of Newtonian Scholarship
Nauenberg, Michael; The foundations of Newtonian scholarship
2000-01-01
Newtonian scholarship has taken great steps forward in the last half-century.The recent completion of critical editions of Newton's mathematical papers and of his scientific correspondence, as well as the publication of the first volume of his optical papers and of variant readings of the Principia in the original Latin, have made most of Newton's scientific work generally available for study and analysis for the first time. This has provided a better understanding of Newton's Principia and Optics especially regarding their origin and interpretation, much of which has remained obscure for several centuries. Some of the new developments and insights are presented in this book by several of the scholars who have made these primary sources accessible, and by others who are using them to elucidate Newton's work. Most of the papers included were presented at the Symposium on the Foundations of Newtonian Scholarship, held at the Royal Society in London in March 1997.
Non-newtonian heat transfer on a plate heat exchanger with generalized configurations
Energy Technology Data Exchange (ETDEWEB)
Carezzato, A.; Tadini, C.C.; Gut, J.A.W. [Department of Chemical Engineering, Escola Politecnica, University of Sao Paulo, Sao Paulo (Brazil); Alcantara, M.R. [Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo (Brazil); Telis-Romero, J. [Department of Food Engineering and Technology, Universidade Estadual Paulista, Sao Jose do Rio Preto (Brazil)
2007-01-15
For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Leading quantum correction to the Newtonian potential
International Nuclear Information System (INIS)
Donoghue, J.F.
1994-01-01
I argue that the leading quantum corrections, in powers of the energy or inverse powers of the distance, may be computed in quantum gravity through knowledge of only the low-energy structure of the theory. As an example, I calculate the leading quantum corrections to the Newtonian gravitational potential
Directory of Open Access Journals (Sweden)
J. Javorova
2016-06-01
Full Text Available The purpose of this paper is to study the performance of a finite length journal bearing, taking into account effects of non-Newtonian Rabinowitsch flow rheology and elastic deformations of the bearing liner. According to the Rabinowitsch fluid model, the cubic-stress constitutive equation is used to account for the non-Newtonian effects of pseudoplastic and dilatant lubricants. Integrating the continuity equation across the film, the nonlinear non-Newtonian Reynolds-type equation is derived. The elasticity part of the problem is solved on the base of Vlassov model of an elastic foundation. The numerical solution of the modified Reynolds equation is carried out by using FDM with over-relaxation technique. The results for steady state bearing performance characteristics have been calculated for various values of nonlinear factor and elasticity parameters. It was concluded that in comparison with the Newtonian lubricants, higher values of film pressure and load carrying capacity have been obtained for dilatant lubricants, while the case was reversed for pseudoplastic lubricants.
On the Newtonian limit of emergent NC gravity and long-distance corrections
International Nuclear Information System (INIS)
Steinacker, Harold
2009-01-01
We show how Newtonian gravity emerges on 4-dimensional non-commutative spacetime branes in Yang-Mills matrix models. Large matter clusters such as galaxies are embedded in large-scale harmonic deformations of the space-time brane, which screen gravity for long distances. On shorter scales, the local matter distribution reproduces Newtonian gravity via local deformations of the brane and its metric. The harmonic 'gravity bag' acts as a halo with effective positive energy density. This leads in particular to a significant enhancement of the orbital velocities around galaxies at large distances compared with the Newtonian case, before dropping to zero as the geometry merges with a Milne-like cosmology. Besides these 'harmonic' solutions, there is another class of solutions which is more similar to Einstein gravity. Thus the IKKT model provides an accessible candidate for a quantum theory of gravity.
A Symmetry Particle Method towards Implicit Non‐Newtonian Fluids
Directory of Open Access Journals (Sweden)
Yalan Zhang
2017-02-01
Full Text Available In this paper, a symmetry particle method, the smoothed particle hydrodynamics (SPH method, is extended to deal with non‐Newtonian fluids. First, the viscous liquid is modeled by a non‐Newtonian fluid flow and the variable viscosity under shear stress is determined by the Carreau‐Yasuda model. Then a pressure correction method is proposed, by correcting density error with individual stiffness parameters for each particle, to ensure the incompressibility of fluid. Finally, an implicit method is used to improve efficiency and stability. It is found that the nonNewtonian behavior can be well displayed in all cases, and the proposed SPH algorithm is stable and efficient.
Against Laplacian Reduction of Newtonian Mass to Spatiotemporal Quantities
Martens, Niels C. M.
2018-03-01
Laplace wondered about the minimal choice of initial variables and parameters corresponding to a well-posed initial value problem. Discussions of Laplace's problem in the literature have focused on choosing between spatiotemporal variables relative to absolute space (i.e. substantivalism) or merely relative to other material bodies (i.e. relationalism) and between absolute masses (i.e. absolutism) or merely mass ratios (i.e. comparativism). This paper extends these discussions of Laplace's problem, in the context of Newtonian Gravity, by asking whether mass needs to be included in the initial state at all, or whether a purely spatiotemporal initial state suffices. It is argued that mass indeed needs to be included; removing mass from the initial state drastically reduces the predictive and explanatory power of Newtonian Gravity.
Newtonian potential and geodesic completeness in infinite derivative gravity
Edholm, James; Conroy, Aindriú
2017-08-01
Recent study has shown that a nonsingular oscillating potential—a feature of infinite derivative gravity theories—matches current experimental data better than the standard General Relativity potential. In this work, we show that this nonsingular oscillating potential can be given by a wider class of theories which allows the defocusing of null rays and therefore geodesic completeness. We consolidate the conditions whereby null geodesic congruences may be made past complete, via the Raychaudhuri equation, with the requirement of a nonsingular Newtonian potential in an infinite derivative gravity theory. In doing so, we examine a class of Newtonian potentials characterized by an additional degree of freedom in the scalar propagator, which returns the familiar potential of General Relativity at large distances.
Conditions of equilibrium of a rotating ideal fluid in the parametrized post-Newtonian formalism
International Nuclear Information System (INIS)
Bondarenko, N.P.
1986-01-01
Conditions of equilibrium of a rotating ideal fluid in parametrized post-Newtonian hydrodynamics are obtained by the variational method. They generalize the analogous equilibrium conditions in the post-Newtonian approximation of the general theory of relativity. A conservation law for the total energy is obtained by integrating the equations of motion
Large distance modification of Newtonian potential and structure formation in universe
Hameeda, Mir; Upadhyay, Sudhaker; Faizal, Mir; Ali, Ahmed F.; Pourhassan, Behnam
2018-03-01
In this paper, we study the effects of super-light brane world perturbative modes on structure formation in our universe. As these modes modify the large distance behavior of Newtonian potential, they effect the clustering of a system of galaxies. So, we explicitly calculate the clustering of galaxies interacting through such a modified Newtonian potential. We use a suitable approximation for analyzing this system of galaxies, and discuss the validity of such approximations. We observe that such corrections also modify the virial theorem for such a system of galaxies.
International Nuclear Information System (INIS)
Zhao Hongsheng; Li Baojiu; Bienayme, Olivier
2010-01-01
We derive a simple analytical expression for the two-body force in a subclass of modified Newtonian dynamics (MOND) theories and make testable predictions in the modification to the two-body orbital period, shape, precession rate, escape speed, etc. We demonstrate the applications of the modified Kepler's law in the timing of satellite orbits around the Milky Way, and checking the feasibility of MOND in the orbit of the large Magellanic cloud, the M31 galaxy, and the merging bullet clusters. MOND appears to be consistent with satellite orbits although with a tight margin. Our results on two-bodies are also generalized to restricted three-body, many-body problems, rings, and shells.
A Paradox of Newtonian Gravitation and Laplace's Solution
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 5. A Paradox of Newtonian Gravitation and Laplace's Solution. General Article Volume ... A physical phenomenonthat can justify Laplace's suggestion isalso mentioned briefly. This article also posesan interesting mathematical problem that can ...
Experimental Studies on the Lorentz Symmetry in Post-Newtonian Gravity with Pulsars
Directory of Open Access Journals (Sweden)
Lijing Shao
2016-12-01
Full Text Available Local Lorentz invariance (LLI is one of the most important fundamental symmetries in modern physics. While the possibility of LLI violation (LLIv was studied extensively in flat spacetime, its counterpart in gravitational interaction also deserves significant examination from experiments. In this contribution, I review several recent studies of LLI in post-Newtonian gravity, using powerful tools of pulsar timing. It shows that precision pulsar timing experiments hold a unique position to probe LLIv in post-Newtonian gravity.
On Dual Phase-Space Relativity, the Machian Principle and Modified Newtonian Dynamics
Castro, C
2004-01-01
We investigate the consequences of the Mach's principle of inertia within the context of the Dual Phase Space Relativity which is compatible with the Eddington-Dirac large numbers coincidences and may provide with a physical reason behind the observed anomalous Pioneer acceleration and a solution to the riddle of the cosmological constant problem ( Nottale ). The cosmological implications of Non-Archimedean Geometry by assigning an upper impassible scale in Nature and the cosmological variations of the fundamental constants are also discussed. We study the corrections to Newtonian dynamics resulting from the Dual Phase Space Relativity by analyzing the behavior of a test particle in a modified Schwarzschild geometry (due to the the effects of the maximal acceleration) that leads in the weak-field approximation to essential modifications of the Newtonian dynamics and to violations of the equivalence principle. Finally we follow another avenue and find modified Newtonian dynamics induced by the Yang's Noncommut...
Newtonian heating effects in three-dimensional flow of viscoelastic fluid
International Nuclear Information System (INIS)
Qayyum, A.; Hayat, T.; Alhuthali, M. S.; Malaikah, H. M.
2014-01-01
A mathematical model is constructed to investigate the three-dimensional flow of a non-Newtonian fluid. An incompressible viscoelastic fluid is used in mathematical formulation. The conjugate convective process (in which heat the transfer rate from the bounding surface with a finite capacity is proportional to the local surface temperature) in three-dimensional flow of a differential type of non-Newtonian fluid is analyzed for the first time. Series solutions for the nonlinear differential system are computed. Plots are presented for the description of emerging parameters entering into the problem. It is observed that the conjugate heating phenomenon causes an appreciable increase in the temperature at the stretching wall. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Aspects of the motion of extended bodies in the post-Newtonian approximation to general relativity
Racine, Etienne
We give a surface integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The explicit form of these translational equations of motion has not been previously derived. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak-field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular black holes are not excluded. The derivation extends previous results due to Damour, Soffel and Xu (DSX) for weakly self-gravitating bodies in which the post-1- Newtonian field equations are satisfied everywhere. We also give a surface integral derivation of the leading-order evolution equations for the spin and energy of a relativistic body interacting with other bodies in the post-Newtonian expansion. As part of the computational method, new explicit expansions of general solutions of post-2-Newtonian vacuum field equations are derived. These expansions can serve as foundation for future work in a number of directions, including for example conserved quantities at post- 2-Newtonian order, definitions of angular momentum and studies of gauge invariance of tidal heating. As an astrophysical application of the translational equations of motion, we study gravitomagnetic resonant tidal excitations of r -modes in neutron star binary coalescence. We show that the effect of the resonance on the phase of the binary can be parametrized by a single number. We compute this number explicitly and discuss the detectability of this effect from its imprint on the gravitational wave signal emitted by the binary.
Determination of the Köthe-Toeplitz Duals over the Non-Newtonian Complex Field
Directory of Open Access Journals (Sweden)
Uğur Kadak
2014-01-01
Full Text Available The important point to note is that the non-Newtonian calculus is a self-contained system independent of any other system of calculus. Therefore the reader may be surprised to learn that there is a uniform relationship between the corresponding operators of this calculus and the classical calculus. Several basic concepts based on non-Newtonian calculus are presented by Grossman (1983, Grossman and Katz (1978, and Grossman (1979. Following Grossman and Katz, in the present paper, we introduce the sets of bounded, convergent, null series and p-bounded variation of sequences over the complex field C* and prove that these are complete. We propose a quite concrete approach based on the notion of Köthe-Toeplitz duals with respect to the non-Newtonian calculus. Finally, we derive some inclusion relationships between Köthe space and solidness.
Minimal gravitational coupling in the Newtonian theory and the covariant Schroedinger equation
International Nuclear Information System (INIS)
Duval, C.; Kuenzle, H.P.
1983-02-01
The role of the Bargmann group (11-dimensional extended Galilei group) in non relativistic gravitation theory is investigated. The generalized Newtonian gravitation theory (Newton-Cartan theory) achieves the status of a gauge theory about as much as General Relativity and couples minimally to a complex scalar field leading to a fourdimensionally covariant Schroedinger equation. Matter current and stress-energy tensor follow correctly from the Lagrangian. This theory on curved Newtonian space-time is also shown to be a limit of the Einstein-Klein-Gordon theory
Minimal gravitational coupling in the Newtonian theory and the covariant Schroedinger equation
International Nuclear Information System (INIS)
Duval, C.; Kuenzle, H.P.
1984-01-01
The role of the Bargmann group (11-dimensional extended Galilei group) in nonrelativistic gravitation theory is investigated. The generalized Newtonian gravitation theory (Newton-Cartan theory) achieves the status of a gauge theory about as much as general relativity and couples minimally to a complex scalar field leading to a four-dimensionally covariant Schroedinger equation. Matter current and stress-energy tensor follow correctly from the Lagrangian. This theory on curved Newtonian space-time is also shown to be a limit of the Einstein-Klein-Gordon theory. (author)
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity
Pandey, Vikash; Holm, Sverre
2016-01-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional deriva...
Variational methods for problems from plasticity theory and for generalized Newtonian fluids
Fuchs, Martin
2000-01-01
Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids.
Notes on the post-Newtonian limit of the massive Brans-Dicke theory
International Nuclear Information System (INIS)
Roshan, Mahmood; Shojai, Fatimah
2011-01-01
We consider the post-Newtonian limit of the massive Brans-Dicke theory and make some notes about the post-Newtonian limit of the case ω = 0. This case is dynamically equivalent to the metric f(R) theory. It is known that this theory can be compatible with the solar system tests if the Chameleon mechanism occurs. Also, it is known that this mechanism is because of the nonlinearity in the field equations produced by the largeness of the local curvature relative to the background curvature. Thus, the linearization of the field equations breaks down. On the other hand, we know that the Chameleon mechanism exists when a coupling between the matter and the scalar field exists. In the Jordan frame of the Brans-Dicke theory, we have no such coupling. But in the Einstein frame, this theory behaves like a Chameleon scalar field. By confining ourselves to the case ω = 0, we show that 'Chameleon-like' behaviour can exist also in the Jordan frame, but it has an important difference compared with the Chameleon mechanism. Also we show that the conditions which lead to the existence of a 'Chameleon-like' mechanism are consistent with the conditions in the post-Newtonian limit which correspond to a heavy scalar field at the cosmological scale and a small effective cosmological constant. Thus, one can linearize field equations to the post-Newtonian order, and this linearization has no contradiction with the existence of 'Chameleon-like' behaviour.
Directory of Open Access Journals (Sweden)
J.I. Orisaleye
2018-04-01
Full Text Available Extruders have found application in the food, polymer and pharmaceutical industries. Rheological characteristics of materials are important in the specification of design parameters of screw extruders. Biopolymers, which consist of proteins, nucleic acids and polysaccharides, are shear-thinning (pseudoplastic within normal operating ranges. However, analytical models to predict and design screw extruders for non-Newtonian pseudoplastic materials are rare. In this study, an analytical model suitable to design a screw extruder for slightly non-Newtonian materials was developed. The model was used to predict the performance of the screw extruder while processing materials with power law indices slightly deviating from unity (the Newtonian case. Using non-dimensional analysis, the effects of design and operational parameters were investigated. Expressions to determine the optimum channel depth and helix angle were also derived. The model is capable of predicting the performance of the screw extruder within the range of power law indices considered (1/2⩽n⩽1. The power law index influences the choice of optimum channel depth and helix angle of the screw extruder. Keywords: Screw extruder, Slightly non-Newtonian, Shear-thinning, Pseudoplastic, Biopolymer, Power law
Gravity and strong force: potentially linked by Quantum Wormholes
International Nuclear Information System (INIS)
Goradia, Sh.G.
2004-01-01
If Newtonian gravitation is modified to use surface-to-surface separation between particles, can have the strength of nuclear force between nucleons. This may be justified by possible existence of quantum wormholes in particles. All gravitational interactions would be between coupled wormholes, emitting graviton flux in proportional to particle size, allowing for the point-like treatment above. When le wormholes are 1 Planck length apart, the resultant force is 10 40 times the normal gravitational strength for nucleons. Additionally, the invisible quantum wormholes may form binary effects imparting we properties to all particles
Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs
Shamsi, Mohammad Reza; Akbari, Omid Ali; Marzban, Ali; Toghraie, Davood; Mashayekhi, Ramin
2017-09-01
In this study, computational fluid dynamics and the laminar flow of the non-Newtonian fluid have been numerically studied. The cooling fluid includes water and 0.5 wt% Carboxy methyl cellulose (CMC) making the non-Newtonian fluid. In order to make the best of non-Newtonian nanofluid in this simulation, solid nanoparticles of Aluminum Oxide have been added to the non-Newtonian fluid in volume fractions of 0-2% with diameters of 25, 45 and 100 nm. The supposed microchannel is rectangular and two-dimensional in Cartesian coordination. The power law has been used to speculate the dynamic viscosity of the cooling nanofluid. The field of numerical solution is simulated in the Reynolds number range of 5 nanoparticles as well as the use for nanoparticles with smaller diameters lead to greater heat transfer. Among all the studied forms, the triangular rib from with an angle of attack 30° has the biggest Nusselt number and the smallest pressure drop along the microchannel. Also, an increase in the angle of attack and as a result of a sudden contact between the fluid and the ribs and also a reduction in the coflowing length (length of the rib) cause a cut in heat transfer by the fluid in farther parts from the solid wall (tip of the rib).
Vascular wall flow-induced forces in a progressively enlarged aneurysm model.
Neofytou, Panagiotis; Tsangaris, Sokrates; Kyriakidis, Michalis
2008-12-01
The current study is focused on the numerical investigation of the flow field induced by the unsteady flow in the vicinity of an abdominal aortic aneurysm model. The computational fluid dynamics code used is based on the finite volume method, and it has already been used in various bioflow studies. For modelling the rheological behaviour of blood, the Quemada non-Newtonian model is employed, which is suitable for simulating the two-phase character of blood namely a suspension of blood cells in plasma. For examining its non-Newtonian effects a comparison with a corresponding Newtonian flow is carried out. Furthermore, the investigation is focused on the distribution of the flow-induced forces on the interior wall of the aneurysm and in order to study the development of the distribution with the gradual enlargement of the aneurysm, three different degrees of aneurysm-growth have been assumed. Finally and for examining the effect of the distribution on the aneurysm growth, a comparison is made between the pressure and wall shear-stress distributions at the wall for each growth-degree.
A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow
Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati
2010-06-01
The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.
Tidal Forces in Dyonic Reissner-Nördstrom Black Hole
Sharif, M.; Kousar, Lubna
2018-03-01
This paper investigates the tidal as well as magnetic charge effects produced in dyonic Reissner-Nordström black hole. We evaluate Newtonian radial acceleration using radial geodesics for freely falling test particles. We establish system of equations governing radial and angular tidal forces using geodesic deviation equation and discuss their solutions for bodies falling freely towards this black hole. The radial tidal force turns out to be compressing outside the event horizon whereas the angular tidal force changes sign between event and Cauchy horizons unlike Schwarzschild black hole. The radial geodesic component starts decreasing in dyonic Reissner-Nordström black hole unlike Schwarzschild case. We conclude that magnetic charge strongly affects the radial as well as angular components of tidal force.
Test of modified Newtonian dynamics with recent Boomerang data
International Nuclear Information System (INIS)
Slosar, Anze; Melchiorri, Alessandro; Silk, Joseph I.
2005-01-01
Purely baryonic dark matter dominated models like modified Newtonian dynamics (MOND) based on modification of Newtonian gravity have been successful in reproducing some dynamical properties of galaxies. More recently, a relativistic formulation of MOND proposed by Bekenstein seems to agree with cosmological large scale structure formation. In this work, we revise the agreement of MOND with observations in light of the new results on the cosmic microwave anisotropies provided by the 2003 flight of Boomerang. The measurements of the height of the third acoustic peak, provided by several small scale CMB experiments have reached enough sensitivity to severely constrain models without cold dark matter. Assuming that acoustic peak structure in the CMB is unchanged and that local measurements of the Hubble constant can be applied, we find that the cold dark matter is strongly favored with Bayesian probability ratio of about one in two hundred
Notes on the post-Newtonian limit of the massive Brans-Dicke theory
Energy Technology Data Exchange (ETDEWEB)
Roshan, Mahmood; Shojai, Fatimah, E-mail: fshojai@ut.ac.ir [Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of)
2011-07-21
We consider the post-Newtonian limit of the massive Brans-Dicke theory and make some notes about the post-Newtonian limit of the case {omega} = 0. This case is dynamically equivalent to the metric f(R) theory. It is known that this theory can be compatible with the solar system tests if the Chameleon mechanism occurs. Also, it is known that this mechanism is because of the nonlinearity in the field equations produced by the largeness of the local curvature relative to the background curvature. Thus, the linearization of the field equations breaks down. On the other hand, we know that the Chameleon mechanism exists when a coupling between the matter and the scalar field exists. In the Jordan frame of the Brans-Dicke theory, we have no such coupling. But in the Einstein frame, this theory behaves like a Chameleon scalar field. By confining ourselves to the case {omega} = 0, we show that 'Chameleon-like' behaviour can exist also in the Jordan frame, but it has an important difference compared with the Chameleon mechanism. Also we show that the conditions which lead to the existence of a 'Chameleon-like' mechanism are consistent with the conditions in the post-Newtonian limit which correspond to a heavy scalar field at the cosmological scale and a small effective cosmological constant. Thus, one can linearize field equations to the post-Newtonian order, and this linearization has no contradiction with the existence of 'Chameleon-like' behaviour.
Dynamic verification of newton's law and the principal limits in measuring intermediate-range forces
International Nuclear Information System (INIS)
Kolosnitsyn, N.I.; Luo Jun; Melnikov, V.N.
1992-01-01
According to the controversial results of recent experiments for fifth force, a classification of all possible types of theories leading to non-Newtonian forces is presented. The theoretical analysis shows that if the interaction potential differs from the Newton's law the interactions of macro-and micro-bodies are in general distinguishable. The calculation also shows that Long's result can be improved by several orders if the new method proposed is used
Head-on infall of two compact objects: Third post-Newtonian energy flux
International Nuclear Information System (INIS)
Mishra, Chandra Kant; Iyer, Bala R.
2010-01-01
Head-on infall of two compact objects with arbitrary mass ratio is investigated using the multipolar post-Minkowskian approximation method. At the third post-Newtonian order the energy flux, in addition to the instantaneous contributions, also includes hereditary contributions consisting of the gravitational-wave tails, tails-of-tails, and the tail-squared terms. The results are given both for infall from infinity and also for infall from a finite distance. These analytical expressions should be useful for the comparison with the high accuracy numerical relativity results within the limit in which post-Newtonian approximations are valid.
Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval
International Nuclear Information System (INIS)
Yuen, David A.; Onishi, Yasuo; Rustad, James R.; Michener, Thomas E.; Felmy, Andrew R.; Ten, Arkady A.; Hier, Catherine A.
2000-01-01
Many highly radioactive wastes will be retrieved by installing mixer pumps that inject high-speed jets to stir up the sludge, saltcake, and supernatant liquid in the tank, blending them into a slurry. This slurry will then be pumped out of the tank into a waste treatment facility. Our objectives are to investigate interactions-chemical reactions, waste rheology, and slurry mixing-occurring during the retrieval operation and to provide a scientific basis for the waste retrieval decision-making process. Specific objectives are to: (1) Evaluate numerical modeling of chemically active, non-Newtonian tank waste mixing, coupled with chemical reactions and realistic rheology; (2) Conduct numerical modeling analysis of local and global mixing of non-Newtonian and Newtonian slurries; and (3) Provide the bases to develop a scientifically justifiable, decision-making support tool for the tank waste retrieval operation
International Nuclear Information System (INIS)
Bates, Simon; Donnelly, Robyn; MacPhee, Cait; Sands, David; Birch, Marion; Walet, Niels R
2013-01-01
We present the results of a combined study from three UK universities where we investigate the existence and persistence of a performance gender gap in conceptual understanding of Newtonian mechanics. Using the Force Concept Inventory, we find that students at all three universities exhibit a statistically significant gender gap, with males outperforming females. This gap is narrowed but not eliminated after instruction, using a variety of instructional approaches. Furthermore, we find that before instruction the quartile with the lowest performance on the diagnostic instrument comprises a disproportionately high fraction (∼50%) of the total female cohort. The majority of these students remain in the lowest-performing quartile post-instruction. Analysis of responses to individual items shows that male students outperform female students on practically all items on the instrument. Comparing the performance of the same group of students on end-of-course examinations, we find no statistically significant gender gaps. (paper)
Beker, M.G.; Cella, G.; DeSalvo, R.; Doets, M.; Grote, H.; Harms, J.; Hennes, E.; Mandic, V.; Rabeling, D.S.; van den Brand, J.F.J.; van Leeuwen, C.M.
2011-01-01
The next generation gravitational wave interferometric detectors will likely be underground detectors to extend the GW detection frequency band to frequencies below the Newtonian noise limit. Newtonian noise originates from the continuous motion of the Earth's crust driven by human activity, tidal
Dzierka, M.; Jurczak, P.
2015-12-01
In the paper, currently used methods for modeling the flow of the aqueous humor through eye structures are presented. Then a computational model based on rheological models of Newtonian and non-Newtonian fluids is proposed. The proposed model may be used for modeling the flow of the aqueous humor through the trabecular meshwork. The trabecular meshwork is modeled as an array of rectilinear parallel capillary tubes. The flow of Newtonian and non-Newtonian fluids is considered. As a results of discussion mathematical equations of permeability of porous media and velocity of fluid flow through porous media have been received.
International Nuclear Information System (INIS)
Shapiro, S.L.; Teukolsky, S.A.
1987-01-01
The dynamical behavior of nonspherical systems in general relativity is analyzed, allowing for rotation and the emission of gravitational waves. An axisymmetric code for solving the Vlasov equation in the Newtonian limit based on a mean-field particle simulation scheme is constructed and tested by reproducing the known evolution of homogeneous spheroids with and without rotation, including the Lin-Kestel-Shu instability. Results for the collapse of homogeneous, nonequilbrium spheroids are described, and stability studies of homogeneous, equilibrium spheroids are summarized. Finally, the code is used to follow the evolution of inhomogeneous, centrally condensed spheroids, and the results are compared with those for homogeneous collapse. 22 references
The Limits of the Newtonian Forecast and the search of order in the chaos
Directory of Open Access Journals (Sweden)
N. Sánchez–Santillán
2008-04-01
Full Text Available Newtonian deterministic mechanichs can only describe and predict the behavior of simple natural systems with few components, which represent approximately 10% of those conforming the universal reality known until now. The remaining 90%, whose complexity and degree of uncertainty make them practically inaccessible to this approach, require a new holistic or total vision, with an approach that includes concepts of Newton's and Descartes's classical mechanics, as much as those emanated from the indeterministic stream, such as nonlinearity and aleatory sequences, calculus of probability and statistics, chaos and order, exponential instability, quantum Theory, attractors and fractals, and information theory.
Mass Distribution in Rotating Thin-Disk Galaxies According to Newtonian Dynamics
Directory of Open Access Journals (Sweden)
James Q. Feng
2014-04-01
Full Text Available An accurate computational method is presented for determining the mass distribution in a mature spiral galaxy from a given rotation curve by applying Newtonian dynamics for an axisymmetrically rotating thin disk of finite size with or without a central spherical bulge. The governing integral equation for mass distribution is transformed via a boundary-element method into a linear algebra matrix equation that can be solved numerically for rotation curves with a wide range of shapes. To illustrate the effectiveness of this computational method, mass distributions in several mature spiral galaxies are determined from their measured rotation curves. All the surface mass density profiles predicted by our model exhibit approximately a common exponential law of decay, quantitatively consistent with the observed surface brightness distributions. When a central spherical bulge is present, the mass distribution in the galaxy is altered in such a way that the periphery mass density is reduced, while more mass appears toward the galactic center. By extending the computational domain beyond the galactic edge, we can determine the rotation velocity outside the cut-off radius, which appears to continuously decrease and to gradually approach the Keplerian rotation velocity out over twice the cut-off radius. An examination of circular orbit stability suggests that galaxies with flat or rising rotation velocities are more stable than those with declining rotation velocities especially in the region near the galactic edge. Our results demonstrate the fact that Newtonian dynamics can be adequate for describing the observed rotation behavior of mature spiral galaxies.
Dynamics of magnetic nano-flake vortices in Newtonian fluids
Energy Technology Data Exchange (ETDEWEB)
Bazazzadeh, Nasim, E-mail: n.bazazzadeh@gmail.com [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Mohseni, Seyed Majid, E-mail: m-mohseni@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Khavasi, Amin, E-mail: khavasi@sharif.edu [Department of Electrical Engineering, Sharif University of Technology, Tehran 11555-4363 (Iran, Islamic Republic of); Zibaii, Mohammad Ismail, E-mail: mizibaye@gmail.com [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Movahed, S.M.S., E-mail: m_movahed@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Jafari, G.R., E-mail: gjafari@gmail.com [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of)
2016-12-01
We study the rotational motion of nano-flake ferromagnetic disks suspended in a Newtonian fluid, as a potential material owing the vortex-like magnetic configuration. Using analytical expressions for hydrodynamic, magnetic and Brownian torques, the stochastic angular momentum equation is determined in the dilute limit conditions under applied magnetic field. Results are compared against experimental ones and excellent agreement is observed. We also estimate the uncertainty in the orientation of the disks due to the Brownian torque when an external magnetic field aligns them. Interestingly, this uncertainty is roughly proportional to the ratio of thermal energy of fluid to the magnetic energy stored in the disks. Our approach can be implemented in many practical applications including biotechnology and multi-functional fluidics. - Highlights: • The rotational motion of magnetic-vortex microdiscs in a Newtonian fluid is studied. • Results are compared against experimental ones and excellent agreement is observed. • The uncertainty in the orientation of the microdiscs is analytically derived.
Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?
Javid Mahmoudzadeh Akherat, S. M.; Cassel, Kevin; Boghosian, Michael; Dhar, Promila; Hammes, Mary
2017-01-01
Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain. PMID:28249082
Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?
Javid Mahmoudzadeh Akherat, S M; Cassel, Kevin; Boghosian, Michael; Dhar, Promila; Hammes, Mary
2017-04-01
Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain.
