Application of Newton's optimal power flow in voltage/reactive power control
Energy Technology Data Exchange (ETDEWEB)
Bjelogrlic, M.; Babic, B.S. (Electric Power Board of Serbia, Belgrade (YU)); Calovic, M.S. (Dept. of Electrical Engineering, University of Belgrade, Belgrade (YU)); Ristanovic, P. (Institute Nikola Tesla, Belgrade (YU))
1990-11-01
This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in transmission networks. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. It is characterized by good robustness, accuracy and speed. A combined objective function appropriate for various system load levels with suitable constraints, for treatment of the power system security and economy is also proposed. For the real-time voltage/reactive power control, a suboptimal power flow procedure has been derived by using the reduced set of control variables. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. As a result, the optimal power flow program output becomes a schedule to be used by operators in the process of the real-time voltage/reactive power control in both normal and emergency operating states.
Newton-type methods for optimization and variational problems
Izmailov, Alexey F
2014-01-01
This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will b...
Stabilized quasi-Newton optimization of noisy potential energy surfaces
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Bastian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Alireza Ghasemi, S. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, IR-Zanjan (Iran, Islamic Republic of); Roy, Shantanu [Computational and Systems Biology, Biozentrum, University of Basel, CH-4056 Basel (Switzerland)
2015-01-21
Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.
Stabilized quasi-Newton optimization of noisy potential energy surfaces
International Nuclear Information System (INIS)
Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu
2015-01-01
Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods
Modified Newton-Raphson GRAPE methods for optimal control of spin systems
International Nuclear Information System (INIS)
Goodwin, D. L.; Kuprov, Ilya
2016-01-01
Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.
Modified Newton-Raphson GRAPE methods for optimal control of spin systems
Energy Technology Data Exchange (ETDEWEB)
Goodwin, D. L.; Kuprov, Ilya, E-mail: i.kuprov@soton.ac.uk [School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ (United Kingdom)
2016-05-28
Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.
Newton Power Flow Methods for Unbalanced Three-Phase Distribution Networks
Sereeter, B.; Vuik, C.; Witteveen, C.
2017-01-01
Two mismatch functions (power or current) and three coordinates (polar, Cartesian andcomplex form) result in six versions of the Newton–Raphson method for the solution of powerflow problems. In this paper, five new versions of the Newton power flow method developed forsingle-phase problems in our
Guidelines for Interactive Reliability-Based Structural Optimization using Quasi-Newton Algorithms
DEFF Research Database (Denmark)
Pedersen, C.; Thoft-Christensen, Palle
increase of the condition number and preserve positive definiteness without discarding previously obtained information. All proposed modifications are also valid for non-interactive optimization problems. Heuristic rules from various optimization problems concerning when and how to impose interactions......Guidelines for interactive reliability-based structural optimization problems are outlined in terms of modifications of standard quasi-Newton algorithms. The proposed modifications minimize the condition number of the approximate Hessian matrix in each iteration, restrict the relative and absolute...
Scalable Newton-Krylov solver for very large power flow problems
Idema, R.; Lahaye, D.J.P.; Vuik, C.; Van der Sluis, L.
2010-01-01
The power flow problem is generally solved by the Newton-Raphson method with a sparse direct solver for the linear system of equations in each iteration. While this works fine for small power flow problems, we will show that for very large problems the direct solver is very slow and we present
Camera-pose estimation via projective Newton optimization on the manifold.
Sarkis, Michel; Diepold, Klaus
2012-04-01
Determining the pose of a moving camera is an important task in computer vision. In this paper, we derive a projective Newton algorithm on the manifold to refine the pose estimate of a camera. The main idea is to benefit from the fact that the 3-D rigid motion is described by the special Euclidean group, which is a Riemannian manifold. The latter is equipped with a tangent space defined by the corresponding Lie algebra. This enables us to compute the optimization direction, i.e., the gradient and the Hessian, at each iteration of the projective Newton scheme on the tangent space of the manifold. Then, the motion is updated by projecting back the variables on the manifold itself. We also derive another version of the algorithm that employs homeomorphic parameterization to the special Euclidean group. We test the algorithm on several simulated and real image data sets. Compared with the standard Newton minimization scheme, we are now able to obtain the full numerical formula of the Hessian with a 60% decrease in computational complexity. Compared with Levenberg-Marquardt, the results obtained are more accurate while having a rather similar complexity.
Improved Full-Newton Step O(nL) Infeasible Interior-Point Method for Linear Optimization
Gu, G.; Mansouri, H.; Zangiabadi, M.; Bai, Y.Q.; Roos, C.
2009-01-01
We present several improvements of the full-Newton step infeasible interior-point method for linear optimization introduced by Roos (SIAM J. Optim. 16(4):1110–1136, 2006). Each main step of the method consists of a feasibility step and several centering steps. We use a more natural feasibility step,
Sometimes "Newton's Method" Always "Cycles"
Latulippe, Joe; Switkes, Jennifer
2012-01-01
Are there functions for which Newton's method cycles for all non-trivial initial guesses? We construct and solve a differential equation whose solution is a real-valued function that two-cycles under Newton iteration. Higher-order cycles of Newton's method iterates are explored in the complex plane using complex powers of "x." We find a class of…
Directory of Open Access Journals (Sweden)
Chia-En Ho
2012-09-01
Full Text Available This paper investigates the optimization of the performance of a solar powered Stirling engine based on finite-time thermodynamics. Heat transference in the heat exchangers between a concentrating solar collector and the Stirling engine is studied. The irreversibility of a Stirling engine is considered with the heat transfer following Newton's law. The power generated by a Stirling engine is used as an objective function for maximum power output design with the concentrating solar collector temperature and the engine thermal efficiency as the optimization parameters. The maximum output power of engine and its corresponding system parameters are determined using a genetic algorithm.
Improved Full-Newton Step O(nL) Infeasible Interior-Point Method for Linear Optimization
Gu, G.; Mansouri, H.; Zangiabadi, M.; Bai, Y.Q.; Roos, C.
2009-01-01
We present several improvements of the full-Newton step infeasible interior-point method for linear optimization introduced by Roos (SIAM J. Optim. 16(4):1110–1136, 2006). Each main step of the method consists of a feasibility step and several centering steps. We use a more natural feasibility step, which targets the ?+-center of the next pair of perturbed problems. As for the centering steps, we apply a sharper quadratic convergence result, which leads to a slightly wider neighborhood for th...
Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging
Desmal, Abdulla
2014-05-04
Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.
Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging
Desmal, Abdulla
2014-01-06
Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.
Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging
Desmal, Abdulla; Bagci, Hakan
2014-01-01
Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.
Karam, Ayman M.; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper presents a real time optimization scheme for a solar powered direct contact membrane distillation (DCMD) water desalination system. The sun and weather conditions vary and are inconsistent throughout the day. Therefore, the solar powered DCMD feed inlet temperature is never constant, which influences the distilled water flux. The problem of DCMD process optimization has not been studied enough. In this work, the response of the process under various feed inlet temperatures is investigated, which demonstrates the need for an optimal controller. To address this issue, we propose a multivariable Newton-based extremum seeking controller which optimizes the inlet feed and permeate mass flow rates as the feed inlet temperature varies. Results are presented and discussed for a realistic temperature profile.
Karam, Ayman M.
2015-09-21
This paper presents a real time optimization scheme for a solar powered direct contact membrane distillation (DCMD) water desalination system. The sun and weather conditions vary and are inconsistent throughout the day. Therefore, the solar powered DCMD feed inlet temperature is never constant, which influences the distilled water flux. The problem of DCMD process optimization has not been studied enough. In this work, the response of the process under various feed inlet temperatures is investigated, which demonstrates the need for an optimal controller. To address this issue, we propose a multivariable Newton-based extremum seeking controller which optimizes the inlet feed and permeate mass flow rates as the feed inlet temperature varies. Results are presented and discussed for a realistic temperature profile.
Programming for the Newton software development with NewtonScript
McKeehan, Julie
1994-01-01
Programming for the Newton: Software Development with NewtonScript focuses on the processes, approaches, operations, and principles involved in software development with NewtonScript.The publication first elaborates on Newton application design, views on the Newton, and protos. Discussions focus on system protos, creating and using user protos, linking and naming templates, creating the views of WaiterHelper, Newton application designs, and life cycle of an application. The text then elaborates on the fundamentals of NewtonScript, inheritance in NewtonScript, and view system and messages. Topi
Optimal power and distribution control for weakly-coupled-core reactor
International Nuclear Information System (INIS)
Oohori, Takahumi; Kaji, Ikuo
1977-01-01
A numerical procedure has been devised for obtaining the optimal power and distribution control for a weakly-coupled-core reactor. Several difficulties were encountered in solving this optimization problem: (1) nonlinearity of the reactor kinetics equations; (2) neutron-leakage interaction between the cores; (3) localized power changes occurring in addition to the total power changes; (4) constraints imposed on the states - e.g. reactivity, reactor period. To obviate these difficulties, use is made of the generalized Newton method to convert the problem into an iterative sequence of linear programming problems, after approximating the differential equations and the integral performance criterion by a set of discrete algebraic equations. In this procedure, a heuristic but effective method is used for deriving an initial approximation, which is then made to converge toward the optimal solution. Delayed-neutron one-group point reactor models embodying transient temperature feed-back to the reactivity are used in obtaining the kinetics equations for the weakly-coupled-core reactor. The criterion adopted for determining the optimality is a norm relevant to the deviations of neutron density from the desired trajectories or else to the time derivatives of the neutron density; uniform control intervals are prescribed. Examples are given of two coupled-core reactors with typical parameters to illustrate the results obtained with this procedure. A comparison is also made between the coupled-core reactor and the one-point reactor. (auth.)
POEMS in Newton's Aerodynamic Frustum
Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita
2010-01-01
The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…
Directory of Open Access Journals (Sweden)
Andrea Caliciotti
2018-04-01
Full Text Available In this paper, we report data and experiments related to the research article entitled “An adaptive truncation criterion, for linesearch-based truncated Newton methods in large scale nonconvex optimization” by Caliciotti et al. [1]. In particular, in Caliciotti et al. [1], large scale unconstrained optimization problems are considered by applying linesearch-based truncated Newton methods. In this framework, a key point is the reduction of the number of inner iterations needed, at each outer iteration, to approximately solving the Newton equation. A novel adaptive truncation criterion is introduced in Caliciotti et al. [1] to this aim. Here, we report the details concerning numerical experiences over a commonly used test set, namely CUTEst (Gould et al., 2015 [2]. Moreover, comparisons are reported in terms of performance profiles (Dolan and Moré, 2002 [3], adopting different parameters settings. Finally, our linesearch-based scheme is compared with a renowned trust region method, namely TRON (Lin and Moré, 1999 [4].
State space Newton's method for topology optimization
DEFF Research Database (Denmark)
Evgrafov, Anton
2014-01-01
/10/1-type constraints on the design field through penalties in many topology optimization approaches. We test the algorithm on the benchmark problems of dissipated power minimization for Stokes flows, and in all cases the algorithm outperforms the traditional first order reduced space/nested approaches...
Designing stellarator coils by a modified Newton method using FOCUS
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi
2018-06-01
To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.
Alquimia: Isaac Newton revisitado Alchemy: Isaac Newton Revisited
Directory of Open Access Journals (Sweden)
Reginaldo Carmello Corrêa de Moraes
1997-01-01
Full Text Available Nota sobre publicações recentes que revelam aspectos pouco conhecidos da biblioteca de Newton - os numerosos textos religiosos, místicos e herméticos. Os biógrafos de Newton resistiram muito até admitir que os escritos esotéricos fossem genuíno interesse do sábio e que tivessem importância para entender sua trajetória intelectual. As publicações aqui indicadas afirmam o contrário, seguindo trilha aberta por ensaio pioneiro de J. M. Keynes (1946.A note on recent books about an unexplored side of Newtons library: religious, mystical and hermetic texts. Newton's biographers had resisted so much to believe that esoteric writings were in Newtons field of interest. Even if they recognized that, they didn't believe those strange works were important elements to understand his intellectual trajectory. The studies we mention here are saying just the opposite thing, exploring the way opened by the pioneer essay of J. M. Keynes (1946.
Mechanics and Newton-Cartan-like gravity on the Newton-Hooke space-time
International Nuclear Information System (INIS)
Tian Yu; Guo Hanying; Huang Chaoguang; Xu Zhan; Zhou Bin
2005-01-01
We focus on the dynamical aspects on Newton-Hooke space-time NH + mainly from the viewpoint of geometric contraction of the de Sitter spacetime with Beltrami metric. (The term spacetime is used to denote a space with non-degenerate metric, while the term space-time is used to denote a space with degenerate metric.) We first discuss the Newton-Hooke classical mechanics, especially the continuous medium mechanics, in this framework. Then, we establish a consistent theory of gravity on the Newton-Hooke space-time as a kind of Newton-Cartan-like theory, parallel to the Newton's gravity in the Galilei space-time. Finally, we give the Newton-Hooke invariant Schroedinger equation from the geometric contraction, where we can relate the conservative probability in some sense to the mass density in the Newton-Hooke continuous medium mechanics. Similar consideration may apply to the Newton-Hooke space-time NH - contracted from anti-de Sitter spacetime
Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging
Desmal, Abdulla; Bagci, Hakan
2014-01-01
with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm
Fractal aspects and convergence of Newton`s method
Energy Technology Data Exchange (ETDEWEB)
Drexler, M. [Oxford Univ. Computing Lab. (United Kingdom)
1996-12-31
Newton`s Method is a widely established iterative algorithm for solving non-linear systems. Its appeal lies in its great simplicity, easy generalization to multiple dimensions and a quadratic local convergence rate. Despite these features, little is known about its global behavior. In this paper, we will explain a seemingly random global convergence pattern using fractal concepts and show that the behavior of the residual is entirely explicable. We will also establish quantitative results for the convergence rates. Knowing the mechanism of fractal generation, we present a stabilization to the orthodox Newton method that remedies the fractal behavior and improves convergence.
A Line Search Multilevel Truncated Newton Algorithm for Computing the Optical Flow
Directory of Open Access Journals (Sweden)
Lluís Garrido
2015-06-01
Full Text Available We describe the implementation details and give the experimental results of three optimization algorithms for dense optical flow computation. In particular, using a line search strategy, we evaluate the performance of the unilevel truncated Newton method (LSTN, a multiresolution truncated Newton (MR/LSTN and a full multigrid truncated Newton (FMG/LSTN. We use three image sequences and four models of optical flow for performance evaluation. The FMG/LSTN algorithm is shown to lead to better optical flow estimation with less computational work than both the LSTN and MR/LSTN algorithms.
A combined modification of Newton`s method for systems of nonlinear equations
Energy Technology Data Exchange (ETDEWEB)
Monteiro, M.T.; Fernandes, E.M.G.P. [Universidade do Minho, Braga (Portugal)
1996-12-31
To improve the performance of Newton`s method for the solution of systems of nonlinear equations a modification to the Newton iteration is implemented. The modified step is taken as a linear combination of Newton step and steepest descent directions. In the paper we describe how the coefficients of the combination can be generated to make effective use of the two component steps. Numerical results that show the usefulness of the combined modification are presented.
Newton's gift how Sir Isaac Newton unlocked the system of the world
Berlinski, David
2000-01-01
Sir Isaac Newton, creator of the first and perhaps most important scientific theory, is a giant of the scientific era. Despite this, he has remained inaccessible to most modern readers, indisputably great but undeniably remote. In this witty, engaging, and often moving examination of Newton's life, David Berlinski recovers the man behind the mathematical breakthroughs. The story carries the reader from Newton's unremarkable childhood to his awkward undergraduate days at Cambridge through the astonishing year in which, working alone, he laid the foundation for his system of the world, his Principia Mathematica, and to the subsequent monumental feuds that poisoned his soul and wearied his supporters. An edifying appreciation of Newton's greatest accomplishment, Newton's Gift is also a touching celebration of a transcendent man.
International Nuclear Information System (INIS)
Culver, T.B.
1991-01-01
Several modifications of the linear-quadratic regulator (LQR) optimization algorithm are developed, and the computational efficiency of each algorithm with respect to groundwater remediation is evaluated. In each case, the optimization model is combined with a finite element groundwater flow and transport simulation model to determine the optimal time-varying pump-and-treat policy. The first modification of the LQR algorithm incorporated management periods, which are groups of simulation time steps during which the pumping policy remains constant. Management periods reduced the total computational demand, as measured by the CPU time, by as much as 85% compared to the time needed for the LQR solution without management periods. Complexity analysis revealed that computational savings of equal or greater magnitude can be expected in general for groundwater remediation applications and for many other applications of dynamic control. The LQR algorithm with management periods was further modified by assuming steady-state hydraulics within a management period (SSLQR), which simplifies the derivatives of the transition equation. A quasi-Newton differential dynamic programming (QNDDP) was formulated by approximating the complicated second derivatives of the transition equation using a Broyden rank-one approximation. QNDDP converged to the optimal policy for the test problem significantly faster than the LQR algorithm, requiring approximately half the computational time. With the test problem expanded to include the capacity of the treatment facility as a state variable, QNDDP with management periods can determine the optimal treatment facility capacity. With many management periods, the addition of the capital costs of the treatment facility changed the optimal policy so that the required treatment facility capacity was reduced
Newton's apple Isaac Newton and the English scientific renaissance
Aughton, Peter
2003-01-01
In the aftermath of the English Civil War, the Restoration overturned England's medieval outlook and a new way of looking at the world allowed the genius of Isaac Newton (b. 1642) and his contemporaries to flourish. Newton had a long and eventful life apart from his scentific discoveries. He was born at the beginnings of the Civil War, his studies were disrupted by the twin disasters of the Great Plague and the Fire of London; a brilliant and enigmatic genius, Newton dabbled in alchemy, wrote over a million words on the Bible, quarrelled with his contemporaries and spent his last years as Master of the Royal Mint as well as President of the Royal Society. This book sets Newton's life and work against this dramatic intellectual rebirth; among his friends and contemporaries were Samuel Pepys, the colourful diarist, John Evelyn, the eccentric antiquarian, the astronomers Edmund Halley and John Flamsteed, and Christopher Wren, the greatest architect of his age. They were all instrumental in the founding of the Ro...
Isaac Newton: Eighteenth-century Perspectives
Hall, A. Rupert
1999-05-01
This new product of the ever-flourishing Newton industry seems a bit far-fetched at first sight: who but a few specialists would be interested in the historiography of Newton biography in the eighteenth century? On closer inspection, this book by one of the most important Newton scholars of our day turns out to be of interest to a wider audience as well. It contains several biographical sketches of Newton, written in the decades after his death. The two most important ones are the Eloge by the French mathematician Bernard de Fontenelle and the Italian scholar Paolo Frisi's Elogio. The latter piece was hitherto unavailable in English translation. Both articles are well-written, interesting and sometimes even entertaining. They give us new insights into the way Newton was revered throughout Europe and how not even the slightest blemish on his personality or work could be tolerated. An example is the way in which Newton's famous controversy with Leibniz is treated: Newton is without hesitation presented as the wronged party. Hall has provided very useful historical introductions to the memoirs as well as footnotes where needed. Among the other articles discussed is a well-known memoir by John Conduitt, who was married to Newton's niece. This memoir, substantial parts of which are included in this volume, has been a major source of personal information for Newton biographers up to this day. In a concluding chapter, Hall gives a very interesting overview of the later history of Newton biography, in which he describes the gradual change from adoration to a more critical approach in Newton's various biographers. In short, this is a very useful addition to the existing biographical literature on Newton. A J Kox
3D CSEM data inversion using Newton and Halley class methods
Amaya, M.; Hansen, K. R.; Morten, J. P.
2016-05-01
For the first time in 3D controlled source electromagnetic data inversion, we explore the use of the Newton and the Halley optimization methods, which may show their potential when the cost function has a complex topology. The inversion is formulated as a constrained nonlinear least-squares problem which is solved by iterative optimization. These methods require the derivatives up to second order of the residuals with respect to model parameters. We show how Green's functions determine the high-order derivatives, and develop a diagrammatical representation of the residual derivatives. The Green's functions are efficiently calculated on-the-fly, making use of a finite-difference frequency-domain forward modelling code based on a multi-frontal sparse direct solver. This allow us to build the second-order derivatives of the residuals keeping the memory cost in the same order as in a Gauss-Newton (GN) scheme. Model updates are computed with a trust-region based conjugate-gradient solver which does not require the computation of a stabilizer. We present inversion results for a synthetic survey and compare the GN, Newton, and super-Halley optimization schemes, and consider two different approaches to set the initial trust-region radius. Our analysis shows that the Newton and super-Halley schemes, using the same regularization configuration, add significant information to the inversion so that the convergence is reached by different paths. In our simple resistivity model examples, the convergence speed of the Newton and the super-Halley schemes are either similar or slightly superior with respect to the convergence speed of the GN scheme, close to the minimum of the cost function. Due to the current noise levels and other measurement inaccuracies in geophysical investigations, this advantageous behaviour is at present of low consequence, but may, with the further improvement of geophysical data acquisition, be an argument for more accurate higher-order methods like those
Newton and scholastic philosophy.
Levitin, Dmitri
2016-03-01
This article examines Isaac Newton's engagement with scholastic natural philosophy. In doing so, it makes two major historiographical interventions. First of all, the recent claim that Newton's use of the concepts of analysis and synthesis was derived from the Aristotelian regressus tradition is challenged on the basis of bibliographical, palaeographical and intellectual evidence. Consequently, a new, contextual explanation is offered for Newton's use of these concepts. Second, it will be shown that some of Newton's most famous pronouncements - from the General Scholium appended to the second edition of the Principia (1713) and from elsewhere - are simply incomprehensible without an understanding of specific scholastic terminology and its later reception, and that this impacts in quite significant ways on how we understand Newton's natural philosophy more generally. Contrary to the recent historiographical near-consensus, Newton did not hold an elaborate metaphysics, and his seemingly 'metaphysical' statements were in fact anti-scholastic polemical salvoes. The whole investigation will permit us a brief reconsideration of the relationship between the self-proclaimed 'new' natural philosophy and its scholastic predecessors.
Lojasiewicz exponents and Newton polyhedra
International Nuclear Information System (INIS)
Pham Tien Son
2006-07-01
In this paper we obtain the exact value of the Lojasiewicz exponent at the origin of analytic map germs on K n (K = R or C under the Newton non-degeneracy condition, using information from their Newton polyhedra. We also give some conclusions on Newton non-degenerate analytic map germs. As a consequence, we obtain a link between Newton non-degenerate ideals and their integral closures, thus leading to a simple proof of a result of Saia. Similar results are also considered to polynomial maps which are Newton non-degenerate at infinity. (author)
Efficient Tridiagonal Preconditioner for the Matrix-Free Truncated Newton Method
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Vlček, Jan
2014-01-01
Roč. 235, 25 May (2014), s. 394-407 ISSN 0096-3003 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : unconstrained optimization * large scale optimization * matrix-free truncated Newton method * preconditioned conjugate gradient method * preconditioners obtained by the directional differentiation * numerical algorithms Subject RIV: BA - General Mathematics Impact factor: 1.551, year: 2014
Hendry, Archibald W.
2007-01-01
Isaac Newton may have seen an apple fall, but it was Robert Hooke who had a better idea of where it would land. No one really knows whether or not Isaac Newton actually saw an apple fall in his garden. Supposedly it took place in 1666, but it was a tale he told in his old age more than 60 years later, a time when his memory was failing and his…
International Nuclear Information System (INIS)
Bogdan, Zeljko; Cehil, Mislav
2007-01-01
Long-term gas purchase contracts usually determine delivery and payment for gas on the regular hourly basis, independently of demand side consumption. In order to use fuel gas in an economically viable way, optimization of gas distribution for covering consumption must be introduced. In this paper, a mathematical model of the electric utility system which is used for optimization of gas distribution over electric generators is presented. The utility system comprises installed capacity of 1500 MW of thermal power plants, 400 MW of combined heat and power plants, 330 MW of a nuclear power plant and 1600 MW of hydro power plants. Based on known demand curve the optimization model selects plants according to the prescribed criteria. Firstly it engages run-of-river hydro plants, then the public cogeneration plants, the nuclear plant and thermal power plants. Storage hydro plants are used for covering peak load consumption. In case of shortage of installed capacity, the cross-border purchase is allowed. Usage of dual fuel equipment (gas-oil), which is available in some thermal plants, is also controlled by the optimization procedure. It is shown that by using such a model it is possible to properly plan the amount of fuel gas which will be contracted. The contracted amount can easily be distributed over generators efficiently and without losses (no breaks in delivery). The model helps in optimizing of fuel gas-oil ratio for plants with combined burners and enables planning of power plants overhauls over a year in a viable and efficient way. (author)
Quasi-Newton methods for the acceleration of multi-physics codes
CSIR Research Space (South Africa)
Haelterman, R
2017-08-01
Full Text Available .E. Dennis, J.J. More´, Quasi-Newton methods: motivation and theory. SIAM Rev. 19, pp. 46–89 (1977) [11] J.E. Dennis, R.B. Schnabel, Least Change Secant Updates for quasi- Newton methods. SIAM Rev. 21, pp. 443–459 (1979) [12] G. Dhondt, CalculiX CrunchiX USER...) [25] J.M. Martinez, M.C. Zambaldi, An Inverse Column-Updating Method for solving large-scale nonlinear systems of equations. Optim. Methods Softw. 1, pp. 129–140 (1992) [26] J.M. Martinez, On the convergence of the column-updating method. Comp. Appl...
Parallel Quasi Newton Algorithms for Large Scale Non Linear Unconstrained Optimization
International Nuclear Information System (INIS)
Rahman, M. A.; Basarudin, T.
1997-01-01
This paper discusses about Quasi Newton (QN) method to solve non-linear unconstrained minimization problems. One of many important of QN method is choice of matrix Hk. to be positive definite and satisfies to QN method. Our interest here is the parallel QN methods which will suite for the solution of large-scale optimization problems. The QN methods became less attractive in large-scale problems because of the storage and computational requirements. How ever, it is often the case that the Hessian is space matrix. In this paper we include the mechanism of how to reduce the Hessian update and hold the Hessian properties.One major reason of our research is that the QN method may be good in solving certain type of minimization problems, but it is efficiency degenerate when is it applied to solve other category of problems. For this reason, we use an algorithm containing several direction strategies which are processed in parallel. We shall attempt to parallelized algorithm by exploring different search directions which are generated by various QN update during the minimization process. The different line search strategies will be employed simultaneously in the process of locating the minimum along each direction.The code of algorithm will be written in Occam language 2 which is run on the transputer machine
Nunan, E.
1973-01-01
Presents a brief biography of Sir Isaac Newton, lists contemporary scientists and scientific developments and discusses Newton's optical research and conceptual position concerning the nature of light. (JR)
Bryson, Dean Edward
of low-fidelity evaluations required. This narrowing of the search domain also alleviates the burden on the surrogate model corrections between the low- and high-fidelity data. Rather than requiring the surrogate to be accurate in a hyper-volume bounded by the trust region, the model needs only to be accurate along the forward-looking search direction. Maintaining the approximate inverse Hessian also allows the multifidelity algorithm to revert to high-fidelity optimization at any time. In contrast, the standard approach has no memory of the previously-computed high-fidelity data. The primary disadvantage of the proposed algorithm is that it may require modifications to the optimization software, whereas standard optimizers may be used as black-box drivers in the typical trust region method. A multifidelity, multidisciplinary simulation of aeroelastic vehicle performance is developed to demonstrate the optimization method. The numerical physics models include body-fitted Euler computational fluid dynamics; linear, panel aerodynamics; linear, finite-element computational structural mechanics; and reduced, modal structural bases. A central element of the multifidelity, multidisciplinary framework is a shared parametric, attributed geometric representation that ensures the analysis inputs are consistent between disciplines and fidelities. The attributed geometry also enables the transfer of data between disciplines. The new optimization algorithm, a standard trust region approach, and a single-fidelity quasi-Newton method are compared for a series of analytic test functions, using both polynomial chaos expansions and kriging to correct discrepancies between fidelity levels of data. In the aggregate, the new method requires fewer high-fidelity evaluations than the trust region approach in 51% of cases, and the same number of evaluations in 18%. The new approach also requires fewer low-fidelity evaluations, by up to an order of magnitude, in almost all cases. The efficacy
Ant colony search algorithm for optimal reactive power optimization
Directory of Open Access Journals (Sweden)
Lenin K.
2006-01-01
Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.
Energy Technology Data Exchange (ETDEWEB)
Costa, Geraldo R.M. da [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia
1994-12-31
This paper discusses, partially, the advantages and the disadvantages of the optimal power flow. It shows some of the difficulties of implementation and proposes solutions. An analysis is made comparing the power flow, BIGPOWER/CESP, and the optimal power flow, FPO/SEL, developed by the author, when applied to the CEPEL-ELETRONORTE and CESP systems. (author) 8 refs., 5 tabs.
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Simonetto, Andrea
2018-03-01
This paper considers distribution networks featuring inverter-interfaced distributed energy resources, and develops distributed feedback controllers that continuously drive the inverter output powers to solutions of AC optimal power flow (OPF) problems. Particularly, the controllers update the power setpoints based on voltage measurements as well as given (time-varying) OPF targets, and entail elementary operations implementable onto low-cost microcontrollers that accompany power-electronics interfaces of gateways and inverters. The design of the control framework is based on suitable linear approximations of the AC power-flow equations as well as Lagrangian regularization methods. Convergence and OPF-target tracking capabilities of the controllers are analytically established. Overall, the proposed method allows to bypass traditional hierarchical setups where feedback control and optimization operate at distinct time scales, and to enable real-time optimization of distribution systems.
Illustrating Newton's Second Law with the Automobile Coast-Down Test.
Bryan, Ronald A.; And Others
1988-01-01
Describes a run test of automobiles for applying Newton's second law of motion and the concept of power. Explains some automobile thought-experiments and provides the method and data of an actual coast-down test. (YP)
The Newton papers the strange and true odyssey of Isaac Newton's manuscripts
Dry, Sarah
2014-01-01
When Isaac Newton died at 85 without a will on March 20, 1727, he left a mass of disorganized papers-upwards of 8 million words-that presented an immediate challenge to his heirs. Most of these writings, on subjects ranging from secret alchemical formulas to impassioned rejections of the Holy Trinity to notes and calculations on his core discoveries in calculus, universal gravitation, and optics, were summarily dismissed by his heirs as "not fit to be printed." Rabidly heretical, alchemically obsessed, and possibly even mad, the Newton presented in these papers threatened to undermine not just his personal reputation but the status of science itself. As a result, the private papers of the world's greatest scientist remained hidden to all but a select few for over two hundred years. In The Newton Papers, Sarah Dry divulges the story of how this secret archive finally came to light-and the complex and contradictory man it revealed. Covering a broad swath of history, Dry explores who controlled Newton's legacy, ...
Black Hole Results from XMM-Newton
Directory of Open Access Journals (Sweden)
Norbert Schartel
2014-12-01
Full Text Available XMM-Newton is one of the most successful science missions of the European Space Agency. Since 2003 every year about 300 articles are published in refereed journals making directly use of XMM-Newton data. All XMM-Newton calls for observing proposals are highly oversubscribed by factors of six and more. In the following some scientic highlights of XMM-Newton observations of black holes are summarized.
Optimization of power system operation
Zhu, Jizhong
2015-01-01
This book applies the latest applications of new technologies topower system operation and analysis, including new and importantareas that are not covered in the previous edition. Optimization of Power System Operation covers both traditional andmodern technologies, including power flow analysis, steady-statesecurity region analysis, security constrained economic dispatch,multi-area system economic dispatch, unit commitment, optimal powerflow, smart grid operation, optimal load shed, optimalreconfiguration of distribution network, power system uncertaintyanalysis, power system sensitivity analysis, analytic hierarchicalprocess, neural network, fuzzy theory, genetic algorithm,evolutionary programming, and particle swarm optimization, amongothers. New topics such as the wheeling model, multi-areawheeling, the total transfer capability computation in multipleareas, are also addressed. The new edition of this book continues to provide engineers andac demics with a complete picture of the optimization of techn...
Isaac Newton: Man, Myth, and Mathematics.
Rickey, V. Frederick
1987-01-01
This article was written in part to celebrate the anniversaries of landmark mathematical works by Newton and Descartes. It's other purpose is to dispel some myths about Sir Isaac Newton and to encourage readers to read Newton's works. (PK)
Ryder, L. H.
1987-01-01
Discusses the history of scientific thought in terms of the theories of inertia and absolute space, relativity and gravitation. Describes how Sir Isaac Newton used the work of earlier scholars in his theories and how Albert Einstein used Newton's theories in his. (CW)
Thermodynamic optimization of power plants
Haseli, Y.
2011-01-01
Thermodynamic Optimization of Power Plants aims to establish and illustrate comparative multi-criteria optimization of various models and configurations of power plants. It intends to show what optimization objectives one may define on the basis of the thermodynamic laws, and how they can be applied
International Nuclear Information System (INIS)
Kobayashi, Yoko; Aiyoshi, Eitaro
2001-01-01
Fast and accurate prediction of three-dimensional (3D) power distribution is essential in a boiling water reactor (BWR). The prediction method of 3D power distribution in BWR is developed using the neural network. Application of the neural network starts with selecting the learning algorithm. In the proposed method, we use the learning algorithms based on a class of Quasi-Newton optimization techniques called Self-Scaling Variable Metric (SSVM) methods. Prediction studies were done for a core of actual BWR plant with octant symmetry. Compared to classical Quasi-Newton methods, it is shown that the SSVM method reduces the number of iterations in the learning mode. The results of prediction demonstrate that the neural network can predict 3D power distribution of BWR reasonably well. The proposed method will be very useful for BWR loading pattern optimization problems where 3D power distribution for a huge number of loading patterns (LPs) must be performed. (author)
Newton-Cartan gravity revisited
Andringa, Roel
2016-01-01
In this research Newton's old theory of gravity is rederived using an algebraic approach known as the gauging procedure. The resulting theory is Newton's theory in the mathematical language of Einstein's General Relativity theory, in which gravity is spacetime curvature. The gauging procedure sheds
May, Andrew
2015-01-01
Isaac Newton had an extraordinary idea. He believed the physical universe and everything in it could be described in exact detail using mathematical relationships. He formulated a law of gravity that explained why objects fall downwards, how the moon causes the tides, and why planets and comets orbit the sun. While Newton's work has been added to over the years, his basic approach remains at the heart of the scientific worldview. Yet Newton's own had little in common with that of a modern scientist. He believed the universe was created to a precise and rational design - a design that was fully
Some Peculiarities of Newton-Hooke Space-Times
Tian, Yu
2011-01-01
Newton-Hooke space-times are the non-relativistic limit of (anti-)de Sitter space-times. We investigate some peculiar facts about the Newton-Hooke space-times, among which the "extraordinary Newton-Hooke quantum mechanics" and the "anomalous Newton-Hooke space-times" are discussed in detail. Analysis on the Lagrangian/action formalism is performed in the discussion of the Newton-Hooke quantum mechanics, where the path integral point of view plays an important role, and the physically measurab...
NEWTON'S SECOND LAW OF MOTION, F=MA; EULER'S OR NEWTON'S?
Ajay Sharma
2017-01-01
Objective: F =ma is taught as Newton’s second law of motion all over the world. But it was given by Euler in 1775, forty-eight years after the death of Newton. It is debated here with scientific logic. Methods/Statistical analysis: The discussion partially deals with history of science so various aspects are quoted from original references. Newton did not give any equation in the Principia for second, third laws motion and law of gravitation. Conceptually, in Newton’s time, neither accele...
Load flow optimization and optimal power flow
Das, J C
2017-01-01
This book discusses the major aspects of load flow, optimization, optimal load flow, and culminates in modern heuristic optimization techniques and evolutionary programming. In the deregulated environment, the economic provision of electrical power to consumers requires knowledge of maintaining a certain power quality and load flow. Many case studies and practical examples are included to emphasize real-world applications. The problems at the end of each chapter can be solved by hand calculations without having to use computer software. The appendices are devoted to calculations of line and cable constants, and solutions to the problems are included throughout the book.
Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Admed S. [University of Minnesota; Sidiropoulos, Nicholas D. [University of Minnesota; Taylor, Josh A. [University of Toronto
2018-01-12
This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successive convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.
MPPT for Photovoltaic Modules via Newton-Like Extremum Seeking Control
Directory of Open Access Journals (Sweden)
Ramon Leyva
2012-07-01
Full Text Available The paper adapts the Newton-like Extremum-Seeking Control technique to extract the maximum power from photovoltaic panels. This technique uses the gradient and Hessian of the panel characteristic in order to approximate the operating point to its optimum. The paper describes in detail the gradient and Hessian estimations carried out by means of sinusoidal dithering signals. Furthermore, we compare the proposed technique with the common Extremum Seeking Control that only uses the gradient. The comparison is done by means of PSIM simulations and it shows the different transient behaviors and the faster response of the Newton-like Extremum-Seeking Control solution.
Truncated Newton-Raphson Methods for Quasicontinuum Simulations
National Research Council Canada - National Science Library
Liang, Yu; Kanapady, Ramdev; Chung, Peter W
2006-01-01
.... In this research, we report the effectiveness of the truncated Newton-Raphson method and quasi-Newton method with low-rank Hessian update strategy that are evaluated against the full Newton-Raphson...
On optimization of power production
Energy Technology Data Exchange (ETDEWEB)
Feltenmark, S.
1997-01-01
Short-term optimization of power production is treated. It concerns the problem of determining a production schedule for a power system, which minimizes the total cost of production, while satisfying various constraints. The thesis consists of an introductory chapter, four chapters that each concerns a specific problem area (economic dispatch, unit commitment, hydro power planning and cogeneration optimization), plus a chapter with relevant theory. The emphasis of the thesis is on the mathematical structures that arise in problems in this field, and how to exploit them algorithmically. A recurring theme is convexification, either implicit, by dualization, or explicit, as in our approach to hydro power optimization. 134 refs
Decentralized Quasi-Newton Methods
Eisen, Mark; Mokhtari, Aryan; Ribeiro, Alejandro
2017-05-01
We introduce the decentralized Broyden-Fletcher-Goldfarb-Shanno (D-BFGS) method as a variation of the BFGS quasi-Newton method for solving decentralized optimization problems. The D-BFGS method is of interest in problems that are not well conditioned, making first order decentralized methods ineffective, and in which second order information is not readily available, making second order decentralized methods impossible. D-BFGS is a fully distributed algorithm in which nodes approximate curvature information of themselves and their neighbors through the satisfaction of a secant condition. We additionally provide a formulation of the algorithm in asynchronous settings. Convergence of D-BFGS is established formally in both the synchronous and asynchronous settings and strong performance advantages relative to first order methods are shown numerically.
Turning around Newton's Second Law
Goff, John Eric
2004-01-01
Conceptual and quantitative difficulties surrounding Newton's second law often arise among introductory physics students. Simply turning around how one expresses Newton's second law may assist students in their understanding of a deceptively simple-looking equation.
Economic/Environmental power dispatch for power systems including wind farms
Directory of Open Access Journals (Sweden)
Imen BEN JAOUED
2015-05-01
Full Text Available This paper presents the problem of the Economic/Environmental power Dispatching (EED of hybrid power system including wind energies. The power flow model for a stall regulated fixed speed wind generator (SR-FSWG system is discussed to assess the steady-state condition of power systems with wind farms. Modified Newton-Raphson algorithm including SR-FSWG is used to solve the load flow equations in which the state variables of the wind generators are combined with the nodal voltage magnitudes and angles of the entire network. The EED problem is a nonlinear constrained multi-objective optimization problem, two competing fuel cost and pollutant emission objectives should be minimized simultaneously while satisfying certain system constraints. In this paper, the resolution is done by the algorithm multi-objective particle swarm optimization (MOPSO. The effectiveness of the proposed method has been verified on IEEE 6-generator 30-bus test system and using MATLAB software package.
NITSOL: A Newton iterative solver for nonlinear systems
Energy Technology Data Exchange (ETDEWEB)
Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States)
1996-12-31
Newton iterative methods, also known as truncated Newton methods, are implementations of Newton`s method in which the linear systems that characterize Newton steps are solved approximately using iterative linear algebra methods. Here, we outline a well-developed Newton iterative algorithm together with a Fortran implementation called NITSOL. The basic algorithm is an inexact Newton method globalized by backtracking, in which each initial trial step is determined by applying an iterative linear solver until an inexact Newton criterion is satisfied. In the implementation, the user can specify inexact Newton criteria in several ways and select an iterative linear solver from among several popular {open_quotes}transpose-free{close_quotes} Krylov subspace methods. Jacobian-vector products used by the Krylov solver can be either evaluated analytically with a user-supplied routine or approximated using finite differences of function values. A flexible interface permits a wide variety of preconditioning strategies and allows the user to define a preconditioner and optionally update it periodically. We give details of these and other features and demonstrate the performance of the implementation on a representative set of test problems.
DEFF Research Database (Denmark)
Frandsen, P. E.; Jonasson, K.; Nielsen, Hans Bruun
1999-01-01
This lecture note is intended for use in the course 04212 Optimization and Data Fitting at the Technincal University of Denmark. It covers about 25% of the curriculum. Hopefully, the note may be useful also to interested persons not participating in that course. The aim of the note is to give...... an introduction to algorithms for unconstrained optimization. We present Conjugate Gradient, Damped Newton and Quasi Newton methods together with the relevant theoretical background. The reader is assumed to be familiar with algorithms for solving linear and nonlinear system of equations, at a level corresponding...
Huang, Chao-Guang; Guo, Han-Ying; Tian, Yu; Xu, Zhan; Zhou, Bin
2004-01-01
Based on the Beltrami-de Sitter spacetime, we present the Newton-Hooke model under the Newton-Hooke contraction of the $BdS$ spacetime with respect to the transformation group, algebra and geometry. It is shown that in Newton-Hooke space-time, there are inertial-type coordinate systems and inertial-type observers, which move along straight lines with uniform velocity. And they are invariant under the Newton-Hooke group. In order to determine uniquely the Newton-Hooke limit, we propose the Gal...
Artificial intelligence in power system optimization
Ongsakul, Weerakorn
2013-01-01
With the considerable increase of AI applications, AI is being increasingly used to solve optimization problems in engineering. In the past two decades, the applications of artificial intelligence in power systems have attracted much research. This book covers the current level of applications of artificial intelligence to the optimization problems in power systems. This book serves as a textbook for graduate students in electric power system management and is also be useful for those who are interested in using artificial intelligence in power system optimization.
An Optimal Power Flow (OPF) Method with Improved Power System Stability
DEFF Research Database (Denmark)
Su, Chi; Chen, Zhe
2010-01-01
This paper proposes an optimal power flow (OPF) method taking into account small signal stability as additional constraints. Particle swarm optimization (PSO) algorithm is adopted to realize the OPF process. The method is programmed in MATLAB and implemented to a nine-bus test power system which...... has large-scale wind power integration. The results show the ability of the proposed method to find optimal (or near-optimal) operating points in different cases. Based on these results, the analysis of the impacts of wind power integration on the system small signal stability has been conducted....
Electric power system applications of optimization
Momoh, James A
2008-01-01
Introduction Structure of a Generic Electric Power System Power System Models Power System Control Power System Security Assessment Power System Optimization as a Function of Time Review of Optimization Techniques Applicable to Power Systems Electric Power System Models Complex Power Concepts Three-Phase Systems Per Unit Representation Synchronous Machine Modeling Reactive Capability Limits Prime Movers and Governing Systems Automatic Gain Control Transmission Subsystems Y-Bus Incorporating the Transformer Effect Load Models Available Transfer Capability Illustrative Examples Power
LTE RF subsystem power consumption modeling
DEFF Research Database (Denmark)
Musiige, Deogratius; Vincent, Laulagnet; Anton, François
2012-01-01
the power consumption. An analysis of modeling approaches was conducted and the modeling approach with the least sum of squared errors is used to compute the emulation model. The neural networks applying the Pseudo-Gauss Newton algorithm for optimization proved to have the least sum of squared errors....... This approach was validated against a real life scenario with a relative error of 5.77%....