Peron, Roberto; Lucchesi, David
The pericenter shift of a binary system represents a suitable observable to be used to test for possible deviations from the Newtonian gravitational inverse—square—law in favor of pos-sible new weak interactions between macroscopic objects. These very weak and long-range interactions are usually described by means of a Yukawa—like potential with strength α and range λ. Moreover, these supplementary interactions may be either consistent with Einstein Equivalence Principle or not. In this work, we analyzed 11 years of LAGEOS II normal points using the GEODYN II code with suitable models for both gravitational and non—gravitational perturbations. However, we do not included in the models the general relativity corrections to Newtonian gravity, such as the ones due to the Earth's gravitoelectric and gravitomagnetic fields. From the fit of the satellite pericenter residuals we have been able to obtain a 99% agreement with the predictions of Einstein theory of gravitation. Therefore, the present mea-surement of the LAGEOS II pericenter shift represents a 1% measurement in the field of the Earth of the combination of the Parametrized Post—Newtonian parameters g and b of general relativity. This result may be also used to put limits on the strength α of a possible Yukawa— like interaction with a characteristic range of about 1 Earth radii. We obtained |α| ≈ 4 · 10-11 , that represents a significant improvement with respect to the previous constraints based on Earth—LAGEOS or Lunar—LAGEOS data.
MAGIA - using atom interferometry to determine the Newtonian gravitational constant
International Nuclear Information System (INIS)
Stuhler, J; Fattori, M; Petelski, T; Tino, G M
2003-01-01
We describe our experiment MAGIA (misura accurata di G mediante interferometria atomica), in which we will use atom interferometry to perform a high precision measurement of the Newtonian gravitational constant G. Free-falling laser-cooled atoms in a vertical atomic fountain will be accelerated due to the gravitational potential of nearby source masses (SMs). Detecting this acceleration with techniques of Raman atom interferometry will enable us to assign a value to G. To suppress systematic effects we will implement a double-differential measurement. This includes launching two atom clouds in a gradiometer configuration and moving the SMs to different vertical positions. We briefly summarize the general idea of the MAGIA experiment and put it in the context of other high precision G-measurements. We present the current status of the experiment and report on analyses of the expected measurement accuracy
N-MODY: A Code for Collisionless N-body Simulations in Modified Newtonian Dynamics
Londrillo, Pasquale; Nipoti, Carlo
2011-02-01
N-MODY is a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.
International Nuclear Information System (INIS)
Trias, Miquel; Sintes, Alicia M.
2008-01-01
We study parameter estimation of supermassive black hole binary systems in the final stage of inspiral using the full post-Newtonian gravitational waveforms. We restrict our analysis to systems in circular orbit with negligible spins, in the mass range 10 8 M · -10 5 M · , and compare the results with those arising from the commonly used restricted post-Newtonian approximation. The conclusions of this work are particularly important with regard to the astrophysical reach of future Laser Interferometer Space Antenna measurements. Our analysis clearly shows that modeling the inspiral with the full post-Newtonian waveform, not only extends the reach to higher mass systems, but also improves in general the parameter estimation. In particular, there are remarkable improvements in angular resolution and distance measurement for systems with a total mass higher than 5x10 6 M · , as well as a large improvement in the mass determination
Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture
Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.
2017-12-01
Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.
Microrheological observations of the onset of non-Newtonian behavior in suspensions
Energy Technology Data Exchange (ETDEWEB)
Mondy, L A; Graham, A L; Gottlieb, M
1988-01-01
As the column fraction of solids increases above about 0.30, suspensions of non-Brownian, uniform spheres in Newtonian liquids begin to exhibit shear-thinning, normal stresses, and other non- Newtonian behavior. Here, we report on observations obtained from falling-ball and capillary rheometry at these high volume fractions. Specifically, we find that measured viscosity values are dependent on the size-scale of the viscometer (cylinder diameter, D, and falling- ball diameter, d) relative to the diameter of the suspended spheres d/sub s/. We report the dependence of the measured viscosity on the ratios d/d/sub s/, D/d, and D/d/sub s/, as well as critical values of these ratios above which the apparent viscosity is constant. 5 refs., 3 figs., 1 tab.
Rasch model based analysis of the Force Concept Inventory
Directory of Open Access Journals (Sweden)
Maja Planinic
2010-03-01
Full Text Available The Force Concept Inventory (FCI is an important diagnostic instrument which is widely used in the field of physics education research. It is therefore very important to evaluate and monitor its functioning using different tools for statistical analysis. One of such tools is the stochastic Rasch model, which enables construction of linear measures for persons and items from raw test scores and which can provide important insight in the structure and functioning of the test (how item difficulties are distributed within the test, how well the items fit the model, and how well the items work together to define the underlying construct. The data for the Rasch analysis come from the large-scale research conducted in 2006-07, which investigated Croatian high school students’ conceptual understanding of mechanics on a representative sample of 1676 students (age 17–18 years. The instrument used in research was the FCI. The average FCI score for the whole sample was found to be (27.7±0.4%, indicating that most of the students were still non-Newtonians at the end of high school, despite the fact that physics is a compulsory subject in Croatian schools. The large set of obtained data was analyzed with the Rasch measurement computer software WINSTEPS 3.66. Since the FCI is routinely used as pretest and post-test on two very different types of population (non-Newtonian and predominantly Newtonian, an additional predominantly Newtonian sample (N=141, average FCI score of 64.5% of first year students enrolled in introductory physics course at University of Zagreb was also analyzed. The Rasch model based analysis suggests that the FCI has succeeded in defining a sufficiently unidimensional construct for each population. The analysis of fit of data to the model found no grossly misfitting items which would degrade measurement. Some items with larger misfit and items with significantly different difficulties in the two samples of students do require further
Congested Aggregation via Newtonian Interaction
Craig, Katy; Kim, Inwon; Yao, Yao
2018-01-01
We consider a congested aggregation model that describes the evolution of a density through the competing effects of nonlocal Newtonian attraction and a hard height constraint. This provides a counterpoint to existing literature on repulsive-attractive nonlocal interaction models, where the repulsive effects instead arise from an interaction kernel or the addition of diffusion. We formulate our model as the Wasserstein gradient flow of an interaction energy, with a penalization to enforce the constraint on the height of the density. From this perspective, the problem can be seen as a singular limit of the Keller-Segel equation with degenerate diffusion. Two key properties distinguish our problem from previous work on height constrained equations: nonconvexity of the interaction kernel (which places the model outside the scope of classical gradient flow theory) and nonlocal dependence of the velocity field on the density (which causes the problem to lack a comparison principle). To overcome these obstacles, we combine recent results on gradient flows of nonconvex energies with viscosity solution theory. We characterize the dynamics of patch solutions in terms of a Hele-Shaw type free boundary problem and, using this characterization, show that in two dimensions patch solutions converge to a characteristic function of a disk in the long-time limit, with an explicit rate on the decay of the energy. We believe that a key contribution of the present work is our blended approach, combining energy methods with viscosity solution theory.
EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS
Energy Technology Data Exchange (ETDEWEB)
Leishear, R; Michael Restivo, M
2008-06-26
The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.
New gravitational forces from quantum theory
International Nuclear Information System (INIS)
Nieto, M.M.; Goldman, T.; Hughes, R.J.
1988-01-01
When a classical theory is quantized, new physical effects result. The prototypical example is the Lamb Shift of quantum electrodynamics. Even though this phenomenon could be parametrized by the ''Uehling Potential,'' it was always realized that it was a quantum aspect of electromagnetism, not a ''new force'' of nature. So, too, with theories of quantum gravity. Generically they predict that there will be spin-1 (graviphoton) and spin-0 (graviscalar) partners of the spin-2 graviton. At some level, these partners will generate new effects. Among them are (1) non-Newtonian gravitational forces and (2) substance dependance (violation of the Principle of Equivalence). We discuss these ideas in the context of recent experiments. (Experiments usually test only one of the above effects, which could be distinct.) We contrast these ideas with the alternative point of view, that there actually may be a ''fifth force'' of nature. 20 refs
A nanonewton force facility to test Newton's law of gravity at micro- and submicrometer distances
International Nuclear Information System (INIS)
Nesterov, Vladimir; Buetefisch, Sebastian; Koenders, Ludger
2013-01-01
An experiment to test Newton's law of gravity at micro- and submicrometer distances using a nanonewton force facility at PTB and modern microtechnologies is proposed. It is anticipated that the proposed method can advance the search for non-Newtonian gravity forces via an enhanced sensitivity of 10 3 to 10 4 in comparison to current experiments at the micrometer length scale. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Goetz, G.
1988-01-01
It is shown that the plane-wave solutions for the equations governing the motion of a self-gravitating isothermal fluid in Newtonian hydrodynamics are generated by a sine-Gordon equation which is solvable by an 'inverse scattering' transformation. A transformation procedure is outlined by means of which one can construct solutions of the gravity system out of a pair of solutions of the sine-Gordon equation, which are interrelated via an auto-Baecklund transformation. In general the solutions to the gravity system are obtained in a parametric representation in terms of characteristic coordinates. All solutions of the gravity system generated by the one-and two-soliton solutions of the sine-Gordon equation can be constructed explicitly. These might provide models for the evolution of flat structures as they are predicted to arise in the process of galaxy formation. (author)
Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M
2017-08-01
Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.
Modified Newtonian dynamics and the Coma cluster
International Nuclear Information System (INIS)
The, L.S.; White, S.D.M.
1988-01-01
The consistency of Milgrom's theory of modified Newtonian dynamics is checked against optical and X-ray data for the Coma cluster of galaxies. It is found that viable models for the cluster containing no dark matter can be constructed. They require an extensive gaseous atmosphere through which galaxies move on near-radial orbits. The gas temperature is predicted to have a shallow minimum near the cluster center; this structure may conflict with the best X-ray spectra of the cluster. 18 references
Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope
International Nuclear Information System (INIS)
Mishra, Chandra Kant; Arun, K. G.; Iyer, Bala R.; Sathyaprakash, B. S.
2010-01-01
General relativity has very specific predictions for the gravitational waveforms from inspiralling compact binaries obtained using the post-Newtonian (PN) approximation. We investigate the extent to which the measurement of the PN coefficients, possible with the second generation gravitational-wave detectors such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the third generation gravitational-wave detectors such as the Einstein Telescope (ET), could be used to test post-Newtonian theory and to put bounds on a subclass of parametrized-post-Einstein theories which differ from general relativity in a parametrized sense. We demonstrate this possibility by employing the best inspiralling waveform model for nonspinning compact binaries which is 3.5PN accurate in phase and 3PN in amplitude. Within the class of theories considered, Advanced LIGO can test the theory at 1.5PN and thus the leading tail term. Future observations of stellar mass black hole binaries by ET can test the consistency between the various PN coefficients in the gravitational-wave phasing over the mass range of 11-44M · . The choice of the lower frequency cutoff is important for testing post-Newtonian theory using the ET. The bias in the test arising from the assumption of nonspinning binaries is indicated.
A Wall Boundary Condition for the Simulation of a Turbulent Non-Newtonian Domestic Slurry in Pipes
Directory of Open Access Journals (Sweden)
Dhruv Mehta
2018-01-01
Full Text Available The concentration (using a lesser amount of water of domestic slurry promotes resource recovery (nutrients and biomass while saving water. This article is aimed at developing numerical methods to support engineering processes such as the design and implementation of sewerage for concentrated domestic slurry. The current industrial standard for computational fluid dynamics-based analyses of turbulent flows is Reynolds-averaged Navier–Stokes (RANS modelling. This is assisted by the wall function approach proposed by Launder and Spalding, which permits the use of under-refined grids near wall boundaries while simulating a wall-bounded flow. Most RANS models combined with wall functions have been successfully validated for turbulent flows of Newtonian fluids. However, our experiments suggest that concentrated domestic slurry shows a Herschel–Bulkley-type non-Newtonian behaviour. Attempts have been made to derive wall functions and turbulence closures for non-Newtonian fluids; however, the resulting laws or equations are either inconsistent across experiments or lack relevant experimental support. Pertinent to this study, laws or equations reported in literature are restricted to a class of non-Newtonian fluids called power law fluids, which, as compared to Herschel–Bulkley fluids, yield at any amount of applied stress. An equivalent law for Herschel–Bulkley fluids that require a minimum-yield stress to flow is yet to be reported in literature. This article presents a theoretically derived (with necessary approximations law of the wall for Herschel–Bulkley fluids and implements it in a RANS solver using a specified shear approach. This results in a more accurate prediction of the wall shear stress experienced by a circular pipe with a turbulent Herschel–Bulkley fluid flowing through it. The numerical results are compared against data from our experiments and those reported in literature for a range of Reynolds numbers and rheological
A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application
Zhu, Luoding
2017-11-01
Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.
Non-Newtonian plastic flow of a Ni-Si-B metallic glass at low stresses
International Nuclear Information System (INIS)
Csach, K.; Fursova, Y.V.; Khonik, V.A.; Ocelik, V.
1998-01-01
The problem of the rheological behavior of metallic glasses (MGs) is quite important both from theoretical and practical viewpoints. Early experiments carried out on MGs at temperatures T > 300 K using low shear stress levels revealed plastic flow to be Newtonian while measurements at relative high shear stresses (more than 200 to 400 MPa, depending on temperature, thermal prehistory of samples and chemical composition) indicated a non-linear behavior with 1 < m < 12. Numerous investigations performed later both on as-cast and relaxed MGs of various chemical compositions using a number of testing methods (tensile creep, tensile and bend stress relaxation) showed that a transition from Newtonian behavior at low stresses to a non-linear flow at high stresses was observed. At present, such a situation is considered to be generally accepted. The authors performed precise creep measurements of a Ni-Si-B metallic glass. The results obtained indicate that plastic flow in this case at low tensile stress (12 le σ le 307 MPa) is clearly non-Newtonian and, consequently, the viscosity is stress dependent
The rheology of non-suspended sediment transport mediated by a Newtonian fluid
Pähtz, Thomas; Durán, Orencio
2017-04-01
Using a coupled DEM/RANS numerical model of non-suspended sediment transport in a Newtonian fluid (Durán et al., POF 103306, 2012), we find that the gas-like part of the granular transport flow can be described by a universal condition that constrains the average geometry of interparticle collisions. We show that this condition corresponds to a constant sliding friction coefficient μ at an appropriately defined bed surface, thus explaining the success of Bagnold's old idea to describe the sediment transport in analogy to sliding friction. We are currently exploring whether this rheology applies to gas-like granular flows in general. We further find a transition of the gas-like flow to either a solid-like flow (solid-to-gas transition), which is typical for aeolian sediment transport ('saltation'), or a liquid-like flow (liquid-to-gas transition), which is typical for subaqueous sediment transport ('bedload'). The transition occurs at about the location of maximal particle collision frequency. If there is a liquid-like flow below the transition, we find that it can be described by a μ(I) rheology, where I is the visco-intertial number, an appropriately defined average of the viscous and intertial number.
Constant force extensional rheometry of polymer solutions
DEFF Research Database (Denmark)
Szabo, Peter; McKinley, Gareth H.; Clasen, Christian
2012-01-01
We revisit the rapid stretching of a liquid filament under the action of a constant imposed tensile force, a problem which was first considered by Matta and Tytus [J. Non-Newton. Fluid Mech. 35 (1990) 215–229]. A liquid bridge formed from a viscous Newtonian fluid or from a dilute polymer solution...... is first established between two cylindrical disks. The upper disk is held fixed and may be connected to a force transducer while the lower cylinder falls due to gravity. By varying the mass of the falling cylinder and measuring its resulting acceleration, the viscoelastic nature of the elongating fluid...... filament can be probed. In particular, we show that with this constant force pull (CFP) technique it is possible to readily impose very large material strains and strain rates so that the maximum extensibility of the polymer molecules may be quantified. This unique characteristic of the experiment...
Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.
Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran
2014-12-15
Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.
Soulis, Johannes V; Fytanidis, Dimitrios K; Lampri, Olga P; Giannoglou, George D
2016-04-01
The temporal variation of the hemodynamic mechanical parameters during cardiac pulse wave is considered as an important atherogenic factor. Applying non-Newtonian blood molecular viscosity simulation is crucial for hemodynamic analysis. Understanding low density lipoprotein (LDL) distribution in relation to flow parameters will possibly spot the prone to atherosclerosis aorta regions. The biomechanical parameters tested were averaged wall shear stress (AWSS), oscillatory shear index (OSI) and relative residence time (RRT) in relation to the LDL concentration. Four non-Newtonian molecular viscosity models and the Newtonian one were tested for the normal human aorta under oscillating flow. The analysis was performed via computational fluid dynamic. Tested viscosity blood flow models for the biomechanical parameters yield a consistent aorta pattern. High OSI and low AWSS develop at the concave aorta regions. This is most noticeable in downstream flow region of the left subclavian artery and at concave ascending aorta. Concave aorta regions exhibit high RRT and elevated LDL. For the concave aorta site, the peak LDL value is 35.0% higher than its entrance value. For the convex site, it is 18.0%. High LDL endothelium regions located at the aorta concave site are well predicted with high RRT. We are in favor of using the non-Newtonian power law model for analysis. It satisfactorily approximates the molecular viscosity, WSS, OSI, RRT and LDL distribution. Concave regions are mostly prone to atherosclerosis. The flow biomechanical factor RRT is a relatively useful tool for identifying the localization of the atheromatic plaques of the normal human aorta.
Fractional Flow Theory Applicable to Non-Newtonian Behavior in EOR Processes
Rossen, W.R.; Venkatraman, A.; Johns, R.T.; Kibodeaux, K.R.; Lai, H.; Moradi Tehrani, N.
2011-01-01
The method of characteristics, or fractional-flow theory, is extremely useful in understanding complex Enhanced Oil Recovery (EOR) processes and in calibrating simulators. One limitation has been its restriction to Newtonian rheology except in rectilinear flow. Its inability to deal with
Hydrodynamically Coupled Brownian Dynamics simulations for flow on non-Newtonian fluids
Ahuja, Vishal Raju
2018-01-01
This thesis deals with model development for particle-based flow simulations of non-Newtonian fluids such as polymer solutions. A novel computational technique called Hydrodynamically Coupled Brownian Dynamics (HCBD) is presented in this thesis. This technique essentially couples the Brownian motion
Asymmetric bubble collapse and jetting in generalized Newtonian fluids
Shukla, Ratnesh K.; Freund, Jonathan B.
2017-11-01
The jetting dynamics of a gas bubble near a rigid wall in a non-Newtonian fluid are investigated using an axisymmetric simulation model. The bubble gas is assumed to be homogeneous, with density and pressure related through a polytropic equation of state. An Eulerian numerical description, based on a sharp interface capturing method for the shear-free bubble-liquid interface and an incompressible Navier-Stokes flow solver for generalized fluids, is developed specifically for this problem. Detailed simulations for a range of rheological parameters in the Carreau model show both the stabilizing and destabilizing non-Newtonian effects on the jet formation and impact. In general, for fixed driving pressure ratio, stand-off distance and reference zero-shear-rate viscosity, shear-thinning and shear-thickening promote and suppress jet formation and impact, respectively. For a sufficiently large high-shear-rate limit viscosity, the jet impact is completely suppressed. Thresholds are also determined for the Carreau power-index and material time constant. The dependence of these threshold rheological parameters on the non-dimensional driving pressure ratio and wall stand-off distance is similarly established. Implications for tissue injury in therapeutic ultrasound will be discussed.
Directory of Open Access Journals (Sweden)
M. Rahimi-Gorji
2015-06-01
Full Text Available An analytical investigation is applied for unsteady motion of a rigid spherical particle in a quiescent shear-thinning power-law fluid. The results were compared with those obtained from Collocation Method (CM and the established Numerical Method (Fourth order Runge–Kutta scheme. It was shown that CM gave accurate results. Collocation Method (CM and Numerical Method are used to solve the present problem. We obtained that the CM which was used to solve such nonlinear differential equation with fractional power is simpler and more accurate than series method such as HPM which was used in some previous works by others but the new method named Akbari-Ganji’s Method (AGM is an accurate and simple method which is slower than CM for solving such problems. The terminal settling velocity—that is the velocity at which the net forces on a falling particle eliminate—for three different spherical particles (made of plastic, glass and steel and three flow behavior index n, in three sets of power-law non-Newtonian fluids was investigated, based on polynomial solution (CM. Analytical results obtained indicated that the time of reaching the terminal velocity in a falling procedure is significantly increased with growing of the particle size that validated with Numerical Method. Further, with approaching flow behavior to Newtonian behavior from shear-thinning properties of flow (n → 1, the transient time to achieving the terminal settling velocity is decreased.
Similarity solution of axisymmetric non-Newtonian wall jets with swirl
Czech Academy of Sciences Publication Activity Database
Kolář, Václav
2011-01-01
Roč. 12, č. 6 (2011), s. 3413-3420 ISSN 1468-1218 R&D Projects: GA AV ČR IAA200600801 Institutional research plan: CEZ:AV0Z20600510 Keywords : similarity solution * wall jets * non-Newtonian fluids * power-law fluids * swirl Subject RIV: BK - Fluid Dynamics Impact factor: 2.043, year: 2011
International Nuclear Information System (INIS)
Xie, Y.; Kopeikon, S.
2010-01-01
We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging (LLR). We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and , and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame (ICRF). The secondary reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames geocentric (GRF) and selenocentric (SRF) have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of ICRF after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion, an observer on Earth, and a retro-reflector on Moon to directly measurable
International Nuclear Information System (INIS)
Xie, Yi.; Kopeikin, S.
2010-01-01
We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging. We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter and spatial axes stretching up to infinity. The solar-system barycenter frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame. The secondary reference frame has its origin at the Earth-Moon barycenter. The Earth-Moon barycenter frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the Earth-Moon barycenter frame, does not contain the Coriolis and centripetal forces. Two other local frames-geocentric and seleno centric-have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the International Celestial Reference Frame because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of International Celestial Reference Frame after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion
Non-Newtonian Flow-Induced Deformation From Pressurized Cavities in Absorbing Porous Tissues
Ahmed, Aftab; Siddique, Javed
2017-11-01
We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a rate proportional to the local pressure. Power law fluid pressure and displacement of solid in the tissue are computed as function of radial distance and time. Numerical solutions indicate that shear thickening fluids exhibit less fluid pressure and induce small solid deformation as compared to shear thinning fluids. The absorption in the biological tissue increases as a consequence of flow induced deformation for power law fluids. In most cases non-Newtonian results are compared with viscous fluid case to magnify the differences.
Sharifi, Alireza; Niazmand, Hamid
2015-10-01
Carotid siphon is known as one of the risky sites among the human intracranial arteries, which is prone to formation of atherosclerotic lesions. Indeed, scientists believe that accumulation of low density lipoprotein (LDL) inside the lumen is the major cause of atherosclerosis. To this aim, three types of internal carotid artery (ICA) siphon have been constructed to examine variations of hemodynamic parameters in different regions of the arteries. Providing real physiological conditions, blood considered as non-Newtonian fluid and real velocity and pressure waveforms have been employed as flow boundary conditions. Moreover, to have a better estimation of risky sites, the accumulation of LDL particles has been considered, which has been usually ignored in previous relevant studies. Governing equations have been discretized and solved via open source OpenFOAM software. A new solver has been built to meet essential parameters related to the flow and mass transfer phenomena. In contrast to the common belief regarding negligible effect of blood non-Newtonian behavior inside large arteries, current study suggests that the non-Newtonian blood behavior is notable, especially on the velocity field of the U-type model. In addition, it is concluded that neglecting non-Newtonian effects underestimates the LDL accumulation up to 3% in the U-type model at the inner side of both its bends. However, in the V and C type models, non-Newtonian effects become relatively small. Results also emphasize that the outer part of the second bend at the downstream is also at risk similar to the inner part of the carotid bends. Furthermore, from findings it can be implied that the risky sites strongly depend on the ICA shape since the extension of the risky sites are relatively larger for the V-type model, while the LDL concentrations are higher for the C-type model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Learning to push and learning to move: The adaptive control of contact forces
Directory of Open Access Journals (Sweden)
Maura eCasadio
2015-11-01
Full Text Available To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in compatible pairs connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e. when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and
Directory of Open Access Journals (Sweden)
K. Mehala
2016-12-01
Full Text Available The hydrodynamic bearings are stressed by severe workings conditions, such as speed, load, and the oil will be increasingly solicit by pressure and shear. The Newtonian behavior is far from being awarded in this case, the most loaded bearings operating at very high speeds; the shear rate of the oil is of higher order. A numerical analysis of the behavior of non-Newtonian fluid for plain cylindrical journal bearing finite dimension coated with antifriction material with a high tin content, for to facilitate the accommodation of the surfaces and save the silk of the shaft in the case of a contact. this analyses is implemented using the code-ANSYS CFX, by solving the energy equation with the finite difference method, considering that laminar regime and the fluid is non Newtonian by using the power law Ostwald model, the coefficient n is equal to 1.25 and for different model such as Bingham, cross and Hereshek-Bulkley model. This study aims to better predict the non-Newtonian behavior of the oil film in bearings operating under more severe conditions. The purpose conducted during this study is to predict the effect of non-Newtonian behavior of the film; the journal bearing operating under severe conditions, the speed of rotation varies from 1000 to 9000 rpm and the bearing working under radial load 2 to 10 kN. Temperature and the pressure within the fluid film assumed non-Newtonian are high, with a coefficient n greater than 1 that is to say for viscoelastic fluids.
Non-newtonian deformation of co-based metallic glass at low stresses
Fursova, YV; Khonik, VA; Csach, K; Ocelik, Vaclav
2000-01-01
The results of precision measurements of creep in Co-based metallic glass are presented. It is shown that, in spite of generally accepted concepts, plastic flow at low stresses under intense structural relaxation conditions is of a non-Newtonian type. Consequences of this fact are considered. (C)
Non-Newtonian fluid flow in annular pipes and entropy generation ...
Indian Academy of Sciences (India)
analytical solution for the flow of third-grade non-Newtonian fluid in a pipe .... where c1,c2,d1,d2,t0,1,2...7,h1,h2,k1,2... ,12,m1 and m2 are defined as ..... Yurusoy M 2004 Flow of a third grade fluid between concentric circular cylinders. Math.
Constraint on the post-Newtonian parameter γ on galactic size scales
International Nuclear Information System (INIS)
Bolton, Adam S.; Rappaport, Saul; Burles, Scott
2006-01-01
We constrain the post-Newtonian gravity parameter γ on kiloparsec scales by comparing the masses of 15 elliptical lensing galaxies from the Sloan Lens ACS Survey as determined in two independent ways. The first method assumes only that Newtonian gravity is correct and is independent of γ, while the second uses gravitational lensing which depends on γ. More specifically, we combine Einstein radii and radial surface-brightness gradient measurements of the lens galaxies with empirical distributions for the mass concentration and velocity anisotropy of elliptical galaxies in the local universe to predict γ-dependent probability distributions for the lens-galaxy velocity dispersions. By comparing with observed velocity dispersions, we derive a maximum-likelihood value of γ=0.98±0.07 (68% confidence). This result is in excellent agreement with the prediction of general relativity that γ=1, which has previously been verified to this accuracy only on solar-system length scales
Hereditary effects in eccentric compact binary inspirals to third post-Newtonian order
Loutrel, Nicholas; Yunes, Nicolás
2017-02-01
While there has been much success in understanding the orbital dynamics and gravitational wave emission of eccentric compact binaries in the post-Newtonian formalism, some problems still remain. The largest of these concerns hereditary effects: non-linear phenomena related to the scattering off of the background curved spacetime (tails) and to the generation of gravitational waves by gravitational waves (memory). Currently, these hereditary effects are only known numerically for arbitrary eccentricity through infinite sums of Bessel functions, with closed-form, analytic results only available in the small eccentricity limit. We here calculate, for the first time, closed-form, analytic expressions for all hereditary effects to third post-Newtonian order in binaries with arbitrary eccentricity. For the tails, we first asymptotically expand all Bessel functions in high eccentricity and find a superasymptotic series for each enhancement factor, accurate to better than 10-3 relative to post-Newtonian numerical calculations at all eccentricities. We further improve the small-eccentricity behavior of the superasymptotic series by generating hyperasymptotic expressions for each enhancement factor, typically accurate to better than 10-8 at all eccentricities. For the memory, we discuss its computation within the context of an osculating approximation of the binary’s orbit and the difficulties that arise. Our closed-form analytic expressions for the hereditary fluxes allow us to numerically compute orbital phases that are identical to those found using an infinite sum of Bessel functions to double numerical precision.
Hereditary effects in eccentric compact binary inspirals to third post-Newtonian order
International Nuclear Information System (INIS)
Loutrel, Nicholas; Yunes, Nicolás
2017-01-01
While there has been much success in understanding the orbital dynamics and gravitational wave emission of eccentric compact binaries in the post-Newtonian formalism, some problems still remain. The largest of these concerns hereditary effects: non-linear phenomena related to the scattering off of the background curved spacetime (tails) and to the generation of gravitational waves by gravitational waves (memory). Currently, these hereditary effects are only known numerically for arbitrary eccentricity through infinite sums of Bessel functions, with closed-form, analytic results only available in the small eccentricity limit. We here calculate, for the first time, closed-form, analytic expressions for all hereditary effects to third post-Newtonian order in binaries with arbitrary eccentricity. For the tails, we first asymptotically expand all Bessel functions in high eccentricity and find a superasymptotic series for each enhancement factor, accurate to better than 10 −3 relative to post-Newtonian numerical calculations at all eccentricities. We further improve the small-eccentricity behavior of the superasymptotic series by generating hyperasymptotic expressions for each enhancement factor, typically accurate to better than 10 −8 at all eccentricities. For the memory, we discuss its computation within the context of an osculating approximation of the binary’s orbit and the difficulties that arise. Our closed-form analytic expressions for the hereditary fluxes allow us to numerically compute orbital phases that are identical to those found using an infinite sum of Bessel functions to double numerical precision. (paper)
Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO
International Nuclear Information System (INIS)
Coughlin, M; Mukund, N; Mitra, S; Harms, J; Driggers, J; Adhikari, R
2016-01-01
Newtonian gravitational noise from seismic fields is predicted to be a limiting noise source at low frequency for second generation gravitational-wave detectors. Mitigation of this noise will be achieved by Wiener filtering using arrays of seismometers deployed in the vicinity of all test masses. In this work, we present optimized configurations of seismometer arrays using a variety of simplified models of the seismic field based on seismic observations at LIGO Hanford. The model that best fits the seismic measurements leads to noise reduction limited predominantly by seismometer self-noise. A first simplified design of seismic arrays for Newtonian-noise cancellation at the LIGO sites is presented, which suggests that it will be sufficient to monitor surface displacement inside the buildings. (paper)
Open mathematical problems regarding non-Newtonian fluids
International Nuclear Information System (INIS)
Wilson, Helen J
2012-01-01
We present three open problems in the mathematical modelling of the flow of non-Newtonian fluids. The first problem is rather long standing: a discontinuity in the dependence of the rise velocity of a gas bubble on its volume. This is very well characterized experimentally but not, so far, fully reproduced either numerically or analytically. The other two are both instabilities. The first is observed experimentally but never predicted analytically or numerically. In the second instability, numerical studies reproduce the experimental observations but there is as yet no analytical or semi-analytical prediction of the linear instability which must be present. (invited article)
A Lagrangian PFEM approach for non-Newtonian viscoplastic materials
Larese, A.
2017-01-01
This paper presents the application of a stabilized mixed Particle Finite Element Method (PFEM) to the solution of viscoplastic non-Newtonian flows. The application of the proposed model to the deformation of granular non-cohesive material is analysed. A variable yield threshold modified Bingham model is presented, using a Mohr Coulomb resistance criterion. Since the granular material is expected to undergo severe deformation, a Lagrangian approach is preferred to a fixed mesh one. PFEM i...
Aerosol entrainment from a sparged non-Newtonian slurry.
Fritz, Brad G
2006-08-01
Previous bench-scale experiments have provided data necessary for the development of empirical models that describe aerosol entrainment from bubble bursting. However, previous work has not been extended to non-Newtonian liquid slurries. Design of a waste treatment plant on the Hanford Site in Washington required an evaluation of the applicability of these models outside of their intended range. For this evaluation, aerosol measurements were conducted above an air-sparged mixing tank filled with simulated waste slurry possessing Bingham plastic rheological properties. Three aerosol-size fractions were measured at three sampling heights and for three different sparging rates. The measured entrainment was compared with entrainment models. One model developed based on bench-scale air-water experiments agreed well with measured entrainment. Another model did not agree well with the measured entrainment. It appeared that the source of discrepancy between measured and modeled entrainment stemmed from application beyond the range of data used to develop the model. A possible separation in entrainment coefficients between air-water and steam-water systems was identified. A third entrainment model was adapted to match experimental conditions and fit a posteri to the experimental data, resulting in a modified version that resulted in estimated entrainment rates similar to the first model.
Recoil velocity at second post-Newtonian order for spinning black hole binaries
International Nuclear Information System (INIS)
Racine, Etienne; Buonanno, Alessandra; Kidder, Larry
2009-01-01
We compute the flux of linear momentum carried by gravitational waves emitted from spinning binary black holes at second post-Newtonian (2PN) order for generic orbits. In particular we provide explicit expressions of three new types of terms, namely, next-to-leading order spin-orbit terms at 1.5 post-Newtonian (1.5PN) order, spin-orbit tail terms at 2PN order, and spin-spin terms at 2PN order. Restricting ourselves to quasicircular orbits, we integrate the linear-momentum flux over time to obtain the recoil velocity as function of orbital frequency. We find that in the so-called superkick configuration the higher-order spin corrections can increase the recoil velocity up to a factor ∼3 with respect to the leading-order PN prediction. Whereas the recoil velocity computed in PN theory within the adiabatic approximation can accurately describe the early inspiral phase, we find that its fast increase during the late inspiral and plunge, and the arbitrariness in determining until when it should be trusted, makes the PN predictions for the total recoil not very accurate and robust. Nevertheless, the linear-momentum flux at higher PN orders can be employed to build more reliable resummed expressions aimed at capturing the nonperturbative effects until merger. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasicircular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mikoczi, Vasuth, and Gergely. We also verified that in the limit of extreme mass ratio our expressions for the energy and angular momentum fluxes match the ones of Tagoshi, Shibata, Tanaka, and Sasaki obtained in the context of black hole perturbation theory.
Emergence of a dark force in corpuscular gravity
Cadoni, M.; Casadio, R.; Giusti, A.; Tuveri, M.
2018-02-01
We investigate the emergent laws of gravity when dark energy and the de Sitter space-time are modeled as a critical Bose-Einstein condensate of a large number of soft gravitons NG. We argue that this scenario requires the presence of various regimes of gravity in which NG scales in different ways. Moreover, the local gravitational interaction affecting baryonic matter can be naturally described in terms of gravitons pulled out from this dark energy condensate (DEC). We then explain the additional component of the acceleration at galactic scales, commonly attributed to dark matter, as the reaction of the DEC to the presence of baryonic matter. This additional dark force is also associated to gravitons pulled out from the DEC and correctly reproduces the modified Newtonian dynamics (MOND) acceleration. It also allows for an effective description in terms of general relativity sourced by an anisotropic fluid. We finally calculate the mass ratio between the contribution of the apparent dark matter and the baryonic matter in a region of size r at galactic scales and show that it is consistent with the Λ CDM predictions.
Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas
2014-01-01
In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
MHD free convection flow of a non-Newtonian power-law fluid over ...
African Journals Online (AJOL)
... flow have been presented for various parameters such as Prandtl number, flow behavior index (n), porous plate parameter and magnetic parameter. The local Nusselt number and skin friction coefficient is also presented graphically. Keywords: Magnetohydrodynamic flow; free convection flow; Non-Newtonian power-law
Structural Optimization of non-Newtonian Microfluidics
DEFF Research Database (Denmark)
Jensen, Kristian Ejlebjærg
2013-01-01
Many of the biological fluids analyzed in Lab-on-a-Chip systems contain elastic components, which gives the fluids elastic character. Such fluids are said to be non-Newtonian or, more precisely, viscoelastic. They can give rise to exotic effects on the macroscale, which are never seen for fluids...... with components relying on viscoelastic effects, but the non-intuitive nature of these fluids complicates the design process. This thesis combines the method of topology optimization with differential constitutive equations, which govern the flow of viscoelastic fluids. The optimization method iteratively...... finite element package. The code is capable of calculating the viscoelastic flow in a benchmark geometry, and we hope that it will help newcomers as well as experienced researchers in the field of differential constitutive equations. v...
Newtonian-noise cancellation in large-scale interferometric GW detectors using seismic tiltmeters
International Nuclear Information System (INIS)
Harms, Jan; Venkateswara, Krishna
2016-01-01
The mitigation of terrestrial gravity noise, also known as Newtonian noise (NN), is one of the foremost challenges to improve low-frequency sensitivity of ground-based gravitational-wave detectors. At frequencies above 1 Hz, it is predicted that gravity noise from seismic surface Rayleigh waves is the dominant contribution to NN in surface detectors, and may still contribute significantly in future underground detectors. Noise cancellation based on a coherent estimate of NN using data from a seismometer array was proposed in the past. In this article, we propose an alternative scheme to cancel NN using a seismic tiltmeter. It is shown that even under pessimistic assumptions concerning the complexity of the seismic field, a single tiltmeter under each test mass of the detector is sufficient to achieve substantial noise cancellation. A technical tiltmeter design is presented to achieve the required sensitivity in the Newtonian-noise frequency band. (paper)
Non-Gaussian initial conditions in ΛCDM: Newtonian, relativistic, and primordial contributions
International Nuclear Information System (INIS)
Bruni, Marco; Hidalgo, Juan Carlos; Meures, Nikolai; Wands, David
2014-01-01
The goal of the present paper is to set initial conditions for structure formation at nonlinear order, consistent with general relativity, while also allowing for primordial non-Gaussianity. We use the nonlinear continuity and Raychaudhuri equations, which together with the nonlinear energy constraint, determine the evolution of the matter density fluctuation in general relativity. We solve this equations at first and second order in a perturbative expansion, recovering and extending previous results derived in the matter-dominated limit and in the Newtonian regime. We present a second-order solution for the comoving density contrast in a ΛCDM universe, identifying nonlinear contributions coming from the Newtonian growing mode, primordial non-Gaussianity and intrinsic non-Gaussianity, due to the essential nonlinearity of the relativistic constraint equations. We discuss the application of these results to initial conditions in N-body simulations, showing that relativistic corrections mimic a non-zero nonlinear parameter f NL
A primer of analytical mechanics
Strocchi, Franco
2018-01-01
This book presents the basic elements of Analytical Mechanics, starting from the physical motivations that favor it with respect to the Newtonian Mechanics in Cartesian coordinates. Rather than presenting Analytical Mechanics mainly as a formal development of Newtonian Mechanics, it highlights its effectiveness due to the following five important achievements: 1) the most economical description of time evolution in terms of the minimal set of coordinates, so that there are no constraint forces in their evolution equations; 2) the form invariance of the evolution equations, which automatically solves the problem of fictitious forces; 3) only one scalar function encodes the formulation of the dynamics, rather than the full set of vectors which describe the forces in Cartesian Newtonian Mechanics; 4) in the Hamiltonian formulation, the corresponding evolution equations are of first order in time and are fully governed by the Hamiltonian function (usually corresponding to the energy); 5) the emergence of the Hami...
Inertial forces and the foundations of optical geometry
International Nuclear Information System (INIS)
Jonsson, Rickard
2006-01-01
Assuming a general timelike congruence of worldlines as a reference frame, we derive a covariant general formalism of inertial forces in general relativity. Inspired by the works of Abramowicz et al (see e.g. Abramowicz and Lasota 1997 Class. Quantum Grav. 14 A23-30), we also study conformal rescalings of spacetime and investigate how these affect the inertial force formalism. While many ways of describing spatial curvature of a trajectory have been discussed in papers prior to this, one particular prescription (which differs from the standard projected curvature when the reference congruence is shearing), appears novel. For the particular case of a hypersurface-forming congruence, using a suitable rescaling of spacetime, we show that a geodesic photon always follows a line that is spatially straight with respect to the new curvature measure. This fact is intimately connected to Fermat's principle, and allows for a certain generalization of the optical geometry as will be further pursued in a companion paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61). For the particular case when the shear tensor vanishes, we present the inertial force equation in a three-dimensional form (using the bold-face vector notation), and note how similar it is to its Newtonian counterpart. From the spatial curvature measures that we introduce, we derive corresponding covariant differentiations of a vector defined along a spacetime trajectory. This allows us to connect the formalism of this paper to that of Jantzen and co-workers (see e.g. Bini et al 1997 Int. J. Mod. Phys. D 6 143-98)
Iwamatsu, Masao
2017-07-01
The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids, both shear-thickening and shear-thinning liquids, that completely wet a spherical substrate is theoretically investigated in the capillary-controlled spreading regime. The crater-shaped droplet model with the wedge-shaped meniscus near the three-phase contact line is used to calculate the viscous dissipation near the contact line. Then the energy balance approach is adopted to derive the equation that governs the evolution of the contact line. The time evolution of the dynamic contact angle θ of a droplet obeys a power law θ∼t^{-α} with the spreading exponent α, which is different from Tanner's law for Newtonian liquids and those for non-Newtonian liquids on a flat substrate. Furthermore, the line-tension dominated spreading, which could be realized on a spherical substrate for late-stage of spreading when the contact angle becomes low and the curvature of the contact line becomes large, is also investigated.
Supersoft Symmetry Energy Encountering Non-Newtonian Gravity in Neutron Stars
International Nuclear Information System (INIS)
Wen Dehua; Li Baoan; Chen Liewen
2009-01-01
Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.
Break-up of a non-Newtonian jet injected downwards in a ...
Indian Academy of Sciences (India)
atomization and spray coating, crop spraying, ink jet printing, printing of polymer transis- tors, and ... particular ones used in printing and coating, the liquids encountered are non-Newtonian. For breakup of ...... In-Press. Sussman M and Pukett E G 2000 A coupled level set and volume-of-fluid method for computing 3D and.
Relativistic effects in local inertial frames including parametrized-post-Newtonian effects
International Nuclear Information System (INIS)
Shahid-Saless, B.; Ashby, N.
1988-01-01
We use the concept of a generalized Fermi frame to describe relativistic effects, due to local and distant sources of gravitation, on a body placed in a local inertial frame of reference. In particular we have considered a model of two spherically symmetric gravitating point sources, moving in circular orbits around a common barycenter where one of the bodies is chosen to be the local and the other the distant one. This has been done using the slow-motion, weak-field approximation and including four of the parametrized-post-Newtonian (PPN) parameters. The position of the classical center of mass must be modified when the PPN parameter zeta 2 is included. We show that the main relativistic effect on a local satellite is described by the Schwarzschild field of the local body and the nonlinear term corresponding to the self-interaction of the local source with itself. There are also much smaller terms that are proportional, respectively, to the product of the potentials of local and distant bodies and to the distant body's self-interactions. The spatial axes of the local frame undergo geodetic precession. In addition we have an acceleration of the order of 10/sup -11/ cm sec -2 that vanish in the case of general relativity, which is discussed in detail
Directory of Open Access Journals (Sweden)
Abid Hussanan
Full Text Available In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
Test of post-newtonian conservation laws in the binary system PSR 1913+16
International Nuclear Information System (INIS)
Will, C.M.
1976-01-01
Observations that set upper limits on secular changes in the pulsar period and orbital period in the binary system PSR 1913+16 may provide a test of post-Newtonian conservation laws. According to some metric theories of gravitation, the center of mass of a binary system may be accelerated in the direction of the periastron of the orbit because of a violation of post-Newtonian momentum conservation. In the binary system PSR 1913+16, this effect could produce secular changes in both pulsar and orbital periods (changing overall Doppler shift) as large as two parts in 10 6 per year. The size of the effect is proportional to the sine of the angle of periastron, to the difference in the masses of the components of the binary system, and to the combination of parametrized post-Newtonian parameters α 3 +zeta 2 -zeta/subw/. This combination is zero in any theory that predicts conserved total momentum for isolated systems (including general relativity and Brans-Dicke theory). Although solar-system experiments constrain α 3 and zeta/subw/ to be small, no decent direct limit has been placed on zeta 2 . Other possible sources of secular period changes in PSR 1913+16 are discussed and compared with this effect. It is also shown that a breakdown in the equality of active and passive gravitational masses (violation of ''Newton's third law'') leads only to periodic, unobservable orbital effects in a system like PSR 1913+16
Tidal generation of gravitational waves from orbiting Newtonian stars. I. General formalism
International Nuclear Information System (INIS)
Turner, M.
1977-01-01
A linearized formalism is presented for the calculation of the tidally produced gravitational radiation potential h/sup TT/ from binary systems with arbitrary orbits. The stars are Newtonian, isentropic, and nonrotating. Normal-mode analysis is used to calculate the tidally generated internal motions; the resulting radiation potential h/sup TT/ and its Fourier decomposition are calculated in the Newtonian limit of the multipole formalism. The tidal radiation potential is weaker than that produced by the orbital motion by a factor of order [(stellar radius)/(periastron distance)] 5 . If we assume that the time scale of the tidal perturbation is always much less than the damping time of the star, then if in addition the damping time is much less than the time between periastron passages, the radiation spectrum consists of the l=2 eigenfrequencies of the star near the fundamental l=2 eigenfrequency; if the reverse is true (damping time >> time between periastrons), the spectrum is similar to the orbital gravitational radiation specturm
Newtonian semiclassical gravity in the Ghirardi–Rimini–Weber theory with matter density ontology
International Nuclear Information System (INIS)
Derakhshani, Maaneli
2014-01-01
We propose a Newtonian semiclassical gravity theory based on the GRW collapse theory with matter density ontology (GRWm), which we term GRWmN. The theory is proposed because, as we show from previous arguments in the literature, the standard Newtonian semiclassical gravity theory based on the Schroedinger–Newton equations does not have a consistent Born rule probability interpretation for gravitationally self-interacting particles and implies gravitational cat states for macroscopic mass superpositions. By contrast, we show that GRWmN has a consistent statistical description of gravitationally self-interacting particles and adequately suppresses the cat states for macroscopic superpositions. Two possible routes to experimentally testing GRWmN are also considered. We conclude with a discussion of possible variants of GRWmN, what a general relativistic extension would involve, and various objections that might be raised against semiclassical gravity theories like GRWmN.
Newtonian semiclassical gravity in the Ghirardi–Rimini–Weber theory with matter density ontology
Energy Technology Data Exchange (ETDEWEB)
Derakhshani, Maaneli, E-mail: maanelid@yahoo.com
2014-03-01
We propose a Newtonian semiclassical gravity theory based on the GRW collapse theory with matter density ontology (GRWm), which we term GRWmN. The theory is proposed because, as we show from previous arguments in the literature, the standard Newtonian semiclassical gravity theory based on the Schroedinger–Newton equations does not have a consistent Born rule probability interpretation for gravitationally self-interacting particles and implies gravitational cat states for macroscopic mass superpositions. By contrast, we show that GRWmN has a consistent statistical description of gravitationally self-interacting particles and adequately suppresses the cat states for macroscopic superpositions. Two possible routes to experimentally testing GRWmN are also considered. We conclude with a discussion of possible variants of GRWmN, what a general relativistic extension would involve, and various objections that might be raised against semiclassical gravity theories like GRWmN.
GUP parameter from quantum corrections to the Newtonian potential
Energy Technology Data Exchange (ETDEWEB)
Scardigli, Fabio, E-mail: fabio@phys.ntu.edu.tw [Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Department of Applied Mathematics, University of Waterloo, Ontario N2L 3G1 (Canada); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Lambiase, Gaetano, E-mail: lambiase@sa.infn.it [Dipartimento di Fisica “E.R. Caianiello”, Universita' di Salerno, I-84084 Fisciano (Italy); INFN – Gruppo Collegato di Salerno (Italy); Vagenas, Elias C., E-mail: elias.vagenas@ku.edu.kw [Theoretical Physics Group, Department of Physics, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)
2017-04-10
We propose a technique to compute the deformation parameter of the generalized uncertainty principle by using the leading quantum corrections to the Newtonian potential. We just assume General Relativity as theory of Gravitation, and the thermal nature of the GUP corrections to the Hawking spectrum. With these minimal assumptions our calculation gives, to first order, a specific numerical result. The physical meaning of this value is discussed, and compared with the previously obtained bounds on the generalized uncertainty principle deformation parameter.
How to recover Newtonian mechanics from non-relative quantum mechanics in limit ℎ→0
International Nuclear Information System (INIS)
Mei Shizhong
2001-01-01
It is assumed that when ℎ→0, correct non-relative quantum mechanics should be equivalent to Newtonian mechanics. Starting from this point, the authors slightly revised the widely accepted non-relative quantum mechanics such that the mechanics after modification is strictly equivalent to that before the modification when ℎ≠0, and equivalent to Newtonian mechanics in the limit ℎ→0. The significance lies in the possibility that if authors further postulate that corrected relative quantum mechanics is equivalent to Einstein's theory of relativity in the case ℎ→0, then authors may obtain different predictions from what produced by the former that will help to verify or improve it
Transforming Common-Sense Beliefs into Newtonian Thinking through Just-in-Time Teaching
Formica, Sarah P.; Easley, Jessica L.; Spraker, Mark C.
2010-01-01
To determine whether teaching an introductory physics course with a traditional lecture style or with Just-in-Time teaching (a student-centered, interactive-engagement style) will help students to better understand Newtonian concepts, such as Newton's Third Law, 222 students in introductory physics courses taught by traditional lecture styles and…
Experimental investigation of non-Newtonian/Newtonian liquid-liquid flow in microchannel
Roumpea, Eynagelia-Panagiota; Weheliye, Weheliye; Chinaud, Maxime; Angeli, Panagiota; Lyes Kahouadji Collaboration; Omar. K. Matar Collaboration
2015-11-01
Plug flow of an organic phase and an aqueous non-Newtonian solution was investigated experimentally in a quartz microchannel with I.D. 200 μm. The aqueous phase was a glycerol solution where 1000 and 2000 ppm of xanthan gum was added while the organic phase was silicon oil with 155 and 5 cSt viscosity. The two phases were brought together in a T-junction and their flowrates varied from 0.3 to 6 ml/hr. High speed imaging was used to study the characteristics of the plugs and the effect of the liquid properties on the flow patterns while a two-colour micro-PIV technique was used to investigate velocity profiles and circulation patterns within the plugs. The experimental results revealed that plug length was affected by both flowrate and viscosity. In all cases investigated, a film of the continuous phase always surrounded the plugs and its thickness was compared with existing literature models. Circulation patterns inside plugs were obtained by subtracting the plug velocity and found to be depended on the plug length and the amount of xanthan gum in the aqueous phase. Finally, the dimensionless circulation time was calculated and plotted as a function of the plug length. Department of Chemical Engineering South Kensington Campus Imperial College London SW7 2AZ.
Entropy generation in non-Newtonian fluid flow in a slider bearing
Indian Academy of Sciences (India)
In the present study, entropy production in ﬂow ﬁelds due to slider bearings is formulated. The rate of entropy generation is computed for different ﬂuid properties and geometric conﬁgurations of the slider bearing. In order to account for the non-Newtonian effect, a special type of third-grade ﬂuid is considered. It is found that ...
Quantum Theory of Conducting Matter Newtonian Equations of Motion for a Bloch Electron
Fujita, Shigeji
2007-01-01
Quantum Theory of Conducting Matter: Newtonian Equations of Motion for a Bloch Electron targets scientists, researchers and graduate-level students focused on experimentation in the fields of physics, chemistry, electrical engineering, and material sciences. It is important that the reader have an understanding of dynamics, quantum mechanics, thermodynamics, statistical mechanics, electromagnetism and solid-state physics. Many worked-out problems are included in the book to aid the reader's comprehension of the subject. The Bloch electron (wave packet) moves by following the Newtonian equation of motion. Under an applied magnetic field B the electron circulates around the field B counterclockwise or clockwise depending on the curvature of the Fermi surface. The signs of the Hall coefficient and the Seebeck coefficient are known to give the sign of the major carrier charge. For alkali metals, both are negative, indicating that the carriers are "electrons." These features arise from the Fermi surface difference...
GUP parameter from quantum corrections to the Newtonian potential
Directory of Open Access Journals (Sweden)
Fabio Scardigli
2017-04-01
Full Text Available We propose a technique to compute the deformation parameter of the generalized uncertainty principle by using the leading quantum corrections to the Newtonian potential. We just assume General Relativity as theory of Gravitation, and the thermal nature of the GUP corrections to the Hawking spectrum. With these minimal assumptions our calculation gives, to first order, a specific numerical result. The physical meaning of this value is discussed, and compared with the previously obtained bounds on the generalized uncertainty principle deformation parameter.
Tanaka, H.; Shiomi, Y.; Ma, K.-F.
2017-11-01
To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.
Virial Theorem in Nonlocal Newtonian Gravity
Directory of Open Access Journals (Sweden)
Bahram Mashhoon
2016-05-01
Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.
Characterization of the transition of regimes in a non-newtonian fluids in ducts
International Nuclear Information System (INIS)
Santana, C.C.; Ataide, C.H.; Massarani, G.
1983-01-01
By using own experimental data and also those obtained from the literature, the velocities at which transition from laminar to turbulent flows occurs are analysed in time-independent non-newtonian fluids, through the relationship between generalized Reynolds numbers and the rheological fluid parameters. (Author) [pt
Directory of Open Access Journals (Sweden)
Farhad Ali
2013-01-01
Full Text Available The focus of this paper is to analyze the influence of thermal radiation on some unsteady magnetohydrodynamic (MHD free convection flows of an incompressible Brinkman type fluid past a vertical flat plate embedded in a porous medium with the Newtonian heating boundary condition. The fluid is considered as a gray absorbing-emitting but nonscattering medium and the Rosseland approximation in the energy equations is used to describe the radiative heat flux for optically thick fluid. For a detailed analysis of the problem, four important situations of flow due to (i impulsive motion of the plate (ii uniform acceleration of the plate (iii nonuniform acceleration of the plate, and (iv highly nonuniform acceleration of the plate are considered. The governing equations are first transformed into a system of dimensionless equations and then solved analytically using the Laplace transform technique. Numerical results for temperature and velocity are shown graphically, while skin friction and Nusselt number are computed in tables. The results show that temperature and velocity increase on increasing radiation and Newtonian heating parameters. However, the results of magnetic and porosity parameters on velocity are found quite opposite.
Marston, Jeremy
2010-05-21
Experiments were performed to observe the motion of a solid sphere approaching a solid wall through a thin layer of a viscous liquid. We focus mainly on cases where the ratio of the film thickness, ℘, to the sphere diameter, D, is in the range 0.03 ℘forces, is below a critical level Stc so that the spheres do not rebound and escape from the liquid layer. This provides us with the scope to verify the force acting on the sphere, derived from lubrication theory. Using high-speed video imaging we show, for the first time, that the equations of motion based on the lubrication approximation correctly describe the deceleration of the sphere when St < Stc. Furthermore, we show that the penetration depth at which the sphere motion is first arrested by the viscous force, which decreases with increasing Stokes number, matches well with theoretical predictions. An example for a shear-thinning liquid is also presented, showing that this simple set-up may be used to deduce the short-time dynamical behaviour of non-Newtonian liquids. © 2010 Cambridge University Press.
Flow of a non-Newtonian fluid through channels with permeable wall
Energy Technology Data Exchange (ETDEWEB)
Martins-Costa, Maria Laura [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Lab. de Matematica Teorica e Aplicada]. E-mail: laura@mec.uff.br; Gama, Rogerio M. Saldanha da [Laboratorio Nacional de Computacao Cientifica (LNCC), Petropolis, RJ (Brazil)]. E-mail: rsgama@domain.com.br; Frey, Sergio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Mecanica. Grupo de Estudos Termicos e Energeticos
2000-07-01
In the present work the momentum transport in two adjacent flow regions is described by means of a continuum theory of mixtures, specially developed to model multiphase phenomena. A generalized Newtonian fluid flows through the permeable wall channel, originating a pure fluid region and a mixture region - where the fluid saturates the porous matrix. The fluid and the porous matrix are treated as continuous constituents of a binary mixture coexisting superposed, each of them occupying simultaneously the whole volume of the mixture. An Ostwald-de Waele behavior is assumed for both the fluid constituent (in the mixture region) and the fluid (in the so-called pure fluid region), while the porous matrix, represented by the solid constituent, is assumed rigid, homogeneous, isotropic and at rest. Compatibility conditions at the interface (pure fluid-mixture) for momentum transfer are proposed and discussed. Assuming no flow across the interface, the velocity should be zero on the solid parts of the boundary and should match the fluid diffusing velocity on the fluid parts of the boundary. Also the shear stress at the pure fluid region is to be balanced by a multiple of the partial shear stress at the mixture region. A minimum principle for the above-described problem, assuming fully developed flow in both regions, is presented, providing an easy and reliable way for carrying out numerical simulations. (author)
The intergalactic Newtonian gravitational field and the shell theorem
Directory of Open Access Journals (Sweden)
Zaninetti L.
2012-01-01
Full Text Available The release of the 2MASS Redshift Survey (2MRS with its 44599 galaxies allows the deduction of their masses in nearly complete sample. A cubic box with side of 37 Mpc containing 2429 galaxies is extracted and the Newtonian gravitational field is evaluated both at the center of the box as well as in 101 x 101 x 101 grid points of the box. The obtained results are then discussed in the light of the shell theorem which states that inside of a sphere the gravitational field is zero.
A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids
Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar
2014-11-01
We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.
Flapping motion and force generation in a viscoelastic fluid
Normand, Thibaud; Lauga, Eric
2008-12-01
In a variety of biological situations, swimming cells have to move through complex fluids. Similarly, mucociliary clearance involves the transport of polymeric fluids by beating cilia. Here, we consider the extent to which complex fluids could be exploited for force generation on small scales. We consider a prototypical reciprocal motion (i.e., identical under time-reversal symmetry): the periodic flapping of a tethered semi-infinite plane. In the Newtonian limit, such motion cannot be used for force generation according to Purcell’s scallop theorem. In a polymeric fluid (Oldroyd-B, and its generalization), we show that this is not the case and calculate explicitly the forces on the flapper for small-amplitude sinusoidal motion. Three setups are considered: a flapper near a wall, a flapper in a wedge, and a two-dimensional scalloplike flapper. In all cases, we show that at quadratic order in the oscillation amplitude, the tethered flapping motion induces net forces, but no average flow. Our results demonstrate therefore that the scallop theorem is not valid in polymeric fluids. The reciprocal component of the movement of biological appendages such as cilia can thus generate nontrivial forces in polymeric fluid such as mucus, and normal-stress differences can be exploited as a pure viscoelastic force generation and propulsion method.
Steady flow of non-Newtonian fluids - monotonicity methods in generalized orlicz spaces
Czech Academy of Sciences Publication Activity Database
Wróblewska, Aneta
2010-01-01
Roč. 72, č. 11 (2010), s. 4136-4147 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * Orlicz spaces * modular convergence of symmetric gradients * generalized Minty method * smart fluids Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X10000568
The Casimir effect: a force from nothing
International Nuclear Information System (INIS)
Lambrecht, Astrid
2003-01-01
The attractive force between two surfaces in a vacuum - first predicted by Hendrik Casimir over 50 years ago - could affect everything from micro machines to unified theories of nature. What happens if you take two mirrors and arrange them so that they are facing each other in empty space? Your first reaction might be 'nothing at all'. In fact, both mirrors are mutually attracted to each other by the simple presence of the vacuum. This startling phenomenon was first predicted in 1948 by the Dutch theoretical physicist Hendrik Casimir while he was working at Philips Research Laboratories in Eindhoven on - of all things - colloidal solutions (see box). The phenomenon is now dubbed the Casimir effect, while the force between the mirrors is known as the Casimir force. For many years the Casimir effect was little more than a theoretical curiosity. But interest in the phenomenon has blossomed in recent years. Experimental physicists have realized that the Casimir force affects the workings of micro machined devices, while advances in instrumentation have enabled the force to be measured with ever-greater accuracy. The new enthusiasm has also been fired by fundamental physics. Many theorists have predicted the existence of 'large' extra dimensions in 10- and 11-dimensional unified field theories of the fundamental forces. These dimensions, they say, could modify classical Newtonian gravitation at sub-millimetre distances. Measuring the Casimir effect could therefore help physicists to test the validity of such radical ideas. (U.K.)
Zoubeir, Wassim Fouad
This research explored the effects of a constructivist approach using computer projected simulations (CPS) and interactive engagement (IE) methods on 12th grade school students. The treatment lasted 18 weeks during the 1999-2000 fall semester and seeked to evaluate three variations in students': (1)conceptual understanding of Newtonian mechanics as measured by the Force Concept Inventory (FCI), (2)modification of their views about science as measured by the Views About Science Survey (VASS), and (3)achievement on traditional examinations, as measured by their end of semester grades. Analysis of Covariance (ANCOVA) was applied to determine the differences between the mean scores of the experimental group students, and students of the control group, who were exposed to traditional teaching methods only. The FCI data analysis showed that, after 18 weeks, conceptual understanding of Newtonian mechanics had markedly improved only in the experimental group (F(1,99) = 44.739, p performance on the VASS instrument for both groups (F(1,99) = .033, p = .856), confirming previous and comparable findings for studies of short implementation period. The lack of statistically significant difference between the control and experimental groups in graded achievement, while controlling for students' previous achievement, was unexpected (F(1,99) = 1.178, p = .280). It is suggested that in this particular setting, the influence of a technical factor may have been overlooked: the monitored and systematic drill exercises using elaborate math formulae to prepare students for traditional math-loaded exams. Still, despite being intentionally deprived of such preparation throughout the study, students of the experimental group did not achieve less than their counterpart, and in addition, they had gained a satisfactory understanding of Newtonian mechanics. This result points unmistakably at a plausible positive correlation between a better grasp of basic concepts in physics in a challenging
Motion of spinning particles. Post-Newtonian approximation in the Einstein-Cartan theory
Energy Technology Data Exchange (ETDEWEB)
Boccaletti, D; Agostini, W; Festa, P [Rome Univ. (Italy). Ist. di Matematica
1979-01-11
The equations of motion of spinning particles are obtained in the post-Newtonian approximation of the Einstein-Cartan theory. The starting point of the calculation is the Hehl combined equation and a semi-classical model is assumed for the system of spinning particles. Comparison is made with an analogous quantum result obtained in the context of Gupta quantization of the linearized Einstein theory.