Newton flows for elliptic functions
Helminck, G.F.; Twilt, F.
2015-01-01
Newton flows are dynamical systems generated by a continuous, desingularized Newton method for mappings from a Euclidean space to itself. We focus on the special case of meromorphic functions on the complex plane. Inspired by the analogy between the rational (complex) and the elliptic (i.e., doubly
Introducing Newton and classical physics
Rankin, William
2002-01-01
The rainbow, the moon, a spinning top, a comet, the ebb and flood of the oceans ...a falling apple. There is only one universe and it fell to Isaac Newton to discover its secrets. Newton was arguably the greatest scientific genius of all time, and yet he remains a mysterious figure. Written and illustrated by William Rankin, "Introducting Newton and Classical Physics" explains the extraordinary ideas of a man who sifted through the accumulated knowledge of centuries, tossed out mistaken beliefs, and single-handedly made enormous advances in mathematics, mechanics and optics. By the age of 25, entirely self-taught, he had sketched out a system of the world. Einstein's theories are unthinkable without Newton's founding system. He was also a secret heretic, a mystic and an alchemist, the man of whom Edmund Halley said "Nearer to the gods may no man approach!". This is an ideal companion volume to "Introducing Einstein".
Hall, Alfred Rupert
1982-01-01
The near century (1630–1720) that separates the important astronomical findings of Galileo Galilei (1564–1642) and the vastly influential mathematical work of Sir Isaac Newton (1642–1727) represents a pivotal stage of transition in the history of science. Tracing the revolution in physics initiated by Galileo and culminating in Newton's achievements, this book surveys the work of Huygens, Leeuwenhoek, Boyle, Descartes, and others. 35 illustrations.
Optimal Power Flow by Interior Point and Non Interior Point Modern Optimization Algorithms
Directory of Open Access Journals (Sweden)
Marcin Połomski
2013-03-01
Full Text Available The idea of optimal power flow (OPF is to determine the optimal settings for control variables while respecting various constraints, and in general it is related to power system operational and planning optimization problems. A vast number of optimization methods have been applied to solve the OPF problem, but their performance is highly dependent on the size of a power system being optimized. The development of the OPF recently has tracked significant progress both in numerical optimization techniques and computer techniques application. In recent years, application of interior point methods to solve OPF problem has been paid great attention. This is due to the fact that IP methods are among the fastest algorithms, well suited to solve large-scale nonlinear optimization problems. This paper presents the primal-dual interior point method based optimal power flow algorithm and new variant of the non interior point method algorithm with application to optimal power flow problem. Described algorithms were implemented in custom software. The experiments show the usefulness of computational software and implemented algorithms for solving the optimal power flow problem, including the system model sizes comparable to the size of the National Power System.
A solution to the optimal power flow using multi-verse optimizer
Directory of Open Access Journals (Sweden)
Bachir Bentouati
2016-12-01
Full Text Available In this work, the most common problem of the modern power system named optimal power flow (OPF is optimized using the novel meta-heuristic optimization Multi-verse Optimizer(MVO algorithm. In order to solve the optimal power flow problem, the IEEE 30-bus and IEEE 57-bus systems are used. MVO is applied to solve the proposed problem. The problems considered in the OPF problem are fuel cost reduction, voltage profile improvement, voltage stability enhancement. The obtained results are compared with recently published meta-heuristics. Simulation results clearly reveal the effectiveness and the rapidity of the proposed algorithm for solving the OPF problem.
Subsampled Hessian Newton Methods for Supervised Learning.
Wang, Chien-Chih; Huang, Chun-Heng; Lin, Chih-Jen
2015-08-01
Newton methods can be applied in many supervised learning approaches. However, for large-scale data, the use of the whole Hessian matrix can be time-consuming. Recently, subsampled Newton methods have been proposed to reduce the computational time by using only a subset of data for calculating an approximation of the Hessian matrix. Unfortunately, we find that in some situations, the running speed is worse than the standard Newton method because cheaper but less accurate search directions are used. In this work, we propose some novel techniques to improve the existing subsampled Hessian Newton method. The main idea is to solve a two-dimensional subproblem per iteration to adjust the search direction to better minimize the second-order approximation of the function value. We prove the theoretical convergence of the proposed method. Experiments on logistic regression, linear SVM, maximum entropy, and deep networks indicate that our techniques significantly reduce the running time of the subsampled Hessian Newton method. The resulting algorithm becomes a compelling alternative to the standard Newton method for large-scale data classification.
Joint optimization of regional water-power systems
DEFF Research Database (Denmark)
Cardenal, Silvio Javier Pereira; Mo, Birger; Gjelsvik, Anders
2016-01-01
using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs...... for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost...... of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved...
Newton's Cradle in Physics Education
Gauld, Colin F.
2006-01-01
Newton's Cradle is a series of bifilar pendulums used in physics classrooms to demonstrate the role of the principles of conservation of momentum and kinetic energy in elastic collisions. The paper reviews the way in which textbooks use Newton's Cradle and points out the unsatisfactory nature of these treatments in almost all cases. The literature…
Newton's Metaphysics of Space as God's Emanative Effect
Jacquette, Dale
2014-09-01
In several of his writings, Isaac Newton proposed that physical space is God's "emanative effect" or "sensorium," revealing something interesting about the metaphysics underlying his mathematical physics. Newton's conjectures depart from Plato and Aristotle's metaphysics of space and from classical and Cambridge Neoplatonism. Present-day philosophical concepts of supervenience clarify Newton's ideas about space and offer a portrait of Newton not only as a mathematical physicist but an independent-minded rationalist philosopher.
Low-rank Quasi-Newton updates for Robust Jacobian lagging in Newton methods
International Nuclear Information System (INIS)
Brown, J.; Brune, P.
2013-01-01
Newton-Krylov methods are standard tools for solving nonlinear problems. A common approach is to 'lag' the Jacobian when assembly or preconditioner setup is computationally expensive, in exchange for some degradation in the convergence rate and robustness. We show that this degradation may be partially mitigated by using the lagged Jacobian as an initial operator in a quasi-Newton method, which applies unassembled low-rank updates to the Jacobian until the next full reassembly. We demonstrate the effectiveness of this technique on problems in glaciology and elasticity. (authors)
Running Newton constant, improved gravitational actions, and galaxy rotation curves
International Nuclear Information System (INIS)
Reuter, M.; Weyer, H.
2004-01-01
A renormalization group (RG) improvement of the Einstein-Hilbert action is performed which promotes Newton's constant and the cosmological constant to scalar functions on spacetime. They arise from solutions of an exact RG equation by means of a 'cutoff identification' which associates RG scales to the points of spacetime. The resulting modified Einstein equations for spherically symmetric, static spacetimes are derived and analyzed in detail. The modifications of the Newtonian limit due to the RG evolution are obtained for the general case. As an application, the viability of a scenario is investigated where strong quantum effects in the infrared cause Newton's constant to grow at large (astrophysical) distances. For two specific RG trajectories exact vacuum spacetimes modifying the Schwarzschild metric are obtained by means of a solution-generating Weyl transformation. Their possible relevance to the problem of the observed approximately flat galaxy rotation curves is discussed. It is found that a power law running of Newton's constant with a small exponent of the order 10 -6 would account for their non-Keplerian behavior without having to postulate the presence of any dark matter in the galactic halo
Newton flows for elliptic functions: A pilot study
Twilt, F.; Helminck, G.F.; Snuverink, M.; van den Brug, L.
2008-01-01
Elliptic Newton flows are generated by a continuous, desingularized Newton method for doubly periodic meromorphic functions on the complex plane. In the special case, where the functions underlying these elliptic Newton flows are of second-order, we introduce various, closely related, concepts of
Optimization of a wearable power system
Energy Technology Data Exchange (ETDEWEB)
Kovacevic, I.; Round, S. D.; Kolar, J. W.; Boulouchos, K.
2008-07-01
In this paper the optimization of wearable power system comprising of an internal combustion engine, motor/generator, inverter/rectifier, Li-battery pack, DC/DC converters, and controller is performed. The Wearable Power System must have the capability to supply an average 20 W for 4 days with peak power of 200 W and have a system weight less then 4 kg. The main objectives are to select the engine, fuel and battery type, to match the weight of fuel and the number of battery cells, to find the optimal working point of engine and minimizing the system weight. The minimization problem is defined in Matlab as a nonlinear constrained optimization task. The optimization procedure returns the optimal system design parameters: the Li-polymer battery with eight cells connected in series for a 28 V DC output voltage, the selection of gasoline/oil fuel mixture and the optimal engine working point of 12 krpm for a 4.5 cm{sup 3} 4-stroke engine. (author)
A direct Newton-Raphson economic dispatch
International Nuclear Information System (INIS)
Lin, C.E.; Chen, S.T.; Huang, C.L.
1992-01-01
This paper presents a new method to solve the real-time economic dispatch problem using an alternative Jacobian matrix considering system constraints. The transition loss is approximately expressed in terms of generating powers and the generalized generation shift distribution factor. Based on this expression, a set of simultaneous equations of Jacobian matrix is formulated and solved by the Newton-Raphson method. The proposed method eliminates the penalty factor calculation, and solves the economic dispatch directly. The proposed method obtains very fast solution speed and maintains good accuracy from test examples. It is good approach to solve the economic dispatch problem
Virtanen, J.E.; Maten, ter E.J.W.; Beelen, T.G.J.; Honkala, M.; Hulkkonen, M.
2011-01-01
Poor initial conditions for Harmonic Balance (HB) analysis of freerunning oscillators may lead to divergence of the direct Newton-Raphson method or may prevent to find the solution within an optimization approach. We exploit time integration to obtain estimates for the oscillation frequency and for
Deterministic methods for multi-control fuel loading optimization
Rahman, Fariz B. Abdul
We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.
Optimal configuration of power grid sources based on optimal particle swarm algorithm
Wen, Yuanhua
2018-04-01
In order to optimize the distribution problem of power grid sources, an optimized particle swarm optimization algorithm is proposed. First, the concept of multi-objective optimization and the Pareto solution set are enumerated. Then, the performance of the classical genetic algorithm, the classical particle swarm optimization algorithm and the improved particle swarm optimization algorithm are analyzed. The three algorithms are simulated respectively. Compared with the test results of each algorithm, the superiority of the algorithm in convergence and optimization performance is proved, which lays the foundation for subsequent micro-grid power optimization configuration solution.
Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems
Ghaffari, Azad
Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty
Metaheuristic optimization in power engineering
Radosavljević, Jordan
2018-01-01
This book describes the principles of solving various problems in power engineering via the application of selected metaheuristic optimization methods including genetic algorithms, particle swarm optimization, and the gravitational search algorithm.
Choosing the forcing terms in an inexact Newton method
Energy Technology Data Exchange (ETDEWEB)
Eisenstat, S.C. [Yale Univ., New Haven, CT (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States)
1994-12-31
An inexact Newton method is a generalization of Newton`s method for solving F(x) = 0, F: {Re}{sup n} {r_arrow} {Re}{sup n}, in which each step reduces the norm of the local linear model of F. At the kth iteration, the norm reduction is usefully expressed by the inexact Newton condition where x{sub k} is the current approximate solution and s{sub k} is the step. In many applications, an {eta}{sub k} is first specified, and then an S{sub k} is found for which the inexact Newton condition holds. Thus {eta}{sub k} is often called a {open_quotes}forcing term{close_quotes}. In practice, the choice of the forcing terms is usually critical to the efficiency of the method and can affect robustness as well. Here, the authors outline several promising choices, discuss theoretical support for them, and compare their performance in a Newton iterative (truncated Newton) method applied to several large-scale problems.
Virtanen, J.E.; Maten, ter E.J.W.; Honkala, M.; Hulkkonen, M.; Günther, M.; Bartel, A.; Brunk, M.; Schoeps, S.; Striebel, M.
2012-01-01
Poor initial conditions for Harmonic Balance (HB) analysis of free-running oscillators may lead to divergence of the direct Newton-Raphson method or may prevent to find the solution within an optimization approach. We exploit time integration to obtain estimates for the oscillation frequency and for
Newton-like methods for Navier-Stokes solution
Qin, N.; Xu, X.; Richards, B. E.
1992-12-01
The paper reports on Newton-like methods called SFDN-alpha-GMRES and SQN-alpha-GMRES methods that have been devised and proven as powerful schemes for large nonlinear problems typical of viscous compressible Navier-Stokes solutions. They can be applied using a partially converged solution from a conventional explicit or approximate implicit method. Developments have included the efficient parallelization of the schemes on a distributed memory parallel computer. The methods are illustrated using a RISC workstation and a transputer parallel system respectively to solve a hypersonic vortical flow.
Transmission tariffs based on optimal power flow
International Nuclear Information System (INIS)
Wangensteen, Ivar; Gjelsvik, Anders
1998-01-01
This report discusses transmission pricing as a means of obtaining optimal scheduling and dispatch in a power system. This optimality includes consumption as well as generation. The report concentrates on how prices can be used as signals towards operational decisions of market participants (generators, consumers). The main focus is on deregulated systems with open access to the network. The optimal power flow theory, with demand side modelling included, is briefly reviewed. It turns out that the marginal costs obtained from the optimal power flow gives the optimal transmission tariff for the particular load flow in case. There is also a correspondence between losses and optimal prices. Emphasis is on simple examples that demonstrate the connection between optimal power flow results and tariffs. Various cases, such as open access and single owner are discussed. A key result is that the location of the ''marketplace'' in the open access case does not influence the net economical result for any of the parties involved (generators, network owner, consumer). The optimal power flow is instantaneous, and in its standard form cannot deal with energy constrained systems that are coupled in time, such as hydropower systems with reservoirs. A simplified example of how the theory can be extended to such a system is discussed. An example of the influence of security constraints on prices is also given. 4 refs., 24 figs., 7 tabs
Security constrained optimal power flow by modern optimization tools
African Journals Online (AJOL)
Security constrained optimal power flow by modern optimization tools. ... International Journal of Engineering, Science and Technology ... If you would like more information about how to print, save, and work with PDFs, Highwire Press ...
Adaptation of XMM-Newton SAS to GRID and VO architectures via web
Ibarra, A.; de La Calle, I.; Gabriel, C.; Salgado, J.; Osuna, P.
2008-10-01
The XMM-Newton Scientific Analysis Software (SAS) is a robust software that has allowed users to produce good scientific results since the beginning of the mission. This has been possible given the SAS capability to evolve with the advent of new technologies and adapt to the needs of the scientific community. The prototype of the Remote Interface for Science Analysis (RISA) presented here, is one such example, which provides remote analysis of XMM-Newton data with access to all the existing SAS functionality, while making use of GRID computing technology. This new technology has recently emerged within the astrophysical community to tackle the ever lasting problem of computer power for the reduction of large amounts of data.
"To Improve upon Hints of Things": Illustrating Isaac Newton.
Schilt, Cornelis J
2016-01-01
When Isaac Newton died in 1727 he left a rich legacy in terms of draft manuscripts, encompassing a variety of topics: natural philosophy, mathematics, alchemy, theology, and chronology, as well as papers relating to his career at the Mint. One thing that immediately strikes us is the textuality of Newton's legacy: images are sparse. Regarding his scholarly endeavours we witness the same practice. Newton's extensive drafts on theology and chronology do not contain a single illustration or map. Today we have all of Newton's draft manuscripts as witnesses of his working methods, as well as access to a significant number of books from his own library. Drawing parallels between Newton's reading practices and his natural philosophical and scholarly work, this paper seeks to understand Newton's recondite writing and publishing politics.
Optimal control systems in hydro power plants
International Nuclear Information System (INIS)
Babunski, Darko L.
2012-01-01
The aim of the research done in this work is focused on obtaining the optimal models of hydro turbine including auxiliary equipment, analysis of governors for hydro power plants and analysis and design of optimal control laws that can be easily applicable in real hydro power plants. The methodology of the research and realization of the set goals consist of the following steps: scope of the models of hydro turbine, and their modification using experimental data; verification of analyzed models and comparison of advantages and disadvantages of analyzed models, with proposal of turbine model for design of control low; analysis of proportional-integral-derivative control with fixed parameters and gain scheduling and nonlinear control; analysis of dynamic characteristics of turbine model including control and comparison of parameters of simulated system with experimental data; design of optimal control of hydro power plant considering proposed cost function and verification of optimal control law with load rejection measured data. The hydro power plant models, including model of power grid are simulated in case of island ing and restoration after breakup and load rejection with consideration of real loading and unloading of hydro power plant. Finally, simulations provide optimal values of control parameters, stability boundaries and results easily applicable to real hydro power plants. (author)
Modified Block Newton method for the lambda modes problem
Energy Technology Data Exchange (ETDEWEB)
González-Pintor, S., E-mail: segonpin@isirym.upv.es [Departamento de Ingeniería Química y Nuclear, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain); Ginestar, D., E-mail: dginestar@mat.upv.es [Instituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain); Verdú, G., E-mail: gverdu@iqn.upv.es [Departamento de Ingeniería Química y Nuclear, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain)
2013-06-15
Highlights: ► The Modal Method is based on expanding the solution in a set of dominant modes. ► Updating the set of dominant modes improve its performance. ► A Modified Block Newton Method, which use previous calculated modes, is proposed. ► The method exhibits a very good local convergence with few iterations. ► Good performance results are also obtained for heavy perturbations. -- Abstract: To study the behaviour of nuclear power reactors it is necessary to solve the time dependent neutron diffusion equation using either a rectangular mesh for PWR and BWR reactors or a hexagonal mesh for VVER reactors. This problem can be solved by means of a modal method, which uses a set of dominant modes to expand the neutron flux. For the transient calculations using the modal method with a moderate number of modes, these modes must be updated each time step to maintain the accuracy of the solution. The updating modes process is also interesting to study perturbed configurations of a reactor. A Modified Block Newton method is studied to update the modes. The performance of the Newton method has been tested for a steady state perturbation analysis of two 2D hexagonal reactors, a perturbed configuration of the IAEA PWR 3D reactor and two configurations associated with a boron dilution transient in a BWR reactor.
Newton-Cartan gravity and torsion
Bergshoeff, Eric; Chatzistavrakidis, Athanasios; Romano, Luca; Rosseel, Jan
2017-10-01
We compare the gauging of the Bargmann algebra, for the case of arbitrary torsion, with the result that one obtains from a null-reduction of General Relativity. Whereas the two procedures lead to the same result for Newton-Cartan geometry with arbitrary torsion, the null-reduction of the Einstein equations necessarily leads to Newton-Cartan gravity with zero torsion. We show, for three space-time dimensions, how Newton-Cartan gravity with arbitrary torsion can be obtained by starting from a Schrödinger field theory with dynamical exponent z = 2 for a complex compensating scalar and next coupling this field theory to a z = 2 Schrödinger geometry with arbitrary torsion. The latter theory can be obtained from either a gauging of the Schrödinger algebra, for arbitrary torsion, or from a null-reduction of conformal gravity.
On Newton-Cartan trace anomalies
International Nuclear Information System (INIS)
Auzzi, Roberto; Baiguera, Stefano; Nardelli, Giuseppe
2016-01-01
We classify the trace anomaly for parity-invariant non-relativistic Schrödinger theories in 2+1 dimensions coupled to background Newton-Cartan gravity. The general anomaly structure looks very different from the one in the z=2 Lifshitz theories. The type A content of the anomaly is remarkably identical to that of the relativistic 3+1 dimensional case, suggesting the conjecture that an a-theorem should exist also in the Newton-Cartan context.
On Newton-Cartan trace anomalies
Energy Technology Data Exchange (ETDEWEB)
Auzzi, Roberto [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); INFN Sezione di Perugia,Via A. Pascoli, 06123 Perugia (Italy); Baiguera, Stefano [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); TIFPA - INFN, c/o Dipartimento di Fisica, Università di Trento,38123 Povo (Italy)
2016-02-01
We classify the trace anomaly for parity-invariant non-relativistic Schrödinger theories in 2+1 dimensions coupled to background Newton-Cartan gravity. The general anomaly structure looks very different from the one in the z=2 Lifshitz theories. The type A content of the anomaly is remarkably identical to that of the relativistic 3+1 dimensional case, suggesting the conjecture that an a-theorem should exist also in the Newton-Cartan context.
Security constrained optimal power flow by modern optimization tools
African Journals Online (AJOL)
The main objective of an optimal power flow (OPF) functions is to optimize .... It is characterized as propagation of plants and this happens by gametes union. ... ss and different variables, for example, wind, nearby fertilization can have a critic.
Stochastic Optimization of Wind Turbine Power Factor Using Stochastic Model of Wind Power
DEFF Research Database (Denmark)
Chen, Peiyuan; Siano, Pierluigi; Bak-Jensen, Birgitte
2010-01-01
This paper proposes a stochastic optimization algorithm that aims to minimize the expectation of the system power losses by controlling wind turbine (WT) power factors. This objective of the optimization is subject to the probability constraints of bus voltage and line current requirements....... The optimization algorithm utilizes the stochastic models of wind power generation (WPG) and load demand to take into account their stochastic variation. The stochastic model of WPG is developed on the basis of a limited autoregressive integrated moving average (LARIMA) model by introducing a crosscorrelation...... structure to the LARIMA model. The proposed stochastic optimization is carried out on a 69-bus distribution system. Simulation results confirm that, under various combinations of WPG and load demand, the system power losses are considerably reduced with the optimal setting of WT power factor as compared...
International Nuclear Information System (INIS)
Jin Qinian
2008-01-01
In this paper we consider the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed inverse problems. Under merely the Lipschitz condition, we prove that this method together with an a posteriori stopping rule defines an order optimal regularization method if the solution is regular in some suitable sense
Goethe's Exposure of Newton's theory a polemic on Newton's theory of light and colour
Goethe, Johann Wolfgang von
2016-01-01
Johann Wolfgang von Goethe, although best known for his literary work, was also a keen and outspoken natural scientist. In the second polemic part of Zur Farbenlehre (Theory of Colours), for example, Goethe attacked Isaac Newton's ground-breaking revelation that light is heterogeneous and not immutable, as was previously thought.This polemic was unanimously rejected by the physicists of the day, and has often been omitted from compendia of Goethe's works. Indeed, although Goethe repeated all of Newton's key experiments, he was never able to achieve the same results. Many reasons have been proposed for this, ranging from the psychological — such as a blind hatred of Newtonism, self-deceit and paranoid psychosis — to accusations of incapability — Goethe simply did not understand the experiments. Yet Goethe was never to be dissuaded from this passionate conviction.This translation of Goethe's second polemic, published for the first time in English, makes it clear that Goethe did understand the thrust of Ne...
Field-Split Preconditioned Inexact Newton Algorithms
Liu, Lulu
2015-06-02
The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.
Field-Split Preconditioned Inexact Newton Algorithms
Liu, Lulu; Keyes, David E.
2015-01-01
The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.
Optimal Power Transmission of Offshore Wind Power Using a VSC-HVdc Interconnection
Directory of Open Access Journals (Sweden)
Miguel E. Montilla-DJesus
2017-07-01
Full Text Available High-voltage dc transmission based on voltage-source converter (VSC-HVdc is quickly increasing its power rating, and it can be the most appropriate link for the connection of offshore wind farms (OWFs to the grid in many locations. This paper presents a steady-state operation model to calculate the optimal power transmission of an OWF connected to the grid through a VSC-HVdc link. The wind turbines are based on doubly fed induction generators (DFIGs, and a detailed model of the internal OWF grid is considered in the model. The objective of the optimization problem is to maximize the active power output of the OWF, i.e., the reduction of losses, by considering the optimal reactive power allocation while taking into account the restrictions imposed by the available wind power, the reactive power capability of the DFIG, the DC link model, and the operating conditions. Realistic simulations are performed to evaluate the proposed model and to execute optimal operation analyses. The results show the effectiveness of the proposed method and demonstrate the advantages of using the reactive control performed by DFIG to achieve the optimal operation of the VSC-HVdc.
Observations of the transient X-ray pulsar EXO 053109-6609.2 with ASCA, BeppoSAX and XMM-Newton
International Nuclear Information System (INIS)
Naik, S.; Paul, B.; Agrawal, P.C.; Jaaffery, S.N.A.
2004-01-01
We report timing and spectral properties of the transient X-ray pulsar EXO 053109-6609.2 using observations carried out with ASCA, BeppoSAX, and XMM-Newton observatories. Pulse period measurements of the source show a monotonic spin-up trend since 1996. The pulse profile is found to have a strong luminosity dependence, a single peaked profile at low luminosity that changes to a double peaked profile at high luminosity. The X-ray spectrum is described by a simple power-law model with photon index in the range of 0.2-0.8. A soft excess over the power-law continuum is also detected from XMM-Newton observation
Newton's law in de Sitter brane
International Nuclear Information System (INIS)
Ghoroku, Kazuo; Nakamura, Akihiro; Yahiro, Masanobu
2003-01-01
Newton potential has been evaluated for the case of dS brane embedded in Minkowski, dS 5 and AdS 5 bulks. We point out that only the AdS 5 bulk might be consistent with the Newton's law from the brane-world viewpoint when we respect a small cosmological constant observed at present universe
3, 2, 1 ... Discovering Newton's Laws
Lutz, Joe; Sylvester, Kevin; Oliver, Keith; Herrington, Deborah
2017-01-01
"For every action there is an equal and opposite reaction." "Except when a bug hits your car window, the car must exert more force on the bug because Newton's laws only apply in the physics classroom, right?" Students in our classrooms were able to pick out definitions as well as examples of Newton's three laws; they could…
Optimal Control of Wind Power Generation
Directory of Open Access Journals (Sweden)
Pawel Pijarski
2018-03-01
Full Text Available Power system control is a complex task, which is strongly related to the number and kind of generating units as well as to the applied technologies, such as conventional coal fired power plants or wind and photovoltaic farms. Fast development of wind generation that is considered as unstable generation sets new strong requirements concerning remote control and data hubs cooperating with SCADA systems. Considering specific nature of the wind power generation, the authors analyze the problem of optimal control for wind power generation in farms located over a selected remote-controlled part of the Operator grid under advantageous wind conditions. This article presents an original stepwise method for tracing power flows that makes possible to eliminate current (power overloading of power grid branches. Its core idea is to consider the discussed problem as an optimization task.
Newton-Krylov methods applied to nonequilibrium radiation diffusion
International Nuclear Information System (INIS)
Knoll, D.A.; Rider, W.J.; Olsen, G.L.
1998-01-01
The authors present results of applying a matrix-free Newton-Krylov method to a nonequilibrium radiation diffusion problem. Here, there is no use of operator splitting, and Newton's method is used to convert the nonlinearities within a time step. Since the nonlinear residual is formed, it is used to monitor convergence. It is demonstrated that a simple Picard-based linearization produces a sufficient preconditioning matrix for the Krylov method, thus elevating the need to form or store a Jacobian matrix for Newton's method. They discuss the possibility that the Newton-Krylov approach may allow larger time steps, without loss of accuracy, as compared to an operator split approach where nonlinearities are not converged within a time step
On topological modifications of Newton's law
International Nuclear Information System (INIS)
Floratos, E.G.; Leontaris, G.K.
2012-01-01
Recent cosmological data for very large distances challenge the validity of the standard cosmological model. Motivated by the observed spatial flatness the accelerating expansion and the various anisotropies with preferred axes in the universe we examine the consequences of the simple hypothesis that the three-dimensional space has a global R 2 × S 1 topology. We take the radius of the compactification to be the observed cosmological scale beyond which the accelerated expansion starts. We derive the induced corrections to the Newton's gravitational potential and we find that for distances smaller than the S 1 radius the leading 1/r-term is corrected by convergent power series of multipole form in the polar angle making explicit the induced anisotropy by the compactified third dimension. On the other hand, for distances larger than the compactification scale the asymptotic behavior of the potential exhibits a logarithmic dependence with exponentially small corrections. The change of Newton's force from 1/r 2 to 1/r behavior implies a weakening of the deceleration for the expanding universe. Such topologies can also be created locally by standard Newtonian axially symmetric mass distributions with periodicity along the symmetry axis. In such cases we can use our results to obtain measurable modifications of Newtonian orbits for small distances and flat rotation spectra, for large distances at the galactic level
Optimization of the triple-pressure combined cycle power plant
Directory of Open Access Journals (Sweden)
Alus Muammer
2012-01-01
Full Text Available The aim of this work was to develop a new system for optimization of parameters for combined cycle power plants (CCGTs with triple-pressure heat recovery steam generator (HRSG. Thermodynamic and thermoeconomic optimizations were carried out. The objective of the thermodynamic optimization is to enhance the efficiency of the CCGTs and to maximize the power production in the steam cycle (steam turbine gross power. Improvement of the efficiency of the CCGT plants is achieved through optimization of the operating parameters: temperature difference between the gas and steam (pinch point P.P. and the steam pressure in the HRSG. The objective of the thermoeconomic optimization is to minimize the production costs per unit of the generated electricity. Defining the optimal P.P. was the first step in the optimization procedure. Then, through the developed optimization process, other optimal operating parameters (steam pressure and condenser pressure were identified. The developed system was demonstrated for the case of a 282 MW CCGT power plant with a typical design for commercial combined cycle power plants. The optimized combined cycle was compared with the regular CCGT plant.
Joint optimization of regional water-power systems
Pereira-Cardenal, Silvio J.; Mo, Birger; Gjelsvik, Anders; Riegels, Niels D.; Arnbjerg-Nielsen, Karsten; Bauer-Gottwein, Peter
2016-06-01
Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs in very distinct ways, according to the local inflow, storage capacity, hydropower productivity, and irrigation demand and productivity. This highlights the importance of appropriately representing the water users' spatial distribution and marginal benefits and costs when allocating water resources optimally. The method can handle further spatial disaggregation and can be extended to include other aspects of the water-energy nexus.
Newton`s iteration for inversion of Cauchy-like and other structured matrices
Energy Technology Data Exchange (ETDEWEB)
Pan, V.Y. [Lehman College, Bronx, NY (United States); Zheng, Ailong; Huang, Xiaohan; Dias, O. [CUNY, New York, NY (United States)
1996-12-31
We specify some initial assumptions that guarantee rapid refinement of a rough initial approximation to the inverse of a Cauchy-like matrix, by mean of our new modification of Newton`s iteration, where the input, output, and all the auxiliary matrices are represented with their short generators defined by the associated scaling operators. The computations are performed fast since they are confined to operations with short generators of the given and computed matrices. Because of the known correlations among various structured matrices, the algorithm is immediately extended to rapid refinement of rough initial approximations to the inverses of Vandermonde-like, Chebyshev-Vandermonde-like and Toeplitz-like matrices, where again, the computations are confined to operations with short generators of the involved matrices.
Newton-Krylov-Schwarz methods in unstructured grid Euler flow
Energy Technology Data Exchange (ETDEWEB)
Keyes, D.E. [Old Dominion Univ., Norfolk, VA (United States)
1996-12-31
Newton-Krylov methods and Krylov-Schwarz (domain decomposition) methods have begun to become established in computational fluid dynamics (CFD) over the past decade. The former employ a Krylov method inside of Newton`s method in a Jacobian-free manner, through directional differencing. The latter employ an overlapping Schwarz domain decomposition to derive a preconditioner for the Krylov accelerator that relies primarily on local information, for data-parallel concurrency. They may be composed as Newton-Krylov-Schwarz (NKS) methods, which seem particularly well suited for solving nonlinear elliptic systems in high-latency, distributed-memory environments. We give a brief description of this family of algorithms, with an emphasis on domain decomposition iterative aspects. We then describe numerical simulations with Newton-Krylov-Schwarz methods on an aerodynamic application emphasizing comparisons with a standard defect-correction approach and subdomain preconditioner consistency.
Enhanced GSA-Based Optimization for Minimization of Power Losses in Power System
Directory of Open Access Journals (Sweden)
Gonggui Chen
2015-01-01
Full Text Available Gravitational Search Algorithm (GSA is a heuristic method based on Newton’s law of gravitational attraction and law of motion. In this paper, to further improve the optimization performance of GSA, the memory characteristic of Particle Swarm Optimization (PSO is employed in GSAPSO for searching a better solution. Besides, to testify the prominent strength of GSAPSO, GSA, PSO, and GSAPSO are applied for the solution of optimal reactive power dispatch (ORPD of power system. Conventionally, ORPD is defined as a problem of minimizing the total active power transmission losses by setting control variables while satisfying numerous constraints. Therefore ORPD is a complicated mixed integer nonlinear optimization problem including many constraints. IEEE14-bus, IEEE30-bus, and IEEE57-bus test power systems are used to implement this study, respectively. The obtained results of simulation experiments using GSAPSO method, especially the power loss reduction rates, are compared to those yielded by the other modern artificial intelligence-based techniques including the conventional GSA and PSO methods. The results presented in this paper reveal the potential and effectiveness of the proposed method for solving ORPD problem of power system.
Conformal mechanics in Newton-Hooke spacetime
International Nuclear Information System (INIS)
Galajinsky, Anton
2010-01-01
Conformal many-body mechanics in Newton-Hooke spacetime is studied within the framework of the Lagrangian formalism. Global symmetries and Noether charges are given in a form convenient for analyzing the flat space limit. N=2 superconformal extension is built and a new class on N=2 models related to simple Lie algebras is presented. A decoupling similarity transformation on N=2 quantum mechanics in Newton-Hooke spacetime is discussed.
Cox, Carol
2001-01-01
Presents the Isaac Newton Olympics in which students complete a hands-on activity at seven stations and evaluate what they have learned in the activity and how it is related to real life. Includes both student and teacher instructions for three of the activities. (YDS)
Optimal power flow based on glow worm-swarm optimization for three-phase islanded microgrids
DEFF Research Database (Denmark)
Quang, Ninh Nguyen; Sanseverino, Eleonora Riva; Di Silvestre, Maria Luisa
2014-01-01
This paper presents an application of the Glowworm Swarm Optimization method (GSO) to solve the optimal power flow problem in three-phase islanded microgrids equipped with power electronics dc-ac inverter interfaced distributed generation units. In this system, the power injected by the distribut...
Optimal control applications in electric power systems
Christensen, G S; Soliman, S A
1987-01-01
Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...
Newton's law of cooling revisited
International Nuclear Information System (INIS)
Vollmer, M
2009-01-01
The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer from any object to its surrounding is not only due to conduction and convection but also due to radiation. The latter does not vary linearly with temperature difference, which leads to deviations from Newton's law. This paper presents a theoretical analysis of the cooling of objects with a small Biot number. It is shown that Newton's law of cooling, i.e. simple exponential behaviour, is mostly valid if temperature differences are below a certain threshold which depends on the experimental conditions. For any larger temperature differences appreciable deviations occur which need the complete nonlinear treatment. This is demonstrated by results of some laboratory experiments which use IR imaging to measure surface temperatures of solid cooling objects with temperature differences of up to 300 K.
Isaac Newton and the astronomical refraction.
Lehn, Waldemar H
2008-12-01
In a short interval toward the end of 1694, Isaac Newton developed two mathematical models for the theory of the astronomical refraction and calculated two refraction tables, but did not publish his theory. Much effort has been expended, starting with Biot in 1836, in the attempt to identify the methods and equations that Newton used. In contrast to previous work, a closed form solution is identified for the refraction integral that reproduces the table for his first model (in which density decays linearly with elevation). The parameters of his second model, which includes the exponential variation of pressure in an isothermal atmosphere, have also been identified by reproducing his results. The implication is clear that in each case Newton had derived exactly the correct equations for the astronomical refraction; furthermore, he was the first to do so.
Newton's laws of motion in form of Riccati equation
Nowakowski, M.; Rosu, H. C.
2001-01-01
We discuss two applications of Riccati equation to Newton's laws of motion. The first one is the motion of a particle under the influence of a power law central potential $V(r)=k r^{\\epsilon}$. For zero total energy we show that the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a Riccati equation. A second application in classical mechanics, ...
Optimal Power Flow Control by Rotary Power Flow Controller
Directory of Open Access Journals (Sweden)
KAZEMI, A.
2011-05-01
Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.
Optimized Power Dispatch Strategy for Offshore Wind Farms
DEFF Research Database (Denmark)
Hou, Peng; Hu, Weihao; Zhang, Baohua
2016-01-01
which are related to electrical system topology. This paper proposed an optimized power dispatch strategy (OPD) for minimizing the levelized production cost (LPC) of a wind farm. Particle swarm optimization (PSO) is employed to obtain final solution for the optimization problem. Both regular shape......Maximizing the power production of offshore wind farms using proper control strategy has become an important issue for wind farm operators. However, the power transmitted to the onshore substation (OS) is not only related to the power production of each wind turbine (WT) but also the power losses...... and irregular shape wind farm are chosen for the case study. The proposed dispatch strategy is compared with two other control strategies. The simulation results show the effectiveness of the proposed strategy....
Optimal power flow by particle swarm optimization with an aging ...
African Journals Online (AJOL)
In this paper, a particle swarm optimization (PSO) with an aging leader and challengers (ALC-PSO) is applied for the solution of OPF problem of power system. This study is implemented on modified IEEE 30-bus test power system with different objectives that reflect minimization of either fuel cost or active power loss or sum ...
Newton slopes for Artin-Schreier-Witt towers
DEFF Research Database (Denmark)
Davis, Christopher; Wan, Daqing; Xiao, Liang
2016-01-01
We fix a monic polynomial f(x)∈Fq[x] over a finite field and consider the Artin-Schreier-Witt tower defined by f(x); this is a tower of curves ⋯→Cm→Cm−1→⋯→C0=A1, with total Galois group Zp. We study the Newton slopes of zeta functions of this tower of curves. This reduces to the study of the Newton...... slopes of L-functions associated to characters of the Galois group of this tower. We prove that, when the conductor of the character is large enough, the Newton slopes of the L-function form arithmetic progressions which are independent of the conductor of the character. As a corollary, we obtain...
Harmonic Issues Assessment on PWM VSC-Based Controlled Microgrids using Newton Methods
DEFF Research Database (Denmark)
Agundis-Tinajero, Gibran; Segundo-Ramirez, Juan; Peña-Gallardo, Rafael
2018-01-01
This paper presents the application of Newton-based methods in the time-domain for the computation of the periodic steady state solutions of microgrids with multiple distributed generation units, harmonic stability and power quality analysis. Explicit representation of the commutation process...... of the power electronic converters and closed-loop power management strategies are fully considered. Case studies under different operating scenarios are presented: grid-connected mode, islanded mode, variations in the Thevenin equivalent of the grid and the loads. Besides, the close relation between...... the harmonic distortion, steady state performance of the control systems, asymptotic stability and power quality is analyzed in order to evaluate the importance and necessity of using full models in stressed and harmonic distorted scenarios....
Application of a particle swarm optimization in an optimal power flow ...
African Journals Online (AJOL)
NR, Quasi Newton), and the intelligence heuristic algorithms such ac genetic algorithm, evolutionary programming. From simulation results it has been found that PSO method is highly competitive for its better general convergence performance.
DEFF Research Database (Denmark)
Chen, Peiyuan; Siano, Pierluigi; Chen, Zhe
2010-01-01
determined by the wind resource and geographic conditions, the location of wind turbines in a power system network may significantly affect the distribution of power flow, power losses, etc. Furthermore, modern WTs with power-electronic interface have the capability of controlling reactive power output...... limit requirements. The method combines the Genetic Algorithm (GA), gradient-based constrained nonlinear optimization algorithm and sequential Monte Carlo simulation (MCS). The GA searches for the optimal locations and capacities of WTs. The gradient-based optimization finds the optimal power factor...... setting of WTs. The sequential MCS takes into account the stochastic behaviour of wind power generation and load. The proposed hybrid optimization method is demonstrated on an 11 kV 69-bus distribution system....
On the topology of the Newton boundary at infinity
International Nuclear Information System (INIS)
Pham Tien Son
2007-07-01
We will be interested in a global version of Le-Ramanujam μ -constant theorem from the Newton polyhedron point of view. More precisely, we prove a stability theorem which says that the global monodromy fibration of a polynomial with Newton non-degenerate is uniquely determined by its Newton boundary at infinity. Besides, the continuity of atypical values for a family of complex polynomial functions also is considered. (author)
International Nuclear Information System (INIS)
Lopez, P. Reche; Reyes, N. Ruiz; Gonzalez, M. Gomez; Jurado, F.
2008-01-01
With sufficient territory and abundant biomass resources Spain appears to have suitable conditions to develop biomass utilization technologies. As an important decentralized power technology, biomass gasification and power generation has a potential market in making use of biomass wastes. This paper addresses biomass fuelled generation of electricity in the specific aspect of finding the best location and the supply area of the electric generation plant for three alternative technologies (gas motor, gas turbine and fuel cell-microturbine hybrid power cycle), taking into account the variables involved in the problem, such as the local distribution of biomass resources, transportation costs, distance to existing electric lines, etc. For each technology, not only optimal location and supply area of the biomass plant, but also net present value and generated electric power are determined by an own binary variant of Particle Swarm Optimization (PSO). According to the values derived from the optimization algorithm, the most profitable technology can be chosen. Computer simulations show the good performance of the proposed binary PSO algorithm to optimize biomass fuelled systems for distributed power generation. (author)
Le Nir, Vincent; Moonen, Marc; Verlinden, Jan; Guenach, Mamoun
2009-02-01
Recently, the duality between Multiple Input Multiple Output (MIMO) Multiple Access Channels (MAC) and MIMO Broadcast Channels (BC) has been established under a total power constraint. The same set of rates for MAC can be achieved in BC exploiting the MAC-BC duality formulas while preserving the total power constraint. In this paper, we describe the BC optimal power allo- cation applying this duality in a downstream x-Digital Subscriber Lines (xDSL) context under a total power constraint for all modems over all tones. Then, a new algorithm called BC-Optimal Spectrum Balancing (BC-OSB) is devised for a more realistic power allocation under per-modem total power constraints. The capacity region of the primal BC problem under per-modem total power constraints is found by the dual optimization problem for the BC under per-modem total power constraints which can be rewritten as a dual optimization problem in the MAC by means of a precoder matrix based on the Lagrange multipliers. We show that the duality gap between the two problems is zero. The multi-user power allocation problem has been solved for interference channels and MAC using the OSB algorithm. In this paper we solve the problem of multi-user power allocation for the BC case using the OSB algorithm as well and we derive a computational efficient algorithm that will be referred to as BC-OSB. Simulation results are provided for two VDSL2 scenarios: the first one with Differential-Mode (DM) transmission only and the second one with both DM and Phantom- Mode (PM) transmissions.
Verlet, Loup
1993-01-01
En 1936, une vente publique ramena au jour le contenu d'une malle où Newton avait enfermé ses manuscrits. Ô surprise, les travaux du savant y voisinaient avec les spéculations de l'exégète et de l'alchimiste. Ce n'est pas seulement la face cachée d'un exceptionnel génie scientifique qui nous était ainsi révélée, mais, au-delà du mystère d'un homme, le secret partage qui gouverne notre univers, comme le montre cette lecture originale de la naissance de la physique moderne.Dans quel monde suis-je tombé ? Pourquoi les choses sont-elles ainsi ? Comment faire avec ? Questions lancinantes de l'enfant quand la mère fait défaut, du chercheur face à la nature qui se dérobe. La réponse, Newton sait où la trouver : Dieu le Père, à jamais insaisissable, est présent «partout et toujours», Il se révèle par la bouche des prophètes, se devine dans les arcanes de l'alchimie, se manifeste par les lois admirables qui règlent le cours ordinaire des choses. Ses écrits de l'ombre l'attestent, Newton ...
Voltaire-Newton... Renversant!