Steady flow of non-Newtonian fluids - monotonicity methods in generalized orlicz spaces
Czech Academy of Sciences Publication Activity Database
Wróblewska, Aneta
2010-01-01
Roč. 72, č. 11 (2010), s. 4136-4147 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * Orlicz spaces * modular convergence of symmetric gradients * general ized Minty method * smart fluids Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X10000568
Gas holdup in a reciprocating plate bioreactor: Non-Newtonian - liquid phase
Directory of Open Access Journals (Sweden)
Naseva Olivera S.
2002-01-01
Full Text Available The gas holdup was studied in non-newtonian liquids in a gas-liquid and gas-liquid-solid reciprocating plate bioreactor. Aqueous solutions of carboxy methyl cellulose (CMC; Lucel, Lučane, Yugoslavia of different degrees of polymerization (PP 200 and PP 1000 and concentration (0,5 and 1%, polypropylene spheres (diameter 8.3 mm; fraction of spheres: 3.8 and 6.6% by volume and air were used as the liquid, solid and gas phase. The gas holdup was found to be dependent on the vibration rate, the superficial gas velocity, volume fraction of solid particles and Theological properties of the liquid ohase. Both in the gas-liquid and gas-liquid-solid systems studied, the gas holdup increased with increasing vibration rate and gas flow rate. The gas holdup was higher in three-phase systems than in two-phase ones under otter operating conditions being the same. Generally the gas holdup increased with increasing the volume fraction of solid particles, due to the dispersion action of the solid particles, and decreased with increasing non-Newtonian behaviour (decreasing flow index i.e. with increasing degree of polymerization and solution concentration of CMC applied, as a result of gas bubble coalescence.
Probing a gravitational cat state
International Nuclear Information System (INIS)
Anastopoulos, C; Hu, B L
2015-01-01
We investigate the nature of a gravitational two-state system (G2S) in the simplest setup in Newtonian gravity. In a quantum description of matter a single motionless massive particle can in principle be in a superposition state of two spatially separated locations. This superposition state in gravity, or gravitational cat state, would lead to fluctuations in the Newtonian force exerted on a nearby test particle. The central quantity of importance for this inquiry is the energy density correlation. This corresponds to the noise kernel in stochastic gravity theory, evaluated in the weak field nonrelativistic limit. In this limit quantum fluctuations of the stress–energy tensor manifest as the fluctuations of the Newtonian force. We describe the properties of such a G2S system and present two ways of measuring the cat state for the Newtonian force, one by way of a classical probe, the other a quantum harmonic oscillator. Our findings include: (i) mass density fluctuations persist even in single particle systems, and they are of the same order of magnitude as the mean; (ii) a classical probe generically records a non-Markovian fluctuating force; (iii) a quantum probe interacting with the G2S system may undergo Rabi oscillations in a strong coupling regime. This simple prototypical gravitational quantum system could provide a robust testing ground to compare predictions from alternative quantum theories, since the results reported here are based on standard quantum mechanics and classical gravity. (paper)
Energy Technology Data Exchange (ETDEWEB)
Borges, Jonatas Emmanuel; Lourenco, Marcos Antonio de Souza; Padilla, Elie Luis Martinez; Silveira Neto, Aristeu da [Federal University of Uberlandia , MG (Brazil)], e-mails: lourenco@mecanica.ufu.br, epadilla@mecanica.ufu.br, aristeus@mecanica.ufu.br; Leibsohn, Andre Martins [CENPES/Petrobras, Rio de Janeiro, RJ (Brazil)], e-mail: aleibsohn@petrobras.com
2010-07-01
As new challenges arise in the exploration of deep and ultra-deep water oil fields by PETROBRAS more knowledge and research are needed, so that tools could be developed to assist in the critical operations and make things practicable. In the context of the drilling process, the complexity of the fluid flow inside the riser is associated with the nature of the non-Newtonian flow, immersed solid particles, variable eccentricity and the superimposed traveling azimuthal waves on the inflow and outflow boundaries of the Taylor vortices. This work presents the numerical three-dimensional results of the following simplified fluid flows: Taylor-Couette, Taylor-Couette with varying imposed eccentricity and Taylor-Couette with forced oscillation in the inner cylinder. Using the Navier-Stokes equations, a finite volume method discretization with second order accuracy in both time and space was utilized to simulate the Newtonian, single-phase incompressible fluid flow in the three cases. The circular walls of the inner and outer cylinders are represented by the immersed boundary method, with the direct multi-forcing model. The determined results allow to evidence the flow structures in the three cases in a very qualitative way, even so in the presence of the inner cylinder oscillation. (author)
Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model
Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing
2017-12-01
The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.
On a numerical strategy to compute gravity currents of non-Newtonian fluids
International Nuclear Information System (INIS)
Vola, D.; Babik, F.; Latche, J.-C.
2004-01-01
This paper is devoted to the presentation of a numerical scheme for the simulation of gravity currents of non-Newtonian fluids. The two dimensional computational grid is fixed and the free-surface is described as a polygonal interface independent from the grid and advanced in time by a Lagrangian technique. Navier-Stokes equations are semi-discretized in time by the Characteristic-Galerkin method, which finally leads to solve a generalized Stokes problem posed on a physical domain limited by the free surface to only a part of the computational grid. To this purpose, we implement a Galerkin technique with a particular approximation space, defined as the restriction to the fluid domain of functions of a finite element space. The decomposition-coordination method allows to deal without any regularization with a variety of non-linear and possibly non-differentiable constitutive laws. Beside more analytical tests, we revisit with this numerical method some simulations of gravity currents of the literature, up to now investigated within the simplified thin-flow approximation framework
Negro, Francesco; Holobar, Ales; Farina, Dario
2009-12-15
The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 x 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 +/- 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 +/- 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 +/- 10.1%) by a greater degree (P FCC and the force signal increased up to 71.8 +/- 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R(2) range = 0.14-0.56; P measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 +/- 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during isometric contractions.
Integrating post-Newtonian equations on graphics processing units
Energy Technology Data Exchange (ETDEWEB)
Herrmann, Frank; Tiglio, Manuel [Department of Physics, Center for Fundamental Physics, and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD 20742 (United States); Silberholz, John [Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD 20742 (United States); Bellone, Matias [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba 5000 (Argentina); Guerberoff, Gustavo, E-mail: tiglio@umd.ed [Facultad de Ingenieria, Instituto de Matematica y Estadistica ' Prof. Ing. Rafael Laguardia' , Universidad de la Republica, Montevideo (Uruguay)
2010-02-07
We report on early results of a numerical and statistical study of binary black hole inspirals. The two black holes are evolved using post-Newtonian approximations starting with initially randomly distributed spin vectors. We characterize certain aspects of the distribution shortly before merger. In particular we note the uniform distribution of black hole spin vector dot products shortly before merger and a high correlation between the initial and final black hole spin vector dot products in the equal-mass, maximally spinning case. More than 300 million simulations were performed on graphics processing units, and we demonstrate a speed-up of a factor 50 over a more conventional CPU implementation. (fast track communication)
Displacement of one Newtonian fluid by another: density effects in axial annular flow
DEFF Research Database (Denmark)
Szabo, Peter; Hassager, Ole
1997-01-01
The arbitrary Lagrange-Euler (ALE) finite elementtechnique is used to simulate 3D displacement oftwo immiscible Newtonian fluids in vertical annular wells. For equally viscous fluids the effect of distinct fluid densities is investigated in the region of low to intermediate Reynolds numbers......, the efficiency of the displacement is analysed for various flow situations....
A Lagrangian finite element method for the simulation of flow of non-newtonian liquids
DEFF Research Database (Denmark)
Hassager, Ole; Bisgaard, C
1983-01-01
A Lagrangian method for the simulation of flow of non-Newtonian liquids is implemented. The fluid mechanical equations are formulated in the form of a variational principle, and a discretization is performed by finite elements. The method is applied to the slow of a contravariant convected Maxwell...
Unsteady free convection flow of a micropolar fluid with Newtonian heating: Closed form solution
Directory of Open Access Journals (Sweden)
Hussanan Abid
2017-01-01
Full Text Available This article investigates the unsteady free convection flow of a micropolar fluid over a vertical plate oscillating in its own plane with Newtonian heating condition. The problem is modelled in terms of partial differential equations with some physical conditions. Closed form solutions in terms of exponential and complementary error functions of Gauss are obtained by using the Laplace transform technique. They satisfy the governing equations and impose boundary and initial conditions. The present solution in the absence of microrotation reduces to well-known solutions of Newtonian fluid. Graphs are plotted to study the effects of various physical parameters on velocity and microrotation. Numerical results for skin friction and wall couple stress is computed in tables. Apart from the engineering point of view, the present article has strong advantage over the published literature as the exact solutions obtained here can be used as a benchmark for comparison with numerical/ approximate solutions and experimental data.
Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies
International Nuclear Information System (INIS)
Racine, Etienne; Flanagan, Eanna E.
2005-01-01
We give a surface-integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular, black holes are not excluded. The derivation extends previous results due to Damour, Soffel, and Xu (DSX) for weakly self-gravitating bodies in which the post-1-Newtonian field equations are satisfied everywhere. The derivation consists of a number of steps: (i) The definition of each body's current and mass multipole moments and center-of-mass world line in terms of the behavior of the metric in a weak field region surrounding the body. (ii) The definition for each body of a set of gravitoelectric and gravitomagnetic tidal moments that act on that body, again in terms of the behavior of the metric in a weak field region surrounding the body. For the special case of weakly self-gravitating bodies, our definitions of these multipole and tidal moments agree with definitions given previously by DSX. (iii) The derivation of a formula, for any given body, of the second time derivative of its mass dipole moment in terms of its other multipole and tidal moments and their time derivatives. This formula was obtained previously by DSX for weakly self-gravitating bodies. (iv) A derivation of the relation between the tidal moments acting on each body and the multipole moments and center-of-mass world lines of all the other bodies. A formalism to compute this relation was developed by DSX; we simplify their formalism and compute the relation explicitly. (v) The deduction from the previous steps of the explicit translational equations of motion, whose form has not been previously derived
Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies
Racine, Étienne; Flanagan, Éanna É.
2005-02-01
We give a surface-integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular, black holes are not excluded. The derivation extends previous results due to Damour, Soffel, and Xu (DSX) for weakly self-gravitating bodies in which the post-1-Newtonian field equations are satisfied everywhere. The derivation consists of a number of steps: (i) The definition of each body’s current and mass multipole moments and center-of-mass world line in terms of the behavior of the metric in a weak field region surrounding the body. (ii) The definition for each body of a set of gravitoelectric and gravitomagnetic tidal moments that act on that body, again in terms of the behavior of the metric in a weak field region surrounding the body. For the special case of weakly self-gravitating bodies, our definitions of these multipole and tidal moments agree with definitions given previously by DSX. (iii) The derivation of a formula, for any given body, of the second time derivative of its mass dipole moment in terms of its other multipole and tidal moments and their time derivatives. This formula was obtained previously by DSX for weakly self-gravitating bodies. (iv) A derivation of the relation between the tidal moments acting on each body and the multipole moments and center-of-mass world lines of all the other bodies. A formalism to compute this relation was developed by DSX; we simplify their formalism and compute the relation explicitly. (v) The deduction from the previous steps of the explicit translational equations of motion, whose form has not been previously derived.
DEFF Research Database (Denmark)
Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hattel, Jesper Henri
2016-01-01
In this paper, the migration of secondary particles in a non-Newtonian ceramic slurry inthe tape casting process is investigated with the purpose of understanding the particle distribution patterns along the casting direction. The Ostwald-de Waele power law model for the non-Newtonian flow...... the substratevelocity (casting speed) leads to a more uniform distribution of the particles inside the ceramic slurry, in which case the shear induced particle migration is dominating over the gravity induced one....
Spinorial relativistic rotator: the transformation from quasi-Newtonian to Minkowski coordinates
International Nuclear Information System (INIS)
Biedenharn, L.C.; Bohm, A.; Tarlini, M.; van Dam, H.; Mukunda, N.
1983-12-01
There exists a remarkably close relationship between the operator algebra of the Dirac equation and the corresponding operators of the spinorial relativistic rotator (an indecomposable object lying on a mass-spin Regge trajectory). The analog of the Foldy-Wouthuysen transformation (more generally, the transformation between quasi-Newtonian and Minkowski coordinates) is constructed and explicit results are discussed for the spin and position operators. Zitterbewegung is shown to exist for a system having only positive energies. 31 references
Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability
International Nuclear Information System (INIS)
Kondic, L.; Shelley, M.J.; Palffy-Muhoray, P.
1998-01-01
We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liquid in a radial Hele-Shaw cell. Using Darcy close-quote s law generalized for non-Newtonian fluids, we perform simulations of the full dynamical problem. The simulations show that shear thinning significantly influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and produce fingers which oscillate during growth and shed side branches. Emergent length scales show reasonable agreement with a general linear stability analysis. copyright 1998 The American Physical Society
International Nuclear Information System (INIS)
Song Guoxuan
2009-01-01
Based on the dynamical equations for a nonrotating elastic deformable astronomical body in the first post-Newtonian approximation of Einstein's theory of gravity, we re-examined the boundary(junction) conditions and have proven that a term, which is missing in the customary boundary(junction) conditions, is found. This term is induced by the existence of initial equilibrium hydrostatic pressure. A physical explanation of this term is given in the Newtonian approximation as well. By using the correcting boundary conditions the relation of the free spherically symmetrical radial oscillation frequency of a nonrotating homogeneously and isotropically elastic sphere with constant density is derived.
Transverse thermopherotic MHD Oldroyd-B fluid with Newtonian heating
Mehmood, R.; Rana, S.; Nadeem, S.
2018-03-01
Hydromagnetic transverse flow of an Oldroyd-B type fluid with suspension of nanoparticles and Newtonian heating effects is conferred in this article. Relaxation and Retardation time effects are taken into consideration. Using suitable transformations physical problem is converted into non-linear ordinary differential equations which are tackled numerically via Runge-Kutta Fehlberg integration scheme. Illustration of embedded constraints on flow characteristics are extracted through graphs. The physical response of velocity, temperature and concentration are investigated computationally. Momentum boundary layer thickness decreases but local heat and mass flux rises for Deborah number and Hartman number. The results provide interesting insights into certain applicable transport phenomena involving hydromagnetic rheological fluids.
Newtonian self-gravitating system in a relativistic huge void universe model
Energy Technology Data Exchange (ETDEWEB)
Nishikawa, Ryusuke; Nakao, Ken-ichi [Department of Mathematics and Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan); Yoo, Chul-Moon, E-mail: ryusuke@sci.osaka-cu.ac.jp, E-mail: knakao@sci.osaka-cu.ac.jp, E-mail: yoo@gravity.phys.nagoya-u.ac.jp [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)
2016-12-01
We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.
Maharjan, Rijan; Brown, Eric
2017-12-01
We investigated the transient relaxation of a discontinuous shear thickening (DST) suspension of cornstarch in water. We performed two types of relaxation experiments starting from a steady shear in a parallel-plate rheometer, followed either by stopping the top plate rotation and measuring the transient torque relaxation or by removing the torque on the plate and measuring the transient rotation of the tool. We found that at low effective weight fraction ϕeffmodel. The regime where the relaxation was inconsistent with the generalized Newtonian model was the same where we found positive normal stress during relaxation, and in some cases we found an oscillatory response, suggestive of a solidlike structure consisting of a system-spanning contact network of particles. This regime also corresponds to the same packing fraction range where we consistently found discontinuous shear thickening in rate-controlled, steady-state measurements. The relaxation time in this range scales with the inverse of the critical shear rate at the onset of shear thickening, which may correspond to a contact relaxation time for nearby particles in the structure to flow away from each other. In this range, the relaxation time was the same in both stress- and rate-controlled relaxation experiments, indicating the relaxation time is more intrinsic than an effective viscosity in this range and is needed in addition to the steady-state viscosity function to describe transient flows. The discrepancy between the measured relaxation times and the generalized Newtonian prediction was found to be as large as four orders of magnitude, and extrapolations diverge in the limit as ϕeff→ϕc as the generalized Newtonian prediction approaches 0. This quantitative discrepancy indicates the relaxation is not controlled by the dissipative terms in the constitutive relation. At the highest weight fractions, the relaxation time scales were measured to be on the order of ˜1 s. The fact that this time scale is
Scheel, Mark; Szilagyi, Bela; Blackman, Jonathan; Chu, Tony; Kidder, Lawrence; Pfeiffer, Harald; Buonanno, Alessandra; Pan, Yi; Taracchini, Andrea; SXS Collaboration
2015-04-01
We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors such as LIGO, Virgo and KAGRA, for mass ratio 7 and total mass as low as 45 . 5M⊙ . We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a loss in detection rate due to modeling error smaller than 0 . 3 % . In contrast, post-Newtonian inspiral waveforms and existing phenomenological inspiral-merger-ringdown waveforms display much greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.
Bubble coalescence in a Newtonian fluid
Garg, Vishrut; Basaran, Osman
2017-11-01
Bubble coalescence plays a central role in the hydrodynamics of gas-liquid systems such as bubble column reactors, spargers, and foams. Two bubbles approaching each other at velocity V coalesce when the thin film between them ruptures, which is often the rate-limiting step. Experimental studies of this system are difficult, and recent works provide conflicting results on the effect of V on coalescence times. We simulate the head-on approach of two bubbles of equal radii R in an incompressible Newtonian fluid (density ρ, viscosity μ, and surface tension σ) by solving numerically the free boundary problem comprised of the Navier Stokes and continuity equations. Simulations are made challenging by the existence of highly disparate lengthscales, i.e. film thickness and drop radii, which are resolved by using the method of elliptic mesh generation. For a given liquid, the bubbles are shown to coalesce for all velocities below a critical value. The effects of Ohnesorge number Oh = μ /√{ ρσR } on coalescence time and critical velocity are also investigated.
Developing iPad-Based Physics Simulations That Can Help People Learn Newtonian Physics Concepts
Lee, Young-Jin
2015-01-01
The aims of this study are: (1) to develop iPad-based computer simulations called iSimPhysics that can help people learn Newtonian physics concepts; and (2) to assess its educational benefits and pedagogical usefulness. To facilitate learning, iSimPhysics visualizes abstract physics concepts, and allows for conducting a series of computer…
CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.
Wu, Binxin
2010-07-01
This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.
Browne, K. M.
2018-06-01
Ever since the beam balance was invented over three millennia ago, it has been used to measure what is now known as mass, but which, until the time of Newton, had always been known as "weight." Eugene Hecht recently discussed the concept of "mass" from medieval times to Newton's Principia, including the gradual change from philosophical to evidence based scientific thinking, but did not discuss the pre-Newtonian meaning of "weight" which then had the meaning of both weight and mass. The distinction between weight and mass was initiated by Kepler and completed by Newton.
The phenomenological version of modified Newtonian dynamics from the relativity principle of motion
International Nuclear Information System (INIS)
Giné, Jaume
2012-01-01
In this paper, we show that it is possible to deduce the first phenomenological version of modified Newtonian dynamics (MOND) proposed by Milgrom from the relativity principle of motion in connection with the observed accelerated expansion of the universe. A new form of μ(x) in the Milgrom formula for Newton's second law is obtained. Moreover, we establish the relation between MOND and the deceleration parameter. (paper)
Second-order contributions to relativistic time delay in the parametrized post-Newtonian formalism
International Nuclear Information System (INIS)
Richter, G.W.; Matzner, R.A.
1983-01-01
Using a parametrized expansion of the solar metric to second order in the Newtonian potential, we calculate the relativistic delay in the round-trip travel time of a radar signal reflected from a nearby planet. We find that one second-order contribution to the delay is on the order of ten nanoseconds, which is comparable to the uncertainties in present-day experiments involving the Viking spacecraft
Numerical simulation of forced convection in a duct subjected to microwave heating
Energy Technology Data Exchange (ETDEWEB)
Zhu, J.; Kuznetsov, A.V. [North Carolina State University, Department of Mechanical and Aerospace Engineering, Campus Box 7910, Raleigh, NC (United States); Sandeep, K.P. [North Carolina State University, Department of Food Science, Raleigh, NC (United States)
2007-01-15
In this paper, forced convection in a rectangular duct subjected to microwave heating is investigated. Three types of non-Newtonian liquids flowing through the duct are considered, specifically, apple sauce, skim milk, and tomato sauce. A finite difference time domain method is used to solve Maxwell's equations simulating the electromagnetic field. The three-dimensional temperature field is determined by solving the coupled momentum, energy, and Maxwell's equations. Numerical results show that the heating pattern strongly depends on the dielectric properties of the fluid in the duct and the geometry of the microwave heating system. (orig.)
A gauge model describing N relativistic particles bound by linear forces
International Nuclear Information System (INIS)
Filippov, A.T.
1988-01-01
A relativistic model of N particles bound by linear forces is obtained by applying the gauging procedure to the linear canonical symmteries of a simple (rudimentary) nonrelativistic N-particle Lagrangian extended to relativistic phase space. The new (gauged) Lagrangian is formally Poincare invariant, the Hamiltonian is a linear combination of first-class constraints which are closed with respect to Pisson brackets and generate the localized canonical symmteries. The gauge potentials appear as the Lagrange multipliers of the constraints. Gauge fixing and quantization of the model are also briefly discussed. 11 refs
International Nuclear Information System (INIS)
Kopeikin, Sergei; Vlasov, Igor
2004-01-01
along with the law of relativistic precession of its spatial axes. These transformations depend on the PPN parameters β and γ, generalize general relativistic transformations of the IAU 2000 resolutions, and should be used in the data processing of the solar system gravitational experiments aimed to detect the presence of the scalar field. These PPN transformations are also applicable in the precise time-keeping metrology, celestial mechanics, astrometry, geodesy and navigation.We consider a multipolar post-Newtonian expansion of the gravitational and scalar fields and construct a set of internal and external gravitational multipoles depending on the parameters β and γ. These PPN multipoles generalize the Thorne-Blanchet-Damour multipoles defined in harmonic coordinates of general theory of relativity. The PPN multipoles of the scalar-tensor theory of gravity are split in three classes-active, conformal, and scalar multipoles. Only two of them are algebraically independent and we chose to work with the conformal and active multipoles. We derive the laws of conservations of the multipole moments and show that they must be formulated in terms of the conformal multipoles. We focus then on the law of conservation of body's linear momentum which is defined as a time derivative of the conformal dipole moment of the body in the local coordinates. We prove that the local force violating the law of conservation of the body's linear momentum depends exclusively on the active multipole moments of the body along with a few other terms which depend on the internal structure of the body and are responsible for the violation of the strong principle of equivalence (the Nordtvedt effect).The PPN translational equations of motion of extended bodies in the global coordinate frame and with all gravitational multipoles taken into account are derived from the law of conservation of the body's linear momentum supplemented by the law of motion of the origin of the local frame derived from
Szilágyi, Béla; Blackman, Jonathan; Buonanno, Alessandra; Taracchini, Andrea; Pfeiffer, Harald P; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Pan, Yi
2015-07-17
We present the first numerical-relativity simulation of a compact-object binary whose gravitational waveform is long enough to cover the entire frequency band of advanced gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, for mass ratio 7 and total mass as low as 45.5M_{⊙}. We find that effective-one-body models, either uncalibrated or calibrated against substantially shorter numerical-relativity waveforms at smaller mass ratios, reproduce our new waveform remarkably well, with a negligible loss in detection rate due to modeling error. In contrast, post-Newtonian inspiral waveforms and existing calibrated phenomenological inspiral-merger-ringdown waveforms display greater disagreement with our new simulation. The disagreement varies substantially depending on the specific post-Newtonian approximant used.
Forces on nuclei moving on autoionizing molecular potential energy surfaces.
Moiseyev, Nimrod
2017-01-14
Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.
Conceptual evolution of Newtonian and relativistic mechanics
Ghosh, Amitabha
2018-01-01
This book provides an introduction to Newtonian and relativistic mechanics. Unlike other books on the topic, which generally take a 'top-down' approach, it follows a novel system to show how the concepts of the 'science of motion' evolved through a veritable jungle of intermediate ideas and concepts. Starting with Aristotelian philosophy, the text gradually unravels how the human mind slowly progressed towards the fundamental ideas of inertia physics. The concepts that now appear so obvious to even a high school student took great intellectuals more than a millennium to clarify. The book explores the evolution of these concepts through the history of science. After a comprehensive overview of the discovery of dynamics, it explores fundamental issues of the properties of space and time and their relation with the laws of motion. It also explores the concepts of spatio-temporal locality and fields, and offers a philosophical discussion of relative motion versus absolute motion, as well as the concept of an abso...
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)
2016-01-01
We implement the effective field theory for gravitating spinning objects in the post-Newtonian scheme at the next-to-next-to-leading order level to derive the gravitational spin-orbit interaction potential at the third and a half post-Newtonian order for rapidly rotating compact objects. From the next-to-next-to-leading order interaction potential, which we obtain here in a Lagrangian form for the first time, we derive straightforwardly the corresponding Hamiltonian. The spin-orbit sector constitutes the most elaborate spin dependent sector at each order, and accordingly we encounter a proliferation of the relevant Feynman diagrams, and a significant increase of the computational complexity. We present in detail the evaluation of the interaction potential, going over all contributing Feynman diagrams. The computation is carried out in terms of the ''nonrelativistic gravitational'' fields, which are advantageous also in spin dependent sectors, together with the various gauge choices included in the effective field theory for gravitating spinning objects, which also optimize the calculation. In addition, we automatize the effective field theory computations, and carry out the automated computations in parallel. Such automated effective field theory computations would be most useful to obtain higher order post-Newtonian corrections. We compare our Hamiltonian to the ADM Hamiltonian, and arrive at a complete agreement between the ADM and effective field theory results. Finally, we provide Hamiltonians in the center of mass frame, and complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to third and a half post-Newtonian order. The derivation presented here is essential to obtain further higher order post-Newtonian corrections, and to reach the accuracy level required for the successful detection of gravitational radiation.
Non-Newtonian fluid flow in an axisymmetric channel with porous wall
Directory of Open Access Journals (Sweden)
M. Hosseini
2013-12-01
Full Text Available In the present article Optimal Homotopy Asymptotic Method (OHAM is used to obtain the solutions of momentum and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall for turbine cooling applications. Numerical method is used for validity of this analytical method and excellent agreement is observed between the solutions obtained from OHAM and numerical results. Trusting to this validity, effects of some other parameters are discussed. The results show that Nusselt number increases with increase of Reynolds number, Prandtl number and power law index.
El-Amin, Mohamed
2012-06-02
The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.
El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu
2012-01-01
The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.
The LS-STAG immersed boundary/cut-cell method for non-Newtonian flows in 3D extruded geometries
Nikfarjam, F.; Cheny, Y.; Botella, O.
2018-05-01
The LS-STAG method is an immersed boundary/cut-cell method for viscous incompressible flows based on the staggered MAC arrangement for Cartesian grids, where the irregular boundary is sharply represented by its level-set function, results in a significant gain in computer resources (wall time, memory usage) compared to commercial body-fitted CFD codes. The 2D version of LS-STAG method is now well-established (Cheny and Botella, 2010), and this paper presents its extension to 3D geometries with translational symmetry in the z direction (hereinafter called 3D extruded configurations). This intermediate step towards the fully 3D implementation can be applied to a wide variety of canonical flows and will be regarded as the keystone for the full 3D solver, since both discretization and implementation issues on distributed memory machines are tackled at this stage of development. The LS-STAG method is then applied to various Newtonian and non-Newtonian flows in 3D extruded geometries (axisymmetric pipe, circular cylinder, duct with an abrupt expansion) for which benchmark results and experimental data are available. The purpose of these investigations are (a) to investigate the formal order of accuracy of the LS-STAG method, (b) to assess the versatility of method for flow applications at various regimes (Newtonian and shear-thinning fluids, steady and unsteady laminar to turbulent flows) (c) to compare its performance with well-established numerical methods (body-fitted and immersed boundary methods).
Physically based model for extracting dual permeability parameters using non-Newtonian fluids
Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.
2017-12-01
Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.
Menut, Marine; Boussel, Loïc; Escriva, Xavier; Bou-Saïd, Benyebka; Walter-Le Berre, Hélène; Marchesse, Yann; Millon, Antoine; Della Schiava, Nellie; Lermusiaux, Patrick; Tichy, John
2018-05-17
Blood is a complex fluid in which the presence of the various constituents leads to significant changes in its rheological properties. Thus, an appropriate non-Newtonian model is advisable; and we choose a Modified version of the rheological model of Phan-Thien and Tanner (MPTT). The different parameters of this model, derived from the rheology of polymers, allow characterization of the non-Newtonian nature of blood, taking into account the behavior of red blood cells in plasma. Using the MPTT model that we implemented in the open access software OpenFOAM, numerical simulations have been performed on blood flow in the thoracic aorta for a healthy patient. We started from a patient-specific model which was constructed from medical images. Exiting flow boundary conditions have been developped, based on a 3-element Windkessel model to approximate physiological conditions. The parameters of the Windkessel model were calibrated with in vivo measurements of flow rate and pressure. The influence of the selected viscosity of red blood cells on the flow and wall shear stress (WSS) was investigated. Results obtained from this model were compared to those of the Newtonian model, and to those of a generalized Newtonian model, as well as to in vivo dynamic data from 4D MRI during a cardiac cycle. Upon evaluating the results, the MPTT model shows better agreement with the MRI data during the systolic and diastolic phases than the Newtonian or generalized Newtonian model, which confirms our interest in using a complex viscoelastic model. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Construção lógica do "Estilo Newtoniano" The logical construction of the "Newtonian Style"
Directory of Open Access Journals (Sweden)
Raquel Anna Sapunaru
2008-01-01
Full Text Available O historiador da ciência Isaac Bernard Cohen batizou o novo método de "fazer ciência", criado por Isaac Newton, de "estilo newtoniano". Segundo Cohen, o cerne do "estilo newtoniano"seria a adaptação sucessiva das "construções mentais" - matemáticas - às comparações com a natureza e haveria dinâmica direta entre as "construções mentais" - matemáticas - e os sistemas físicos. Uma das principais características do "estilo newtoniano", portanto, seria primeiramente a matemática e, posteriormente, uma série de experimentos - e não o contrário. Brilhantemente, enquanto escrevia os Princípios Matemáticos de Filosofia Natural, Newton teria concluído que descrever o movimento de planetas e satélites, ou o movimento em geral, com precisão absoluta era imensamente mais complicado do que seus contemporâneos e antecessores poderiam ter pensado. A solução encontrada por ele foi, partindo de simples casos idealizados, passar progressivamente para casos mais complicados, também idealizados, e depois percorrer o caminho oposto, isto é: pelo desmembramento dos casos mais complicados provar os mais simples, embora sempre em direção à verdade.The science historian, Isaac Bernard Cohen named the new method of "making science" created by Isaac Newton by the name of "newtonian style". The central point of this "newtonian style", according to the definition of Cohen himself is the successive adaptation from "mental constructions" - to mathematical - to comparisons with nature. This means that, according to Cohen, a direct dynamic between "mental constructions" - mathematical - and physical systems should exist. For this reason, one of the most important characteristics of the "newtonian style" would be, first, mathematics and, afterwards, a series of experiments - and not the other way round. Newton would have brilliantly concluded, while writing the "Mathematical Principles of Natural Philosophy", that, to describe with absolute
Newtonian noise cancellation in tensor gravitational wave detector
International Nuclear Information System (INIS)
Paik, Ho Jung; Harms, Jan
2016-01-01
Terrestrial gravity noise produced by ambient seismic and infrasound fields poses one of the main sensitivity limitations in low-frequency ground-based gravitational-wave (GW) detectors. This noise needs to be suppressed by 3-5 orders of magnitude in the frequency band 10 mHz to 1 Hz, which is extremely challenging. We present a new approach that greatly facilitates cancellation of gravity noise in full-tensor GW detectors. It makes explicit use of the direction of propagation of a GW, and can therefore either be implemented in directional searches for GWs or in observations of known sources. We show that suppression of the Newtonian-noise foreground is greatly facilitated using the extra strain channels in full-tensor GW detectors. Only a modest number of auxiliary, high-sensitivity environmental sensors is required to achieve noise suppression by a few orders of magnitude. (paper)
International Nuclear Information System (INIS)
Lamsaadi, M.; Naimi, M.; Hasnaoui, M.
2006-01-01
A combined analytical and numerical study is conducted for two dimensional, steady state, buoyancy driven flows of non-Newtonian power law fluids confined in a shallow rectangular cavity submitted to uniform fluxes of heat along both its short vertical sides, while its long horizontal walls are considered adiabatic. The effect of the non-Newtonian behavior on the fluid flow and heat transfer characteristics is examined. An approximate theoretical solution is developed on the basis of the parallel flow assumption and validated numerically by solving the full governing equations
Nonlinear shear wave in a non Newtonian visco-elastic medium
Energy Technology Data Exchange (ETDEWEB)
Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)
2012-06-15
An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.
Qayyum, Sajid; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed
2018-03-01
This article concentrates on the magnetohydrodynamic (MHD) stagnation point flow of tangent hyperbolic nanofluid in the presence of buoyancy forces. Flow analysis caused due to stretching surface. Characteristics of heat transfer are examined under the influence of thermal radiation and heat generation/absorption. Newtonian conditions for heat and mass transfer are employed. Nanofluid model includes Brownian motion and thermophoresis. The governing nonlinear partial differential systems of the problem are transformed into a systems of nonlinear ordinary differential equations through appropriate variables. Impact of embedded parameters on the velocity, temperature and nanoparticle concentration fields are presented graphically. Numerical computations are made to obtain the values of skin friction coefficient, local Nusselt and Sherwood numbers. It is concluded that velocity field enhances in the frame of mixed convection parameter while reverse situation is observed due to power law index. Effect of Brownian motion parameter on the temperature and heat transfer rate is quite reverse. Moreover impact of solutal conjugate parameter on the concentration and local Sherwood number is quite similar.
Point-of-care Devices: Non-Newtonian Whole Blood Behavior and Capillary Flow on Reagent-coated Walls
Directory of Open Access Journals (Sweden)
Jean BERTHIER
2016-08-01
Full Text Available Most point-of-care (POC and patient self-testing (PST devices are based on the analysis of whole blood taken from a finger prick. Whole blood contains a bountiful of information about the donor’s health. We analyze here two particularities of microsystems for blood analysis: the blood non-Newtonian behavior, and the capillary flow in reagent-coated channels. Capillarity is the most commonly used method to move fluids in portable systems. It is shown first that the capillary flow of blood does not follow the Lucas-Washburn-Rideal law when the capillary flow velocity is small, due to its non-Newtonian rheology and to the formation of rouleaux of RBCs. In a second step, the capillary flow of blood on reagent-coated surfaces is investigated; first experimentally by observing the spreading of a droplet of blood on different reagent-coated substrates; second theoretically and numerically using the general law for spontaneous capillary flows and the Evolver numerical program.
Third post-Newtonian dynamics of compact binaries: equations of motion in the centre-of-mass frame
Blanchet, L
2003-01-01
The equations of motion of compact binary systems and their associated Lagrangian formulation have been derived in previous works at the third post-Newtonian (3PN) approximation of general relativity in harmonic coordinates. In the present work, we investigate the binary's relative dynamics in the centre-of-mass frame (centre of mass located at the origin of the coordinates). We obtain the 3PN-accurate expressions of the centre-of-mass positions and equations of the relative binary motion. We show that the equations derive from a Lagrangian (neglecting the radiation reaction), from which we deduce the conserved centre-of-mass energy and angular momentum at the 3PN order. The harmonic-coordinates centre-of-mass Lagrangian is equivalent, via a contact transformation of the particles' variables, to the centre-of-mass Hamiltonian in ADM coordinates that is known from the post-Newtonian ADM-Hamiltonian formalism. As an application we investigate the dynamical stability of circular binary orbits at the 3PN order.
Nonisothermal flow of a non-Newtonian fluid with viscous heating between two parallel plates
International Nuclear Information System (INIS)
Imal, M.; Pinarbasi, A.
2004-01-01
In this study the pressure gradient-flow rate relationship for steady-state nonisothermal pressure-driven flow of a non-Newtonian fluid in a channel is investigated including the effect of viscous heating is taken into account. The viscosity of the fluid depends on both temperature and shear-rate. Exponential dependence of viscosity on temperature is modelled through Arrhenius law. Non-Newtonian behaviour of the fluid is modelled according to the Carreau rheological equation, which reflects the characteristics of most polymers adequately with an exponential temperature dependence of viscosity. Flow governing motion and energy balance equations are coupled and solution of this non-linear boundary value problem is found iteratively using a pseudo spectral method based on Chebyshev polynomials. The effect of activation energy parameter and Brinkman number, as well as the power-law index and material time constant on the flow is studied. It is found that while the pressure gradient-flow rate graph is monotonic for certain ranges of flow controlling parameters, there is a large jump in the graph under certain values of these parameters.(1 table and 5 figures are included.)
Kuchumov, Alex G.; Gilev, Valeriy; Popov, Vitaliy; Samartsev, Vladimir; Gavrilov, Vasiliy
2014-02-01
The paper presents an experimental study of pathological human bile taken from the gallbladder and bile ducts. The flow dependences were obtained for different types of bile from patients with the same pathology, but of different age and sex. The parameters of the Casson's and Carreau's equations were found for bile samples. Results on the hysteretic bile behavior at loading-unloading tests are also presented, which proved that the pathologic bile is a non-Newtonian thixotropic liquid. The viscosity of the gallbladder bile was shown to be higher compared to the duct bile. It was found that at higher shear stress the pathological bile behaves like Newtonian fluid, which is explained by reorientation of structural components. Moreover, some pathological bile flow in the biliary system CFD simulations were performed. The velocity and pressure distributions as well as flow rates in the biliary segments during the gallbladder refilling and emptying phases are obtained. The results of CFD simulations can be used for surgeons to assess the patient's condition and choose an adequate treatment.
Diffusion in Poiseuille and Couette flows of binary mixtures of incompressible newtonian fluids
International Nuclear Information System (INIS)
Caetano Filho, E.; Qassim, R.Y.
1981-07-01
Using the continuum theory of binary mixtures of incompressible Newtonian fluids, Poiseuille and Couette flows are studied with a view to determining whether diffusion occurs in such flows. It is shown that diffusion is absent in the Couette case. However, in Poiseuille flow there are significant differences between the velocities of the species comprising the mixture. This result is in broad agreement with that of Mills for similar mixtures of nonuniform composition. (Author) [pt
Mechanical characterisation of the TorPeDO: a low frequency gravitational force sensor
McManus, D. J.; Forsyth, P. W. F.; Yap, M. J.; Ward, R. L.; Shaddock, D. A.; McClelland, D. E.; Slagmolen, B. J. J.
2017-07-01
Newtonian noise is likely to be a future challenge at low frequencies for Advanced LIGO and other second generation gravitational wave detectors. We present the TorPeDO system: a dual torsion pendulum sensor designed to measure local gravitational forces to high precision. Gravitational forces induce a differential rotation between the two torsion beams, which is measured with an optical read-out. Both torsion pendulums have a common suspension point, tunable centre of mass, and resonant frequency. This produces a high level of mechanical common mode noise cancellation. We report on a controls prototype of the TorPeDO system, presenting the frequency response and tuning range of both pendulums. A noise budget and mechanical cross-coupling model for this system are also presented. We demonstrate frequency tuning of the two torsion pendulums to a difference of 4.3 μHz.
Guicciardini, Niccolò
2017-12-01
During the eighteenth century, several towns located in what is known today as the Suisse romande were extremely receptive toward scientific culture, and most notably Newtonianism. In this paper I deal with a nine-volume publication of Newton's Opera Omnia that was planned in Geneva and Lausanne during the late 1730s and 1740s. This publication has not received the attention it deserves. To the best of my knowledge, even an awareness of its existence is lacking in the literature devoted to the reception of Newtonianism. This paper examines the circumstances of the publication of a complete set of all of Newton's works known at the time, and the motivations of the editors, mathematicians, and publishers who were involved in this editorial enterprise.
Directory of Open Access Journals (Sweden)
Nadjafikhah M.
2017-07-01
Full Text Available Lie group method is applicable to both linear and non-linear partial differential equations, which leads to find new solutions for partial differential equations. Lie symmetry group method is applied to study Newtonian incompressible fluid’s equations flow in turbulent boundary layers. The symmetry group and its optimal system are given, and group invariant solutions associated to the symmetries are obtained. Finally the structure of the Lie algebra such as Levi decomposition, radical subalgebra, solvability and simplicity of symmetries is given.
About efficient quasi-Newtonian schemes for variational calculations in nuclear structure
International Nuclear Information System (INIS)
Puddu, G.
2009-01-01
The Broyden-Fletcher-Goldhaber-Shanno (BFGS) quasi-Newtonian scheme is known as the most efficient scheme for variational calculations of energies. This scheme is actually a member of a one-parameter family of variational methods, known as the Broyden β-family. In some applications to light nuclei using microscopically derived effective Hamiltonians starting from accurate nucleon-nucleon potentials, we actually found other members of the same family which have better performance than the BFGS method. We also extend the Broyden β -family of algorithms to a two-parameter family of rank-three updates which has even better performances. (orig.)
Omerbashich, Mensur
2015-01-01
World oldest authority for scientific constants and the keeper of the original metre standard, the International Bureau of Weights and Measures (BIPM) in Paris, France has accomplished a historic confirmation of the Omerbashich's (first-ever) scientific prediction of value of the Newtonian gravitational constant G.
Stability of orbits around a spinning body in a pseudo-Newtonian Hill problem
International Nuclear Information System (INIS)
Steklain, A.F.; Letelier, P.S.
2009-01-01
A pseudo-Newtonian Hill problem based on a potential proposed by Artemova et al. [I.A. Artemova, G. Bjoernsson, I.D. Novikov, Astrophys. J. 461 (1996) 565] is presented. This potential reproduces some of the general relativistic effects due to the spin angular momentum of the bodies, like the dragging of inertial frames. Poincare maps, Lyapunov exponents and fractal escape techniques are employed to study the stability of bounded and unbounded orbits for different spins of the central body
Experimental model for non-Newtonian fluid viscosity estimation: Fit to mathematical expressions
Directory of Open Access Journals (Sweden)
Guillem Masoliver i Marcos
2017-01-01
Full Text Available The construction process of a viscometer, developed in collaboration with a final project student, is here presented. It is intended to be used by first year's students to know the viscosity as a fluid property, for both Newtonian and non-Newtonian flows. Viscosity determination is crucial for the fluids behaviour knowledge related to their reologic and physical properties. These have great implications in engineering aspects such as friction or lubrication. With the present experimental model device three different fluids are analyzed (water, kétchup and a mixture with cornstarch and water. Tangential stress is measured versus velocity in order to characterize all the fluids in different thermal conditions. A mathematical fit process is proposed to be done in order to adjust the results to expected analytical expressions, obtaining good results for these fittings, with R2 greater than 0.88 in any case.
Thandlam, Anil Kumar; Das, Chiranjib; Majumder, Subrata Kumar
2017-04-01
Investigation of wall-liquid mass transfer and heat transfer phenomena with gas-Newtonian and non-Newtonian fluids in vertically helical coil reactor have been reported in this article. Experiments were conducted to investigate the effect of various dynamic and geometric parameters on mass and heat transfer coefficients in the helical coil reactor. The flow pattern-based heat and mass transfer phenomena in the helical coil reactor are highlighted at different operating conditions. The study covered a wide range of geometric parameters such as diameter of the tube ( d t ), diameter of the coil ( D c ), diameter of the particle ( d p ), pitch difference ( p/D c ) and concentrations of non-Newtonian liquid. The correlation models for the heat and mass transfer coefficient based on the flow pattern are developed which may be useful in process scale-up of the helical coil reactor for industrial application. The frictional drag coefficient was also estimated and analyzed by mass transfer phenomena based on the electrochemical method.
Naseer, F.
2017-12-01
Contamination of soil and groundwater by adsorbent (persistent) contaminants have been a major concern. Mine tailings, Acid mine drainage, waste disposal areas, active or abandoned surface and underground mines are some major causes of soil and water contamination. It is need of the hour to develop cost effective and efficient remediation techniques for clean-up of soil and aquifers. The objective of this research is to study a methodology of using non-Newtonian fluids for effective remediation of adsorbent contaminants in porous media under non-isothermal flow regimes. The research comprises of three components. Since, non-Newtonian fluid rheology has not been well studied in cold temperatures, the first component of the objective is to expose a non-Newtonian fluid (Guar gum solution) to different temperatures ranging from 30 °C through -5 °C to understand the change in viscosity, shear strength and contact angle of the fluid. Study of the flow characteristic of non-Newtonian fluids in complex porous media has been limited. Hence, the second component of this study will focus on a comparison of flow characteristics of a Newtonian fluid, non-Newtonian fluid and a combination of both fluids in a glass-tube-bundle setup that will act as a synthetic porous media. The study of flow characteristics will also be done for different thermal regimes ranging from -5 °C to 30 °C. The third component of the research will be to compare the effectiveness Guar gum to remediate a surrogate adsorbed contaminant at a certain temperature from the synthetic porous media. Guar gum is biodegradable and hence it is benign to the environment. Through these experiments, the mobility and behavior of Guar gum under varying temperature ranges will be characterized and its effectiveness in removing contaminants from soils will be understood. The impact of temperature change on the fluid and flow stability in the porous medium will be examined in this research. Guar gum is good suspension
International Nuclear Information System (INIS)
Makinde, O.D.
2005-10-01
In this paper, the first and second law of thermodynamics are employed in order to study the inherent irreversibility for a gravity driven non-Newtonian Ostwald-de Waele power law liquid film along an inclined isothermal plate. Based on some simplified assumptions, the governing equations are obtained and solved analytically. Expressions for fluid velocity, temperature, volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan number are also determined. (author)
Digilov, Rafael M.; Reiner, M.
2007-03-01
The operation principle of the mass-controlled capillary viscometer is presented for a Newtonian liquid. The derived equation for the temporal changes of the mass in a liquid column draining under gravity through a discharge capillary tube accounts self-consistently for the inertial convective term associated with the acceleration effect. The viscosity of water measured at different temperatures using the new approach is in good agreement with literature data.
Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow
DEFF Research Database (Denmark)
Lemarchand, Claire; Bailey, Nicholas; Daivis, Peter
2015-01-01
The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear...... rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid at all temperatures. In addition, the Cooee model is able to reproduce experimental results showing the formation of nanoaggregates composed of stacks of flat aromatic molecules in bitumen. These nanoaggregates...
Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis1
International Nuclear Information System (INIS)
Milgrom, M.; The Institute for Advanced Study)
1983-01-01
I consider the possibility that there is not, in fact, much hidden mass in galaxies and galaxy systems. If a certain modified version of the Newtonian dynamics is used to describe the motion of bodies in a gravitational field (of a galaxy, say), the observational results are reproduced with no need to assume hidden mass in appreciable quantities. Various characteristics of galaxies result with no further assumptions. In the basis of the modification is the assumption that in the limit of small acceleration a 0 , the acceleration of a particle at distance r from a mass M satisfies approximately a 2 /a 0 roughly-equalMGr -2 , where a 0 is a constant of the dimensions of an acceleration. A success of this modified dynamics in explaining the data may be interpreted as implying a need to change the law of inertia in the limit of small accelerations or a more limited change of gravity alone. I discuss various observational constraints on possible theories for the modified dynamics from data which exist already and suggest other systems which may provide useful constraints
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity
Pandey, Vikash; Holm, Sverre
2016-09-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.
Directory of Open Access Journals (Sweden)
Xiankang Xin
2017-10-01
Full Text Available In this paper, physical experiments and numerical simulations were applied to systematically investigate the non-Newtonian flow characteristics of heavy oil in porous media. Rheological experiments were carried out to determine the rheology of heavy oil. Threshold pressure gradient (TPG measurement experiments performed by a new micro-flow method and flow experiments were conducted to study the effect of viscosity, permeability and mobility on the flow characteristics of heavy oil. An in-house developed novel simulator considering the non-Newtonian flow was designed based on the experimental investigations. The results from the physical experiments indicated that heavy oil was a Bingham fluid with non-Newtonian flow characteristics, and its viscosity-temperature relationship conformed to the Arrhenius equation. Its viscosity decreased with an increase in temperature and a decrease in asphaltene content. The TPG measurement experiments was impacted by the flow rate, and its critical flow rate was 0.003 mL/min. The TPG decreased as the viscosity decreased or the permeability increased and had a power-law relationship with mobility. In addition, the critical viscosity had a range of 42–54 mPa∙s, above which the TPG existed for a given permeability. The validation of the designed simulator was positive and acceptable when compared to the simulation results run in ECLIPSE V2013.1 and Computer Modelling Group (CMG V2012 software as well as when compared to the results obtained during physical experiments. The difference between 0.0005 and 0.0750 MPa/m in the TPG showed a decrease of 11.55% in the oil recovery based on the simulation results, which demonstrated the largely adverse impact the TPG had on heavy oil production.
Hammond, Andrew P; Corwin, Eric I
2017-10-01
A thermal colloid suspended in a liquid will transition from a short-time ballistic motion to a long-time diffusive motion. However, the transition between ballistic and diffusive motion is highly dependent on the properties and structure of the particular liquid. We directly observe a free floating tracer particle's ballistic motion and its transition to the long-time regime in both a Newtonian fluid and a viscoelastic Maxwell fluid. We examine the motion of the free particle in a Newtonian fluid and demonstrate a high degree of agreement with the accepted Clercx-Schram model for motion in a dense fluid. Measurements of the functional form of the ballistic-to-diffusive transition provide direct measurements of the temperature, viscosity, and tracer radius. We likewise measure the motion in a viscoelastic Maxwell fluid and find a significant disagreement between the theoretical asymptotic behavior and our measured values of the microscopic properties of the fluid. We observe a greatly increased effective mass for a freely moving particle and a decreased plateau modulus.
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie, CNRS-UMR 7095, Institut d' Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Am Mühlenberg 1, 14476 Potsdam-Golm (Germany)
2016-01-01
The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there is an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.
Saffman-Taylor Instability for a non-Newtonian fluid
Daripa, Prabir
2013-11-01
Motivated by applications, we study classical Saffman-Taylor instability involving displacement of an Oldroyd-B fluid displaced by air in a Hele-Shaw cell. The lubrication approximation is used by neglecting the vertical component of the velocity. We obtain an explicit expression of one of the components of the extra-stress perturbations tensor in terms of the horizontal velocity perturbations. The main result is an explicit formula for the growth constant (in time) of perturbations, given by a ratio in which a term depending on the relaxation and retardation (time) constants appears in the denominator of the ratio. This exact result compares extremely well with known numerical results. It is found that flow is more unstable than the corresponding Newtonian case. This is a joint work with Gelu Pasa. The research has been made possible by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation).
Numerical investigation of non-Newtonian nanofluid flow in a converging microchannel
Energy Technology Data Exchange (ETDEWEB)
Mohsenian, S.; Ramiar, A.; Ranjbar, A. A. [Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol (Iran, Islamic Republic of)
2017-01-15
In the present study the flow of non-Newtonian nanofluid through a converging microchannel is investigated numerically. TiO{sub 2} nanoparticles with 10 nm diameter are dispersed in an aqueous solution of 0.5 %.wt Carboxymethyl cellulose (CMC) to produce the nanofluid. Both nanofluid and the base fluid show pseudoplastic behavior. The equations have been solved with finite volume approach using collocated grid. It has been found that by increasing the volume fraction and Reynolds number and the convergence angle, the Nusselt number increases. Also, it has been observed that by increasing convergence angle and decreasing aspect ratio of the channel, the velocity of the channel increases.
Change in the flow curves of non-Newtonian oils due to a magnetic field
International Nuclear Information System (INIS)
Veliev, F.G.
1979-01-01
The effect of a variable magnetic field on the rheological properties of non-Newtonian fluids is evaluated. Bituminous pitch oils were analyzed by recording the flow curves Q.Q(Δp) - the dependence of the volumetric flow rate on the pressure gradient - with and without a field. The results obtained indicate that variable magnetic fields can produce obvious changes in the rheological properties of bituminous pitch oils, although they are nonmagnetoactive and practically electrically nonconducting
Directory of Open Access Journals (Sweden)
Pacôme Delva
2017-03-01
Full Text Available An extensive review of past work on relativistic gravimetry, gradiometry and chronometric geodesy is given. Then, general theoretical tools are presented and applied for the case of a stationary parameterized post-Newtonian metric. The special case of a stationary clock on the surface of the Earth is studied.
Ni, W.-T.
1972-01-01
Metric theories of gravity are compiled and classified according to the types of gravitational fields they contain, and the modes of interaction among those fields. The gravitation theories considered are classified as (1) general relativity, (2) scalar-tensor theories, (3) conformally flat theories, and (4) stratified theories with conformally flat space slices. The post-Newtonian limit of each theory is constructed and its Parametrized Post-Newtonian (PPN) values are obtained by comparing it with Will's version of the formalism. Results obtained here, when combined with experimental data and with recent work by Nordtvedt and Will and by Ni, show that, of all theories thus far examined by our group, the only currently viable ones are general relativity, the Bergmann-Wagoner scalar-tensor theory and its special cases (Nordtvedt; Brans-Dicke-Jordan), and a recent, new vector-tensor theory by Nordtvedt, Hellings, and Will.
John Theophilus Desaguliers a natural philosopher, engineer and freemason in Newtonian England
Carpenter, Audrey T
2011-01-01
John Theophilus Desaguliers made his mark on the eighteenth century in several diverse ways. He was an assistant to Sir Isaac Newton and later elucidated the difficult concepts of Newtonian physics in private lectures. He was a member of the Royal Society, and was presented with the Society's highest honour, the Copley Medal, no less than three times. He was a pioneering engineer: the water supply of Edinburgh, the ventilation of the Houses of Parliament and the first Westminster Bridge all owed him a debt. In a different sphere, Desaguliers became the third Grand Master of the Grand Lodge of
Directory of Open Access Journals (Sweden)
Yan Zhang
2011-01-01
Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.
Comparative study of Newtonian physiological blood flow through normal and stenosed carotid artery
Rahman, Mohammad Matiur; Hossain, Md. Anwar; Mamun, Khairuzzaman; Akhter, Most. Nasrin
2017-06-01
A numerical simulation is performed to investigate Newtonian physiological flows behavior on three dimensional idealized carotid artery (CA) and single stenosed (75% by area) carotid artery(SCA). The wall vessel is set as rigid during simulation. Bifurcated blood vessel are simulated by using three-dimensional flow analysis. Physiological and parabolic velocity profiles are set out to fix the conditions of inlet boundaries of artery. In other hand, physiological waveform is an important part of compilation and it is successfully done by utilization of Fourier series having sixteen harmonics. The investigation has a Reynolds number range of 94 to 1120. Low Reynolds number k — ω model has been used as governing equation. The investigation has been carried out to characterize the flow behavior of blood in two geometry, namely, (i) Normal carotid artery (CA) and (ii) Stenosed carotid artery (SCA). The Newtonian model has been used to study the physics of fluid. The findings of the two models are thoroughly compared in order to observe there behavioral sequence of flows. The numerical results were presented in terms of velocity, pressure, wall shear stress distributions and cross sectional velocities as well as the streamlines contour. Stenosis disturbs the normal pattern of blood flow through the artery as reduced area. At stenosis region velocity and peak Reynolds number rapidly increase and Reynolds number reach transitional and turbulent region. These flow fluctuation and turbulence have bad effect to the blood vessel which makes to accelerate the progress of stenosis.
Turbulent structures of non-Newtonian solutions containing rigid polymers
Mohammadtabar, M.; Sanders, R. S.; Ghaemi, S.
2017-10-01
The turbulent structure of a channel flow of Xanthan Gum (XG) polymer solution is experimentally investigated and compared with water flow at a Reynolds number of Re = 7200 (based on channel height and properties of water) and Reτ = 220 (based on channel height and friction velocity, uτ0). The polymer concentration is varied from 75, 100, and 125 ppm to reach the point of maximum drag reduction (MDR). Measurements are carried out using high-resolution, two-component Particle Image Velocimetry (PIV) to capture the inner and outer layer turbulence. The measurements showed that the logarithmic layer shifts away from the wall with increasing polymer concentration. The slopes of the mean velocity profile for flows containing 100 and 125 ppm XG are greater than that measured for XG at 75 ppm, which is parallel with the slope obtained for deionized water. The increase in slope results in thickening buffer layer. At MDR, the streamwise Reynolds stresses are as large as those of the Newtonian flow while the wall-normal Reynolds stresses and Reynolds shear stresses are significantly attenuated. The sweep-dominated region in the immediate vicinity of the wall extends further from the wall with increasing polymer concentration. The near-wall skewness intensifies towards positive streamwise fluctuations and covers a larger wall-normal length at larger drag reduction values. The quadrant analysis at y + 0 = 25 shows that the addition of polymers inclines the principal axis of v versus u plot to almost zero (horizontal) as the joint probability density function of fluctuations becomes symmetric with respect to the u axis at MDR. The reduction of turbulence production is mainly associated with the attenuation of the ejection motions. The spatial-correlation of the fluctuating velocity field shows that increasing the polymer concentration increases the spatial coherence of u fluctuations in the streamwise direction while they appear to have the opposite effect in the wall
Shaik, Vaseem A.; Ardekani, Arezoo M.
2017-11-01
In this work we derive the image flow fields for point force singularities placed outside a stationary drop covered with an insoluble, nondiffusing, and incompressible surfactant. We assume the interface to be Newtonian and use the Boussinesq-Scriven constitutive law for the interfacial stress tensor. We use this analytical solution to investigate two different problems. First, we derive the mobility matrix for two drops of arbitrary sizes covered with an incompressible surfactant. In the second example, we calculate the velocity of a swimming microorganism (modeled as a Stokes dipole) outside a drop covered with an incompressible surfactant.
Generation of the vorticity mode by sound in a Bingham plastic
Perelomova, Anna; Wojda, Pawel
2011-10-01
This study investigates interaction between acoustic and non-acoustic modes, such as vorticity mode, in some class of a non-newtonian fluid called Bingham plastic. The instantaneous equations describing interaction between different modes are derived. The attention is paid to the nonlinear effects in the field of intense sound. The resulting equations which describe dynamics of both sound and the vorticity mode apply to both periodic and aperiodic sound of any waveform. They use only instantaneous quantities and do not imply averaging over the sound period. The theory is illustrated by an example of acoustic force of vorticity induced in the field of a Gaussian sound beam. Some unusual peculiarities in both sound and the vorticity induced in its field as compared to a newtonian fluid, are discovered.
Directory of Open Access Journals (Sweden)
M.J. Uddin
2016-09-01
Full Text Available The two-dimensional unsteady laminar free convective heat and mass transfer fluid flow of a non-Newtonian fluid adjacent to a vertical plate has been analyzed numerically. The two parameters Lie group transformation method that transforms the three independent variables into a single variable is used to transform the continuity, the momentum, the energy and the concentration equations into a set of coupled similarity equations. The transformed equations have been solved by the Runge–Kutta–Fehlberg fourth-fifth order numerical method with shooting technique. Numerical calculations were carried out for the various parameters entering into the problem. The dimensionless velocity, temperature and concentration profiles were shown graphically and the skin friction, heat and mass transfer rates were given in tables. It is found that friction factor and heat transfer (mass transfer rate for methanol are higher (lower than those of hydrogen and water vapor. Friction factor decreases while heat and mass transfer rate increase as the Prandtl number increases. Friction (heat and mass transfer rate factor of Newtonian fluid is higher (lower than the dilatant fluid.
Haddout, Soufiane
2016-06-01
In Newtonian mechanics, the non-inertial reference frames is a generalization of Newton's laws to any reference frames. While this approach simplifies some problems, there is often little physical insight into the motion, in particular into the effects of the Coriolis force. The fictitious Coriolis force can be used by anyone in that frame of reference to explain why objects follow curved paths. In this paper, a mathematical solution based on differential equations in non-inertial reference is used to study different types of motion in rotating system. In addition, the experimental data measured on a turntable device, using a video camera in a mechanics laboratory was conducted to compare with mathematical solution in case of parabolically curved, solving non-linear least-squares problems, based on Levenberg-Marquardt's and Gauss-Newton algorithms.
Inverse solutions for a second-grade fluid for porous medium ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
to the free spiraling of electrons and ions about the magnetic lines of force before ... An understanding of the dynamics of fluids in porous media has practical ... viscous term in order to account for the vorticity diffusion caused by the boundary resis- ... The governing equations that describe the flow of a Newtonian fluid is the ...
International Nuclear Information System (INIS)
Berti, E.; Pons, J. A.; Miniutti, G.; Gualtieri, L.; Ferrari, V.
2002-01-01
We compute the overlap function between post-Newtonian (PN) templates and gravitational signals emitted by binary systems composed of one neutron star and one point mass, obtained by a perturbative approach. The calculations are performed for different stellar models and for different detectors, to estimate how effectual and faithful the PN templates are, and to establish whether effects related to the internal structure of neutron stars may possibly be extracted by the matched filtering technique
Comparing Post-Newtonian and Numerical-Relativity Precession Dynamics
Kidder, Lawrence; Ossokine, Sergei; Boyle, Michael; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela
2015-04-01
Binary black-hole systems are expected to be important sources of gravitational waves for upcoming gravitational-wave detectors. If the spins are not colinear with each other or with the orbital angular momentum, these systems exhibit complicated precession dynamics that are imprinted on the gravitational waveform. We develop a new procedure to match the precession dynamics computed by post-Newtonian (PN) theory to those of numerical binary black-hole simulations in full general relativity. For numerical relativity (NR) simulations lasting approximately two precession cycles, we find that the PN and NR predictions for the directions of the orbital angular momentum and the spins agree to better than ~1° with NR during the inspiral, increasing to 5° near merger. Nutation of the orbital plane on the orbital time-scale agrees well between NR and PN, whereas nutation of the spin direction shows qualitatively different behavior in PN and NR. We also examine how the PN equations for precession and orbital-phase evolution converge with PN order, and we quantify the impact of various choices for handling partially known PN terms.