2004-01-01
The encounter, even improbable, between François Marie Arouet, said Voltaire, and Isaac Newton could occur only in Pays de Gex, near his city... It's indeed right above of the accelerator, in Saint-Genis, that the meeting between this two "monsters" of the 18e century took place
Optimization and Control of Electric Power Systems
Energy Technology Data Exchange (ETDEWEB)
Lesieutre, Bernard C. [Univ. of Wisconsin, Madison, WI (United States); Molzahn, Daniel K. [Univ. of Wisconsin, Madison, WI (United States)
2014-10-17
The analysis and optimization needs for planning and operation of the electric power system are challenging due to the scale and the form of model representations. The connected network spans the continent and the mathematical models are inherently nonlinear. Traditionally, computational limits have necessitated the use of very simplified models for grid analysis, and this has resulted in either less secure operation, or less efficient operation, or both. The research conducted in this project advances techniques for power system optimization problems that will enhance reliable and efficient operation. The results of this work appear in numerous publications and address different application problems include optimal power flow (OPF), unit commitment, demand response, reliability margins, planning, transmission expansion, as well as general tools and algorithms.
Numerical optimization for separation power of gas centrifuge
International Nuclear Information System (INIS)
Jiang Dongjun; Zeng Shi; Liu Bing
2012-01-01
In order to obtain higher separation power of the gas centrifuge, the code was developed to solve the flow-field of the counter-current to acquire the separation power, which was integrated with the iSight software, so a numerical optimization model for separation power was presented, in which the driver conditions and the geometry parameters of the waste baffle were optimized to get the maximum separation power using the sequential quadratic programming arithmetic, and the 12% higher results was acquired, which shows the feasibility of this method. The results also note that the separation power of gas centrifuge is sensitive to the driver conditions and the structure parameters of the waste baffle, so it is necessary to perform the optimization calculation for the certain gas centrifuge model. (authors)
The Optimization of power reactor control system
International Nuclear Information System (INIS)
Danupoyo, S.D.
1997-01-01
A power reactor is an important part in nuclear powered electrical plant systems. Success in controlling the power reactor will establish safety of the whole power plant systems. Until now, the power reactor has been controlled by a classical control system that was designed based on output feedback method. To meet the safety requirements that are now more restricted, the recently used power reactor control system should be modified. this paper describes a power reactor control system that is designed based on a state feedback method optimized with LQG (Linear-quadrature-gaussian) method and equipped with a state estimator. A pressurized-water type reactor has been used as the model. by using a point kinetics method with one group delayed neutrons. the result of simulation testing shows that the optimized control system can control the power reactor more effective and efficient than the classical control system
Turbine Control Strategies for Wind Farm Power Optimization
DEFF Research Database (Denmark)
Mirzaei, Mahmood; Göçmen Bozkurt, Tuhfe; Giebel, Gregor
2015-01-01
In recent decades there has been increasing interest in green energies, of which wind energy is the most important one. In order to improve the competitiveness of the wind power plants, there are ongoing researches to decrease cost per energy unit and increase the efficiency of wind turbines...... and wind farms. One way of achieving these goals is to optimize the power generated by a wind farm. One optimization method is to choose appropriate operating points for the individual wind turbines in the farm. We have made three models of a wind farm based on three difference control strategies...... the generated power by changing the power reference of the individual wind turbines. We use the optimization setup to compare power production of the wind farm models. This paper shows that for the most frequent wind velocities (below and around the rated values), the generated powers of the wind farms...
Parameters optimization for magnetic resonance coupling wireless power transmission.
Li, Changsheng; Zhang, He; Jiang, Xiaohua
2014-01-01
Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.
The cooling, mass and radius of the neutron star in EXO 0748-676 in quiescence with XMM-Newton
Cheng, Zheng; Méndez, Mariano; Díaz-Trigo, María; Costantini, Elisa
2017-01-01
We analyse four XMM-Newton observations of the neutron-star low-mass X-ray binary EXO 0748-676 in quiescence. We fit the spectra with an absorbed neutron-star atmosphere model, without the need for a high-energy (power-law) component; with a 95 per cent confidence the power law contributes less than
Multi-objective Reactive Power Optimization Based on Improved Particle Swarm Algorithm
Cui, Xue; Gao, Jian; Feng, Yunbin; Zou, Chenlu; Liu, Huanlei
2018-01-01
In this paper, an optimization model with the minimum active power loss and minimum voltage deviation of node and maximum static voltage stability margin as the optimization objective is proposed for the reactive power optimization problems. By defining the index value of reactive power compensation, the optimal reactive power compensation node was selected. The particle swarm optimization algorithm was improved, and the selection pool of global optimal and the global optimal of probability (p-gbest) were introduced. A set of Pareto optimal solution sets is obtained by this algorithm. And by calculating the fuzzy membership value of the pareto optimal solution sets, individuals with the smallest fuzzy membership value were selected as the final optimization results. The above improved algorithm is used to optimize the reactive power of IEEE14 standard node system. Through the comparison and analysis of the results, it has been proven that the optimization effect of this algorithm was very good.
Newton's law in braneworlds with an infinite extra dimension
Ito, Masato
2001-01-01
We study the behavior of the four$-$dimensional Newton's law in warped braneworlds. The setup considered here is a $(3+n)$-brane embedded in $(5+n)$ dimensions, where $n$ extra dimensions are compactified and a dimension is infinite. We show that the wave function of gravity is described in terms of the Bessel functions of $(2+n/2)$-order and that estimate the correction to Newton's law. In particular, the Newton's law for $n=1$ can be exactly obtained.
Hukum Newton Tentang Gerak Dalam Ruang Fase Tak Komutatif
Purwanto, Joko
2014-01-01
In this paper, the Newton's law of motions in a noncomutative phase space has been investigated. Its show that correction to the Newton's first and second law appear if we assume that the phase space has symplectic structure consistent with the rules of comutation of the noncomutative quantum mechanics. In the free particle and harmonic oscillator case the equations of motion are derived on basis of the modified Newton's second law in a noncomutative phase space.
Hydro-thermal power flow scheduling accounting for head variations
International Nuclear Information System (INIS)
El-Hawary, M.E.; Ravindranath, K.M.
1992-01-01
In this paper the authors treat the problem of optimal economic operation of hydrothermal electric power systems with variable head hydro plants employing the power flow equations to represent the network. Newton's method is used to solve the problem for a number of test systems. A comparison with solutions with fixed head is presented. In general the optimal schedule requires higher slack bus and thermal power generation and cost in the case of variable head hydro plant than that required by the fixed head hydro plant in all demand periods. Correspondingly, the hydro generation is less in the case of variable head hydro plant compared to fixed head hydro plant. A negligible difference in voltage magnitudes in all the time intervals, but it is observed that slightly higher voltages occur in the case of the fixed head hydro plant. Higher power and energy losses occur in the case of variable head hydro plants compared to the fixed head hydro plants
Optimizing the wireless power transfer over MIMO Channels
Wiedmann, Karsten; Weber, Tobias
2017-09-01
In this paper, the optimization of the power transfer over wireless channels having multiple-inputs and multiple-outputs (MIMO) is studied. Therefore, the transmitter, the receiver and the MIMO channel are modeled as multiports. The power transfer efficiency is described by a Rayleigh quotient, which is a function of the channel's scattering parameters and the incident waves from both transmitter and receiver side. This way, the power transfer efficiency can be maximized analytically by solving a generalized eigenvalue problem, which is deduced from the Rayleigh quotient. As a result, the maximum power transfer efficiency achievable over a given MIMO channel is obtained. This maximum can be used as a performance bound in order to benchmark wireless power transfer systems. Furthermore, the optimal operating point which achieves this maximum will be obtained. The optimal operating point will be described by the complex amplitudes of the optimal incident and reflected waves of the MIMO channel. This supports the design of the optimal transmitter and receiver multiports. The proposed method applies for arbitrary MIMO channels, taking transmitter-side and/or receiver-side cross-couplings in both near- and farfield scenarios into consideration. Special cases are briefly discussed in this paper in order to illustrate the method.
Optimizing the wireless power transfer over MIMO Channels
Directory of Open Access Journals (Sweden)
K. Wiedmann
2017-09-01
Full Text Available In this paper, the optimization of the power transfer over wireless channels having multiple-inputs and multiple-outputs (MIMO is studied. Therefore, the transmitter, the receiver and the MIMO channel are modeled as multiports. The power transfer efficiency is described by a Rayleigh quotient, which is a function of the channel's scattering parameters and the incident waves from both transmitter and receiver side. This way, the power transfer efficiency can be maximized analytically by solving a generalized eigenvalue problem, which is deduced from the Rayleigh quotient. As a result, the maximum power transfer efficiency achievable over a given MIMO channel is obtained. This maximum can be used as a performance bound in order to benchmark wireless power transfer systems. Furthermore, the optimal operating point which achieves this maximum will be obtained. The optimal operating point will be described by the complex amplitudes of the optimal incident and reflected waves of the MIMO channel. This supports the design of the optimal transmitter and receiver multiports. The proposed method applies for arbitrary MIMO channels, taking transmitter-side and/or receiver-side cross-couplings in both near- and farfield scenarios into consideration. Special cases are briefly discussed in this paper in order to illustrate the method.
Newton and the origin of civilization
Buchwald, Jed Z
2012-01-01
Isaac Newton's Chronology of Ancient Kingdoms Amended, published in 1728, one year after the great man's death, unleashed a storm of controversy. And for good reason. The book presents a drastically revised timeline for ancient civilizations, contracting Greek history by five hundred years and Egypt's by a millennium. Newton and the Origin of Civilization tells the story of how one of the most celebrated figures in the history of mathematics, optics, and mechanics came to apply his unique ways of thinking to problems of history, theology, and mythology, and of how his radical ideas produced an uproar that reverberated in Europe's learned circles throughout the eighteenth century and beyond. Jed Buchwald and Mordechai Feingold reveal the manner in which Newton strove for nearly half a century to rectify universal history by reading ancient texts through the lens of astronomy, and to create a tight theoretical system for interpreting the evolution of civilization on the basis of population dynamics. It was duri...
Apribowo, Chico Hermanu Brillianto; Ibrahim, Muhammad Hamka; Wicaksono, F. X. Rian
2018-02-01
The growing burden of the load and the complexity of the power system has had an impact on the need for optimization of power system operation. Optimal power flow (OPF) with optimal location placement and rating of thyristor controlled series capacitor (TCSC) is an effective solution used to determine the economic cost of operating the plant and regulate the power flow in the power system. The purpose of this study is to minimize the total cost of generation by placing the location and the optimal rating of TCSC using genetic algorithm-design of experiment techniques (GA-DOE). Simulation on Java-Bali system 500 kV with the amount of TCSC used by 5 compensator, the proposed method can reduce the generation cost by 0.89% compared to OPF without using TCSC.
Some Elementary Examples from Newton's Principia -R-ES ...
Indian Academy of Sciences (India)
ing both differential and integral calculus. Newton used many geometrical methods extensively to derive the re- sults in spite of his having discovered calculus. Geome- try, judiciously used with limiting procedures, was one principal strategy used by Newton in the Principia. The Principia presents an enormous range of ...
XMM-Newton On-demand Reprocessing Using SaaS Technology
Ibarra, A.; Fajersztejn, N.; Loiseau, N.; Gabriel, C.
2014-05-01
We present here the architectural design of the new on-the-fly reprocessing capabilities that will be soon developed and implemented in the new XMM-Newton Science Operation Centre. The inclusion of processing capabilities into the archive, as we plan, will be possible thanks to the recent refurbishment of the XMM-Newton science archive, its alignment with the latest web technologies and the XMM-Newton Remote Interface for Science Analysis (RISA), a revolutionary idea of providing processing capabilities through internet services.
Optimization design for drain to nuclear power condenser
International Nuclear Information System (INIS)
Ding Jiapeng; Jiang Chengren
2010-01-01
Characters and varieties of drain to nuclear power condenser are discussed in this paper. Take the main steam system of a nuclear power as an example, normal and detailed optimization design are introduced, related expatiate are used as a reference for the drain of other systems. According to the characters of nuclear power instant operation, the influence and needed actions related with the optimization design are also analyzed. Based on the above research, the scheme has been carried out in a nuclear power station and safety for the condenser operation of the nuclear power has been improved largely. (authors)
OPF-Based Optimal Location of Two Systems Two Terminal HVDC to Power System Optimal Operation
Directory of Open Access Journals (Sweden)
Mehdi Abolfazli
2013-04-01
Full Text Available In this paper a suitable mathematical model of the two terminal HVDC system is provided for optimal power flow (OPF and optimal location based on OPF such power injection model. The ability of voltage source converter (VSC-based HVDC to independently control active and reactive power is well represented by the model. The model is used to develop an OPF-based optimal location algorithm of two systems two terminal HVDC to minimize the total fuel cost and active power losses as objective function. The optimization framework is modeled as non-linear programming (NLP and solved by Matlab and GAMS softwares. The proposed algorithm is implemented on the IEEE 14- and 30-bus test systems. The simulation results show ability of two systems two terminal HVDC in improving the power system operation. Furthermore, two systems two terminal HVDC is compared by PST and OUPFC in the power system operation from economical and technical aspects.
Modified Monkey Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem
Directory of Open Access Journals (Sweden)
Kanagasabai Lenin
2015-04-01
Full Text Available In this paper, a novel approach Modified Monkey optimization (MMO algorithm for solving optimal reactive power dispatch problem has been presented. MMO is a population based stochastic meta-heuristic algorithm and it is inspired by intelligent foraging behaviour of monkeys. This paper improves both local leader and global leader phases. The proposed (MMO algorithm has been tested in standard IEEE 30 bus test system and simulation results show the worthy performance of the proposed algorithm in reducing the real power loss.
Newton's Contributions to Optics
Indian Academy of Sciences (India)
creativity is apparent, even in ideas and models in optics that were ... Around Newton's time, a number of leading figures in science ..... successive circles increased as integers, i.e. d increases by inte- ... of easy reflections and transmission".
Optimization of Combine Heat and Power Plants in the Russian Wholesale Power Market Conditions
Directory of Open Access Journals (Sweden)
I. A. Chuchueva
2015-01-01
Full Text Available The paper concerns the relevant problem to optimize the combine heat and power (CHP plants in the Russian wholesale power market conditions. Since 1975 the CHP plants specialists faced the problem of fuel rate or fuel cost reduction while ensuring the fixed level of heat and power production. The optimality criterion was the fuel rate or fuel cost which has to be minimized. Produced heat and power was paid by known tariff. Since the power market started in 2006 the power payment scheme has essentially changed: produced power is paid by market price. In such condition a new optimality criterion the paper offers is a profit which has to be maximized for the given time horizon. Depending on the optimization horizon the paper suggests four types of the problem urgency, namely: long-term, mid-term, short-term, and operative optimization. It clearly shows that the previous problem of fuel cost minimization is a special case of profit maximization problem. To bring the problem to the mixed-integer linear programming problem a new linear characteristic curves of steam and gas turbine are introduced. Error of linearization is 0.6%. The formal statement of the problem of short-term CHP plants optimization in the market conditions is offered. The problem was solved with IRM software (OpenLinkInternational for seven power plants of JSC “Quadra”: Dyagilevskaya CHP, Kurskaya CHP-1, Lipetskaya CHP-2, Orlovskaya CHP, Kurskaya CHP NWR, Tambovskaya CHP, and Smolenskaya CHP-2.The conducted computational experiment showed that a potential profit is between 1.7% and 4.7% of the fuel cost of different CHP plants and depends on the power plant operation conditions. The potential profit value is 2–3 times higher than analogous estimations, which were obtained solving fuel cost minimization problem. The perspectives of the work are formalization of mid-term and long-term CHP plants optimization problem and development of domestic software for the new problem
Multi-objective optimal power flow with FACTS devices
International Nuclear Information System (INIS)
Basu, M.
2011-01-01
This paper presents multi-objective differential evolution to optimize cost of generation, emission and active power transmission loss of flexible ac transmission systems (FACTS) device-equipped power systems. In the proposed approach, optimal power flow problem is formulated as a multi-objective optimization problem. FACTS devices considered include thyristor controlled series capacitor (TCSC) and thyristor controlled phase shifter (TCPS). The proposed approach has been examined and tested on the modified IEEE 30-bus and 57-bus test systems. The results obtained from the proposed approach have been compared with those obtained from nondominated sorting genetic algorithm-II, strength pareto evolutionary algorithm 2 and pareto differential evolution.
Kaur, R.; Wijnands, R.; Patruno, A.; Testa, V.; Israel, G.; Degenaar, N.; Paul, B.; Kumar, B.
2009-01-01
We present results from our Chandra and XMM-Newton observations of two low-luminosity X-ray pulsators SAX J1324.4-6200 and SAX J1452.8-5949 which have spin periods of 172 and 437 s, respectively. The XMM-Newton spectra for both sources can be fitted well with a simple power-law model of photon
Optimal pricing of non-utility generated electric power
International Nuclear Information System (INIS)
Siddiqi, S.N.; Baughman, M.L.
1994-01-01
The importance of an optimal pricing policy for pricing non-utility generated power is pointed out in this paper. An optimal pricing policy leads to benefits for all concerned: the utility, industry, and the utility's other customers. In this paper, it is shown that reliability differentiated real-time pricing provides an optimal non-utility generated power pricing policy, from a societal welfare point of view. Firm capacity purchase, and hence an optimal price for purchasing firm capacity, are an integral part of this pricing policy. A case study shows that real-time pricing without firm capacity purchase results in improper investment decisions and higher costs for the system as a whole. Without explicit firm capacity purchase, the utility makes greater investment in capacity addition in order to meet its reliability criteria than is socially optimal. It is concluded that the non-utility generated power pricing policy presented in this paper and implied by reliability differentiated pricing policy results in social welfare-maximizing investment and operation decisions
Disformal transformation in Newton-Cartan geometry
Energy Technology Data Exchange (ETDEWEB)
Huang, Peng [Zhejiang Chinese Medical University, Department of Information, Hangzhou (China); Sun Yat-Sen University, School of Physics and Astronomy, Guangzhou (China); Yuan, Fang-Fang [Nankai University, School of Physics, Tianjin (China)
2016-08-15
Newton-Cartan geometry has played a central role in recent discussions of the non-relativistic holography and condensed matter systems. Although the conformal transformation in non-relativistic holography can easily be rephrased in terms of Newton-Cartan geometry, we show that it requires a nontrivial procedure to arrive at the consistent form of anisotropic disformal transformation in this geometry. Furthermore, as an application of the newly obtained transformation, we use it to induce a geometric structure which may be seen as a particular non-relativistic version of the Weyl integrable geometry. (orig.)
Bargmann structures and Newton-Cartan theory
International Nuclear Information System (INIS)
Duval, C.; Burdet, G.; Kuenzle, H.P.; Perrin, M.
1985-01-01
It is shown that Newton-Cartan theory of gravitation can best be formulated on a five-dimensional extended space-time carrying a Lorentz metric together with a null parallel vector field. The corresponding geometry associated with the Bargmann group (nontrivially extended Galilei group) viewed as a subgroup of the affine de Sitter group AO(4,1) is thoroughly investigated. This new global formalism allows one to recast classical particle dynamics and the Schroedinger equation into a purely covariant form. The Newton-Cartan field equations are readily derived from Einstein's Lagrangian on the space-time extension
International Nuclear Information System (INIS)
Berrazouane, S.; Mohammedi, K.
2014-01-01
Highlights: • Optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. • Comparison between optimized fuzzy logic controller based on cuckoo search and swarm intelligent. • Loss of power supply probability and levelized energy cost are introduced. - Abstract: This paper presents the development of an optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. The FLC inputs are batteries state of charge (SOC) and net power flow, FLC outputs are the power rate of batteries, photovoltaic and diesel generator. Data for weekly solar irradiation, ambient temperature and load profile are used to tune the proposed controller by using cuckoo search algorithm. The optimized FLC is able to minimize loss of power supply probability (LPSP), excess energy (EE) and levelized energy cost (LEC). Moreover, the results of CS optimization are better than of particle swarm optimization PSO for fuzzy system controller
2000-02-01
many years of work. They are all that we hoped they would be. In the LMC we can see the elements, which go to make up new stars and planets, being released in giant stellar explosions. We can even see the creation of new stars going on, using elements scattered through space by previous stellar explosions. This is what we built the EPIC cameras for and they are really fulfilling their promise" Multiwavelength views of Hickson Group 16 The HCG-16 viewed by EPIC and by the Optical Monitor in the visible and ultraviolet wavelengths is one of approximately a hundred compact galaxy clusters listed by Canadian astronomer Paul Hickson in the 1980s. The criteria for the Hickson cluster groups included their compactness, their isolation from other galaxies and a limited magnitude range between their members. Most Hicksons are very faint, but a few can be observed with modest aperture telescopes. Galaxies in Hickson groups have a high probability of interacting. Their study has shed light on the question of galactic evolution and the effects of interaction. Investigation into their gravitational behaviour has also significantly contributed to our understanding of "dark matter", the mysterious matter that most astronomers feel comprises well over 90% of our universe. Observation of celestial objects from space over a range of X-ray, ultraviolet and visible wavelengths, is a unique feature of the XMM-Newton mission. The EPIC-PN view of the Hickson 16 group shows a handful of bright X-sources and in the background more than a hundred faint X-ray sources that XMM-Newton is revealing for the first time. Juxtaposing the X-ray view of HCG 16 with that of the Optical Monitor reveals one of the great strengths of XMM-Newton in being able to routinely compare the optical, ultraviolet and X-ray properties of objects. Many of the X-ray sources are revealed as elongated "fuzzy blobs" coincident with some of the optical galaxies. Routine access to ultraviolet images is a first for the mission
Czech Academy of Sciences Publication Activity Database
Axelsson, Owe; Sysala, Stanislav
2015-01-01
Roč. 70, č. 11 (2015), s. 2621-2637 ISSN 0898-1221 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:68145535 Keywords : system of nonlinear equations * Newton method * load increment method * elastoplasticity Subject RIV: IN - Informatics, Computer Science Impact factor: 1.398, year: 2015 http://www.sciencedirect.com/science/article/pii/S0898122115003818
Optimal Regulation of Virtual Power Plants
Energy Technology Data Exchange (ETDEWEB)
Dall Anese, Emiliano; Guggilam, Swaroop S.; Simonetto, Andrea; Chen, Yu Christine; Dhople, Sairaj V.
2018-03-01
This paper develops a real-time algorithmic framework for aggregations of distributed energy resources (DERs) in distribution networks to provide regulation services in response to transmission-level requests. Leveraging online primal-dual-type methods for time-varying optimization problems and suitable linearizations of the nonlinear AC power-flow equations, we believe this work establishes the system-theoretic foundation to realize the vision of distribution-level virtual power plants. The optimization framework controls the output powers of dispatchable DERs such that, in aggregate, they respond to automatic-generation-control and/or regulation-services commands. This is achieved while concurrently regulating voltages within the feeder and maximizing customers' and utility's performance objectives. Convergence and tracking capabilities are analytically established under suitable modeling assumptions. Simulations are provided to validate the proposed approach.
Optimized dispatch of wind farms with power control capability for power system restoration
DEFF Research Database (Denmark)
Xie, Yunyun; Liu, Changsheng; Wu, Qiuwei
2017-01-01
As the power control technology of wind farms develops, the output power of wind farms can be constant, which makes it possible for wind farms to participate in power system restoration. However, due to the uncertainty of wind energy, the actual output power can’t reach a constant dispatch power...... in all time intervals, resulting in uncertain power sags which may induce the frequency of the system being restored to go outside the security limits. Therefore, it is necessary to optimize the dispatch of wind farms participating in power system restoration. Considering that the probability...... distribution function (PDF) of transient power sags is hard to obtain, a robust optimization model is proposed in this paper, which can maximize the output power of wind farms participating in power system restoration. Simulation results demonstrate that the security constraints of the restored system can...
2008-01-01
Isaac Newton, besides being the founder of modern physics, was also master of Britain's mint. That is a precedent which many British physicists must surely wish had become traditional. At the moment, money for physics is in short supply in Britain.
Newton force from wave function collapse: speculation and test
International Nuclear Information System (INIS)
Diósi, Lajos
2014-01-01
The Diosi-Penrose model of quantum-classical boundary postulates gravity-related spontaneous wave function collapse of massive degrees of freedom. The decoherence effects of the collapses are in principle detectable if not masked by the overwhelming environmental decoherence. But the DP (or any other, like GRW, CSL) spontaneous collapses are not detectable themselves, they are merely the redundant formalism of spontaneous decoherence. To let DP collapses become testable physics, recently we extended the DP model and proposed that DP collapses are responsible for the emergence of the Newton gravitational force between massive objects. We identified the collapse rate, possibly of the order of 1/ms, with the rate of emergence of the Newton force. A simple heuristic emergence (delay) time was added to the Newton law of gravity. This non-relativistic delay is in peaceful coexistence with Einstein's relativistic theory of gravitation, at least no experimental evidence has so far surfaced against it. We derive new predictions of such a 'lazy' Newton law that will enable decisive laboratory tests with available technologies. The simple equation of 'lazy' Newton law deserves theoretical and experimental studies in itself, independently of the underlying quantum foundational considerations.
A New Interpolation Approach for Linearly Constrained Convex Optimization
Espinoza, Francisco
2012-08-01
In this thesis we propose a new class of Linearly Constrained Convex Optimization methods based on the use of a generalization of Shepard\\'s interpolation formula. We prove the properties of the surface such as the interpolation property at the boundary of the feasible region and the convergence of the gradient to the null space of the constraints at the boundary. We explore several descent techniques such as steepest descent, two quasi-Newton methods and the Newton\\'s method. Moreover, we implement in the Matlab language several versions of the method, particularly for the case of Quadratic Programming with bounded variables. Finally, we carry out performance tests against Matab Optimization Toolbox methods for convex optimization and implementations of the standard log-barrier and active-set methods. We conclude that the steepest descent technique seems to be the best choice so far for our method and that it is competitive with other standard methods both in performance and empirical growth order.
Convex relaxation of Optimal Power Flow in Distribution Feeders with embedded solar power
DEFF Research Database (Denmark)
Hermann, Alexander Niels August; Wu, Qiuwei; Huang, Shaojun
2016-01-01
There is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today’s distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar...... panels with uncontrolled inverters, the upper limit of installable capacity is quickly reached in many of today’s distribution feeders. This problem can often be mitigated by optimally controlling the voltage angles of inverters. However, the optimal power flow problem in its standard form is a large...... scale non-convex optimization problem, and thus can’t be solved precisely and also is computationally heavy and intractable for large systems. This paper examines the use of a convex relaxation using Semi-definite programming to optimally control solar power inverters in a distribution grid in order...
INVESTIGATION OF THE MISCONCEPTION IN NEWTON II LAW
Directory of Open Access Journals (Sweden)
Yudi Kurniawan
2018-04-01
Full Text Available This study aims to provide a comprehensive description of the level of the number of students who have misconceptions about Newton's II Law. This research is located at one State Junior High School in Kab. Pandeglang. The purposive sampling was considering used in this study because it is important to distinguish students who do not know the concept of students who experience misconception. Data were collected using a three tier-test diagnostic test and analyzed descriptively quantitatively. The results showed that the level of misconception was in the two categories of high and medium levels. It needs an innovative teaching technique for subsequent research to treat Newton's Newton misconception.
Preconditioner considerations for an aerodynamic Newton-Krylov solver
International Nuclear Information System (INIS)
Chisholm, T.; Zingg, D.W.
2003-01-01
A fast Newton-Krylov algorithm is presented for solving the compressible Navier-Stokes equations on structured multi-block grids with application to turbulent aerodynamic flows. The one-equation Spalart-Allmaras model is used to provide the turbulent viscosity. The optimization of the algorithm is discussed. ILU(4) is suggested for a preconditioner, operating on a modified Jacobian matrix. An RCM reordering is used, with a suggested root node in the wake. The advantages of a matrix-free technique for forming matrix-vector products are shown. Three test cases are used to demonstrate convergence rates. Single-element cases are solved in less than 60 seconds on a desktop computer, while the solution of a multi-element case can be found in about 10 minutes. (author)
Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization
Reyes, Juan Carlos De los
2013-11-01
We propose a nonsmooth PDE-constrained optimization approach for the determination of the correct noise model in total variation (TV) image denoising. An optimization problem for the determination of the weights corresponding to different types of noise distributions is stated and existence of an optimal solution is proved. A tailored regularization approach for the approximation of the optimal parameter values is proposed thereafter and its consistency studied. Additionally, the differentiability of the solution operator is proved and an optimality system characterizing the optimal solutions of each regularized problem is derived. The optimal parameter values are numerically computed by using a quasi-Newton method, together with semismooth Newton type algorithms for the solution of the TV-subproblems. © 2013 American Institute of Mathematical Sciences.
Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization
Reyes, Juan Carlos De los; Schö nlieb, Carola-Bibiane
2013-01-01
We propose a nonsmooth PDE-constrained optimization approach for the determination of the correct noise model in total variation (TV) image denoising. An optimization problem for the determination of the weights corresponding to different types of noise distributions is stated and existence of an optimal solution is proved. A tailored regularization approach for the approximation of the optimal parameter values is proposed thereafter and its consistency studied. Additionally, the differentiability of the solution operator is proved and an optimality system characterizing the optimal solutions of each regularized problem is derived. The optimal parameter values are numerically computed by using a quasi-Newton method, together with semismooth Newton type algorithms for the solution of the TV-subproblems. © 2013 American Institute of Mathematical Sciences.
XMM-Newton detects X-ray 'solar cycle' in distant star
2004-05-01
The Sun as observed by SOHO hi-res Size hi-res: 708 Kb The Sun as observed by SOHO The Sun as observed by the ESA/NASA SOHO observatory near the minimum of the solar cycle (left) and near its maximum (right). The signs of solar activity near the maximum are clearly seen. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Solar flare - 4 November 2003 The huge flare produced on 4 November 2003 This image of the Sun, obtained by the ESA/NASA SOHO observatory, shows the powerful X-ray flare that took place on 4 November 2003. The associated coronal mass ejection, coming out of the Sun at a speed of 8.2 million kilometres per hour, hit the Earth several hours later and caused disruptions to telecommunication and power distribution lines. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Since the time Galileo discovered sunspots, in 1610, astronomers have measured their number, size and location on the disc of the Sun. Sunspots are relatively cooler areas on the Sun that are observed as dark patches. Their number rises and falls with the level of activity of the Sun in a cycle of about 11 years. When the Sun is very active, large-scale phenomena take place, such as the flares and coronal mass ejections observed by the ESA/NASA solar observatory SOHO. These events release a large amount of energy and charged particles that hit the Earth and can cause powerful magnetic storms, affecting radio communications, power distribution lines and even our weather and climate. During the solar cycle, the X-ray emission from the Sun varies by a large amount (about a factor of 100) and is strongest when the cycle is at its peak and the surface of the Sun is covered by the largest number of spots. ESA's X-ray observatory, XMM-Newton, has now shown for the first time that this cyclic X-ray behaviour is common to
Bellon, Richard
2014-01-01
For Victorian men of science, the scientific revolution of the seventeenth century represented a moral awakening. Great theoretical triumphs of inductive science flowed directly from a philosophical spirit that embraced the virtues of self-discipline, courage, patience and humility. Isaac Newton exemplified this union of moral and intellectual excellence. This, at least, was the story crafted by scientific leaders like David Brewster, Thomas Chalmers, John Herschel, Adam Sedgwick and William Whewell. Not everyone accepted this reading of history. Evangelicals who decried the 'materialism' of mainstream science assigned a different meaning to Newton's legacy on behalf of their 'scriptural' alternative. High-church critics of science like John Henry Newman, on the other hand, denied that Newton's secular achievements carried any moral significance at all. These debates over Newtonian standards of philosophical behavior had a decisive influence on Charles Darwin as he developed his theory of evolution by natural selection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quasi-Newton methods for implicit black-box FSI coupling
CSIR Research Space (South Africa)
Bogaers, Alfred EJ
2014-09-01
Full Text Available In this paper we introduce a new multi-vector update quasi-Newton (MVQN) method for implicit coupling of partitioned, transient FSI solvers. The new quasi-Newton method facilitates the use of 'black-box' field solvers and under certain circumstances...
Directory of Open Access Journals (Sweden)
Suresh Chintalapudi Venkata
2015-09-01
Full Text Available In this paper a novel non-linear optimization problem is formulated to maximize the social welfare in restructured environment with generalized unified power flow controller (GUPFC. This paper presents a methodology to optimally allocate the reactive power by minimizing voltage deviation at load buses and total transmission power losses so as to maximize the social welfare. The conventional active power generation cost function is modified by combining costs of reactive power generated by the generators, shunt capacitors and total power losses to it. The formulated objectives are optimized individually and simultaneously as multi-objective optimization problem, while satisfying equality, in-equality, practical and device operational constraints. A new optimization method, based on two stage initialization and random distribution processes is proposed to test the effectiveness of the proposed approach on IEEE-30 bus system, and the detailed analysis is carried out.
Optimization of polynomials in non-commuting variables
Burgdorf, Sabine; Povh, Janez
2016-01-01
This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms.
Directory of Open Access Journals (Sweden)
Fu Yuhua
2014-06-01
Full Text Available Neutrosophy is a new branch of philosophy, and "Quad-stage" (Four stages is the expansion of Hegel’s triad thesis, antithesis, synthesis of development. Applying Neutrosophy and "Quad-stage" method, the purposes of this paper are expanding Newton Mechanics and making it become New Newton Mechanics (NNW taking law of conservation of energy as unique source law. In this paper the examples show that in some cases other laws may be contradicted with the law of conservation of energy. The original Newton's three laws and the law of gravity, in principle can be derived by the law of conservation of energy. Through the example of free falling body, this paper derives the original Newton's second law by using the law of conservation of energy, and proves that there is not the contradiction between the original law of gravity and the law of conservation of energy; and through the example of a small ball rolls along the inclined plane (belonging to the problem cannot be solved by general relativity that a body is forced to move in flat space, derives improved Newton's second law and improved law of gravity by using law of conservation of energy. Whether or not other conservation laws (such as the law of conservation of momentum and the law of conservation of angular momentum can be utilized, should be tested by law of conservation of energy. When the original Newton's second law is not correct, then the laws of conservation of momentum and angular momentum are no longer correct; therefore the general forms of improved law of conservation of momentum and improved law of conservation of angular momentum are presented. In the cases that law of conservation of energy cannot be used effectively, New Newton Mechanics will not exclude that according to other theories or accurate experiments to derive the laws or formulas to solve some specific problems. For example, with the help of the result of general relativity, the improved Newton's formula of universal
Karam, Ayman M.
2016-12-01
Membrane Distillation (MD) is an emerging sustainable desalination technique. While MD has many advantages and can be powered by solar thermal energy, its main drawback is the low water production rate. However, the MD process has not been fully optimized in terms of its manipulated and controlled variables. This is largely due to the lack of adequate dynamic models to study and simulate the process. In addition, MD is prone to membrane fouling, which is a fault that degrades the performance of the MD process. This work has three contributions to address these challenges. First, we derive a mathematical model of Direct Contact Membrane Distillation (DCMD), which is the building block for the next parts. Then, the proposed model is extended to account for membrane fouling and an observer-based fouling detection method is developed. Finally, various control strategies are implemented to optimize the performance of the DCMD solar-powered process. In part one, a reduced-order dynamic model of DCMD is developed based on lumped capacitance method and electrical analogy to thermal systems. The result is an electrical equivalent thermal network to the DCMD process, which is modeled by a system of nonlinear differential algebraic equations (DAEs). This model predicts the water-vapor flux and the temperature distribution along the module length. Experimental data is collected to validate the steady-state and dynamic responses of the proposed model, with great agreement demonstrated in both. The second part proposes an extension of the model to account for membrane fouling. An adaptive observer for DAE systems is developed and convergence proof is presented. A method for membrane fouling detection is then proposed based on adaptive observers. Simulation results demonstrate the performance of the membrane fouling detection method. Finally, an optimization problem is formulated to maximize the process efficiency of a solar-powered DCMD. The adapted method is known as Extremum
Dynamic Newton-Puiseux Theorem
DEFF Research Database (Denmark)
Mannaa, Bassel; Coquand, Thierry
2013-01-01
A constructive version of Newton-Puiseux theorem for computing the Puiseux expansions of algebraic curves is presented. The proof is based on a classical proof by Abhyankar. Algebraic numbers are evaluated dynamically; hence the base field need not be algebraically closed and a factorization...
Newton\\'s equation of motion in the gravitational field of an oblate ...
African Journals Online (AJOL)
In this paper, we derived Newton's equation of motion for a satellite in the gravitational scalar field of a uniformly rotating, oblate spheriodal Earth using spheriodal coordinates. The resulting equation is solved for the corresponding precession and the result compared with similar ones. JONAMP Vol. 11 2007: pp. 279-286 ...
Stability of power systems coupled with market dynamics
Meng, Jianping
This Ph.D. thesis presented here spans two relatively independent topics. The first part, Chapter 2 is self-contained, and is dedicated to studies of new algorithms for power system state estimation. The second part, encompassing the remaining chapters, is dedicated to stability analysis of power system coupled with market dynamics. The first part of this thesis presents improved Newton's methods employing efficient vectorized calculations of higher order derivatives in power system state estimation problems. The improved algorithms are proposed based on an exact Newton's method using the second order terms. By efficiently computing an exact gain matrix, combined with a special optimal multiplier method, the new algorithms show more reliable convergence compared with the existing methods of normal equations, orthogonal decomposition, and Hachtel's sparse tableau. Our methods are able to handle ill-conditioned problems, yet show minimal penalty in computational cost for well-conditioned cases. These claims are illustrated through the standard IEEE 118 and 300 bus test examples. The second part of the thesis focuses on stability analysis of market/power systems. The work presented is motivated by an emerging problem. As the frequency of market based dispatch updates increases, there will inevitably be interaction between the dynamics of markets determining the generator dispatch commands, and the physical response of generators and network interconnections, necessitating the development of stability analysis for such coupled systems. We begin with numeric tests using different market models, with detailed machine/exciter/turbine/governor dynamics, in the New England 39 bus test system. A progression of modeling refinements are introduced, including such non-ideal effects as time delays. Electricity market parameter identification algorithms are also studied based on real time data from the PJM electricity market. Finally our power market model is augmented by optimal
Coupling of partitioned physics codes with quasi-Newton methods
CSIR Research Space (South Africa)
Haelterman, R
2017-03-01
Full Text Available , A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19, pp. 577–593 (1965) [3] C.G. Broyden, Quasi-Newton methods and their applications to function minimization. Math. Comp. 21, pp. 368–381 (1967) [4] J.E. Dennis, J.J. More...´, Quasi-Newton methods: motivation and theory. SIAM Rev. 19, pp. 46–89 (1977) [5] J.E. Dennis, R.B. Schnabel, Least Change Secant Updates for quasi- Newton methods. SIAM Rev. 21, pp. 443–459 (1979) [6] G. Dhondt, CalculiX CrunchiX USER’S MANUAL Version 2...
Various Newton-type iterative methods for solving nonlinear equations
Directory of Open Access Journals (Sweden)
Manoj Kumar
2013-10-01
Full Text Available The aim of the present paper is to introduce and investigate new ninth and seventh order convergent Newton-type iterative methods for solving nonlinear equations. The ninth order convergent Newton-type iterative method is made derivative free to obtain seventh-order convergent Newton-type iterative method. These new with and without derivative methods have efficiency indices 1.5518 and 1.6266, respectively. The error equations are used to establish the order of convergence of these proposed iterative methods. Finally, various numerical comparisons are implemented by MATLAB to demonstrate the performance of the developed methods.
Problem in Two Unknowns: Robert Hooke and a Worm in Newton's Apple.
Weinstock, Robert
1992-01-01
Discusses the place that Robert Hooke has in science history versus the scientific contributions he made. Examines the relationship between Hooke and his contemporary, Isaac Newton, and Hooke's claims that Newton built on his ideas without receiving Newton's recognition. (26 references) (MDH)
Optimal Power Flow in Microgrids with Energy Storage
DEFF Research Database (Denmark)
Levron, Yoash; Guerrero, Josep M.; Beck, Yuval
2013-01-01
Energy storage may improve power management in microgrids that include renewable energy sources. The storage devices match energy generation to consumption, facilitating a smooth and robust energy balance within the microgrid. This paper addresses the optimal control of the microgrid’s energy...... storage devices. Stored energy is controlled to balance power generation of renewable sources to optimize overall power consumption at the microgrid point of common coupling. Recent works emphasize constraints imposed by the storage device itself, such as limited capacity and internal losses. However...
DEFF Research Database (Denmark)
Liu, Chengxi; Qin, Nan; Bak, Claus Leth
2015-01-01
This paper proposes a hybrid optimization method to optimally control the voltage and reactive power with minimum power loss in transmission grid. This approach is used for the Danish automatic voltage control (AVC) system which is typically a non-linear non-convex problem mixed with both...
Non-Relativistic Twistor Theory and Newton-Cartan Geometry
Dunajski, Maciej; Gundry, James
2016-03-01
We develop a non-relativistic twistor theory, in which Newton-Cartan structures of Newtonian gravity correspond to complex three-manifolds with a four-parameter family of rational curves with normal bundle O oplus O(2)}. We show that the Newton-Cartan space-times are unstable under the general Kodaira deformation of the twistor complex structure. The Newton-Cartan connections can nevertheless be reconstructed from Merkulov's generalisation of the Kodaira map augmented by a choice of a holomorphic line bundle over the twistor space trivial on twistor lines. The Coriolis force may be incorporated by holomorphic vector bundles, which in general are non-trivial on twistor lines. The resulting geometries agree with non-relativistic limits of anti-self-dual gravitational instantons.
Optimized Swinging Door Algorithm for Wind Power Ramp Event Detection: Preprint
Energy Technology Data Exchange (ETDEWEB)
Cui, Mingjian; Zhang, Jie; Florita, Anthony R.; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang
2015-08-06
Significant wind power ramp events (WPREs) are those that influence the integration of wind power, and they are a concern to the continued reliable operation of the power grid. As wind power penetration has increased in recent years, so has the importance of wind power ramps. In this paper, an optimized swinging door algorithm (SDA) is developed to improve ramp detection performance. Wind power time series data are segmented by the original SDA, and then all significant ramps are detected and merged through a dynamic programming algorithm. An application of the optimized SDA is provided to ascertain the optimal parameter of the original SDA. Measured wind power data from the Electric Reliability Council of Texas (ERCOT) are used to evaluate the proposed optimized SDA.
Multi-objective optimization for integrated hydro–photovoltaic power system
International Nuclear Information System (INIS)
Li, Fang-Fang; Qiu, Jun
2016-01-01
Highlights: • A model optimizing both quality and quantity of hydro/PV power was proposed. • The dimension was reduced by decoupling hydropower and PV power in time scales. • Reservoir operations have been optimized for different typical hydrological years. • Hydropower was proved to be an ideal compensating resource for PV power in nature. - Abstract: The most striking feature of the solar energy is its intermittency and instability resulting from environmental influence. Hydropower can be an ideal choice to compensate photovoltaic (PV) power since it is easy to adjust and responds rapidly with low cost. This study proposed a long-term multi-objective optimization model for integrated hydro/PV power system considering the smoothness of power output process and the total amount of annual power generation of the system simultaneously. The PV power output is firstly calculated by hourly solar radiation and temperature data, which is then taken as the boundary condition for reservoir optimization. For hydropower, due to its great adjustable capability, a month is taken as the time step to balance the simulation cost. The problem dimension is thus reduced by decoupling hydropower and PV power in time scales. The modified version of Non-dominated Sorting Genetic Algorithm (NSGA-II) is adopted to optimize the multi-objective problem. The proposed model was applied to the Longyangxia hydro/PV hybrid power system in Qinghai province of China, which is supposed to be the largest hydro/PV hydropower station in the world. The results verified that the hydropower is an ideal compensation resource for the PV power in nature, especially in wet years, when the solar radiation decreases due to rainfalls while the water resource is abundant to be allocated. The power generation potential is provided for different hydrologic years, which can be taken to evaluate the actual operations. The proposed methodology is general in that it can be used for other hydro/PV power systems
Preventive Security-Constrained Optimal Power Flow Considering UPFC Control Modes
Directory of Open Access Journals (Sweden)
Xi Wu
2017-08-01
Full Text Available The successful application of the unified power flow controller (UPFC provides a new control method for the secure and economic operation of power system. In order to make the full use of UPFC and improve the economic efficiency and static security of a power system, a preventive security-constrained power flow optimization method considering UPFC control modes is proposed in this paper. Firstly, an iterative method considering UPFC control modes is deduced for power flow calculation. Taking into account the influence of different UPFC control modes on the distribution of power flow after N-1 contingency, the optimization model is then constructed by setting a minimal system operation cost and a maximum static security margin as the objective. Based on this model, the particle swarm optimization (PSO algorithm is utilized to optimize power system operating parameters and UPFC control modes simultaneously. Finally, a standard IEEE 30-bus system is utilized to demonstrate that the proposed method fully exploits the potential of static control of UPFC and significantly increases the economic efficiency and static security of the power system.