The Mechanism of Graviton Exchange between Bodies, Part II
DEFF Research Database (Denmark)
Javadi, Hossein; Forouzbakhsh, Farshid
2016-01-01
Further to Special Relativity, modern physics includes two great theories which describe universe in a new different way. One of them is Quantum Mechanics which describes elementary particles, atoms and molecules and the other one is General Relativity which has been replaced the Newtonian...... Gravitational Law by space-time curvature. Quantum gravity is a part of quantum mechanics which is expected to combine these two theories, and it describes gravity force according to the principles of quantum mechanics which has not got the desired result, yet. In CPH theory, after reconsidering and analyzing...... the behavior of photon in the gravitational field, a new definition of graviton based on carrying the gravity force is given. By using this definition, graviton exchange mechanism between bodies/objects is described. As the purpose of quantum gravity is describing the force of gravity by using the principles...
In Her Own Words: Women Describe Their Use of Force Resulting in Court-Ordered Intervention.
Larance, Lisa Young; Miller, Susan L
2016-09-13
Although researchers and practitioners have established that men and women use force in their intimate heterosexual relationships for very different reasons, there is a dearth of information regarding the events surrounds women's arrests and subsequent court orders to anti-violence intervention programming. This information is fundamental to improving Criminal Legal System (CLS) and community-partner understanding of and response to intimate partner violence (IPV). The authors meet this need by analyzing 208 women's descriptions of their arrests and subsequent court order to intervention programs for using force. From these, the authors frame nine categorical descriptions of women's actions. The descriptions and categories highlight areas for CLS and community-partners' growing understanding of this complex issue. © The Author(s) 2016.
The influence of pH on gas-liquid mass transfer in non-Newtonian fluids
Li Shaobai; Fan Jungeng; Xu Shuang; Li Rundong; Luan Jingde
2017-01-01
In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa), liquid side mass transfer coefficient (kL), and specific interfacial area (a) were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH). It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liqui...
Spinning gravitating objects in the effective field theory in the post-Newtonian scheme
Energy Technology Data Exchange (ETDEWEB)
Levi, Michele [Université Pierre et Marie Curie-Paris VI, CNRS-UMR 7095,Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris (France); Sorbonne Universités, Institut Lagrange de Paris,98 bis Boulevard Arago, 75014 Paris (France); Steinhoff, Jan [Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute),Am Mühlenberg 1, 14476 Potsdam-Golm (Germany); Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2015-09-30
We introduce a formulation for spinning gravitating objects in the effective field theory in the post-Newtonian scheme in the context of the binary inspiral problem. We aim at an effective action, where all field modes below the orbital scale are integrated out. We spell out the relevant degrees of freedom, in particular the rotational ones, and the associated symmetries. Building on these symmetries, we introduce the minimal coupling part of the point particle action in terms of gauge rotational variables, and construct the spin-induced nonminimal couplings, where we obtain the leading order couplings to all orders in spin. We specify the gauge for the rotational variables, where the unphysical degrees of freedom are eliminated already from the Feynman rules, and all the orbital field modes are integrated out. The equations of motion of the spin can be directly obtained via a proper variation of the action, and Hamiltonians may be straightforwardly derived. We implement this effective field theory for spin to derive all spin dependent potentials up to next-to-leading order to quadratic level in spin, namely up to the third post-Newtonian order for rapidly rotating compact objects. In particular, the proper next-to-leading order spin-squared potential and Hamiltonian for generic compact objects are also derived. For the implementations we use the nonrelativistic gravitational field decomposition, which is found here to eliminate higher-loop Feynman diagrams also in spin dependent sectors, and facilitates derivations. This formulation for spin is thus ideal for treatment of higher order spin dependent sectors.
Newtonian cosmology with a time-varying constant of gravitation
International Nuclear Information System (INIS)
McVittie, G.C.
1978-01-01
Newtonian cosmology is based on the Eulerian equations of fluid mechanics combined with Poisson's equation modified by the introduction of a time-varying G. Spherically symmetric model universes are worked out with instantaneously uniform densities. They are indeterminate unless instantaneous uniformity of the pressure is imposed. When G varies as an inverse power of the time, the models can in some cases be shown to depend on the solution of a second-order differential equation which also occurs in the Friedmann models of general relativity. In Section 3, a method for 'passing through' a singularity of this equation is proposed which entails making four arbitrary mathematical assumptions. When G varies as (time) -1 , models with initially cycloidal motion are possible, each cycle becoming longer as time progresses. Finally, gravitation becomes so weak that the model expands to infinity. Kinetic and potential energies for the whole model are derived from the basic equations; their sum is not constant. (author)
Energy Technology Data Exchange (ETDEWEB)
Jankiewicz, Cz; Sikora, D [Wyzsza Szkola Pedagogiczna, Rzeszow (Poland)
1980-01-01
It is shwon that in the post-Newtonian approximation the gravitational momentum of a system of point particles is equal to the sum of field momentum and inertial momentum only in two classes of coordinate systems. This equality may be treated as a natural condition on a coordinate system in which the generally covariant Einstein equations are to be solved.
Non-Newtonian fluids: Frictional pressure loss prediction for fully-developed flow in straight pipes
1991-10-01
ESDU 91025 discusses models used to describe the rheology of time independent pseudohomogeneous non-Newtonian fluids (power-law, Bingham, Herschel-Bulkley and a generalized model due to Metzner and Reed); they are used to calculate the laminar flow pressure drop (which is independent of pipe roughness in this regime). Values of a generalized Reynolds number are suggested to define transitional and turbulent flow. For turbulent flow in smooth pipes, pressure loss is estimated on the basis of an experimentally determined rheogram using either the Dodge-Metzner or Bowen approach depending on the available measurements. Bowen requires results for at least two pipe diameters. The choice of Dodge-Metzner when data are limited is discussed; seven possible methods are assessed against five sets of experimental results drawn from the literature. No method is given for transitional flow, which it is suggested should be avoided, but the turbulent correlation is recommended because it will yield an overestimate. Suggestions are made for the treatment of roughness effects. Several worked examples illustrate the use of the methods and a flowchart guides the user through the process from experimentally characterizing the behavior of the fluid to determining the pressure drop. A computer program, ESDUpac A9125, is also provided.
Acoustic waveform of continuous bubbling in a non-Newtonian fluid.
Vidal, Valérie; Ichihara, Mie; Ripepe, Maurizio; Kurita, Kei
2009-12-01
We study experimentally the acoustic signal associated with a continuous bubble bursting at the free surface of a non-Newtonian fluid. Due to the fluid rheological properties, the bubble shape is elongated, and, when bursting at the free surface, acts as a resonator. For a given fluid concentration, at constant flow rate, repetitive bubble bursting occurs at the surface. We report a modulation pattern of the acoustic waveform through time. Moreover, we point out the existence of a precursor acoustic signal, recorded on the microphone array, previous to each bursting. The time delay between this precursor and the bursting signal is well correlated with the bursting signal frequency content. Their joint modulation through time is driven by the fluid rheology, which strongly depends on the presence of small satellite bubbles trapped in the fluid due to the yield stress.
Ishimoto, Michi; Davenport, Glen; Wittmann, Michael C.
2017-12-01
Student views of force and motion reflect the personal experiences and physics education of the student. With a different language, culture, and educational system, we expect that Japanese students' views on force and motion might be different from those of American students. The Force and Motion Conceptual Evaluation (FMCE) is an instrument used to probe student views on force and motion. It was designed using research on American students, and, as such, the items might function differently for Japanese students. Preliminary results from a translated version indicated that Japanese students had similar misconceptions as those of American students. In this study, we used item response curves (IRCs) to make more detailed item-by-item comparisons. IRCs show the functioning of individual items across all levels of performance by plotting the proportion of each response as a function of the total score. Most of the IRCs showed very similar patterns on both correct and incorrect responses; however, a few of the plots indicate differences between the populations. The similar patterns indicate that students tend to interact with FMCE items similarly, despite differences in culture, language, and education. We speculate about the possible causes for the differences in some of the IRCs. This report is intended to show how IRCs can be used as a part of the validation process when making comparisons across languages and nationalities. Differences in IRCs can help to pinpoint artifacts of translation, contextual effects because of differences in culture, and perhaps intrinsic differences in student understanding of Newtonian motion.
Directory of Open Access Journals (Sweden)
Michi Ishimoto
2017-11-01
Full Text Available Student views of force and motion reflect the personal experiences and physics education of the student. With a different language, culture, and educational system, we expect that Japanese students’ views on force and motion might be different from those of American students. The Force and Motion Conceptual Evaluation (FMCE is an instrument used to probe student views on force and motion. It was designed using research on American students, and, as such, the items might function differently for Japanese students. Preliminary results from a translated version indicated that Japanese students had similar misconceptions as those of American students. In this study, we used item response curves (IRCs to make more detailed item-by-item comparisons. IRCs show the functioning of individual items across all levels of performance by plotting the proportion of each response as a function of the total score. Most of the IRCs showed very similar patterns on both correct and incorrect responses; however, a few of the plots indicate differences between the populations. The similar patterns indicate that students tend to interact with FMCE items similarly, despite differences in culture, language, and education. We speculate about the possible causes for the differences in some of the IRCs. This report is intended to show how IRCs can be used as a part of the validation process when making comparisons across languages and nationalities. Differences in IRCs can help to pinpoint artifacts of translation, contextual effects because of differences in culture, and perhaps intrinsic differences in student understanding of Newtonian motion.
The Newtonian and MOND dynamical models of NGC 5128: Investigation of the dark matter contribution
Directory of Open Access Journals (Sweden)
Samurović S.
2016-01-01
Full Text Available We study the well-known nearby early-type galaxy NGC 5128 (Centaurus A and use the sample of its globular clusters to analyze its dynamics. We study both Newtonian and MOND models assuming three cases of orbital anisotropies: isotropic case, mildly tangentially anisotropic case and the radially anisotropic case based on the literature. We find that there are two regions with different values of the velocity dispersion: interior to ~ 3 effective radii the value of the velocity dispersion is approximately 150 km s−1 , whereas beyond ~ 3 effective radii its value increases to approximately 190 km s−1 , thus implying the increase of the total cumulative mass which is indicative of the existence of dark matter there in the Newtonian approach: the mass-to-light increases from M/LB = 7 in the inner regions to M/LB = 26 in the outer regions. We found that the Navarro-Frenk-White (NFW model with dark halo provides good description of the dynamics of NGC 5128. Using three MOND models (standard, simple and toy, we find that they all provide good fits to the velocity dispersion of NGC 5128 and that no additional dark component is needed in MOND. [Projekat Ministarstva nauke Republike Srbije, br. 176021: Visible and Invisible Matter in Nearby Galaxies: Theory and Observations
Two-phase flow modeling for low concentration spherical particle motion through a Newtonian fluid
CSIR Research Space (South Africa)
Smit GJF
2010-11-01
Full Text Available the necessity to model the discrete nature of sep- cite this article in press as: G.J.F. Smit et al., Two-phase flow modeling for low concentration spherical particle motion through a ian fluid, Appl. Math. Comput. (2010), doi:10.1016/j.amc.2010.07.055 2... and Ribberin large-scale and long term morphologica Please cite this article in press as: G.J.F. Smit Newtonian fluid, Appl. Math. Comput. (2010), � 2010 Elsevier Inc. All rights reserved. modeling of multiphase flow has increasingly become the subject...
Saleh, Salmiza
2012-01-01
The aim of this study was to assess the effectiveness of Brain Based Teaching Approach in enhancing students' scientific understanding of Newtonian Physics in the context of Form Four Physics instruction. The technique was implemented based on the Brain Based Learning Principles developed by Caine & Caine (1991, 2003). This brain compatible…
International Nuclear Information System (INIS)
Arun, K.G.; Iyer, Bala R; Sathyaprakash, B.S.; Sundararajan, Pranesh A
2005-01-01
We revisit the problem of parameter estimation of gravitational-wave chirp signals from inspiralling nonspinning compact binaries in the light of the recent extension of the post-Newtonian (PN) phasing formula to order (v/c) 7 beyond the leading Newtonian order. We study in detail the implications of higher post-Newtonian orders from 1PN up to 3.5PN in steps of 0.5PN (∼v/c), and examine their convergence. In both initial and advanced detectors the estimation of the chirp mass (M) and symmetric mass ratio (η) improve at higher PN orders but oscillate with every half-a-PN order. In initial LIGO, for a 10M · -10M · binary at a signal-to-noise ratio (SNR) of 10, the improvement in the estimation of M (η) at 3.5PN relative to 2PN is ∼19% (52%). We compare parameter estimation in different detectors and assess their relative performance in two different ways: at a fixed SNR, with the aim of understanding how the bandwidth improves parameter estimation, and for a fixed source, to gauge the importance of sensitivity. Errors in parameter estimation at a fixed SNR are smaller for VIRGO than for both initial and advanced LIGO. This is because of the larger bandwidth over which it observes the signals. However, for sources at a fixed distance it is advanced LIGO that achieves the lowest errors owing to its greater sensitivity. Finally, we compute the amplitude corrections due to the 'frequency-sweep' in the Fourier domain representation of the waveform within the stationary phase approximation and discuss its implication on parameter estimation. We find that the amplitude corrections change the errors in M and η by less than 10% for initial LIGO at a signal-to-noise ratio of 10. Our analysis makes explicit the significance of higher PN order modeling of the inspiralling compact binary on parameter estimation
Williamson, Kathryn Elizabeth
2013-01-01
The topic of Newtonian gravity offers a unique vantage point from which to investigate and encourage conceptual change because it is something with which everyone has daily experience, and because it is taught in two courses that reach a wide variety of students--introductory-level college astronomy ("Astro 101") and physics ("Phys…
Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers
International Nuclear Information System (INIS)
Rosa, S.; Pinho, F.T.
2006-01-01
The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section
Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers
Energy Technology Data Exchange (ETDEWEB)
Rosa, S. [Escola Superior de Tecnologia e Gestao, Instituto Politecnico, Campus de Santa Apolonia, 5301-857 Braganca (Portugal)]. E-mail: srosa@ipb.pt; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho, Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail: fpinho@fe.up.pt
2006-04-15
The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section.
International Nuclear Information System (INIS)
Favata, Marc
2009-01-01
The Christodoulou memory is a nonlinear contribution to the gravitational-wave field that is sourced by the gravitational-wave stress-energy tensor. For quasicircular, inspiralling binaries, the Christodoulou memory produces a growing, nonoscillatory change in the gravitational-wave 'plus' polarization, resulting in the permanent displacement of a pair of freely-falling test masses after the wave has passed. In addition to its nonoscillatory behavior, the Christodoulou memory is interesting because even though it originates from 2.5 post-Newtonian (PN) order multipole interactions, it affects the waveform at leading (Newtonian/quadrupole) order. The memory is also potentially detectable in binary black-hole mergers. While the oscillatory pieces of the gravitational-wave polarizations for quasicircular, inspiralling compact binaries have been computed to 3PN order, the memory contribution to the polarizations has only been calculated to leading order (the next-to-leading order 0.5PN term has previously been shown to vanish). Here the calculation of the memory for quasicircular, inspiralling binaries is extended to 3PN order. While the angular dependence of the memory remains qualitatively unchanged, the PN correction terms tend to reduce the memory's magnitude. Explicit expressions are given for the memory contributions to the plus polarization and the spin-weighted spherical-harmonic modes of the metric and curvature perturbations. Combined with the recent results of Blanchet et al.[Classical Quantum Gravity 25, 165003 (2008)], this completes the waveform polarizations to 3PN order. This paper also discusses: (i) the difficulties in extracting the memory from numerical relativity simulations, (ii) other nonoscillatory effects that enter the waveform polarizations at high PN orders, and (iii) issues concerning the observability of the memory in gravitational-wave detectors.
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
Neuman, Keir C.; Nagy, Attila
2012-01-01
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917
Czech Academy of Sciences Publication Activity Database
Hundertmark-Zaušková, A.; Lukáčová-Medviďová, M.; Nečasová, Šárka
2016-01-01
Roč. 68, č. 1 (2016), s. 193-243 ISSN 0025-5645 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : non-Newtonian fluids * fluid-structure interaction * shear-thinning fluids Subject RIV: BA - General Mathematics Impact factor: 0.592, year: 2016 http://projecteuclid.org/euclid.jmsj/1453731541
International Nuclear Information System (INIS)
Mulcahy, T.M.
1982-05-01
A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related
International Nuclear Information System (INIS)
Sternberg, S.; Santilli, R.M.
1979-01-01
Studies of general covariance and its application to particle motion and continuum mechanics were continued. Also developed was a new method in microlocal analysis which has applications to integral geometry, geometrical quantization and the fine structure of certain types of spectra. The classical aspect of a program was studied by a comprehensive analysis of the integrability conditions for the existence of a Lagrangian or, independently, of a Hamiltonian for the representation of given Newtonian systems with forces nonderivable from a potential, as well as the methods for the computation of these functions from the equations of motion. The study of a classical, complementary, methodological approach to the same class of systems was also initiated. It consists of the representation of systems with forces nonderivable from a potential via a generalization of Hamilton's equations posessing a Lie-admissible algebraic structure. The problem of the quantization of forces nonderivable from a potential was then studied via the use of these complementary methods. The use of the integrability conditions for the existence of a Hamiltonian representation (the inverse problem) yielded, under certain restrictions, the conventional Heisenberg's equations, but expressed in terms of a generalized Hamiltonian structure. The use of the Lie-admissible formulations yielded a generalization of Heisenberg's equations possessing a generalized (Lie-admissible) algebraic structure, but expressed in terms of a conventional Hamiltonian structure. These preliminary studies were then applied to the investigation of the old idea that the strong interactions are of the type considered, local and nonderivable from a potential, as an approximation of expected nonlocal settings. The experimental verification of Pauli's exclusion principle and other basic physical laws for the nuclear and the hadronic structure was proposed. A list of publications is included
Newtonian Version of the Variable Mass Theory of Gravity
Carvalho, J. C.; Lima, J. A. S.
1990-11-01
RESUMEN. Se presenta una versi6n Newtoniana de los modelos cosmol6gicos espacialmente e isotr6picos con masa variable. La influencia de la variaci6n de masa en la evoluci6n de la funci6n de escala est establecida para el caso de un Universo lieno de polvo bajo Ia suposici6n de que esta variaci6n es un efecto estrictamente cosmol6jico. Se muestra que el hiperb6lico, parab6lico 0 el#ptico dcl movimiento de puede ser modificado a lo larjo de la expansi6n. ABSTRACT. This paper presents a Newtonian version of the spatially homojeneous and isotropic cosmolojical models with variable mass. The influence of the mass variation on the evolution of the scale function is established for the case of a dust-filled Universe under the assumption that this variation is a strict cosmolojical effect. It is shown that the hyperbolic, parabolic or elliptic character of the fluid motion can be modified alonj the expansion. Keq : COSMOLOGY
Principles and applications of force spectroscopy using atomic force microscopy
Energy Technology Data Exchange (ETDEWEB)
Kim, Young Kyu; Kim, Woong; Park, Joon Won [Dept. of Chemistry, Pohang University of Science and Technology, Pohang (Korea, Republic of)
2016-12-15
Single-molecule force spectroscopy is a powerful technique for addressing single molecules. Unseen structures and dynamics of molecules have been elucidated using force spectroscopy. Atomic force microscope (AFM)-based force spectroscopy studies have provided picoNewton force resolution, subnanometer spatial resolution, stiffness of substrates, elasticity of polymers, and thermodynamics and kinetics of single-molecular interactions. In addition, AFM has enabled mapping the distribution of individual molecules in situ, and the quantification of single molecules has been made possible without modification or labeling. In this review, we describe the basic principles, sample preparation, data analysis, and applications of AFM-based force spectroscopy and its future.
Numerical solution of pipe flow problems for generalized Newtonian fluids
International Nuclear Information System (INIS)
Samuelsson, K.
1993-01-01
In this work we study the stationary laminar flow of incompressible generalized Newtonian fluids in a pipe with constant arbitrary cross-section. The resulting nonlinear boundary value problems can be written in a variational formulation and solved using finite elements and the augmented Lagrangian method. The solution of the boundary value problem is obtained by finding a saddle point of the augmented Lagrangian. In the algorithm the nonlinear part of the equations is treated locally and the solution is obtained by iteration between this nonlinear problem and a global linear problem. For the solution of the linear problem we use the SSOR preconditioned conjugate gradient method. The approximating problem is solved on a sequence of adaptively refined grids. A scheme for adjusting the value of the crucial penalization parameter of the augmented Lagrangian is proposed. Applications to pipe flow and a problem from the theory of capacities are given. (author) (34 refs.)
Necessity of dark matter in modified Newtonian dynamics within galactic scales.
Ferreras, Ignacio; Sakellariadou, Mairi; Yusaf, Muhammad Furqaan
2008-01-25
To test modified Newtonian dynamics (MOND) on galactic scales, we study six strong gravitational lensing early-type galaxies from the CASTLES sample. Comparing the total mass (from lensing) with the stellar mass content (from a comparison of photometry and stellar population synthesis), we conclude that strong gravitational lensing on galactic scales requires a significant amount of dark matter, even within MOND. On such scales a 2 eV neutrino cannot explain the excess of matter in contrast with recent claims to explain the lensing data of the bullet cluster. The presence of dark matter is detected in regions with a higher acceleration than the characteristic MOND scale of approximately 10(-10) m/s(2). This is a serious challenge to MOND unless lensing is qualitatively different [possibly to be developed within a covariant, such as Tensor-Vector-Scalar (TeVeS), theory].
Corten-Gualtieri, Pascale; Ritter, Christian; Plumat, Jim; Keunings, Roland; Lebrun, Marcel; Raucent, Benoit
2016-01-01
Most students enter their first university physics course with a system of beliefs and intuitions which are often inconsistent with the Newtonian frame of reference. This article presents an experiment of collaborative learning aiming at helping first-year students in an engineering programme to transition from their naïve intuition about dynamics…
Angular momentum and torque described with the complex octonion
International Nuclear Information System (INIS)
Weng, Zi-Hua
2014-01-01
The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of electromagnetic field and of gravitational field can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory
Perturbed Newtonian description of the Lemaître model with non-negligible pressure
International Nuclear Information System (INIS)
Yamamoto, Kazuhiro; Marra, Valerio; Mukhanov, Viatcheslav; Sasaki, Misao
2016-01-01
We study the validity of the Newtonian description of cosmological perturbations using the Lemaître model, an exact spherically symmetric solution of Einstein's equation. This problem has been investigated in the past for the case of a dust fluid. Here, we extend the previous analysis to the more general case of a fluid with non-negligible pressure, and, for the numerical examples, we consider the case of radiation (P=ρ/3). We find that, even when the density contrast has a nonlinear amplitude, the Newtonian description of the cosmological perturbations using the gravitational potential ψ and the curvature potential φ is valid as long as we consider sub-horizon inhomogeneities. However, the relation ψ+φ=O(φ 2 )—which holds for the case of a dust fluid—is not valid for a relativistic fluid, and an effective anisotropic stress is generated. This demonstrates the usefulness of the Lemaître model which allows us to study in an exact nonlinear fashion the onset of anisotropic stress in fluids with non-negligible pressure. We show that this happens when the characteristic scale of the inhomogeneity is smaller than the sound horizon and that the deviation is caused by the nonlinear effect of the fluid's fast motion. We also find that ψ+φ= [O(φ 2 ),O(c s 2φ δ)] for an inhomogeneity with density contrast δ whose characteristic scale is smaller than the sound horizon, unless w is close to −1, where w and c s are the equation of state parameter and the sound speed of the fluid, respectively. On the other hand, we expect ψ+φ=O(φ 2 ) to hold for an inhomogeneity whose characteristic scale is larger than the sound horizon, unless the amplitude of the inhomogeneity is large and w is close to −1
International Nuclear Information System (INIS)
Lamb, W.E. Jr.
1981-12-01
This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories
Roatta , Luca
2017-01-01
Assuming that space and time can only have discrete values, it is shown how deformed space and time cause gravitational attraction, whose law in a discrete context is slightly different from the Newtonian, but to it exactly coincident at large distance. This difference is directly connected to the existence of black holes, which result to have the structure of a hollow sphere.
More than six hundred new families of Newtonian periodic planar collisionless three-body orbits
Li, XiaoMing; Liao, ShiJun
2017-12-01
The famous three-body problem can be traced back to Isaac Newton in the 1680s. In the 300 years since this "three-body problem" was first recognized, only three families of periodic solutions had been found, until 2013 when Šuvakov and Dmitrašinović [Phys. Rev. Lett. 110, 114301 (2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new families of Newtonian planar three-body problem with equal mass and zero angular momentum. In this paper, we numerically obtain 695 families of Newtonian periodic planar collisionless orbits of three-body system with equal mass and zero angular momentum in case of initial conditions with isosceles collinear configuration, including the well-known figure-eight family found by Moore in 1993, the 11 families found by Šuvakov and Dmitrašinović in 2013, and more than 600 new families that have never been reported, to the best of our knowledge. With the definition of the average period T = T/L f, where L f is the length of the so-called "free group element", these 695 families suggest that there should exist the quasi Kepler's third law T* ≈ 2:433 ± 0:075 for the considered case, where T ≈ = T | E|3/2 is the scale-invariant average period and E is its total kinetic and potential energy, respectively. The movies of these 695 periodic orbits in the real space and the corresponding close curves on the "shape sphere" can be found via the website: http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.
Directory of Open Access Journals (Sweden)
M. Das
2015-12-01
Full Text Available The influence of Newtonian heating on heat and mass transfer in unsteady hydromagnetic flow of a Casson fluid past a vertical plate in the presence of thermal radiation and chemical reaction is studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behavior. The fluid flow is induced due to periodic oscillations of the plate along its length and a uniform transverse magnetic field is applied in a direction which is normal to the direction of fluid flow. The partial differential equations governing the flow, heat, and mass transfer are transformed to non-dimensional form using suitable non-dimensional variables which are then solved analytically by using Laplace transform technique. The numerical values of the fluid velocity, fluid temperature, and species concentration are depicted graphically whereas the values of skin-friction, Nusselt number, and Sherwood number are presented in tabular form. It is noticed that the fluid velocity and temperature decrease with increasing values of Casson parameter while concentration decreases with increasing values of chemical reaction parameter and Schmidt number. Such a fluid flow model has several industrial and medical applications such as in glass manufacturing, paper production, purification of crude oil and study of blood flow in the cardiovascular system.
Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali
2017-11-01
Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.
Computational Enzymology, a ReaxFF approach
DEFF Research Database (Denmark)
Corozzi, Alessandro
This PhD project eassay is about the development of a new method to improve our understanding of enzyme catalysis with atomistic details. Currently the theory able to describe chemical systems and their reactivity is quantum mechanics (QM): electronic structure methods that use approximations of QM...... there are ordinary classical models - the molecular mechanics (MM) force-fields - that use newtonian mechanics to describe molecular systems. At this level it is possible to include the entire enzyme system still having light equations but renouncing to an easy modeling of chemical transformation during...... the simulation time. In short: on one hand we have accurate QM methods able to describe reactivity but limited in the size of the system to describe, while on the other hand we have molecular mechanics and ordinary force-fields that are virtually unlimited in size but unable to straightforwardly describe...
Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction
Hayat, T.; Ullah, Ikram; Ahmad, B.; Alsaedi, A.
Objective of this article is to investigate the magnetohydrodynamic (MHD) boundary layer stretched flow of Carreau fluid in the presence of Newtonian heating. Sheet is presumed permeable. Analysis is studied in the presence of chemical reaction and thermal radiation. Mathematical formulation is established by using the boundary layer approximations. The resultant nonlinear flow analysis is computed for the convergent solutions. Interval of convergence via numerical data and plots are obtained and verified. Impact of numerous pertinent variables on the velocity, temperature and concentration is outlined. Numerical data for surface drag coefficient, surface heat transfer (local Nusselt number) and mass transfer (local Sherwood number) is executed and inspected. Comparison of skin friction coefficient in limiting case is made for the verification of current derived solutions.
SLOWLY ROTATING GAS-RICH GALAXIES IN MODIFIED NEWTONIAN DYNAMICS (MOND)
International Nuclear Information System (INIS)
Sánchez-Salcedo, F. J.; Martínez-García, E. E.; Hidalgo-Gámez, A. M.
2013-01-01
We have carried out a search for gas-rich dwarf galaxies that have lower rotation velocities in their outskirts than MOdified Newtonian Dynamics (MOND) predicts, so that the amplitude of their rotation curves cannot be fitted by arbitrarily increasing the mass-to-light ratio of the stellar component or by assuming additional undetected matter. With presently available data, the gas-rich galaxies UGC 4173, Holmberg II, ESO 245-G05, NGC 4861, and ESO 364-G029 deviate most from MOND predictions and, thereby, provide a sample of promising targets in testing the MOND framework. In the case of Holmberg II and NGC 4861, we find that their rotation curves are probably inconsistent with MOND, unless their inclinations and distances differ significantly from the nominal ones. The galaxy ESO 364-G029 is a promising target because its baryonic mass and rotation curve are similar to Holmberg II but presents a higher inclination. Deeper photometric and H I observations of ESO 364-G029, together with further decreasing systematic uncertainties, may provide a strong test to MOND.
Study of microvascular non-Newtonian blood flow modulated by electroosmosis.
Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh
2018-05-01
An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.
Hydromagnetic nonlinear thermally radiative nanoliquid flow with Newtonian heat and mass conditions
Directory of Open Access Journals (Sweden)
Muhammad Ijaz Khan
Full Text Available This paper communicates the analysis of MHD three-dimensional flow of Jeffrey nanoliquid over a stretchable surface. Flow due to a bidirectional surface is considered. Heat and mass transfer subject to volume fraction of nanoparticles, heat generation and nonlinear solar radiation are examined. Newtonian heat and mass transportation conditions are employed at surface. Concept of boundary layer is utilized to developed the mathematical problem. The boundary value problem is dictated by ten physical parameters: Deborah number, Hartman number, ratio of stretching rates, thermophoretic parameter, Brownian motion parameter, Prandtl number, temperature ratio parameter, conjugate heat and mass parameters and Lewis number. Convergent solutions are obtained using homotopic procedure. Convergence zone for obtained results is explicitly identified. The obtained solutions are interpreted physically. Keywords: Hydromagnetic flow, Viscoelastic nanofluid, Thermophoretic and Brownian moment, Nonlinear thermal radiation, Heat generation
Parameterized post-Newtonian coefficients for Brans-Dicke gravity with d + 1 dimensions
Energy Technology Data Exchange (ETDEWEB)
Klimek, Matthew D, E-mail: klimek@physics.rutgers.ed [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)
2009-03-21
We present calculations of post-Newtonian parameters for Brans-Dicke tensor-scalar gravity in an arbitrary number of compact extra dimensions in both the Jordan and Einstein conformal frames. We find that the parameter gamma, which measures the amount of spacetime curvature per unit mass, becomes a function of omega, the coefficient of the scalar kinetic term in the Brans-Dicke Lagrangian. Experiment has placed strong constraints on gamma which require that omega becomes negative in the Jordan frame for any number of extra dimensions, highlighting that this formulation is not physical. We also confirm the well-known result that a compact extra dimension can be equivalently viewed as a massless scalar 'dilaton.' In the Einstein frame, we find that the behavior of gamma as constrained by experiment replicates that which is predicted by string theory.
Jauhiainen, Johanna; Koponen, Ismo T.; Lavonen, Jari
2006-01-01
Students' conceptual understanding of Newton's third law has been the subject of numerous studies. These studies have often pointed out the importance of addressing the concept of interaction in teaching Newtonian mechanics. In this study, teachers were interviewed in order to examine how they understand interaction and use it in their…
Physics of non-Newtonian fluids and interdisciplinary relations (biology and criminology)
Holubova, R.
2018-03-01
The aim of the paper is the presentation of an interdisciplinary topic that allows applying content knowledge in physics, mathematics and biology in real life environment. Students use to play games and view crime scenes but in common they have little knowledge about the science used during crime scene investigation. In this paper the science background of blood spatter analysis is presented—the physics of non-Newtonian fluids, the biology of blood and mathematics—the measurement and calculation of the angle of inpact, the relationship between height and spatter diameter. This topic was choosen according to the analysis of interviews with secondary and high school learners realized at four schools in Moravia, Czech Republic. The topic can be taught at secondary schools so as at a higher level at high schools. Hands-on activities are included. The teaching strategy supports group work. The appropriateness and reasonableness of the topic was checked in the real teaching process and the activities have had a positive feedback.
Interplay between inertial and non-Newtonian effects on the flow in weakly modulated channel
International Nuclear Information System (INIS)
Abu-Ramadan, E.; Khayat, R.E.
2002-01-01
The flow inside a spatially modulated channel is examined for shear-thinning and shear-thickening fluids. The modulation amplitude is assumed to be small. A regular perturbation expansion of the flow field is used, coupled to a variable-step finite-difference scheme, to solve the problem. Since this method is intended to provide a fast and accurate alternative to conventional methods in the limit of small modulation amplitude, establishing the accuracy of the solution is critical. Numerical accuracy and convergence will be assessed, therefore. The influence of the wall geometry, inertia and non-Newtonian effects are investigated systematically. In particular, the influence of the flow and fluid parameters is examined on the conditions for the onset of separation. (author)
The influence of pH on gas-liquid mass transfer in non-Newtonian fluids
Directory of Open Access Journals (Sweden)
Li Shaobai
2017-01-01
Full Text Available In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa, liquid side mass transfer coefficient (kL, and specific interfacial area (a were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH. It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liquid increasing. In the case of pH 7 was attributed to the decomposition of the Xanthan molecular structure by the hydroxyl of NaOH.
Force 2025 and Beyond Strategic Force Design Analytic Model
2017-01-12
focused thinking , functional hierarchy, task capability matching 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT U 18. NUMBER OF...describe and evaluate current organizational designs in terms of Force Employment and Force Design using the model to offer recommendations and analysis...developed to illuminate the current organizational design structure to better understand how the network of BCTs and enablers function in today’s steady
International Nuclear Information System (INIS)
Blanchet, Luc; Faye, Guillaume; Iyer, Bala R; Sinha, Siddhartha
2008-01-01
The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) to provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) to provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contributions of hereditary terms (tails, tails-of-tails and memory integrals) up to 3PN order. The end results are given for both the complete plus and cross polarizations and the separate spin-weighted spherical harmonic modes
Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em
2018-06-01
We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.
International Nuclear Information System (INIS)
Li Feng-Chen; Cai Wei-Hua; Zhang Hong-Na; Wang Yue
2012-01-01
Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FHIT of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case
Towards unification of the four fundamental forces
International Nuclear Information System (INIS)
Sivaram, C.
1987-01-01
An account of the principles involved and the progress made in understanding of four fundamental forces of nature, namely, gravitational force, electromagnetic force, electroweak force and electrostrong force is given. The attempts being made to unify these forces are also described. (M.G.B.)
El-Amin, Mohamed
2011-05-14
In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.
Perturbed Newtonian description of the Lemaître model with non-negligible pressure
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Kazuhiro [Department of Physical Sciences, Hiroshima University, Higashi-hiroshima, Kagamiyama 1-3-1, 739-8526 (Japan); Marra, Valerio [Departamento de Física, Universidade Federal do Espírito Santo, Av. F. Ferrari, 514, 29075-910, Vitória, ES (Brazil); Mukhanov, Viatcheslav [Theoretical Physics, Ludwig Maxmillians University, Theresienstr. 37, 80333 Munich (Germany); Sasaki, Misao, E-mail: kazuhiro@hiroshima-u.ac.jp, E-mail: valerio.marra@me.com, E-mail: Viatcheslav.Mukhanov@physik.lmu.de, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502 (Japan)
2016-03-01
We study the validity of the Newtonian description of cosmological perturbations using the Lemaître model, an exact spherically symmetric solution of Einstein's equation. This problem has been investigated in the past for the case of a dust fluid. Here, we extend the previous analysis to the more general case of a fluid with non-negligible pressure, and, for the numerical examples, we consider the case of radiation (P=ρ/3). We find that, even when the density contrast has a nonlinear amplitude, the Newtonian description of the cosmological perturbations using the gravitational potential ψ and the curvature potential φ is valid as long as we consider sub-horizon inhomogeneities. However, the relation ψ+φ=O(φ{sup 2})—which holds for the case of a dust fluid—is not valid for a relativistic fluid, and an effective anisotropic stress is generated. This demonstrates the usefulness of the Lemaître model which allows us to study in an exact nonlinear fashion the onset of anisotropic stress in fluids with non-negligible pressure. We show that this happens when the characteristic scale of the inhomogeneity is smaller than the sound horizon and that the deviation is caused by the nonlinear effect of the fluid's fast motion. We also find that ψ+φ= [O(φ{sup 2}),O(c{sub s}{sup 2φ} δ)] for an inhomogeneity with density contrast δ whose characteristic scale is smaller than the sound horizon, unless w is close to −1, where w and c{sub s} are the equation of state parameter and the sound speed of the fluid, respectively. On the other hand, we expect ψ+φ=O(φ{sup 2}) to hold for an inhomogeneity whose characteristic scale is larger than the sound horizon, unless the amplitude of the inhomogeneity is large and w is close to −1.
Clark, Douglas B.; Nelson, Brian C.; Chang, Hsin-Yi; Martinez-Garza, Mario; Slack, Kent; D'Angelo, Cynthia M.
2011-01-01
This study investigates the potential of a digital game that overlays popular game-play mechanics with formal physics representations and terminology to support explicit learning and exploration of Newtonian mechanics. The analysis compares test data, survey data, and observational data collected during implementations in Taiwan and the United…
Energy Technology Data Exchange (ETDEWEB)
Briscese, Fabio [Northumbria University, Department of Mathematics, Physics and Electrical Engineering, Newcastle upon Tyne (United Kingdom); Citta Universitaria, Istituto Nazionale di Alta Matematica Francesco Severi, Gruppo Nazionale di Fisica Matematica, Rome (Italy)
2017-09-15
In this paper it is argued how the dynamics of the classical Newtonian N-body system can be described in terms of the Schroedinger-Poisson equations in the large N limit. This result is based on the stochastic quantization introduced by Nelson, and on the Calogero conjecture. According to the Calogero conjecture, the emerging effective Planck constant is computed in terms of the parameters of the N-body system as ℎ ∝ M{sup 5/3}G{sup 1/2}(N/ left angle ρ right angle){sup 1/6}, where is G the gravitational constant, N and M are the number and the mass of the bodies, and left angle ρ right angle is their average density. The relevance of this result in the context of large scale structure formation is discussed. In particular, this finding gives a further argument in support of the validity of the Schroedinger method as numerical double of the N-body simulations of dark matter dynamics at large cosmological scales. (orig.)
Hawking temperature: an elementary approach based on Newtonian mechanics and quantum theory
Pinochet, Jorge
2016-01-01
In 1974, the British physicist Stephen Hawking discovered that black holes have a characteristic temperature and are therefore capable of emitting radiation. Given the scientific importance of this discovery, there is a profuse literature on the subject. Nevertheless, the available literature ends up being either too simple, which does not convey the true physical significance of the issue, or too technical, which excludes an ample segment of the audience interested in science, such as physics teachers and their students. The present article seeks to remedy this shortcoming. It develops a simple and plausible argument that provides insight into the fundamental aspects of Hawking’s discovery, which leads to an approximate equation for the so-called Hawking temperature. The exposition is mainly intended for physics teachers and their students, and it only requires elementary algebra, as well as basic notions of Newtonian mechanics and quantum theory.
DEFF Research Database (Denmark)
Maffiuletti, Nicola A; Aagaard, Per; Blazevich, Anthony J
2016-01-01
The evaluation of rate of force development during rapid contractions has recently become quite popular for characterising explosive strength of athletes, elderly individuals and patients. The main aims of this narrative review are to describe the neuromuscular determinants of rate of force devel...
Bechert, M.; Scheid, B.
2017-11-01
The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
Energy Technology Data Exchange (ETDEWEB)
Leishear, R.
2009-09-09
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels.
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
International Nuclear Information System (INIS)
Leishear, R.
2009-01-01
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels
Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.
Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L
2008-10-01
In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.
International Nuclear Information System (INIS)
Lamb, W.E. Jr.
1981-12-01
This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories
Force and Compliance Measurements on Living Cells Using Atomic Force Microscopy (AFM
Directory of Open Access Journals (Sweden)
Wojcikiewicz Ewa P.
2004-01-01
Full Text Available We describe the use of atomic force microscopy (AFM in studies of cell adhesion and cell compliance. Our studies use the interaction between leukocyte function associated antigen-1 (LFA-1/intercellular adhesion molecule-1 (ICAM-1 as a model system. The forces required to unbind a single LFA-1/ICAM-1 bond were measured at different loading rates. This data was used to determine the dynamic strength of the LFA-1/ICAM-1 complex and characterize the activation potential that this complex overcomes during its breakage. Force measurements acquired at the multiple- bond level provided insight about the mechanism of cell adhesion. In addition, the AFM was used as a microindenter to determine the mechanical properties of cells. The applications of these methods are described using data from a previous study.
Intermolecular and surface forces
Israelachvili, Jacob N
2011-01-01
This reference describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition.· starts fr
Torun, H; Finkler, O; Degertekin, F L
2009-07-01
The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.
Motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates
Energy Technology Data Exchange (ETDEWEB)
Abd Elkhalek, M M [Nuclear Research Center-Atomic Energy Authority, Cairo (Egypt)
1997-12-31
The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformation and solved numerically by using Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effect of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically. 4 figs.
Motion of Charged Suspended Particle in a Non-Newtonian Fluid between Two Long Parallel Plated
International Nuclear Information System (INIS)
Abd-El Khalek, M.M.
1998-01-01
The motion of charged suspended particle in a non-Newtonian fluid between two long parallel plates is discussed. The equation of motion of a suspended particle was suggested by Closkin. The equations of motion are reduced to ordinary differential equations by similarity transformations and solved numerically by using the Runge-Kutta method. The trajectories of particles are calculated by integrating the equation of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The effects of solid particles on flow properties are discussed. Some typical results for both fluid and particle phases and density distributions of the particles are presented graphically
Mapping Electrostatic Forces Using Higher Harmonics Tapping Mode Atomic Force Microscopy in Liquid
van Noort, S.J.T.; Willemsen, O.H.; van der Werf, Kees; de Grooth, B.G.; Greve, Jan
1999-01-01
A simple model of a damped, harmonic oscillator is used to describe the motion of an atomic force microscope cantilever tapping in fluid. By use of experimentally obtained parameters, excellent agreement is found between theory and experimental results. From the model we estimate that the force
A Newtonian Development of the Mean-Axis Dynamics with Example and Simulation
Keyes, Sally Ann
Mean-axis models of flight dynamics for flexible aircraft are being utilized more frequently in dynamics and controls research. The mean-axis equations of motion are traditionally developed with Lagrangian mechanics and are typically simplified using assumptions regarding the effects of elastic deformation. Although widely accepted in literature, the formulation and assumptions may be confusing to a user outside of the flight dynamics field. In this thesis, the equations of motion are derived from first principles utilizing Newtonian mechanics. Using this framework, the formulation offers new insight into the equations of motion and explanations for the assumptions. A three-lumped-mass idealization of a rolling flexible aircraft is presented as an example of the mean-axis equations of motion. The example is used to investigate the effects of common simplifying assumptions. The equations of motion are developed without any such assumptions, and simulation results allow for a comparison of the exact and simplified dynamics.
What do gas-rich galaxies actually tell us about modified Newtonian dynamics?
Foreman, Simon; Scott, Douglas
2012-04-06
It has recently been claimed that measurements of the baryonic Tully-Fisher relation (BTFR), a power-law relationship between the observed baryonic masses and outer rotation velocities of galaxies, support the predictions of modified Newtonian dynamics for the slope and scatter in the relation, while challenging the cold dark matter (CDM) paradigm. We investigate these claims, and find that (1) the scatter in the data used to determine the BTFR is in conflict with observational uncertainties on the data, (2) these data do not make strong distinctions regarding the best-fit BTFR parameters, (3) the literature contains a wide variety of measurements of the BTFR, many of which are discrepant with the recent results, and (4) the claimed CDM "prediction" for the BTFR is a gross oversimplification of the complex galaxy-scale physics involved. We conclude that the BTFR is currently untrustworthy as a test of CDM. © 2012 American Physical Society
Gholson, Barry; Witherspoon, Amy; Morgan, Brent; Brittingham, Joshua K.; Coles, Robert; Graesser, Arthur C.; Sullins, Jeremiah; Craig, Scotty D.
2009-01-01
This paper tested the deep-level reasoning questions effect in the domains of computer literacy between eighth and tenth graders and Newtonian physics for ninth and eleventh graders. This effect claims that learning is facilitated when the materials are organized around questions that invite deep-reasoning. The literature indicates that vicarious…
Vasanth, K. R.; Hanumagowda, B. N.; Santhosh Kumar, J.
2018-04-01
Squeeze film investigations focus upon film pressure, load bearing quantity and the minimum thickness of film. The combined effect of pressure viscous dependent and non- Newtonian couple stress in porous annular plate is studied. The modified equations of one dimensional pressure, load bearing quantity, non dimensional squeeze time are obtained. The conclusions obtained in the study are found to be in very good agreement compared to the previous results which are published. The load carrying capacity is increased due to the variation in the pressure dependent viscosity and also due to the couple stress effect. Finally this results in change in the squeeze film timings.
The role of spatial topology in a toy model of classical electrodynamics in (1+1) dimensions
International Nuclear Information System (INIS)
Boozer, A.D.
2010-01-01
We discuss the role of spatial topology in a toy model of classical electrodynamics in (1+1) dimensions. The model describes a collection of Newtonian point particles coupled to a pair of scalar fields E(t,x) and B(t,x), which mediate forces between the particles and support freely propagating radiation. We formulate the model on both a line and a circle, and show that the behavior of the model strongly depends on the choice of spatial topology.
28 CFR 552.21 - Types of force.
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Types of force. 552.21 Section 552.21... Force and Application of Restraints on Inmates § 552.21 Types of force. (a) Immediate use of force. Staff may immediately use force and/or apply restraints when the behavior described in § 552.20...
Scattering of accelerated wave packets
Longhi, S.; Horsley, S. A. R.; Della Valle, G.
2018-03-01
Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.
Mertz, Laura; Docherty, Carrie
2012-12-01
Ballet technique classes are designed to train dancers symmetrically, but they may actually create a lateral bias. It is unknown whether dancers in general are functionally asymmetrical, or how an individual dancer's perceived imbalance between legs might manifest itself. The purpose of this study was to examine ballet dancers' lateral preference by analyzing their postural stability and ground reaction forces in fifth position when landing from dance-specific jumps. Thirty university ballet majors volunteered to participate in this study. The subjects wore their own ballet technique shoes and performed fundamental ballet jumps out of fifth position on a force plate. The force plate recorded center of pressure (COP) and ground reaction force (GRF) data. Each subject completed a laterality questionnaire that determined his or her preferred landing leg for ballet jumps, self-identified stronger leg, and self-identified leg with better balance. All statistical comparisons were made between the leg indicated on the laterality questionnaire and the other leg (i.e., if the dancer's response to a question was "left," the comparison was made with the left leg as the "preferred" leg and the right leg as the "non-preferred leg"). No significant differences were identified between the limbs in any of the analyses conducted (all statistical comparisons produced p values > 0.05). The results of this study indicate that a dancer's preferential use of one limb over the other has no bearing on GRFs or balance ability after landing jumps in ballet. Similarly, dancers' opinions of their leg characteristics (such as one leg being stronger than the other) seem not to correlate with the dancers' actual ability to absorb GRFs or to balance when landing from ballet jumps.
Azese, Martin Ndi
2018-02-01
This article presents a rigorous calculation involving velocity slip of Newtonian fluid where we analyze and solve the unsteady Navier-Stokes equation with emphasis on its rheological implication. The goal of which is to model a simple yet effective non-invasive way of quantifying and characterizing slippage. Indeed this contrasts with previous techniques that exhibit inherent limitations whereby injecting foreign objects usually alter the flow. This problem is built on the Couette rheological flow system such that μ-Newton force and μ-stress are captured and processed to obtain wall slip. Our model leads to a linear partial differential equation and upon enforcing linear-Navier slip boundary conditions (BC) yields inhomogeneous and unsteady "Robin-type" BC. A dimensional analysis reveals salient dimensionless parameters: Roshko, Strouhal, and Reynolds while highlighting slip-numbers from BC. We also solve the slip-free case to corroborate and validate our results. Several graphs are generated showing slip effects, particularly, studying how slip-numbers, a key input, differentiate themselves to the outputs. We also confirm this in a graphical fashion by presenting the flow profile across channel width, velocity, and stress at both walls. A perturbation scheme is introduced to calculate long-time behavior when the system seats for long. More importantly, in the end, we justify the existence of a reverse mechanism, where an inverse transformation like Fourier transform uses the output data to retrieve slip-numbers and slip law, thus quantifying and characterizing slip. Therefore, we not only substantiate our analysis, but we also justify our claim, measurement and characterization, and theorize realizability of our proposition.
International Nuclear Information System (INIS)
Holinde, K.
1990-01-01
In this paper the present status of the meson theory of nuclear forces is reviewed. After some introductory remarks about the relevance of the meson exchange concept in the era of QCD and the empirical features of the NN interaction, the exciting history of nuclear forces is briefly outlined. In the main part, the author gives the basic physical ideas and sketch the derivation of the one-boson-exchange model of the nuclear force, in the Feynman approach. Secondly we describe, in a qualitative way, various necessary extensions, leading to the Bonn model of the N interaction. Finally, points to some interesting pen questions connected with the extended quark structure of the hadrons, which are topics of current research activity
Development of a new continuous process for mixing of complex non-Newtonian fluids
Migliozzi, Simona; Mazzei, Luca; Sochon, Bob; Angeli, Panagiota; Thames Multiphase Team; Coral Project Collaboration
2017-11-01
Design of new continuous mixing operations poses many challenges, especially when dealing with highly viscous non-Newtonian fluids. Knowledge of complex rheological behaviour of the working mixture is crucial for development of an efficient process. In this work, we investigate the mixing performance of two different static mixers and the effects of the mixture rheology on the manufacturing of novel non-aqueous-based oral care products using experimental and computational fluid dynamic methods. The two liquid phases employed, i.e. a carbomer suspension in polyethylene glycol and glycerol, start to form a gel when they mix. We studied the structure evolution of the liquid mixture using time-resolved rheometry and we obtained viscosity rheograms at different phase ratios from pressure drop measurements in a customized mini-channel. The numerical results and rheological model were validated with experimental measurements carried out in a specifically designed setup. EPSRS-CORAL.
Geophysical considerations in the fifth force controversy
International Nuclear Information System (INIS)
Stacey, F.D.; Tuck, G.J.; Moore, G.I.
1988-01-01
If there are non-Newtonian components of gravity, now popularly dubbed the ''fifth force,'' as several observations indicate, then the favored representation is in terms of Yukawa potentials with ranges that make them accessible to geophysical observation. We must now consider at least two Yukawa terms of opposite signs, so that the observed effects may be subtle. Measurements in different crustal structures (continental mines and boreholes, ocean and ice sheets) could help to resolve the details, but it is possible for fortuitous cancellations to invite misleading conclusions where measurements are made in a layer that is underlain by a much denser layer. However, with currently favored parameters of a pair of Yukawa terms both ice and ocean measurements should give effects of the sign expected from mine measurements, but with amplitudes reduced by partial cancellation due to the layered structures. We also reexamine conventional interpretations of the mine gravity anomalies and reassert that uncertainties in density estimates must be discounted. A new inversion of the broad scale gravity anomalies in the area of the north Queensland mines that we have used confirms the earlier conclusion that the mine gradient anomaly is not a consequence of a regional free-air gradient anomaly, although this conclusion is not as secure as the dismissal of density error
International Nuclear Information System (INIS)
Goepfert, A.
1994-01-01
This thesis develops a new model, and related numerical methods, to describe classical time-dependent many-body systems interacting through central forces, spin-orbit forces and spin-spin forces. The model is based on two-particle interactions. The two-body forces consist of attractive and repulsive parts. In this model the investigated multi-particle systems are self-bound. Also the total potential of the whole ensemble is derived from the two-particle potential and is not imposed 'from outside'. Each particle has the three degrees of freedom of its centre-of-mass motion and the spin degree of freedom. The model allows for the particles to be either charged or uncharged. Furthermore, each particle has an angular momentum, an intrinsic spin, and a magnetic dipole moment. Through the electromagnetic forces between these charges and moments there arise dynamical couplings between them. The internal interactions between the charges and moments are well described by electromagnetic coupling mechanisms. In fact, compared to conventional classical molecular dynamics calculations in van der Waals clusters, which have no spin degrees of freedom, or for Heisenberg spin Systems, which have no orbital degrees of freedom, the model presented here contains both types of degrees of freedom with a highly non-trivial coupling. The model allows to study the fundamental effects resulting from the dynamical coupling of the spin and the orbital-motion sub-systems. In particular, the dynamics of the particle mass points show a behaviour basically different from the one of particles in a potential with only central forces. Furthermore, a special type of quenching procedure was invented, which tends to drive the multi-particle Systems into states with highly periodic, non-ergodic behaviour. Application of the model to cluster simulations has provided evidence that the model can also be used to investigate items like solid-to-liquid phase transitions (melting), isomerism and specific heat
The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids
Hu, Bin; Kieweg, Sarah L.
2012-01-01
Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability. PMID:23687391
Emergent Newtonian dynamics and the geometric origin of mass
International Nuclear Information System (INIS)
D’Alessio, Luca; Polkovnikov, Anatoli
2014-01-01
We consider a set of macroscopic (classical) degrees of freedom coupled to an arbitrary many-particle Hamiltonian system, quantum or classical. These degrees of freedom can represent positions of objects in space, their angles, shape distortions, magnetization, currents and so on. Expanding their dynamics near the adiabatic limit we find the emergent Newton’s second law (force is equal to the mass times acceleration) with an extra dissipative term. In systems with broken time reversal symmetry there is an additional Coriolis type force proportional to the Berry curvature. We give the microscopic definition of the mass tensor. The mass tensor is related to the non-equal time correlation functions in equilibrium and describes the dressing of the slow degree of freedom by virtual excitations in the system. In the classical (high-temperature) limit the mass tensor is given by the product of the inverse temperature and the Fubini–Study metric tensor determining the natural distance between the eigenstates of the Hamiltonian. For free particles this result reduces to the conventional definition of mass. This finding shows that any mass, at least in the classical limit, emerges from the distortions of the Hilbert space highlighting deep connections between any motion (not necessarily in space) and geometry. We illustrate our findings with four simple examples. -- Highlights: •Derive the macroscopic Newton’s equation from the microscopic many-particle Schrödinger’s equation. •Deep connection between geometry and dynamics. •Geometrical interpretation of the mass of macroscopic object as deformation of Hilbert space. •Microscopic expression for mass and friction tensors
Invited Review Article: Measurements of the Newtonian constant of gravitation, G.
Rothleitner, C; Schlamminger, S
2017-11-01
By many accounts, the Newtonian constant of gravitation G is the fundamental constant that is most difficult to measure accurately. Over the past three decades, more than a dozen precision measurements of this constant have been performed. However, the scatter of the data points is much larger than the uncertainties assigned to each individual measurement, yielding a Birge ratio of about five. Today, G is known with a relative standard uncertainty of 4.7 × 10 -5 , which is several orders of magnitudes greater than the relative uncertainties of other fundamental constants. In this article, various methods to measure G are discussed. A large array of different instruments ranging from the simple torsion balance to the sophisticated atom interferometer can be used to determine G. Some instruments, such as the torsion balance can be used in several different ways. In this article, the advantages and disadvantages of different instruments as well as different methods are discussed. A narrative arc from the historical beginnings of the different methods to their modern implementation is given. Finally, the article ends with a brief overview of the current state of the art and an outlook.
Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow
Cagney, Neil; Balabani, Stavroula
2017-11-01
Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-06-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
Mansoori Kermani, Maryam; Dehestani, Maryam
2018-03-01
We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.
Directory of Open Access Journals (Sweden)
M.A. Imran
2018-03-01
Full Text Available The aim of this article is to investigate the unsteady natural convection flow of Maxwell fluid with fractional derivative over an exponentially accelerated infinite vertical plate. Moreover, slip condition, radiation, MHD and Newtonian heating effects are also considered. A modern definition of fractional derivative operator recently introduced by Caputo and Fabrizio has been used to formulate the fractional model. Semi analytical solutions of the dimensionless problem are obtained by employing Stehfest’s and Tzou’s algorithms in order to find the inverse Laplace transforms for temperature and velocity fields. Temperature and rate of heat transfer for non-integer and integer order derivatives are computed and reduced to some known solutions from the literature. Finally, in order to get insight of the physical significance of the considered problem regarding velocity and Nusselt number, some graphical illustrations are made using Mathcad software. As a result, in comparison between Maxwell and viscous fluid (fractional and ordinary we found that viscous (fractional and ordinary fluids are swiftest than Maxwell (fractional and ordinary fluids. Keywords: Free convection, Slip, Maxwell fluid, Newtonian heating, Exponentially accelerated plate, Caputo-Fabrizio fractional derivatives, Stehfest’s and Tzou’s algorithms
Directory of Open Access Journals (Sweden)
Hemeidia A. M.
2006-11-01
Full Text Available Rheological properties of Saudi Arab-Light, Arab-Berri and Arab-Heavy crude oils were measured with Brookfield Viscometer (LVT Model at temperatures 10, 15, 20, 25, 38, 55 and 70°C. Saudi Arab-Light and Arab-Heavy exhibit non-Newtonian behavior at temperature less than or equal to 20°C, while Saudi Arab-Berri behaves as a non-Newtonian fluid at all temperatures. The main reason for this rheological behavior can be attributed to the thermal and shear histories; the relative amounts of wax and asphaltene content in Saudi crude oils as well. Therefore, Statistical Analysis (t-test was used to check the variability of the change in rheological behavior of Saudi non-Newtonian crude oils at a confidence level of 95%. The evaluation ensured that, all non-Newtonian data were statistically not different and were correlated with power-law model. Under turbulent flow conditions the pipeline design calculations were carried out through a computer program. Les propriétés rhéologiques des bruts séoudiens Arab-Light, Arab-Berri et Arab-Heavy ont été mesurées à l'aide d'un viscomètre Brookfield (modèle LVT à des températures de 10, 15, 20, 25, 38, 55 et 70°C. Les Saudi Arab-Light et Arab-Heavy présentent un comportement non newtonien à des températures égales ou inférieures à 20°C, tandis que le Saudi Arab-Berri se comporte comme un fluide non newtonien à toutes les températures. Ce comportement rhéologique est principalement dû aux historiques thermiques et de cisaillement, de même qu'aux quantités relatives de paraffine et à la teneur en asphaltène des bruts séoudiens. Une analyse statistique (essai t a donc été menée pour vérifier la variabilité des changements de comportement rhéologique des bruts séoudiens non newtoniens à un degré de fiabilité de 95%. Il en est ressorti que toutes les données non newtoniennes étaient statistiquement non différentes et étaient en corrélation avec le modèle de la loi des
Lamb, W. E. Jr.
1981-12-01
This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories.
Dynamics of particles around a pseudo-Newtonian Kerr black hole with halos
International Nuclear Information System (INIS)
Wang Ying; Wu Xin
2012-01-01
The regular and chaotic dynamics of test particles in a superposed field between a pseudo-Newtonian Kerr black hole and quadrupolar halos is detailed. In particular, the dependence of dynamics on the quadrupolar parameter of the halos and the spin angular momentum of the rotating black hole is studied. It is found that the small quadrupolar moment, in contrast with the spin angular momentum, does not have a great effect on the stability and radii of the innermost stable circular orbits of these test particles. In addition, chaos mainly occurs for small absolute values of the rotating parameters, and does not exist for the maximum counter-rotating case under some certain initial conditions and parameters. This means that the rotating parameters of the black hole weaken the chaotic properties. It is also found that the counter-rotating system is more unstable than the co-rotating one. Furthermore, chaos is absent for small absolute values of the quadrupoles, and the onset of chaos is easier for the prolate halos than for the oblate ones. (general)
Trapping in stochastic mechanics and applications to covers of clouds and radiation belts
International Nuclear Information System (INIS)
Albeverio, S.; Blanchard, P.; Combe, P.; Rodriguez, R.; Sirugue, M.; Sirugue-Collin, M.
1984-11-01
It is possible to assign a stochastic acceleration to conservative stochastic diffusion processes. As a basic assumption, this stochastic acceleration is set equal to the deterministic smooth component of the external force acting on the particle, whereas the influences of the remainder is modelled by a diffusion coefficient. In this paper, we shall try to see whether it can account for the observation in two cases: the cover of clouds of planets and the radiation belts in the planetary magnetic field. We describe the basic properties of Newtonian Diffusion Stochastic Processes and indicate their connection with Schroedinger-like equations. Furthermore we give a heuristic interpretation of the nodal surfaces as impenetrable barriers for Newtonian Stochastic Diffusion Processes. The possible applications to the observed average cloud covering in the planetary atmosphere are presented we discuss the radiation belts (Van Allen Belts) along the previous ideas
International Nuclear Information System (INIS)
Dienwiebel, M.; Kuyper, E. de; Crama, L.; Frenken, J.W.M.; Heimberg, J.A.; Spaanderman, D.-J.; Glatra van Loon, D.; Zijlstra, T.; Drift, E. van der
2005-01-01
In this article, the construction and initial tests of a frictional force microscope are described. The instrument makes use of a microfabricated cantilever that allows one to independently measure the lateral forces in X and Y directions as well as the normal force. We use four fiber-optic interferometers to detect the motion of the sensor in three dimensions. The properties of our cantilevers allow easy and accurate normal and lateral force calibration, making it possible to measure the lateral force on a fully quantitative basis. First experiments on highly oriented pyrolytic graphite demonstrate that the microscope is capable of measuring lateral forces with a resolution down to 15 pN
A force-sensing surgical tool with a proximally located force/torque sensor.