Optimal energy management strategy for battery powered electric vehicles
International Nuclear Information System (INIS)
Xi, Jiaqi; Li, Mian; Xu, Min
2014-01-01
Highlights: • The power usage for battery-powered electrical vehicles with in-wheel motors is maximized. • The battery and motor dynamics are examined emphasized on the power conversion and utilization. • The optimal control strategy is derived and verified by simulations. • An analytic expression of the optimal operating point is obtained. - Abstract: Due to limited energy density of batteries, energy management has always played a critical role in improving the overall energy efficiency of electric vehicles. In this paper, a key issue within the energy management problem will be carefully tackled, i.e., maximizing the power usage of batteries for battery-powered electrical vehicles with in-wheel motors. To this end, the battery and motor dynamics will be thoroughly examined with particular emphasis on the power conversion and power utilization. The optimal control strategy will then be derived based on the analysis. One significant contribution of this work is that an analytic expression for the optimal operating point in terms of the component and environment parameters can be obtained. Owing to this finding, the derived control strategy is also rendered a simple structure for real-time implementation. Simulation results demonstrate that the proposed strategy works both adaptively and robustly under different driving scenarios
UES: an optimization software package for power and energy
International Nuclear Information System (INIS)
Vohryzek, J.; Havlena, V.; Findejs, J.; Jech, J.
2004-01-01
Unified Energy Solutions components are designed to meet specific requirements of the electric utilities, industrial power units, and district heating (combined heat and power) plants. The optimization objective is to operate the plant with maximum process efficiency and operational profit under the constraints imposed by technology and environmental impacts. Software applications for advanced control real-time optimization may provide a low-cost, high return alternative to expensive boiler retrofits for improving operational profit as well as reducing emissions. Unified Energy Solutions (UES) software package is a portfolio of advanced control and optimization components running on top of the standard process regulatory and control system. The objective of the UES is to operate the plant with maximum achievable profit (maximum efficiency) under the constraints imposed by technology (life-time consumption, asset health) and environmental impacts (CO and NO x emissions). Fast responsiveness to varying economic conditions and integration of real-time optimization and operator decision support (off-line) features are critical for operation in real-time economy. Optimization Features are targeted to combustion process, heat and power load allocation to parallel resources, electric power delivery and ancillary services. Optimization Criteria include increased boiler thermal efficiency, maintaining emission limits, economic load allocation of the heat and generation sources. State-of-the-art advanced control algorithms use model based predictive control principles and provide superior response in transient states. Individual software modules support open control platforms and communication protocols. UES can be implemented on a wide range of distributed control systems. Typical achievable benefits include heat and power production costs savings, increased effective boiler operation range, optimized flue gas emissions, optimized production capacity utilization, optimized
Optimal pole shifting controller for interconnected power system
International Nuclear Information System (INIS)
Yousef, Ali M.; Kassem, Ahmed M.
2011-01-01
Research highlights: → Mathematical model represents a power system which consists of synchronous machine connected to infinite bus through transmission line. → Power system stabilizer was designed based on optimal pole shifting controller. → The system performances was tested through load disturbances at different operating conditions. → The system performance with the proposed optimal pole shifting controller is compared with the conventional pole placement controller. → The digital simulation results indicated that the proposed controller has a superior performance. -- Abstract: Power system stabilizer based on optimal pole shifting is proposed. An approach for shifting the real parts of the open-loop poles to any desired positions while preserving the imaginary parts is presented. In each step of this approach, it is required to solve a first-order or a second-order linear matrix Lyapunov equation for shifting one real pole or two complex conjugate poles, respectively. This presented method yields a solution, which is optimal with respect to a quadratic performance index. The attractive feature of this method is that it enables solutions of the complex problem to be easily found without solving any non-linear algebraic Riccati equation. The present power system stabilizer is based on Riccati equation approach. The control law depends on finding the feedback gain matrix, and then the control signal is synthesized by multiplying the state variables of the power system with determined gain matrix. The gain matrix is calculated one time only, and it works over wide range of operating conditions. To validate the power of the proposed PSS, a linearized model of a simple power system consisted of a single synchronous machine connected to infinite bus bar through transmission line is simulated. The studied power system is subjected to various operating points and power system parameters changes.
Optimal pole shifting controller for interconnected power system
Energy Technology Data Exchange (ETDEWEB)
Yousef, Ali M., E-mail: drali_yousef@yahoo.co [Electrical Eng. Dept., Faculty of Engineering, Assiut University (Egypt); Kassem, Ahmed M., E-mail: kassem_ahmed53@hotmail.co [Control Technology Dep., Industrial Education College, Beni-Suef University (Egypt)
2011-05-15
Research highlights: {yields} Mathematical model represents a power system which consists of synchronous machine connected to infinite bus through transmission line. {yields} Power system stabilizer was designed based on optimal pole shifting controller. {yields} The system performances was tested through load disturbances at different operating conditions. {yields} The system performance with the proposed optimal pole shifting controller is compared with the conventional pole placement controller. {yields} The digital simulation results indicated that the proposed controller has a superior performance. -- Abstract: Power system stabilizer based on optimal pole shifting is proposed. An approach for shifting the real parts of the open-loop poles to any desired positions while preserving the imaginary parts is presented. In each step of this approach, it is required to solve a first-order or a second-order linear matrix Lyapunov equation for shifting one real pole or two complex conjugate poles, respectively. This presented method yields a solution, which is optimal with respect to a quadratic performance index. The attractive feature of this method is that it enables solutions of the complex problem to be easily found without solving any non-linear algebraic Riccati equation. The present power system stabilizer is based on Riccati equation approach. The control law depends on finding the feedback gain matrix, and then the control signal is synthesized by multiplying the state variables of the power system with determined gain matrix. The gain matrix is calculated one time only, and it works over wide range of operating conditions. To validate the power of the proposed PSS, a linearized model of a simple power system consisted of a single synchronous machine connected to infinite bus bar through transmission line is simulated. The studied power system is subjected to various operating points and power system parameters changes.
Optimal velocity in the race over variable slope trace.
Maroński, Ryszard; Samoraj, Piotr
2015-01-01
The minimum-time running problem is reconsidered. The time of covering a given distance is minimized. The function that should be found is the runner's velocity that varies with the distance. The Hill-Keller model of motion is employed. It is based on the Newton second law and an equation of power balance. The new element of the current approach is that the trace slope angle varies with the distance. The problem is formulated and solved in optimal control applying the Chebyshev direct pseudospectral method. The essential finding is that the optimal velocity during the cruise is constant regardless of the local slope of the terrain. Such result is valid if the inequality constraints imposed on the propulsive force or the energy are not active.
On the classification of plane graphs representing structurally stable rational Newton flows
Jongen, H.Th.; Jonker, P.; Twilt, F.
1991-01-01
We study certain plane graphs, called Newton graphs, representing a special class of dynamical systems which are closely related to Newton's iteration method for finding zeros of (rational) functions defined on the complex plane. These Newton graphs are defined in terms of nonvanishing angles
Directory of Open Access Journals (Sweden)
Heba Ahmed Hassan
2017-01-01
Full Text Available This paper applies a relatively new optimization method, the Grey Wolf Optimizer (GWO algorithm for Optimal Power Flow (OPF of two-terminal High Voltage Direct Current (HVDC electrical power system. The OPF problem of pure AC power systems considers the minimization of total costs under equality and inequality constraints. Hence, the OPF problem of integrated AC-DC power systems is extended to incorporate HVDC links, while taking into consideration the power transfer control characteristics using a GWO algorithm. This algorithm is inspired by the hunting behavior and social leadership of grey wolves in nature. The proposed algorithm is applied to two different case-studies: the modified 5-bus and WSCC 9-bus test systems. The validity of the proposed algorithm is demonstrated by comparing the obtained results with those reported in literature using other optimization techniques. Analysis of the obtained results show that the proposed GWO algorithm is able to achieve shorter CPU time, as well as minimized total cost when compared with already existing optimization techniques. This conclusion proves the efficiency of the GWO algorithm.
Algorithm 896: LSA: Algorithms for Large-Scale Optimization
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan
2009-01-01
Roč. 36, č. 3 (2009), 16-1-16-29 ISSN 0098-3500 R&D Pro jects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : algorithms * design * large-scale optimization * large-scale nonsmooth optimization * large-scale nonlinear least squares * large-scale nonlinear minimax * large-scale systems of nonlinear equations * sparse pro blems * partially separable pro blems * limited-memory methods * discrete Newton methods * quasi-Newton methods * primal interior-point methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.904, year: 2009
Wheeling rates evaluation using optimal power flows
International Nuclear Information System (INIS)
Muchayi, M.; El-Hawary, M. E.
1998-01-01
Wheeling is the transmission of electrical power and reactive power from a seller to a buyer through a transmission network owned by a third party. The wheeling rates are then the prices charged by the third party for the use of its network. This paper proposes and evaluates a strategy for pricing wheeling power using a pricing algorithm that in addition to the fuel cost for generation incorporates the optimal allocation of the transmission system operating cost, based on time-of-use pricing. The algorithm is implemented for the IEEE standard 14 and 30 bus system which involves solving a modified optimal power flow problem iteratively. The base of the proposed algorithm is the hourly spot price. The analysis spans a total time period of 24 hours. Unlike other algorithms that use DC models, the proposed model captures wheeling rates of both real and reactive power. Based on the evaluation, it was concluded that the model has the potential for wide application in calculating wheeling rates in a deregulated competitive power transmission environment. 9 refs., 3 tabs
Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect
Directory of Open Access Journals (Sweden)
Jie Tian
2017-03-01
Full Text Available In modern wind farms, maximum power point tracking (MPPT is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control curves for each individual wind turbine off-line. In typical wind farms with regular layout, based on the detailed analysis of the influence of pitch angle and tip speed ratio on the total active power of the wind farm by the exhausted search, the optimization is simplified with the reduced computation complexity. By using the optimized control curves, the annual energy production (AEP is increased by 1.03% compared to using the MPPT method in a case-study of a typical eighty-turbine wind farm.
DEFF Research Database (Denmark)
Li, Qingnan; Andersen, Michael A. E.; Thomsen, Ole Cornelius
2011-01-01
Nowadays, efficiency and power density are the most important issues for Power Factor Correction (PFC) converters development. However, it is a challenge to reach both high efficiency and power density in a system at the same time. In this paper, taking a Bridgeless PFC (BPFC) as an example......, a useful compromise between efficiency and power density of the Boost inductors on 3.2kW is achieved using an optimized design procedure. The experimental verifications based on the optimized inductor are carried out from 300W to 3.2kW at 220Vac input....
Particle Swarm Optimization with Various Inertia Weight Variants for Optimal Power Flow Solution
Directory of Open Access Journals (Sweden)
Prabha Umapathy
2010-01-01
Full Text Available This paper proposes an efficient method to solve the optimal power flow problem in power systems using Particle Swarm Optimization (PSO. The objective of the proposed method is to find the steady-state operating point which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow, and voltage. Three different inertia weights, a constant inertia weight (CIW, a time-varying inertia weight (TVIW, and global-local best inertia weight (GLbestIW, are considered with the particle swarm optimization algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated for each of the method individually. It is observed that the PSO algorithm with the proposed inertia weight yields better results, both in terms of optimal solution and faster convergence. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The algorithm is computationally faster, in terms of the number of load flows executed, and provides better results than other heuristic techniques.
Price-based Optimal Control of Electrical Power Systems
Energy Technology Data Exchange (ETDEWEB)
Jokic, A.
2007-09-10
The research presented in this thesis is motivated by the following issue of concern for the operation of future power systems: Future power systems will be characterized by significantly increased uncertainties at all time scales and, consequently, their behavior in time will be difficult to predict. In Chapter 2 we will present a novel explicit, dynamic, distributed feedback control scheme that utilizes nodal-prices for real-time optimal power balance and network congestion control. The term explicit means that the controller is not based on solving an optimization problem on-line. Instead, the nodal prices updates are based on simple, explicitly defined and easily comprehensible rules. We prove that the developed control scheme, which acts on the measurements from the current state of the system, always provide the correct nodal prices. In Chapter 3 we will develop a novel, robust, hybrid MPC control (model predictive controller) scheme for power balance control with hard constraints on line power flows and network frequency deviations. The developed MPC controller acts in parallel with the explicit controller from Chapter 2, and its task is to enforce the constraints during the transient periods following suddenly occurring power imbalances in the system. In Chapter 4 the concept of autonomous power networks will be presented as a concise formulation to deal with economic, technical and reliability issues in power systems with a large penetration of distributed generating units. With autonomous power networks as new market entities, we propose a novel operational structure of ancillary service markets. In Chapter 5 we will consider the problem of controlling a general linear time-invariant dynamical system to an economically optimal operating point, which is defined by a multiparametric constrained convex optimization problem related with the steady-state operation of the system. The parameters in the optimization problem are values of the exogenous inputs to
International Nuclear Information System (INIS)
Bouchekara, H.R.E.H.; Abido, M.A.; Chaib, A.E.; Mehasni, R.
2014-01-01
Highlights: • Optimal power flow. • Reducing electrical energy loss. • Saving electrical energy. • Optimal operation. - Abstract: A new efficient optimization method, called the League Championship Algorithm (LCA) is proposed in this paper for solving the optimal power flow problem. This method is inspired by the competition of sport teams in an artificial sport league for several weeks and over a number of seasons. The proposed method has been applied to the Algerian power system network for different objectives. Furthermore, in order to assess the effectiveness of the proposed LCA method the obtained results using this method have been compared to those obtained using other methods reported in the literature. The obtained results and the comparison with other techniques indicate that the league championship algorithm provides effective and high-quality solution when solving the optimal power flow problem
Power and performance software analysis and optimization
Kukunas, Jim
2015-01-01
Power and Performance: Software Analysis and Optimization is a guide to solving performance problems in modern Linux systems. Power-efficient chips are no help if the software those chips run on is inefficient. Starting with the necessary architectural background as a foundation, the book demonstrates the proper usage of performance analysis tools in order to pinpoint the cause of performance problems, and includes best practices for handling common performance issues those tools identify. Provides expert perspective from a key member of Intel's optimization team on how processors and memory
Eigenvalue Decomposition-Based Modified Newton Algorithm
Directory of Open Access Journals (Sweden)
Wen-jun Wang
2013-01-01
Full Text Available When the Hessian matrix is not positive, the Newton direction may not be the descending direction. A new method named eigenvalue decomposition-based modified Newton algorithm is presented, which first takes the eigenvalue decomposition of the Hessian matrix, then replaces the negative eigenvalues with their absolute values, and finally reconstructs the Hessian matrix and modifies the searching direction. The new searching direction is always the descending direction. The convergence of the algorithm is proven and the conclusion on convergence rate is presented qualitatively. Finally, a numerical experiment is given for comparing the convergence domains of the modified algorithm and the classical algorithm.
Newton da Costa and the school of Curitiba
Directory of Open Access Journals (Sweden)
Artibano Micali
2011-06-01
Full Text Available This paper intends to report on the beginning of the publications of Newton da Costa outside Brazil. Two mathematicians played an important role in this beginning: Marcel Guillaume from the University of Clermont-Ferrand and Paul Dedecker from the Universities of Lille and Liège. At the same time we recall the role played by Newton da Costa and Jayme Machado Cardoso in the development of what we call here the School of Curitiba [Escola de Curitiba]. Paraconsistent logic was initiated in this school under the influence of Newton da Costa. As another contribution of this school we mention the development of the theory of quasigroups; Jayme Machado Cardoso's name has been given, by Sade, to some particular objects which are now called Cardoso quasigroups.
International Nuclear Information System (INIS)
Derafshian, Mehdi; Amjady, Nima
2015-01-01
This paper presents an evolutionary algorithm-based approach for optimal design of power system stabilizer (PSS) for multi-machine power systems that include doubly fed induction generator wind turbines. The proposed evolutionary algorithm is an improved particle swarm optimization named chaotic particle swarm optimization with passive congregation (CPSO-PC) applied for finding the optimal settings of PSS parameters. Two different eigenvalue-based objectives are combined as the objective function for the optimization problem of tuning PSS parameters. The first objective function comprises the damping factor of lightly damped electro-mechanical modes and the second one includes the damping ratio of these modes. The effectiveness of the proposed method to design PSS for the power systems including DFIG (Doubly Fed Induction Generator) is extensively demonstrated through eigenvalue analysis and time-domain simulations and also by comparing its simulation results with the results of other heuristic optimization approaches. - Highlights: • A new optimization model for design of PSS in power systems including DFIG is proposed. • A detailed and realistic modeling of DFIG is presented. • A new evolutionary algorithm is suggested for solving the optimization problem of designing PSS
Directory of Open Access Journals (Sweden)
Leyzgold D.Yu.
2015-04-01
Full Text Available This article studies the problem of the transmission line conductor heating effect on the active power flows optimization in the local segment of industrial power supply. The purpose is to determine the optimal generation rating of the distributed power sources, in which the power flow values will correspond to the minimum active power losses in the power supply. The timeliness is the need to define the most appropriate rated power values of distributed sources which will be connected to current industrial power supply. Basing on the model of active power flow optimization, authors formulate the description of the nonlinear transportation problem considering the active power losses depending on the transmission line conductor heating. Authors proposed a new approach to the heating model parameters definition based on allowable current loads and nominal parameters of conductors as part of the optimization problem. Analysis of study results showed that, despite the relatively small active power losses reduction to the tune 0,45% due to accounting of the conductors heating effect for the present configuration of power supply, there are significant fluctuations in the required generation rating in nodes of the network to 9,32% within seasonal changes in the outer air temperature. This fact should be taken into account when selecting the optimum power of distributed generation systems, as exemplified by an arbitrary network configuration.
Students’ misconceptions about Newton's second law in outer space
International Nuclear Information System (INIS)
Temiz, B K; Yavuz, A
2014-01-01
Students’ misconceptions about Newton's second law in frictionless outer space were investigated. The research was formed according to an epistemic game theoretical framework. The term ‘epistemic’ refers to students’ participation in problem-solving activities as a means of constructing new knowledge. The term ‘game’ refers to a coherent activity that consists of moves and rules. A set of questions in which students are asked to solve two similar Newton's second law problems, one of which is on the Earth and the other in outer space, was administered to 116 undergraduate students. The findings indicate that there is a significant difference between students’ epistemic game preferences and race-type (outer space or frictional surface) question. So students who used Newton's second law on the ground did not apply this law and used primitive reasoning when it came to space. Among these students, voluntary interviews were conducted with 18 students. Analysis of interview transcripts showed that: (1) the term ‘space’ causes spontaneity among students that prevents the use of the law; (2) students hesitate to apply Newton's second law in space due to the lack of a condition—the friction; (3) students feel that Newton's second law is not valid in space for a variety of reasons, but mostly for the fact that the body in space is not in contact with a surface. (paper)
Newton's Contributions to Optics
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 12. Newton's Contributions to Optics. Arvind Kumar. General Article Volume 11 Issue 12 December 2006 pp 10-20. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/12/0010-0020. Keywords.
Optimal power allocation of a sensor node under different rate constraints
Ayala Solares, Jose Roberto; Rezki, Zouheir; Alouini, Mohamed-Slim
2012-01-01
The optimal transmit power of a sensor node while satisfying different rate constraints is derived. First, an optimization problem with an instantaneous transmission rate constraint is addressed. Next, the optimal power is analyzed, but now
Can Newton's Third Law Be "Derived" from the Second?
Gangopadhyaya, Asim; Harrington, James
2017-01-01
Newton's laws have engendered much discussion over several centuries. Today, the internet is awash with a plethora of information on this topic. We find many references to Newton's laws, often discussions of various types of misunderstandings and ways to explain them. Here we present an intriguing example that shows an assumption hidden in…
Techno-economic design optimization of solar thermal power plants
Morin, G.
2011-01-01
A holistic view is essential in the engineering of technical systems. This thesis presents an integrative approach for designing solar thermal power plants. The methodology is based on a techno-economic plant model and a powerful optimization algorithm. Typically, contemporary design methods treat technical and economic parameters and sub-systems separately, making it difficult or even impossible to realize the full optimization potential of power plant systems. The approach presented here ov...
Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses
Energy Technology Data Exchange (ETDEWEB)
Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio
2015-09-02
The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.
A variational principle for Newton-Cartan theory
International Nuclear Information System (INIS)
Goenner, H.F.M.
1984-01-01
In the framework of a space-time theory of gravitation a variational principle is set up for the gravitational field equations and the equations of motion of matter. The general framework leads to Newton's equations of motion with an unspecified force term and, for irrotational motion, to a restriction on the propagation of the shear tensor along the streamlines of matter. The field equations obtained from the variation are weaker than the standard field equations of Newton-Cartan theory. An application to fluids with shear and bulk viscosity is given. (author)
Fara, Patricia
2015-04-13
Isaac Newton's reputation was initially established by his 1672 paper on the refraction of light through a prism; this is now seen as a ground-breaking account and the foundation of modern optics. In it, he claimed to refute Cartesian ideas of light modification by definitively demonstrating that the refrangibility of a ray is linked to its colour, hence arguing that colour is an intrinsic property of light and does not arise from passing through a medium. Newton's later significance as a world-famous scientific genius and the apparent confirmation of his experimental results have tended to obscure the realities of his reception at the time. This paper explores the rhetorical strategies Newton deployed to convince his audience that his conclusions were certain and unchallengeable. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Power consumption optimization strategy for wireless networks
DEFF Research Database (Denmark)
Cornean, Horia; Kumar, Sanjay; Marchetti, Nicola
2011-01-01
in order to reduce the total power consumption in a multi cellular network. We present an algorithm for power optimization under no interference and in presence of interference conditions, targeting to maximize the network capacity. The convergence of the algorithm is guaranteed if the interference...
Robust optimization-based DC optimal power flow for managing wind generation uncertainty
Boonchuay, Chanwit; Tomsovic, Kevin; Li, Fangxing; Ongsakul, Weerakorn
2012-11-01
Integrating wind generation into the wider grid causes a number of challenges to traditional power system operation. Given the relatively large wind forecast errors, congestion management tools based on optimal power flow (OPF) need to be improved. In this paper, a robust optimization (RO)-based DCOPF is proposed to determine the optimal generation dispatch and locational marginal prices (LMPs) for a day-ahead competitive electricity market considering the risk of dispatch cost variation. The basic concept is to use the dispatch to hedge against the possibility of reduced or increased wind generation. The proposed RO-based DCOPF is compared with a stochastic non-linear programming (SNP) approach on a modified PJM 5-bus system. Primary test results show that the proposed DCOPF model can provide lower dispatch cost than the SNP approach.
Genetic Spot Optimization for Peak Power Estimation in Large VLSI Circuits
Directory of Open Access Journals (Sweden)
Michael S. Hsiao
2002-01-01
Full Text Available Estimating peak power involves optimization of the circuit's switching function. The switching of a given gate is not only dependent on the output capacitance of the node, but also heavily dependent on the gate delays in the circuit, since multiple switching events can result from uneven circuit delay paths in the circuit. Genetic spot expansion and optimization are proposed in this paper to estimate tight peak power bounds for large sequential circuits. The optimization spot shifts and expands dynamically based on the maximum power potential (MPP of the nodes under optimization. Four genetic spot optimization heuristics are studied for sequential circuits. Experimental results showed an average of 70.7% tighter peak power bounds for large sequential benchmark circuits was achieved in short execution times.
Westfall, Richard S
1994-01-01
Le plus célèbre des savants, Isaac Newton, est aussi celui qui a le plus de biographes. Avant même sa mort, en 1727, l'un d'eux publiait un récit de la vie du grand homme. Richard Westfall, universitaire américain, est aujourd'hui le meilleur connaisseur d'un personnage en tout point extraordinaire, dont Aldous Huxley disait : « En tant qu'homme, c'est un fiasco ; en tant que monstre, il est superbe ! » Découvrant à 24 ans la loi de la gravitation universelle, établissant peu après les lois de l'optique tout en poursuivant des études alchimiques et théologiques, cet homme capable de rester des jours entiers sans manger ni dormir, absorbé par les énigmes du savoir, connaît une grave dépression dont il réchappe de justesse... pour se consacrer à l'économie de son pays : il devient directeur de la Monnaie de Londres, organisant une impitoyable chasse aux faux-monnayeurs ! L'image d'Épinal de Newton regardant une pomme tomber sort enrichie et complexifiée de ce livre fruit d'une vie de reche...
The Celestial Mechanics of Newton
Indian Academy of Sciences (India)
hannes Kepler had announced his first two laws of plan- etary motion (AD 1609), ... "Mathematical Principles of Natural Philosophy" .... He provided two different sets of proofs .... the Sun. Newton then formulated a theory of tides based on the.
Optimization of the Energy Output of Osmotic Power Plants
Directory of Open Access Journals (Sweden)
Florian Dinger
2013-01-01
Full Text Available On the way to a completely renewable energy supply, additional alternatives to hydroelectric, wind, and solar power have to be investigated. Osmotic power is such an alternative with a theoretical global annual potential of up to 14400 TWh (70% of the global electricity consumption of 2008 per year. It utilizes the phenomenon that upon the mixing of fresh water and oceanic salt water (e.g., at a river mouth, around 2.88 MJ of energy per 1 m3 of fresh water is released. Here, we describe a new approach to derive operational parameter settings for osmotic power plants using a pressure exchanger for optimal performance, either with respect to maximum generated power or maximum extracted energy. Up to now, only power optimization is discussed in the literature, but when considering the fresh water supply as a limiting factor, the energy optimization appears as the challenging task.
Solving Eigenvalue response matrix equations with Jacobian-Free Newton-Krylov methods
International Nuclear Information System (INIS)
Roberts, Jeremy A.; Forget, Benoit
2011-01-01
The response matrix method for reactor eigenvalue problems is motivated as a technique for solving coarse mesh transport equations, and the classical approach of power iteration (PI) for solution is described. The method is then reformulated as a nonlinear system of equations, and the associated Jacobian is derived. A Jacobian-Free Newton-Krylov (JFNK) method is employed to solve the system, using an approximate Jacobian coupled with incomplete factorization as a preconditioner. The unpreconditioned JFNK slightly outperforms PI, and preconditioned JFNK outperforms both PI and Steffensen-accelerated PI significantly. (author)
Power Optimization of Multimode Mobile Embedded Systems with Workload-Delay Dependency
Directory of Open Access Journals (Sweden)
Hoeseok Yang
2016-01-01
Full Text Available This paper proposes to take the relationship between delay and workload into account in the power optimization of microprocessors in mobile embedded systems. Since the components outside a device continuously change their values or properties, the workload to be handled by the systems becomes dynamic and variable. This variable workload is formulated as a staircase function of the delay taken at the previous iteration in this paper and applied to the power optimization of DVFS (dynamic voltage-frequency scaling. In doing so, a graph representation of all possible workload/mode changes during the lifetime of a device, Workload Transition Graph (WTG, is proposed. Then, the power optimization problem is transformed into finding a cycle (closed walk in WTG which minimizes the average power consumption over it. Out of the obtained optimal cycle of WTG, one can derive the optimal power management policy of the target device. It is shown that the proposed policy is valid for both continuous and discrete DVFS models. The effectiveness of the proposed power optimization policy is demonstrated with the simulation results of synthetic and real-life examples.
Directory of Open Access Journals (Sweden)
Yi Tang
2017-05-01
Full Text Available In a competitive electricity market with substantial involvement of renewable electricity, maximizing profits by optimizing bidding strategies is crucial to different power producers including conventional power plants and renewable ones. This paper proposes a game-theoretic bidding optimization method based on bi-level programming, where power producers are at the upper level and utility companies are at the lower level. The competition among the multiple power producers is formulated as a non-cooperative game in which bidding curves are their strategies, while uniform clearing pricing is considered for utility companies represented by an independent system operator. Consequently, based on the formulated game model, the bidding strategies for power producers are optimized for the day-ahead market and the intraday market with considering the properties of renewable energy; and the clearing pricing for the utility companies, with respect to the power quantity from different power producers, is optimized simultaneously. Furthermore, a distributed algorithm is provided to search the solution of the generalized Nash equilibrium. Finally, simulation results were performed and discussed to verify the feasibility and effectiveness of the proposed non-cooperative game-based bi-level optimization approach.
Indian Academy of Sciences (India)
Home; Fellowship. Fellow Profile. Elected: 1935 Honorary. Lewis, Prof. Gilbert Newton. Date of birth: 25 October 1875. Date of death: 24 March 1946. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th Mid-year meeting of the Academy will be held ...
Space and motion in nature and Scripture: Galileo, Descartes, Newton.
Janiak, Andrew
2015-06-01
In the Scholium to the Definitions in Principia mathematica, Newton departs from his main task of discussing space, time and motion by suddenly mentioning the proper method for interpreting Scripture. This is surprising, and it has long been ignored by scholars. In this paper, I argue that the Scripture passage in the Scholium is actually far from incidental: it reflects Newton's substantive concern, one evident in correspondence and manuscripts from the 1680s, that any general understanding of space, time and motion must enable readers to recognize the veracity of Biblical claims about natural phenomena, including the motion of the earth. This substantive concern sheds new light on an aspect of Newton's project in the Scholium. It also underscores Newton's originality in dealing with the famous problem of reconciling theological and philosophical conceptions of nature in the seventeenth century. Copyright © 2015 Elsevier Ltd. All rights reserved.
Time-optimal control of reactor power
International Nuclear Information System (INIS)
Bernard, J.A.
1987-01-01
Control laws that permit adjustments in reactor power to be made in minimum time and without overshoot have been formulated and demonstrated. These control laws which are derived from the standard and alternate dynamic period equations, are closed-form expressions of general applicability. These laws were deduced by noting that if a system is subject to one or more operating constraints, then the time-optimal response is to move the system along these constraints. Given that nuclear reactors are subject to limitations on the allowed reactor period, a time-optimal control law would step the period from infinity to the minimum allowed value, hold the period at that value for the duration of the transient, and then step the period back to infinity. The change in reactor would therefore be accomplished in minimum time. The resulting control laws are superior to other forms of time-optimal control because they are general-purpose, closed-form expressions that are both mathematically tractable and readily implanted. Moreover, these laws include provisions for the use of feedback. The results of simulation studies and actual experiments on the 5 MWt MIT Research Reactor in which these time-optimal control laws were used successfully to adjust the reactor power are presented
Astronomical and Cosmological Symbolism in Art Dedicated to Newton and Einstein
Sinclair, R.
2013-04-01
Separated by two and a half centuries, Isaac Newton (1642-1727) and Albert Einstein (1879-1955) had profound impacts on our understanding of the universe. Newton established our understanding of universal gravitation, which was recast almost beyond recognition by Einstein. Both discovered basic patterns behind astronomical phenomena and became the best-known scientists of their respective periods. I will describe here how artists of the 18th and 20th centuries represented the achievements of Newton and Einstein. Representations of Newton express reverence, almost an apotheosis, portraying him as the creator of the universe. Einstein, in a different age, is represented often as a comic figure, and only rarely do we find art that hints at the profound view of the universe he developed.
Life after Newton: an ecological metaphysic.
Ulanowicz, R E
1999-05-01
Ecology may indeed be 'deep', as some have maintained, but perhaps much of the mystery surrounding it owes more simply to the dissonance between ecological notions and the fundamentals of the modern synthesis. Comparison of the axioms supporting the Newtonian world view with those underlying the organicist and stochastic metaphors that motivate much of ecosystems science reveals strong disagreements--especially regarding the nature of the causes of events and the scalar domains over which these causes can operate. The late Karl Popper held that the causal closure forced by our mechanical perspective on nature frustrates our attempts to achieve an 'evolutionary theory of knowledge.' He suggested that the Newtonian concept of 'force' must be generalized to encompass the contingencies that arise in evolutionary processes. His reformulation of force as 'propensity' leads quite naturally to a generalization of Newton's laws for ecology. The revised tenets appear, however, to exhibit more scope and allow for change to arise from within a system. Although Newton's laws survive (albeit in altered form) within a coalescing ecological metaphysic, the axioms that Enlightenment thinkers appended to Newton's work seem ill-suited for ecology and perhaps should yield to a new and coherent set of assumptions on how to view the processes of nature.
Raju, C. K.
1991-01-01
A study of time in Newtonian physics is presented. Newton's laws of motion, falsifiability and physical theories, laws of motion and law of gravitation, and Laplace's demon are discussed. Short bibliographic sketches of Laplace and Karl Popper are included. (KR)
An Optimization Framework for Load and Power Distribution in Wind Farms
DEFF Research Database (Denmark)
Soleimanzadeh, Maryam; Wisniewski, Rafal; Kanev, Stoyan
2012-01-01
The aim of this paper is to develop a controller for wind farms to optimize the load and power distribution. In this regard, the farm controller calculates the power reference signals for individual wind turbine controllers such that the sum of the power references tracks the power demanded...... by a system operator. Moreover, the reference signals are determined to reduce the load acting on wind turbines at low frequencies. Therefore, a trade-off is made for load and power control, which is formulated as an optimization problem. Afterwards, the optimization problem for the wind farm modeled...
Optimal Energy-Efficient Sensing and Power Allocation in Cognitive Radio Networks
Directory of Open Access Journals (Sweden)
Xia Wu
2014-01-01
Full Text Available We consider a joint optimization of sensing parameter and power allocation for an energy-efficient cognitive radio network (CRN in which the primary user (PU is protected. The optimization problem to maximize the energy efficiency of CRN is formulated as a function of two variables, which are sensing time and transmit power, subject to the average interference power to the PU and the target detection probability. During the optimizing process, the quality of service parameter (the minimum rate acceptable to secondary users (SUs has also been taken into consideration. The optimal solutions are analyzed and an algorithm combined with fractional programming that maximizes the energy efficiency for CRN is presented. Numerical results show that the performance improvement is achieved by the joint optimization of sensing time and power allocation.
Catch a falling apple: Isaac Newton and myths of genius.
Fara, P
1999-01-01
Newton has become a legendary figure belonging to the distant past rather than a historical person who lived at a specific time. Historians and scientists have constantly reinterpreted many anecdotal tales describing Newton's achievements and behaviour, but the most famous concerns the falling apple in his country garden. Newton's apple conjures up multiple allegorical resonances, and examining its historical accuracy is less important than uncovering the mythical truths embedded within this symbol. Because interest groups fashion different collective versions of the past, analysing mythical tales can reveal fundamental yet conflicting attitudes towards science and its practices.
Generating optimized stochastic power management strategies for electric car components
Energy Technology Data Exchange (ETDEWEB)
Fruth, Matthias [TraceTronic GmbH, Dresden (Germany); Bastian, Steve [Technische Univ. Dresden (Germany)
2012-11-01
With the increasing prevalence of electric vehicles, reducing the power consumption of car components becomes a necessity. For the example of a novel traffic-light assistance system, which makes speed recommendations based on the expected length of red-light phases, power-management strategies are used to control under which conditions radio communication, positioning systems and other components are switched to low-power (e.g. sleep) or high-power (e.g. idle/busy) states. We apply dynamic power management, an optimization technique well-known from other domains, in order to compute energy-optimal power-management strategies, sometimes resulting in these strategies being stochastic. On the example of the traffic-light assistant, we present a MATLAB/Simulink-implemented framework for the generation, simulation and formal analysis of optimized power-management strategies, which is based on this technique. We study capabilities and limitations of this approach and sketch further applications in the automotive domain. (orig.)
XMM-Newton Spectroscopy of the Accretion-driven Millisecond X-Ray Pulsar XTE J1751-305 in Outburst
Miller, J. M.; Wijnands, R.; Méndez, M.; Kendziorra, E.; Tiengo, A.; van der Klis, M.; Chakrabarty, D.; Gaensler, B. M.; Lewin, W. H. G.
2003-01-01
We present an analysis of the first high-resolution spectra measured from an accretion-driven millisecond X-ray pulsar in outburst. We observed XTE J1751-305 with XMM-Newton on 2002 April 7 for approximately 35 ks. Using a simple absorbed blackbody plus power-law model, we measure an unabsorbed flux
Power, control and optimization
Vasant, Pandian; Barsoum, Nader
2013-01-01
The book consists of chapters based on selected papers of international conference „Power, Control and Optimization 2012”, held in Las Vegas, USA. Readers can find interesting chapters discussing various topics from the field of power control, its distribution and related fields. Book discusses topics like energy consumption impacted by climate, mathematical modeling of the influence of thermal power plant on the aquatic environment, investigation of cost reduction in residential electricity bill using electric vehicle at peak times or allocation and size evaluation of distributed generation using ANN model and others. Chapter authors are to the best of our knowledge the originators or closely related to the originators of presented ideas and its applications. Hence, this book certainly is one of the few books discussing the benefit from intersection of those modern and fruitful scientific fields of research with very tight and deep impact on real life and industry. This book is devoted to the studies o...
Entropic corrections to Newton's law
International Nuclear Information System (INIS)
Setare, M R; Momeni, D; Myrzakulov, R
2012-01-01
In this short paper, we calculate separately the generalized uncertainty principle (GUP) and self-gravitational corrections to Newton's gravitational formula. We show that for a complete description of the GUP and self-gravity effects, both the temperature and entropy must be modified. (paper)
Sparse contrast-source inversion using linear-shrinkage-enhanced inexact Newton method
Desmal, Abdulla
2014-07-01
A contrast-source inversion scheme is proposed for microwave imaging of domains with sparse content. The scheme uses inexact Newton and linear shrinkage methods to account for the nonlinearity and ill-posedness of the electromagnetic inverse scattering problem, respectively. Thresholded shrinkage iterations are accelerated using a preconditioning technique. Additionally, during Newton iterations, the weight of the penalty term is reduced consistently with the quadratic convergence of the Newton method to increase accuracy and efficiency. Numerical results demonstrate the applicability of the proposed method.
Sparse contrast-source inversion using linear-shrinkage-enhanced inexact Newton method
Desmal, Abdulla; Bagci, Hakan
2014-01-01
A contrast-source inversion scheme is proposed for microwave imaging of domains with sparse content. The scheme uses inexact Newton and linear shrinkage methods to account for the nonlinearity and ill-posedness of the electromagnetic inverse scattering problem, respectively. Thresholded shrinkage iterations are accelerated using a preconditioning technique. Additionally, during Newton iterations, the weight of the penalty term is reduced consistently with the quadratic convergence of the Newton method to increase accuracy and efficiency. Numerical results demonstrate the applicability of the proposed method.
Newton's Principia: Myth and Reality
Smith, George
2016-03-01
Myths about Newton's Principia abound. Some of them, such as the myth that the whole book was initially developed using the calculus and then transformed into a geometric mathematics, stem from remarks he made during the priority controversy with Leibniz over the calculus. Some of the most persistent, and misleading, arose from failures to read the book with care. Among the latter are the myth that he devised his theory of gravity in order to explain the already established ``laws'' of Kepler, and that in doing so he took himself to be establishing that Keplerian motion is ``absolute,'' if not with respect to ``absolute space,'' then at least with respect to the fixed stars taken as what came later to be known as an inertial frame. The talk will replace these two myths with the reality of what Newton took himself to have established.
Newton Binomial Formulas in Schubert Calculus
Cordovez, Jorge; Gatto, Letterio; Santiago, Taise
2008-01-01
We prove Newton's binomial formulas for Schubert Calculus to determine numbers of base point free linear series on the projective line with prescribed ramification divisor supported at given distinct points.
Power Consumption Optimization in Tooth Gears Processing
Kanatnikov, N.; Harlamov, G.; Kanatnikova, P.; Pashmentova, A.
2018-01-01
The paper reviews the issue of optimization of technological process of tooth gears production of the power consumption criteria. The authors dwell on the indices used for cutting process estimation by the consumed energy criteria and their applicability in the analysis of the toothed wheel production process. The inventors proposed a method for optimization of power consumptions based on the spatial modeling of cutting pattern. The article is aimed at solving the problem of effective source management in order to achieve economical and ecological effect during the mechanical processing of toothed gears. The research was supported by Russian Science Foundation (project No. 17-79-10316).
Optimal power flow management for distributed energy resources with batteries
International Nuclear Information System (INIS)
Tazvinga, Henerica; Zhu, Bing; Xia, Xiaohua
2015-01-01
Highlights: • A PV-diesel-battery hybrid system is proposed. • Model minimizes fuel and battery wear costs. • Power flows are analysed in a 24-h period. • Results provide a practical platform for decision making. - Abstract: This paper presents an optimal energy management model of a solar photovoltaic-diesel-battery hybrid power supply system for off-grid applications. The aim is to meet the load demand completely while satisfying the system constraints. The proposed model minimizes fuel and battery wear costs and finds the optimal power flow, taking into account photovoltaic power availability, battery bank state of charge and load power demand. The optimal solutions are compared for cases when the objectives are weighted equally and when a larger weight is assigned to battery wear. A considerable increase in system operational cost is observed in the latter case owing to the increased usage of the diesel generator. The results are important for decision makers, as they depict the optimal decisions considered in the presence of trade-offs between conflicting objectives
Optimal contracts for wind power producers in electricity markets
Bitar, E.
2010-12-01
This paper is focused on optimal contracts for an independent wind power producer in conventional electricity markets. Starting with a simple model of the uncertainty in the production of power from a wind turbine farm and a model for the electric energy market, we derive analytical expressions for optimal contract size and corresponding expected optimal profit. We also address problems involving overproduction penalties, cost of reserves, and utility of additional sensor information. We obtain analytical expressions for marginal profits from investing in local generation and energy storage. ©2010 IEEE.
Identification and optimization problems in plasma physics
International Nuclear Information System (INIS)
Gilbert, J.C.
1986-06-01
Parameter identification of the current in a tokamak plasma is studied. Plasma equilibrium in a vacuum container with a diaphragm is analyzed. A variable metric method with reduced optimization with nonlinear equality constraints; and a quasi-Newton reduced optimization method with constraints giving priority to restoration are presented [fr
Optimization of IGCT for pulsed power
International Nuclear Information System (INIS)
Chen Fanglin; Tang Longgu; Chen Yongmin; Pan Xuejun
2014-01-01
In order to develop high-performance IGCT devices applied in pulse power, cathode finger layout is optimized, the finger structure is modified, minority carrier lifetime is properly controlled and gate triggering characteristics is improved. As a result of these measures, the IGCT turn -on di/dt is improved, current handling capability is enhanced and switching response speed is increased. The feasibility and validity of the optimization study on the IGCT is verified by simulation and experimental results. (authors)
Optimal Design of Magnetic ComponentsinPlasma Cutting Power Supply
Jiang, J. F.; Zhu, B. R.; Zhao, W. N.; Yang, X. J.; Tang, H. J.
2017-10-01
Phase-shifted transformer and DC reactor are usually needed in chopper plasma cutting power supply. Because of high power rate, the loss of magnetic components may reach to several kilowatts, which seriously affects the conversion efficiency. Therefore, it is necessary to research and design low loss magnetic components by means of efficient magnetic materials and optimal design methods. The main task in this paper is to compare the core loss of different magnetic material, to analyze the influence of transformer structure, winding arrangement and wire structure on the characteristics of magnetic component. Then another task is to select suitable magnetic material, structure and wire in order to reduce the loss and volume of magnetic components. Based on the above outcome, the optimization design process of transformer and dc reactor are proposed in chopper plasma cutting power supply with a lot of solutions. These solutions are analyzed and compared before the determination of the optimal solution in order to reduce the volume and power loss of the two magnetic components and improve the conversion efficiency of plasma cutting power supply.
Stochastic Optimal Wind Power Bidding Strategy in Short-Term Electricity Market
DEFF Research Database (Denmark)
Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte
2012-01-01
Due to the fluctuating nature and non-perfect forecast of the wind power, the wind power owners are penalized for the imbalance costs of the regulation, when they trade wind power in the short-term liberalized electricity market. Therefore, in this paper a formulation of an imbalance cost...... minimization problem for trading wind power in the short-term electricity market is described, to help the wind power owners optimize their bidding strategy. Stochastic optimization and a Monte Carlo method are adopted to find the optimal bidding strategy for trading wind power in the short-term electricity...... market in order to deal with the uncertainty of the regulation price, the activated regulation of the power system and the forecasted wind power generation. The Danish short-term electricity market and a wind farm in western Denmark are chosen as study cases due to the high wind power penetration here...
Fifth French-German Conference on Optimization
1989-01-01
The 2-yearly French-German Conferences on Optimization review the state-of-the-art and the trends in the field. The proceedings of the Fifth Conference include papers on projective methods in linear programming (special session at the conference), nonsmooth optimization, two-level optimization, multiobjective optimization, partial inverse method, variational convergence, Newton type algorithms and flows and on practical applications of optimization. A. Ioffe and J.-Ph. Vial have contributed survey papers on, respectively second order optimality conditions and projective methods in linear programming.
Three lectures on Newton's laws
Kokarev, Sergey S.
2009-01-01
Three small lectures are devoted to three Newton's laws, lying in the foundation of classical mechanics. These laws are analyzed from the viewpoint of our contemporary knowledge about space, time and physical interactions. The lectures were delivered for students of YarGU in RSEC "Logos".
A primeira Lei de Newton: uma abordagem didática
da Silva, Saulo Luis Lima
2018-01-01
Resumo No estudo da mecânica Newtoniana o essencial é a compreensão das leis de Newton em profundidade. Se isso acontecer, ficará fácil perceber que todos os outros fenômenos a serem estudados são consequências dessas três leis básicas do movimento formuladas por Isaac Newton. Dentre elas, a primeira lei de Newton, conhecida como lei da Inércia, é a de maior complexidade filosófica e a menos compreendida pelos alunos ao saírem de um curso de física básica. Não é incomum encontrar alunos descr...
A Three-Stage Optimal Approach for Power System Economic Dispatch Considering Microgrids
Directory of Open Access Journals (Sweden)
Wei-Tzer Huang
2016-11-01
Full Text Available The inclusion of microgrids (MGs in power systems, especially distribution-substation-level MGs, significantly affects power systems because of the large volumes of import and export power flows. Consequently, power dispatch has become complicated, and finding an optimal solution is difficult. In this study, a three-stage optimal power dispatch model is proposed to solve such dispatch problems. In the proposed model, the entire power system is divided into two parts, namely, the main power grid and MGs. The optimal power dispatch problem is resolved on the basis of multi-area concepts. In stage I, the main power system economic dispatch (ED problem is solved by sensitive factors. In stage II, the optimal power dispatches of the local MGs are addressed via an improved direct search method. In stage III, the incremental linear models for the entire power system can be established on the basis of the solutions of the previous two stages and can be subjected to linear programming to determine the optimal reschedules from the original dispatch solutions. The proposed method is coded using Matlab and tested by utilizing an IEEE 14-bus test system to verify its feasibility and accuracy. Results demonstrated that the proposed approach can be used for the ED of power systems with MGs as virtual power plants.
Optimally Joint Subcarrier Matching and Power Allocation in OFDM Multihop System
Directory of Open Access Journals (Sweden)
Shuyuan Yang
2008-04-01
Full Text Available Orthogonal frequency division multiplexing (OFDM multihop system is a promising way to increase capacity and coverage. In this paper, we propose an optimally joint subcarrier matching and power allocation scheme to further maximize the total channel capacity with the constrained total system power. First, the problem is formulated as a mixed binary integer programming problem, which is prohibitive to find the global optimum in terms of complexity. Second, by making use of the equivalent channel power gain for any matched subcarrier pair, a low complexity scheme is proposed. The optimal subcarrier matching is to match subcarriers by the order of the channel power gains. The optimal power allocation among the matched subcarrier pairs is water-filling. An analytical argument is given to prove that the two steps achieve the optimally joint subcarrier matching and power allocation. The simulation results show that the proposed scheme achieves the largest total channel capacity as compared to the other schemes, where there is no subcarrier matching or no power allocation.
Optimally Joint Subcarrier Matching and Power Allocation in OFDM Multihop System
Directory of Open Access Journals (Sweden)
Wang Wenyi
2008-01-01
Full Text Available Orthogonal frequency division multiplexing (OFDM multihop system is a promising way to increase capacity and coverage. In this paper, we propose an optimally joint subcarrier matching and power allocation scheme to further maximize the total channel capacity with the constrained total system power. First, the problem is formulated as a mixed binary integer programming problem, which is prohibitive to find the global optimum in terms of complexity. Second, by making use of the equivalent channel power gain for any matched subcarrier pair, a low complexity scheme is proposed. The optimal subcarrier matching is to match subcarriers by the order of the channel power gains. The optimal power allocation among the matched subcarrier pairs is water-filling. An analytical argument is given to prove that the two steps achieve the optimally joint subcarrier matching and power allocation. The simulation results show that the proposed scheme achieves the largest total channel capacity as compared to the other schemes, where there is no subcarrier matching or no power allocation.
Optimal power transaction matrix rescheduling under multilateral open access environment
International Nuclear Information System (INIS)
Moghaddam, M.P.; Raoofat, M.; Haghifam, M.R.
2004-01-01
This paper addresses a new concept for determining optimal transactions between different entities in a multilateral environment while benefits of both buyer and seller entities are taken into account with respect to the rules of the system. At the same time, constraints of the network are met, which leads to an optimal power flow problem. A modified power transaction matrix is proposed for modeling the environment. The optimization method in this paper is the continuation method, which is suited for complex situations of power system studies. This complexity will become more serious when dual interaction between financial and electrical subsystems of competitive power system are taken into account. The proposed approach is tested on a typical network with satisfactory results. (author)
Energy and economic optimization of a membrane-based oxyfuel steam power plant
International Nuclear Information System (INIS)
Nazarko, Yevgeniy
2015-01-01
Carbon capture and storage is one technological option for reducing CO 2 emissions. The oxyfuel process is based on the combustion of fossil fuels in an oxygen-flue gas atmosphere with the subsequent concentration of CO 2 . The oxygen is produced by cryogenic air separation with an energy demand of 245 kWh el /t O2 . The application of ceramic membranes has the potential to reduce the specific energy demand of oxygen supply with consistently high-purity oxygen. This work focuses on - determining the efficiency of an advanced oxyfuel steam power plant that can be constructed today using membranes for oxygen production, - investigating and quantifying the potential for energy optimizing the overall process by changing its flow structure, - assessing the feasibility of individual optimization options based on their investment costs under market conditions. For this work, a method developed by Forschungszentrum Juelich and patented on 25 April 2012 under EP 2214806 is used. The Oxy-Vac-Juel concept is integrated into the oxyfuel steam power plant with simple process management using standardized power plant components. The net efficiency of the base power plant is 36.6 percentage points for an oxygen separation degree of 60 %. This corresponds to a net power loss of 9.3 percentage points compared to the reference power plant without CO 2 capture. The specific electricity demand of this oxygen supply method is 176 kWh el /t O2 . To increase the efficiency, the flow structure of the base power plant is optimized using industrially available components from power plant and process engineering. The 22 analyzed optimization options consist of design optimization of the gas separation process, the modification of the flue gas recirculation and the plant-internal waste heat utilization. The energetic advantage over the base power plant, depending on the optimization option, ranges from 0.05 - 1.00 percentage points. For each optimization option, the size and cost of the power
Newton law on the generalized singular brane with and without 4d induced gravity
International Nuclear Information System (INIS)
Jung, Eylee; Kim, Sung-Hoon; Park, D.K.
2003-01-01
Newton law arising due to the gravity localized on the general singular brane embedded in AdS 5 bulk is examined in the absence or presence of the 4d induced Einstein term. For the RS brane, apart from the subleading correction, Newton potential obeys 4d- and 5d-type gravitational law at long- and short-ranges if it were not for the induced Einstein term. The 4d induced Einstein term generates an intermediate range at short distance, in which the 5d Newton potential 1/r 2 emerges. For Neumann brane the long-range behavior of Newton potential is exponentially suppressed regardless of the existence of the induced Einstein term. For Dirichlet brane the expression of Newton potential is dependent on the renormalized coupling constant v ren . At particular value of v ren Newton potential on Dirichlet brane exhibits a similar behavior to that on RS brane. For other values the long-range behavior of Newton potential is exponentially suppressed as that in Neumann brane
Directory of Open Access Journals (Sweden)
S. Ahmadi
2015-09-01
Full Text Available In this paper a multiobjective optimal design method of interior permanent magnet synchronous motor ( IPMSM for traction applications so as to maximize average torque and to minimize torque ripple has been presented. Based on train motion equations and physical properties of train, desired specifications such as steady state speed, rated output power, acceleration time and rated speed of traction motor are related to each other. By considering the same output power, steady state speed, rated voltage, rated current and different acceleration time for a specified train, multiobjective optimal design has been performed by Broyden–Fletcher–Goldfarb–Shanno (BFGS method and finite element method (FEM has been chosen as an analysis tool. BFGS method is one of Quasi Newton methods and is counted in classic approaches. Classic optimization methods are appropriate when FEM is applied as an analysis tool and objective function isn’t expressed in closed form in terms of optimization variables.
Optimal power allocation for SM-OFDM systems with imperfect channel estimation
International Nuclear Information System (INIS)
Yu, Feng; Song, Lijun; Lei, Xia; Xiao, Yue; Jiang, Zhao Xiang; Jin, Maozhu
2016-01-01
This paper analyses the bit error rate (BER) of the spatial modulation orthogonal frequency division multiplex (SM-OFDM) system and derives the optimal power allocation between the data and the pilot symbols by minimizing the upper bound for the BER operating with imperfect channel estimation. Furthermore, we prove the proposed optimal power allocation scheme applies to all generalized linear interpolation techniques with the minimum mean square error (MMSE) channel estimation . Simulation results show that employing the proposed optimal power allocation provides a substantial gain in terms of the average BER performance for the SM-OFDM system compared to its equal-power-allocation counterpart.
Optimal Power Flow Modelling and Analysis of Hybrid AC-DC Grids with Offshore Wind Power Plant
DEFF Research Database (Denmark)
Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei
2017-01-01
In order to develop renewables based energy systems, the installation of the offshore wind power plants (WPPs) is globally encouraged. However, wind power generation is intermittent and uncertain. An accurate modelling and evaluation reduces investment and provide better operation. Hence......, the wind power production level also plays a major role in a hybrid system on transmission loss evaluation. The developed model is tested in Low, Medium and High wind power production levels to determine the objective function of the OPF solution. MATLAB Optimization Toolbox and MATLAB script are used......, it is essential to develop a suitable model and apply optimization algorithms for different application scenarios. The objective of this work is to develop a generalized model and evaluate the Optimal Power Flow (OPF) solutions in a hybrid AC/DC system including HVDC (LCC based) and offshore WPP (VSC based...
XMM-Newton operations beyond the design lifetime
Parmar, Arvind N.; Kirsch, Marcus G. F.; Muñoz, J. Ramon; Santos-Lleo, Maria; Schartel, Norbert
2012-09-01
After more than twelve years in orbit and two years beyond the design lifetime, XMM-Newton continues its near faultless operations providing the worldwide astronomical community with an unprecedented combination of imaging and spectroscopic X-ray capabilities together with simultaneous optical and ultra-violet monitoring. The interest from the scientific community in observing with XMM-Newton remains extremely high with the last annual Announcement of Observing Opportunity (AO-11) attracting proposals requesting 6.7 times more observing time than was available. Following recovery from a communications problem in 2008, all elements of the mission are stable and largely trouble free. The operational lifetime if currently limited by the amount of available hydrazine fuel. XMM-Newton normally uses reaction wheels for attitude control and fuel is only used when offsetting reaction wheel speed away from limiting values and for emergency Sun acquisition following an anomaly. Currently, the hydrazine is predicted to last until around 2020. However, ESA is investigating the possibility of making changes to the operations concept and the onboard software that would enable lower fuel consumption. This could allow operations to well beyond 2026.
Families of optimal thermodynamic solutions for combined cycle gas turbine (CCGT) power plants
International Nuclear Information System (INIS)
Godoy, E.; Scenna, N.J.; Benz, S.J.
2010-01-01
Optimal designs of a CCGT power plant characterized by maximum second law efficiency values are determined for a wide range of power demands and different values of the available heat transfer area. These thermodynamic optimal solutions are found within a feasible operation region by means of a non-linear mathematical programming (NLP) model, where decision variables (i.e. transfer areas, power production, mass flow rates, temperatures and pressures) can vary freely. Technical relationships among them are used to systematize optimal values of design and operative variables of a CCGT power plant into optimal solution sets, named here as optimal solution families. From an operative and design point of view, the families of optimal solutions let knowing in advance optimal values of the CCGT variables when facing changes of power demand or adjusting the design to an available heat transfer area.
Newton's Telescope in Print: the Role of Images in the Reception of Newton's Instrument
Dupré, Sven
2008-01-01
While Newton tried to make his telescope into a proof of the supremacy of his theory of colours over older theories, his instrument was welcomed as a way to shorten telescopes, not as a way to solve the problem of chromatic aberration. This paper argues that the image published together with the
The frictional Schroedinger-Newton equation in models of wave function collapse
Energy Technology Data Exchange (ETDEWEB)
Diosi, Lajos [Research Institute for Particle and Nuclear Physics, H-1525 Budapest 114, PO Box 49 (Hungary)
2007-05-15
Replacing the Newtonian coupling G by -iG, the Schroedinger--Newton equation becomes {sup f}rictional{sup .} Instead of the reversible Schroedinger-Newton equation, we advocate its frictional version to generate the set of pointer states for macroscopic quantum bodies.
Optimal economic and environment operation of micro-grid power systems
International Nuclear Information System (INIS)
Elsied, Moataz; Oukaour, Amrane; Gualous, Hamid; Lo Brutto, Ottavio A.
2016-01-01
Highlights: • Real-time energy management system for Micro-Grid power systems is introduced. • The management system considered cost objective function and emission constraints. • The optimization problem is solved using Binary Particle Swarm Algorithm. • Advanced real-time interface libraries are used to run the optimization code. - Abstract: In this paper, an advanced real-time energy management system is proposed in order to optimize micro-grid performance in a real-time operation. The proposed strategy of the management system capitalizes on the power of binary particle swarm optimization algorithm to minimize the energy cost and carbon dioxide and pollutant emissions while maximizing the power of the available renewable energy resources. Advanced real-time interface libraries are used to run the optimization code. The simulation results are considered for three different scenarios considering the complexity of the proposed problem. The proposed management system along with its control system is experimentally tested to validate the simulation results obtained from the optimization algorithm. The experimental results highlight the effectiveness of the proposed management system for micro-grids operation.
Optimized Power Allocation and Relay Location Selection in Cooperative Relay Networks
Directory of Open Access Journals (Sweden)
Jianrong Bao
2017-01-01
Full Text Available An incremental selection hybrid decode-amplify forward (ISHDAF scheme for the two-hop single relay systems and a relay selection strategy based on the hybrid decode-amplify-and-forward (HDAF scheme for the multirelay systems are proposed along with an optimized power allocation for the Internet of Thing (IoT. Given total power as the constraint and outage probability as an objective function, the proposed scheme possesses good power efficiency better than the equal power allocation. By the ISHDAF scheme and HDAF relay selection strategy, an optimized power allocation for both the source and relay nodes is obtained, as well as an effective reduction of outage probability. In addition, the optimal relay location for maximizing the gain of the proposed algorithm is also investigated and designed. Simulation results show that, in both single relay and multirelay selection systems, some outage probability gains by the proposed scheme can be obtained. In the comparison of the optimized power allocation scheme with the equal power allocation one, nearly 0.1695 gains are obtained in the ISHDAF single relay network at a total power of 2 dB, and about 0.083 gains are obtained in the HDAF relay selection system with 2 relays at a total power of 2 dB.
Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model
Zhao, Erdong; Li, Shangqi
2017-08-01
As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.
Power Link Optimization for a Neurostimulator in Nasal Cavity
Directory of Open Access Journals (Sweden)
Seunghyun Lee
2017-01-01
Full Text Available This paper examines system optimization for wirelessly powering a small implant embedded in tissue. For a given small receiver in a multilayer tissue model, the transmitter is abstracted as a sheet of tangential current density for which the optimal distribution is analytically found. This proposes a new design methodology for wireless power transfer systems. That is, from the optimal current distribution, the maximum achievable efficiency is derived first. Next, various design parameters are determined to achieve the target efficiency. Based on this design methodology, a centimeter-sized neurostimulator inside the nasal cavity is demonstrated. For this centimeter-sized implant, the optimal distribution resembles that of a coil source and the optimal frequency is around 15 MHz. While the existing solution showed an efficiency of about 0.3 percent, the proposed system could enhance the efficiency fivefold.
Optimal Output of Distributed Generation Based On Complex Power Increment
Wu, D.; Bao, H.
2017-12-01
In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.
Optimal power flow for technically feasible Energy Management systems in Islanded Microgrids
DEFF Research Database (Denmark)
Sanseverino, Eleonora Riva; T. T. Quynh, T.; Di Silvestre, Maria Luisa
2016-01-01
This paper presents a combined optimal energy and power flow management for islanded microgrids. The highest control level in this case will provide a feasible and optimized operating point around the economic optimum. In order to account for both unbalanced and balanced loads, the optimal power...... flow is carried out using a Glow-worm Swarm Optimizer. The control level is organized into two different sub-levels, the highest of which accounts for minimum cost operation and the lowest one solving the optimal power flow and devising the set points of inverter interfaced generation units...... and rotating machines with a minimum power loss. A test has been carried out for 6 bus islanded microgrids to show the efficiency and feasibility of the proposed technique....
Optimization of the commissioning period of nuclear power plant
International Nuclear Information System (INIS)
Hou Ganglian; Li Chunyue
2014-01-01
Due to current equipment manufacture capacity, construction experience and other factors, commissioning of nuclear power projects was used to be postponed, which could lead to delay of the whole project. Based on the actual situation, optimization of commissioning period and its logic could be an effective way to improve this situation to some extent. Based on previous practice and experience in the schedule management for the commissioning nuclear power projects, this paper analyzes and discusses the characteristics of make commissioning plan and the difficulties of program implementation and strategies of commissioning plan optimization, discusses and presents ways of dynamic plan adjustment and optimization at the vision of entire project, synthesizes the methods of time management through commissioning itself, interface and management, expounds measures for the timing and optimization of commissioning schedule and commissioning period, and sums up the ways of optimization of commissioning period, improving management capabilities and control of optimization principles. (authors)
Penders, J; Pop, V; Caballero, L; van de Molengraft, J; van Schaijk, R; Vullers, R; Van Hoof, C
2010-01-01
Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body sensor nodes a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper reviews system-level power optimization techniques, and illustrates their impact on the case of autonomous wireless EMG monitoring. The resulting prototype, an Autonomous wireless EMG sensor power by PV-cells, is presented.
Fara, Patricia
2015-01-01
Isaac Newton's reputation was initially established by his 1672 paper on the refraction of light through a prism; this is now seen as a ground-breaking account and the foundation of modern optics. In it, he claimed to refute Cartesian ideas of light modification by definitively demonstrating that the refrangibility of a ray is linked to its colour, hence arguing that colour is an intrinsic property of light and does not arise from passing through a medium. Newton's later significance as a world-famous scientific genius and the apparent confirmation of his experimental results have tended to obscure the realities of his reception at the time. This paper explores the rhetorical strategies Newton deployed to convince his audience that his conclusions were certain and unchallengeable. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750143
A superlinear interior points algorithm for engineering design optimization
Herskovits, J.; Asquier, J.
1990-01-01
We present a quasi-Newton interior points algorithm for nonlinear constrained optimization. It is based on a general approach consisting of the iterative solution in the primal and dual spaces of the equalities in Karush-Kuhn-Tucker optimality conditions. This is done in such a way to have primal and dual feasibility at each iteration, which ensures satisfaction of those optimality conditions at the limit points. This approach is very strong and efficient, since at each iteration it only requires the solution of two linear systems with the same matrix, instead of quadratic programming subproblems. It is also particularly appropriate for engineering design optimization inasmuch at each iteration a feasible design is obtained. The present algorithm uses a quasi-Newton approximation of the second derivative of the Lagrangian function in order to have superlinear asymptotic convergence. We discuss theoretical aspects of the algorithm and its computer implementation.
da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.
2018-04-01
A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.
Optimization of power generation from shrouded wind turbines
Energy Technology Data Exchange (ETDEWEB)
Foote, Tudor; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis (United States)
2013-07-01
In past several years, several studies have shown that the shrouded wind turbines can generate greater power compared to bare turbines. The objective of this study is to determine the potential of shrouded wind turbines for increased power generation by conducting numerical simulations. An analytical/computational study is performed by employing the well-known commercial Computational Fluid Dynamics (CFD) software FLUENT. An actuator disc model is used to model the turbine. The incompressible Navier-Stokes equations and a two equation realizable {kappa}-{epsilon} model are employed in the calculations. The power coefficient Cp and generated power are calculated for a large number of cases for horizontal axis wind turbines (HAWT) of various diameters and wind speeds for both bare and shrouded turbines. The design of the shroud is optimized by employing a single objective genetic algorithm; the objective being the maximization of the power coefficient Cp. It was found that the shroud indeed increases the Cp beyond the Betz’s limit significantly and as a result the generated power; this effect is consistent with that found in the recent literature that the shrouded wind-turbines can generate greater power than the bare turbines. The optimized shape of the shroud or diffuser further increases the generated power and Cp.
Newton's Path to Universal Gravitation: The Role of the Pendulum
Boulos, Pierre J.
2006-01-01
Much attention has been given to Newton's argument for Universal Gravitation in Book III of the "Principia". Newton brings an impressive array of phenomena, along with the three laws of motion, and his rules for reasoning to deduce Universal Gravitation. At the centre of this argument is the famous "moon test". Here it is the empirical evidence…
Disk-galaxy density distribution from orbital speeds using Newton's law
Nicholson, Kenneth F.
2000-01-01
Given the dimensions (including thickness) of an axisymmetric galaxy, Newton's law is used in integral form to find the density distributions required to match a wide range of orbital speed profiles. Newton's law is not modified and no dark matter halos are required. The speed distributiions can have extreme shapes if they are reasonably smooth. Several examples are given.
N=2 superconformal Newton-Hooke algebra and many-body mechanics
International Nuclear Information System (INIS)
Galajinsky, Anton
2009-01-01
A representation of the conformal Newton-Hooke algebra on a phase space of n particles in arbitrary dimension which interact with one another via a generic conformal potential and experience a universal cosmological repulsion or attraction is constructed. The minimal N=2 superconformal extension of the Newton-Hooke algebra and its dynamical realization in many-body mechanics are studied.
On the Shoulders of Sir Isaac Newton and Arthur Storer
Martin, Helen E.; Evans-Gondo, Bonita
2013-01-01
Helen E. Martin, the author of this article, is a retired National Board Certified Teacher who has been researching Sir Isaac Newton's unpublished manuscripts for over three decades. While researching the work of Newton, a teacher she was mentoring asked for some hands-on activities to study planetary motion. The description of the activity…
TESTING RELATIVISTIC REFLECTION AND RESOLVING OUTFLOWS IN PG 1211+143 WITH XMM-NEWTON AND NuSTAR
Energy Technology Data Exchange (ETDEWEB)
Lobban, A. P.; Pounds, K.; Vaughan, S. [University of Leicester, Department of Physics and Astronomy, University Road, Leicester LE1 7RH (United Kingdom); Reeves, J. N., E-mail: al394@le.ac.uk [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom)
2016-11-10
We analyze the broad-band X-ray spectrum (0.3–50 keV) of the luminous Seyfert 1/quasar PG 1211+143—the archetypal source for high-velocity X-ray outflows—using near-simultaneous XMM-Newton and NuSTAR observations. We compare pure relativistic reflection models with a model including the strong imprint of photoionized emission and absorption from a high-velocity wind, finding a spectral fit that extrapolates well over the higher photon energies covered by NuSTAR . Inclusion of the high signal-to-noise ratio XMM-Newton spectrum provides much tighter constraints on the model parameters, with a much harder photon index/lower reflection fraction compared to that from the NuSTAR data alone. We show that pure relativistic reflection models are not able to account for the spectral complexity of PG 1211+143 and that wind absorption models are strongly required to match the data in both the soft X-ray and Fe K spectral regions. In confirming the significance of previously reported ionized absorption features, the new analysis provides a further demonstration of the power of combining the high throughput and resolution of long-look XMM-Newton observations with the unprecedented spectral coverage of NuSTAR .
Mathematical game type optimization of powerful fast reactors
International Nuclear Information System (INIS)
Pavelesku, M.; Dumitresku, Kh.; Adam, S.
1975-01-01
To obtain maximum speed of putting into operation fast breeders it is recommended on the initial stage of putting into operation these reactors to apply lower power which needs less fission materials. That is why there is an attempt to find a configuration of a high-power reactor providing maximum power for minimum mass of fission material. This problem has a structure of the mathematical game with two partners of non-zero-order total and is solved by means of specific aids of theory of games. Optimal distribution of fission and breeding materials in a multizone reactor first is determined by solution of competitive game and then, on its base, by solution of the cooperation game. The second problem the solution for which is searched is developed from remark on the fact that a reactor with minimum coefficient of flux heterogenity has a configuration different from the reactor with power coefficient heterogenity. Maximum burn-up of fuel needs minimum heterogenity of the flux coefficient and the highest power level needs minimum coefficient of power heterogenity. That is why it is possible to put a problem of finding of the reactor configuration having both coefficients with minimum value. This problem has a structure of a mathematical game with two partners of non-zero-order total and is solved analogously giving optimal distribution of fuel from the new point of view. In the report is shown that both these solutions are independent which is a result of the aim put in the problem of optimization. (author)
Laboratory Test of Newton's Second Law for Small Accelerations
International Nuclear Information System (INIS)
Gundlach, J. H.; Schlamminger, S.; Spitzer, C. D.; Choi, K.-Y.; Woodahl, B. A.; Coy, J. J.; Fischbach, E.
2007-01-01
We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5x10 -14 m/s 2
Optimal estimation and control in nuclear power plants
International Nuclear Information System (INIS)
Purviance, J.E.; Tylee, J.L.
1982-08-01
Optimal estimation and control theories offer the potential for more precise control and diagnosis of nuclear power plants. The important element of these theories is that a mathematical plant model is used in conjunction with the actual plant data to optimize some performance criteria. These criteria involve important plant variables and incorporate a sense of the desired plant performance. Several applications of optimal estimation and control to nuclear systems are discussed
Optimal power allocation of a sensor node under different rate constraints
Ayala Solares, Jose Roberto
2012-06-01
The optimal transmit power of a sensor node while satisfying different rate constraints is derived. First, an optimization problem with an instantaneous transmission rate constraint is addressed. Next, the optimal power is analyzed, but now with an average transmission rate constraint. The optimal solution for a class of fading channels, in terms of system parameters, is presented and a suboptimal solution is also proposed for an easier, yet efficient, implementation. Insightful asymptotical analysis for both schemes, considering a Rayleigh fading channel, are shown. Finally, the optimal power allocation for a sensor node in a cognitive radio environment is analyzed where an optimum solution for a class of fading channels is again derived. In all cases, numerical results are provided for either Rayleigh or Nakagami-m fading channels. © 2012 IEEE.
Multi-Objective Optimization Control for the Aerospace Dual-Active Bridge Power Converter
Directory of Open Access Journals (Sweden)
Tao Lei
2018-05-01
Full Text Available With the development of More Electrical Aircraft (MEA, the electrification of secondary power systems in aircraft is becoming more and more common. As the key power conversion device, the dual active bridge (DAB converter is the power interface for the energy storage system with the high voltage direct current (HVDC bus in aircraft electrical power systems. In this paper, a DAB DC-DC converter is designed to meet aviation requirements. The extended dual phase shifted control strategy is adopted, and a multi-objective genetic algorithm is applied to optimize its operating performance. Considering the three indicators of inductance current root mean square root (RMS value, negative reverse power and direct current (DC bias component of the current for the high frequency transformer as the optimization objectives, the DAB converter’s optimization model is derived to achieve soft switching as the main constraint condition. Optimized methods of controlling quantity for the DAB based on the evolution and genetic algorithm is used to solve the model, and a number of optimal control parameters are obtained under different load conditions. The results of digital, hard-in-loop simulation and hardware prototype experiments show that the three performance indexes are all suppressed greatly, and the optimization method proposed in this paper is reasonable. The work of this paper provides a theoretical basis and researching method for the multi-objective optimization of the power converter in the aircraft electrical power system.
Robust Adaptive Modified Newton Algorithm for Generalized Eigendecomposition and Its Application
Yang, Jian; Yang, Feng; Xi, Hong-Sheng; Guo, Wei; Sheng, Yanmin
2007-12-01
We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing applications. To that extent, the generalized eigendecomposition problem is reinterpreted as an unconstrained nonlinear optimization problem. Starting from the proposed cost function and making use of an approximation of the Hessian matrix, a robust modified Newton algorithm is derived. A rigorous analysis of its convergence properties is presented by using stochastic approximation theory. We also apply this theory to solve the signal reception problem of multicarrier DS-CDMA to illustrate its practical application. The simulation results show that the proposed algorithm has fast convergence and excellent tracking capability, which are important in a practical time-varying communication environment.
Robust Adaptive Modified Newton Algorithm for Generalized Eigendecomposition and Its Application
Directory of Open Access Journals (Sweden)
Yang Jian
2007-01-01
Full Text Available We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing applications. To that extent, the generalized eigendecomposition problem is reinterpreted as an unconstrained nonlinear optimization problem. Starting from the proposed cost function and making use of an approximation of the Hessian matrix, a robust modified Newton algorithm is derived. A rigorous analysis of its convergence properties is presented by using stochastic approximation theory. We also apply this theory to solve the signal reception problem of multicarrier DS-CDMA to illustrate its practical application. The simulation results show that the proposed algorithm has fast convergence and excellent tracking capability, which are important in a practical time-varying communication environment.
Energy and ancillary service dispatch through dynamic optimal power flow
International Nuclear Information System (INIS)
Costa, A.L.; Costa, A. Simoes
2007-01-01
This paper presents an approach based on dynamic optimal power flow (DOPF) to clear both energy and spinning reserve day-ahead markets. A competitive environment is assumed, where agents can offer active power for both demand supply and ancillary services. The DOPF jointly determines the optimal solutions for both energy dispatch and reserve allocation. A non-linear representation for the electrical network is employed, which is able to take transmission losses and power flow limits into account. An attractive feature of the proposed approach is that the final optimal solution will automatically meet physical constraints such as generating limits and ramp rate restrictions. In addition, the proposed framework allows the definition of multiple zones in the network for each time interval, in order to ensure a more adequate distribution of reserves throughout the power system. (author)
International Nuclear Information System (INIS)
Chen, Gonggui; Liu, Lilan; Song, Peizhu; Du, Yangwei
2014-01-01
Highlights: • New method for MOORPD problem using MOCIPSO and MOIPSO approaches. • Constrain-prior Pareto-dominance method is proposed to meet the constraints. • The limits of the apparent power flow of transmission line are considered. • MOORPD model is built up for MOORPD problem. • The achieved results by MOCIPSO and MOIPSO approaches are better than MOPSO method. - Abstract: Multi-objective optimal reactive power dispatch (MOORPD) seeks to not only minimize power losses, but also improve the stability of power system simultaneously. In this paper, the static voltage stability enhancement is achieved through incorporating L index in MOORPD problem. Chaotic improved PSO-based multi-objective optimization (MOCIPSO) and improved PSO-based multi-objective optimization (MOIPSO) approaches are proposed for solving complex multi-objective, mixed integer nonlinear problems such as minimization of power losses and L index in power systems simultaneously. In MOCIPSO and MOIPSO based optimization approaches, crossover operator is proposed to enhance PSO diversity and improve their global searching capability, and for MOCIPSO based optimization approach, chaotic sequences based on logistic map instead of random sequences is introduced to PSO for enhancing exploitation capability. In the two approaches, constrain-prior Pareto-dominance method (CPM) is proposed to meet the inequality constraints on state variables, the sorting and crowding distance methods are considered to maintain a well distributed Pareto optimal solutions, and moreover, fuzzy set theory is employed to extract the best compromise solution over the Pareto optimal curve. The proposed approaches have been examined and tested in the IEEE 30 bus and the IEEE 57 bus power systems. The performances of MOCIPSO, MOIPSO, and multi-objective PSO (MOPSO) approaches are compared with respect to multi-objective performance measures. The simulation results are promising and confirm the ability of MOCIPSO and
Does the Newton's world model revive
International Nuclear Information System (INIS)
Meszaros, A.
1984-03-01
Newton's world model may have a physical meaning if the gravitation has small non-zero mass and if the observable part of the universe is the interior of a giant finite body. Both possibilities are allowed theoretically. (author)
Judaism in the theology of Sir Isaac Newton
Goldish, Matt
1998-01-01
This book is based on my doctoral dissertation from the Hebrew University of Jerusalem (1996) of the same title. As a master's student, working on an entirely different project, I was well aware that many of Newton's theological manuscripts were located in our own Jewish National and University Library, but I was under the mistaken assumption that scores of highly qualified scholars must be assiduously scouring them and publishing their results. It never occurred to me to look at them at all until, having fmished my master's, I spoke to Professor David Katz at Tel-Aviv University about an idea I had for doctoral research. Professor Katz informed me that the project I had suggested was one which he himself had just fmished, but that I might be interested in working on the famous Newton manuscripts in the context of a project being organized by him, Richard Popkin, James Force, and the late Betty Jo Teeter Dobbs, to study and publish Newton's theological material. I asked him whether he was not sending me into ...
Computing the optimal path in stochastic dynamical systems
International Nuclear Information System (INIS)
Bauver, Martha; Forgoston, Eric; Billings, Lora
2016-01-01
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensional system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.
Cost-optimal power system extension under flow-based market coupling
Energy Technology Data Exchange (ETDEWEB)
Hagspiel, Simeon; Jaegemann, Cosima; Lindenberger, Dietmar [Koeln Univ. (Germany). Energiewirtschaftliches Inst.; Brown, Tom; Cherevatskiy, Stanislav; Troester, Eckehard [Energynautics GmbH, Langen (Germany)
2013-05-15
Electricity market models, implemented as dynamic programming problems, have been applied widely to identify possible pathways towards a cost-optimal and low carbon electricity system. However, the joint optimization of generation and transmission remains challenging, mainly due to the fact that different characteristics and rules apply to commercial and physical exchanges of electricity in meshed networks. This paper presents a methodology that allows to optimize power generation and transmission infrastructures jointly through an iterative approach based on power transfer distribution factors (PTDFs). As PTDFs are linear representations of the physical load flow equations, they can be implemented in a linear programming environment suitable for large scale problems. The algorithm iteratively updates PTDFs when grid infrastructures are modified due to cost-optimal extension and thus yields an optimal solution with a consistent representation of physical load flows. The method is first demonstrated on a simplified three-node model where it is found to be robust and convergent. It is then applied to the European power system in order to find its cost-optimal development under the prescription of strongly decreasing CO{sub 2} emissions until 2050.
International Nuclear Information System (INIS)
Sarvi, Mohammad; Avanaki, Isa Nasiri
2015-01-01
Highlights: • A new method to improve the performance of renewable power management is proposed. • The proposed method is based on Fuzzy Logic optimized by the Water Cycle Algorithm. • The proposed method characteristics are compared with two other methods. • The comparisons confirm that the proposed method is robust and effectiveness one. - Abstract: This paper aims to improve the power management system of a Stand-alone Hybrid Green Power generation based on the Fuzzy Logic Controller optimized by the Water Cycle Algorithm. The proposed Stand-alone Hybrid Green Power consists of wind energy conversion and photovoltaic systems as primary power sources and a battery, fuel cell, and Electrolyzer as energy storage systems. Hydrogen is produced from surplus power generated by the wind energy conversion and photovoltaic systems of Stand-alone Hybrid Green Power and stored in the hydrogen storage tank for fuel cell later using when the power generated by primary sources is lower than load demand. The proposed optimized Fuzzy Logic Controller based power management system determines the power that is generated by fuel cell or use by Electrolyzer. In a hybrid system, operation and maintenance cost and reliability of the system are the important issues that should be considered in studies. In this regard, Water Cycle Algorithm is used to optimize membership functions in order to simultaneously minimize the Loss of Power Supply Probability and operation and maintenance. The results are compared with the particle swarm optimization and the un-optimized Fuzzy Logic Controller power management system to prove that the proposed method is robust and effective. Reduction in Loss of Power Supply Probability and operation and maintenance, are the most advantages of the proposed method. Moreover the level of the State of Charge of the battery in the proposed method is higher than other mentioned methods which leads to increase battery lifetime.
Optimization of ultra-low-power CMOS transistors
International Nuclear Information System (INIS)
Stockinger, M.
2000-01-01
Ultra-low-power CMOS integrated circuits have constantly gained importance due to the fast growing portable electronics market. High-performance applications like mobile telephones ask for high-speed computations and low stand-by power consumption to increase the actual operating time. This means that transistors with low leakage currents and high drive currents have to be provided. Common fabrication methods will soon reach their limits if the on-chip feature size of CMOS technology continues to shrink at this very fast rate. New device architectures will help to keep track with the roadmap of the semiconductor industry. Especially doping profiles offer much freedom for performance improvements as they determine the 'inner functioning' of a transistor. In this work automated doping profile optimization is performed on MOS transistors within the TCAD framework SIESTA. The doping between and under the source/drain wells is discretized on an orthogonal optimization grid facilitating almost arbitrary two-dimensional shapes. A linear optimizer issued to find the optimum doping profile by variation of the doping parameters utilizing numerical device simulations with MINIMOS-NT. Gaussian functions are used in further optimization runs to make the doping profiles smooth. Two device generations are considered, one with 0.25 μm, the other with 0.1 μm gate length. The device geometries and source/drain doping profiles are kept fixed during optimization and supply voltages are chosen suitable for ultra-low-power purposes. In a first optimization study the drive current of NMOS transistors is maximized while keeping the leakage current below a limit of 1 pA/μm. This results in peaking channel doping devices (PCD) with narrow doping peaks placed asymmetrically in the channel. Drive current improvements of 45 % and 71 % for the 0.25 μm and 0.1 μm devices, respectively, are achieved compared to uniformly doped devices. The PCD device is studied in detail and explanations for
Directory of Open Access Journals (Sweden)
Reza Sirjani
2018-03-01
Full Text Available Solar energy is a source of free, clean energy which avoids the destructive effects on the environment that have long been caused by power generation. Solar energy technology rivals fossil fuels, and its development has increased recently. Photovoltaic (PV solar farms can only produce active power during the day, while at night, they are completely idle. At the same time, though, active power should be supported by reactive power. Reactive power compensation in power systems improves power quality and stability. The use during the night of a PV solar farm inverter as a static synchronous compensator (or PV-STATCOM device has recently been proposed which can improve system performance and increase the utility of a PV solar farm. In this paper, a method for optimal PV-STATCOM placement and sizing is proposed using empirical data. Considering the objectives of power loss and cost minimization as well as voltage improvement, two sub-problems of placement and sizing, respectively, are solved by a power loss index and adaptive particle swarm optimization (APSO. Test results show that APSO not only performs better in finding optimal solutions but also converges faster compared with bee colony optimization (BCO and lightening search algorithm (LSA. Installation of a PV solar farm, STATCOM, and PV-STATCOM in a system are each evaluated in terms of efficiency and cost.
An experimental test of Newton's law of gravitation for small accelerations
International Nuclear Information System (INIS)
Schubert, Sven
2011-10-01
The experiment presented in this thesis has been designed to test Newton's law of gravitation in the limit of small accelerations caused by weak gravitational forces. It is located at DESY, Hamburg, and is a modification of an experiment that was carried out in Wuppertal, Germany, until 2002 in order to measure the gravitational constant G. The idea of testing Newton's law in the case of small accelerations emerged from the question whether the flat rotation curves of spiral galaxies can be traced back to Dark Matter or to a law of gravitation that deviates from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics). The core of this experiment is a microwave resonator which is formed by two spherical concave mirrors that are suspended as pendulums. Masses between 1 and 9 kg symmetrically change their distance to the mirrors from far to near positions. Due to the increased gravitational force the mirrors are pulled apart and the length of the resonator increases. This causes a shift of the resonance frequency which can be translated into a shift of the mirror distance. The small masses are sources of weak gravitational forces and cause accelerations on the mirrors of about 10 -10 m/s 2 . These forces are comparable to those between stars on cosmic scales and the accelerations are in the vicinity of the characteristic acceleration of MOND a 0 ∼ 1.2.10 -10 m/s 2 , where deviations from Newton's law are expected. Thus Newton's law could be directly checked for correctness under these conditions. First measurements show that due to the sensitivity of this experiment many systematic influences have to be accounted for in order to get consistent results. Newton's law has been confirmed with an accuracy of 3%. MOND has also been checked. In order to be able to distinguish Newton from MOND with other interpolation functions the accuracy of the experiment has to be improved. (orig.)
What are the Hidden Quantum Processes Behind Newton's Laws?
Ostoma, Tom; Trushyk, Mike
1999-01-01
We investigate the hidden quantum processes that are responsible for Newton's laws of motion and Newton's universal law of gravity. We apply Electro-Magnetic Quantum Gravity or EMQG to investigate Newtonian classical physics. EQMG is a quantum gravity theory that is manifestly compatible with Cellular Automata (CA) theory, a new paradigm for physical reality. EMQG is also based on a theory of inertia proposed by R. Haisch, A. Rueda, and H. Puthoff, which we modified and called Quantum Inertia...
Dynamic ADMM for Real-time Optimal Power Flow: Preprint
Energy Technology Data Exchange (ETDEWEB)
Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-02-23
This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation of the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.
Hydrothermal optimal power flow using continuation method
International Nuclear Information System (INIS)
Raoofat, M.; Seifi, H.
2001-01-01
The problem of optimal economic operation of hydrothermal electric power systems is solved using powerful continuation method. While in conventional approach, fixed generation voltages are used to avoid convergence problems, in the algorithm, they are treated as variables so that better solutions can be obtained. The algorithm is tested for a typical 5-bus and 17-bus New Zealand networks. Its capabilities and promising results are assessed
Cognitive radio adaptation for power consumption minimization using biogeography-based optimization
International Nuclear Information System (INIS)
Qi Pei-Han; Zheng Shi-Lian; Yang Xiao-Niu; Zhao Zhi-Jin
2016-01-01
Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability and characteristics. In this paper, we consider the cognitive radio adaptation problem for power consumption minimization. The problem is formulated as a constrained power consumption minimization problem, and the biogeography-based optimization (BBO) is introduced to solve this optimization problem. A novel habitat suitability index (HSI) evaluation mechanism is proposed, in which both the power consumption minimization objective and the quality of services (QoS) constraints are taken into account. The results show that under different QoS requirement settings corresponding to different types of services, the algorithm can minimize power consumption while still maintaining the QoS requirements. Comparison with particle swarm optimization (PSO) and cat swarm optimization (CSO) reveals that BBO works better, especially at the early stage of the search, which means that the BBO is a better choice for real-time applications. (paper)
Optimal generator bidding strategies for power and ancillary services
Morinec, Allen G.
As the electric power industry transitions to a deregulated market, power transactions are made upon price rather than cost. Generator companies are interested in maximizing their profits rather than overall system efficiency. A method to equitably compensate generation providers for real power, and ancillary services such as reactive power and spinning reserve, will ensure a competitive market with an adequate number of suppliers. Optimizing the generation product mix during bidding is necessary to maximize a generator company's profits. The objective of this research work is to determine and formulate appropriate optimal bidding strategies for a generation company in both the energy and ancillary services markets. These strategies should incorporate the capability curves of their generators as constraints to define the optimal product mix and price offered in the day-ahead and real time spot markets. In order to achieve such a goal, a two-player model was composed to simulate market auctions for power generation. A dynamic game methodology was developed to identify Nash Equilibria and Mixed-Strategy Nash Equilibria solutions as optimal generation bidding strategies for two-player non-cooperative variable-sum matrix games with incomplete information. These games integrated the generation product mix of real power, reactive power, and spinning reserve with the generators's capability curves as constraints. The research includes simulations of market auctions, where strategies were tested for generators with different unit constraints, costs, types of competitors, strategies, and demand levels. Studies on the capability of large hydrogen cooled synchronous generators were utilized to derive useful equations that define the exact shape of the capability curve from the intersections of the arcs defined by the centers and radial vectors of the rotor, stator, and steady-state stability limits. The available reactive reserve and spinning reserve were calculated given a
Optimal Selective Harmonic Control for Power Harmonics Mitigation
DEFF Research Database (Denmark)
Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede
2015-01-01
of power harmonics. The proposed optimal SHC is of hybrid structure: all recursive SHC modules with weighted gains are connected in parallel. It bridges the real “nk+-m order RC” and the complex “parallel structure RC”. Compared to other IMP based control solutions, it offers an optimal trade-off among...
Directory of Open Access Journals (Sweden)
Shi Chen-guang
2014-08-01
Full Text Available A novel optimal power allocation algorithm for radar network systems is proposed for Low Probability of Intercept (LPI technology in modern electronic warfare. The algorithm is based on the LPI optimization. First, the Schleher intercept factor for a radar network is derived, and then the Schleher intercept factor is minimized by optimizing the transmission power allocation among netted radars in the network to guarantee target-tracking performance. Furthermore, the Nonlinear Programming Genetic Algorithm (NPGA is used to solve the resulting nonconvex, nonlinear, and constrained optimization problem. Numerical simulation results show the effectiveness of the proposed algorithm.
DEFF Research Database (Denmark)
Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte
2014-01-01
Consumers may decide to modify the profile of their demand from high price periods to low price periods in order to reduce their electricity costs. This optimal load response to electricity prices for demand side management generates different load profiles and provides an opportunity to achieve...... power loss minimization in distribution systems. In this paper, a new method to achieve power loss minimization in distribution systems by using a price signal to guide the demand side management is proposed. A fuzzy adaptive particle swarm optimization (FAPSO) is used as a tool for the power loss...
Discovery Science: Newton All around You.
Prigo, Robert; Humphrey, Gregg
1993-01-01
Presents activities for helping elementary students learn about Newton's third law of motion. Several activity cards demonstrate the concept of the law of action and reaction. The activities require only inexpensive materials that can be found around the house. (SM)
Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System
Directory of Open Access Journals (Sweden)
Farouk Odeim
2015-06-01
Full Text Available In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, with its slow dynamics, controls the state-of-charge of the battery. The parameters of the power management strategy are optimized by a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization, taking into account the hydrogen consumption, the battery loading and the acceleration performance. The optimization results are validated on a test bench composed of a fuel cell system (1.2 kW, 26 V, lithium polymer battery (30 Ah, 37 V, and a supercapacitor (167 F, 48 V.
Rate Optimization of Two-Way Relaying with Wireless Information and Power Transfer
Directory of Open Access Journals (Sweden)
Thinh Phu Do
2017-11-01
Full Text Available We consider the simultaneous wireless information and power transfer in two-phase decode-and-forward two-way relaying networks, where a relay harvests the energy from the signal to be relayed through either power splitting or time splitting. Here, we formulate the resource allocation problems optimizing the time-phase and signal splitting ratios to maximize the sum rate of the two communicating devices. The joint optimization problems are shown to be convex for both the power splitting and time splitting approaches after some transformation if required to be solvable with an existing solver. To lower the computational complexity, we also present the suboptimal methods optimizing the splitting ratio for the fixed time-phase and derive a closed-form solution for the suboptimal method based on the power splitting. The results demonstrate that the power splitting approaches outperform their time splitting counterparts and the suboptimal power splitting approach provides a performance close to the optimal one while reducing the complexity significantly.
Fundamentos kantianos dos axiomas do movimento de Newton
Vieira Coutinho Abreu Gomes, Írio
2006-01-01
Esse trabalho se insere na perspectiva fundacionista kantiana, particularmente no que diz respeito às três leis de Newton. Em sua obra de 1786, Princípios Metafísicos da Ciência da Natureza, Kant empreende a tarefa de fundamentar a física mecânica através de princípios metafísicos. Nosso objetivo nessa dissertação foi abordar essa obra especificamente em seu terceiro capítulo onde Kant trata dos axiomas do movimento de Newton. Nessa dissertação elucidamos a argumentação kantiana na fundamenta...
Newton's Law of Cooling Revisited
Vollmer, M.
2009-01-01
The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…
Optimal Power Constrained Distributed Detection over a Noisy Multiaccess Channel
Directory of Open Access Journals (Sweden)
Zhiwen Hu
2015-01-01
Full Text Available The problem of optimal power constrained distributed detection over a noisy multiaccess channel (MAC is addressed. Under local power constraints, we define the transformation function for sensor to realize the mapping from local decision to transmitted waveform. The deflection coefficient maximization (DCM is used to optimize the performance of power constrained fusion system. Using optimality conditions, we derive the closed-form solution to the considered problem. Monte Carlo simulations are carried out to evaluate the performance of the proposed new method. Simulation results show that the proposed method could significantly improve the detection performance of the fusion system with low signal-to-noise ratio (SNR. We also show that the proposed new method has a robust detection performance for broad SNR region.
On-the-fly XMM-Newton Spacecraft Data Reduction on the Grid
Directory of Open Access Journals (Sweden)
A. Ibarra
2006-01-01
Full Text Available We present the results of the first prototype of a XMM-Newton pipeline processing task, parallelized at a CCD level, which can be run in a Grid system. By using the Grid Way application and the XMM-Newton Science Archive system, the processing of the XMM-Newton data is distributed across the Virtual Organization (VO constituted by three different research centres: ESAC (European Space Astronomy Centre, ESTEC (the European Space research and TEchnology Centre and UCM (Complutense University of Madrid. The proposed application workflow adjusts well to the Grid environment, making use of the massive parallel resources in a flexible and adaptive fashion.
Pilot power optimization for AF relaying using maximum likelihood channel estimation
Wang, Kezhi
2014-09-01
Bit error rates (BERs) for amplify-and-forward (AF) relaying systems with two different pilot-symbol-aided channel estimation methods, disintegrated channel estimation (DCE) and cascaded channel estimation (CCE), are derived in Rayleigh fading channels. Based on these BERs, the pilot powers at the source and at the relay are optimized when their total transmitting powers are fixed. Numerical results show that the optimized system has a better performance than other conventional nonoptimized allocation systems. They also show that the optimal pilot power in variable gain is nearly the same as that in fixed gain for similar system settings. andcopy; 2014 IEEE.
Solution of optimal power flow using evolutionary-based algorithms
African Journals Online (AJOL)
It aims to estimate the optimal settings of real generator output power, bus voltage, ...... Lansey, K. E., 2003, Optimization of water distribution network design using ... Pandit, M., 2016, Economic load dispatch of wind-solar-thermal system using ...
Optimal Operation of Interdependent Power Systems and Electrified Transportation Networks
Directory of Open Access Journals (Sweden)
M. Hadi Amini
2018-01-01
Full Text Available Electrified transportation and power systems are mutually coupled networks. In this paper, a novel framework is developed for interdependent power and transportation networks. Our approach constitutes solving an iterative least cost vehicle routing process, which utilizes the communication of electrified vehicles (EVs with competing charging stations, to exchange data such as electricity price, energy demand, and time of arrival. The EV routing problem is solved to minimize the total cost of travel using the Dijkstra algorithm with the input from EVs battery management system, electricity price from charging stations, powertrain component efficiencies and transportation network traffic conditions. Through the bidirectional communication of EVs with competing charging stations, EVs’ charging demand estimation is done much more accurately. Then the optimal power flow problem is solved for the power system, to find the locational marginal price at load buses where charging stations are connected. Finally, the electricity prices were communicated from the charging stations to the EVs, and the loop is closed. Locational electricity price acts as the shared parameter between the two optimization problems, i.e., optimal power flow and optimal routing problem. Electricity price depends on the power demand, which is affected by the charging of EVs. On the other hand, location of EV charging stations and their different pricing strategies might affect the routing decisions of the EVs. Our novel approach that combines the electrified transportation with power system operation, holds tremendous potential for solving electrified transportation issues and reducing energy costs. The effectiveness of the proposed approach is demonstrated using Shanghai transportation network and IEEE 9-bus test system. The results verify the cost-savings for both power system and transportation networks.
Isaac Newton learns Hebrew: Samuel Johnson's Nova cubi Hebræi tabella
Joalland, Michael; Mandelbrote, Scott
2016-01-01
This article concerns the earliest evidence for Isaac Newton's use of Hebrew: a manuscript copy by Newton of part of a work intended to provide a reader of the Hebrew alphabet with the ability to identify or memorize more than 1000 words and to begin to master the conjugations of the Hebrew verb. In describing the content of this unpublished manuscript and establishing its source and original author for the first time, we suggest how and when Newton may have initially become acquainted with the language. Finally, basing our discussion in part on an examination of the reading marks that Newton left in the surviving copies of Hebrew grammars and lexicons that he owned, we will argue that his interest in Hebrew was not intended to achieve linguistic proficiency but remained limited to particular theological queries of singular concern.
The architecture of Newton, a general-purpose dynamics simulator
Cremer, James F.; Stewart, A. James
1989-01-01
The architecture for Newton, a general-purpose system for simulating the dynamics of complex physical objects, is described. The system automatically formulates and analyzes equations of motion, and performs automatic modification of this system equations when necessitated by changes in kinematic relationships between objects. Impact and temporary contact are handled, although only using simple models. User-directed influence of simulations is achieved using Newton's module, which can be used to experiment with the control of many-degree-of-freedom articulated objects.
Classical mechanics from Newton to Einstein : a modern introduction
McCall, Martin
2011-01-01
This new edition of Classical Mechanics, aimed at undergraduate physics and engineering students, presents in a user-friendly style an authoritative approach to the complementary subjects of classical mechanics and relativity. The text starts with a careful look at Newton's Laws, before applying them in one dimension to oscillations and collisions. More advanced applications - including gravitational orbits and rigid body dynamics - are discussed after the limitations of Newton's inertial frames have been highlighted through an exposition of Einstein's Special Relativity. Examples gi
Newton's laws of motion in the form of a Riccati equation
International Nuclear Information System (INIS)
Nowakowski, Marek; Rosu, Haret C.
2002-01-01
We discuss two applications of a Riccati equation to Newton's laws of motion. The first one is the motion of a particle under the influence of a power law central potential V(r)=kr ε . For zero total energy we show that the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a Riccati equation. A second application in classical mechanics, where again the Riccati equation appears naturally, are problems involving quadratic friction. We use methods reminiscent to nonrelativistic supersymmetry to generalize and solve such problems
Newton's laws of motion in the form of a Riccati equation.
Nowakowski, Marek; Rosu, Haret C
2002-04-01
We discuss two applications of a Riccati equation to Newton's laws of motion. The first one is the motion of a particle under the influence of a power law central potential V(r)=kr(epsilon). For zero total energy we show that the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a Riccati equation. A second application in classical mechanics, where again the Riccati equation appears naturally, are problems involving quadratic friction. We use methods reminiscent to nonrelativistic supersymmetry to generalize and solve such problems.
International Nuclear Information System (INIS)
Salpakari, Jyri; Mikkola, Jani; Lund, Peter D.
2016-01-01
Highlights: • New models for optimal control of shiftable loads and power-to-heat conversion. • Full technical and economic potential with optimal controls. • Detailed time series of shiftable loads based on empirical data. • Case study of Helsinki (Finland) with over 90% share of district heating. • Positive net present values in cost-optimal operation. - Abstract: Solar and wind power are potential carbon-free energy solutions for urban areas, but they are also subject to large variability. At the same time, urban areas offer promising flexibility solutions for balancing variable renewable power. This paper presents models for optimal control of power-to-heat conversion to heating systems and shiftable loads in cities to incorporate large variable renewable power schemes. The power-to-heat systems comprise heat pumps, electric boilers, and thermal storage. The control strategies comprise optimal matching of load and production, and cost-optimal market participation with investment analysis. All analyses are based on hourly data. The models are applied to a case study in Helsinki, Finland. For a scheme providing ca. 50% of all electricity in the city through self-consumption of variable renewables, power-to-heat with thermal storage could absorb all the surplus production. A significant reduction in the net load magnitude was obtained with shiftable loads. Investments to both power-to-heat and load shifting with electric heating and commercial refrigeration have a positive net present value if the resources are controlled cost-optimally.
Efficient relaxations for joint chance constrained AC optimal power flow
Energy Technology Data Exchange (ETDEWEB)
Baker, Kyri; Toomey, Bridget
2017-07-01
Evolving power systems with increasing levels of stochasticity call for a need to solve optimal power flow problems with large quantities of random variables. Weather forecasts, electricity prices, and shifting load patterns introduce higher levels of uncertainty and can yield optimization problems that are difficult to solve in an efficient manner. Solution methods for single chance constraints in optimal power flow problems have been considered in the literature, ensuring single constraints are satisfied with a prescribed probability; however, joint chance constraints, ensuring multiple constraints are simultaneously satisfied, have predominantly been solved via scenario-based approaches or by utilizing Boole's inequality as an upper bound. In this paper, joint chance constraints are used to solve an AC optimal power flow problem while preventing overvoltages in distribution grids under high penetrations of photovoltaic systems. A tighter version of Boole's inequality is derived and used to provide a new upper bound on the joint chance constraint, and simulation results are shown demonstrating the benefit of the proposed upper bound. The new framework allows for a less conservative and more computationally efficient solution to considering joint chance constraints, specifically regarding preventing overvoltages.
Power Consumption in Refrigeration Systems - Modeling for Optimization
DEFF Research Database (Denmark)
Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Skovrup, Morten Juel
2011-01-01
Refrigeration systems consume a substantial amount of energy. Taking for instance supermarket refrigeration systems as an example they can account for up to 50−80% of the total energy consumption in the supermarket. Due to the thermal capacity made up by the refrigerated goods in the system...... there is a possibility for optimizing the power consumption by utilizing load shifting strategies. This paper describes the dynamics and the modeling of a vapor compression refrigeration system needed for sufficiently realistic estimation of the power consumption and its minimization. This leads to a non-convex function...... with possibly multiple extrema. Such a function can not directly be optimized by standard methods and a qualitative analysis of the system’s constraints is presented. The description of power consumption contains nonlinear terms which are approximated by linear functions in the control variables and the error...
Weisskopf, Martin
2011-01-01
NASA s Chandra X-ray Observatory and ESA s XMM-Newton made their first observations over a decade ago. The unprecedented and complementary capabilities of these observatories to detect, image, and measure the energy of cosmic X-rays, achieved less than 50 years after the first detection of an extra-solar X-ray source, represent an increase in sensitivity comparable in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. In this presentation we highlight some of the many discoveries made using these powerful X-ray observatories that have transformed 21st century astronomy. We briefly discuss future prospects for this truly exciting field.
A Hybrid Harmony Search Algorithm Approach for Optimal Power Flow
Directory of Open Access Journals (Sweden)
Mimoun YOUNES
2012-08-01
Full Text Available Optimal Power Flow (OPF is one of the main functions of Power system operation. It determines the optimal settings of generating units, bus voltage, transformer tap and shunt elements in Power System with the objective of minimizing total production costs or losses while the system is operating within its security limits. The aim of this paper is to propose a novel methodology (BCGAs-HSA that solves OPF including both active and reactive power dispatch It is based on combining the binary-coded genetic algorithm (BCGAs and the harmony search algorithm (HSA to determine the optimal global solution. This method was tested on the modified IEEE 30 bus test system. The results obtained by this method are compared with those obtained with BCGAs or HSA separately. The results show that the BCGAs-HSA approach can converge to the optimum solution with accuracy compared to those reported recently in the literature.
Optimization of Power Allocation for Multiusers in Multi-Spot-Beam Satellite Communication Systems
Directory of Open Access Journals (Sweden)
Heng Wang
2014-01-01
Full Text Available In recent years, multi-spot-beam satellite communication systems have played a key role in global seamless communication. However, satellite power resources are scarce and expensive, due to the limitations of satellite platform. Therefore, this paper proposes optimizing the power allocation of each user in order to improve the power utilization efficiency. Initially the capacity allocated to each user is calculated according to the satellite link budget equations, which can be achieved in the practical satellite communication systems. The problem of power allocation is then formulated as a convex optimization, taking account of a trade-off between the maximization of the total system capacity and the fairness of power allocation amongst the users. Finally, an iterative algorithm based on the duality theory is proposed to obtain the optimal solution to the optimization. Compared with the traditional uniform resource allocation or proportional resource allocation algorithms, the proposed optimal power allocation algorithm improves the fairness of power allocation amongst the users. Moreover, the computational complexity of the proposed algorithm is linear with both the numbers of the spot beams and users. As a result, the proposed power allocation algorithm is easy to be implemented in practice.
Optimal recharge and driving strategies for a battery-powered electric vehicle
Directory of Open Access Journals (Sweden)
Lee W. R.
1999-01-01
Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.
Data processing and optimization system to study prospective interstate power interconnections
Podkovalnikov, Sergei; Trofimov, Ivan; Trofimov, Leonid
2018-01-01
The paper presents Data processing and optimization system for studying and making rational decisions on the formation of interstate electric power interconnections, with aim to increasing effectiveness of their functioning and expansion. The technologies for building and integrating a Data processing and optimization system including an object-oriented database and a predictive mathematical model for optimizing the expansion of electric power systems ORIRES, are described. The technology of collection and pre-processing of non-structured data collected from various sources and its loading to the object-oriented database, as well as processing and presentation of information in the GIS system are described. One of the approaches of graphical visualization of the results of optimization model is considered on the example of calculating the option for expansion of the South Korean electric power grid.
Directory of Open Access Journals (Sweden)
Li Ran
2017-01-01
Full Text Available Optimal allocation of generalized power sources in distribution network is researched. A simple index of voltage stability is put forward. Considering the investment and operation benefit, the stability of voltage and the pollution emissions of generalized power sources in distribution network, a multi-objective optimization planning model is established. A multi-objective particle swarm optimization algorithm is proposed to solve the optimal model. In order to improve the global search ability, the strategies of fast non-dominated sorting, elitism and crowding distance are adopted in this algorithm. Finally, tested the model and algorithm by IEEE-33 node system to find the best configuration of GP, the computed result shows that with the generalized power reasonable access to the active distribution network, the investment benefit and the voltage stability of the system is improved, and the proposed algorithm has better global search capability.
Generation of Optimal Basis Functions for Reconstruction of Power Distribution
Energy Technology Data Exchange (ETDEWEB)
Park, Moonghu [Sejong Univ., Seoul (Korea, Republic of)
2014-05-15
This study proposes GMDH to find not only the best functional form but also the optimal parameters those describe the power distribution most accurately. A total of 1,060 cases of axially 1-dimensional core power distributions of 20-nodes are generated by 3-dimensional core analysis code covering BOL to EOL core burnup histories to validate the method. Axially five-point box powers at in-core detectors are considered as measurements. The reconstructed axial power shapes using GMDH method are compared to the reference power shapes. The results show that the proposed method is very robust and accurate compared with spline fitting method. It is shown that the GMDH analysis can give optimal basis functions for core power shape reconstruction. The in-core measurements are the 5 detector snapshots and the 20-node power distribution is successfully reconstructed. The effectiveness of the method is demonstrated by comparing the results of spline fitting for BOL, saddle and top-skewed power shapes.
Optimization of Passive Low Power Wireless Electromagnetic Energy Harvesters
Directory of Open Access Journals (Sweden)
Dario Grgić
2012-10-01
Full Text Available This work presents the optimization of antenna captured low power radio frequency (RF to direct current (DC power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at −30 dBm antenna input power. Additionally, a wireless harvester (rectenna is built and tested for receiving range performance.
Optimization of passive low power wireless electromagnetic energy harvesters.
Nimo, Antwi; Grgić, Dario; Reindl, Leonhard M
2012-10-11
This work presents the optimization of antenna captured low power radio frequency (RF) to direct current (DC) power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor) resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at -30 dBm antenna input power. Additionally, a wireless harvester (rectenna) is built and tested for receiving range performance.
Optimization of Passive Low Power Wireless Electromagnetic Energy Harvesters
Nimo, Antwi; Grgić, Dario; Reindl, Leonhard M.
2012-01-01
This work presents the optimization of antenna captured low power radio frequency (RF) to direct current (DC) power converters using Schottky diodes for powering remote wireless sensors. Linearized models using scattering parameters show that an antenna and a matched diode rectifier can be described as a form of coupled resonator with different individual resonator properties. The analytical models show that the maximum voltage gain of the coupled resonators is mainly related to the antenna, diode and load (remote sensor) resistances at matched conditions or resonance. The analytical models were verified with experimental results. Different passive wireless RF power harvesters offering high selectivity, broadband response and high voltage sensitivity are presented. Measured results show that with an optimal resistance of antenna and diode, it is possible to achieve high RF to DC voltage sensitivity of 0.5 V and efficiency of 20% at −30 dBm antenna input power. Additionally, a wireless harvester (rectenna) is built and tested for receiving range performance. PMID:23202014
Variational nature, integration, and properties of Newton reaction path.
Bofill, Josep Maria; Quapp, Wolfgang
2011-02-21
The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.
Variational nature, integration, and properties of Newton reaction path
Bofill, Josep Maria; Quapp, Wolfgang
2011-02-01
The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.
Newton law in DGP brane-world with semi-infinite extra dimension
International Nuclear Information System (INIS)
Park, D.K.; Tamaryan, S.; Miao Yangang
2004-01-01
Newton potential for DGP brane-world scenario is examined when the extra dimension is semi-infinite. The final form of the potential involves a self-adjoint extension parameter α, which plays a role of an additional mass (or distance) scale. The striking feature of Newton potential in this setup is that the potential behaves as seven-dimensional in long range when α is non-zero. For small α there is an intermediate range where the potential is five-dimensional. Five-dimensional Newton constant decreases with increase of α from zero. In the short range the four-dimensional behavior is recovered. The physical implication of this result is discussed in the context of the accelerating behavior of universe
Hybrid PV/diesel solar power system design using multi-level factor analysis optimization
Drake, Joshua P.
Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.
Optimizing efficiency on conventional transformer based low power AC/DC standby power supplies
DEFF Research Database (Denmark)
Nielsen, Nils
2004-01-01
This article describes the research results for simple and cheap methods to reduce the idle- and load-losses in very low power conventional transformer based power supplies intended for standby usage. In this case "very low power" means 50 Hz/230 V-AC to 5 V-DC@1 W. The efficiency is measured...... on two common power supply topologies designed for this power level. The two described topologies uses either a series (or linear) or a buck regulation approach. Common to the test power supplies is they either are using a standard cheap off-the-shelf transformer, or one, which are loss optimized by very...
Development and optimization of power plant concepts for local wet fuels
Energy Technology Data Exchange (ETDEWEB)
Raiko, M.O.; Gronfors, T.H.A. [Fortum Energy Solutions, Fortum (Finland); Haukka, P. [Tampere University of Technology (Finland)
2003-01-01
Many changes in business drivers are now affecting power-producing companies. The power market has been opened up and the number of locally operating companies has increased. At the same time the need to utilize locally produced biofuels is increasing because of environmental benefits and regulations. In this situation, power-producing companies have on focus their in-house skills for generating a competitive edge over their rivals, such as the skills needed for developing the most economical energy investments for the best-paying customer for the local biomass producers. This paper explores the role of optimization in the development of small-sized energy investments. The paper provides an overview on a new design process for power companies for improved use of in-house technical and business expertise. As an example, illustrative design and optimization of local wet peat-based power investment is presented. Three concept alternatives are generated. Only power plant production capacity and peat moisture content are optimized for all alternatives. Long commercial experience of using peat as a power plant fuel in Finland can be transferred to bioenergy investments. In this paper, it is shown that conventional technology can be feasible for bioenergy production even in quite small size (below 10 MW). It is important to optimize simultaneously both the technology and the two businesses, power production and fuel production. Further, such high moisture content biomass as sludge, seaweed, grass, etc. can be economical fuels, if advanced drying systems are adopted in a power plant. (author)
Classical orbits in power-law potentials
International Nuclear Information System (INIS)
Grant, A.K.; Rosner, J.L.
1994-01-01
The motion of bodies in power-law potentials of the form V(r)=λr α has been of interest ever since the time of Newton and Hooke. Aspects of the relation between powers α and bar α, where (α+2)(bar α+2)=4, are derived for classical motion and the relation to the quantum-mechanical problem is given. An improvement on a previous expression for the WKB quantization condition for nonzero orbital angular momenta is obtained. Relations with previous treatments, such as those of Newton, Bertrand, Bohlin, Faure, and Arnold, are noted, and a brief survey of the literature on the problem over more than three centuries is given
Newton's constant from a minimal length: additional models
International Nuclear Information System (INIS)
Sahlmann, Hanno
2011-01-01
We follow arguments of Verlinde (2010 arXiv:1001.0785 [hep-th]) and Klinkhamer (2010 arXiv:1006.2094 [hep-th]), and construct two models of the microscopic theory of a holographic screen that allow for the thermodynamical derivation of Newton's law, with Newton's constant expressed in terms of a minimal length scale l contained in the area spectrum of the microscopic theory. One of the models is loosely related to the quantum structure of surfaces and isolated horizons in loop quantum gravity. Our investigation shows that the conclusions reached by Klinkhamer regarding the new length scale l seem to be generic in all their qualitative aspects.
A Non-smooth Newton Method for Multibody Dynamics
International Nuclear Information System (INIS)
Erleben, K.; Ortiz, R.
2008-01-01
In this paper we deal with the simulation of rigid bodies. Rigid body dynamics have become very important for simulating rigid body motion in interactive applications, such as computer games or virtual reality. We present a novel way of computing contact forces using a Newton method. The contact problem is reformulated as a system of non-linear and non-smooth equations, and we solve this system using a non-smooth version of Newton's method. One of the main contribution of this paper is the reformulation of the complementarity problems, used to model impacts, as a system of equations that can be solved using traditional methods.
Channel Estimation and Optimal Power Allocation for a Multiple-Antenna OFDM System
Directory of Open Access Journals (Sweden)
Yao Kung
2002-01-01
Full Text Available We propose combining channel estimation and optimal power allocation approaches for a multiple-antenna orthogonal frequency division multiplexing (OFDM system in high-speed transmission applications. We develop a least-square channel estimation approach, derive the performance bound of the estimator, and investigate the optimal training sequences for initial channel acquisition. Based on the channel estimates, the optimal power allocation solution which maximizes the bandwidth efficiency is derived under power and quality of service (Qos (symbol error rate constraints. It is shown that combining channel tracking and adaptive power allocation can dramatically enhance the outage capacity of an OFDM multiple-antenna system when severing fading occurs.
Teaching Newton's Third Law of Motion in the Presence of Student Preconception
Poon, C. H.
2006-01-01
The concept of interaction that underlies Newton's Laws of Motion is compared with the students' commonsense ideas of force and motion. An approach to teaching Newton's Third Law of Motion is suggested that focuses on refining the student's intuitive thinking on the nature of interaction.
Maintenance optimization in nuclear power plants through genetic algorithms
International Nuclear Information System (INIS)
Munoz, A.; Martorell, S.; Serradell, V.
1999-01-01
Establishing suitable scheduled maintenance tasks leads to optimizing the reliability of nuclear power plant safety systems. The articles addresses this subject, whilst endeavoring to tackle an overall optimization process for component availability and safety systems through the use of genetic algorithms. (Author) 20 refs
Optimal contracts for wind power producers in electricity markets
Bitar, E.; Giani, A.; Rajagopal, R.; Varagnolo, D.; Khargonekar, P.; Poolla, K.; Varaiya, P.
2010-01-01
This paper is focused on optimal contracts for an independent wind power producer in conventional electricity markets. Starting with a simple model of the uncertainty in the production of power from a wind turbine farm and a model for the electric
optimal location of distributed generation on the nigerian power ...
African Journals Online (AJOL)
user
optimal sizing and placement of DG in the Nigerian power network for active power loss minimization. The ..... costs, resulting to low or over voltage in the network contrary to the desired ... Through Capabilities of a Wind Farm” Paper ID 99,.
Resource-based optimization of electric power production (in Iran)
International Nuclear Information System (INIS)
Sadeghzadeh, Mohammad
1999-01-01
This paper is about electric power production optimization and chiefly discusses on the types of resources available in Iran. The modeling has been based on the marginal cost of different energy resources and types of technologies used. the computed costs are the basic standards for optimization of the production system of energy. the costs associated with environmental pollution and also pollution control are considered. the present paper also studied gas fossil fuel, hydro, nuclear, renewable and co-generation of heat and power. The results are discussed and reported at the last of the paper
Newton-type method for the variational discretization of topology optimization problems
DEFF Research Database (Denmark)
Evgrafov, Anton
2013-01-01
We present a locally quadratically convergent optimization algorithm for solving topology optimization problems. The distinguishing feature of the algorithm is to treat the design as a smooth function of the state and not vice versa as in the traditional nested approach to topology optimization, ...
Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng
2018-05-01
Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.
Directory of Open Access Journals (Sweden)
Yanjun Zhang
2015-01-01
Full Text Available A new optimized extreme learning machine- (ELM- based method for power system transient stability prediction (TSP using synchrophasors is presented in this paper. First, the input features symbolizing the transient stability of power systems are extracted from synchronized measurements. Then, an ELM classifier is employed to build the TSP model. And finally, the optimal parameters of the model are optimized by using the improved particle swarm optimization (IPSO algorithm. The novelty of the proposal is in the fact that it improves the prediction performance of the ELM-based TSP model by using IPSO to optimize the parameters of the model with synchrophasors. And finally, based on the test results on both IEEE 39-bus system and a large-scale real power system, the correctness and validity of the presented approach are verified.
Local Convergence and Radius of Convergence for Modified Newton Method
Directory of Open Access Journals (Sweden)
Măruşter Ştefan
2017-12-01
Full Text Available We investigate the local convergence of modified Newton method, i.e., the classical Newton method in which the derivative is periodically re-evaluated. Based on the convergence properties of Picard iteration for demicontractive mappings, we give an algorithm to estimate the local radius of convergence for considered method. Numerical experiments show that the proposed algorithm gives estimated radii which are very close to or even equal with the best ones.
Optimal Parameter Selection of Power System Stabilizer using Genetic Algorithm
Energy Technology Data Exchange (ETDEWEB)
Chung, Hyeng Hwan; Chung, Dong Il; Chung, Mun Kyu [Dong-AUniversity (Korea); Wang, Yong Peel [Canterbury Univeristy (New Zealand)
1999-06-01
In this paper, it is suggested that the selection method of optimal parameter of power system stabilizer (PSS) with robustness in low frequency oscillation for power system using real variable elitism genetic algorithm (RVEGA). The optimal parameters were selected in the case of power system stabilizer with one lead compensator, and two lead compensator. Also, the frequency responses characteristics of PSS, the system eigenvalues criterion and the dynamic characteristics were considered in the normal load and the heavy load, which proved usefulness of RVEGA compare with Yu's compensator design theory. (author). 20 refs., 15 figs., 8 tabs.
How Two Differing Portraits of Newton Can Teach Us about the Cultural Context of Science
Tucci, Pasquale
2015-01-01
Like several scientists, Isaac Newton has been represented many times over many different periods, and portraits of Newton were often commissioned by the scientist himself. These portraits tell us a lot about the scientist, the artist and the cultural context. This article examines two very different portraits of Newton that were realized more…
Stochastic Robust Mathematical Programming Model for Power System Optimization
Energy Technology Data Exchange (ETDEWEB)
Liu, Cong; Changhyeok, Lee; Haoyong, Chen; Mehrotra, Sanjay
2016-01-01
This paper presents a stochastic robust framework for two-stage power system optimization problems with uncertainty. The model optimizes the probabilistic expectation of different worst-case scenarios with ifferent uncertainty sets. A case study of unit commitment shows the effectiveness of the proposed model and algorithms.
Isaac Newton's scientific method turning data into evidence about gravity and cosmology
Harper, William L.
2014-01-01
Isaac Newton's Scientific Method examines Newton's argument for universal gravity and his application of it to resolve the problem of deciding between geocentric and heliocentric world systems by measuring masses of the sun and planets. William L. Harper suggests that Newton's inferences from phenomena realize an ideal of empirical success that is richer than prediction. Any theory that can achieve this rich sort of empirical success must not only be able to predict the phenomena it purports to explain, but also have those phenomena accurately measure the parameters which explain them. Harper explores the ways in which Newton's method aims to turn theoretical questions into ones which can be answered empirically by measurement from phenomena, and to establish that propositions inferred from phenomena are provisionally accepted as guides to further research. This methodology, guided by its rich ideal of empirical success, supports a conception of scientific progress that does not require construing it as progr...
Modified artificial bee colony algorithm for reactive power optimization
Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani
2015-05-01
Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.
Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM: Preprint
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yijian; Hong, Mingyi; Dall' Anese, Emiliano; Dhople, Sairaj; Xu, Zi
2017-03-03
This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposed here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.
Solar photovoltaic power forecasting using optimized modified extreme learning machine technique
Directory of Open Access Journals (Sweden)
Manoja Kumar Behera
2018-06-01
Full Text Available Prediction of photovoltaic power is a significant research area using different forecasting techniques mitigating the effects of the uncertainty of the photovoltaic generation. Increasingly high penetration level of photovoltaic (PV generation arises in smart grid and microgrid concept. Solar source is irregular in nature as a result PV power is intermittent and is highly dependent on irradiance, temperature level and other atmospheric parameters. Large scale photovoltaic generation and penetration to the conventional power system introduces the significant challenges to microgrid a smart grid energy management. It is very critical to do exact forecasting of solar power/irradiance in order to secure the economic operation of the microgrid and smart grid. In this paper an extreme learning machine (ELM technique is used for PV power forecasting of a real time model whose location is given in the Table 1. Here the model is associated with the incremental conductance (IC maximum power point tracking (MPPT technique that is based on proportional integral (PI controller which is simulated in MATLAB/SIMULINK software. To train single layer feed-forward network (SLFN, ELM algorithm is implemented whose weights are updated by different particle swarm optimization (PSO techniques and their performance are compared with existing models like back propagation (BP forecasting model. Keywords: PV array, Extreme learning machine, Maximum power point tracking, Particle swarm optimization, Craziness particle swarm optimization, Accelerate particle swarm optimization, Single layer feed-forward network
A gravitação universal na filosofia da natureza de Isaac Newton
Garcia, Valdinei Gomes
2010-01-01
Resumo: Esta pesquisa apresenta um estudo sobre o conceito de força gravitacional na filosofia da natureza de Isaac Newton. O presente texto foi elaborado a partir dos argumentos desenvolvidos por Newton para defender esse conceito em sua obra mais importante, o Philosophiae Naturalis Principia Mathematica (1687). Será visto que, em tais argumentos, Newton restringe o conceito de força gravitacional a partir de um tratamento matemático, que ele próprio elaborou em sua obra. Por outro lado, Ne...
British physics Newton's law of funding
2007-01-01
In Britain, fundamental physics is in a pickle ISAAC NEWTON, besides being the founder of modern physics, was also master of Britain's mint. That is a precedent which many British physicists must surely wish had become traditional. At the moment, money for physics is in short supply in Britain.
The optimization of nuclear power plants operation modes in emergency situations
Zagrebayev, A. M.; Trifonenkov, A. V.; Ramazanov, R. N.
2018-01-01
An emergency situations resulting in the necessity for temporary reactor trip may occur at the nuclear power plant while normal operating mode. The paper deals with some of the operation c aspects of nuclear power plant operation in emergency situations and during threatened period. The xenon poisoning causes limitations on the variety of statements of the problem of calculating characteristics of a set of optimal reactor power off controls. The article show a possibility and feasibility of new sets of optimization tasks for the operation of nuclear power plants under conditions of xenon poisoning in emergency circumstances.
Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint
Energy Technology Data Exchange (ETDEWEB)
Baker, Kyri; Dall' Anese, Emiliano; Summers, Tyler
2016-09-01
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flow equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.
The Cooling Law and the Search for a Good Temperature Scale, from Newton to Dalton
Besson, Ugo
2011-01-01
The research on the cooling law began with an article by Newton published in 1701. Later, many studies were performed by other scientists confirming or confuting Newton's law. This paper presents a description and an interpretation of Newton's article, provides a short overview of the research conducted on the topic during the 18th century, and…
The Schrödinger–Newton equation and its foundations
International Nuclear Information System (INIS)
Bahrami, Mohammad; Großardt, André; Donadi, Sandro; Bassi, Angelo
2014-01-01
The necessity of quantising the gravitational field is still subject to an open debate. In this paper we compare the approach of quantum gravity, with that of a fundamentally semi-classical theory of gravity, in the weak-field non-relativistic limit. We show that, while in the former case the Schrödinger equation stays linear, in the latter case one ends up with the so-called Schrödinger–Newton equation, which involves a nonlinear, non-local gravitational contribution. We further discuss that the Schrödinger–Newton equation does not describe the collapse of the wave-function, although it was initially proposed for exactly this purpose. Together with the standard collapse postulate, fundamentally semi-classical gravity gives rise to superluminal signalling. A consistent fundamentally semi-classical theory of gravity can therefore only be achieved together with a suitable prescription of the wave-function collapse. We further discuss, how collapse models avoid such superluminal signalling and compare the nonlinearities appearing in these models with those in the Schrödinger–Newton equation. (paper)
Bohlin transformation: the hidden symmetry that connects Hooke to Newton
International Nuclear Information System (INIS)
Saggio, Maria Luisa
2013-01-01
Hooke's name is familiar to students of mechanics thanks to the law of force that bears his name. Less well-known is the influence his findings had on the founder of mechanics, Isaac Newton. In a lecture given some twenty years ago, W Arnol'd pointed out the outstanding contribution to science made by Hooke, and also noted the controversial issue of the attribution of important discoveries to Newton that were actually inspired by Hooke. It therefore seems ironic that the two most famous force laws, named after Hooke and Newton, are two geometrical aspects of the same law. This relationship, together with other illuminating aspects of Newtonian mechanics, is described in Arnol'd's book and is worth remembering in standard physics courses. In this didactical paper the duality of the two forces is expounded and an account of the more recent contributions to the subject is given. (paper)
Reactive power dispatch considering voltage stability with seeker optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Dai, Chaohua; Chen, Weirong; Zhang, Xuexia [The School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhu, Yunfang [Department of Computer and Communication Engineering, E' mei Campus, Southwest Jiaotong University, E' mei 614202 (China)
2009-10-15
Optimal reactive power dispatch (ORPD) has a growing impact on secure and economical operation of power systems. This issue is well known as a non-linear, multi-modal and multi-objective optimization problem where global optimization techniques are required in order to avoid local minima. In the last decades, computation intelligence-based techniques such as genetic algorithms (GAs), differential evolution (DE) algorithms and particle swarm optimization (PSO) algorithms, etc., have often been used for this aim. In this work, a seeker optimization algorithm (SOA) based method is proposed for ORPD considering static voltage stability and voltage deviation. The SOA is based on the concept of simulating the act of human searching where search direction is based on the empirical gradient by evaluating the response to the position changes and step length is based on uncertainty reasoning by using a simple Fuzzy rule. The algorithm's performance is studied with comparisons of two versions of GAs, three versions of DE algorithms and four versions of PSO algorithms on the IEEE 57 and 118-bus power systems. The simulation results show that the proposed approach performed better than the other listed algorithms and can be efficiently used for the ORPD problem. (author)
Optimization of Wind-Marine Hybrid Power System Configuration Based on Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
SHI Hongda; LI Linna; ZHAO Chenyu
2017-01-01
Multi-energy power systems can use energy generated from various sources to improve power generation reliability.This paper presents a cost-power generation model of a wind-tide-wave energy hybrid power system for use on a remote island,where the configuration is optimized using a genetic algorithm.A mixed integer programming model is used and a novel object function,including cost and power generation,is proposed to solve the boundary problem caused by existence of two goals.Using this model,the final optimized result is found to have a good fit with local resources.
Use Conditions and Efficiency Measurements of DC Power Optimizers for Photovoltaic Systems: Preprint
Energy Technology Data Exchange (ETDEWEB)
Deline, C.; MacAlpine, S.
2013-10-01
No consensus standard exists for estimating annual conversion efficiency of DC-DC converters or power optimizers in photovoltaic (PV) applications. The performance benefits of PV power electronics including per-panel DC-DC converters depend in large part on the operating conditions of the PV system, along with the performance characteristics of the power optimizer itself. This work presents acase study of three system configurations that take advantage of the capabilities of DC power optimizers. Measured conversion efficiencies of DC-DC converters are applied to these scenarios to determine the annual weighted operating efficiency. A simplified general method of reporting weighted efficiency is given, based on the California Energy Commission's CEC efficiency rating and severalinput / output voltage ratios. Efficiency measurements of commercial power optimizer products are presented using the new performance metric, along with a description of the limitations of the approach.
[Isaac Newton's Anguli Contactus method].
Wawrzycki, Jarosław
2014-01-01
In this paper we discuss the geometrical method for calculating the curvature of a class of curves from the third Book of Isaac Newton's Principia. The method involves any curve which is generated from an elementary curve (actually from any curve whose curvature we known of) by means of transformation increasing the polar angular coordinate in a constant ratio, but unchanging the polar radial angular coordinate.
Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry
International Nuclear Information System (INIS)
Alvarez, Pedro D.; Gomis, Joaquim; Kamimura, Kiyoshi; Plyushchay, Mikhail S.
2008-01-01
We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropic and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, and develops three different phases depending on the values of the two central charges. The special cases of the exotic Newton-Hooke particle and non-commutative Landau problem are shown to be characterized by additional, so(3) or so(2,1) Lie symmetry, which reflects their peculiar spectral properties
Isaac Newton Institute of Chile: The fifteenth anniversary of its "Yugoslavia" Branch
Dimitrijević, M. S.
In 2002, the Isaac Newton Institute of Chile established in Belgrade its "Yugoslavia" Branch, one of 15 branches in nine countries in Eastern Europe and Eurasia. On the occasion of fifteen years since its foundation, the activities of "Yugoslavia" Branch of the Isaac Newton Institute of Chile are briefly reviewed.
Modeling and Optimization of the Medium-Term Units Commitment of Thermal Power
Directory of Open Access Journals (Sweden)
Shengli Liao
2015-11-01
Full Text Available Coal-fired thermal power plants, which represent the largest proportion of China’s electric power system, are very sluggish in responding to power system load demands. Thus, a reasonable and feasible scheme for the medium-term optimal commitment of thermal units (MOCTU can ensure that the generation process runs smoothly and minimizes the start-up and shut-down times of thermal units. In this paper, based on the real-world and practical demands of power dispatch centers in China, a flexible mathematical model for MOCTU that uses equal utilization hours for the installed capacity of all thermal power plants as the optimization goal and that considers the award hours for MOCTU is developed. MOCTU is a unit commitment (UC problem with characteristics of large-scale, high dimensions and nonlinearity. For optimization, an improved progressive optimality algorithm (IPOA offering the advantages of POA is adopted to overcome the drawback of POA of easily falling into the local optima. In the optimization process, strategies of system operating capacity equalization and single station operating peak combination are introduced to move the target solution from the boundary constraints along the target isopleths into the feasible solution’s interior to guarantee the global optima. The results of a case study consisting of nine thermal power plants with 27 units show that the presented algorithm can obtain an optimal solution and is competent in solving the MOCTU with high efficiency and accuracy as well as that the developed simulation model can be applied to practical engineering needs.
Optimal Operation of Energy Storage in Power Transmission and Distribution
Akhavan Hejazi, Seyed Hossein
In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider
Newton-Krylov Methods in Power Flow and Contingency Analysis
Idema, R.
2012-01-01
A power system is a system that provides for the generation, transmission, and distribution of electrical energy. Power systems are considered to be the largest and most complex man-made systems. As electrical energy is vital to our society, power systems have to satisfy the highest security and
The Newtonian Moment - Isaac Newton and the Making of Modern Culture
Feingold, Mordechai
2004-12-01
Isaac Newton is a legendary figure whose mythical dimension threatens to overshadow the actual man. The story of the apple falling from the tree may or may not be true, but Isaac Newton's revolutionary discoveries and their importance to the Enlightenment era and beyond are undeniable. The Newtonian Moment , a companion volume to a forthcoming exhibition by the New York Public Library, investigates the effect that Newton's theories and discoveries had, not only on the growth of science, but also on the very shape of modern culture and thought. Newton's scientific work at Cambridge was groundbreaking. From his optical experiments with prisms during the 1660s to the publication of both Principia (1687) and Opticks (1704), Newton's achievements were widely disseminated, inciting tremendous interest and excitement. Newtonianism developed into a worldview marked by many tensions: between modernity and the old guard, between the humanities and science, and the public battles between great minds. The Newtonian Moment illuminates the many facets of his colossal accomplishments, as well as the debates over the kind of knowledge that his accomplishments engendered. The book contributes to a greater understanding of the world today by offering a panoramic view of the profound impact of Newtonianism on the science, literature, art, and religion of the Enlightenment. Copiously illustrated with items drawn from the collections of the New York Public Library as well as numerous other libraries and museums, The Newtonian Moment enlightens its audience with a guided and in-depth look at the man, his world, and his enduring legacy.
An historical survey of computational methods in optimal control.
Polak, E.
1973-01-01
Review of some of the salient theoretical developments in the specific area of optimal control algorithms. The first algorithms for optimal control were aimed at unconstrained problems and were derived by using first- and second-variation methods of the calculus of variations. These methods have subsequently been recognized as gradient, Newton-Raphson, or Gauss-Newton methods in function space. A much more recent addition to the arsenal of unconstrained optimal control algorithms are several variations of conjugate-gradient methods. At first, constrained optimal control problems could only be solved by exterior penalty function methods. Later algorithms specifically designed for constrained problems have appeared. Among these are methods for solving the unconstrained linear quadratic regulator problem, as well as certain constrained minimum-time and minimum-energy problems. Differential-dynamic programming was developed from dynamic programming considerations. The conditional-gradient method, the gradient-projection method, and a couple of feasible directions methods were obtained as extensions or adaptations of related algorithms for finite-dimensional problems. Finally, the so-called epsilon-methods combine the Ritz method with penalty function techniques.
Advances in Optimizing Weather Driven Electric Power Systems.
Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.
2014-12-01
The importance of weather-driven renewable energies for the United States (and global) energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with Weather System Simulator (NEWS) is a mathematical optimization tool that allows the construction of weather-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to global regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.
Energy Technology Data Exchange (ETDEWEB)
Hansen, A D; Bindner, H [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Rebsdorf, A [Vestas Wind Systems A/S, Lem (Denmark)
1999-03-01
The paper summarises and describes the main results of a recently performed study of improving the transition between power optimization and power limitation for variable speed/variable pitch wind turbines. The results show that the capability of varying the generator speed also can be exploited in the transition stage to improve the quality of the generated power. (au)
Hybrid robust predictive optimization method of power system dispatch
Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY
2011-08-02
A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.
Virtual Power Plant and Microgrids controller for Energy Management based on optimization techniques
Directory of Open Access Journals (Sweden)
Maher G. M. Abdolrasol
2017-06-01
Full Text Available This paper discuss virtual power plant (VPP and Microgrid controller for energy management system (EMS based on optimization techniques by using two optimization techniques namely Backtracking search algorithm (BSA and particle swarm optimization algorithm (PSO. The research proposes use of multi Microgrid in the distribution networks to aggregate the power form distribution generation and form it into single Microgrid and let these Microgrid deal directly with the central organizer called virtual power plant. VPP duties are price forecast, demand forecast, weather forecast, production forecast, shedding loads, make intelligent decision and for aggregate & optimizes the data. This huge system has been tested and simulated by using Matlab simulink. These paper shows optimizations of two methods were really significant in the results. But BSA is better than PSO to search for better parameters which could make more power saving as in the results and the discussion.
Applicability of Newton's law of cooling in monetary economics
Todorović, Jadranka Đurović; Tomić, Zoran; Denić, Nebojša; Petković, Dalibor; Kojić, Nenad; Petrović, Jelena; Petković, Biljana
2018-03-01
Inflation is a phenomenon which attracts the attention of many researchers. Inflation is not a recent date phenomenon, but it has existed ever since money emerged in world's first economies. With the development of economy and market, inflation developed as well. Today, even though there is a considerable number of research papers on inflation, there is still not enough knowledge about all factors which might cause inflation, and influence its evolution and dynamics. Regression analysis is a powerful statistical tool which might help analyse a vast amount of data on inflation, and provide an answer to the question about the factors of inflation, as well as the way those factors influence it. In this article Newton's Law of Cooling was applied to determine the long-term dynamics of monetary aggregates and inflation in Serbia and Croatia.
Newton, Goethe and the process of perception: an approach to design
Platts, Jim
2006-06-01
Whereas Newton traced a beam of white light passing through a prism and fanning out into the colours of the rainbow as it was refracted, Goethe looked through a prism and was concerned with understanding what his eye subjectively saw. He created a sequence of experiments which produced what appeared to be anomalies in Newton's theory. What he was carefully illustrating concerns limitations accepted when following a scientifically objective approach. Newton was concerned with the description of 'facts' derived from the analysis of observations. Goethe was concerned with the synthesis of meaning. He then went on to describe subjective techniques for training 'the mind's eye' to work efficiently in the subjective world of the imagination. Derided as 'not science', what he was actually describing is the skill which is central to creative design.
Optimization Tool for Direct Water Cooling System of High Power IGBT Modules
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Blaabjerg, Frede
2016-01-01
important issue for thermal design engineers. This paper aims to present a user friendly optimization tool for direct water cooling system of a high power module which enables the cooling system designer to identify the optimized solution depending on customer load profiles and available pump power. CFD...
Wang, Wu; Huang, Wei; Zhang, Yongjun
2018-03-01
The grid-integration of Photovoltaic-Storage System brings some undefined factors to the network. In order to make full use of the adjusting ability of Photovoltaic-Storage System (PSS), this paper puts forward a reactive power optimization model, which are used to construct the objective function based on power loss and the device adjusting cost, including energy storage adjusting cost. By using Cataclysmic Genetic Algorithm to solve this optimization problem, and comparing with other optimization method, the result proved that: the method of dynamic extended reactive power optimization this article puts forward, can enhance the effect of reactive power optimization, including reducing power loss and device adjusting cost, meanwhile, it gives consideration to the safety of voltage.
Power-limited low-thrust trajectory optimization with operation point detection
Chi, Zhemin; Li, Haiyang; Jiang, Fanghua; Li, Junfeng
2018-06-01
The power-limited solar electric propulsion system is considered more practical in mission design. An accurate mathematical model of the propulsion system, based on experimental data of the power generation system, is used in this paper. An indirect method is used to deal with the time-optimal and fuel-optimal control problems, in which the solar electric propulsion system is described using a finite number of operation points, which are characterized by different pairs of thruster input power. In order to guarantee the integral accuracy for the discrete power-limited problem, a power operation detection technique is embedded in the fourth-order Runge-Kutta algorithm with fixed step. Moreover, the logarithmic homotopy method and normalization technique are employed to overcome the difficulties caused by using indirect methods. Three numerical simulations with actual propulsion systems are given to substantiate the feasibility and efficiency of the proposed method.
System-level power optimization for real-time distributed embedded systems
Luo, Jiong
Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as
Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems
DEFF Research Database (Denmark)
Fang, Jiakun; Zeng, Qing; Ai, Xiaomeng
2018-01-01
. Simulation on the test case illustrates the success of the modelling and the beneficial roles of the power-to-gas are analyzed. The proposed model can be used in the decision support for both planning and operation of the coordinated natural gas and electrical power systems.......This work focuses on the optimal operation of the integrated gas and electrical power system with bi-directional energy conversion. Considering the different response times of the gas and power systems, the transient gas flow and steady- state power flow are combined to formulate the dynamic...... optimal energy flow in the integrated gas and power systems. With proper assumptions and simplifications, the problem is transformed into a single stage linear programming. And only a single stage linear programming is needed to obtain the optimal operation strategy for both gas and power systems...
Efficiency Optimization Methods in Low-Power High-Frequency Digitally Controlled SMPS
Directory of Open Access Journals (Sweden)
Aleksandar Prodić
2010-06-01
Full Text Available This paper gives a review of several power efficiency optimization techniques that are utilizing advantages of emerging digital control in high frequency switch-mode power supplies (SMPS, processing power from a fraction of watt to several hundreds of watts. Loss mechanisms in semiconductor components are briefly reviewed and the related principles of online efficiency optimization through power stage segmentation and gate voltage variation presented. Practical implementations of such methods utilizing load prediction or data extraction from a digital control loop are shown. The benefits of the presented efficiency methods are verified through experimental results, showing efficiency improvements, ranging from 2% to 30%,depending on the load conditions.
Problems of the power plant shield optimization
International Nuclear Information System (INIS)
Abagyan, A.A.; Dubinin, A.A.; Zhuravlev, V.I.; Kurachenko, Yu.A.; Petrov, Eh.E.
1981-01-01
General approaches to the solution of problems on the nuclear power plant radiation shield optimization are considered. The requirements to the shield parameters are formulated in a form of restrictions on a number of functionals, determined by the solution of γ quantum and neutron transport equations or dimensional and weight characteristics of shield components. Functional determined by weight-dimensional parameters (shield cost, mass and thickness) and functionals, determined by radiation fields (equivalent dose rate, produced by neutrons and γ quanta, activation functional, radiation functional, heat flux, integral heat flux in a particular part of the shield volume, total energy flux through a particular shield surface are considered. The following methods of numerical solution of simplified optimization problems are discussed: semiempirical methods using radiation transport physical leaks, numerical solution of approximate transport equations, numerical solution of transport equations for the simplest configurations making possible to decrease essentially a number of variables in the problem. The conclusion is drawn that the attained level of investigations on the problem of nuclear power plant shield optimization gives the possibility to pass on at present to the solution of problems with a more detailed account of the real shield operating conditions (shield temperature field account, its strength and other characteristics) [ru
One hundred years of pressure hydrostatics from Stevin to Newton
Chalmers, Alan F
2017-01-01
This monograph investigates the development of hydrostatics as a science. In the process, it sheds new light on the nature of science and its origins in the Scientific Revolution. Readers will come to see that the history of hydrostatics reveals subtle ways in which the science of the seventeenth century differed from previous periods. The key, the author argues, is the new insights into the concept of pressure that emerged during the Scientific Revolution. This came about due to contributions from such figures as Simon Stevin, Pascal, Boyle and Newton. The author compares their work with Galileo and Descartes, neither of whom grasped the need for a new conception of pressure. As a result, their contributions to hydrostatics were unproductive. The story ends with Newton insofar as his version of hydrostatics set the subject on its modern course. He articulated a technical notion of pressure that was up to the task. Newton compared the mathematical way in hydrostatics and the experimental way, and sided with t...
International Nuclear Information System (INIS)
Sechilariu, Manuela; Wang, Bao Chao; Locment, Fabrice; Jouglet, Antoine
2014-01-01
Highlights: • DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control. • Power balancing following power flow optimization while providing interface for smart grid communication. • Optimization under constraints: storage capability, grid power limitations, grid time-of-use pricing. • Experimental validation of DC microgrid power flow optimization by multi-layer supervision control. • DC microgrid able to perform peak shaving, to avoid undesired injection, and to make full use of locally energy. - Abstract: Urban areas have great potential for photovoltaic (PV) generation, however, direct PV power injection has limitations for high level PV penetration. It induces additional regulations in grid power balancing because of lacking abilities of responding to grid issues such as reducing grid peak consumption or avoiding undesired injections. The smart grid implementation, which is designed to meet these requirements, is facilitated by microgrids development. This paper presents a DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control which handles instantaneous power balancing following the power flow optimization while providing interface for smart grid communication. The optimization takes into account forecast of PV power production and load power demand, while satisfying constraints such as storage capability, grid power limitations, grid time-of-use pricing and grid peak hour. Optimization, whose efficiency is related to the prediction accuracy, is carried out by mixed integer linear programming. Experimental results show that the proposed microgrid structure is able to control the power flow at near optimum cost and ensures self-correcting capability. It can respond to issues of performing peak shaving, avoiding undesired injection, and making full use of locally produced energy with respect to rigid element constraints
Newton Decatur AL water sample polyfluor compound discovery
U.S. Environmental Protection Agency — All the pertinent information for recreation of the published (hopefully) tables and figures. This dataset is associated with the following publication: Newton, S.,...
Primal Interior-Point Method for Large Sparse Minimax Optimization
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan
2009-01-01
Roč. 45, č. 5 (2009), s. 841-864 ISSN 0023-5954 R&D Projects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : unconstrained optimization * large-scale optimization * minimax optimization * nonsmooth optimization * interior-point methods * modified Newton methods * variable metric methods * computational experiments Subject RIV: BA - General Mathematics Impact factor: 0.445, year: 2009 http://dml.cz/handle/10338.dmlcz/140034
Multiobjective Optimization Model for Wind Power Allocation
Directory of Open Access Journals (Sweden)
Juan Alemany
2017-01-01
Full Text Available There is an increasing need for the injection to the grid of renewable energy; therefore, to evaluate the optimal location of new renewable generation is an important task. The primary purpose of this work is to develop a multiobjective optimization model that permits finding multiple trade-off solutions for the location of new wind power resources. It is based on the augmented ε-constrained methodology. Two competitive objectives are considered: maximization of preexisting energy injection and maximization of new wind energy injection, both embedded, in the maximization of load supply. The results show that the location of new renewable generation units affects considerably the transmission network flows, the load supply, and the preexisting energy injection. Moreover, there are diverse opportunities to benefit the preexisting generation, contrarily to the expected effect where renewable generation displaces conventional power. The proposed methodology produces a diverse range of equivalent solutions, expanding and enriching the horizon of options and giving flexibility to the decision-making process.
Ecological optimization for generalized irreversible Carnot refrigerators
International Nuclear Information System (INIS)
Chen Lingen; Zhu Xiaoqin; Sun Fengrui; Wu Chih
2005-01-01
The optimal ecological performance of a Newton's law generalized irreversible Carnot refrigerator with the losses of heat resistance, heat leakage and internal irreversibility is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the exergy output rate and exergy loss rate (entropy production rate) of the refrigerator. Numerical examples are given to show the effects of heat leakage and internal irreversibility on the optimal performance of generalized irreversible refrigerators
Directory of Open Access Journals (Sweden)
Agung Wahyu Nurcahyo
2017-07-01
Full Text Available The purpose of this study was to describe the increase in problem-solving abilities Newton's laws of motion and students' perceptions of cooperative problem solving (CPS learning. Analysis of the data is based on the student's written answers to the five problems, the results of questionnaires and interviews. This study concluded that: (1 learning CPS make a strong impact (d-effect size = 1.81 to increase problem-solving ability of students Newton's laws of motion, (2 cooperation in the learning group CPS makes the problem easier to solve and misconceptions can be corrected. Tujuan penelitian ini adalah mendeskripsikan peningkatan kemampuan pemecahan masalah hukum gerak Newton, kesulitan yang dialami, dan persepsi mahasiswa terhadap pembelajaran cooperative problem solving (CPS. Analisa data didasarkan pada jawaban tertulis mahasiswa terhadap lima permasalahan, hasil angket dan wawancara. Penelitian ini berkesimpulan bahwa (1 pembelajaran CPS memberikan dampak yang kuat (d-effect size=1,81 terhadap peningkatan kemampuan pemecahan masalah hukum gerak Newton mahasiswa dan (2 kerjasama kelompok dalam pembelajaran CPS membuat permasalahan lebih mudah dipecahkan dan miskonsepsi dapat diperbaiki.
A Fast Newton-Shamanskii Iteration for a Matrix Equation Arising from M/G/1-Type Markov Chains
Directory of Open Access Journals (Sweden)
Pei-Chang Guo
2017-01-01
Full Text Available For the nonlinear matrix equations arising in the analysis of M/G/1-type and GI/M/1-type Markov chains, the minimal nonnegative solution G or R can be found by Newton-like methods. We prove monotone convergence results for the Newton-Shamanskii iteration for this class of equations. Starting with zero initial guess or some other suitable initial guess, the Newton-Shamanskii iteration provides a monotonically increasing sequence of nonnegative matrices converging to the minimal nonnegative solution. A Schur decomposition method is used to accelerate the Newton-Shamanskii iteration. Numerical examples illustrate the effectiveness of the Newton-Shamanskii iteration.
Operation Characteristics Optimization of Low Power Three-Phase Asynchronous Motors
Directory of Open Access Journals (Sweden)
VLAD, I.
2014-02-01
Full Text Available Most published papers on low power asynchronous motors were aimed to achieve better operational performances in different operating conditions. The optimal design of the general-purpose motors requires searching and selecting an electric machine to meet minimum operating costs criterion and certain customer imposed restrictive conditions. In this paper, there are many significant simulations providing qualitative and quantitative information on reducing active and reactive energy losses in motors, and on parameters and constructive solution. The optimization study applied the minimal operating costs criterion, and it took into account the starting restrictive conditions. Thirteen variables regarding electromagnetic stresses and main constructive dimensions were considered. The operating costs of the optimized motor decreased with 25.6%, as compared to the existing solution. This paper can be a practical and theoretical support for the development and implementation of modern design methods, based on theoretical and experimental study of stationary and transient processes in low power motors, to increase efficiency and power factor.
Optimal sizing method for stand-alone photovoltaic power systems
Energy Technology Data Exchange (ETDEWEB)
Groumpos, P P; Papageorgiou, G
1987-01-01
The total life-cycle cost of stand-alone photovoltaic (SAPV) power systems is mathematically formulated. A new optimal sizing algorithm for the solar array and battery capacity is developed. The optimum value of a balancing parameter, M, for the optimal sizing of SAPV system components is derived. The proposed optimal sizing algorithm is used in an illustrative example, where a more economical life-cycle cost has bene obtained. The question of cost versus reliability is briefly discussed.
Directory of Open Access Journals (Sweden)
Wei Wang
2016-03-01
Full Text Available Overhead high voltage power line (HVPL online monitoring equipment is playing an increasingly important role in smart grids, but the power supply is an obstacle to such systems’ stable and safe operation, so in this work a hybrid wireless power supply system, integrated with inductive energy harvesting and wireless power transmitting, is proposed. The energy harvesting device extracts energy from the HVPL and transfers that from the power line to monitoring equipment on transmission towers by transmitting and receiving coils, which are in a magnetically coupled resonant configuration. In this paper, the optimization design of online energy harvesting devices is analyzed emphatically by taking both HVPL insulation distance and wireless power supply efficiency into account. It is found that essential parameters contributing to more extracted energy include large core inner radius, core radial thickness, core height and small core gap within the threshold constraints. In addition, there is an optimal secondary coil turn that can maximize extracted energy when other parameters remain fixed. A simple and flexible control strategy is then introduced to limit power fluctuations caused by current variations. The optimization methods are finally verified experimentally.
Application of Quasi-Newton methods to the analysis of axisymmetric pressure vessels
International Nuclear Information System (INIS)
Parisi, D.A.C.
1987-01-01
This work studies the application of Quasi-Newton techniques to material nonlinear analysis of axisymmetrical pressure vessels by the finite element method. In the formulation the material bahavior is described by an isotropic elastoplastic model with strain hardening. The continum is discretized through triangular finite elements of axisymmetrical solids with linear interpolation of the displacement field. The incremental governing equations are derived by the virtual work. The solution of the system of simultaneous nonlinear equations is solved iteratively by the Quasi-Newton method employing the BFGS update. The numerical performance of the proposed method is compared with the Newton-Raphson method and some of its variants through some selected examples. (author) [pt
Directory of Open Access Journals (Sweden)
Yongpeng Shen
2016-02-01
Full Text Available Auxiliary power units (APUs are widely used for electric power generation in various types of electric vehicles, improvements in fuel economy and emissions of these vehicles directly depend on the operating point of the APUs. In order to balance the conflicting goals of fuel consumption and emissions reduction in the process of operating point choice, the APU operating point optimization problem is formulated as a constrained multi-objective optimization problem (CMOP firstly. The four competing objectives of this CMOP are fuel-electricity conversion cost, hydrocarbon (HC emissions, carbon monoxide (CO emissions and nitric oxide (NO x emissions. Then, the multi-objective particle swarm optimization (MOPSO algorithm and weighted metric decision making method are employed to solve the APU operating point multi-objective optimization model. Finally, bench experiments under New European driving cycle (NEDC, Federal test procedure (FTP and high way fuel economy test (HWFET driving cycles show that, compared with the results of the traditional fuel consumption single-objective optimization approach, the proposed multi-objective optimization approach shows significant improvements in emissions performance, at the expense of a slight drop in fuel efficiency.
The Method of Optimization of Hydropower Plant Performance for Use in Group Active Power Controller
Directory of Open Access Journals (Sweden)
Glazyrin G.V.
2017-04-01
Full Text Available The problem of optimization of hydropower plant performance is considered in this paper. A new method of calculation of optimal load-sharing is proposed. The method is based on application of incremental water flow curves representing relationship between the per unit increase of water flow and active power. The optimal load-sharing is obtained by solving the nonlinear equation governing the balance of total active power and the station power set point with the same specific increase of water flow for all turbines. Unlike traditional optimization techniques, the solution of the equation is obtained without taking into account unit safe operating zones. Instead, if calculated active power of a unit violates the permissible power range, load-sharing is recalculated for the remaining generating units. Thus, optimal load-sharing algorithm suitable for digital control systems is developed. The proposed algorithm is implemented in group active power controller in Novosibirsk hydropower plant. An analysis of operation of group active power controller proves that the application of the proposed method allows obtaining optimal load-sharing at each control step with sufficient precision.
Directory of Open Access Journals (Sweden)
Akanksha Mishra
2017-05-01
Full Text Available In a deregulated electricity market it may at times become difficult to dispatch all the required power that is scheduled to flow due to congestion in transmission lines. An Interline Power Flow Controller (IPFC can be used to reduce the system loss and power flow in the heavily loaded line, improve stability and loadability of the system. This paper proposes a Disparity Line Utilization Factor for the optimal placement and Gravitational Search algorithm based optimal tuning of IPFC to control the congestion in transmission lines. DLUF ranks the transmission lines in terms of relative line congestion. The IPFC is accordingly placed in the most congested and the least congested line connected to the same bus. Optimal sizing of IPFC is carried using Gravitational Search algorithm. A multi-objective function has been chosen for tuning the parameters of the IPFC. The proposed method is implemented on an IEEE-30 bus test system. Graphical representations have been included in the paper showing reduction in LUF of the transmission lines after the placement of an IPFC. A reduction in active power and reactive power loss of the system by about 6% is observed after an optimally tuned IPFC has been included in the power system. The effectiveness of the proposed tuning method has also been shown in the paper through the reduction in the values of the objective functions.
ANN-GA based optimization of a high ash coal-fired supercritical power plant
International Nuclear Information System (INIS)
Suresh, M.V.J.J.; Reddy, K.S.; Kolar, Ajit Kumar
2011-01-01
Highlights: → Neuro-genetic power plant optimization is found to be an efficient methodology. → Advantage of neuro-genetic algorithm is the possibility of on-line optimization. → Exergy loss in combustor indicates the effect of coal composition on efficiency. -- Abstract: The efficiency of coal-fired power plant depends on various operating parameters such as main steam/reheat steam pressures and temperatures, turbine extraction pressures, and excess air ratio for a given fuel. However, simultaneous optimization of all these operating parameters to achieve the maximum plant efficiency is a challenging task. This study deals with the coupled ANN and GA based (neuro-genetic) optimization of a high ash coal-fired supercritical power plant in Indian climatic condition to determine the maximum possible plant efficiency. The power plant simulation data obtained from a flow-sheet program, 'Cycle-Tempo' is used to train the artificial neural network (ANN) to predict the energy input through fuel (coal). The optimum set of various operating parameters that result in the minimum energy input to the power plant is then determined by coupling the trained ANN model as a fitness function with the genetic algorithm (GA). A unit size of 800 MWe currently under development in India is considered to carry out the thermodynamic analysis based on energy and exergy. Apart from optimizing the design parameters, the developed model can also be used for on-line optimization when quick response is required. Furthermore, the effect of various coals on the thermodynamic performance of the optimized power plant is also determined.
Magnetic Levitation and Newton's Third Law
Aguilar, Horacio Munguia
2007-01-01
Newton's third law is often misunderstood by students and even their professors, as has already been pointed out in the literature. Application of the law in the context of electromagnetism can be especially problematic, because the idea that the forces of "action" and "reaction" are equal and opposite independent of the medium through which they…
Isaac Newton and the Royal Mint
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 12. Isaac Newton and the Royal Mint. Biman Nath. Article-in-a-Box Volume 11 Issue 12 December 2006 pp 6-7. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/011/12/0006-0007 ...
Multi-objective superstructure-free synthesis and optimization of thermal power plants
International Nuclear Information System (INIS)
Wang, Ligang; Lampe, Matthias; Voll, Philip; Yang, Yongping; Bardow, André
2016-01-01
The merits of superstructure-free synthesis are demonstrated for bi-objective design of thermal power plants. The design of thermal power plants is complex and thus best solved by optimization. Common optimization methods require specification of a superstructure which becomes a tedious and error-prone task for complex systems. Superstructure specification is avoided by the presented superstructure-free approach, which is shown to successfully solve the design task yielding a high-quality Pareto front of promising structural alternatives. The economic objective function avoids introducing infinite numbers of units (e.g., turbine, reheater and feedwater preheater) as favored by pure thermodynamic optimization. The number of feasible solutions found per number of mutation tries is still high even after many generations but declines after introducing highly-nonlinear cost functions leading to challenging MINLP problems. The identified Pareto-optimal solutions tend to employ more units than found in modern power plants indicating the need for cost functions to reflect current industrial practice. In summary, the multi-objective superstructure-free synthesis framework is a robust approach for very complex problems in the synthesis of thermal power plants. - Highlights: • A generalized multi-objective superstructure-free synthesis framework for thermal power plants is presented. • The superstructure-free synthesis framework is comprehensively evaluated by complex bi-objective synthesis problems. • The proposed framework is effective to explore the structural design space even for complex problems.
The importance of being equivalent: Newton's two models of one-body motion
Pourciau, Bruce
2004-05-01
As an undergraduate at Cambridge, Newton entered into his "Waste Book" an assumption that we have named the Equivalence Assumption (The Younger): "If a body move progressively in some crooked line [about a center of motion] ..., [then this] crooked line may bee conceived to consist of an infinite number of streight lines. Or else in any point of the croked line the motion may bee conceived to be on in the tangent". In this assumption, Newton somewhat imprecisely describes two mathematical models, a "polygonal limit model" and a "tangent deflected model", for "one-body motion", that is, for the motion of a "body in orbit about a fixed center", and then claims that these two models are equivalent. In the first part of this paper, we study the Principia to determine how the elder Newton would more carefully describe the polygonal limit and tangent deflected models. From these more careful descriptions, we then create Equivalence Assumption (The Elder), a precise interpretation of Equivalence Assumption (The Younger) as it might have been restated by Newton, after say 1687. We then review certain portions of the Waste Book and the Principia to make the case that, although Newton never restates nor even alludes to the Equivalence Assumption after his youthful Waste Book entry, still the polygonal limit and tangent deflected models, as well as an unspoken belief in their equivalence, infuse Newton's work on orbital motion. In particular, we show that the persuasiveness of the argument for the Area Property in Proposition 1 of the Principia depends crucially on the validity of Equivalence Assumption (The Elder). After this case is made, we present the mathematical analysis required to establish the validity of the Equivalence Assumption (The Elder). Finally, to illustrate the fundamental nature of the resulting theorem, the Equivalence Theorem as we call it, we present three significant applications: we use the Equivalence Theorem first to clarify and resolve questions
A comparison of different quasi-newton acceleration methods for partitioned multi-physics codes
CSIR Research Space (South Africa)
Haelterman, R
2018-02-01
Full Text Available & structures, 88/7, pp. 446–457 (2010) 8. J.E. Dennis, J.J. More´, Quasi-Newton methods: motivation and theory. SIAM Rev. 19, pp. 46–89 (1977) A Comparison of Quasi-Newton Acceleration Methods 15 9. J.E. Dennis, R.B. Schnabel, Least Change Secant Updates... Dois Metodos de Broyden. Mat. Apl. Comput. 1/2, pp. 135– 143 (1982) 25. J.M. Martinez, A quasi-Newton method with modification of one column per iteration. Com- puting 33, pp. 353–362 (1984) 26. J.M. Martinez, M.C. Zambaldi, An Inverse Column...
Day-ahead optimal dispatch for wind integrated power system considering zonal reserve requirements
International Nuclear Information System (INIS)
Liu, Fan; Bie, Zhaohong; Liu, Shiyu; Ding, Tao
2017-01-01
Highlights: • Analyzing zonal reserve requirements for wind integrated power system. • Modeling day-ahead optimal dispatch solved by chance constrained programming theory. • Determining optimal zonal reserve demand with minimum confidence interval. • Analyzing numerical results on test and large-scale real-life power systems. - Abstract: Large-scale integration of renewable power presents a great challenge for day-ahead dispatch to manage renewable resources while provide available reserve for system security. Considering zonal reserve is an effective way to ensure reserve deliverability when network congested, a random day-ahead dispatch optimization of wind integrated power system for a least operational cost is modeled including zonal reserve requirements and N − 1 security constraints. The random model is transformed into a deterministic one based on the theory of chance constrained programming and a determination method of optimal zonal reserve demand is proposed using the minimum confidence interval. After solving the deterministic model, the stochastic simulation is conducted to verify the validity of solution. Numerical tests and results on the IEEE 39 bus system and a large-scale real-life power system demonstrate the optimal day-ahead dispatch scheme is available and the proposed method is effective for improving reserve deliverability and reducing load shedding after large-capacity power outage.
Techno-economic optimization for the design of solar chimney power plants
International Nuclear Information System (INIS)
Ali, Babkir
2017-01-01
Highlights: • Chimney height and collector area of different designs were optimized. • Simple actual and minimum payback periods were developed. • Comparative assessment was conducted for different designs configuration. • Effects of uncertain parameters on the payback period were studied. - Abstract: This paper aims to propose a methodology for optimization of solar chimney power plants taking into account the techno-economic parameters. The indicator used for optimization is the comparison between the actual achieved simple payback period for the design and the minimum possible (optimum) simple payback period as a reference. An optimization model was executed for different twelve designs in the range 5–200 MW to cover reinforced concrete chimney, sloped collector, and floating chimney. The height of the chimney was optimized and the associated collector area was calculated accordingly. Relationships between payback periods, electricity price, and the peak power capacity of each power plant were developed. The resulted payback periods for the floating chimney power plants were the shortest compared to the other studied designs. For a solar chimney power plant with 100 MW at electricity price 0.10 USD/kWh, the simple payback period for the reference case was 4.29 years for floating chimney design compared to 23.47 and 16.88 years for reinforced concrete chimney and sloped collector design, respectively. After design optimization for 100 MW power plant of each of reinforced concrete, sloped collector, and floating chimney, a save of 19.63, 2.22, and 2.24 million USD, respectively from the initial cost of the reference case is achieved. Sensitivity analysis was conducted in this study to evaluate the impacts of varied running cost, solar radiation, and electricity price on the payback periods of solar chimney power plant. Floating chimney design is still performing after applying the highest ratio of annual running cost to the annual revenue. The
Optimized Envelope Tracking Power Supply for Tetra2 Base Station RF Power Amplifier
DEFF Research Database (Denmark)
Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.
2008-01-01
An ultra-fast tracking power supply (UFTPS) for envelope tracking in a 50kHz 64-QAM Tetra2 base station power amplification system is demonstrated. A simple method for optimizing the step response of the PID+PD sliding-mode control system is presented and demonstrated, along with a PLL-based scheme...... application. Also demonstrated is the effect of non-zero UFTPS output impedance on envelope tracking performance. At 13W average (156W peak) RF output, a reduction of DC input power consumption from 93W (14% efficiency) to 54W (24% efficiency) is obtained by moving from a fixed RF power amplifier supply...
Twisted Acceleration-Enlarged Newton-Hooke Hopf Algebras
International Nuclear Information System (INIS)
Daszkiewicz, M.
2010-01-01
Ten Abelian twist deformations of acceleration-enlarged Newton-Hooke Hopf algebra are considered. The corresponding quantum space-times are derived as well. It is demonstrated that their contraction limit τ → ∞ leads to the new twisted acceleration-enlarged Galilei spaces. (author)
International Nuclear Information System (INIS)
Noori Khajavi, M.; Menhaj, M.B.; Ghofrani, M.B.
2000-01-01
Nuclear power reactors are, in nature nonlinear and time varying. These characteristics must be considered, if large power variations occur in their working regime. In this paper a robust optimal self-tuning regulator for regulating the power of a nuclear reactor has been designed and simulated. The proposed controller is capable of regulating power levels in a wide power range (10% to 100% power levels). The controller achieves a fast and good transient response. The simulation results show that the proposed controller outperforms the fixed optimal control recently cited in the literature for nuclear power plants
Optimal scheduling of biocide dosing for seawater-cooled power and desalination plants
Mahfouz, Abdullah Bin
2011-02-13
Thermal desalination systems are typically integrated with power plants to exploit the excess heat resulting from the power-generation units. Using seawater in cooling the power plant and the desalination system is a common practice in many parts of the world where there is a shortage of freshwater. Biofouling is one of the major problems associated with the usage of seawater in cooling systems. Because of the dynamic variation in the power and water demands as well as the changes in the characteristics of seawater and the process, there is a need to develop an optimal policy for scheduling biocide usage and cleaning maintenance of the heat exchangers. The objective of this article is to introduce a systematic procedure for the optimization of scheduling the dosing of biocide and dechlorination chemicals as well as cleaning maintenance for a power production/thermal desalination plant. A multi-period optimization formulation is developed and solved to determine: the optimal levels of dosing and dechlorination chemicals; the timing of maintenance to clean the heat-exchange surfaces; and the dynamic dependence of the biofilm growth on the applied doses, the seawater-biocide chemistry, the process conditions, and seawater characteristics for each time period. The technical, economic, and environmental considerations of the system are accounted for. A case study is solved to elucidate the applicability of the developed optimization approach. © 2011 Springer-Verlag.
The cooling law and the search for a good temperature scale, from Newton to Dalton
International Nuclear Information System (INIS)
Besson, Ugo
2011-01-01
The research on the cooling law began with an article by Newton published in 1701. Later, many studies were performed by other scientists confirming or confuting Newton's law. This paper presents a description and an interpretation of Newton's article, provides a short overview of the research conducted on the topic during the 18th century, and discusses the relationships between the research on cooling laws and the definition of a temperature scale, as it was treated in Newton's article and in the work of Dalton, including Dalton's search for the absolute zero of temperature. It is shown that these scientists considered the exponential cooling law as a fundamental principle rather than a conjecture to be tested by means of experiments. The faith in the simplicity of natural laws and the spontaneous idea of proportionality between cause and effect seem to have strongly influenced Newton and Dalton. The topic is developed in a way that can be suitable for both undergraduate students and general physicists.
Newton solution of inviscid and viscous problems
International Nuclear Information System (INIS)
Venkatakrishnan, V.
1988-01-01
The application of Newton iteration to inviscid and viscous airfoil calculations is examined. Spatial discretization is performed using upwind differences with split fluxes. The system of linear equations which arises as a result of linearization in time is solved directly using either a banded matrix solver or a sparse matrix solver. In the latter case, the solver is used in conjunction with the nested dissection strategy, whose implementation for airfoil calculations is discussed. The boundary conditions are also implemented in a fully implicit manner, thus yielding quadratic convergence. Complexities such as the ordering of cell nodes and the use of a far field vortex to correct freestream for a lifting airfoil are addressed. Various methods to accelerate convergence and improve computational efficiency while using Newton iteration are discussed. Results are presented for inviscid, transonic nonlifting and lifting airfoils and also for laminar viscous cases. 17 references
Directory of Open Access Journals (Sweden)
Huan-huan Li
2015-01-01
Full Text Available Wind power has the characteristics of randomness and intermittence, which influences power system safety and stable operation. To alleviate the effect of wind power grid connection and improve power system’s wind power consumptive capability, this paper took emission trading and energy storage system into consideration and built an optimization model for thermal-wind power system and energy storage systems collaborative scheduling. A simulation based on 10 thermal units and wind farms with 2800 MW installed capacity verified the correctness of the models put forward by this paper. According to the simulation results, the introduction of carbon emission trading can improve wind power consumptive capability and cut down the average coal consumption per unit of power. The introduction of energy storage system can smooth wind power output curve and suppress power fluctuations. The optimization effects achieve the best when both of carbon emission trading and energy storage system work at the same time.
Heuristic Optimization for the Discrete Virtual Power Plant Dispatch Problem
DEFF Research Database (Denmark)
Petersen, Mette Kirschmeyer; Hansen, Lars Henrik; Bendtsen, Jan Dimon
2014-01-01
We consider a Virtual Power Plant, which is given the task of dispatching a fluctuating power supply to a portfolio of flexible consumers. The flexible consumers are modeled as discrete batch processes, and the associated optimization problem is denoted the Discrete Virtual Power Plant Dispatch...... Problem. First NP-completeness of the Discrete Virtual Power Plant Dispatch Problem is proved formally. We then proceed to develop tailored versions of the meta-heuristic algorithms Hill Climber and Greedy Randomized Adaptive Search Procedure (GRASP). The algorithms are tuned and tested on portfolios...... of varying sizes. We find that all the tailored algorithms perform satisfactorily in the sense that they are able to find sub-optimal, but usable, solutions to very large problems (on the order of 10 5 units) at computation times on the scale of just 10 seconds, which is far beyond the capabilities...
Modeling and optimization of geothermal power plants using the binary fluid cycle
Energy Technology Data Exchange (ETDEWEB)
Walter, R.A.
1976-09-01
A computer simulation of a binary fluid cycle power plant for use with geothermal energy sources, and the subsequent optimization of this power plant type over a range of geothermal source conditions are described. The optimization technique employed for this analysis was based upon the principle of maximum use of geothermal energy.
Directory of Open Access Journals (Sweden)
E. A. Venter
1964-03-01
Full Text Available Die geweldige oplewing van die Christelike wetenskaps- gedagte in ons geeslose tyd, is ongetwyfeld ’n haas onverklaar- bare verskynsel. Dwarsdeur die eeue het Christene ook wetenskap beoefen saam met ongelowiges, maar dit was eers in ons leeftyd dat die principia van die Christelike religie ook vrugbaar gemaak is vir die wetenskapsbeoefening. In hierdie verband sal die name van Dooyeweerd, Vollenhoven, Stoker e.a. steeds met eer vermeld word. Natuurlik het belydende Christene ook voorheen wel deeglik saamgewerk aan die gebou van die wetenskap. Die intieme verband tussen religie, wysbegeerte en wetenskaps beoefening is toe egter nog nie suiwer ingesien nie. Uit hier die tydperk dateer die arbeid van sir Isaac Newton.
An experimental test of Newton's law of gravitation for small accelerations
Energy Technology Data Exchange (ETDEWEB)
Schubert, Sven
2011-10-15
The experiment presented in this thesis has been designed to test Newton's law of gravitation in the limit of small accelerations caused by weak gravitational forces. It is located at DESY, Hamburg, and is a modification of an experiment that was carried out in Wuppertal, Germany, until 2002 in order to measure the gravitational constant G. The idea of testing Newton's law in the case of small accelerations emerged from the question whether the flat rotation curves of spiral galaxies can be traced back to Dark Matter or to a law of gravitation that deviates from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics). The core of this experiment is a microwave resonator which is formed by two spherical concave mirrors that are suspended as pendulums. Masses between 1 and 9 kg symmetrically change their distance to the mirrors from far to near positions. Due to the increased gravitational force the mirrors are pulled apart and the length of the resonator increases. This causes a shift of the resonance frequency which can be translated into a shift of the mirror distance. The small masses are sources of weak gravitational forces and cause accelerations on the mirrors of about 10{sup -10} m/s{sup 2}. These forces are comparable to those between stars on cosmic scales and the accelerations are in the vicinity of the characteristic acceleration of MOND a{sub 0} {approx} 1.2.10{sup -10} m/s{sup 2}, where deviations from Newton's law are expected. Thus Newton's law could be directly checked for correctness under these conditions. First measurements show that due to the sensitivity of this experiment many systematic influences have to be accounted for in order to get consistent results. Newton's law has been confirmed with an accuracy of 3%. MOND has also been checked. In order to be able to distinguish Newton from MOND with other interpolation functions the accuracy of the experiment has to be improved. (orig.)
De las Leyes de Newton a la Guerra de Troya
Plastino, Ángel Ricardo
2014-01-01
La publicación en 1687 del libro Philosophia Naturalis Principia Mathematica por Issac Newton marcó un importante hito en la historia del pensamiento humano. Sobre la base de tres sencillos principios de movimiento y de la ley de gravitación universal, y mediante razonamientos matemáticos, Newton logró explicar y unificar dentro de un esquema conceptual coherente una gran cantidad de fenómenos naturales: el movimiento de los planetas, las mareas, la forma de la Tierra, entre otros. Más aún, N...
Optimized dispatch in a first-principles concentrating solar power production model
Energy Technology Data Exchange (ETDEWEB)
Wagner, Michael J.; Newman, Alexandra M.; Hamilton, William T.; Braun, Robert J.
2017-10-01
Concentrating solar power towers, which include a steam-Rankine cycle with molten salt thermal energy storage, is an emerging technology whose maximum effectiveness relies on an optimal operational and dispatch policy. Given parameters such as start-up and shut-down penalties, expected electricity price profiles, solar availability, and system interoperability requirements, this paper seeks a profit-maximizing solution that determines start-up and shut-down times for the power cycle and solar receiver, and the times at which to dispatch stored and instantaneous quantities of energy over a 48-h horizon at hourly fidelity. The mixed-integer linear program (MIP) is subject to constraints including: (i) minimum and maximum rates of start-up and shut-down, (ii) energy balance, including energetic state of the system as a whole and its components, (iii) logical rules governing the operational modes of the power cycle and solar receiver, and (iv) operational consistency between time periods. The novelty in this work lies in the successful integration of a dispatch optimization model into a detailed techno-economic analysis tool, specifically, the National Renewable Energy Laboratory's System Advisor Model (SAM). The MIP produces an optimized operating strategy, historically determined via a heuristic. Using several market electricity pricing profiles, we present comparative results for a system with and without dispatch optimization, indicating that dispatch optimization can improve plant profitability by 5-20% and thereby alter the economics of concentrating solar power technology. While we examine a molten salt power tower system, this analysis is equally applicable to the more mature concentrating solar parabolic trough system with thermal energy storage.
Optimization of a single stage inverter with one cycle control for photovoltaic power generation
Energy Technology Data Exchange (ETDEWEB)
Egiziano, L.; Femia, N.; Granozio, D.; Petrone, G.; Spagnuolo, G. [Salermo Univ., Salermo (Italy); Vitelli, M. [Seconda Univ. di Napoli, Napoli (Italy)
2006-07-01
An optimized one-cycle control (OCC) for maximum power point tracking and power factor correction in grid-connected photovoltaic (PV) applications was described. OCC is a nonlinear control technique that rejects line perturbations and allows both output power factor co-reaction and tracking of input PV fields. An OCC system was analyzed in order to select optimal design parameters. Parameters were refined through the selection of suitable design constraints. A stochastic search was then performed. Criteria were then developed to distinguish appropriate design parameters for the optimized OCC. The optimization was based on advanced heuristic techniques for non-linear constrained optimization. Performance indices were calculated for each feasible set of parameters. A customized perturb and observe control was then applied to the single-stage inverter. Results of the optimization process were validated by a series of time-domain simulations conducted under heavy, varying irradiance conditions. Results of the simulations showed that the optimized controllers showed improved performance in terms of power drawn from the PV field. 7 refs., 1 tab., 5 figs.
Miao, Zhidong; Liu, Dake; Gong, Chen
2017-10-01
Inductive wireless power transfer (IWPT) is a promising power technology for implantable biomedical devices, where the power consumption is low and the efficiency is the most important consideration. In this paper, we propose an optimization method of impedance matching networks (IMN) to maximize the IWPT efficiency. The IMN at the load side is designed to achieve the optimal load, and the IMN at the source side is designed to deliver the required amount of power (no-more-no-less) from the power source to the load. The theoretical analyses and design procedure are given. An IWPT system for an implantable glaucoma therapeutic prototype is designed as an example. Compared with the efficiency of the resonant IWPT system, the efficiency of our optimized system increases with a factor of 1.73. Besides, the efficiency of our optimized IWPT system is 1.97 times higher than that of the IWPT system optimized by the traditional maximum power transfer method. All the discussions indicate that the optimization method proposed in this paper could achieve a high efficiency and long working time when the system is powered by a battery.
Directory of Open Access Journals (Sweden)
Jun Yang
2015-08-01
Full Text Available The carbon emissions trading market and direct power purchases by large consumers are two promising directions of power system development. To trace the carbon emission flow in the power grid, the theory of carbon emission flow is improved by allocating power loss to the load side. Based on the improved carbon emission flow theory, an optimal dispatch model is proposed to optimize the cost of both large consumers and the power grid, which will benefit from the carbon emissions trading market. Moreover, to better simulate reality, the direct purchase of power by large consumers is also considered in this paper. The OPF (optimal power flow method is applied to solve the problem. To evaluate our proposed optimal dispatch strategy, an IEEE 30-bus system is used to test the performance. The effects of the price of carbon emissions and the price of electricity from normal generators and low-carbon generators with regards to the optimal dispatch are analyzed. The simulation results indicate that the proposed strategy can significantly reduce both the operation cost of the power grid and the power utilization cost of large consumers.
Evolutionary Computing for Intelligent Power System Optimization and Control
DEFF Research Database (Denmark)
This new book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization the...... theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems....
Directory of Open Access Journals (Sweden)
Qiang Sun
2017-01-01
Full Text Available We focus on the power consumption problem for a downlink multiuser small-cell network (SCN considering both the quality of service (QoS and power constraints. First based on a practical power consumption model taking into account both the dynamic transmit power and static circuit power, we formulate and then transform the power consumption optimization problem into a convex problem by using semidefinite relaxation (SDR technique and obtain the optimal solution by the CVX tool. We further note that the SDR-based solution becomes infeasible for realistic implementation due to its heavy backhaul burden and computational complexity. To this end, we propose an alternative suboptimal algorithm which has low implementation overhead and complexity, based on minimum mean square error (MMSE precoding. Furthermore, we propose a distributed correlation-based antenna selection (DCAS algorithm combining with our optimization algorithms to reduce the static circuit power consumption for the SCN. Finally, simulation results demonstrate that our proposed suboptimal algorithm is very effective on power consumption minimization, with significantly reduced backhaul burden and computational complexity. Moreover, we show that our optimization algorithms with DCAS have less power consumption than the other benchmark algorithms.
A Wind Farm Controller for Load and Power Optimization in a Farm
DEFF Research Database (Denmark)
Soleimanzadeh, Maryam; Brand, Arno; Wisniewski, Rafal
2011-01-01
This paper describes the design procedure of an optimal wind farm controller. The controller optimizes the structural load and power production simultaneously, on the basis of an analytical wind farm model. The farm model delivers maps of wind, loads and energy in the wind farm. Moreover, the model...... computes the wind speed at the turbines, turbine bending moments and aerodynamic power and torque. The optimal control problem is formulated based on the model for two different wind directions. The controller determines the reference signals for each individual wind turbine controller in two scenarios...... based on low and high wind speed. In low wind speed, the reference signals for rotor speed are adjusted, taking the trade-off between power maximization and load minimization into account. In high wind speed, the power and pitch angle reference signals are determined while structural loads are minimized....
Preconditioning for partial differential equation constrained optimization with control constraints
Stoll, Martin
2011-10-18
Optimal control problems with partial differential equations play an important role in many applications. The inclusion of bound constraints for the control poses a significant additional challenge for optimization methods. In this paper, we propose preconditioners for the saddle point problems that arise when a primal-dual active set method is used. We also show for this method that the same saddle point system can be derived when the method is considered as a semismooth Newton method. In addition, the projected gradient method can be employed to solve optimization problems with simple bounds, and we discuss the efficient solution of the linear systems in question. In the case when an acceleration technique is employed for the projected gradient method, this again yields a semismooth Newton method that is equivalent to the primal-dual active set method. We also consider the Moreau-Yosida regularization method for control constraints and efficient preconditioners for this technique. Numerical results illustrate the competitiveness of these approaches. © 2011 John Wiley & Sons, Ltd.
Preconditioning for partial differential equation constrained optimization with control constraints
Stoll, Martin; Wathen, Andy
2011-01-01
Optimal control problems with partial differential equations play an important role in many applications. The inclusion of bound constraints for the control poses a significant additional challenge for optimization methods. In this paper, we propose preconditioners for the saddle point problems that arise when a primal-dual active set method is used. We also show for this method that the same saddle point system can be derived when the method is considered as a semismooth Newton method. In addition, the projected gradient method can be employed to solve optimization problems with simple bounds, and we discuss the efficient solution of the linear systems in question. In the case when an acceleration technique is employed for the projected gradient method, this again yields a semismooth Newton method that is equivalent to the primal-dual active set method. We also consider the Moreau-Yosida regularization method for control constraints and efficient preconditioners for this technique. Numerical results illustrate the competitiveness of these approaches. © 2011 John Wiley & Sons, Ltd.
Optimal configuration of an integrated power and transport system
DEFF Research Database (Denmark)
Juul, Nina; Meibom, Peter
2011-01-01
optimal investments in both power plants and vehicle technologies is presented in this article. The model includes the interactions between the power system and the transport system including the competition between flexibility measures such as hydrogen storage in combination with electrolysis, heat...... storage in combination with heat pumps and heat boilers, and plug-in electric vehicles....
APPLICATION OF FUZZY ENSEMBLES FOR OPTIMAL DISTRIBUTION OF POWER IN ELECTRICAL NETWORKS
Directory of Open Access Journals (Sweden)
A. Guediri
2015-07-01
Full Text Available Optimal power flow calculation (OPF, used to optimize specific aspects of power system operations, usually employ standard mathematical programming techniques. These techniques are not suitable to handle many practical considerations encountered in power systems, including the uncertainty of the operational constraints. They can be relaxed temporarily, if necessary, to obtain feasible solutions. For taking well into account this type of constraints, one proposes in this work the application of a method based on fuzzy sets to the OPF problem. The developed method has been tested on standard scale power systems (IEEE30bus.
Non-relativistic conformal symmetries and Newton-Cartan structures
International Nuclear Information System (INIS)
Duval, C; Horvathy, P A
2009-01-01
This paper provides us with a unifying classification of the conformal infinitesimal symmetries of non-relativistic Newton-Cartan spacetime. The Lie algebras of non-relativistic conformal transformations are introduced via the Galilei structure. They form a family of infinite-dimensional Lie algebras labeled by a rational 'dynamical exponent', z. The Schroedinger-Virasoro algebra of Henkel et al corresponds to z = 2. Viewed as projective Newton-Cartan symmetries, they yield, for timelike geodesics, the usual Schroedinger Lie algebra, for which z = 2. For lightlike geodesics, they yield, in turn, the Conformal Galilean Algebra (CGA) of Lukierski, Stichel and Zakrzewski (alias 'alt' of Henkel), with z = 1. Physical systems realizing these symmetries include, e.g. classical systems of massive and massless non-relativistic particles, and also hydrodynamics, as well as Galilean electromagnetism.
Solving multiobjective optimal reactive power dispatch using modified NSGA-II
Energy Technology Data Exchange (ETDEWEB)
Jeyadevi, S.; Baskar, S.; Babulal, C.K.; Willjuice Iruthayarajan, M. [Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu 625 015 (India)
2011-02-15
This paper addresses an application of modified NSGA-II (MNSGA-II) by incorporating controlled elitism and dynamic crowding distance (DCD) strategies in NSGA-II to multiobjective optimal reactive power dispatch (ORPD) problem by minimizing real power loss and maximizing the system voltage stability. To validate the Pareto-front obtained using MNSGA-II, reference Pareto-front is generated using multiple runs of single objective optimization with weighted sum of objectives. For simulation purposes, IEEE 30 and IEEE 118 bus test systems are considered. The performance of MNSGA-II, NSGA-II and multiobjective particle swarm optimization (MOPSO) approaches are compared with respect to multiobjective performance measures. TOPSIS technique is applied on obtained non-dominated solutions to determine best compromise solution (BCS). Karush-Kuhn-Tucker (KKT) conditions are also applied on the obtained non-dominated solutions to substantiate a claim on optimality. Simulation results are quite promising and the MNSGA-II performs better than NSGA-II in maintaining diversity and authenticates its potential to solve multiobjective ORPD effectively. (author)
Directory of Open Access Journals (Sweden)
Suci Furwati
2017-08-01
Full Text Available Abstract: Students who have good conceptual acquisition will be able to represent the concept by using multi representation. This study aims to determine the improvement of students' understanding of the concept of Newton's Law material, and the quality of representation used in solving problems on Newton's Law material. The results showed that the concept acquisition of students increased from the average of 35.32 to 78.97 with an effect size of 2.66 (strong and N-gain of 0.68 (medium. The quality of each type of student representation also increased from level 1 and level 2 up to level 3. Key Words: concept aquisition, represetation quality, multi representation learning, Newton’s Law Abstrak: Siswa yang memiliki penguasaan konsep yang baik akan mampu merepresentasikan konsep dengan menggunakan multi representasi. Penelitian ini bertujuan untuk mengetahui peningkatan pemahaman konsep siswa SMP pada materi Hukum Newton, dan kualitas representasi yang digunakan dalam menyelesaikan masalah pada materi Hukum Newton. Hasil penelitian menunjukkan bahwa penguasaan konsep siswa meningkat dari rata-rata 35,32 menjadi 78,97 dengan effect size sebesar 2,66 (kuat dan N-gain sebesar 0,68 (sedang. Kualitas tiap jenis representasi siswa juga mengalami peningkatan dari level 1 dan level 2 naik menjadi level 3. Kata kunci: hukum Newton, kualitas representasi, pemahaman konsep, pembelajaran multi representasi
Introducing the notion of bare and effective mass via Newton's second law of motion
International Nuclear Information System (INIS)
Pinto, Marcus Benghi
2007-01-01
The concepts of bare and effective mass are widely used within modern physics. Their meaning is discussed in advanced undergraduate and graduate courses such as solid state physics, nuclear physics and quantum field theory. Here I discuss how these concepts may be introduced together with the discussion of Newton's second law of motion. The setting up of simple equations for the effective mass will allow instructors to discuss how external parameters, such as the temperature, influence this quantity. By expressing this type of equation as a power series one may also discuss perturbation theory and introduce Feynman diagrams
Cao, Jia; Yan, Zheng; He, Guangyu
2016-06-01
This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.
Optimized efficiency of all-electric ships by dc hybrid power systems
Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.
2014-06-01
Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.
Directory of Open Access Journals (Sweden)
Aouss Gabash
2016-02-01
Full Text Available It has recently been shown that using battery storage systems (BSSs to provide reactive power provision in a medium-voltage (MV active distribution network (ADN with embedded wind stations (WSs can lead to a huge amount of reverse power to an upstream transmission network (TN. However, unity power factors (PFs of WSs were assumed in those studies to analyze the potential of BSSs. Therefore, in this paper (Part-I, we aim to further explore the pure reactive power potential of WSs (i.e., without BSSs by investigating the issue of variable reverse power flow under different limits on PFs in an electricity market model. The main contributions of this work are summarized as follows: (1 Introducing the reactive power capability of WSs in the optimization model of the active-reactive optimal power flow (A-R-OPF and highlighting the benefits/impacts under different limits on PFs. (2 Investigating the impacts of different agreements for variable reverse power flow on the operation of an ADN under different demand scenarios. (3 Derivation of the function of reactive energy losses in the grid with an equivalent-π circuit and comparing its value with active energy losses. (4 Balancing the energy curtailment of wind generation, active-reactive energy losses in the grid and active-reactive energy import-export by a meter-based method. In Part-II, the potential of the developed model is studied through analyzing an electricity market model and a 41-bus network with different locations of WSs.
Thermodynamic performance optimization of a combined power/cooling cycle
International Nuclear Information System (INIS)
Pouraghaie, M.; Atashkari, K.; Besarati, S.M.; Nariman-zadeh, N.
2010-01-01
A combined thermal power and cooling cycle has already been proposed in which thermal energy is used to produce work and to generate a sub-ambient temperature stream that is suitable for cooling applications. The cycle uses ammonia-water mixture as working fluid and is a combination of a Rankine cycle and absorption cycle. The very high ammonia vapor concentration, exiting turbine under certain operating conditions, can provide power output as well as refrigeration. In this paper, the goal is to employ multi-objective algorithms for Pareto approach optimization of thermodynamic performance of the cycle. It has been carried out by varying the selected design variables, namely, turbine inlet pressure (P h ), superheater temperature (T superheat ) and condenser temperature (T condensor ). The important conflicting thermodynamic objective functions that have been considered in this study are turbine work (w T ), cooling capacity (q cool ) and thermal efficiency (η th ) of the cycle. It is shown that some interesting and important relationships among optimal objective functions and decision variables involved in the combined cycle can be discovered consequently. Such important relationships as useful optimal design principles would have not been obtained without the use of a multi-objective optimization approach.
Thermoeconomic optimization of a combined-cycle solar tower power plant
International Nuclear Information System (INIS)
Spelling, James; Favrat, Daniel; Martin, Andrew; Augsburger, Germain
2012-01-01
A dynamic model of a pure-solar combined-cycle power plant has been developed in order to allow determination of the thermodynamic and economic performance of the plant for a variety of operating conditions and superstructure layouts. The model was then used for multi-objective thermoeconomic optimization of both the power plant performance and cost, using a population-based evolutionary algorithm. In order to examine the trade-offs that must be made, two conflicting objectives will be considered, namely minimal investment costs and minimal levelized electricity costs. It was shown that efficiencies in the region of 18–24% can be achieved, and this for levelized electricity costs in the region of 12–24 UScts/kWh e , depending on the magnitude of the initial investment, making the system competitive with current solar thermal technology. -- Highlights: ► Pure-solar combined-cycle studied using thermoeconomic tools. ► Multi-objective optimization conducted to determine Pareto-optimal power plant designs. ► Levelised costs between 12 and 24 UScts/kWhe predicted. ► Efficiencies between 18 and 24% predicted.
Fuel optimization of Qinshan nuclear power plant
International Nuclear Information System (INIS)
Liao Zejun; Li Zhuoqun; Kong Deping; Xue Xincai; Wang Shiwei
2010-01-01
Based on the design practice of the fuel replacement of Qin Shan nuclear power plant, this document effectively analyzes the shortcomings of current replacement design of Qin Shan. To address these shortcomings, this document successfully implements the 300 MW fuel optimization program from fuel replacement. fuel improvement and experimentation ,and achieves great economic results. (authors)
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
2015-07-01
This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the control of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.
The problem of Newton dynamics
International Nuclear Information System (INIS)
Roman Roldan, R.
1998-01-01
The problem of the teaching of Newton's principles of dynamics at High School level is addressed. Some usages, reasoning and wording, are pointed as the responsible for the deficient results which are revealed in the background of the first year University students in Physics. A methodology based on simplifying the common vocabulary is proposed in order to provide to the students with a clearer view of the dynamic problems. Some typical examples are shown which illustrate the proposal. (Author)
Junaidi, Agus; Hamid, K. Abdul
2018-03-01
This paper will discuss the use of optimal control and Power System Stabilizer (PSS) in improving the oscillation of electric power system. Oscillations in the electric power system can occur due to the sudden release of the load (Switcing-Off). The oscillation of an unstable system for a long time causes the equipment to work in an interruption. To overcome this problem, a control device is required that can work effectively in repairing the oscillation. The power system is modeled from the Single Machine Infinite Bus Model (SMIB). The state space equation is used to mathematically model SMIB. SMIB system which is a plant will be formed togetherness state variables (State-Space), using riccati equation then determined the optimal gain as controller plant. Plant is also controlled by Power Stabilizer System using phase compensation method. Using Matlab Software based simulation will be observed response of rotor speed change and rotor angle change for each of the two controlling methods. Simulation results using the Simulink-MATLAB 6.1 software will compare the analysis of the plant state in Open loop state and use the controller. The simulation response shows that the optimal control and PSS can improve the stability of the power system in terms of acceleration to achieve settling-time and Over Shoot improvement. From the results of both methods are able to improve system performance.
Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Baker, Kyri; Summers, Tyler
2016-12-01
The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.
Optimization in the scale of nuclear power generation and the economy of nuclear power
International Nuclear Information System (INIS)
Suzuki, Toshiharu
1983-01-01
In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)
The cooling law and the search for a good temperature scale, from Newton to Dalton
Energy Technology Data Exchange (ETDEWEB)
Besson, Ugo, E-mail: ugo.besson@unipv.it [Department of Physics ' A Volta' , University of Pavia, Via A Bassi 6, 27100 Pavia (Italy)
2011-03-15
The research on the cooling law began with an article by Newton published in 1701. Later, many studies were performed by other scientists confirming or confuting Newton's law. This paper presents a description and an interpretation of Newton's article, provides a short overview of the research conducted on the topic during the 18th century, and discusses the relationships between the research on cooling laws and the definition of a temperature scale, as it was treated in Newton's article and in the work of Dalton, including Dalton's search for the absolute zero of temperature. It is shown that these scientists considered the exponential cooling law as a fundamental principle rather than a conjecture to be tested by means of experiments. The faith in the simplicity of natural laws and the spontaneous idea of proportionality between cause and effect seem to have strongly influenced Newton and Dalton. The topic is developed in a way that can be suitable for both undergraduate students and general physicists.
Kurniawan, Yudi; Suhandi, Andi; Hasanah, Lilik
2016-02-01
This paper aims to know the influence of implementation of ILD conceptual change oriented (ILD-CC) toward the decreasing of the quantity of students that misconception on the Newton's First Law. The Newton's First Law misconceptions separated into five sub-misconceptions. This research is a quantitative research with one group pretest-posttest design. The samples of this research were 32 students on 9th grade of junior high school in Pandeglang, Banten, Indonesia. The diagnostic test is a multiple-choice form with three-tier test format. The result of this study found that there was decreasing of the quantity of students that misconception on the Newton's First Law. The largest percentage in the decreasing of the number of the students that misconception was on the Misconception 4 about 80, 77%. The Misconception 4 is "The cause of tendency of the body passenger that sat upright on the accelerated bus from motionless bus suddenly to backward be a backward force". For the future studies, it suggested to combine other methods to optimize the decreasing the number of students that misconception.
Study on the coal mixing ratio optimization for a power plant
Jin, Y. A.; Cheng, J. W.; Bai, Q.; Li, W. B.
2017-12-01
For coal-fired power plants, the application of blended coal combustion has been a great issue due to the shortage and rising prices of high-rank coal. This paper describes the optimization of blending methods between Xing'an lignite coal, Shaltala lignite coal, Ura lignite coal, and Inner Mongolia bituminous coal. The multi-objective decision-making method based on fuzzy mathematics was used to determine the optimal blending ratio to improve the power plant coal-fired economy.
Optimal relay selection and power allocation for cognitive two-way relaying networks
Pandarakkottilil, Ubaidulla
2012-06-01
In this paper, we present an optimal scheme for power allocation and relay selection in a cognitive radio network where a pair of cognitive (or secondary) transceiver nodes communicate with each other assisted by a set of cognitive two-way relays. The secondary nodes share the spectrum with a licensed primary user (PU), and each node is assumed to be equipped with a single transmit/receive antenna. The interference to the PU resulting from the transmission from the cognitive nodes is kept below a specified limit. We propose joint relay selection and optimal power allocation among the secondary user (SU) nodes achieving maximum throughput under transmit power and PU interference constraints. A closed-form solution for optimal allocation of transmit power among the SU transceivers and the SU relay is presented. Furthermore, numerical simulations and comparisons are presented to illustrate the performance of the proposed scheme. © 2012 IEEE.
PMGA and its application in area and power optimization for ternary FPRM circuit
International Nuclear Information System (INIS)
Wang Pengjun; Li Kangping; Zhang Huihong
2016-01-01
Based on the research of population migration algorithms (PMAs), a population migration genetic algorithm (PMGA) is proposed, combining a PMA with a genetic algorithm. A scheme of area and power optimization for a ternary FPRM circuit is proposed by using the PMGA. Firstly, according to the ternary FPRM logic function expression, area and power estimation models are established. Secondly, the PMGA is used to search for the best area and power polarity. Finally, 10 MCNC Benchmark circuits are used to verify the effectiveness of the proposed method. The results show that the ternary FPRM circuits optimized by the PMGA saved 13.33% area and 20.00% power on average than the corresponding FPRM circuits optimized by a whole annealing genetic algorithm. (paper)
A Class of Prediction-Correction Methods for Time-Varying Convex Optimization
Simonetto, Andrea; Mokhtari, Aryan; Koppel, Alec; Leus, Geert; Ribeiro, Alejandro
2016-09-01
This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O(h^2)$, and in some cases as $O(h^4)$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.
Weight, the Normal Force and Newton's Third Law: Dislodging a Deeply Embedded Misconception
Low, David; Wilson, Kate
2017-01-01
On entry to university, high-achieving physics students from all across Australia struggle to identify Newton's third law force pairs. In particular, less than one in ten can correctly identify the Newton's third law reaction pair to the weight of (gravitational force acting on) an object. Most students incorrectly identify the normal force on the…
Control strategies for wind farm power optimization: LES study
Ciri, Umberto; Rotea, Mario; Leonardi, Stefano
2017-11-01
Turbines in wind farms operate in off-design conditions as wake interactions occur for particular wind directions. Advanced wind farm control strategies aim at coordinating and adjusting turbine operations to mitigate power losses in such conditions. Coordination is achieved by controlling on upstream turbines either the wake intensity, through the blade pitch angle or the generator torque, or the wake direction, through yaw misalignment. Downstream turbines can be adapted to work in waked conditions and limit power losses, using the blade pitch angle or the generator torque. As wind conditions in wind farm operations may change significantly, it is difficult to determine and parameterize the variations of the coordinated optimal settings. An alternative is model-free control and optimization of wind farms, which does not require any parameterization and can track the optimal settings as conditions vary. In this work, we employ a model-free optimization algorithm, extremum-seeking control, to find the optimal set-points of generator torque, blade pitch and yaw angle for a three-turbine configuration. Large-Eddy Simulations are used to provide a virtual environment to evaluate the performance of the control strategies under realistic, unsteady incoming wind. This work was supported by the National Science Foundation, Grants No. 1243482 (the WINDINSPIRE project) and IIP 1362033 (I/UCRC WindSTAR). TACC is acknowledged for providing computational time.
PSO Algorithm for an Optimal Power Controller in a Microgrid
Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.
2017-07-01
This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.
Optimization of the scheduled maintenance on the power units of the nuclear power plants with WWER
International Nuclear Information System (INIS)
Skalozubov, V.I.; Kovrizhkin, Yu.L.; Kolykhanov, V.N.; Kochneva, V.Yu.; Urbanskij, V.V.
2008-01-01
The advanced international and domestic experience in the field of the maintenance optimization of the power units of NPPs, as well, as on the base of the planning optimization, the maintenance organization and carrying out, the technical maintenance and repair control system automatization, the testing and monitoring optimization during the service process, the modernization of the technology and technical tools of the maintenance service and control is represented
DE NEWTON A EINSTEIN: A DEBATE EL DESTINO DEL UNIVERSO
Directory of Open Access Journals (Sweden)
ROGELIO PARREIRA
2010-01-01
Full Text Available En este artículo se describe la historia del pensamiento científico en términos de las teorías de la inercia, el espacio absoluto, la relatividad y la gravitación; de cómo Newton utilizó el trabajo de los primeros investigadores en sus teorías, y Einstein las teorías de Newton en la suya, para tratar de explicar el destino del universo. Es la descripción de un proceso revolucionario del conocimiento científico, y sus aportes al desarrollo de muchos otros campos del saber
Convergence and Applications of a Gossip-Based Gauss-Newton Algorithm
Li, Xiao; Scaglione, Anna
2013-11-01
The Gauss-Newton algorithm is a popular and efficient centralized method for solving non-linear least squares problems. In this paper, we propose a multi-agent distributed version of this algorithm, named Gossip-based Gauss-Newton (GGN) algorithm, which can be applied in general problems with non-convex objectives. Furthermore, we analyze and present sufficient conditions for its convergence and show numerically that the GGN algorithm achieves performance comparable to the centralized algorithm, with graceful degradation in case of network failures. More importantly, the GGN algorithm provides significant performance gains compared to other distributed first order methods.
Deviations from Newton's law in supersymmetric large extra dimensions
International Nuclear Information System (INIS)
Callin, P.; Burgess, C.P.
2006-01-01
Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case
Optimal Control of Wind Farms for Coordinated TSO-DSO Reactive Power Management
Directory of Open Access Journals (Sweden)
David Sebastian Stock
2018-01-01
Full Text Available The growing importance of renewable generation connected to distribution grids requires an increased coordination between transmission system operators (TSOs and distribution system operators (DSOs for reactive power management. This work proposes a practical and effective interaction method based on sequential optimizations to evaluate the reactive flexibility potential of distribution networks and to dispatch them along with traditional synchronous generators, keeping to a minimum the information exchange. A modular optimal power flow (OPF tool featuring multi-objective optimization is developed for this purpose. The proposed method is evaluated for a model of a real German 110 kV grid with 1.6 GW of installed wind power capacity and a reduced order model of the surrounding transmission system. Simulations show the benefit of involving wind farms in reactive power support reducing losses both at distribution and transmission level. Different types of setpoints are investigated, showing the feasibility for the DSO to fulfill also individual voltage and reactive power targets over multiple connection points. Finally, some suggestions are presented to achieve a fair coordination, combining both TSO and DSO requirements.
System Level Power Optimization of Digital Audio Back End for Hearing Aids
DEFF Research Database (Denmark)
Pracny, Peter; Jørgensen, Ivan Harald Holger; Bruun, Erik
2017-01-01
This work deals with power optimization of the audio processing back end for hearing aids - the interpolation filter (IF), the sigma-delta (SD modulator and the Class D power amplifier (PA) as a whole. Specifications are derived and insight into the tradeoffs involved is used to optimize...... the interpolation filter and the SD modulator on the system level so that the switching frequency of the Class D PA - the main power consumer in the back end - is minimized. A figure-of-merit (FOM) which allows judging the power consumption of the digital part of the back end early in the design process is used...
Identification of nuclear power plant transients using the Particle Swarm Optimization algorithm
International Nuclear Information System (INIS)
Canedo Medeiros, Jose Antonio Carlos; Schirru, Roberto
2008-01-01
In order to help nuclear power plant operator reduce his cognitive load and increase his available time to maintain the plant operating in a safe condition, transient identification systems have been devised to help operators identify possible plant transients and take fast and right corrective actions in due time. In the design of classification systems for identification of nuclear power plants transients, several artificial intelligence techniques, involving expert systems, neuro-fuzzy and genetic algorithms have been used. In this work we explore the ability of the Particle Swarm Optimization algorithm (PSO) as a tool for optimizing a distance-based discrimination transient classification method, giving also an innovative solution for searching the best set of prototypes for identification of transients. The Particle Swarm Optimization algorithm was successfully applied to the optimization of a nuclear power plant transient identification problem. Comparing the PSO to similar methods found in literature it has shown better results
Identification of nuclear power plant transients using the Particle Swarm Optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Canedo Medeiros, Jose Antonio Carlos [Universidade Federal do Rio de Janeiro, PEN/COPPE, UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: canedo@lmp.ufrj.br; Schirru, Roberto [Universidade Federal do Rio de Janeiro, PEN/COPPE, UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: schirru@lmp.ufrj.br
2008-04-15
In order to help nuclear power plant operator reduce his cognitive load and increase his available time to maintain the plant operating in a safe condition, transient identification systems have been devised to help operators identify possible plant transients and take fast and right corrective actions in due time. In the design of classification systems for identification of nuclear power plants transients, several artificial intelligence techniques, involving expert systems, neuro-fuzzy and genetic algorithms have been used. In this work we explore the ability of the Particle Swarm Optimization algorithm (PSO) as a tool for optimizing a distance-based discrimination transient classification method, giving also an innovative solution for searching the best set of prototypes for identification of transients. The Particle Swarm Optimization algorithm was successfully applied to the optimization of a nuclear power plant transient identification problem. Comparing the PSO to similar methods found in literature it has shown better results.
On deviations from Newton's law and the proposal for a 'Fifth Force'
International Nuclear Information System (INIS)
Ferreira, L.A.; Malbouisson, A.P.C.
1986-01-01
The results of geophysical and laboratory measurements of Newton's constant of gravitation, seem to disagree by one percent. Attempts to explain this have led to the revival of the proposal for a fifth interaction in Nature. The experimental results on measurements of G and tests of Newton's inverse square law are reviewed. The recent reanalysis of the Eoetvoes experiment and proposals for new experiments are discussed. (Author) [pt
Multi-objective PSO based optimal placement of solar power DG in radial distribution system
Directory of Open Access Journals (Sweden)
Mahesh Kumar
2017-06-01
Full Text Available Ever increasing trend of electricity demand, fossil fuel depletion and environmental issues request the integration of renewable energy into the distribution system. The optimal planning of renewable distributed generation (DG is much essential for ensuring maximum benefits. Hence, this paper proposes the optimal placement of probabilistic based solar power DG into the distribution system. The two objective functions such as power loss reduction and voltage stability index improvement are optimized. The power balance and voltage limits are kept as constraints of the problem. The non-sorting pare to-front based multi-objective particle swarm optimization (MOPSO technique is proposed on standard IEEE 33 radial distribution test system.
Disk-galaxy density distribution from orbital speeds using Newton's law, version 1.1
Nicholson, Kenneth F.
2000-01-01
Given the dimensions(including thickness) of an axisymmetric galaxy, Newton's law is used in integral form to find the density distributions required to match a wide range of orbital speed profiles. Newton's law is not modified and no dark-matter halos are required. The speed distributions can have extreme shapes if they are reasonably smooth. Several examples are given.
A Newton-type neural network learning algorithm
International Nuclear Information System (INIS)
Ivanov, V.V.; Puzynin, I.V.; Purehvdorzh, B.
1993-01-01
First- and second-order learning methods for feed-forward multilayer networks are considered. A Newton-type algorithm is proposed and compared with the common back-propagation algorithm. It is shown that the proposed algorithm provides better learning quality. Some recommendations for their usage are given. 11 refs.; 1 fig.; 1 tab
Directory of Open Access Journals (Sweden)
Lijuan Xiang
2017-06-01
Full Text Available This paper identifies the Wireless Power Transfer Network (WPTN as an ideal model for long-distance Wireless Power Transfer (WPT in a certain region with multiple electrical equipment. The schematic circuit and design of each power node and the process of power transmission between the two power nodes are elaborated. The Improved Cross-Entropy (ICE method is proposed as an algorithm to solve for optimal energy route. Non-dominated sorting is introduced for optimization. A demonstration of the optimization result of a 30-nodes WPTN system based on the proposed algorithm proves ICE method to be efficacious and efficiency.
Virtual power plant mid-term dispatch optimization
International Nuclear Information System (INIS)
Pandžić, Hrvoje; Kuzle, Igor; Capuder, Tomislav
2013-01-01
Highlights: ► Mid-term virtual power plant dispatching. ► Linear modeling. ► Mixed-integer linear programming applied to mid-term dispatch scheduling. ► Operation profit maximization combining bilateral contracts and the day-ahead market. -- Abstract: Wind power plants incur practically zero marginal costs during their operation. However, variable and uncertain nature of wind results in significant problems when trying to satisfy the contracted quantities of delivered electricity. For this reason, wind power plants and other non-dispatchable power sources are combined with dispatchable power sources forming a virtual power plant. This paper considers a weekly self-scheduling of a virtual power plant composed of intermittent renewable sources, storage system and a conventional power plant. On the one hand, the virtual power plant needs to fulfill its long-term bilateral contracts, while, on the other hand, it acts in the market trying to maximize its overall profit. The optimal dispatch problem is formulated as a mixed-integer linear programming model which maximizes the weekly virtual power plant profit subject to the long-term bilateral contracts and technical constraints. The self-scheduling procedure is based on stochastic programming. The uncertainty of the wind power and solar power generation is settled by using pumped hydro storage in order to provide flexible operation, as well as by having a conventional power plant as a backup. The efficiency of the proposed model is rendered through a realistic case study and analysis of the results is provided. Additionally, the impact of different storage capacities and turbine/pump capacities of pumped storage are analyzed.
Optimal Power Allocation of a Wireless Sensor Node under Different Rate Constraints
Solares, Jose
2011-07-01
Wireless sensor networks consist of the placement of sensors over a broad area in order to acquire data. Depending on the application, different design criteria should be considered in the construction of the sensors but among all of them, the battery life-cycle is of crucial interest. Power minimization is a problem that has been addressed from different approaches which include an analysis from an architectural perspective and with bit error rate and/or discrete instantaneous transmission rate constraints, among others. In this work, the optimal transmit power of a sensor node while satisfying different rate constraints is derived. First, an optimization problem with an instantaneous transmission rate constraint is addressed. Next, the optimal power is analyzed, but now with an average transmission rate constraint. The optimal solution for a class of fading channels, in terms of system parameters, is presented and a suboptimal solution is also proposed for an easier, yet efficient, implementation. Insightful asymptotical analysis for both schemes, considering a Rayleigh fading channel, are shown. Furthermore, the optimal power allocation for a sensor node in a cognitive radio environment is analyzed where an optimum solution for a class of fading channels is again derived. In all cases, numerical results are provided for either Rayleigh or Nakagami-m fading channels. The results obtained are extended to scenarios where we have either one transmitter-multiple receivers or multiple transmitters-one receiver.
International Nuclear Information System (INIS)
Zhu Zhang-Ming; Hao Bao-Tian; En Yun-Fei; Yang Yin-Tang; Li Yue-Jin
2011-01-01
On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses. (interdisciplinary physics and related areas of science and technology)
Energy Technology Data Exchange (ETDEWEB)
Niknam, Taher; Meymand, Hamed Zeinoddini; Nayeripour, Majid [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran)
2010-08-15
Fuel cell power plants (FCPPs) have been taken into a great deal of consideration in recent years. The continuing growth of the power demand together with environmental constraints is increasing interest to use FCPPs in power system. Since FCPPs are usually connected to distribution network, the effect of FCPPs on distribution network is more than other sections of power system. One of the most important issues in distribution networks is optimal operation management (OOM) which can be affected by FCPPs. This paper proposes a new approach for optimal operation management of distribution networks including FCCPs. In the article, we consider the total electrical energy losses, the total electrical energy cost and the total emission as the objective functions which should be minimized. Whereas the optimal operation in distribution networks has a nonlinear mixed integer optimization problem, the optimal solution could be obtained through an evolutionary method. We use a new evolutionary algorithm based on Fuzzy Adaptive Particle Swarm Optimization (FAPSO) to solve the optimal operation problem and compare this method with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization (ACO) and Tabu Search (TS) over two distribution test feeders. (author)
Quiet but still bright: XMM-Newton observations of the soft gamma-ray repeater SGR 0526-66
International Nuclear Information System (INIS)
Tiengo, A.; Esposito, P.; Mereghetti, S.; Esposito, P.; Israel, G.L.; Stella, L.; Turolla, R.; Turolla, R.; Zane, S.; Rea, N.; Gotz, D.; Feroci, M.
2009-01-01
SGR 0526-66 was the first soft gamma-ray repeater from which a giant flare was detected in 1979 March, suggesting the existence of magnetars, i.e. neutron stars powered by the decay of their extremely strong magnetic field. Since then, very little information has been obtained on this object, mainly because it has been burst inactive since 1983 and the study of its persistent X-ray emission has been hampered by its large distance and its location in a X-ray bright supernova remnant in the Large Magellanic Cloud. Here, we report on a comprehensive analysis of all the available XMM-Newton observations of SGR 0526-66. In particular, thanks to a deep observation taken in 2007, we measured its pulsation period (P = 8.0544 ± 0.0002 s) 6 years after its latest detection by Chandra. This allowed us to detect for the first time a significant reduction of its spin-down rate. From a comparison with two shorter XMM-Newton observations performed in 2000 and 2001, we found no significant changes in the spectrum, which is well modelled by an absorbed power law with nH = 4.6E+21 cm -2 and photon index = 3.27. The high luminosity about 4E+35 erg/s, in the 1-10 keV energy band) still observed about 25 years after the latest detection of bursting activity places SGR 0526-66 in the group of bright and persistent magnetar candidates. (authors)
Optimal dispatch strategy for the agile virtual power plant
DEFF Research Database (Denmark)
Petersen, Mette Højgaard; Bendtsen, Jan Dimon; Stoustrup, Jakob
2012-01-01
The introduction of large ratios of renewable energy into the existing power system is complicated by the inherent variability of production technologies, which harvest energy from wind, sun and waves. Fluctuations of renewable power production can be predicted to some extent, but the assumption...... of perfect prediction is unrealistic. This paper therefore introduces the Agile Virtual Power Plant. The Agile Virtual Power Plant assumes that the base load production planning based on best available knowledge is already given, so imbalances cannot be predicted. Consequently the Agile Virtual Power Plant...... attempts to preserve maneuverability (stay agile) rather than optimize performance according to predictions. In this paper the imbalance compensation problem for an Agile Virtual Power Plant is formulated. It is proved formally, that when local units are power and energy constrained integrators a dispatch...
Directory of Open Access Journals (Sweden)
Rodrigo Palma-Behnke
2013-01-01
Full Text Available A novel optimization methodology consisting of finding the near optimal location of wind turbines (WTs on a planned transmission network in a secure and cost-effective way is presented on this paper. While minimizing the investment costs of WTs, the algorithm allocates the turbines so that a desired wind power energy-penetration level is reached. The optimization considers both transmission security and power system stability constraints. The results of the optimization provide regulators with a support instrument to give proper signals to WT investors, in order to achieve secure and cost effective wind power network integration. The proposal is especially aimed at countries in the initial stage of wind power development, where the WT network integration process can still be influenced by policy-makers. The proposed methodology is validated with a real power system. Obtained results are compared with those generated from a business-as-usual (BAU scenario, in which the WT network allocation is made according to existing WT projects. The proposed WT network allocation scheme not only reduces the total investment costs associated with a determined wind power energy target, but also improves power system stability.
Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar
2013-11-01
Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal
Opposition-Based Improved PSO for Optimal Reactive Power Dispatch and Voltage Control
Directory of Open Access Journals (Sweden)
Shengrang Cao
2015-01-01
Full Text Available An opposition-based improved particle swarm optimization algorithm (OIPSO is presented for solving multiobjective reactive power optimization problem. OIPSO uses the opposition learning to improve search efficiency, adopts inertia weight factors to balance global and local exploration, and takes crossover and mutation and neighborhood model strategy to enhance population diversity. Then, a new multiobjective model is built, which includes system network loss, voltage dissatisfaction, and switching operation. Based on the market cost prices, objective functions are converted to least-cost model. In modeling process, switching operation cost is described according to the life cycle cost of transformer, and voltage dissatisfaction penalty is developed considering different voltage quality requirements of customers. The experiment is done on the new mathematical model. Through the simulation of IEEE 30-, 118-bus power systems, the results prove that OIPSO is more efficient to solve reactive power optimization problems and the model is more accurate to reflect the real power system operation.
DEFF Research Database (Denmark)
Zhao, Haoran; Wu, Qiuwei; Huang, Shaojun
2015-01-01
This paper proposes algorithms for optimal sitingand sizing of Energy Storage System (ESS) for the operationplanning of power systems with large scale wind power integration.The ESS in this study aims to mitigate the wind powerfluctuations during the interval between two rolling Economic......Dispatches (EDs) in order to maintain generation-load balance.The charging and discharging of ESS is optimized consideringoperation cost of conventional generators, capital cost of ESSand transmission losses. The statistics from simulated systemoperations are then coupled to the planning process to determinethe...
DAILY SCHEDULING OF SMALL HYDRO POWER PLANTS DISPATCH WITH MODIFIED PARTICLES SWARM OPTIMIZATION
Directory of Open Access Journals (Sweden)
Sinvaldo Rodrigues Moreno
2015-04-01
Full Text Available This paper presents a new approach for short-term hydro power scheduling of reservoirs using an algorithm-based Particle Swarm Optimization (PSO. PSO is a population-based algorithm designed to find good solutions to optimization problems, its characteristics have encouraged its adoption to tackle a variety of problems in different fields. In this paper the authors consider an optimization problem related to a daily scheduling of small hydro power dispatch. The goal is construct a feasible solution that maximize the cascade electricity production, following the environmental constraints and water balance. The paper proposes an improved Particle Swarm Optimization (PSO algorithm, which takes advantage of simplicity and facility of implementation. The algorithm was successfully applied to the optimization of the daily schedule strategies of small hydro power plants, considering maximum water utilization and all constraints related to simultaneous water uses. Extensive computational tests and comparisons with other heuristics methods showed the effectiveness of the proposed approach.
Santa Vélez, Camilo; Enea Romano, Antonio
2018-05-01
Static coordinates can be convenient to solve the vacuum Einstein's equations in presence of spherical symmetry, but for cosmological applications comoving coordinates are more suitable to describe an expanding Universe, especially in the framework of cosmological perturbation theory (CPT). Using CPT we develop a method to transform static spherically symmetric (SSS) modifications of the de Sitter solution from static coordinates to the Newton gauge. We test the method with the Schwarzschild de Sitter (SDS) metric and then derive general expressions for the Bardeen's potentials for a class of SSS metrics obtained by adding to the de Sitter metric a term linear in the mass and proportional to a general function of the radius. Using the gauge invariance of the Bardeen's potentials we then obtain a gauge invariant definition of the turn around radius. We apply the method to an SSS solution of the Brans-Dicke theory, confirming the results obtained independently by solving the perturbation equations in the Newton gauge. The Bardeen's potentials are then derived for new SSS metrics involving logarithmic, power law and exponential modifications of the de Sitter metric. We also apply the method to SSS metrics which give flat rotation curves, computing the radial energy density profile in comoving coordinates in presence of a cosmological constant.
State-of-the-art research: optimal investment in market-based electric power systems
Energy Technology Data Exchange (ETDEWEB)
Hope, Einar; Skjeret, Frode
2008-04-15
The purpose of this state-of-the-art research paper is to surveying the literature on investment in market based electric power systems as a background for identifying and discussing some important issues in the optimal design and operation of such systems. A fundamental distinction has to be made between investment in the competitive part of the power system (generation and trading) on the one hand and the natural monopoly part (network infrastructure) on the other. The paper starts with a listing and discussion on market characteristics and properties of electric power and goes on to discussing performance criteria and potential sources of market failure for optimal electric power investment. After the literature survey there is a discussion of conditions under which optimal investment may occur. (author). 78 refs., figs