Schwalb, W; Shirinzadeh, B; Smith, J
2017-03-01
Robotic surgery has seen a rapid increase in popularity in the last few decades because advantages such as increased accuracy and dexterity can be realized. These systems still lack force-feedback, where such a capability is believed to be beneficial to the surgeon and can improve safety. In this paper a force-feedback enabled surgical robotic system is described in which the developed force-sensing surgical tool is discussed in detail. The developed surgical tool makes use of a proximally located force/torque sensor, which, in contrast to a distally located sensor, requires no miniaturization or sterilizability. Experimental results are presented, and indicate high force sensing accuracies with errors <0.09 N. It is shown that developing a force-sensing surgical tool utilizing a proximally located force/torque sensor is feasible, where a tool outer diameter of 12 mm can be achieved. For future work it is desired to decrease the current tool outer diameter to 10 mm. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Antoniou, I.; Perivolaropoulos, L.
2017-11-01
A recent analysis by one of the authors [L. Perivolaropoulos, Phys. Rev. D 95, 084050 (2017), 10.1103/PhysRevD.95.084050] has indicated the presence of a 2 σ signal of spatially oscillating new force residuals in the torsion balance data of the Washington experiment. We extend that study and analyze the data of the Stanford Optically Levitated Microsphere Experiment (SOLME) [A. D. Rider et al., Phys. Rev. Lett. 117, 101101 (2016), 10.1103/PhysRevLett.117.101101] (kindly provided by A. D. Rider et al.) searching for sub-mm spatially oscillating new force signals. We find a statistically significant oscillating signal for a force residual of the form F (z )=α cos (2/π λ z +c ) where z is the distance between the macroscopic interacting masses (levitated microsphere and cantilever). The best fit parameter values are α =(1.1 ±0.4 )×10-17N , λ =(35.2 ±0.6 ) μ m . Monte Carlo simulation of the SOLME data under the assumption of zero force residuals has indicated that the statistical significance of this signal is at about 2 σ level. The improvement of the χ2 fit compared to the null hypothesis (zero residual force) corresponds to Δ χ2=13.1 . There are indications that this previously unnoticed signal is indeed in the data but is most probably induced by a systematic effect caused by diffraction of non-Gaussian tails of the laser beam. Thus the amplitude of this detected signal can only be useful as an upper bound to the amplitude of new spatially oscillating forces on sub-mm scales. In the context of gravitational origin of the signal emerging from a fundamental modification of the Newtonian potential of the form Veff(r )=-G M/r (1 +αOcos (2/π λ r +θ ))≡VN(r )+Vosc(r ) , we evaluate the source integral of the oscillating macroscopically induced force. If the origin of the SOLME oscillating signal is systematic, the parameter αO is bounded as αOchameleon oscillating potentials etc.).
International Nuclear Information System (INIS)
Shankar, B.M.; Rudraiah, N.
2013-01-01
The linear stability of electrohydrodynamic poorly conducting couple stress viscous parallel fluid flow in a channel is studied in the presence of a non-uniform transverse electric field and Coriolis force using energy method and supplemented with Galerkin Technique. The sufficient condition for stability is obtained for sufficiently small values of the Reynolds number, R e . From this condition we show that strengthening or weakening of the stability criterion is dictated by the values of the strength of electric field, the coefficient of couple stress fluid and independent of Taylor number. In particular, it is shown that the interaction of electric field with couple stress is more effective in stabilizing the poorly conducting couple stress fluid compared to that in an ordinary Newtonian viscous fluid. (author)
MHD biconvective flow of Powell Eyring nanofluid over stretched surface
Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum
2017-06-01
The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.
Shrestha, Bishwash; Ahsan, Syed N.; Aureli, Matteo
2018-01-01
In this paper, we present a comprehensive experimental study on harmonic oscillations of a submerged rigid plate in a quiescent, incompressible, Newtonian, viscous fluid. The fluid-structure interaction problem is analyzed from both qualitative and quantitative perspectives via a detailed particle image velocimetry (PIV) experimental campaign conducted over a broad range of oscillation frequency and amplitude parameters. Our primary goal is to identify the effect of the oscillation characteristics on the mechanisms of fluid-structure interaction and on the dynamics of vortex shedding and convection and to elucidate the behavior of hydrodynamic forces on the oscillating structure. Towards this goal, we study the flow in terms of qualitative aspects of its pathlines, vortex shedding, and symmetry breaking phenomena and identify distinct hydrodynamic regimes in the vicinity of the oscillating structure. Based on these experimental observations, we produce a novel phase diagram detailing the occurrence of distinct hydrodynamic regimes as a function of relevant governing nondimensional parameters. We further study the hydrodynamic forces associated with each regime using both PIV and direct force measurement via a load cell. Our quantitative results on experimental estimation of hydrodynamic forces show good agreement against predictions from the literature, where numerical and semi-analytical models are available. The findings and observations in this work shed light on the relationship between flow physics, vortex shedding, and convection mechanisms and the hydrodynamic forces acting on a rigid oscillating plate and, as such, have relevance to various engineering applications, including energy harvesting devices, biomimetic robotic system, and micro-mechanical sensors and actuators.
R5FORCE: a program to compute fluid induced forces using hydrodynamic output from the RELAP5 code
International Nuclear Information System (INIS)
Watkins, J.C.
1983-01-01
This paper describes the computer code R5FORCE, a postprocessor to the RELAP5/MOD1 thermal-hydraulics code. R5FORCE computes piping hydraulic force/time histories that can be input into various structural analysis computer codes. R5FORCE solves the momentum conservation equation using the pressure and wall shear force terms rather than the pressure and fluid acceleration terms; eliminating potential instabilities associated with computing the time derivative in the fluid acceleration term. The updates to REALP5 required to generate the input data to R5FORCE are also discussed
Directory of Open Access Journals (Sweden)
Anne M. Hofmeister
2017-11-01
Full Text Available Galactic mass consistent with luminous mass is obtained by fitting rotation curves (RC = tangential velocities vs. equatorial radius r using Newtonian force models, or can be unambiguously calculated from RC data using a model based on spin. In contrast, mass exceeding luminous mass is obtained from multi-parameter fits using potentials associated with test particles orbiting in a disk around a central mass. To understand this disparity, we explore the premises of these mainstream disk potential models utilizing the theorem of Gauss, thermodynamic concepts of Gibbs, the findings of Newton and Maclaurin, and well-established techniques and results from analytical mathematics. Mainstream models assume that galactic density in the axial (z and r directions varies independently: we show that this is untrue for self-gravitating objects. Mathematics and thermodynamic principles each show that modifying Poisson’s equation by summing densities is in error. Neither do mainstream models differentiate between interior and exterior potentials, which is required by potential theory and has been recognized in seminal astronomical literature. The theorem of Gauss shows that: (1 density in Poisson’s equation must be averaged over the interior volume; (2 logarithmic gravitational potentials implicitly assume that mass forms a long, line source along the z axis, unlike any astronomical object; and (3 gravitational stability for three-dimensional shapes is limited to oblate spheroids or extremely tall cylinders, whereas other shapes are prone to collapse. Our findings suggest a mechanism for the formation of the flattened Solar System and of spiral galaxies from gas clouds. The theorem of Gauss offers many advantages over Poisson’s equation in analyzing astronomical problems because mass, not density, is the key parameter.
Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes
Walicka, A.
2018-02-01
In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.
Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes
Directory of Open Access Journals (Sweden)
Walicka A.
2018-02-01
Full Text Available In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.
Arminjon, Mayeul
2005-10-01
The asymptotic scheme of post-Newtonian approximation defined for general relativity in the harmonic gauge by Futamase & Schutz (1983) is based on a family of initial data for the matter fields of a perfect fluid and for the initial metric, defining a family of weakly self-gravitating systems. We show that Weinberg’s (1972) expansion of the metric and his general expansion of the energy-momentum tensor T, as well as his expanded equations for the gravitational field and his general form of the expanded dynamical equations, apply naturally to this family. Then, following the asymptotic scheme, we derive the explicit form of the expansion of T for a perfect fluid, and the expanded fluid-dynamical equations. (These differ from those written by Weinberg.) By integrating these equations in the domain occupied by a body, we obtain a general form of the translational equations of motion for a 1PN perfect-fluid system in general relativity. To put them into a tractable form, we use an asymptotic framework for the separation parameter η, by defining a family of well-separated 1PN systems. We calculate all terms in the equations of motion up to the order η3 included. To calculate the 1PN correction part, we assume that the Newtonian motion of each body is a rigid one, and that the family is quasispherical, in the sense that in all bodies the inertia tensor comes close to being spherical as η→0. Apart from corrections that cancel for exact spherical symmetry, there is in the final equations of motion one additional term, as compared with the Lorentz-Droste (Einstein-Infeld-Hoffmann) acceleration. This term depends on the spin of the body and on its internal structure.
Khan, Zeeshan; Khan, Ilyas; Ullah, Murad; Tlili, I.
2018-06-01
In this work, we discuss the unsteady flow of non-Newtonian fluid with the properties of heat source/sink in the presence of thermal radiation moving through a binary mixture embedded in a porous medium. The basic equations of motion including continuity, momentum, energy and concentration are simplified and solved analytically by using Homotopy Analysis Method (HAM). The energy and concentration fields are coupled with Dankohler and Schmidt numbers. By applying suitable transformation, the coupled nonlinear partial differential equations are converted to couple ordinary differential equations. The effect of physical parameters involved in the solutions of velocity, temperature and concentration profiles are discussed by assign numerical values and results obtained shows that the velocity, temperature and concentration profiles are influenced appreciably by the radiation parameter, Prandtl number, suction/injection parameter, reaction order index, solutal Grashof number and the thermal Grashof. It is observed that the non-Newtonian parameter H leads to an increase in the boundary layer thickness. It was established that the Prandtl number decreases thee thermal boundary layer thickness which helps in maintaining system temperature of the fluid flow. It is observed that the temperature profiles higher for heat source parameter and lower for heat sink parameter throughout the boundary layer. Fromm this simulation it is analyzed that an increase in the Schmidt number decreases the concentration boundary layer thickness. Additionally, for the sake of comparison numerical method (ND-Solve) and Adomian Decomposition Method are also applied and good agreement is found.
Isoyama, Soichiro; Barack, Leor; Dolan, Sam R; Le Tiec, Alexandre; Nakano, Hiroyuki; Shah, Abhay G; Tanaka, Takahiro; Warburton, Niels
2014-10-17
For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.
Directory of Open Access Journals (Sweden)
Reza Mohammadyari
2015-08-01
Full Text Available The problem of solid particle settling is a well known problem in mechanic of fluids. The parametrized Perturbation Method is applied to analytically solve the unsteady motion of a spherical particle falling in a Newtonian fluid using the drag of the form given by Oseen/Ferreira, for a range of Reynolds numbers. Particle equation of motion involved added mass term and ignored the Basset term. By using this new kind of perturbation method called parameterized perturbation method (PPM, analytical expressions for the instantaneous velocity, acceleration and position of the particle were derived. The presented results show the effectiveness of PPM and high rate of convergency of the method to achieve acceptable answers.
International Nuclear Information System (INIS)
Gama, R.M.S. da; Sampaio, R.
1985-01-01
The flow of an incompressible Newtonian fluid through a rigid, homogeneous, isotropic and infinite porous medium which has a given inicial distribuition of the mentioned fluid, is analyzed. It is proposed a model that assumes that the motion is caused by concentration gradient, but it does not consider the friction between the porous medium and the fluid. We solve an onedimensional case where the mathematical problem is reduced to the solution of a non-linear hyperbolic system of differential equations, subjected to an inicial condition given by a step function, called 'Riemann Problem'. (Author) [pt
Three revolutions in cosmical science from the telescope to the Sputnik
International Nuclear Information System (INIS)
Alfeven, H.
1989-01-01
Three hundred years ago, what is usually called the Copernican revolution caused the transition from the geocentric to the heliocentric cosmology. The revolution was in reality caused by the introduction of the telescope. During the following 300 years, increasingly sophisticated telescopes have explored a rapidly increasing region of our cosmic environment. Newtonian theory dominated the mechanics during the 18th and 19th centuries. In the beginning of the 20th century, its limitations in three respects became obvious with such important consequences that they have motivated the authors to speak about a second revolution. This paper discusses how quantum mechanics shows the Newtonian mechanics was not valid for atom-size phenomena; the theory of relativity shows that Newtonian mechanics did not hold for velocities approaching the velocity of light; and during the 19th century, studies of electric currents in gases showed that electromagnetic phenomena often produced forces that were more important than mechanical forces
Beyond-proximity-force-approximation Casimir force between two spheres at finite temperature
Bimonte, Giuseppe
2018-04-01
A recent experiment [J. L. Garrett, D. A. T. Somers, and J. N. Munday, Phys. Rev. Lett. 120, 040401 (2018), 10.1103/PhysRevLett.120.040401] measured for the first time the gradient of the Casimir force between two gold spheres at room temperature. The theoretical analysis of the data was carried out using the standard proximity force approximation (PFA). A fit of the data, using a parametrization of the force valid for the sphere-plate geometry, was used by the authors to place a bound on deviations from PFA. Motivated by this work, we compute the Casimir force between two gold spheres at finite temperature. The semianalytic formula for the Casimir force that we construct is valid for all separations, and can be easily used to interpret future experiments in both the sphere-plate and sphere-sphere configurations. We describe the correct parametrization of the corrections to PFA for two spheres that should be used in data analysis.
Microarchitecture Parameters Describe Bone Structure and Its Strength Better Than BMD
Directory of Open Access Journals (Sweden)
Tomasz Topoliński
2012-01-01
Full Text Available Introduction and Hypothesis. Some papers have shown that bone mineral density (BMD may not be accurate in predicting fracture risk. Recently microarchitecture parameters have been reported to give information on bone characteristics. The aim of this study was to find out if the values of volume, fractal dimension, and bone mineral density are correlated with bone strength. Methods. Forty-two human bone samples harvested during total hip replacement surgery were cut to cylindrical samples. The geometrical mesh of layers of bone mass obtained from microCT investigation and the volumes of each layer and fractal dimension were calculated. The finite element method was applied to calculate the compression force F causing ε=0.8% strain. Results. There were stronger correlations for microarchitecture parameters with strength than those for bone mineral density. The values of determination coefficient R2 for mean volume and force were 0.88 and 0.90 for mean fractal dimension and force, while for BMD and force the value was 0.53. The samples with bigger mean bone volume of layers and bigger mean fractal dimension of layers (more complex structure presented higher strength. Conclusion. The volumetric and fractal dimension parameters better describe bone structure and strength than BMD.
Transition States from Empirical Force Fields
DEFF Research Database (Denmark)
Jensen, Frank; Norrby, Per-Ola
2003-01-01
This is an overview of the use of empirical force fields in the study of reaction mechanisms. EVB-type methods (including RFF and MCMM) produce full reaction surfaces by mixing, in the simplest case, known force fields describing reactants and products. The SEAM method instead locates approximate...
On multiple solutions of non-Newtonian Carreau fluid flow over an inclined shrinking sheet
Khan, Masood; Sardar, Humara; Gulzar, M. Mudassar; Alshomrani, Ali Saleh
2018-03-01
This paper presents the multiple solutions of a non-Newtonian Carreau fluid flow over a nonlinear inclined shrinking surface in presence of infinite shear rate viscosity. The governing boundary layer equations are derived for the Carreau fluid with infinite shear rate viscosity. The suitable transformations are employed to alter the leading partial differential equations to a set of ordinary differential equations. The consequential non-linear ODEs are solved numerically by an active numerical approach namely Runge-Kutta Fehlberg fourth-fifth order method accompanied by shooting technique. Multiple solutions are presented graphically and results are shown for various physical parameters. It is important to state that the velocity and momentum boundary layer thickness reduce with increasing viscosity ratio parameter in shear thickening fluid while opposite trend is observed for shear thinning fluid. Another important observation is that the wall shear stress is significantly decreased by the viscosity ratio parameter β∗ for the first solution and opposite trend is observed for the second solution.
Imaging the Microscopic Structure of Shear Thinning and Thickening Colloidal Suspensions
Cheng, X.
2011-09-01
The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension\\'s structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.
Computational simulation of a non-newtonian model of the blood separation process.
De Gruttola, Sandro; Boomsma, Kevin; Poulikakos, Dimos
2005-12-01
The aim of this work is to construct a computational fluid dynamics model capable of simulating the transient non-Newtonian process of apheresis. A Lagrangian-Eulerian model has been developed which tracks the blood particles within a two-dimensional flow configuration. Within the Eulerian method, the fluid mass and momentum conservation equations within the separator are solved using the density and the viscosity is calculated from the blood particle concentrations. Subsequently, the displacement of the blood particles is calculated with a Lagrangian method. Hawksley's model for the density of supensions is used in the variable density calculation. The viscosity is calculated with two models based on Vand's rigid particle suspension viscosity concepts, followed by the flow field calculation in the separator. Simulations were performed for various inlet hematocrit values and separator lengths. The simulations are in satisfactory agreement with experimental results reported in literature, indicating a complete separation of plasma and red blood cells (RBCs), as well as nearly complete separation of red blood cells and platelets. No hemolysis was observed in the simulations because the shear rate remained under the critical value of 150 N/m2.
Directory of Open Access Journals (Sweden)
M.A. Bosse
2001-03-01
Full Text Available The problem of the effect of Joule heating generation on the hydrodynamic profile and the solute transport found in electrophoretic devices is addressed in this article. The research is focused on the following two problems: The first one is centered around the effect of Joule heating on the hydrodynamic velocity profile and it is referred to as "the carrier fluid problem." The other one is related to the effect of Joule heating on the solute transport inside electrophoretic cells and it is referred to as "the solute problem". The hydrodynamic aspects were studied first to yield the velocity profiles required for analysis of the solute transport problem. The velocity profile obtained in this study is analytical and the results are valid for non-Newtonian fluids carriers. To this end, the power-law model was used to study the effect of the rheology of the material in conjunction with the effect of Joule heating generation inside batch electrophoretic devices. This aspect of the research was then effectively used to study the effect of Joule heating generation on the motion of solutes (such as macromolecules under the influence of non-Newtonian carriers. This aspect of the study was performed using an area-averaging approach that yielded analytical results for the effective diffusivity of the device.
Directory of Open Access Journals (Sweden)
Omotayo Omosebi
2015-12-01
This article presents an analytic technique for interpreting pressure falloff tests of non-Newtonian Power-law fluids in wells that are located near boundaries in dual-porosity reservoirs. First, dimensionless pressure solutions are obtained and Stehfest inversion algorithm is used to develop new type curves. Subsequently, long-time analytic solutions are presented and interpretation procedure is proposed using direct synthesis. Two examples, including real field data from a heavy oil reservoir in Colombian eastern plains basin, are used to validate and demonstrate application of this technique. Results agree with conventional type-curve matching procedure. The approach proposed in this study avoids the use of type curves, which is prone to human errors. It provides a better alternative for direct estimation of formation and flow properties from falloff data.
General-relativistic celestial mechanics. II. Translational equations of motion
International Nuclear Information System (INIS)
Damour, T.; Soffel, M.; Xu, C.
1992-01-01
The translational laws of motion for gravitationally interacting systems of N arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies are obtained at the first post-Newtonian approximation of general relativity. The derivation uses our recently introduced multi-reference-system method and obtains the translational laws of motion by writing that, in the local center-of-mass frame of each body, relativistic inertial effects combine with post-Newtonian self- and externally generated gravitational forces to produce a global equilibrium (relativistic generalization of d'Alembert's principle). Within the first post-Newtonian approximation [i.e., neglecting terms of order (v/c) 4 in the equations of motion], our work is the first to obtain complete and explicit results, in the form of infinite series, for the laws of motion of arbitrarily composed and shaped bodies. We first obtain the laws of motion of each body as an infinite series exhibiting the coupling of all the (Blanchet-Damour) post-Newtonian multipole moments of this body to the post-Newtonian tidal moments (recently defined by us) felt by this body. We then give the explicit expression of these tidal moments in terms of post-Newtonian multipole moments of the other bodies
Consistent force fields for saccharides
DEFF Research Database (Denmark)
Rasmussen, Kjeld
1999-01-01
Consistent force fields for carbohydrates were hitherto developed by extensive optimization ofpotential energy function parameters on experimental data and on ab initio results. A wide range of experimental data is used: internal structures obtained from gas phase electron diffraction and from x......-anomeric effects are accounted for without addition of specific terms. The work is done in the framework of the Consistent Force Field which originatedin Israel and was further developed in Denmark. The actual methods and strategies employed havebeen described previously. Extensive testing of the force field...
Drew, Michael E.
The atomic force microscope (AFM) has fueled interest in nanotechnology because of its ability to image surfaces at the nanometer level and act as a molecular force sensor. Functionalization of the surface of an AFM tip surface in a stable, controlled manner expands the capabilities of the AFM and enables additional applications in the fields of single molecule force spectroscopy and nanolithography. Two AFM tip functionalizations are described: the assembly of tripodal molecular tips onto gold AFM tips and the photochemical attachment of terminal alkenes to nanocrystalline diamond (NCD) AFM tips. Two separate tripodal molecules with different linker lengths and a monopodal molecule terminated with biotin were synthesized to attach to a gold AFM tip for single molecule force spectroscopy. The immobilization of these molecules was examined by contact angle measurements, spectroscopic ellipsometry, infrared, and near edge x-ray absorption fine structure (NEXAFS) spectroscopy. All three molecules displayed rupture forces that agreed with previously reported values for the biotin--avidin rupture. The tripodal molecular tip displayed narrower distribution in their force histograms than the monopodal molecular tip. The performance of the tripodal molecular tip was compared to the monopodal molecular tip in single molecule force spectroscopy studies. Over repeated measurements, the distribution of forces for the monopodal molecular tip shifted to lower forces, whereas the distribution for the tripodal molecular tip remained constant throughout. Loading rate dependence and control experiments further indicated that the rupture forces of the tripod molecular tips were specific to the biotin--NeutrAvidin interaction. The second functionalization method used the photochemical attachment of undecylenic acid to NCD AFM tips. The photochemical attachment of undecylenic acid to hydrogen-terminated NCD wafer surfaces was investigated by contact angle measurements, x
Directory of Open Access Journals (Sweden)
Zeeshan Khan
2018-06-01
Full Text Available In this work, we discuss the unsteady flow of non-Newtonian fluid with the properties of heat source/sink in the presence of thermal radiation moving through a binary mixture embedded in a porous medium. The basic equations of motion including continuity, momentum, energy and concentration are simplified and solved analytically by using Homotopy Analysis Method (HAM. The energy and concentration fields are coupled with Dankohler and Schmidt numbers. By applying suitable transformation, the coupled nonlinear partial differential equations are converted to couple ordinary differential equations. The effect of physical parameters involved in the solutions of velocity, temperature and concentration profiles are discussed by assign numerical values and results obtained shows that the velocity, temperature and concentration profiles are influenced appreciably by the radiation parameter, Prandtl number, suction/injection parameter, reaction order index, solutal Grashof number and the thermal Grashof. It is observed that the non-Newtonian parameter H leads to an increase in the boundary layer thickness. It was established that the Prandtl number decreases thee thermal boundary layer thickness which helps in maintaining system temperature of the fluid flow. It is observed that the temperature profiles higher for heat source parameter and lower for heat sink parameter throughout the boundary layer. Fromm this simulation it is analyzed that an increase in the Schmidt number decreases the concentration boundary layer thickness. Additionally, for the sake of comparison numerical method (ND-Solve and Adomian Decomposition Method are also applied and good agreement is found. Keywords: Unsteady flow, Viscous fluid, Thermal radiation, Porous plate, Arrhenius kinetics, HAM and numerical method
Newtonian liquid jet impaction on a high-speed moving surface
International Nuclear Information System (INIS)
Keshavarz, B.; Green, S.I.; Davy, M.H.; Eadie, D.T.
2011-01-01
Highlights: ► We studied experimentally the interaction of a liquid jet with a moving surface. ► Decreasing the Reynolds number reduced the incidence of splash. ► The Weber number had a much smaller impact on splash than the Reynolds number. ► The jet impingement angle had only a small effect on the splash. ► Increasing the surface roughness substantially decreased the splash threshold. - Abstract: In the railroad industry a friction modifying agent may be applied to the rail or wheel in the form of a liquid jet. In this mode of application the interaction between the high-speed liquid jet and a fast moving surface is important. Seven different Newtonian liquids with widely varying shear viscosities were tested to isolate the effect of viscosity from other fluid properties. Tests were also done on five surfaces of different roughness heights to investigate the effects of surface roughness. High-speed video imaging was employed to scrutinize the interaction between the impacting jet and the moving surface. For all surfaces, decreasing the Reynolds number reduced the incidence of splash and consequently enhanced the transfer efficiency. At the elevated Weber numbers of the testing, the Weber number had a much smaller impact on splash than the Reynolds number. The ratio of the surface velocity to the jet velocity has only a small effect on the splash, whereas increasing the roughness-height-to-jet-diameter ratio substantially decreased the splash threshold.
Force-sensed interface for control and training space robot
Moiseev, O. S.; Sarsadskikh, A. S.; Povalyaev, N. D.; Gorbunov, V. I.; Kulakov, F. M.; Vasilev, V. V.
2018-05-01
A method of positional and force-torque control of robots is proposed. Prototypes of the system and the master handle have been created. Algorithm of bias estimation and gravity compensation for force-torque sensor and force-torque trajectory correction are described.
Energy Technology Data Exchange (ETDEWEB)
Friedel, T. [Schlumberger Data and Consulting Services, Sugar Land, TX (United States)
2006-07-01
There are many damage mechanisms associated with hydraulically fractured gas wells. These include hydraulic damage caused by invading fluids during the treatment and damage due to the stresses exerted on the fracture face. Damage to the proppant pack can also reduce conductivity and non-Darcy flow. However, these are not the only impacts of impaired productivity in tight-gas reservoirs, which do not respond to hydraulic fracturing as expected. Some sustain a flat production profile or show only a slow increase in production rate for several weeks or months. This is due to poor rock quality, strong stress dependency in permeability, hydraulic and mechanical damage. Another reason for the poor performance is related to the cleanup of the cross-linked fracturing fluid with its non-Newtonian characteristics. This paper presented an improved 3-phase cleanup model for the investigation of polymer gel cleanup. Yield stress was considered according to the Herschel-Bulkley rheology model. The viscosity model is based on the exact analytical solution, including the plug flow zone. According to data in the published literature, half of the gel phase can be recovered. The gel saturation gradually increases towards the fracture tips, thereby lowering the fracture conductivities. The residing gel damages the permeability and porosity of the proppant pack or causes damage to the fracture face, thereby reducing production potential. These results are in agreement with field observations where fracture half-lengths, conductivities and productivity are also lower than expected. Preliminary results suggest that capillary forces and load-water recovery have little influence on gel cleanup. 16 refs., 2 tabs., 17 figs.
Cutting force measurement of electrical jigsaw by strain gauges
International Nuclear Information System (INIS)
Kazup, L; Varadine Szarka, A
2016-01-01
This paper describes a measuring method based on strain gauges for accurate specification of electric jigsaw's cutting force. The goal of the measurement is to provide an overall perspective about generated forces in a jigsaw's gearbox during a cutting period. The lifetime of the tool is affected by these forces primarily. This analysis is part of the research and development project aiming to develop a special linear magnetic brake for realizing automatic lifetime tests of electric jigsaws or similar handheld tools. The accurate specification of cutting force facilitates to define realistic test cycles during the automatic lifetime test. The accuracy and precision resulted by the well described cutting force characteristic and the possibility of automation provide new dimension for lifetime testing of the handheld tools with alternating movement. (paper)
International Nuclear Information System (INIS)
Memon, R.A.; Solangi, M.A.
2013-01-01
The impacts of rotational velocity and inertia on velocity gradients and stresses are addressed under present study. The non-Newtonian behaviour of inelastic rotating flows is predicted by employing Power law model. A numerical model has been developed for mixing flow within a cylindrical vessel along a couple of stirrers. A time marching FEM (Finite Element Method) is employed to predict the required solution. Predicted solutions are presented for minimum to maximum values in terms of contour plots of velocity gradients and shear stresses, over the range. The long term application of this research will be used to improve the design of mixers and processing products. The predicted results are used to generate the capability and are in good agreement with numerical results to the mixer design that will ultimately effect the processing of dough products. (author)
Sagunski, Laura; Zhang, Jun; Johnson, Matthew C.; Lehner, Luis; Sakellariadou, Mairi; Liebling, Steven L.; Palenzuela, Carlos; Neilsen, David
2018-03-01
Observations of gravitational radiation from compact binary systems provide an unprecedented opportunity to test general relativity in the strong field dynamical regime. In this paper, we investigate how future observations of gravitational radiation from binary neutron star mergers might provide constraints on finite-range forces from a universally coupled massive scalar field. Such scalar degrees of freedom (d.o.f.) are a characteristic feature of many extensions of general relativity. For concreteness, we work in the context of metric f (R ) gravity, which is equivalent to general relativity and a universally coupled scalar field with a nonlinear potential whose form is fixed by the choice of f (R ). In theories where neutron stars (or other compact objects) obtain a significant scalar charge, the resulting attractive finite-range scalar force has implications for both the inspiral and merger phases of binary systems. We first present an analysis of the inspiral dynamics in Newtonian limit, and forecast the constraints on the mass of the scalar and charge of the compact objects for the Advanced LIGO gravitational wave observatory. We then perform a comparative study of binary neutron star mergers in general relativity with those of a one-parameter model of f (R ) gravity using fully relativistic hydrodynamical simulations. These simulations elucidate the effects of the scalar on the merger and postmerger dynamics. We comment on the utility of the full waveform (inspiral, merger, postmerger) to probe different regions of parameter space for both the particular model of f (R ) gravity studied here and for finite-range scalar forces more generally.
Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian; Bezrukov, Sergey M.
2008-09-01
We present detailed measurements of the Casimir-Lifshitz force between two gold surfaces (a sphere and a plate) immersed in ethanol and study the effect of residual electrostatic forces, which are dominated by static fields within the apparatus and can be reduced with proper shielding. Electrostatic forces are further reduced by Debye screening through the addition of salt ions to the liquid. Additionally, the salt leads to a reduction of the Casimir-Lifshitz force by screening the zero-frequency contribution to the force; however, the effect is small between gold surfaces at the measured separations and within experimental error. An improved calibration procedure is described and compared with previous methods. Finally, the experimental results are compared with Lifshitz’s theory and found to be consistent for the materials used in the experiment.
Gravitational effects in field gravitation theory
International Nuclear Information System (INIS)
Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.
1979-01-01
The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered