WorldWideScience

Sample records for newly synthesized cholesterol

  1. Localization and movement of newly synthesized cholesterol in rat ovarian granulosa cells

    International Nuclear Information System (INIS)

    Lange, Y.; Schmit, V.M.; Schreiber, J.R.

    1988-01-01

    The distribution and movement of cholesterol were studied in granulosa cells from the ovaries of estrogen-stimulated hypophysectomized immature rats cultured in serum-free medium. Plasma membrane cholesterol was distinguished from intracellular cholesterol with cholesterol oxidase, an enzyme that converts cell surface cholesterol to cholestenone, leaving intracellular cholesterol untouched. Using this approach we showed that 82% of unesterified cholesterol was associated with the plasma membrane in granulosa cells cultured for 48 h in serum-free medium in both the presence and absence of added androstenedione and FSH. FSH and androstenedione stimulated a marked increase in steroid hormone (progestin) production. The movement of newly synthesized cholesterol to the plasma membrane also was followed using cholesterol oxidase. Newly synthesized cholesterol reached the plasma membrane too rapidly to be measured in unstimulated cells (t1/2 less than 20 min); however, in cells stimulated by FSH and androstenedione, this rate was considerably slower (t1/2 approximately 2h). Therefore, cholesterol movement to the plasma membrane appears to be regulated by gonadotropins in these cells. We tested whether steroid biosynthesis used all cell cholesterol pools equally. To this end we administered [3H]acetate and [14C]acetate at different times and determined their relative specific contents in various steroids after defined intervals. The relative ages of the steroids (youngest to oldest) were: lanosterol, progestins, intracellular cholesterol, and plasma membrane cholesterol. This finding suggests that progestins use newly synthesized intracellular cholesterol in preference to preexisting intracellular or cell surface cholesterol

  2. Synthesis of the oxysterol, 24(S, 25-epoxycholesterol, parallels cholesterol production and may protect against cellular accumulation of newly-synthesized cholesterol

    Directory of Open Access Journals (Sweden)

    Brown Andrew J

    2007-04-01

    transcriptional activity whilst increasing ABCA1 and LXR transcriptional activity. Conclusion Our results show that 24,25EC synthesis parallels cholesterol synthesis, consistent with this oxysterol functioning as a safety valve to protect against the accumulation of newly-synthesised cholesterol (as opposed to exogenously-derived cholesterol. Considering that 24,25EC is capable of being produced in all cholesterogenic cells, we propose that production of 24,25EC may represent a ubiquitous defence mechanism.

  3. Biogenesis of plasma membrane cholesterol

    International Nuclear Information System (INIS)

    Lange, Y.

    1986-01-01

    A striking feature of the molecular organization of eukaryotic cells is the singular enrichment of their plasma membranes in sterols. The authors studies are directed at elucidating the mechanisms underlying this inhomogeneous disposition. Cholesterol oxidase catalyzes the oxidation of plasma membrane cholesterol in intact cells, leaving intracellular cholesterol pools untouched. With this technique, the plasma membrane was shown to contain 95% of the unesterified cholesterol of cultured human fibroblasts. Cholesterol synthesized from [ 3 H] acetate moved to the plasma membrane with a half-time of 1 h at 37 0 C. They used equilibrium gradient centrifugation of homogenates of biosynthetically labeled, cholesterol oxidase treated cells to examine the distribution of newly synthesized sterols among intracellular pools. Surprisingly, lanosterol, a major precursor of cholesterol, and intracellular cholesterol both peaked at much lower buoyant density than did 3-hydroxy-3-methylglutaryl-CoA reductase. This suggests that cholesterol biosynthesis is not taken to completion in the endoplasmic reticulum. The cholesterol in the buoyant fraction eventually moved to the plasma membrane. Digitonin treatment increased the density of the newly synthesized cholesterol fractions, indicating that nascent cholesterol in transit is associated with cholesterol-rich membranes. The authors are testing the hypothesis that the pathway of cholesterol biosynthesis is spatially organized in various intracellular membranes such that the sequence of biosynthetic steps both concentrates the sterol and conveys it to the plasma membrane

  4. Synthesis of cholesterol 26. C{sup 14} (1961); Synthese du cholesterol {sup 14}C-26 (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, M; Pichat, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Cholesterol 26 {sup 14}C is synthesized from methylmagnesium iodide {sup 14}C with a 48 per cent overall yield. Cholesterol is purified by chromatography on alumina. The various intermediates of the synthesis are characterized by thin-layer chromatography according to Stahl. (authors) [French] Le cholesterol {sup 14}C-26 est synthetise a partir d'iodure de methyl magnesium {sup 14}C, avec un rendement de 48 pour cent par rapport a l'iodure de methyl {sup 14}C mis en jeu. Le cholesterol est purifie par chromatographie sur alumine. Les intermediaires de la synthese sont caracterises par chromatographie en couche mince, selon Stahl. (auteurs)

  5. Cross-Linking Mast Cell Specific Gangliosides Stimulates the Release of Newly Formed Lipid Mediators and Newly Synthesized Cytokines

    Directory of Open Access Journals (Sweden)

    Edismauro Garcia Freitas Filho

    2016-01-01

    Full Text Available Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides with mAbAA4 released the newly formed lipid mediators, prostaglandins D2 and E2, without release of leukotrienes B4 and C4. The effect of cross-linking these gangliosides on the activation of enzymes in the arachidonate cascade was then investigated. Ganglioside cross-linking resulted in phosphorylation of cytosolic phospholipase A2 and increased expression of cyclooxygenase-2. Translocation of 5-lipoxygenase from the cytosol to the nucleus was not induced by ganglioside cross-linking. Cross-linking of GD1b derived gangliosides also resulted in the release of the newly synthesized mediators, interleukin-4, interleukin-6, and TNF-α. The effect of cross-linking the gangliosides on the MAP kinase pathway was then investigated. Cross-linking the gangliosides induced the phosphorylation of ERK1/2, JNK1/2, and p38 as well as activating both NFκB and NFAT in a Syk-dependent manner. Therefore, cross-linking the mast cell specific GD1b derived gangliosides results in the activation of signaling pathways that culminate with the release of newly formed and newly synthesized mediators.

  6. Early radiation impairment of the cholesterol metabolism in organelles of rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaznacherev, Yu S; Kolomiitseva, I K [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1975-05-01

    The incorporation of 1-C/sup 14/-acetate into cholesterol of the nuclear, mitochondrial, microsomal and 105000 g-supernatant fractions isolated from the rat liver in norm and 60 min after the exposure to 1200 r has been investigated. An increase has been observed in the label uptake into liver cholesterol of irradiated rats. Intracellular distribution of the newly synthesized (labelled) cholesterol is substantially changed after irradiation: maximum label incorporation into the cholesterol is observed in the 105000 g-supernatant fraction, whereas, normally, the cholesterol of microsomal fraction has the highest specific activity.

  7. Effect of doxazosin on cholesterol synthesis in cell culture

    International Nuclear Information System (INIS)

    D'Eletto, R.D.; Javitt, N.B.

    1989-01-01

    The effect of doxazosin on cholesterol synthesis was determined by measuring the content of deuterium-enriched cholesterol in rabbit fibroblasts with and without receptors for low-density lipoproteins (LDL) and in hepatoma (Hep G2 cells). Doxazosin, at concentrations of 5-20 mumol/L, increased LDL binding to hepatic cells in a dose-related manner. Also, in these hepatic cells, doxazosin produced dose-related decreases in both newly synthesized cholesterol and cholesterol ester. In rabbit fibroblasts that were LDL receptor negative, de novo cholesterol synthesis was markedly reduced by increasing concentrations of doxazosin. Taken together, these results suggest that doxazosin may have a direct inhibitory effect on cholesterol synthesis independent of the LDL receptor. The inhibition of cholesterol synthesis by doxazosin may cause cells to compensate by upregulating the LDL receptor, thereby increasing the importation of lipoprotein cholesterol and reducing LDL cholesterol in the medium. This hypothesis supports findings in the clinical setting whereby doxazosin has a beneficial effect on the lipid profile, and suggests a useful additional property for this antihypertensive agent

  8. The cellular origin of the hepatic cholesterol synthesis (1961); Origine cellulaire du cholesterol hepatique de synthese (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    If rats are sacrificed within minutes after an injection of acetate 1 - {sup 14}C the specific radioactivities of sterols precipitable with digitonine, extracted from liver parenchyma cells and from Kupffer cells are very close to each other, whatever the duration of the experiment may be. It follows that cholesterol synthesis probably occurs in both types of cells. A validation of this conclusion requires that the validity of certain assumptions be established. (authors) [French] Si l'on sacrifie des rats dans les minutes qui suivent une injection d'acetate 1- {sup 14}C, les valeurs des radioactivites specifiques des sterols, precipitables par la digitonine, extraits des cellules parenchymateuses du foie et des cellules de Kupffer sont tres proches l'une de l'autre quelle que soit la duree de l'experience. On en deduit que la synthese du cholesterol s'effectue probablement dans les deux types de cellules. Cette conclusion pour etre valable, exige que le bien fonde de certaines hypotheses soit verifie. (auteurs)

  9. Bioorthogonal Chemistry for the Isolation and Study of Newly Synthesized Histones and Their Modifications.

    Science.gov (United States)

    Arnaudo, Anna M; Link, A James; Garcia, Benjamin A

    2016-03-18

    The nucleosome is an octamer containing DNA wrapped around one histone H3-H4 tetramer and two histone H2A-H2B dimers. Within the nucleosome, histones are decorated with post-translational modifications. Previous studies indicate that the H3-H4 tetramer is conserved during DNA replication, suggesting that old tetramers serve as a template for the modification of newly synthesized tetramers. Here, we present a method that merges bioorthogonal chemistry with mass spectrometry for the study of modifications on newly synthesized histones in mammalian cells. HeLa S3 cells are dually labeled with the methionine analog azidohomoalanine and heavy (13)C6,(15)N4 isotope labeled arginine. Heavy amino acid labeling marks newly synthesized histones while azidohomoalanine incorporation allows for their isolation using bioorthogonal ligation. Labeled mononucleosomes were covalently linked via a copper catalyzed reaction to a FLAG-GGR-alkyne peptide, immunoprecipitated, and subjected to mass spectrometry for quantitative modification analysis. Mononucleosomes containing new histones were successfully isolated using this approach. Additionally, the development of this method highlights the potential deleterious effects of azidohomoalanine labeling on protein PTMs and cell cycle progression, which should be considered for future studies utilizing bioorthogonal labeling strategies in mammalian cells.

  10. Synthesis and disappearance of cholesterol and bile acids in miniature swine

    International Nuclear Information System (INIS)

    Dupont, J.; Butterfield, A.B.; Clow, D.J.; Lumb, W.V.; McClellan, M.A.; O'Deen, L.; Oh, S-Y.

    1986-01-01

    Minerature swine were fitted with indwelling cannulae at two sites in the gut and catheters in the aorta, portal vein and posterior vena cava. Radioactive acetate, alanine and glucose were administered via the duodenal cannula or the portal vein catheter and synthesis of cholesterol by gut or liver monitored via the aortic serum cholesterol specific activity. Ring labeled cholesterol was administered via jejunum and portal vein and various parameters of disappearance measured during 17 to 66 days. Conversion of cholesterol to bile acids and their subsequent disappearance from gut lumen were measured. Differences were observed in substrate preference of gut and liver and in fate of newly synthesized cholesterol. Cholesterol disappearance was found to follow a two component exponential in serum and a three component exponential in gut. Serum curves were similar to those reported for humans. Two hepatic pools of cholesterol, one accessible to lipoprotein synthesis (anabolic) and another accessible to enterohepatic circulation and 7-α-hydroxylase, were inducated

  11. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy

    Science.gov (United States)

    Wei, Lu; Yu, Yong; Shen, Yihui; Wang, Meng C.; Min, Wei

    2013-01-01

    Synthesis of new proteins, a key step in the central dogma of molecular biology, has been a major biological process by which cells respond rapidly to environmental cues in both physiological and pathological conditions. However, the selective visualization of a newly synthesized proteome in living systems with subcellular resolution has proven to be rather challenging, despite the extensive efforts along the lines of fluorescence staining, autoradiography, and mass spectrometry. Herein, we report an imaging technique to visualize nascent proteins by harnessing the emerging stimulated Raman scattering (SRS) microscopy coupled with metabolic incorporation of deuterium-labeled amino acids. As a first demonstration, we imaged newly synthesized proteins in live mammalian cells with high spatial–temporal resolution without fixation or staining. Subcellular compartments with fast protein turnover in HeLa and HEK293T cells, and newly grown neurites in differentiating neuron-like N2A cells, are clearly identified via this imaging technique. Technically, incorporation of deuterium-labeled amino acids is minimally perturbative to live cells, whereas SRS imaging of exogenous carbon–deuterium bonds (C–D) in the cell-silent Raman region is highly sensitive, specific, and compatible with living systems. Moreover, coupled with label-free SRS imaging of the total proteome, our method can readily generate spatial maps of the quantitative ratio between new and total proteomes. Thus, this technique of nonlinear vibrational imaging of stable isotope incorporation will be a valuable tool to advance our understanding of the complex spatial and temporal dynamics of newly synthesized proteome in vivo. PMID:23798434

  12. Interaction Studies between Newly Synthesized Photosensitive Polymer and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    In Tae Kim

    2015-01-01

    Full Text Available In this information age, different kinds of photosensitive materials have been used in the manufacture of information storage devices. But these photosensitive materials have the bane of low diffraction efficiency. In order to solve this problem, we have synthesized a novel photosensitive polymer from epoxy-based azopolymers (with three types of azochromophores. Furthermore, we have studied the interaction between this newly synthesized azopolymer and ionic liquids (ILs. For this purpose, we have used the ammonium and imidazolium families of ILs, such as diethylammonium dihydrogen phosphate (DEAP, tributylammonium methyl sulfate (TBMS, triethylammonium 4-aminotoluene-3-sulfonic acid (TASA, and 1-methylimidazolium chloride ([Mim]Cl. To investigate the molecular interaction between azopolymer and ILs, we have used the following spectroscopic methods of analysis: UV-visible spectroscopy, photoluminescence (PL spectroscopy, Fourier transformed infrared spectroscopy (FT-IR, and confocal Raman spectroscopy. In this study, we have developed new photosensitive materials by combining polymer with ILs.

  13. Release of newly synthesized nucleoplasmic ribosomal subunits or their precursor particles from isolated nuclei of regenerating rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Usami, K; Ogata, K [Niigata Univ. (Japan). School of Medicine

    1930-06-16

    The authors present the time course of the labeling of RNA and protein moieties of these particles in vivo as well as the pattern of one-dimensional acrylamide gel electrophoresis of their protein moieties labeled with (/sup 35/S)methionine in vivo, which shows that released 60 S particles are newly synthesized ribosomal large subunits or their precursor particles in the nucleoplasm on their way from the nucleolus to the cytoplasm. It appears likely that released 40 S particles contain newly synthesized ribosomal small subunits or their precursors in the nucleoplasm.

  14. Intracellular trafficking of the free cholesterol derived from LDL cholesteryl ester is defective in vivo in Niemann-Pick C disease: insights on normal metabolism of HDL and LDL gained from the NP-C mutation.

    Science.gov (United States)

    Shamburek, R D; Pentchev, P G; Zech, L A; Blanchette-Mackie, J; Carstea, E D; VandenBroek, J M; Cooper, P S; Neufeld, E B; Phair, R D; Brewer, H B; Brady, R O; Schwartz, C C

    1997-12-01

    Niemann-Pick C disease (NP-C) is a rare inborn error of metabolism with hepatic involvement and neurological sequelae that usually manifest in childhood. Although in vitro studies have shown that the lysosomal distribution of LDL-derived cholesterol is defective in cultured cells of NP-C subjects, no unusual characteristics mark the plasma lipoprotein profiles. We set out to determine whether anomalies exist in vivo in the cellular distribution of newly synthesized, HDL-derived or LDL-derived cholesterol under physiologic conditions in NP-C subjects. Three affected and three normal male subjects were administered [14C]mevalonate as a tracer of newly synthesized cholesterol and [3H]cholesteryl linoleate in either HDL or LDL to trace the distribution of lipoprotein-derived free cholesterol. The rate of appearance of free [14C]- and free [3H]cholesterol in the plasma membrane was detected indirectly by monitoring their appearance in plasma and bile. The plasma disappearance of [3H]cholesteryl linoleate was slightly faster in NP-C subjects regardless of its lipoprotein origin. Appearance of free [14C] cholesterol ill the plasma (and in bile) was essentially identical in normal and affected individuals as was the initial appearance of free [3H]cholesterol derived from HDL, observed before extensive exchange occurred of the [3H]cholesteryl linoleate among lipoproteins. In contrast, the rate of appearance of LDL-derived free [3H]cholesterol in the plasma membrane of NP-C subjects, as detected in plasma and bile, was retarded to a similar extent that LDL cholesterol metabolism was defective in cultured fibroblasts of these affected subjects. These findings show that intracellular distribution of both newly synthesized and HDL-derived cholesterol are essentially unperturbed by the NP-C mutation, and therefore occur by lysosomal-independent paths. In contrast, in NP-C there is defective trafficking of LDL-derived cholesterol to the plasma membrane in vivo as well as in vitro

  15. Influence of secretagogues on asynchronous secretion of newly synthesized pancreatic proteins in the conscious rat

    International Nuclear Information System (INIS)

    Keim, V.; Rohr, G.

    1987-01-01

    The secretion of newly synthesized pancreatic enzymes was studied in pancreatic duct cannulated rats after intravenous injection of 100 microCi of [ 35 S]methionine. Secretion rate was stimulated by intravenous infusion of either cerulein (0.2 microgram/kg h) or carbachol (10 nmol/kg h) starting simultaneously with or 180 min before the injection of the labeled methionine. Secretory proteins were analyzed by sodium dodecyl sulfate (SDS) gel electrophoresis or by nondenaturing gel electrophoresis followed by determination of the radioactivity associated with the individual proteins. Similar to unstimulated controls in all experiments, an early secretion of newly synthesized trypsinogen and chymotrypsinogen was found, whereas amylase and lipase were secreted only after a certain lag period. The results suggest that the intracellular transit of endoproteases is faster than that of other enzymes, irrespective of whether or not secretagogues were applied

  16. Direct measurement of newly synthesized ATP dissociation kinetics in sarcoplasmic reticulum ATPase

    International Nuclear Information System (INIS)

    Teruel-Puche, J.; Kurzmack, M.; Inesi, G.

    1987-01-01

    Incubation of SR vesicles with Ca 2+ and ( 32 P)acetylphosphate, yields steady state levels of ( 32 P)phosphorylated enzyme (ATPase) intermediate and high concentrations of Ca 2+ in the lumen of the vesicles. At this time, addition of ADP (and EGTA to lower the Ca 2+ concentration in the medium outside the vesicles) results in single cycle formation of (γ- 32 P)ATP by transfer of ( 32 P)phosphate from the enzyme intermediate to ADP. The phosphoenzyme decay and ATP formation exhibit a fast component within the first 20 msec following addition of ADP, and a slower component reaching an asymptote in approximately 100 msec. They have now measured by a rapid filtration method the fraction of newly synthesized ATP which is bound to the enzyme, as opposed to the fraction dissociated into the medium. They find that nearly all the ATP formed during the initial burst is still bound to the enzyme within the initial 20 msec of reaction. Dissociation of newly synthesized ATP occurs then with approximately 13 sec -1 rate constant, permitting reequilibration of the system and further formation of ATP. The rate limiting effect of ATP dissociation and other partial reactions on the slow component of single cycle ATP synthesis is evaluated by appropriate kinetic simulations

  17. PP32 and SET/TAF-Iβ proteins regulate the acetylation of newly synthesized histone H4.

    Science.gov (United States)

    Saavedra, Francisco; Rivera, Carlos; Rivas, Elizabeth; Merino, Paola; Garrido, Daniel; Hernández, Sergio; Forné, Ignasi; Vassias, Isabelle; Gurard-Levin, Zachary A; Alfaro, Iván E; Imhof, Axel; Almouzni, Geneviève; Loyola, Alejandra

    2017-11-16

    Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential modifications and their biological significance. Here, we perform proteomic analysis of the newly synthesized histone H4 complex at the earliest time point in the cascade. In addition to known binding partners Hsp90 and Hsp70, we also identify for the first time two subunits of the histone acetyltransferase inhibitor complex (INHAT): PP32 and SET/TAF-Iβ. We show that both proteins function to prevent HAT1-mediated H4 acetylation in vitro. When PP32 and SET/TAF-Iβ protein levels are down-regulated in vivo, we detect hyperacetylation on lysines 5 and 12 and other H4 lysine residues. Notably, aberrantly acetylated H4 is less stable and this reduces the interaction with Hsp90. As a consequence, PP32 and SET/TAF-Iβ depleted cells show an S-phase arrest. Our data demonstrate a novel function of PP32 and SET/TAF-Iβ and provide new insight into the mechanisms regulating acetylation of newly synthesized histone H4. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. ATAD2 is an epigenetic reader of newly synthesized histone marks during DNA replication.

    Science.gov (United States)

    Koo, Seong Joo; Fernández-Montalván, Amaury E; Badock, Volker; Ott, Christopher J; Holton, Simon J; von Ahsen, Oliver; Toedling, Joern; Vittori, Sarah; Bradner, James E; Gorjánácz, Mátyás

    2016-10-25

    ATAD2 (ATPase family AAA domain-containing protein 2) is a chromatin regulator harboring an AAA+ ATPase domain and a bromodomain, previously proposed to function as an oncogenic transcription co-factor. Here we suggest that ATAD2 is also required for DNA replication. ATAD2 is co-expressed with genes involved in DNA replication in various cancer types and predominantly expressed in S phase cells where it localized on nascent chromatin (replication sites). Our extensive biochemical and cellular analyses revealed that ATAD2 is recruited to replication sites through a direct interaction with di-acetylated histone H4 at K5 and K12, indicative of newly synthesized histones during replication-coupled chromatin reassembly. Similar to ATAD2-depletion, ectopic expression of ATAD2 mutants that are deficient in binding to these di-acetylation marks resulted in reduced DNA replication and impaired loading of PCNA onto chromatin, suggesting relevance of ATAD2 in DNA replication. Taken together, our data show a novel function of ATAD2 in cancer and for the first time identify a reader of newly synthesized histone di-acetylation-marks during replication.

  19. Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane trafficking

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Niels-Christiansen, L L; Thorsen, Evy

    2000-01-01

    Intestinal brush border enzymes, including aminopeptidase N and sucrase-isomaltase, are associated with "rafts" (membrane microdomains rich in cholesterol and sphingoglycolipids). To assess the functional role of rafts in the present work, we studied the effect of cholesterol depletion on apical......, the rates of the Golgi-associated complex glycosylation and association with rafts of newly synthesized aminopeptidase N were reduced, and less of the enzyme had reached the brush border membrane after 2 h of labeling. In contrast, the basolateral Na(+)/K(+)-ATPase was neither missorted nor raft......-associated. Our results implicate the Golgi complex/trans-Golgi network in raft formation and suggest a close relationship between this event and apical membrane trafficking....

  20. Triglyceride to high-density lipoprotein cholesterol ratio and carotid intima-medial thickness in Chinese adolescents with newly diagnosed type 2 diabetes mellitus.

    Science.gov (United States)

    Li, Xin; Deng, You-Ping; Yang, Miao; Wu, Yu-Wen; Sun, Su-Xin; Sun, Jia-Zhong

    2016-03-01

    To investigate the relationship between triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and carotid intima-medial thickness (CIMT) in Chinese youth and adolescents with newly diagnosed type 2 diabetes mellitus (T2DM). Ninety-eight subjects aged 10-24 yr with newly-diagnosed T2DM had general inflammation, anthropometric, laboratory and CIMT data collected, and were divided into three groups based on TG/HDL-C tertiles. There were no significant differences in gender, age, fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), and carotid arterial diameter (CAD) among the groups based on TG/HDL-C tertiles. Across TG/HDL-C tertiles, there was a significant progressive increase in body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), homeostasis model assessment-estimated insulin resistance (HOMA-IR), TG, total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C) and CIMT (all P < 0.01 or P < 0.05), while HDL-C was decreased significantly across the groups (P < 0.01). In general linear regression model, TG/HDL-C was an independent determinant of CIMT even after adjusting for BMI, SBP, DBP, TG, TC, LDL-C, HDL-C, HbA1c and HOMA-IR. TG/HDL-C ratio, the marker of small dense LDL particles, is an independent determinant of CIMT in Chinese youth and adolescents with newly diagnosed T2DM, and may be a simple and helpful tool in predicting the increased CIMT in such patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Adipokines induce catabolism of newly synthesized matrix in cartilage and meniscus tissues.

    Science.gov (United States)

    Nishimuta, James F; Levenston, Marc E

    Altered synovial levels of various adipokines (factors secreted by fat as well as other tissues) have been associated with osteoarthritis (OA) onset and progression. However, the metabolic effects of adipokines on joint tissues, in particular the fibrocartilaginous menisci, are not well understood. This study investigated effects of several adipokines on release of recently synthesized extracellular matrix in bovine cartilage and meniscus tissue explants. After labeling newly synthesized proteins and sulfated glycosaminoglycans (sGAGs) with 3 H-proline and 35 S-sulfate, respectively; bovine cartilage and meniscus tissue explants were cultured for 6 days in basal medium (control) or media supplemented with adipokines (1 µg/ml of leptin, visfatin, adiponectin, or resistin) or 20 ng/ml interleukin-1 (IL-1). Release of radiolabel and sGAG to the media during culture and the final explant water, DNA, sGAG, and retained radiolabel were measured. Matrix metalloproteinase (MMP-2) and MMP-3 activities were assessed using gelatin and casein zymography, respectively. Water and DNA contents were not significantly altered by any treatment. Visfatin, adiponectin, resistin, and IL-1 stimulated sGAG release from meniscus, whereas only IL-1 stimulated sGAG release from cartilage. Release of 3 H and 35 S was stimulated not only by resistin and IL-1 in meniscus but also by IL-1 in cartilage. Retained 3 H was unaltered by any treatment, while retained 35 S was reduced by visfatin, resistin, and IL-1 in meniscus and by only IL-1 in cartilage. Resistin and IL-1 elevated active MMP-2 and total MMP-3 in meniscus, whereas cartilage MMP-3 activity was elevated by only IL-1. Resistin stimulated rapid and extensive catabolism of meniscus tissue, similar to IL-1, whereas adipokines minimally affected cartilage. Release of newly synthesized matrix was similar to overall release in both tissues. These observations provide further indications that meniscal tissue is more sensitive to pro

  2. A convenient method to synthesize specifically labelled cholesterol with tritium

    International Nuclear Information System (INIS)

    Malik, S.; Kenny, M.; Ahmad, S.; Washington Univ., Seattle, WA

    1992-01-01

    A simple method is described to label cholesterol with tritium. Cholesterol was first oxidized to 5-cholesten-3-one which was then purified by HPLC. Its structure was established by electron impact (EI) mass spectrometry and 1 H-NMR spectroscopy. The ketone was reduced with NaB 3 H 4 to give specifically labelled cholesterol (C-3 3 H) at low specific activity. (author)

  3. Cholesterol Absorption and Synthesis in Vegetarians and Omnivores.

    Science.gov (United States)

    Lütjohann, Dieter; Meyer, Sven; von Bergmann, Klaus; Stellaard, Frans

    2018-03-01

    Vegetarian diets are considered health-promoting; however, a plasma cholesterol lowering effect is not always observed. We investigate the link between vegetarian-diet-induced alterations in cholesterol metabolism. We study male and female omnivores, lacto-ovo vegetarians, lacto vegetarians, and vegans. Cholesterol intake, absorption, and fecal sterol excretion are measured as well as plasma concentrations of cholesterol and noncholesterol sterols. These serve as markers for cholesterol absorption, synthesis, and catabolism. The biliary cholesterol secretion rate is estimated. Flux data are related to body weight. Individual vegetarian diet groups are statistically compared to the omnivore group. Lacto vegetarians absorb 44% less dietary cholesterol, synthesized 22% more cholesterol, and show no differences in plasma total and LDL cholesterol. Vegan subjects absorb 90% less dietary cholesterol, synthesized 35% more cholesterol, and have a similar plasma total cholesterol, but a 13% lower plasma LDL cholesterol. No diet-related differences in biliary cholesterol secretion and absorption are observed. Total cholesterol absorption is lower only in vegans. Total cholesterol input is similar under all vegetarian diets. Unaltered biliary cholesterol secretion and higher cholesterol synthesis blunt the lowered dietary cholesterol intake in vegetarians. LDL cholesterol is significantly lower only in vegans. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Potential of Start Codon Targeted (SCoT) markers for DNA fingerprinting of newly synthesized tritordeums and their respective parents.

    Science.gov (United States)

    Cabo, Sandra; Ferreira, Luciana; Carvalho, Ana; Martins-Lopes, Paula; Martín, António; Lima-Brito, José Eduardo

    2014-08-01

    Hexaploid tritordeum (H(ch)H(ch)AABB; 2n = 42) results from the cross between Hordeum chilense (H(ch)H(ch); 2n = 14) and cultivated durum wheat (Triticum turgidum ssp. durum (AABB; 2n = 28). Morphologically, tritordeum resembles the wheat parent, showing promise for agriculture and wheat breeding. Start Codon Targeted (SCoT) polymorphism is a recently developed technique that generates gene-targeted markers. Thus, we considered it interesting to evaluate its potential for the DNA fingerprinting of newly synthesized hexaploid tritordeums and their respective parents. In this study, 60 SCoT primers were tested, and 18 and 19 of them revealed SCoT polymorphisms in the newly synthesized tritordeum lines HT27 and HT22, respectively, and their parents. An analysis of the presence/absence of bands among tritordeums and their parents revealed three types of polymorphic markers: (i) shared by tritordeums and one of their parents, (ii) exclusively amplified in tritordeums, and (iii) exclusively amplified in the parents. No polymorphism was detected among individuals of each parental species. Three SCoT markers were exclusively amplified in tritordeums of lines HT22 and HT27, being considered as polyploidization-induced rearrangements. About 70% of the SCoT markers of H. chilense origin were not transmitted to the allopolyploids of both lines, and most of the SCoTs scored in the newly synthesized allopolyploids originated from wheat, reinforcing the potential use of tritordeum as an alternative crop.

  5. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Rebecca; Zeino, Maen [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Frewert, Simon [Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken (Germany); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2014-11-15

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.

  6. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    International Nuclear Information System (INIS)

    Hamm, Rebecca; Zeino, Maen; Frewert, Simon; Efferth, Thomas

    2014-01-01

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H + -ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation

  7. Effect of apolipoprotein E-free high density lipoproteins on cholesterol metabolism in cultured pig hepatocytes

    International Nuclear Information System (INIS)

    Bachorik, P.S.; Virgil, D.G.; Kwiterovich, P.O. Jr.

    1987-01-01

    We studied cholesterol synthesis from [ 14 C]acetate, cholesterol esterification from [ 14 C]oleate, and cellular cholesterol and cholesteryl ester levels after incubating cells with apoE-free high density lipoproteins (HDL) or low density lipoproteins (LDL). LDL suppressed synthesis by up to 60%, stimulated esterification by up to 280%, and increased cell cholesteryl ester content about 4-fold. Esterification increased within 2 h, but synthesis was not suppressed until after 6 h. ApoE-free HDL suppressed esterification by about 50% within 2 h. Cholesterol synthesis was changed very little within 6 h, unless esterification was maximally suppressed; synthesis was then stimulated about 4-fold. HDL lowered cellular unesterified cholesterol by 13-20% within 2 h and promoted the removal of newly synthesized cholesterol and cholesteryl esters. These changes were transient; by 24 h, both esterification and cellular unesterified cholesterol returned to control levels, and cholesteryl esters increased 2-3-fold. HDL core lipid was taken up selectively from 125 I-labeled [ 3 H]cholesteryl ester- and ether-labeled HDL. LDL core lipid uptake was proportional to LDL apoprotein uptake. The findings suggest that 1) the cells respond initially to HDL or LDL with changes in esterification, and 2) HDL mediates both the removal of free cholesterol from the cell and the delivery of HDL cholesteryl esters to the cell

  8. Spectral, stoichiometric ratio, physicochemical, polarity and photostability studies of newly synthesized chalcone dye in organized media

    International Nuclear Information System (INIS)

    Marwani, Hadi M.; Asiri, Abdullah M.; Khan, Salman A.

    2013-01-01

    The main focus of this study was to investigate spectroscopic properties, stoichiometric ratios, physicochemical parameters, polarity and photostability behaviors of newly synthesized chalcone dye in organized media. The chalcone dye, 1-(2,5-Dimethyl-thiophen-3-yl)-3-(9-etnyl-9H-carbazol-3-yl)-propenone (DTEP), was prepared by the reaction of carbazole aldehyde with 3-acetyl-2,5-dimethythiophene. Data obtained from FT-IR, 1 H-–NMR, 13 C-NMR and elemental analysis were consistent with chemical structure of newly prepared DTEP. Increases in fluorescence intensities of DTEP with cetyltrimethyl ammonium bromide (CTAB) were observed. In comparison of fluorescence intensities for DTEP with CTAB, reductions in fluorescence intensities for DTEP with sodium dodecyl sulfate (SDS) were noticed under the same experimental and instrumental conditions. Additionally, Benesi–Hildebrand method was applied to determine stoichiometric ratios and association constants of DTEP with CTAB and SDS. Stern–Volmer plot was used in order to further confirm the stoichiometric ratio and association constant of DTEP with SDS. Physicochemical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment and fluorescence quantum yield of DTEP were also determined. Fluorescence polarity study displayed that DTEP was sensitive to the polarity of the microenvironment provided by different solvents. Finally, fluorescence steady-state measurements revealed that DTEP has high photostability against photobleaching. -- Highlights: ► Mechanistic understanding of molecular structure of newly synthesized chalcone dye. ► Exploring spectral behaviors and physicochemical parameters of chalcone dye. ► Determination of stoichiometric ratios and association constants of chalcone dye. ► Determination of fluorescence quantum yield in different solvents. ► High photostability against photobleaching of chalcone dye was observed

  9. Hypocholesterolemic impact of newly isolated sophorolipids produced by microbial conversion of safflower oil cake in rats fed high-fat and cholesterol diet

    International Nuclear Information System (INIS)

    Nooman, M.U.; Mahmoud, M.H.; Al-kashef, A.S.; Rashad, M. M.

    2017-01-01

    The present study aims to produce low cost sophorolipids, and to evaluate their potential hypocholesterolemic impact. Sophorolipids were produced by Candida bombicola grown on safflower oil cake, extracted by methanol followed by ethyl acetate with a yield of 24.4 and 48.3 g·100 g−1 mixed substrate, respectively. Their structure was confirmed by FTIR and 1H NMR and proven to be safe when subjected to an acute toxicity test. A biological experiment was done on 42 male albino rats classified into six groups for 4 weeks following an induction period for hypercholesterolemia of 8 weeks. The two extracts and their mixture were examined for their hypocholesterolemic effect compared to rosuvastatin. The results revealed a reduction in total cholesterol, low density lipoprotein cholesterol, atherogenic index, liver transaminases’ activity and malondialdehyde. They also revealed an elevation in high density lipoprotein cholesterol and antioxidant enzymes which was more efficient than rosuvastatin. Histopathological examination confirmed these results. In conclusion, the newly isolated sophorolipids are powerful hypocholesterolemic compounds which are even more efficient and safer than rosuvastatin. [es

  10. Hypocholesterolemic impact of newly isolated sophorolipids produced by microbial conversion of safflower oil cake in rats fed high-fat and cholesterol diet

    Directory of Open Access Journals (Sweden)

    M. U. Nooman

    2017-09-01

    Full Text Available The present study aims to produce low cost sophorolipids, and to evaluate their potential hypocholesterolemic impact. Sophorolipids were produced by Candida bombicola grown on safflower oil cake, extracted by methanol followed by ethyl acetate with a yield of 24.4 and 48.3 g·100 g-1 mixed substrate, respectively. Their structure was confirmed by FTIR and 1H NMR and proven to be safe when subjected to an acute toxicity test. A biological experiment was done on 42 male albino rats classified into six groups for 4 weeks following an induction period for hypercholesterolemia of 8 weeks. The two extracts and their mixture were examined for their hypocholesterolemic effect compared to rosuvastatin. The results revealed a reduction in total cholesterol, low density lipoprotein cholesterol, atherogenic index, liver transaminases’ activity and malondialdehyde. They also revealed an elevation in high density lipoprotein cholesterol and antioxidant enzymes which was more efficient than rosuvastatin. Histopathological examination confirmed these results. In conclusion, the newly isolated sophorolipids are powerful hypocholesterolemic compounds which are even more efficient and safer than rosuvastatin.

  11. Antibacterial activity of three newly-synthesized chalcones & synergism with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Dragana D Bozic

    2014-01-01

    Interpretation & conclusions: o0 ur study demonstrated that three newly-synthesized chalcones exhibited significant anti-MRSA effect and synergism with non-β-lactam antibiotics. The most effective compound was 1,3-Bis-(2-hydroxy-phenyl-propenone. Our results provide useful information for future research of possible application of chalcones in combination with conventional anti-MRSA therapy as promising new antimicrobial agents.

  12. Ocimum basilicum ethanolic extract decreases cholesterol synthesis and lipid accumulation in human macrophages.

    Science.gov (United States)

    Bravo, Elena; Amrani, Souliman; Aziz, Mohammed; Harnafi, Hicham; Napolitano, Mariarosaria

    2008-12-01

    Macrophage lipid accumulation induced by low density lipoproteins (LDL) plays a pivotal role in atherosclerotic plaque development. Previous work showed that Ocimum basilicum extract, used as hypocholesterolemic agent by traditional medicine in Morocco, has hypolipidemic activity in rat acute hyperlipimidemia. This study investigated the effects of ethanolic extract of O. basilicum on lipid accumulation in human macrophages. As modification of LDL increase atherogenicity of the particles we evaluated the effects of the extract on LDL oxidation. The extract caused a dose-related increase of LDL-resistance to Cu(2+)-induced oxidation. Furthermore, at the dose of 60 microg/ml, significantly decreases the accumulation of macrophage lipid droplets induced by modified LDL evaluated as by red-oil staining. Cholesterol esterification and triacylglycerol synthesis in the cells were not affected. Macrophage treatment with 60 microg/ml, but not 20 microg/ml, of the extract reduced newly synthesized unesterified cholesterol by about 60% and decreased scavenger receptors activity by about 20-30%, evaluated by the internalization of cholesterol carried by [(3)H]CE-aggregated-LDL. The results suggest that O. basilicum ethanolic extract has the capability to reduce foam cell formation through the reduction of cholesterol synthesis and the modulation of the activity of surface scavenger receptors.

  13. Early effects of dietary orotic acid upon liver lipid synthesis and bile cholesterol secretion in rats

    International Nuclear Information System (INIS)

    Tokmakjian, S.D.; Haines, D.S.

    1985-01-01

    Dietary orotic acid is known to cause impaired fatty acid synthesis and increased cholesterol synthesis in rats. The authors found that the impaired fatty acid synthesis occurs during the first day of orotic acid feeding and, in studies with albumin-bound [1- 14 C]palmitic acid, an associated decrease in the rate of esterification of this fatty acid into triacylglycerol, phospholipid, and cholesteryl ester was observed. These changes may result from the known decreases in liver levels of adenine nucleotides or, as reported here, from decreased liver CoASH levels in orotic acid-fed rats. The increase in hepatic cholesterol synthesis occurred during the second day of orotic acid feeding. It was detected by increased incorporation of [1,2- 14 C]acetate into cholesterol by liver slices and by a 7-fold increase in HMG-CoA reductase activity. At the same time the biliary output of cholesterol was increased 2-fold and studies using 3 H 2 O revealed that the output of newly synthesized cholesterol in bile was increased 5-fold. The content of cholesteryl ester in hepatic microsomes decreased during orotic acid feeding but free cholesterol was unchanged. The findings are interpreted to suggest that the increased bile cholesterol secretion caused by orotic acid is a result of impaired hepatic cholesterol esterification and that the increase in HMG-CoA reductase activity is a result of diminished negative feedback due to the depleted content of cholesteryl ester in the hepatic microsomes

  14. Nuclear receptors in control of cholesterol transport

    NARCIS (Netherlands)

    van der Veen, Jelske Nynke

    2007-01-01

    Cholesterol is een structurele component van celmembranen en een grondstof voor de aanmaak van steroïde hormonen en galzouten en vervult dus een aantal essentiële fysiologische functies. Een goede balans van cholesterol opname, synthese, afbraak en uitscheiding is noodzakelijk, omdat verhoogde

  15. Green methodology for the recovery of Cr (VI from tannery effluent using newly synthesized quaternary ammonium salt

    Directory of Open Access Journals (Sweden)

    K.S. Yoganand

    2017-02-01

    Full Text Available Leather tanning industries release effluents into the river through various canals. These effluents contain chromium (VI contaminating the river and the ground water as well. To fix a solution for this issue a simple and selective solvent extraction method has been applied by using a newly synthesized quaternary ammonium salt viz 2-benzoylethylheptyldimethylammonium bromide. By varying the parameters such as quaternary ammonium salts, sulfuric acid, pH, solvents, equilibration time and aqueous organic ratio the extraction efficiency has been determined.

  16. Critical time window of neuronal cholesterol synthesis during neurite outgrowth.

    Science.gov (United States)

    Fünfschilling, Ursula; Jockusch, Wolf J; Sivakumar, Nandhini; Möbius, Wiebke; Corthals, Kristina; Li, Sai; Quintes, Susanne; Kim, Younghoon; Schaap, Iwan A T; Rhee, Jeong-Seop; Nave, Klaus-Armin; Saher, Gesine

    2012-05-30

    Cholesterol is an essential membrane component enriched in plasma membranes, growth cones, and synapses. The brain normally synthesizes all cholesterol locally, but the contribution of individual cell types to brain cholesterol metabolism is unknown. To investigate whether cortical projection neurons in vivo essentially require cholesterol biosynthesis and which cell types support neurons, we have conditionally ablated the cholesterol biosynthesis in these neurons in mice either embryonically or postnatally. We found that cortical projection neurons synthesize cholesterol during their entire lifetime. At all stages, they can also benefit from glial support. Adult neurons that lack cholesterol biosynthesis are mainly supported by astrocytes such that their functional integrity is preserved. In contrast, microglial cells support young neurons. However, compensatory efforts of microglia are only transient leading to layer-specific neuronal death and the reduction of cortical projections. Hence, during the phase of maximal membrane growth and maximal cholesterol demand, neuronal cholesterol biosynthesis is indispensable. Analysis of primary neurons revealed that neurons tolerate only slight alteration in the cholesterol content and plasma membrane tension. This quality control allows neurons to differentiate normally and adjusts the extent of neurite outgrowth, the number of functional growth cones and synapses to the available cholesterol. This study highlights both the flexibility and the limits of horizontal cholesterol transfer in vivo and may have implications for the understanding of neurodegenerative diseases.

  17. Cholesterol and ocular pathologies: focus on the role of cholesterol-24S-hydroxylase in cholesterol homeostasis

    Directory of Open Access Journals (Sweden)

    Fourgeux Cynthia

    2015-03-01

    Full Text Available The retina is responsible for coding the light stimulus into a nervous signal that is transferred to the brain via the optic nerve. The retina is formed by the association of the neurosensory retina and the retinal pigment epithelium that is supported by Bruch’s membrane. Both the physical and metabolic associations between these partners are crucial for the functioning of the retina, by means of nutrient intake and removal of the cell and metabolic debris from the retina. Dysequilibrium are involved in the aging processes and pathologies such as age-related macular degeneration, the leading cause of visual loss after the age of 50 years in Western countries. The retina is composed of several populations of cells including glia that is involved in cholesterol biosynthesis. Cholesterol is the main sterol in the retina. It is present as free form in cells and as esters in Bruch’s membrane. Accumulation of cholesteryl esters has been associated with aging of the retina and impairment of the retinal function. Under dietary influence and in situ synthesized, the metabolism of cholesterol is regulated by cell interactions, including neurons and glia via cholesterol-24S-hydroxylase. Several pathophysiological associations with cholesterol and its metabolism can be suggested, especially in relation to glaucoma and age-related macular degeneration.

  18. Measurement of T-lymphocyte responses in whole-blood cultures using newly synthesized DNA and ATP.

    Science.gov (United States)

    Sottong, P R; Rosebrock, J A; Britz, J A; Kramer, T R

    2000-03-01

    The proliferative response is most frequently determined by estimating the amount of [(3)H]thymidine incorporated into newly synthesized DNA. The [(3)H]thymidine procedure requires the use of radioisotopes as well as lengthy periods of incubation (>72 h). An alternative method of assessing T-lymphocyte activation in whole-blood cultures involves the measurement of the nucleotide ATP instead of [(3)H]thymidine incorporation. In addition, the Luminetics assay of T-cell activation measures specific T-lymphocyte subset responses through the use of paramagnetic particles coated with monoclonal antibodies against CD antigens. This assay permits rapid (24 h) analysis of lymphocyte subset activation responses to mitogens and recall antigens in small amounts of blood.

  19. Synthesis and optimization of cholesterol-based diquaternary ammonium Gemini Surfactant (Chol-GS) as a new gene delivery vector.

    Science.gov (United States)

    Kim, Bieong-Kil; Doh, Kyung-Oh; Bae, Yun-Ui; Seu, Young-Bae

    2011-01-01

    Amongst a number of potential nonviral vectors, cationic liposomes have been actively researched, with both gemini surfactants and bola amphiphiles reported as being in possession of good structures in terms of cell viability and in vitro transfection. In this study, a cholesterol-based diquaternary ammonium gemini surfactant (Chol-GS) was synthesized and assessed as a novel nonviral gene vector. Chol-GS was synthesized from cholesterol by way of four reaction steps. The optimal efficiency was found to be at a weight ratio of 1:4 of lipid:DOPE (1,2-dioleoyl-L-alpha- glycero-3-phosphatidylethanolamine), and at a ratio of between 10:1~15:1 of liposome:DNA. The transfection efficiency was compared with commercial liposomes and with Lipofectamine, 1,2-dimyristyloxypropyl-3-dimethylhydroxyethylammonium bromide (DMRIE-C), and N-[1-(2,3-dioleoyloxy)propyl]- N,N,N-trimethylammonium chloride (DOTAP). The results indicate that the efficiency of Chol-GS is greater than that of all the tested commercial liposomes in COS7 and Huh7 cells, and higher than DOTAP and Lipofectamine in A549 cells. Confirmation of these findings was observed through the use of green fluorescent protein expression. Chol-GS exhibited a moderate level of cytotoxicity, at optimum concentrations for efficient transfection, indicating cell viability. Hence, the newly synthesized Chol-GS liposome has the potential of being an excellent nonviral vector for gene delivery.

  20. High cholesterol level is essential for myelin membrane growth.

    Science.gov (United States)

    Saher, Gesine; Brügger, Britta; Lappe-Siefke, Corinna; Möbius, Wiebke; Tozawa, Ryu-ichi; Wehr, Michael C; Wieland, Felix; Ishibashi, Shun; Nave, Klaus-Armin

    2005-04-01

    Cholesterol in the mammalian brain is a risk factor for certain neurodegenerative diseases, raising the question of its normal function. In the mature brain, the highest cholesterol content is found in myelin. We therefore created mice that lack the ability to synthesize cholesterol in myelin-forming oligodendrocytes. Mutant oligodendrocytes survived, but CNS myelination was severely perturbed, and mutant mice showed ataxia and tremor. CNS myelination continued at a reduced rate for many months, and during this period, the cholesterol-deficient oligodendrocytes actively enriched cholesterol and assembled myelin with >70% of the cholesterol content of wild-type myelin. This shows that cholesterol is an indispensable component of myelin membranes and that cholesterol availability in oligodendrocytes is a rate-limiting factor for brain maturation.

  1. Biodistribution of newly synthesized PHEA-based polymer-coated SPION in Sprague Dawley rats as magnetic resonance contrast agent

    Directory of Open Access Journals (Sweden)

    Park J

    2013-10-01

    Full Text Available Junsung Park,1,2,* Wonkyung Cho,1,2,* Hee Jun Park,1,2 Kwang-Ho Cha,1,2 Dae-Chul Ha,2,5 Youn-Woong Choi,5 Ha-Young Lee,3 Sun-Hang Cho,5 Sung-Joo Hwang1,4 1Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; 2College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea; 3Biomaterials Laboratory, Korea Research Institutes of Chemical Technology, Daejeon, Republic of Korea; 4College of Pharmacy, Yonsei University, Incheon, Republic of Korea; 5Korea United Pharm Inc, Seoul, Republic of Korea *These authors contributed equally to this work Objectives: The purpose of this study was to observe the pharmacokinetic behavior of newly synthesized biocompatible polymers based on polyhydroxyethylaspartamide (PHEA to be used to coat an iron oxide core to make superparamagnetic iron oxide nanoparticles (SPION. Materials and methods: The isotopes [14C] and [59Fe] were used to label the polymer backbone (CLS and iron oxide core (FLS, respectively. In addition, unradiolabeled cold superparamagnetic iron oxide nanoparticles (SPION/ULS were synthesized to characterize particle size by dynamic light scattering, morphology by transmission electron microscopy, and in vivo magnetic resonance imaging (MRI. CLS and FLS were used separately to investigate the behavior of both the synthesized polymer and [Fe] in Sprague Dawley (SD rats, respectively. Because radioactivity of the isotopes was different by β for CLS and γ for FLS, synthesis of the samples had to be separately prepared. Results: The mean particle size of the ULS was 66.1 nm, and the biodistribution of CLS concentrations in various organs, in rank order of magnitude, was liver > kidney > small intestine > other. The biodistribution of FLS concentrations was liver > spleen > lung > other. These rank orders show that synthesized SPION mainly accumulates in the liver. The differences in the distribution were caused by the SPION metabolism. Radiolabeled

  2. The cholesterol space of the rat; L'espace cholesterol du rat

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, F [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    majeure partie les molecules de cholesterol contenues dans les organes suivants: rate, coeur, tissu adipeux, surrenales, poumons, moelle osseuse, foie, hematies. Pour un deuxieme groupe d'organes: peau, testicules, reins, colon, os, muscles, seule une fraction de leur cholesterol est renouvelable par ce processus. Aucun transfert n'est decelable au niveau du cerveau. 3) Les vitesses relatives des differents modes d'appartition (absorption, synthese) et de disparition (excretion, transformation) du cholesterol de son espace sont telles qu'un etat stationnaire isotopique s'y etablit vers le huitieme jour, lorsque l'animal ingere quotidiennement 5 milligrammes de cholesterol radioactif. (auteur)

  3. Intracellular transport of cholesterol in mammalian cells

    International Nuclear Information System (INIS)

    Brasaemle, D.L.

    1989-01-01

    The erythrocyte was selected as a simple cell for the study of transbilayer movement of cholesterol. Cholesterol oxidase was used to measure the distribution of [ 3 H]cholesterol across the erythrocyte membrane. Cholesterol oxidase was also used to estimate the rate of transport of low density lipoprotein (LDL) cholesterol to the plasma membrane of cultured Chinese hamster ovary (CHO) fibroblasts; the half-time of this process was 42 minutes. The rate of transport of LDL cholesterol to the plasma membrane was confirmed by a second procedure using amphotericin B. Amphotericin B was also used to estimate the rate of transport of endogenously synthesized cholesterol to the plasma membrane of CHO cells. New methodology was developed including improvements of the previously published cholesterol oxidase assay for plasma membrane cholesterol. A new method for detecting transport of cholesterol to the plasma membrane in cultured cells was developed using amphotericin B. Preliminary studies investigated the use of fluorescent polyenes, pimaricin and etruscomycin, as probes for plasma membrane cholesterol in transport studies. Finally, a modification of a previously published cell staining protocol yielded a simple, quantitative assay for cell growth

  4. The Synthesis of Substituted Piperazine-cholesterol Conjugates for ...

    African Journals Online (AJOL)

    A small library of cholesterol-piperazine conjugates were synthesized by the reaction of cholesteryl chloroformate with a set of substituted piperazines in dichloromethane at room temperature. The conjugates, all obtained in good to excellent yields, were synthesized to be key components of nucleic acid transfection ...

  5. Potassium-doped carbon nanotubes toward the direct electrochemistry of cholesterol oxidase and its application in highly sensitive cholesterol biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaorong [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Xu Jingjuan, E-mail: xujj@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen Hongyuan [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2011-10-30

    We demonstrate herein a newly developed serum total cholesterol biosensor by using the direct electron transfer of cholesterol oxidase (ChOx), which is based on the immobilization of cholesterol oxidase and cholesterol esterase (ChEt) on potassium-doped multi-walled carbon nanotubes (KMWNTs) modified electrodes. The KMWNTs accelerate the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx and maintaining its bioactivity. As a new platform in cholesterol analysis, the resulting electrode (ChOx/KMWNTs/GCE) exhibits a sensitive response to free cholesterol, with a linear range of 0.050-16.0 {mu}mol L{sup -1} and a detection limit of 5.0 nmol L{sup -1} (S/N = 3). Coimmobilization of ChEt and ChOx (ChEt/ChOx/KMWNTs/GCE) allows the determination of both free cholesterol and esterified cholesterol. The resulting biosensor shows the same linear range of 0.050-16.0 {mu}mol L{sup -1} for free cholesterol and cholesteryl oleate, with the detection limit of 10.0 and 12.0 nmol L{sup -1} (S/N = 3), respectively. The concentrations of total (free and esterified) cholesterol in human serum samples, determined by using the techniques developed in the present study, are in good agreement with those determined by the well-established techniques using the spectrophotometry.

  6. The Role of Maternal-Fetal Cholesterol Transport in Early Fetal Life : Current Insights

    NARCIS (Netherlands)

    Baardman, Maria E.; Kerstjens-Frederikse, Wilhelmina S.; Berger, Rolf M. F.; Bakker, Marian K.; Hofstra, Robert M. W.; Plosch, Torsten

    The importance of maternal cholesterol as an exogenous cholesterol source for the growing embryo was first reported in studies of Smith-Lemli-Opitz syndrome. Although most of the fetus's cholesterol is synthesized by the fetus itself, there is now growing evidence that during the first weeks of

  7. The role of maternal-fetal cholesterol transport in early fetal life: Current insights

    NARCIS (Netherlands)

    T. Baardman (Taco); W.S. Kerstjens-Frederikse (Wilhelmina); R.M.F. Berger (Rolf); M.K. Bakker (Marian); R.M.W. Hofstra (Robert); T. Plösch (Torsten)

    2013-01-01

    textabstractThe importance of maternal cholesterol as an exogenous cholesterol source for the growing embryo was first reported in studies of Smith-Lemli-Opitz syndrome. Although most of the fetus's cholesterol is synthesized by the fetus itself, there is now growing evidence that during the first

  8. Identification of Newly Synthesized Proteins by Echinococcus granulosus Protoscoleces upon Induction of Strobilation.

    Directory of Open Access Journals (Sweden)

    João Antonio Debarba

    2015-09-01

    Full Text Available The proteins responsible for the key molecular events leading to the structural changes between the developmental stages of Echinococcus granulosus remain unknown. In this work, azidohomoalanine (AHA-specific labeling was used to identify proteins expressed by E. granulosus protoscoleces (PSCs upon the induction of strobilar development.The in vitro incorporation of AHA with different tags into newly synthesized proteins (NSPs by PSCs was analyzed using SDS-PAGE and confocal microscopy. The LC-MS/MS analysis of AHA-labeled NSPs by PSCs undergoing strobilation allowed for the identification of 365 proteins, of which 75 were differentially expressed in comparison between the presence or absence of strobilation stimuli and 51 were expressed exclusively in either condition. These proteins were mainly involved in metabolic, regulatory and signaling processes.After the controlled-labeling of proteins during the induction of strobilar development, we identified modifications in protein expression. The changes in the metabolism and the activation of control and signaling pathways may be important for the correct parasite development and be target for further studies.

  9. Complexes cobalt(II, zinc(II and copper(II with some newly synthesized benzimidazole derivatives and their antibacterial activity

    Directory of Open Access Journals (Sweden)

    S. O. PODUNAVAC-KUZMANOVIC

    1999-05-01

    Full Text Available The preparation and properties of some complexes of cobalt(II, zinc(II and copper(II with several newly synthesized benzimidazole derivatives (L are reported. The complexes, of the general formula [MCl2L2] (M=Co(II, Zn(II and [CuCl2L(H2O], have a tetrahedral structure. The complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility measurements, IR and absorption electronic spectra. The antibacterial activitiy of the benzimidazoles and their complexes was evaluated against Erwinia carotovora subsp. carotovora and Erwinia amylovora. The complexes were found to be more toxic than the ligands.

  10. Electrochemical Study on Newly Synthesized Chlorocurcumin as an Inhibitor for Mild Steel Corrosion in Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    Ahmed A. Al-Amiery

    2013-11-01

    Full Text Available A new curcumin derivative, i.e., (1E,4Z,6E-5-chloro-1,7-bis(4-hydroxy-3-methoxyphenylhepta-1,4,6-trien-3-one (chlorocurcumin, was prepared starting with the natural compound curcumin. The newly synthesized compound was characterized by elemental analysis and spectral studies (IR, 1H-NMR and 13C-NMR. The corrosion inhibition of mild steel in 1 M HCl by chlorocurcumin has been studied using potentiodynamic polarization (PDP measurements and electrochemical impedance spectroscopy (EIS. The inhibition efficiency increases with the concentration of the inhibitor but decreases with increases in temperature. The potentiodynamic polarization reveals that chlorocurcumin is a mixed-type inhibitor. The kinetic parameters for mild steel corrosion were determined and discussed.

  11. Electrochemical Study on Newly Synthesized Chlorocurcumin as an Inhibitor for Mild Steel Corrosion in Hydrochloric Acid

    Science.gov (United States)

    Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Musa, Ahmed Y.; Li, Cheong Jiun

    2013-01-01

    A new curcumin derivative, i.e., (1E,4Z,6E)-5-chloro-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one (chlorocurcumin), was prepared starting with the natural compound curcumin. The newly synthesized compound was characterized by elemental analysis and spectral studies (IR, 1H-NMR and 13C-NMR). The corrosion inhibition of mild steel in 1 M HCl by chlorocurcumin has been studied using potentiodynamic polarization (PDP) measurements and electrochemical impedance spectroscopy (EIS). The inhibition efficiency increases with the concentration of the inhibitor but decreases with increases in temperature. The potentiodynamic polarization reveals that chlorocurcumin is a mixed-type inhibitor. The kinetic parameters for mild steel corrosion were determined and discussed. PMID:28788402

  12. Synthesis of Co3O4 Cotton-Like Nanostructures for Cholesterol Biosensor

    Directory of Open Access Journals (Sweden)

    Sami Elhag

    2014-12-01

    Full Text Available The use of templates to assist and possess a control over the synthesis of nanomaterials has been an attractive option to achieve this goal. Here we have used sodium dodecyl sulfate (SDS to act as a template for the low temperature synthesis of cobalt oxide (Co3O4 nanostructures. The use of SDS has led to tune the morphology, and the product was in the form of “cotton-like” nanostructures instead of connected nanowires. Moreover, the variation of the amount of the SDS used was found to affect the charge transfer process in the Co3O4. Using Co3O4 synthesized using the SDS for sensing of cholesterol was investigated. The use of the Co3O4 synthesized using the SDS was found to yield an improved cholesterol biosensor compared to Co3O4 synthesized without the SDS. The improvement of the cholesterol sensing properties upon using the SDS as a template was manifested in increasing the sensitivity and the dynamic range of detection. The results achieved in this study indicate the potential of using template assisted synthesis of nanomaterials in improving some properties, e.g., cholesterol sensing.

  13. A newly synthesized macakurzin C-derivative attenuates acute and chronic skin inflammation: The Nrf2/heme oxygenase signaling as a potential target

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad [College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan (Korea, Republic of); Shin, Iljin [College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon (Korea, Republic of); Kim, Kyeong-A; Noh, Dabi [College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan (Korea, Republic of); Baek, Seung-Hoon; Chang, Sun-Young [College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon (Korea, Republic of); Kim, Hyoungsu, E-mail: hkimajou@ajou.ac.kr [College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon (Korea, Republic of); Bae, Ok-Nam, E-mail: onbae@hanyang.ac.kr [College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan (Korea, Republic of)

    2016-09-15

    Impaired immune responses in skin play a pivotal role in the development and progression of chemical-associated inflammatory skin disorders. In this study, we synthesized new flavonoid derivatives from macakurzin C, and identified in vitro and in vivo efficacy of a potent anti-inflammatory flavonoid, Compound 14 (CPD 14), with its underlying mechanisms. In lipopolysaccharide (LPS)-stimulated murine macrophages and IFN-γ/TNF-α-stimulated human keratinocytes, CPD 14 significantly inhibited the release of inflammatory mediators including nitric oxide (NO), prostaglandins, and cytokines (IC{sub 50} for NO inhibition in macrophages: 4.61 μM). Attenuated NF-κB signaling and activated Nrf2/HO-1 pathway were responsible for the anti-inflammatory effects of CPD 14. The in vivo relevance was examined in phorbol 12-myristate 13-acetate (TPA)-induced acute skin inflammation and oxazolone-induced atopic dermatitis models. Topically applied CPD 14 significantly protected both irritation- and sensitization-associated skin inflammation by suppressing the expression of inflammatory mediators. In summary, we demonstrated that a newly synthesized flavonoid, CPD 14, has potent inhibitory effects on skin inflammation, suggesting it is a potential therapeutic candidate to treat skin disorders associated with excessive inflammation. - Highlights: • An anti-inflammatory flavonoid CPD 14 was newly synthesized from macakurzin C. • CPD 14 potently inhibited inflammatory reaction in keratinocytes and macrophages. • Dermal toxicity by irritation or sensitization in rats was protected by CPD 14. • Attenuated NF-κB and activated Nrf2/HO-1 were main mechanisms of CPD 14 action.

  14. Interaction of pathogens with host cholesterol metabolism.

    Science.gov (United States)

    Sviridov, Dmitri; Bukrinsky, Michael

    2014-10-01

    Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.

  15. Sterol biosynthesis from acetate and the fate of dietary cholesterol and desmosterol in crabs

    International Nuclear Information System (INIS)

    Teshima, Shin-ichi; Kanazawa, Akio; Okamoto, Haruhito

    1976-01-01

    This paper deals with the sterol-synthesizing ability and the fate of dietary sterols, cholesterol and desmosterol, in the crabs, Sesarma dehaani and Helice tridens. Injected acetate-1- 14 C was not incorporated into either squalene or sterols in the above crabs. This suggested that the sterol-synthesizing ability from acetate is absent or weak in the crabs, S. dehaani and H. tridens. The apparent percentage absorptions of dietary cholesterol and desmosterol from the digestive tracts were 91.9 and 90.9, respectively. The ingested cholesterol and desmosterol were metabolized to steryl esters and polar compounds but only slightly to water-soluble sterols. Also, it was shown that the crab, S. dehaani, is capable of converting desmosterol to cholesterol. (auth.)

  16. Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance

    International Nuclear Information System (INIS)

    Lee, Eun-Young; Shim, Yhong-Hee; Chitwood, David J.; Hwang, Soon Baek; Lee, Junho; Paik, Young-Ki

    2005-01-01

    Because Caenorhabditis elegans lacks several components of the de novo sterol biosynthetic pathway, it requires sterol as an essential nutrient. Supplemented cholesterol undergoes extensive enzymatic modification in C. elegans to form other sterols of unknown function. 7-Dehydrocholesterol reductase (DHCR) catalyzes the reduction of the Δ 7 double bond of sterols and is suspected to be defective in C. elegans, in which the major endogenous sterol is 7-dehydrocholesterol (7DHC). We microinjected a human DHCR expression vector into C. elegans, which was then incorporated into chromosome by γ-radiation. This transgenic C. elegans was named cholegans, i.e., cholesterol-producing C. elegans, because it was able to convert 7DHC into cholesterol. We investigated the effects of changes in sterol composition on longevity and stress resistance by examining brood size, mean life span, UV resistance, and thermotolerance. Cholegans contained 80% more cholesterol than the wild-type control. The brood size of cholegans was reduced by 40% compared to the wild-type control, although the growth rate was not significantly changed. The mean life span of cholegans was increased up to 131% in sterol-deficient medium as compared to wild-type. The biochemical basis for life span extension of cholegans appears to partly result from its acquired resistance against both UV irradiation and thermal stress

  17. Cholesterol in the retina: the best is yet to come

    Science.gov (United States)

    Pikuleva, Irina A.; Curcio, Christine A.

    2014-01-01

    Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes’ roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link. PMID:24704580

  18. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism

    NARCIS (Netherlands)

    Sachdev, Vinay; Leopold, Christina; Bauer, Raimund; Patankar, Jay V.; Iqbal, Jahangir; Obrowsky, Sascha; Boverhof, Renze; Doktorova, Marcela; Scheicher, Bernhard; Goeritzer, Madeleine; Kolb, Dagmar; Turnbull, Andrew V.; Zimmer, Andreas; Hoefler, Gerald; Hussain, M. Mahmood; Groen, Albert K.; Kratky, Dagmar

    2016-01-01

    Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was

  19. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism.

    Science.gov (United States)

    Sachdev, Vinay; Leopold, Christina; Bauer, Raimund; Patankar, Jay V; Iqbal, Jahangir; Obrowsky, Sascha; Boverhof, Renze; Doktorova, Marcela; Scheicher, Bernhard; Goeritzer, Madeleine; Kolb, Dagmar; Turnbull, Andrew V; Zimmer, Andreas; Hoefler, Gerald; Hussain, M Mahmood; Groen, Albert K; Kratky, Dagmar

    2016-09-01

    Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1(-/-)) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1(-/-) and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Cholesterol biosynthesis by the cornea. Comparison of rates of sterol synthesis with accumulation during early development

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Fleschner, C.R.

    1989-01-01

    The origin of the cholesterol needed by the cornea for growth and cell turnover was addressed by comparing absolute rates of sterol synthesis with rates of sterol accumulation during early development of the rabbit. Linearity of incorporation of 3 H 2 O and [ 14 C]mevalonate into digitonin-precipitable sterols with time of incubation in vitro and a lack of accumulation of 14 C in intermediates of sterol biosynthesis indicated that tritiated water can validly be used to measure rates of sterol synthesis by the cornea. The rate of sterol synthesis per unit weight of rabbit cornea was constant between 14 and 60 days of age at an average 1.03 nmol of 3 H of 3 H 2 O incorporated/mg dry cornea per 8 h. Essentially all of the synthesized cholesterol and most of the cholesterol mass was present in corneal epithelium. The cumulative sterol synthesized over the 46-day period studied exceeded the observed rate of cholesterol accumulation by sixfold. Cholesterol synthesized in excess of the growth requirement was likely used to support turnover of the epithelium which was estimated at 9 days. Removal of cholesterol from the cornea by excretion into tear fluid and clearance by high density lipoproteins are also considered

  1. Preparation, extraction and dosage of labelled cholesterol (D and C{sup 14}); Preparation, extraction et dosage de cholesterol marque (D et C{sup 14})

    Energy Technology Data Exchange (ETDEWEB)

    Bugnard, L; Chevallier, F; Coursaget, J [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    We returned in this note the techniques that we used for the preparation of labelled cholesterol. The chemical exchange of hydrogen enabling to contain deutero-cholesterol until 4 percent deuterium. The biologic synthesis, done on living rats or on their liver maintained in survival, permits, on the other hand, to get active cholesterol from acetate of containing sodium of the carbon 14. We indicated the techniques of extraction and dosage of the marked cholesterol. The radioactivity is measured with a Geiger-Muller counter. (M.B.) [French] Nous avons rapporte dans cette note les techniques que nous avons utilisees pour la preparation de cholesterol marque. L'echange chimique d'hydrogene conduit a du deuterio-cholesterol pouvant contenir jusqu'a 4 pour cent de deuterium. La synthese biologique, effectuee sur des rats vivants ou sur leur foie maintenu en survie, permet, d'autre part, d'obtenir du cholesterol radio-actif a partir d'acetate de sodium contenant du carbone 14. Nous avons indique les techniques d'extraction et de dosage du cholesterol marque. Sa radioactivite est mesuree au compteur de Geiger-Muller. (M.B.)

  2. Impact of a public cholesterol screening program.

    Science.gov (United States)

    Fischer, P M; Guinan, K H; Burke, J J; Karp, W B; Richards, J W

    1990-12-01

    The National Cholesterol Education Program (NCEP) has endorsed physician case finding as the primary method to detect individuals with elevated cholesterol levels. Despite this recommendation, promotional and for-profit public screening programs have flourished. We surveyed participants of a mall-based cholesterol screening program 1 year after their screening. Sixty-four percent of those screened had not previously known their cholesterol levels. Those who were newly screened were less likely to benefit from this testing than the general public, since they were older (mean age, 55.3 years), more likely to be female (67.4%), and nonsmokers (88%). Screenees had excellent recall of their cholesterol level (mean absolute reporting error, 0.24 mmol/L [9 mg/dL]) and a good understanding of cholesterol as a coronary heart disease risk. Those with elevated cholesterol levels reported high distress from screening but no reduction in overall psychosocial well-being and an actual decrease in absenteeism. Only 53.7% of all who were advised to seek follow-up because of an elevated screening value had done so within the year following the screening program. However, of those with values greater than 6.2 mmol/L (240 mg/dL), 68% had sought follow-up. Many of those who participate in public screening programs have been previously tested, fall into low-benefit groups, or fail to comply with recommended follow-up. We therefore conclude that cholesterol screening programs of the type now commonly offered are unlikely to contribute greatly to the national efforts to further reduce coronary heart disease.

  3. The origin of cholesterol in chyle demonstrated by nuclear indicator methods; Origines du cholesterol du chyle mises en evidence par la methode des indicateurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, M

    1962-07-01

    In order to obtain information about the mechanism of the intestinal absorption of cholesterol, rats having a lymphatic abdominal fistula are used. The animals receive either 4-{sup 14}C- cholesterol subcutaneously or orally, or the 1-{sup 14}C acetate. The study of the specific radio-activities of the cholesterol in chyle, in serum, in the lining, and in the intestinal contents makes it possible to define the roles played by the transfer cholesterol from the serum, by the cholesterol synthesised intestinally, and by the absorption cholesterol, in the formations of the lymph and of the chylomicrons. A new theory is proposed for the mechanism of cholesterol absorption. (author) [French] Pour obtenir des renseignements concernant le mecanisme de l'absorption intestinale du cholesterol, on utilise des rats porteurs d'une fistule lymphatique abdominale. Les animaux recoivent soit du cholesterol 4-{sup 14}C par voie sous-cutanee ou par voie orale, soit de l'acetate 1-{sup 14}C. L'etude des radioactivites specifiques du cholesterol du chyle, du serum, de la paroi et du contenu intestinal permet de preciser les roles joues par le cholesterol de transfert d'origine serique, par le cholesterol de synthese intestinale et par le cholesterol d'absorption, dans la formation de la lymphe et des chylomicrons. Une theorie nouvelle concernant le mecanisme de l'absorption du cholesterol est proposee. (auteur)

  4. Cholesterol tethered bioresponsive polycation as a candidate for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Ying [Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou 310009 (China); Wang Youxiang, E-mail: yx_wang@zju.edu.cn [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou 310027 (China); Hu Qiaoling; Shen Jiacong [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou 310027 (China)

    2009-04-30

    The efficient unpacking of viral protein shell gave the inspiration for the synthesized vectors. In this research, novel cholesterol tethered bioresponsive polyethylenimine (PEI) was specially designed via disulfide-containing cross-linker. The cholesterol lipid had proved to increase the permeability of gene vector through cell membrane. The acid-base titration indicated that the synthesized polycation possessed efficient proton sponge effect, which was suggested to increase endosomal release of pDNA complexes into the cytoplasm. The cholesterol tethered polycation could effectively induce DNA condensation and form spherical particles with diameter about 200 nm at N/P ratio of 10. At glutathione concentration of 3 mM, the polyplexes were unpacked due to the bioresponsive cleavage of the disulfide bonds. The in-vitro experiment indicated that the polyplexes showed efficient transfection efficiency to HEK293T cells. All the results indicated that the bioresponsive polycation could be served as an effective trigger to control the release of DNA at the intracellular environment. The novel bioresponsive polycation might have great potential in non-viral gene delivery research and application.

  5. Newly synthesized benzanthrone derivatives as prospective fluorescent membrane probes

    International Nuclear Information System (INIS)

    Zhytniakivska, Olga; Trusova, Valeriya; Gorbenko, Galyna; Kirilova, Elena; Kalnina, Inta; Kirilov, Georgiy; Kinnunen, Paavo

    2014-01-01

    Fluorescence spectral properties of a series of novel benzanthrone derivatives have been explored in lipid bilayers composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with cholesterol (Chol) and anionic phospholipid cardiolipin (CL). Analysis of partition coefficients showed that all the examined compounds possess rather high lipid-associating ability, with the amidino derivatives exhibiting stronger membrane partitioning compared with the aminobenzanthrones. To understand how benzanthrone partition properties correlate with their structure, quantitative structure property relationship (QSPR) analysis was performed involving a range of quantum chemical molecular descriptors. -- Highlights: • Benzanthrone partitioning into lipid bilayer correlates with lipophilicity of the dyes. • Partition properties of benzanthrones depend on the dye dipole moment. • Amidino derivatives exhibit higher membrane affinity than aminobenzanthrones

  6. Dairy products and plasma cholesterol levels

    Directory of Open Access Journals (Sweden)

    Lena Ohlsson

    2010-08-01

    Full Text Available Cholesterol synthesized in the body or ingested is an essential lipid component for human survival from our earliest life. Newborns ingest about 3–4 times the amount per body weight through mother's milk compared to the dietary intake of adults. A birth level of 1.7 mmol/L plasma total cholesterol will increase to 4–4.5 mmol/L during the nursing period and continue to increase from adulthood around 40% throughout life. Coronary artery disease and other metabolic disorders are strongly associated with low-density lipoprotein (LDL and high-density lipoprotein (HDL cholesterol as well as triacylglycerol concentration. Milk fat contains a broad range of fatty acids and some have a negative impact on the cholesterol rich lipoproteins. The saturated fatty acids (SFAs, such as palmitic acid (C16:0, myristic acid (C14:0, and lauric acid (C12:0, increase total plasma cholesterol, especially LDL, and constitute 11.3 g/L of bovine milk, which is 44.8% of total fatty acid in milk fat. Replacement of dairy SFA and trans-fatty acids with polyunsaturated fatty acids decreases plasma cholesterol, especially LDL cholesterol, and is associated with a reduced risk of cardiovascular disease. Available data shows different effects on lipoproteins for different dairy products and there is uncertainty as to the impact a reasonable intake amount of dairy items has on cardiovascular risk. The aim of this review is to elucidate the effect of milk components and dairy products on total cholesterol, LDL, HDL, and the LDL/HDL quotients. Based on eight recent randomized controlled trials of parallel or cross-over design and recent reviews it can be concluded that replacement of saturated fat mainly (but not exclusively derived from high-fat dairy products with low-fat dairy products lowers LDL/HDL cholesterol and total/HDL cholesterol ratios. Whey, dairy fractions enriched in polar lipids, and techniques such as fermentation, or fortification of cows feeding can be used

  7. Peptide mediators of cholesterol efflux

    Energy Technology Data Exchange (ETDEWEB)

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  8. Identification and statistical optimization of fermentation conditions for a newly isolated extracellular cholesterol oxidase-producing Streptomyces cavourensis strain NEAE-42

    OpenAIRE

    El-Naggar, Noura El-Ahmady; El-Shweihy, Nancy M.; El-Ewasy, Sara M.

    2016-01-01

    Background Due to broad range of clinical and industrial applications of cholesterol oxidase, isolation and screening of bacterial strains producing extracellular form of cholesterol oxidase is of great importance. Results One hundred and thirty actinomycete isolates were screened for their cholesterol oxidase activity. Among them, a potential culture, strain NEAE-42 is displayed the highest extracellular cholesterol oxidase activity. It was selected and identified as Streptomyces cavourensis...

  9. 3 Benzyl-6-chloropyrone: a suicide inhibitor of cholesterol esterase

    International Nuclear Information System (INIS)

    Saint, C.; Gallo, I.; Kantorow, M.; Bailey, J.M.

    1986-01-01

    Cholesterol, absorbed from the intestine, appears in lymph as the ester. Cholesterol esterase is essential for this process, since depletion of the enzyme blocks and repletion restores, absorption. Selective inhibitors of cholesterol esterase may thus prove useful in reducing cholesterol uptake. A series of potential suicide substrates were synthesized which, following cleavage by the enzyme, would attack the putative nucleophile in the active site. One of these, 3-benzyl-6-chloropyrone (3BCP), inhibited both synthesis and hydrolysis of 14 C-cholesteryl oleate with an I 50 of approximately 150 μM. The inactivation was time-dependent and characteristic of a suicide mechanism. The α pyrone structure (lactone analog) is cleaved by a serine-hydroxyl in the active site. This generates an enoyl chloride which inactivates the imidazole believed to play a part in the catalytic function of the enzyme. Inhibition by 3BCP is selective for cholesterol esterase. The activity of pancreatic lipase as not affected by concentrations up to 1 mM

  10. Size and frequency of gaps in newly synthesized DNA of xeroderma pigmentosum human cells irradiated with ultraviolet light

    International Nuclear Information System (INIS)

    Meneghini, R.; Cordeiro-Stone, M.; Schumacher, R.I.

    1981-01-01

    Native newly synthesized DNA from human cells (xeroderma pigmentosum type) irradiated with ultraviolet light releases short pieces of DNA (L-DNA) when incubated with the single-strand specific S 1 nuclease. This is not observed in the case of unirradiated cells. Previous experiments had shown that the L-DNA resulted from the action of S 1 nuclease upon gaps, i.e., single-stranded DNA discontinuities in larger pieces of double-stranded DNA. We verified that the duplex L-DNA, that arises from the inter-gap regions upon S 1 nuclease treatment, has a size which approximates the distance between two pyrimidine dimers on the same strand. A method was devised to measure the size of the gaps. These parameters have been considered in the proposition of a model for DNA synthesis on a template containing pyrimidine dimers

  11. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    Science.gov (United States)

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-05

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The Human Nuclear Exosome Targeting Complex Is Loaded onto Newly Synthesized RNA to Direct Early Ribonucleolysis

    Directory of Open Access Journals (Sweden)

    Michal Lubas

    2015-01-01

    Full Text Available The RNA exosome complex constitutes the major nuclear eukaryotic 3′-5′ exonuclease. Outside of nucleoli, the human nucleoplasmic exosome is directed to some of its substrates by the nuclear exosome targeting (NEXT complex. How NEXT targets RNA has remained elusive. Using an in vivo crosslinking approach, we report global RNA binding sites of RBM7, a key component of NEXT. RBM7 associates broadly with RNA polymerase II-derived RNA, including pre-mRNA and short-lived exosome substrates such as promoter upstream transcripts (PROMPTs, enhancer RNAs (eRNAs, and 3′-extended products from snRNA and replication-dependent histone genes. Within pre-mRNA, RBM7 accumulates at the 3′ ends of introns, and pulse-labeling experiments demonstrate that RBM7/NEXT defines an early exosome-targeting pathway for 3′-extended snoRNAs derived from such introns. We propose that RBM7 is generally loaded onto newly synthesized RNA to accommodate exosome action in case of available unprotected RNA 3′ ends.

  13. Newly synthesized proteins in seminiferous intertubular and intratubular compartments of the rat testis

    International Nuclear Information System (INIS)

    Shabanowitz, R.B.; Kierszenbaum, A.L.

    1986-01-01

    Two-dimensional gel electrophoresis combined with autoradiography and Western blot procedures have been used to characterize newly synthesized proteins in testicular intertubular fluid (TIF) and seminiferous tubular fluid (SNF). Fluids were collected following in vivo and in vitro intratesticular injection of [ 35 S]methionine into control and hypophysectomized adult rats. A discrete number of [ 35 S]methionine-labeled proteins were detected within TIF and SNF. Their presence and relative abundance varied according to in vivo and in vitro labeling conditions. While two major blood plasma proteins, albumin and transferrin, were radioactively labeled after in vivo labeling, these two proteins were insignificantly labeled in samples collected after in vitro labeling. Three acidic proteins, possibly secreted by Sertoli cells (Mr = 72,000, 45,000 and 35,000), were more abundant in TIF samples collected after in vitro [ 35 S]methionine labeling than after in vivo labeling. Incubated seminiferous tubules and TIF of hypophysectomized rats showed a decrease in [35S]methionine-labeling intensity of the Mr = 72,000 acidic protein, possibly reflecting changes in the seminiferous epithelium caused by pituitary hormonal deprivation. Autoradiographs of TIF and most remarkably, of SNF, showed many protein spots that suggested cell breakage and leakage during sample collection. Results of this study suggest that most albumin and transferrin found in TIF and SNF have an extratesticular origin and that proteins secreted by the Sertoli cell can gain access to both TIF and SNF

  14. Zymosterol is located in the plasma membrane of cultured human fibroblasts

    International Nuclear Information System (INIS)

    Echevarria, F.; Norton, R.A.; Nes, W.D.; Lange, Y.

    1990-01-01

    Zymosterol (5 alpha-cholesta-8(9),24-dien-3 beta-ol) comprised a negligible fraction of the mass of sterol in cultured human fibroblasts but was well labeled biosynthetically with radioactive acetate. Treatment of cells with triparanol, a potent inhibitor of sterol delta 24-reductase, led to a marked increase in labeled zymosterol while its mass rose to 1 mol% of total sterol. All of this sterol could be chased into cholesterol. Furthermore, cell homogenates converted exogenous radiolabeled zymosterol to cholesterol. Three lines of evidence suggested that biosynthetically labeled zymosterol was associated with the plasma membrane. (1) About 80% of radiolabeled zymosterol was oxidized by the impermeant enzyme, cholesterol oxidase, in glutaraldehyde-fixed intact cells. (2) Sucrose density gradient analysis of homogenates showed that the equilibrium buoyant density profile of newly synthesized zymosterol was identical with that of the plasma membrane. (3) Newly synthesized zymosterol was transferred as readily from fixed intact fibroblasts to exogenous acceptors as was cholesterol. Given that cholesterol is synthesized within the cell, it is unclear why most of the zymosterol is in the plasma membrane. The pathway of cholesterol biosynthesis may compel zymosterol to flux through the plasma membrane. Alternatively, plasma membrane zymosterol may represent a separate pool, in equilibrium with the zymosterol in the intracellular biosynthetic pool

  15. Serum Lipids and Diabetic Retinopathy in Newly Diagnosed Type 2 Diabetic Subjects

    Directory of Open Access Journals (Sweden)

    Shahana Shermin

    2011-07-01

    Full Text Available Background: Diabetic retinopathy is the commonest and usually the first observable vascular complication of diabetes mellitus. Along with hyperglycaemia, dyslipidaemia is a contributing factor for the occurrence of diabetic retinopathy. It is postulated that dyslipidaemia results in formation of hard exudate by increasing blood viscosity and altering the fibrinolytic system. A case control study was carried out in the department of Biochemistry, Bangabandhu Sheikh Mujib Medical University, Dhaka during the period of January 2006 to December 2007 to evaluate the serum lipid profile in newly diagnosed type 2 diabetic subjects with diabetic retinopathy. Materials and Methods: Total 85 newly diagnosed type 2 diabetic subjects were included in this study, 40 were cases having retinopathy and 45 were age and sex matched controls without retinopathy. Serum triglyceride (TG, total cholesterol (TC, low density lipoprotein cholesterol (LDL-C and high density lipoprotein cholesterol (HDL-C were compared between cases and controls. Unpaired t-test and chi-square test were done between groups as tests of significance. Results: All the parameters of lipid profile showed dyslipidaemic trend both in cases and controls. In the cases TG was significantly higher and HDL-C was significantly lower than that of controls (p < 0.05 whereas no significant difference was found between cases and controls with respect to serum TC and LDL-C. Conclusion: It can be concluded that high TG and low HDL-C are associated with diabetic retinopathy in newly diagnosed type 2 diabetes.

  16. Cholesterol-imprinted macroporous monoliths: Preparation and characterization.

    Science.gov (United States)

    Stepanova, Mariia А; Kinziabulatova, Lilia R; Nikitina, Anna A; Korzhikova-Vlakh, Evgenia G; Tennikova, Tatiana B

    2017-11-01

    The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Newly Synthesized Doxorubicin Complexes with Selected Metals—Synthesis, Structure and Anti-Breast Cancer Activity

    Directory of Open Access Journals (Sweden)

    Agata Jabłońska-Trypuć

    2017-07-01

    Full Text Available Doxorubicin (DOX is very effective chemotherapeutic agent, however it has several major drawbacks. Therefore the motivation for developing novel drug complexes as anticancer agents with different mechanism of action has arisen. The aim of the present study was to evaluate the influence of newly synthesized DOX complexes with selected metals (Mg, Mn, Co, Ni, Fe, Cu, Zn on apoptosis, cell cycle, viability, proliferation and cytotoxicity in the breast cancer cell line MCF-7. Complexation of DOX with metals has likewise been the subject of our research. The current work showed that the tested bivalent metals at a given pH condition formed metal:DOX complexes in a ratio of 2:1, while iron complexes with DOX in a ratio of 3:1. The studies also showed that selected metal-DOX complexes (Mg-DOX, Mn-DOX, Ni-DOX at 0.5 µM concentration significantly decreased cell viability and proliferation, however they increased caspase 7 activity. Results also indicated that studied metal-DOX complexes showed high cytotoxicity in MCF-7 cells. Therefore they were chosen for cell cycle check-points and apoptosis/necrosis analysis studied by flow cytometry. Obtained results suggest that doxorubicin complexed by specified metals can be considered as a potential anti-breast cancer agent, which is characterized by a higher efficacy than a parent drug.

  18. Sterol-mediated regulation of mevalonic acid synthesis. Accumulation of 4-carboxysterols as the predominant sterols synthesized in a Chinese hamster ovary cell cholesterol auxotroph (mutant 215)

    International Nuclear Information System (INIS)

    Plemenitas, A.; Havel, C.M.; Watson, J.A.

    1990-01-01

    Chinese hamster ovary-215 (CHO-215) mutant cells are auxotrophic for cholesterol. Berry and Chang (Berry, D. J., and Chang, T. Y. (1982) Biochemistry 21, 573-580) suggested that the metabolic lesion was at the level of 4-methyl sterol oxidation. However, the observed cellular accumulation of lanosterol was not consistent with a defect at this metabolic site. With the use of a novel Silica Sep Pak sterol separation procedure, we demonstrated that 60-80% of the acetonesoluble lipid radioactivity in [5-3H]mevalonate-labeled CHO-215 cells was incorporated into acidic sterols. 7(8),Cholesten-4 beta-methyl,4 alpha-carboxy,3 beta-ol was the dominant end product. In addition to this acidic sterol, 7(8),24-cholestadien,4 beta-methyl,4 alpha-carboxy,3 beta-ol and 7(8),24-cholestadien,4 alpha-carboxy,3 beta-ol were also isolated. Incubation of cell-free extracts with [3H]7(8)-cholesten-4 beta-methyl, 4 alpha-carboxy,3 beta-ol and pyridine nucleotides confirmed that CHO-215 4-carboxysterol decarboxylase activity was less than 1% of that for wild type cells. Thus, a correspondence between decreased 4-carboxysterol decarboxylase activity and the spectrum of accumulated sterol products by intact CHO-215 cells was demonstrated. No detectable cholesterol was synthesized by CHO-215 cells. 3H-Product accumulation studies demonstrated that 7(8),24-cholestadien, 4 beta-methyl,4 alpha-carboxy,3 beta-ol increased prior to its subsequent saturation at the delta 24 carbon. Furthermore, the steady state ratio for delta 24-saturated acidic sterols/unsaturated acidic sterols was dependent on media cholesterol source and amount. Finally, the accumulated acidic sterol(s) were not regulatory signal molecules for the modulation of 3-hydroxy-3-methyl-glutaryl coenzyme. A reductase activity in response to cholesterol availability

  19. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation

    International Nuclear Information System (INIS)

    Fernandez, Carlos; Lobo, Maria del Val T.; Gomez-Coronado, Diego; Lasuncion, Miguel A.

    2004-01-01

    As an essential component of mammalian cell membranes, cells require cholesterol for proliferation, which is either obtained from plasma lipoproteins or synthesized intracellularly from acetyl-CoA. In addition to cholesterol, other non-sterol mevalonate derivatives are necessary for DNA synthesis, such as the phosphorylated forms of isopentane, farnesol, geranylgeraniol, and dolichol. The aim of the present study was to elucidate the role of cholesterol in mitosis. For this, human leukemia cells (HL-60) were incubated in a cholesterol-free medium and treated with SKF 104976, which inhibits cholesterol biosynthesis by blocking sterol 14α-demethylase, and the expression of relevant cyclins in the different phases of the cell cycle was analyzed by flow cytometry. Prolonged cholesterol starvation induced the inhibition of cytokinesis and the formation of polyploid cells, which were multinucleated and had mitotic aberrations. Supplementing the medium with cholesterol completely abolished these effects, demonstrating they were specifically due to cholesterol deficiency. This is the first evidence that cholesterol is essential for mitosis completion and that, in the absence of cholesterol, the cells fail to undergo cytokinesis, entered G1 phase at higher DNA ploidy (tetraploidy), and then progressed through S (rereplication) into G2, generating polyploid cells

  20. Cholesterol transfer from normal and atherogenic low density lipoproteins to Mycoplasma membranes

    International Nuclear Information System (INIS)

    Mitschelen, J.J.; St Clair, R.W.; Hester, S.H.

    1981-01-01

    The purpose of this study was to determine whether the free cholesterol of hypercholesterolemic low density lipoprotein from cholesterol-fed nonhuman primates has a greater potential for surface transfer to cell membranes than does the free cholesterol of normal low density lipoprotein. The low density lipoproteins were isolated from normal and hypercholesterolemic rhesus and cynomolgus monkeys, incubated with membranes from Acholeplasma laidlawii, a mycoplasma species devoid of cholesterol in its membranes, and the mass transfer of free cholesterol determined by measuring membrane cholesterol content. Since these membranes neither synthesize nor esterify cholesterol, nor degrade the protein or cholesterol ester moieties of low density lipoprotein, they are an ideal model with which to study differences in the cholesterol transfer potential of low density lipoprotein independent of the uptake of the intact low density lipoprotein particle. These studies indicate that, even though there are marked differences in the cholesterol composition of normal and hypercholesterolemic low density lipoproteins, this does not result in a greater chemical potential for surface transfer of free cholesterol. Consequently, if a difference in the surface transfer of free cholesterol is responsible for the enhanced ability of hypercholesterolemic low density lipoprotein to promote cellular cholesterol accumulation and, perhaps, also atherosclerosis, it must be the result of differences in the interaction to the hypercholesterolemic low density lipoprotein with the more complicated mammalian cell membranes, rather than differences in the chemical potential for cholesterol transfer

  1. Fluorescence quenching of newly synthesized biologically active coumarin derivative by aniline in binary solvent mixtures

    International Nuclear Information System (INIS)

    Evale, Basavaraj G.; Hanagodimath, S.M.

    2009-01-01

    The fluorescence quenching of newly synthesized coumarin (chromen-2-one) derivative, 4-(5-methyl-3-furan-2-yl-benzofuran-2-yl)-7-methyl-chromen-2-one (MFBMC) by aniline in different solvent mixtures of benzene and acetonitrile was determined at room temperature (296 K) by steady-state fluorescence measurements. The quenching is found to be appreciable and positive deviation from linearity was observed in the Stern-Volmer (S-V) plots in all the solvent mixtures. This could be explained by static and dynamic quenching models. The positive deviation in the S-V plot is interpreted in terms of ground-state complex formation model and sphere of action static quenching model. Various rate parameters for the fluorescence quenching process have been determined by using the modified Stern-Volmer equation. The sphere of action static quenching model agrees very well with experimental results. The dependence of Stern-Volmer constant K SV , on dielectric constant ε of the solvent mixture suggests that the fluorescence quenching is diffusion-limited. Further with the use of finite sink approximation model, it is concluded that these bimolecular quenching reactions are diffusion-limited. Using lifetime (τ o ) data, the distance parameter R' and mutual diffusion coefficient D are estimated independently.

  2. The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population

    NARCIS (Netherlands)

    Lu, Y.; Feskens, E.J.M.; Boer, J.M.A.; Müller, M.R.

    2010-01-01

    The liver is currently known to be the major organ to eliminate excess cholesterol from our body. It accomplishes this function in two ways: conversion of cholesterol molecules into bile acids (BAs) and secretion of unesterified cholesterol molecules into bile. BAs are synthesized in the

  3. Influence of the membrane environment on cholesterol transfer.

    Science.gov (United States)

    Breidigan, Jeffrey Michael; Krzyzanowski, Natalie; Liu, Yangmingyue; Porcar, Lionel; Perez-Salas, Ursula

    2017-12-01

    Cholesterol, an essential component in biological membranes, is highly unevenly distributed within the cell, with most localized in the plasma membrane while only a small fraction is found in the endoplasmic reticulum, where it is synthesized. Cellular membranes differ in lipid composition and protein content, and these differences can exist across their leaflets too. This thermodynamic landscape that cellular membranes impose on cholesterol is expected to modulate its transport. To uncover the role the membrane environment has on cholesterol inter- and intra-membrane movement, we used time-resolved small angle neutron scattering to study the passive movement of cholesterol between and within membranes with varying degrees of saturation content. We found that cholesterol moves systematically slower as the degree of saturation in the membranes increases, from a palmitoyl oleyl phosphotidylcholine membrane, which is unsaturated, to a dipalmitoylphosphatidylcholine (DPPC) membrane, which is fully saturated. Additionally, we found that the energetic barrier to move cholesterol in these phosphatidylcholine membranes is independent of their relative lipid composition and remains constant for both flip-flop and exchange at ∼100 kJ/mol. Further, by replacing DPPC with the saturated lipid palmitoylsphingomyelin, an abundant saturated lipid of the outer leaflet of the plasma membrane, we found the rates decreased by a factor of two. This finding is in stark contrast with recent molecular dynamic simulations that predict a dramatic slow-down of seven orders of magnitude for cholesterol flipping in membranes with a similar phosphocholine and SM lipid composition. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Vasorelaxant Effect of a Newly Synthesized Dihydropyridine Ethyl Ester (DHPEE on Rat Thoracic Aorta: Dual Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Hossein Babaei

    2011-06-01

    Full Text Available Introduction: DHPEE is a newly synthesized compound by merging the key structural elements in an angiotensin receptor blocker (Telmisartan with key structural elements in 1,4- dihydropyridine calcium channel blocker (Nifedipine. In this study, we examined dual calcium channel blocking and AT1 antagonist activity for DHPEE. Methods: The functional inhibitory characteristics of DHPEE were studied in vitro in rat thoracic aorta preparations precontracted by phenylephrine (1µM or KCl (80µM or Ang II in normal or calcium-free solutions. Results: Concentration–dependent significant relaxation was observed in aortic rings precontracted with phenylephrine, KCl or Ang II. The tension increment produced by increasing external calcium was also reduced by DHPEE. DHPEE caused a marked decrease in the maximal contractile response of the vasoactive agents and shifted their concentration-response curves to the right. Conclusion: DHPEE possesses dual characteristics and cause vasorelaxation by blocking the L-type calcium channels and blocking Ang II receptors (AT1 in rat aortic smooth muscle.

  5. Changes in levels of serum beta-carotene, vitamin A and cholesterol ...

    African Journals Online (AJOL)

    Twenty newly diagnosed breast cancer patients were assessed for serum vitamin A, β - carotene and total cholesterol levels with their matched control (n = 20). The mean age and standard deviation of pre-menopausal breast cancer patients was 34.75± 6.57 while the mean age and standard deviation for controls was ...

  6. Association with β-COP Regulates the Trafficking of the Newly Synthesized Na,K-ATPase*

    Science.gov (United States)

    Morton, Michael J.; Farr, Glen A.; Hull, Michael; Capendeguy, Oihana; Horisberger, Jean-Daniel; Caplan, Michael J.

    2010-01-01

    Plasma membrane expression of the Na,K-ATPase requires assembly of its α- and β-subunits. Using a novel labeling technique to identify Na,K-ATPase partner proteins, we detected an interaction between the Na,K-ATPase α-subunit and the coat protein, β-COP, a component of the COP-I complex. When expressed in the absence of the Na,K-ATPase β-subunit, the Na,K-ATPase α-subunit interacts with β-COP, is retained in the endoplasmic reticulum, and is targeted for degradation. In the presence of the Na,K-ATPase β-subunit, the α-subunit does not interact with β-COP and traffics to the plasma membrane. Pulse-chase experiments demonstrate that in cells expressing both the Na,K-ATPase α- and β-subunits, newly synthesized α-subunit associates with β-COP immediately after its synthesis but that this interaction does not constitute an obligate intermediate in the assembly of the α- and β-subunits to form the pump holoenzyme. The interaction with β-COP was reduced by mutating a dibasic motif at Lys54 in the Na,K-ATPase α-subunit. This mutant α-subunit is not retained in the endoplasmic reticulum and reaches the plasma membrane, even in the absence of Na,K-ATPase β-subunit expression. Although the Lys54 α-subunit reaches the cell surface without need for β-subunit assembly, it is only functional as an ion-transporting ATPase in the presence of the β-subunit. PMID:20801885

  7. Cholesterol Hydroperoxide Generation, Translocation, and Reductive Turnover in Biological Systems.

    Science.gov (United States)

    Girotti, Albert W; Korytowski, Witold

    2017-12-01

    Cholesterol is like other unsaturated lipids in being susceptible to peroxidative degradation upon exposure to strong oxidants like hydroxyl radical or peroxynitrite generated under conditions of oxidative stress. In the eukaryotic cell plasma membrane, where most of the cellular cholesterol resides, peroxidation leads to membrane structural and functional damage from which pathological states may arise. In low density lipoprotein, cholesterol and phospholipid peroxidation have long been associated with atherogenesis. Among the many intermediates/products of cholesterol oxidation, hydroperoxide species (ChOOHs) have a number of different fates and deserve special attention. These fates include (a) damage-enhancement via iron-catalyzed one-electron reduction, (b) damage containment via two-electron reduction, and (c) inter-membrane, inter-lipoprotein, and membrane-lipoprotein translocation, which allows dissemination of one-electron damage or off-site suppression thereof depending on antioxidant location and capacity. In addition, ChOOHs can serve as reliable and conveniently detected mechanistic reporters of free radical-mediated reactions vs. non-radical (e.g., singlet oxygen)-mediated reactions. Iron-stimulated peroxidation of cholesterol and other lipids underlies a newly discovered form of regulated cell death called ferroptosis. These and other deleterious consequences of radical-mediated lipid peroxidation will be discussed in this review.

  8. Deposition of newly synthesized histones: new histones H2A and H2B do not deposit in the same nucleosome with new Histones H3 and H4

    International Nuclear Information System (INIS)

    Jackson, V.

    1987-01-01

    The authors have developed procedures to study histone-histone interactions during the deposition of histones in replicating cells. Cells are labeled for 60 min with dense amino acids, and subsequently, the histones within the nucleosomes are cross-linked into an octameric complex with formaldehyde. These complexes are sedimented to equilibrium in density gradients and octamer and dioctamer complexes separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With reversal of the cross-link, the distribution of the individual density-labeled histones in the octamer is determined. Newly synthesized H3 and H4 deposits as a tetramer and are associated with old H2A and H2B. Newly synthesized H2A and H2B deposit as a dimer associated with old H2A, H2B, H3, and H4. The significance of these results with respect to the dynamics of histone interactions in the nucleus is discussed. Control experiments are presented to test for artifactual formation of these complexes during preparative procedures. In addition, reconstitution experiments were performed to demonstrate that the composition of these octameric complexes can be determined from their distribution of density gradients

  9. Simvastatin and asymmetric dimethylarginine-homocysteine metabolic pathways in patients with newly detected severe hypercholesterolemia.

    Science.gov (United States)

    Vladimirova-Kitova, Ludmila G; Deneva, Tania I

    2010-01-01

    The idea that statin therapy decreases asymmetric dimethylarginine through lowering low-density lipoprotein cholesterol levels seems logic. However, controversy exists in the literature concerning this issue. This study compares the effect of moderate (40 mg) to high (80 mg) simvastatin doses on asymmetric dimethylarginine levels in patients with newly detected severe hypercholesterolemia (after targeted LDL levels of or = 7.5 mmol/L and low-density lipoprotein cholesterol > or = 4.9 mmol/L). Asymmetric dimethylarginine levels were determined by enzyme-linked immunosorbent assay, total homocystein by the high performance liquid chromatography method. A statistically significant decrease exists in total cholesterol, triglycerides, low-density lipoprotein cholesterol and apolipoprotein-B levels as well as apolipoprotein-B/apolipoprotein-A1 index following one month of 40 mg simvastatin therapy (P homocystein levels were also decreased but the difference was not significant (p = 0.571; p = 0.569). A dose-dependent effect was established comparing the influence of moderate (40 mg) to high (80 mg) simvastatin doses on the tested atherogenic biomarkers (lipid profile, apolipoprotein-A1, apolipoprotein-B). Asymmetric dimethylarginine and total homocystein levels showed a statistically significant decrease with 80 mg simvastatin (p homocysteine in contrast to high dose (80 mg) after targeted LDL of < or = 2.6 mmol/L levels are reached in patients with newly detected severe hypercholesterolemia.

  10. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol

    NARCIS (Netherlands)

    Ray, Kausik K.; Landmesser, Ulf; Leiter, Lawrence A.; Kallend, David; Dufour, Robert; Karakas, Mahir; Hall, Tim; Troquay, Roland P. T.; Turner, Traci; Visseren, Frank L. J.; Wijngaard, Peter; Wright, R. Scott; Kastelein, John J. P.

    2017-01-01

    BACKGROUND In a previous study, a single injection of inclisiran, a chemically synthesized small interfering RNA designed to target PCSK9 messenger RNA, was found to produce sustained reductions in low-density lipoprotein (LDL) cholesterol levels over the course of 84 days in healthy volunteers.

  11. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum lines

    Directory of Open Access Journals (Sweden)

    Qi Bao

    2012-01-01

    Full Text Available Abstract Background Alteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat. Results Multi-color GISH (genomic in situ hybridization was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n = 4x = 28; genome BBAA and Aegilops tauschii (2n = 2x = 14; genome DD, which had a stable chromosomal constitution analogous to that of common wheat (2n = 6x = 42; genome BBAADD. Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO

  12. Potent and selective mediators of cholesterol efflux

    Energy Technology Data Exchange (ETDEWEB)

    Bielicki, John K; Johansson, Jan

    2015-03-24

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  13. Essential oils-oriented fenvalerate analogues: syntheses, characterization and biological evaluation

    International Nuclear Information System (INIS)

    Su, H.; Li, H.

    2016-01-01

    A series of essential oils oriented ester derivatives have been designed, synthesized and characterized based on the skeleton of fenvalerate. The preliminary bioassay results indicated that some of the newly synthesized compounds showed better insecticidal activities against Pyrausta nubilalis and Heliothis armigera than that of the control trans-prallethrin chloride. (author)

  14. Dietary and biliary cholesterol absorption in rats. Effect of dietary cholesterol level and cholesterol saturation of bile

    International Nuclear Information System (INIS)

    Wilson, M.D.

    1985-01-01

    The principal objective of this research was to determine if cholesterol introduced into the duodenum of rats in a micellar form as occurs with bile, is absorbed more efficiently than cholesterol presented in a nonmicellar form, as occurs with dietary cholesterol. Cholesterol absorption was measured during the constant intraduodenal infusion of liquid diets ([ 14 C] cholesterol) and artificial biles ([ 3 H] cholesterol) in thoracic lymph duct cannulated rats. Percentage absorption was calculated by dividing the rate of appearance of radiolabeled cholesterol in lymph by its rate of infusion when lymph cholesterol specific activity was constant. Results provide strong evidence that under certain conditions biliary cholesterol is more efficiently absorbed than is dietary cholesterol, and that this differential must be considered when evaluating the influence of diet or drug therapy on cholesterol absorption

  15. Multi-wavelength spectrophotometric determination of acidity constant of some newly synthesized Schiff bases and their QSPR study

    Science.gov (United States)

    Hemmateenejad, Bahram; Emami, Leila; Sharghi, Hashem

    2010-01-01

    The acidity constants of some newly synthesized Schiff base derivatives were determined by hard-model based multivariate data analysis of the spectrophotometric data in the course of pH-metric titration in 50% (v/v) methanol-water binary solvent. The employed data analysis method was also able to extract the pure spectra and pH-dependent concentration profiles of the acid-base species. The molecules that possess different substituents (both electron donating and withdrawing) on the ortho-, meta- and para-positions of one of the phenyl ring showed variable acidity constants ranging from 8.77 to 11.07 whereas the parent molecule had an acidity constant of 10.25. To investigate the quantitative effects of changing of substitution pattern on the acidity constant, a quantitative structure-property relation analysis was conducted using substituent constants and molecular descriptor. Some models with high statistical quality (measured by cross-validation Q2) were obtained. It was found that the acidity constant of the studied molecules in the methanol-water mixed solvent not only is affected by electronic features of the solutes but also by the lipophilic interaction between methanol part of solvent and the deprotonated solutes.

  16. What's Cholesterol?

    Science.gov (United States)

    ... LDL. Most cholesterol is LDL (low-density lipoprotein) cholesterol. LDL cholesterol is more likely to clog blood vessels because ... Here's a way to remember the difference: the LDL cholesterol is the bad kind, so call it "lousy" ...

  17. Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.

    Science.gov (United States)

    Bell, Peter; Vandenberghe, Luk H; Wilson, James M

    2014-06-01

    Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.

  18. Elimination of C-6-hydrogen during the formation of ecdysteroids from cholesterol in Locusta migratoria ovaries

    International Nuclear Information System (INIS)

    Fujimoto, Y.; Hiramoto, M.; Kakinuma, K.; Ikekawa, N.

    1989-01-01

    Being administered to Locusta migratoria adult females, [6- 3 H, 4- 14 C]cholesterol was incorporated into ecdysone and 2-deoxyecdysone. The ratio of 3 H/ 14 C of the two ecdysteroids isolated from newly laid eggs revealed that C-6-hydrogen of cholesterol was eliminated during the conversion to ecdysteroids in the ovaries of the insects. Thus, a hypothetical mechanism involving migration of the C-6-hydrogen to the C-5 position in the formation of A/B cis junction turned out to be less likely

  19. What Is Cholesterol?

    Science.gov (United States)

    ... of Cholesterol There are two main types of cholesterol: LDL and HDL. The cholesterol blood test tells how much of each kind you have. Most cholesterol is LDL (low-density lipoprotein) cholesterol. This type is most ...

  20. Reference intervals for serum total cholesterol, HDL cholesterol and ...

    African Journals Online (AJOL)

    Reference intervals of total cholesterol, HDL cholesterol and non-HDL cholesterol concentrations were determined on 309 blood donors from an urban and peri-urban population of Botswana. Using non-parametric methods to establish 2.5th and 97.5th percentiles of the distribution, the intervals were: total cholesterol 2.16 ...

  1. Fibronectin-synthesizing activity of free and membrane-bound polyribosomes from human embryonic fibroblasts and chick embryos

    International Nuclear Information System (INIS)

    Belkin, V.M.; Volodarskaya, S.M.

    1986-01-01

    The fibronectin-synthesizing activity of membrane-bound and free polyribosomes in a cell-free system was studied using immunochemical methods. It was found that fibronectin biosynthesis on membrane-bound polyribosomes from human embryonic fibroblasts accounts for 4.9% and those from 10-day-old chick embryos for 1.1% of the total amount of newly synthesized proteins, whereas on free polyribosomes it is 1.0 and 0.3%, respectively. Fibronectin monomers with a molecular weight of 220,000 were found only in the material of the cell-free system containing heavy fractions of membrane-bound polyribosomes newly synthesized in the presence of spermidine. Thus, it was shown that fibronectin is synthesized primarily on membrane-bound polyribosomes

  2. Intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts

    International Nuclear Information System (INIS)

    Liscum, L.; Ruggiero, R.M.; Faust, J.R.

    1989-01-01

    Niemann-Pick disease type C (NPC) is characterized by substantial intracellular accumulation of unesterified cholesterol. The accumulation of unesterified cholesterol in NPC fibroblasts cultured with low density lipoprotein (LDL) appears to result from the inability of LDL to stimulate cholesterol esterification in addition to impaired LDL-mediated downregulation of LDL receptor activity and cellular cholesterol synthesis. Although a defect in cholesterol transport in NPC cells has been inferred from previous studies, no experiments have been reported that measure the intracellular movement of LDL-cholesterol specifically. We have used four approaches to assess intracellular cholesterol transport in normal and NPC cells and have determined the following: (a) mevinolin-inhibited NPC cells are defective in using LDL-cholesterol for growth. However, exogenously added mevalonate restores cell growth equally in normal and NPC cells; (b) the transport of LDL-derived [3H]cholesterol to the plasma membrane is slower in NPC cells, while the rate of appearance of [3H]acetate-derived, endogenously synthesized [3H]cholesterol at the plasma membrane is the same for normal and NPC cells; (c) in NPC cells, LDL-derived [3H]cholesterol accumulates in lysosomes to higher levels than normal, resulting in defective movement to other cell membranes; and (d) incubation of cells with LDL causes an increase in cholesterol content of NPC lysosomes that is threefold greater than that observed in normal lysosomes. Our results indicate that a cholesterol transport defect exists in NPC that is specific for LDL-derived cholesterol

  3. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol.

    Science.gov (United States)

    Ray, Kausik K; Landmesser, Ulf; Leiter, Lawrence A; Kallend, David; Dufour, Robert; Karakas, Mahir; Hall, Tim; Troquay, Roland P T; Turner, Traci; Visseren, Frank L J; Wijngaard, Peter; Wright, R Scott; Kastelein, John J P

    2017-04-13

    In a previous study, a single injection of inclisiran, a chemically synthesized small interfering RNA designed to target PCSK9 messenger RNA, was found to produce sustained reductions in low-density lipoprotein (LDL) cholesterol levels over the course of 84 days in healthy volunteers. We conducted a phase 2, multicenter, double-blind, placebo-controlled, multiple-ascending-dose trial of inclisiran administered as a subcutaneous injection in patients at high risk for cardiovascular disease who had elevated LDL cholesterol levels. Patients were randomly assigned to receive a single dose of placebo or 200, 300, or 500 mg of inclisiran or two doses (at days 1 and 90) of placebo or 100, 200, or 300 mg of inclisiran. The primary end point was the change from baseline in LDL cholesterol level at 180 days. Safety data were available through day 210, and data on LDL cholesterol and proprotein convertase subtilisin-kexin type 9 (PCSK9) levels were available through day 240. A total of 501 patients underwent randomization. Patients who received inclisiran had dose-dependent reductions in PCSK9 and LDL cholesterol levels. At day 180, the least-squares mean reductions in LDL cholesterol levels were 27.9 to 41.9% after a single dose of inclisiran and 35.5 to 52.6% after two doses (PLDL cholesterol levels: 48% of the patients who received the regimen had an LDL cholesterol level below 50 mg per deciliter (1.3 mmol per liter) at day 180. At day 240, PCSK9 and LDL cholesterol levels remained significantly lower than at baseline in association with all inclisiran regimens. Serious adverse events occurred in 11% of the patients who received inclisiran and in 8% of the patients who received placebo. Injection-site reactions occurred in 5% of the patients who received injections of inclisiran. In our trial, inclisiran was found to lower PCSK9 and LDL cholesterol levels among patients at high cardiovascular risk who had elevated LDL cholesterol levels. (Funded by the Medicines Company

  4. Cellular Cholesterol Facilitates the Postentry Replication Cycle of Herpes Simplex Virus 1.

    Science.gov (United States)

    Wudiri, George A; Nicola, Anthony V

    2017-07-15

    Cholesterol is an essential component of cell membranes and is required for herpes simplex virus 1 (HSV-1) entry (1-3). Treatment of HSV-1-infected Vero cells with methyl beta-cyclodextrin from 2 to 9 h postentry reduced plaque numbers. Transport of incoming viral capsids to the nuclear periphery was unaffected by the cholesterol reduction, suggesting that cell cholesterol is important for the HSV-1 replicative cycle at a stage(s) beyond entry, after the arrival of capsids at the nucleus. The synthesis and release of infectious HSV-1 and cell-to-cell spread of infection were all impaired in cholesterol-reduced cells. Propagation of HSV-1 on DHCR24 -/- fibroblasts, which lack the desmosterol-to-cholesterol conversion enzyme, resulted in the generation of infectious extracellular virions (HSV des ) that lack cholesterol and likely contain desmosterol. The specific infectivities (PFU per viral genome) of HSV chol and HSV des were similar, suggesting cholesterol and desmosterol in the HSV envelope support similar levels of infectivity. However, infected DHCR24 -/- fibroblasts released ∼1 log less infectious HSV des and ∼1.5 log fewer particles than release of cholesterol-containing particles (HSV chol ) from parental fibroblasts, suggesting that the hydrocarbon tail of cholesterol facilitates viral synthesis. Together, the results suggest multiple roles for cholesterol in the HSV-1 replicative cycle. IMPORTANCE HSV-1 infections are associated with a wide range of clinical manifestations that are of public health importance. Cholesterol is a key player in the complex interaction between viral and cellular factors that allows HSV-1 to enter host cells and establish infection. Previous reports have demonstrated a role for cellular cholesterol in the entry of HSV-1 into target cells. Here, we employed both chemical treatment and cells that were genetically defined to synthesize only desmosterol to demonstrate that cholesterol is important at stages following the

  5. STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma membrane, ER, and ERC

    DEFF Research Database (Denmark)

    Garbarino, J.; Pan, M. H.; Chin, H. F.

    2012-01-01

    small hairpin RNA knockdown technology to reduce STARD4 expression in HepG2 cells. In a cholesterol-poor environment, we found that a reduction in STARD4 expression leads to retention of cholesterol at the plasma membrane, reduction of endoplasmic reticulum-associated cholesterol, and decreased ACAT...... synthesized cholesteryl esters. Furthermore, D4 KD cells exhibited a reduced rate of sterol transport to the endocytic recycling compartment after cholesterol repletion. Although these cells displayed normal endocytic trafficking in cholesterol-poor and replete conditions, cell surface low density lipoprotein...... membrane and the endocytic recycling compartment to the endoplasmic reticulum and perhaps other intracellular compartments as well. -Garbarino, J., M. Pan, H.F. Chin, F.W. Lund, F.R. Maxfield, and J.L. Breslow. STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma...

  6. Transporters for the Intestinal Absorption of Cholesterol, Vitamin E, and Vitamin K.

    Science.gov (United States)

    Yamanashi, Yoshihide; Takada, Tappei; Kurauchi, Ryoya; Tanaka, Yusuke; Komine, Toko; Suzuki, Hiroshi

    2017-04-03

    Humans cannot synthesize fat-soluble vitamins such as vitamin E and vitamin K. For this reason, they must be obtained from the diet via intestinal absorption. As the deficiency or excess of these vitamins has been reported to cause several types of diseases and disorders in humans, the intestinal absorption of these nutrients must be properly regulated to ensure good health. However, the mechanism of their intestinal absorption remains poorly understood. Recent studies on cholesterol using genome-edited mice, genome-wide association approaches, gene mutation analyses, and the development of cholesterol absorption inhibitors have revealed that several membrane proteins play crucial roles in the intestinal absorption of cholesterol. Surprisingly, detailed analyses of these cholesterol transporters have revealed that they can also transport vitamin E and vitamin K, providing clues to uncover the molecular mechanisms underlying the intestinal absorption of these fat-soluble vitamins. In this review, we focus on the membrane proteins (Niemann-Pick C1 like 1, scavenger receptor class B type I, cluster of differentiation 36, and ATP-binding cassette transporter A1) that are (potentially) involved in the intestinal absorption of cholesterol, vitamin E, and vitamin K and discuss their physiological and pharmacological importance. We also discuss the related uncertainties that need to be explored in future studies.

  7. Fabrication of copper-selective PVC membrane electrode based on newly synthesized copper complex of Schiff base as carrier

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2016-09-01

    Full Text Available The newly synthesized copper(II complex of Schiff base p-hydroxyacetophenone semicarbazone was explored as neutral ionophore for the fabrication of poly(vinylchloride (PVC based membrane electrode selective to Cu(II ions. The electrode shows a Nernstian slope of 29.8 ± 0.3 mV/decade with improved linear range of 1.8 × 10−7 to 1.0 × 10−1 M, comparatively lower detection limit 5.7 × 10−8 M between pH range of 2.0–8.0, giving a relatively fast response within 5s and can be used for at least 16 weeks without any divergence in potential. The selectivity coefficient was calculated using the fixed interference method (FIM. The electrode can also be used in partially non-aqueous media having up to 25% (v/v methanol, ethanol or acetone content with no significant change in the value of slope or working concentration range. It was successfully applied for the direct determination of copper content in water and tea samples with satisfactory results. The electrode has been used in the potentiometric titration of Cu2+ with EDTA.

  8. Hemorheological and Glycemic Parameters and HDL Cholesterol for the Prediction of Cardiovascular Events

    International Nuclear Information System (INIS)

    Cho, Sung Woo; Kim, Byung Gyu; Kim, Byung Ok; Byun, Young Sup; Goh, Choong Won; Rhee, Kun Joo; Kwon, Hyuck Moon; Lee, Byoung Kwon

    2016-01-01

    Hemorheological and glycemic parameters and high density lipoprotein (HDL) cholesterol are used as biomarkers of atherosclerosis and thrombosis. To investigate the association and clinical relevance of erythrocyte sedimentation rate (ESR), fibrinogen, fasting glucose, glycated hemoglobin (HbA1c), and HDL cholesterol in the prediction of major adverse cardiovascular events (MACE) and coronary heart disease (CHD) in an outpatient population. 708 stable patients who visited the outpatient department were enrolled and followed for a mean period of 28.5 months. Patients were divided into two groups, patients without MACE and patients with MACE, which included cardiac death, acute myocardial infarction, newly diagnosed CHD, and cerebral vascular accident. We compared hemorheological and glycemic parameters and lipid profiles between the groups. Patients with MACE had significantly higher ESR, fibrinogen, fasting glucose, and HbA1c, while lower HDL cholesterol compared with patients without MACE. High ESR and fibrinogen and low HDL cholesterol significantly increased the risk of MACE in multivariate regression analysis. In patients with MACE, high fibrinogen and HbA1c levels increased the risk of multivessel CHD. Furthermore, ESR and fibrinogen were significantly positively correlated with HbA1c and negatively correlated with HDL cholesterol, however not correlated with fasting glucose. Hemorheological abnormalities, poor glycemic control, and low HDL cholesterol are correlated with each other and could serve as simple and useful surrogate markers and predictors for MACE and CHD in outpatients

  9. Hemorheological and Glycemic Parameters and HDL Cholesterol for the Prediction of Cardiovascular Events

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Woo [Division of Cardiology - Department of Internal Medicine - Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of); Division of Cardiology - Department of Medicine - Samsung Medical Center, Seoul (Korea, Republic of); Kim, Byung Gyu; Kim, Byung Ok; Byun, Young Sup; Goh, Choong Won; Rhee, Kun Joo [Division of Cardiology - Department of Internal Medicine - Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of); Kwon, Hyuck Moon; Lee, Byoung Kwon, E-mail: cardiobk@yuhs.ac [Division of Cardiology - Department of Internal Medicine - Gangnam Severance Hospital - Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-01-15

    Hemorheological and glycemic parameters and high density lipoprotein (HDL) cholesterol are used as biomarkers of atherosclerosis and thrombosis. To investigate the association and clinical relevance of erythrocyte sedimentation rate (ESR), fibrinogen, fasting glucose, glycated hemoglobin (HbA1c), and HDL cholesterol in the prediction of major adverse cardiovascular events (MACE) and coronary heart disease (CHD) in an outpatient population. 708 stable patients who visited the outpatient department were enrolled and followed for a mean period of 28.5 months. Patients were divided into two groups, patients without MACE and patients with MACE, which included cardiac death, acute myocardial infarction, newly diagnosed CHD, and cerebral vascular accident. We compared hemorheological and glycemic parameters and lipid profiles between the groups. Patients with MACE had significantly higher ESR, fibrinogen, fasting glucose, and HbA1c, while lower HDL cholesterol compared with patients without MACE. High ESR and fibrinogen and low HDL cholesterol significantly increased the risk of MACE in multivariate regression analysis. In patients with MACE, high fibrinogen and HbA1c levels increased the risk of multivessel CHD. Furthermore, ESR and fibrinogen were significantly positively correlated with HbA1c and negatively correlated with HDL cholesterol, however not correlated with fasting glucose. Hemorheological abnormalities, poor glycemic control, and low HDL cholesterol are correlated with each other and could serve as simple and useful surrogate markers and predictors for MACE and CHD in outpatients.

  10. Synthesis of Zeolite from Fly Ash and Removal of Heavy Metal Ions from Newly Synthesized Zeolite

    OpenAIRE

    Solanki, Parag; Gupta, Vikal; Kulshrestha, Ruchi

    2010-01-01

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. Characteristics of the various Fly ash samples were carried out. Coal proximate analysis was done. Batch experiment was carried out for the adsorption of some heavy metal ions on to synthesized Zeolite. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.

  11. Cholesterol testing and results

    Science.gov (United States)

    ... your cholesterol is in this normal range. LDL (Bad) Cholesterol LDL cholesterol is sometimes called "bad" cholesterol. ... to 3.3 mmol/l) are desired. VLDL (Bad) Cholesterol VLDL contains the highest amount of triglycerides. ...

  12. Cholesterol Facts and Statistics

    Science.gov (United States)

    ... Managing High Cholesterol Cholesterol-lowering Medicine High Cholesterol Statistics and Maps High Cholesterol Facts High Cholesterol Maps ... Deo R, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart ...

  13. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis

    OpenAIRE

    Horner, Michael A.; Pardee, Keith; Liu, Suya; King-Jones, Kirst; Lajoie, Gilles; Edwards, Aled; Krause, Henry M.; Thummel, Carl S.

    2009-01-01

    Cholesterol homeostasis is required to maintain normal cellular function and avoid the deleterious effects of hypercholesterolemia. Here we show that the Drosophila DHR96 nuclear receptor binds cholesterol and is required for the coordinate transcriptional response of genes that are regulated by cholesterol and involved in cholesterol uptake, trafficking, and storage. DHR96 mutants die when grown on low levels of cholesterol and accumulate excess cholesterol when maintained on a high-choleste...

  14. Relationship between plasma cholesterol levels and cholesterol esterification in isolated human mononuclear cells

    International Nuclear Information System (INIS)

    Dallongeville, J.; Davignon, J.; Lussier-Cacan, S.

    1990-01-01

    The authors studied the relationship between plasma lipoprotein concentrations and cholesterol esterification in freshly isolated human mononuclear cells from 27 normolipidemic and 32 hyperlipidemic individuals. Cells were either incubated for 5 hours with radiolabeled oleate immediately after isolation or were preincubated for 18 hours in the presence of exogenous cholesterol, and then incubated with [ 14 C]sodium-oleate-albumin complex. In the absence of exogenous cholesterol, control and hypercholesterolemic subjects had similarly low values of intracellular cholesterol esterification. In the presence of exogenous cholesterol, both hypertriglyceridemic and hypercholesterolemic subjects had higher cholesterol esterification than controls. There was a significant correlation between the rate of cholesterol esterification and plasma total cholesterol. These results suggest that plasma cholesterol levels may regulate mononuclear cell intra-cellular cholesterol esterification in humans

  15. Unstable structure of ribosomal particles synthesized in. gamma. -irradiated Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H; Morita, K [National Inst. of Radiological Sciences, Chiba (Japan)

    1975-06-01

    Stability of Escherichia coli ribosomes newly synthesized after ..gamma..-irradiation was compared with that of normal ribosomes. The ribosomal particles around 70-S synthesized in irradiated cells were more sensitive to digestion by pancreatic ribonuclease A. A larger number of the salt-unstable '50-S' precursor particles existed in the extract from irradiated cells than in the extract from unirradiated cells. These facts suggest that ribosomal particles, synthesized during an earlier stage in irradiated cells, maintain an incomplete structure even though they are not distinguishable from normal ribosomes by means of sucrose density-gradient centrifugation.

  16. Peptides having reduced toxicity that stimulate cholesterol efflux

    Energy Technology Data Exchange (ETDEWEB)

    Bielicki, John K.; Johansson, Jan; Danho, Waleed

    2016-08-16

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABCA1 that parallels that of full-length apolipoproteins. Further, the peptides of the invention have little or no toxicity when administered at therapeutic and higher doses. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  17. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam; Noutsi, Bakiza Kamal; Chaieb, Saharoui

    2016-01-01

    to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration

  18. High blood cholesterol levels

    Science.gov (United States)

    Cholesterol - high; Lipid disorders; Hyperlipoproteinemia; Hyperlipidemia; Dyslipidemia; Hypercholesterolemia ... There are many types of cholesterol. The ones talked about most are: ... lipoprotein (HDL) cholesterol -- often called "good" cholesterol ...

  19. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  20. Cholesterol IQ Quiz

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Cholesterol IQ Quiz Updated:Jul 5,2017 Begin the quiz ... What Your Cholesterol Levels Mean Common Misconceptions Cholesterol IQ Quiz • HDL, LDL, and Triglycerides • Causes of High ...

  1. Plasma cholesterol and endogenous cholesterol synthesis during refeeding in anorexia nervosa.

    Science.gov (United States)

    Feillet, F; Feillet-Coudray, C; Bard, J M; Parra, H J; Favre, E; Kabuth, B; Fruchart, J C; Vidailhet, M

    2000-04-01

    Normal or high levels of cholesterol have been measured in patients with anorexia nervosa (AN). Given that cholesterol intake in AN is usually very low, the reasons for this anomaly are not clearly understood. We studied lipid and lipoprotein profiles and endogenous cholesterol synthesis, estimated by serum lathosterol, in a population of 14 girls with AN, before and during a period of 30 days refeeding. The initial body mass index (BMI) of the patients was 13.41+/-1.62 kg/m(2). No changes were observed during refeeding in endocrine parameters (ACTH, cortisol and estradiol). At Day 0 the lipids data measured here showed normal levels of triglycerides, and total cholesterol at the upper limits of the normal range (5.44+/-1 mmol/l). At this time, total and LDL cholesterol were negatively correlated with transthyretin and BMI. Serum lathosterol (a precursor in cholesterol synthesis pathway) increased significantly (5.99+/-1.75 (Day 0) vs. 8.39+/-2.96 (Day 30); P=0.02) while there was a significant decrease in apo B (0.79+/-0.33 (Day 0) vs. 0. 60+/-0.17 g/l (Day 30), P=0.02) with refeeding. Thus, patients with initial high cholesterol levels have the worst nutritional status and high cholesterol levels are not related to a de novo synthesis. This profile returns to normal with refeeding. An increase of cellular cholesterol uptake may be responsible for this apparently paradoxical evolution with increase of cholesterol synthesis and decrease of apo B during renutrition.

  2. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions.

    Science.gov (United States)

    Hallikainen, Maarit; Simonen, Piia; Gylling, Helena

    2014-04-27

    The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas-liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol

  3. Prevalence of dyslipidemia in normoglycemic subjects with newly diagnosed high blood pressure in Abuja, Nigeria.

    Science.gov (United States)

    Ojji, Dike B; Ajayi, Samuel O; Mamven, Manmak H; Atherton, John

    2009-02-01

    High blood pressure and dyslipidemia additively increases the risk of cardiovascular disease. There is a high prevalence of high blood pressure in Nigeria, but there are little data regarding the prevalence of dyslipidemia in subjects with high blood pressure. In this observational prospective study, we examined the prevalence of dyslipidemia in newly diagnosed normoglycemic subjects with high blood pressure. A total of 171 subjects presenting with high blood pressure for the first time in the cardiology and nephrology clinics at the University of Abuja Teaching Hospital were studied. Height, weight, and blood pressure were measured. Total cholesterol, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were determined in fasting plasma. The total cholesterol/HDL-C and non-HDL-C values were calculated. These measures were then classified according to the 2001 report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults. Of the 171 subjects studied, 84 (49%) were male and 87 (51%) were female. Low HDL-C was present in 71 (45.8%), elevated LDL-C in 29 (17%), elevated total cholesterol in 19 (11.1%), and elevated triglyceride in 13 (7.6%), whereas eight (4.7%) of the study population had combined elevated total cholesterol and triglyceride. Female subjects had higher total cholesterol and lower HDL-C than male subjects, but these differences were not statistically significant. Obese subjects, compared to the nonobese, had significantly higher LDL-C and total cholesterol/HDL-C ratios in males and significantly higher triglyceride levels in females. Given the prevalence of dyslipidemia seen in this study, we suggest that fasting lipid measurements should be performed in all Nigerians with high blood pressure. These data suggest the need for health education and lifestyle modifications in hypertensive Nigerians to reduce both types of risk

  4. STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma membrane, ER, and ERC.

    Science.gov (United States)

    Garbarino, Jeanne; Pan, Meihui; Chin, Harvey F; Lund, Frederik W; Maxfield, Frederick R; Breslow, Jan L

    2012-12-01

    STARD4, a member of the evolutionarily conserved START gene family, has been implicated in the nonvesicular intracellular transport of cholesterol. However, the direction of transport and the membranes with which this protein interacts are not clear. We present studies of STARD4 function using small hairpin RNA knockdown technology to reduce STARD4 expression in HepG2 cells. In a cholesterol-poor environment, we found that a reduction in STARD4 expression leads to retention of cholesterol at the plasma membrane, reduction of endoplasmic reticulum-associated cholesterol, and decreased ACAT synthesized cholesteryl esters. Furthermore, D4 KD cells exhibited a reduced rate of sterol transport to the endocytic recycling compartment after cholesterol repletion. Although these cells displayed normal endocytic trafficking in cholesterol-poor and replete conditions, cell surface low density lipoprotein receptor (LDLR) levels were increased and decreased, respectively. We also observed a decrease in NPC1 protein expression, suggesting the induction of compensatory pathways to maintain cholesterol balance. These data indicate a role for STARD4 in nonvesicular transport of cholesterol from the plasma membrane and the endocytic recycling compartment to the endoplasmic reticulum and perhaps other intracellular compartments as well.

  5. LDL: The "Bad" Cholesterol

    Science.gov (United States)

    ... There are two main types of cholesterol: LDL (bad) cholesterol and HDL (good) cholesterol: LDL stands for low-density lipoproteins. It is called the "bad" cholesterol because a high LDL level leads to ...

  6. Home-Use Tests - Cholesterol

    Science.gov (United States)

    ... Medical Procedures In Vitro Diagnostics Home Use Tests Cholesterol Share Tweet Linkedin Pin it More sharing options ... a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) ...

  7. Trafficking of cholesterol from cell bodies to distal axons in Niemann Pick C1-deficient neurons.

    Science.gov (United States)

    Karten, Barbara; Vance, Dennis E; Campenot, Robert B; Vance, Jean E

    2003-02-07

    Niemann Pick type C (NPC) disease is a progressive neurodegenerative disorder. In cells lacking functional NPC1 protein, endocytosed cholesterol accumulates in late endosomes/lysosomes. We utilized primary neuronal cultures in which cell bodies and distal axons reside in separate compartments to investigate the requirement of NPC1 protein for transport of cholesterol from cell bodies to distal axons. We have recently observed that in NPC1-deficient neurons compared with wild-type neurons, cholesterol accumulates in cell bodies but is reduced in distal axons (Karten, B., Vance, D. E., Campenot, R. B., and Vance, J. E. (2002) J. Neurochem. 83, 1154-1163). We now show that NPC1 protein is expressed in both cell bodies and distal axons. In NPC1-deficient neurons, cholesterol delivered to cell bodies from low density lipoproteins (LDLs), high density lipoproteins, or cyclodextrin complexes was transported into axons in normal amounts, whereas transport of endogenously synthesized cholesterol was impaired. Inhibition of cholesterol synthesis with pravastatin in wild-type and NPC1-deficient neurons reduced axonal growth. However, LDLs restored a normal rate of growth to wild-type but not NPC1-deficient neurons treated with pravastatin. Thus, although LDL cholesterol is transported into axons of NPC1-deficient neurons, this source of cholesterol does not sustain normal axonal growth. Over the lifespan of NPC1-deficient neurons, these defects in cholesterol transport might be responsible for the observed altered distribution of cholesterol between cell bodies and axons and, consequently, might contribute to the neurological dysfunction in NPC disease.

  8. Poly(amidoamine-Cholesterol Conjugate Nanoparticles Obtained by Electrospraying as Novel Tamoxifen Delivery System

    Directory of Open Access Journals (Sweden)

    R. Cavalli

    2011-01-01

    Full Text Available A new poly(amidoamine-cholesterol (PAA-cholesterol conjugate was synthesized, characterized and used to produce nanoparticles by the electrospraying technique. The electrospraying is a method of liquid atomization that consists in the dispersion of a solution into small charged droplets by an electric field. Tuning the electrospraying process parameters spherical PAA-chol nanoparticles formed. The PAA-cholesterol nanoparticles showed sizes lower than 500 nm and spherical shape. The drug incorporation capacity was investigated using tamoxifen, a lipophilic anticancer drug, as model drug. The incorporation of the tamoxifen did not affect the shape and sizes of nanoparticles showing a drug loading of 40%. Tamoxifen-loaded nanoparticles exhibited a higher dose-dependent cytotoxicity than free tamoxifen, while blank nanoparticles did not show any cytotoxic effect at the same concentrations. The electrospray technique might be proposed to produce tamoxifen-loaded PAA-chol nanoparticle in powder form without any excipient in a single step.

  9. Synthesis, characterization and antioxidant activities of Schiff bases are of cholesterol

    OpenAIRE

    Madasamy Kumar; Tamilenthi Padmini; Kandasamy Ponnuvel

    2017-01-01

    A series of new cholesterol based Schiff base derivatives, namely cholesteryl-n-(4-((E)-(4′-cyanobiphenyl-4-ylimino)methyl)phenoxy)alkanoate (3a–j) have been synthesized and characterized by IR, NMR and mass spectral studies. In vitro antioxidant activities of these compounds were evaluated against super oxide anion radical, nitric oxide radical, DPPH radical and hydrogen peroxide and were compared with standard natural antioxidant, ascorbic acid. Our results reveal that these compounds exhib...

  10. Cholesterol Transport Revisited : A New Turbo Mechanism to Drive Cholesterol Excretion

    NARCIS (Netherlands)

    de Boer, Jan Freark; Kuipers, Folkert; Groen, Albert K.

    A fine-tuned balance between cholesterol uptake and excretion by the body is pivotal to maintain health and to remain free from the deleterious consequences of cholesterol accumulation such as cardiovascular disease. The pathways involved in intracellular and extracellular cholesterol transport are

  11. Cholesterol (image)

    Science.gov (United States)

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  12. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis

    Science.gov (United States)

    Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina

    2012-01-01

    Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475

  13. Cholesterol Test

    Science.gov (United States)

    ... artery disease. Other names for a cholesterol test: Lipid profile, Lipid panel What is it used for? If you ... Clinic [Internet]. Mayo Foundation for Medical Education and Research; c1998-2017.Cholesterol Test: Overview; 2016 Jan 12 [ ...

  14. Endogenous cholesterol synthesis, fecal steroid excretion and serum lanosterol in subjects with high or low response of serum cholesterol to dietary cholesterol

    NARCIS (Netherlands)

    Beynen, A.C.; Katan, M.B.; Gent, van C.M.

    1986-01-01

    In this study we addressed the question whether hypo- and hyper-responders to dietary cholesterol differ with regard to the flexibility of endogenous cholesterol synthesis after changes in cholesterol intake. Whole-body cholesterol synthesis was measured as faecal excretion of neutral steroids and

  15. Intestinal cholesterol transport: Measuring cholesterol absorption and its reverse

    NARCIS (Netherlands)

    Jakulj, L.

    2013-01-01

    Intestinal cholesterol transport might serve as an attractive future target for cardiovascular disease reduction, provided that underlying molecular mechanisms are more extensively elucidated, combined with improved techniques to measure changes in cholesterol fluxes and their possible

  16. Investigation of formation constant of complex of a new synthesized ...

    African Journals Online (AJOL)

    The complex formation between a newly synthesized tripodal ligand and the cation Cu2+ in water and surfactant media was studied spectrophotometrically using rank annihilation factor analysis (RAFA). According to molar ratio data the stoichiometry of complexation between the ligand and the cation Cu2+ was 1:1.

  17. Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells.

    Science.gov (United States)

    Chu, Naying; Yao, Guodong; Liu, Yuan; Cheng, Maosheng; Ikejima, Takashi

    2016-09-01

    Compound 8 (C8) is a newly synthesized bis-benzimidazole derivative and exerts significant anti-tumor activity in vitro. Previous studies demonstrated that C8 induced apoptosis and autophagy in human promyelocytic leukemia HL60 cells. However, cytotoxicity study on human peripheral blood mononuclear cells (hPBMC) showed that C8 exhibited less toxicity in normal cells. In this study, the molecular mechanism of C8 on human cervical carcinoma HeLa cells was investigated. The results showed that C8 inhibited the growth of HeLa cells and triggered both apoptotic and autophagic cell death. Subsequent experiment also indicated that reactive oxygen species (ROS) generation was induced in C8-treated HeLa cells. Since ROS scavenger decreased the ratio of apoptotic and autophagic cells, ROS generation contributed to C8-induced apoptosis and autophagy. Furthermore, inhibitors of apoptosis and autophagy also reduced ROS generation, respectively. Autophagy inhibition increased cell growth compared to C8-treated group and attenuated apoptotic cell death, indicating that C8-induced autophagy promoted apoptosis for cell death. However, the percentage of autophagic cells was enhanced when limiting apoptosis process. Taken together, C8 induced ROS-mediated apoptosis and autophagy in HeLa cells, autophagy promoted apoptosis but the former was antagonized by the latter. The data also gave us a new perspective on the anti-tumor effect of C8. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Synthesis, characterization and antioxidant activities of Schiff bases are of cholesterol

    Directory of Open Access Journals (Sweden)

    Madasamy Kumar

    2017-01-01

    Full Text Available A series of new cholesterol based Schiff base derivatives, namely cholesteryl-n-(4-((E-(4′-cyanobiphenyl-4-yliminomethylphenoxyalkanoate (3a–j have been synthesized and characterized by IR, NMR and mass spectral studies. In vitro antioxidant activities of these compounds were evaluated against super oxide anion radical, nitric oxide radical, DPPH radical and hydrogen peroxide and were compared with standard natural antioxidant, ascorbic acid. Our results reveal that these compounds exhibit excellent radical scavenging activities.

  19. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion].

    Science.gov (United States)

    Blanchard, Claire; Moreau, François; Cariou, Bertrand; Le May, Cédric

    2014-10-01

    The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases. © 2014 médecine/sciences – Inserm.

  20. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    Science.gov (United States)

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null

  1. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we

  2. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice

    NARCIS (Netherlands)

    Schonewille, Marleen; de Boer, Jan Freark; Mele, Laura; Wolters, Henk; Bloks, Vincent W.; Wolters, Justina C.; Kuivenhoven, Jan A.; Tietge, Uwe J. F.; Brufau, Gemma; Groen, Albert K.

    2016-01-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we

  3. Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans : a meta-analysis

    NARCIS (Netherlands)

    Weggemans, R.M.; Zock, P.L.; Katan, M.B.

    2001-01-01

    Several epidemiologic studies found no effect of egg consumption on the risk of coronary heart disease. It is possible that the adverse effect of eggs on LDL-cholesterol is offset by their favorable effect on HDL cholesterol. Objective: The objective was to review the effect of dietary cholesterol

  4. Cholesterol - what to ask your doctor

    Science.gov (United States)

    ... your doctor; What to ask your doctor about cholesterol ... What is my cholesterol level? What should my cholesterol level be? What are HDL ("good") cholesterol and LDL ("bad") cholesterol? Does my cholesterol ...

  5. Common Misconceptions about Cholesterol

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Common Misconceptions about Cholesterol Updated:Jan 29,2018 How much do you ... are some common misconceptions — and the truth. High cholesterol isn’t a concern for children. High cholesterol ...

  6. From blood to gut: Direct secretion of cholesterol via transintestinal cholesterol efflux

    NARCIS (Netherlands)

    Vrins, Carlos L. J.

    2010-01-01

    The reverse cholesterol transport pathway (RCT) is the focus of many cholesterol lowering therapies By way of this pathway, excess cholesterol is collected from peripheral tissues and delivered back to the liver and gastrointestinal tract for excretion from the body For a long time this removal via

  7. Newly synthesized MgAl2Ge2: A first-principles comparison with its silicide and carbide counterparts

    Science.gov (United States)

    Tanveer Karim, A. M. M.; Hadi, M. A.; Alam, M. A.; Parvin, F.; Naqib, S. H.; Islam, A. K. M. A.

    2018-06-01

    Using plane-wave pseudopotential density functional theory (DFT), the first-principle calculations are performed to investigate the structural aspects, mechanical behaviors and electronic features of the newly synthesized CaAl2Si2-prototype intermetallic compound, MgAl2Ge2 for the first time and the results are compared with those calculated for its silicide and carbide counterparts MgAl2Si2 and MgAl2C2. The calculated lattice constants agree fairly well with their corresponding experimental values. The estimated elastic tensors satisfy the mechanical stability conditions for MgAl2Ge2 along with MgAl2Si2 and MgAl2C2. The level of elastic anisotropy increases following the sequence of X-elements Ge → Si → C. MgAl2Ge2 and MgAl2Si2 are expected to be ductile and damage tolerant, while MgAl2C2 is a brittle one. MgAl2Ge2 and MgAl2Si2 should exhibit better thermal shock resistance and low thermal conductivity and accordingly these can be used as thermal barrier coating (TBC) materials. The Debye temperature of MgAl2Ge2 is lowest among three intermetallic compounds. MgAl2Ge2 and MgAl2Si2 should exhibit metallic conductivity; while the dual characters of weak-metals and semiconductors are expected for MgAl2C2. The values of theoretical Vickers hardness for MgAl2Ge2, MgAl2Si2, and MgAl2C2 are 3.3, 2.7, and 7.7 GPa, respectively, indicating that these three intermetallics are soft and easily machinable.

  8. Two-phase synthesis of hydrophobic ionic liquid-capped gold nanoparticles and their application for sensing cholesterol

    International Nuclear Information System (INIS)

    Dong, Mingjun; Nan, Zhihan; Liu, Panpan; Zhang, Yanjun; Xue, Zhonghua; Lu, Xiaoquan; Liu, Xiuhui

    2014-01-01

    Highlights: • A novel cholesterol biosensor was constructed based on ChOx-IL-capped-AuNPs/GCE. • IL-capped-AuNPs was synthesized using two-phase synthesis and employed as a conducting matrix to immobilize ChOx. • Direct electrochemistry of ChOx on the electrode was obtained. • The ChOx-IL-capped-AuNPs/GCE exhibit remarkable performance for cholesterol detection. - Abstract: A novel scheme for fabrication of hydrophobic ionic liquid-capped gold nanoparticles (IL-capped AuNPs) modified electrode is presented and its application potential for cholesterol biosensor is investigated. Highly stable gold nanoparticles were characterized by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) indicated that IL-capped AuNPs nanocomposites showed excellent electrical conductivity. Furthermore, cholesterol oxidase (ChOx) was directly immobilized on the IL-capped AuNPs nanocomposite, and then the direct electrochemistry of ChOx on the modified glass carbon electrode (GCE) was obtained. As a new platform in cholesterol analysis, ChOx-IL-capped AuNPs/GCE exhibited a linear response to cholesterol in the range of 0.1–50 μM with a detection limit of 0.033 μM. Therefore, hydrophobic ionic liquid-capped gold nanoparticles would serve as a good candidate material to construct the related enzyme biosensors

  9. Synthesis, antimicrobial and cytotoxicity evaluation of new cholesterol congeners

    Directory of Open Access Journals (Sweden)

    Mohamed Ramadan El Sayed Aly

    2015-10-01

    Full Text Available 3β-Azidocholest-5-ene (3 and (3β-3-(prop-2-yn-1-yloxycholest-5-ene (10 were prepared as substrates to synthesize a variety of three-motif pharmacophoric conjugates through CuAAC. Basically, these conjugates included cholesterol and 1,2,3-triazole moieties, while the third, the pharmacophore, was either a chalcone, a lipophilic residue or a carbohydrate tag. These compounds were successfully prepared in good yields and characterized by NMR, MS and IR spectroscopic techniques. Chalcone conjugate 6c showed the best antimicrobial activity, while the lactoside conjugate 27 showed the best cytotoxic effect in vitro.

  10. Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suman [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Solanki, Pratima R. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Pandey, M.K. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India); Malhotra, B.D. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India)]. E-mail: bansi@mail.nplindia.ernet.in

    2006-05-24

    Cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) have been covalently immobilized on electrochemically prepared polyaniline (PANI) films. These PANI/ChEt/ChOx enzyme films have been characterized using UV-visible, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Electrochemical behavior of these films has been studied using cyclic voltammetry (CV) and amperometric techniques, respectively. The PANI/ChEt/ChOx enzyme films show broad oxidation peak from 0.2 to 0.5 V. These PANI/ChEt/ChOx biosensing electrodes have a response time of about 40 s, linearity from 50 to 500 mg/dl of cholesterol oleate concentration. These PANI/ChEt/ChOx films are thermally stable up to 46 deg. C. This polyaniline based cholesterol biosensor has optimum pH in the range of 6.5-7.5, sensitivity as 7.5 x 10{sup -4} nA/mg dl and a lifetime of about 6 weeks.

  11. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Michiko [Cellular Stress Signaling Unit, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States); Hayashi, Teruo, E-mail: thayashi@mail.nih.gov [Cellular Stress Signaling Unit, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States); Su, Tsung-Ping, E-mail: tsu@intra.nida.nih.gov [Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer The endoplasmic reticulum subdomain termed MAM associates with mitochondria. Black-Right-Pointing-Pointer The biophysical role of lipids in the MAM-mitochondria association is unknown. Black-Right-Pointing-Pointer The in vitro membrane association assay was used to examine the role of lipids. Black-Right-Pointing-Pointer Cholesterol was found to negatively regulate the association. -- Abstract: The unique endoplasmic reticulum (ER) subdomain termed the mitochondria-associated ER membrane (MAM) engages the physical connection between the ER and the mitochondrial outer membrane and plays a role in regulating IP{sub 3} receptor-mediated Ca{sup 2+} influx and the phospholipid transport between the two organelles. The MAM contains certain signaling and membrane-tethering proteins but also lipids including cholesterol. The biophysical role of lipids at the MAM, specifically in the physical interaction between the MAM of the ER and mitochondria, remains not totally clarified. Here we employed the in vitro membrane association assay to investigate the role of cholesterol in the association between MAMs and mitochondria. The purified MAMs and mitochondria were mixed in vitro in a test tube and then the physical association of the two subcellular organelles was quantified indirectly by measuring the presence of the MAM-specific protein sigma-1 receptors in the mitochondria fraction. Purified MAMs contained free cholesterol approximately 7 times higher than that in microsomes. We found that depletion of cholesterol in MAMs with methyl-{beta}-cyclodextrin (M{beta}C) significantly increases the association between MAMs and mitochondria, whereas M{beta}C saturated with cholesterol does not change the association. {sup 14}C-Serine pulse-labeling demonstrated that the treatment of living cells with M{beta}C decreases the level of de novo synthesized {sup 14}C-phosphatidylserine (PtSer) and concomitantly increases greatly the synthesis of

  12. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria

    International Nuclear Information System (INIS)

    Fujimoto, Michiko; Hayashi, Teruo; Su, Tsung-Ping

    2012-01-01

    Highlights: ► The endoplasmic reticulum subdomain termed MAM associates with mitochondria. ► The biophysical role of lipids in the MAM–mitochondria association is unknown. ► The in vitro membrane association assay was used to examine the role of lipids. ► Cholesterol was found to negatively regulate the association. -- Abstract: The unique endoplasmic reticulum (ER) subdomain termed the mitochondria-associated ER membrane (MAM) engages the physical connection between the ER and the mitochondrial outer membrane and plays a role in regulating IP 3 receptor-mediated Ca 2+ influx and the phospholipid transport between the two organelles. The MAM contains certain signaling and membrane-tethering proteins but also lipids including cholesterol. The biophysical role of lipids at the MAM, specifically in the physical interaction between the MAM of the ER and mitochondria, remains not totally clarified. Here we employed the in vitro membrane association assay to investigate the role of cholesterol in the association between MAMs and mitochondria. The purified MAMs and mitochondria were mixed in vitro in a test tube and then the physical association of the two subcellular organelles was quantified indirectly by measuring the presence of the MAM-specific protein sigma-1 receptors in the mitochondria fraction. Purified MAMs contained free cholesterol approximately 7 times higher than that in microsomes. We found that depletion of cholesterol in MAMs with methyl-β-cyclodextrin (MβC) significantly increases the association between MAMs and mitochondria, whereas MβC saturated with cholesterol does not change the association. 14 C-Serine pulse-labeling demonstrated that the treatment of living cells with MβC decreases the level of de novo synthesized 14 C-phosphatidylserine (PtSer) and concomitantly increases greatly the synthesis of 14 C-phosphatidylethanolamine (PtEt). Apparently, cholesterol depletion increased the PtSer transport from MAMs to mitochondria. Our

  13. Transporters for the Intestinal Absorption of Cholesterol, Vitamin E, and Vitamin K

    OpenAIRE

    Yamanashi, Yoshihide; Takada, Tappei; Kurauchi, Ryoya; Tanaka, Yusuke; Komine, Toko; Suzuki, Hiroshi

    2017-01-01

    Humans cannot synthesize fat-soluble vitamins such as vitamin E and vitamin K. For this reason, they must be obtained from the diet via intestinal absorption. As the deficiency or excess of these vitamins has been reported to cause several types of diseases and disorders in humans, the intestinal absorption of these nutrients must be properly regulated to ensure good health. However, the mechanism of their intestinal absorption remains poorly understood. Recent studies on cholesterol using ge...

  14. Phytosterol and cholesterol precursor levels indicate increased cholesterol excretion and biosynthesis in gallstone disease.

    Science.gov (United States)

    Krawczyk, Marcin; Lütjohann, Dieter; Schirin-Sokhan, Ramin; Villarroel, Luis; Nervi, Flavio; Pimentel, Fernando; Lammert, Frank; Miquel, Juan Francisco

    2012-05-01

    In hepatocytes and enterocytes sterol uptake and secretion is mediated by Niemann-Pick C1-like 1 (NPC1L1) and ATP-binding cassette (ABC)G5/8 proteins, respectively. Whereas serum levels of phytosterols represent surrogate markers for intestinal cholesterol absorption, cholesterol precursors reflect cholesterol biosynthesis. Here we compare serum and biliary sterol levels in ethnically different populations of patients with gallstone disease (GSD) and stone-free controls to identify differences in cholesterol transport and synthesis between these groups. In this case-control study four cohorts were analyzed: 112 German patients with GSD and 152 controls; two distinct Chilean ethnic groups: Hispanics (100 GSD, 100 controls), and Amerindians (20 GSD, 20 controls); additionally an 8-year follow-up of 70 Hispanics was performed. Serum sterols were measured by gas chromatography / mass spectrometry. Gallbladder bile sterol levels were analyzed in cholesterol GSD and controls. Common ABCG5/8 variants were genotyped. Comparison of serum sterols showed lower levels of phytosterols and higher levels of cholesterol precursors in GSD patients than in controls. The ratios of phytosterols to cholesterol precursors were lower in GSD patients, whereas biliary phytosterol and cholesterol concentrations were elevated as compared with controls. In the follow-up study, serum phytosterol levels were significantly lower even before GSD was detectable by ultrasound. An ethnic gradient in the ratios of phytosterols to cholesterol precursors was apparent (Germans > Hispanics > Amerindians). ABCG5/8 variants did not fully explain the sterol metabolic trait of GSD in any of the cohorts. Individuals predisposed to GSD display increased biliary output of cholesterol in the setting of relatively low intestinal cholesterol absorption, indicating enhanced whole-body sterol clearance. This metabolic trait precedes gallstone formation and is a feature of ethnic groups at higher risk of cholesterol

  15. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats.

    Science.gov (United States)

    Murakami, Shigeru; Fujita, Michiko; Nakamura, Masakazu; Sakono, Masanobu; Nishizono, Shoko; Sato, Masao; Imaizumi, Katsumi; Mori, Mari; Fukuda, Nobuhiro

    2016-03-01

    This study was designed to investigate the effects of dietary taurine on cholesterol metabolism in high-cholesterol-fed rats. Male Sprague-Dawley rats were randomly divided into two dietary groups (n = 6 in each group): a high-cholesterol diet containing 0.5% cholesterol and 0.15% sodium cholate, and a high-cholesterol diet with 5% (w/w) taurine. The experimental diets were given for 2 weeks. Taurine supplementation reduced the serum and hepatic cholesterol levels by 37% and 32%, respectively. Faecal excretion of bile acids was significantly increased in taurine-treated rats, compared with untreated rats. Biliary bile acid concentrations were also increased by taurine. Taurine supplementation increased taurine-conjugated bile acids by 61% and decreased glycine-conjugated bile acids by 53%, resulting in a significant decrease in the glycine/taurine (G/T) ratio. Among the taurine-conjugated bile acids, cholic acid and deoxycholic acid were significantly increased. In the liver, taurine supplementation increased the mRNA expression and enzymatic activity of hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme for bile acid synthesis, by three- and two-fold, respectively. Taurine also decreased the enzymatic activity of acyl-CoA:cholesterol acyltransferase (ACAT) and microsomal triglyceride transfer protein (MTP). These observations suggest that taurine supplementation increases the synthesis and excretion of taurine-conjugated bile acids and stimulates the catabolism of cholesterol to bile acid by elevating the expression and activity of CYP7A1. This may reduce cholesterol esterification and lipoprotein assembly for very low density lipoprotein (VLDL) secretion, leading to reductions in the serum and hepatic cholesterol levels. © 2016 John Wiley & Sons Australia, Ltd.

  16. The role of serum non-cholesterol sterols as surrogate markers of absolute cholesterol synthesis and absorption.

    Science.gov (United States)

    Miettinen, T A; Gylling, H; Nissinen, M J

    2011-10-01

    To study the whole-body cholesterol metabolism in man, cholesterol synthesis and absorption need to be measured. Because of the complicated methods of the measurements, new approaches were developed including the analysis of serum non-cholesterol sterols. In current lipidologic papers and even in intervention studies, serum non-cholesterol sterols are frequently used as surrogate markers of cholesterol metabolism without any validation to the absolute metabolic variables. The present review compares serum non-cholesterol sterols with absolute measurements of cholesterol synthesis and absorption in published papers to find out whether the serum markers are valid indicators of cholesterol metabolism in various conditions. During statin treatment, during interventions of dietary fat, and in type 2 diabetes the relative and absolute variables of cholesterol synthesis and absorption were frequently but not constantly correlated with each other. In some occasions, especially in subjects with apolipoprotein E3/4 and E4/4 phenotypes, the relative metabolic markers were even more sensitive than the absolute ones to reflect changes in cholesterol metabolism during dietary interventions. Even in general population at very high absorption the homeostasis of cholesterol metabolism is disturbed damaging the validity of the serum markers. It is worth using several instead of only one precursor and absorption sterol marker for making conclusions of altered synthesis or absorption of cholesterol, and even then the presence of at least some absolute measurement is valuable. During consumption of plant sterol-enriched diets and in situations of interfered cholesterol homeostasis the relative markers do not adequately reflect cholesterol metabolism. Accordingly, the validity of the relative markers of cholesterol metabolism should not be considered as self-evident. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Increased therapeutic efficacy of a newly synthesized tyrosinase inhibitor by solid lipid nanoparticles in the topical treatment of hyperpigmentation

    Directory of Open Access Journals (Sweden)

    Al-Amin M

    2016-12-01

    Full Text Available Md Al-Amin, Jiafu Cao, Muhammad Naeem, Hasanul Banna, Min-Soo Kim, Yunjin Jung, Hae Young Chung, Hyung Ryong Moon, Jin-Wook Yoo College of Pharmacy, Pusan National University, Busan, South Korea Abstract: Hyperpigmentation caused by melanin overproduction is a major skin disorder in humans. Inhibition of tyrosinase, a key regulator of melanin production, has been used as an effective strategy to treat hyperpigmentation. In this study, we investigated the use of solid lipid nanoparticles (SLNs as a highly effective and nontoxic means to deliver a newly synthesized potent tyrosinase inhibitor, MHY498, and to target melanocytes through the skin. MHY498-loaded SLNs (MHY-SLNs were prepared by an oil-in-water emulsion solvent-evaporation method, and their morphological and physicochemical properties were characterized. MHY-SLNs showed a prolonged drug-release profile and higher skin permeation than that of MHY solution. In an in vivo evaluation of antimelanogenic activity, MHY-SLNs showed a prominent inhibitory effect against ultraviolet B-induced melanogenesis, resulting in no change in the skin color of C57BL/6 mouse, compared with that observed in an MHY solution-treated group and an untreated control group. The antimelanogenic effect of MHY-SLNs was further confirmed through Fontana–Masson staining. Importantly, MHY-SLNs did not induce any toxic effects in the L929 cell line. Overall, these data indicate that MHY-SLNs show promise in the topical treatment of hyperpigmentation. Keywords: melanogenesis, hyperpigmentation, MHY498, solid lipid nanoparticles, skin delivery

  18. Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes

    International Nuclear Information System (INIS)

    Bokoch, Michael P.; Devadoss, Anando; Palencsar, Mariela S.; Burgess, James D.

    2004-01-01

    Cholesterol oxidase is immobilized in electrode-supported lipid bilayer membranes. Platinum electrodes are initially modified with a self-assembled monolayer of thiolipid. A vesicle fusion method is used to deposit an outer leaflet of phospholipids onto the thiolipid monolayer forming a thiolipid/lipid bilayer membrane on the electrode surface. Cholesterol oxidase spontaneously inserts into the electrode-supported lipid bilayer membrane from solution and is consequently immobilized to the electrode surface. Cholesterol partitions into the membrane from buffer solutions containing cyclodextrin. Cholesterol oxidase catalyzes the oxidation of cholesterol by molecular oxygen, forming hydrogen peroxide as a product. Amperometric detection of hydrogen peroxide for continuous solution flow experiments are presented, where flow was alternated between cholesterol solution and buffer containing no cholesterol. Steady-state anodic currents were observed during exposures of cholesterol solutions ranging in concentration from 10 to 1000 μM. These data are consistent with the Michaelis-Menten kinetic model for oxidation of cholesterol as catalyzed by cholesterol oxidase immobilized in the lipid bilayer membrane. The cholesterol detection limit is below 1 μM for cholesterol solution prepared in buffered cyclodextrin. The response of the electrodes to low density lipoprotein solutions is increased upon addition of cyclodextrin. Evidence for adsorption of low density lipoprotein to the electrode surface is presented

  19. Isotope dilution/mass spectrometry of serum cholesterol with [3,4-13C]cholesterol: proposed definitive method

    International Nuclear Information System (INIS)

    Pelletier, O.; Wright, L.A.; Breckenridge, W.C.

    1987-01-01

    We describe a new gas-chromatographic/mass-spectrometric (GC/MS) isotope-dilution method for determination of serum cholesterol. The method has been fully optimized and documented to provide the high accuracy and precision expected for a Definitive Method. In the presence of [3,4- 13 C]cholesterol, cholesteryl esters in serum are hydrolyzed under optimum conditions and the entire cholesterol pool is extracted and derivatized to silyl ethers. The cholesterol derivatives are resolved from other sterols by gas-liquid chromatography on a fused silica column, and selected ions characteristic of cholesterol and the [3,4- 13 C]cholesterol are monitored with a GC/MS quandrupole system. We estimated the cholesterol content of samples by bracketing each sample with standards of comparable cholesterol concentration that also contained the [3,4- 13 C]cholesterol. The procedure was highly reproducible (CV less than 0.5%), better accuracy and precision being obtained with [3,4- 13 C]cholesterol than with heptadeuterated cholesterol. Mean values per gram of dry serum for one serum pool assayed by this method and that of the National Bureau of Standards differed by 0.5%. We conclude that the method satisfies the criteria for a Definitive Method

  20. Cholesterol - drug treatment

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000314.htm Cholesterol - drug treatment To use the sharing features on ... treatment; Hardening of the arteries - statin Statins for Cholesterol Statins reduce your risk of heart disease, stroke, ...

  1. Free cholesterol and cholesterol esters in bovine oocytes: Implications in survival and membrane raft organization after cryopreservation.

    Directory of Open Access Journals (Sweden)

    Jorgelina Buschiazzo

    Full Text Available Part of the damage caused by cryopreservation of mammalian oocytes occurs at the plasma membrane. The addition of cholesterol to cell membranes as a strategy to make it more tolerant to cryopreservation has been little addressed in oocytes. In order to increase the survival of bovine oocytes after cryopreservation, we proposed not only to increase cholesterol level of oocyte membranes before vitrification but also to remove the added cholesterol after warming, thus recovering its original level. Results from our study showed that modulation of membrane cholesterol by methyl-β-cyclodextrin (MβCD did not affect the apoptotic status of oocytes and improved viability after vitrification yielding levels of apoptosis closer to those of fresh oocytes. Fluorometric measurements based on an enzyme-coupled reaction that detects both free cholesterol (membrane and cholesteryl esters (stored in lipid droplets, revealed that oocytes and cumulus cells present different levels of cholesterol depending on the seasonal period. Variations at membrane cholesterol level of oocytes were enough to account for the differences found in total cholesterol. Differences found in total cholesterol of cumulus cells were explained by the differences found in both the content of membrane cholesterol and of cholesterol esters. Cholesterol was incorporated into the oocyte plasma membrane as evidenced by comparative labeling of a fluorescent cholesterol. Oocytes and cumulus cells increased membrane cholesterol after incubation with MβCD/cholesterol and recovered their original level after cholesterol removal, regardless of the season. Finally, we evaluated the effect of vitrification on the putative raft molecule GM1. Cholesterol modulation also preserved membrane organization by maintaining ganglioside level at the plasma membrane. Results suggest a distinctive cholesterol metabolic status of cumulus-oocyte complexes (COCs among seasons and a dynamic organizational structure

  2. Cholesterol autoxidation in phospholipid membrane bilayers

    International Nuclear Information System (INIS)

    Sevanian, A.; McLeod, L.L.

    1987-01-01

    Lipid peroxidation in unilamellar liposomes of known cholesterol-phospholipid composition was monitored under conditions of autoxidation or as induced by a superoxide radical generating system, gamma-irradiation or cumene hydroperoxide. Formation of cholesterol oxidation products was indexed to the level of lipid peroxidation. The major cholesterol oxidation products identified were 7-keto-cholesterol, isomeric cholesterol 5,6-epoxides, isomeric 7-hydroperoxides and isomeric 3,7-cholestane diols. Other commonly encountered products included 3,5-cholestadiene-7-one and cholestane-3 beta, 5 alpha, 6 beta-triol. Superoxide-dependent peroxidation required iron and produced a gradual increase in 7-keto-cholesterol and cholesterol epoxides. Cholesterol oxidation was greatest in liposomes containing high proportions of unsaturated phospholipid to cholesterol (4:1 molar ratio), intermediate with low phospholipid to cholesterol ratios (2:1) and least in liposomes prepared with dipalmitoylphosphatidylcholine and cholesterol. This relationship held regardless of the oxidizing conditions used. Cumene hydroperoxide-dependent lipid peroxidation and/or more prolonged oxidations with other oxidizing systems yielded a variety of products where cholesterol-5 beta,6 beta-epoxide, 7-ketocholesterol and the 7-hydroperoxides were most consistently elevated. Oxyradical initiation of lipid peroxidation produced a pattern of cholesterol oxidation products distinguishable from the pattern derived by cumene hydroperoxide-dependent peroxidation

  3. High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review.

    Science.gov (United States)

    Subczynski, Witold K; Pasenkiewicz-Gierula, Marta; Widomska, Justyna; Mainali, Laxman; Raguz, Marija

    2017-12-01

    Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.

  4. Remnant cholesterol and ischemic heart disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Nordestgaard, Børge G

    2014-01-01

    PURPOSE OF REVIEW: To review recent advances in the field of remnant cholesterol as a contributor to the development of ischemic heart disease (IHD). RECENT FINDINGS: Epidemiologic, mechanistic, and genetic studies all support a role for elevated remnant cholesterol (=cholesterol in triglyceride......-rich lipoproteins) as a contributor to the development of atherosclerosis and IHD. Observational studies show association between elevated remnant cholesterol and IHD, and mechanistic studies show remnant cholesterol accumulation in the arterial wall like LDL-cholesterol (LDL-C) accumulation. Furthermore, large...... genetic studies show evidence of remnant cholesterol as a causal risk factor for IHD independent of HDL-cholesterol levels. Genetic studies also show that elevated remnant cholesterol is associated with low-grade inflammation, whereas elevated LDL-C is not. There are several pharmacologic ways of lowering...

  5. Dendrogenin A arises from cholesterol and histamine metabolism and shows cell differentiation and anti-tumour properties.

    Science.gov (United States)

    de Medina, Philippe; Paillasse, Michael R; Segala, Gregory; Voisin, Maud; Mhamdi, Loubna; Dalenc, Florence; Lacroix-Triki, Magali; Filleron, Thomas; Pont, Frederic; Saati, Talal Al; Morisseau, Christophe; Hammock, Bruce D; Silvente-Poirot, Sandrine; Poirot, Marc

    2013-01-01

    We previously synthesized dendrogenin A and hypothesized that it could be a natural metabolite occurring in mammals. Here we explore this hypothesis and report the discovery of dendrogenin A in mammalian tissues and normal cells as an enzymatic product of the conjugation of 5,6α-epoxy-cholesterol and histamine. Dendrogenin A was not detected in cancer cell lines and was fivefold lower in human breast tumours compared with normal tissues, suggesting a deregulation of dendrogenin A metabolism during carcinogenesis. We established that dendrogenin A is a selective inhibitor of cholesterol epoxide hydrolase and it triggered tumour re-differentiation and growth control in mice and improved animal survival. The properties of dendrogenin A and its decreased level in tumours suggest a physiological function in maintaining cell integrity and differentiation. The discovery of dendrogenin A reveals a new metabolic pathway at the crossroads of cholesterol and histamine metabolism and the existence of steroidal alkaloids in mammals.

  6. Cellular Cholesterol Regulates Ubiquitination and Degradation of the Cholesterol Export Proteins ABCA1 and ABCG1*

    Science.gov (United States)

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716

  7. Bile acid sequestrants for cholesterol

    Science.gov (United States)

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  8. to HDL-cholesterol functionality

    Directory of Open Access Journals (Sweden)

    Malara Marzena

    2016-05-01

    Full Text Available The purpose of this study was to analyse the scientific evidence concerning the effects of two enzymes – paraoxonase 1 and myeloperoxidase – on the functions of HDL-cholesterol. It is well documented that disturbed circulating lipoproteins (a high total and high LDL-cholesterol, and low HDL-cholesterol bring about atherosclerosis and an increased risk of cardiovascular disease (CVD which is recognised as the main cause of death all around the world. In consequence, numerous studies have focused on procedures which will improve the plasma lipoproteins profile by decreasing the total cholesterol and the LDL-cholesterol (LDL-C and increasing the HDL-cholesterol (HDL-C. However, the anti-atherogenic role of HDL-C has been challenged in studies showing that genetically elevated HDL-cholesterol does not offer protection against CVD. Moreover, it has been found that raising the circulating HDL-cholesterol fails to reduce atherosclerosis. The doubts concerning the protective role of HDL-C have been supported by in vitro studies which indicate that the HDL-C from patients with atherosclerosis does not have a protective action, but does stimulate inflammation and free radical synthesis. The above data suggests that HDL-C, commonly recognised as protective against atherosclerosis, in some circumstances becomes pro-atherogenic, and is thus dysfunctional. Our review focuses on two enzymes – paraoxonase 1 (PON1 and myeloperoxidase (MPO – which markedly affect the properties of HDL-C and contribute to its anti – or pro-atherogenic activity. Moreover, the effects of the diet and physical activity on PON1 and MPO are summarised with respect to the HDL-C functionality.

  9. Synthesis and validation of novel cholesterol-based fluorescent lipids designed to observe the cellular trafficking of cationic liposomes.

    Science.gov (United States)

    Kim, Bieong-Kil; Seu, Young-Bae; Choi, Jong-Soo; Park, Jong-Won; Doh, Kyung-Oh

    2015-09-15

    Cholesterol-based fluorescent lipids with ether linker were synthesized using NBD (Chol-E-NBD) or Rhodamine B (Chol-E-Rh), and the usefulnesses as fluorescent probes for tracing cholesterol-based liposomes were validated. The fluorescent intensities of liposomes containing these modified lipids were measured and observed under a microscope. Neither compound interfered with the expression of GFP plasmid, and live cell images were obtained without interferences. Changes in the fluorescent intensity of liposomes containing Chol-E-NBD were followed by flow cytometry for up to 24h. These fluorescent lipids could be useful probes for trafficking of cationic liposome-mediated gene delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Discovery of a novel series of benzimidazole derivatives as diacylglycerol acyltransferase inhibitors.

    Science.gov (United States)

    Lee, Kyeong; Goo, Ja-Il; Jung, Hwa Young; Kim, Minkyoung; Boovanahalli, Shanthaveerappa K; Park, Hye Ran; Kim, Mun-Ock; Kim, Dong-Hyun; Lee, Hyun Sun; Choi, Yongseok

    2012-12-15

    A novel series of benzimidazole derivatives was prepared and evaluated for their diacylglycerol acyltransferase (DGAT) inhibitory activity using microsome from rat liver. Among the newly synthesized compounds, furfurylamine containing benzimidazole carboxamide 10j showed the most potent DGAT inhibitory effect (IC(50)=4.4 μM) and inhibited triglyceride formation in HepG2 cells. Furthermore, compound 10j reduced body weight gain of Institute of Cancer Research mice on a high-fat diet and decreased levels of total triglyceride, total cholesterol, and LDL-cholesterol in the blood accompanied with a significant increase in HDL-cholesterol level. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Effect of dietary cholesterol and plant sterol consumption on plasma lipid responsiveness and cholesterol trafficking in healthy individuals.

    Science.gov (United States)

    Alphonse, Peter A S; Ramprasath, Vanu; Jones, Peter J H

    2017-01-01

    Dietary cholesterol and plant sterols differentially modulate cholesterol kinetics and circulating cholesterol. Understanding how healthy individuals with their inherent variabilities in cholesterol trafficking respond to such dietary sterols will aid in improving strategies for effective cholesterol lowering and alleviation of CVD risk. The objectives of this study were to assess plasma lipid responsiveness to dietary cholesterol v. plant sterol consumption, and to determine the response in rates of cholesterol absorption and synthesis to each sterol using stable isotope approaches in healthy individuals. A randomised, double-blinded, crossover, placebo-controlled clinical trial (n 49) with three treatment phases of 4-week duration were conducted in a Manitoba Hutterite population. During each phase, participants consumed one of the three treatments as a milkshake containing 600 mg/d dietary cholesterol, 2 g/d plant sterols or a control after breakfast meal. Plasma lipid profile was determined and cholesterol absorption and synthesis were measured by oral administration of [3, 4-13C] cholesterol and 2H-labelled water, respectively. Dietary cholesterol consumption increased total (0·16 (sem 0·06) mmol/l, P=0·0179) and HDL-cholesterol (0·08 (sem 0·03) mmol/l, P=0·0216) concentrations with no changes in cholesterol absorption or synthesis. Plant sterol consumption failed to reduce LDL-cholesterol concentrations despite showing a reduction (6 %, P=0·0004) in cholesterol absorption. An over-compensatory reciprocal increase in cholesterol synthesis (36 %, P=0·0026) corresponding to a small reduction in absorption was observed with plant sterol consumption, possibly resulting in reduced LDL-cholesterol lowering efficacy of plant sterols. These data suggest that inter-individual variability in cholesterol trafficking mechanisms may profoundly impact plasma lipid responses to dietary sterols in healthy individuals.

  12. Lack of Abcg1 results in decreased plasma HDL cholesterol levels and increased biliary cholesterol secretion in mice fed a high cholesterol diet

    NARCIS (Netherlands)

    Wiersma, Harmen; Nijstad, Niels; de Boer, Jan Freark; Out, Ruud; Hogewerf, Wytse; Van Berkel, Theo J.; Kuipers, Folkert; Tietge, Uwe J. F.

    Objective: The ATP Binding Cassette transporter G1 (ABCG1) has been implicated in cholesterol efflux towards HDL and reverse cholesterol transport (RCT). Biliary cholesterol secretion is considered as an important step in RCT. The aim of the present study was to determine the consequences of Abcg1

  13. Molecular Docking and Anticonvulsant Activity of Newly Synthesized Quinazoline Derivatives

    Directory of Open Access Journals (Sweden)

    Hatem A. Abuelizz

    2017-06-01

    Full Text Available A new series of quinazoline-4(3H-ones are evaluated for anticonvulsant activity. After intraperitoneal (ip injection to albino mice at a dose of 100 mg/kg body weight, synthesized quinazolin-4(3H-ones (1–24 were examined in the maximal electroshock (MES induced seizures and subcutaneous pentylenetetrazole (scPTZ induced seizure models in mice. The Rotarod method was applied to determine the neurotoxicity. Most of the compounds displayed anticonvulsant activity in the scPTZ screen at a dose range of 0.204–0.376 mmol/mL. Out of twenty-four, compounds 8, 13 and 19 proved to be the most active with a remarkable protection (100% against PTZ induced convulsions and four times more potent activity than ethosuximide. The structure-activity relationship concluded valuable pharmacophoric information, which was confirmed by the molecular docking studies using the target enzyme human carbon anhydrase II (HCA II. The studied quinazoline analogues suggested that the butyl substitution at position 3 has a significant effect on preventing the spread of seizure discharge and on raising the seizure threshold. However, benzyl substitution at position 3 has shown a strong anticonvulsant activity but with less seizure prevention compared to the butyl substitution.

  14. A newly recognized syndrome of severe growth deficiency, microcephaly, intellectual disability, and characteristic facial features.

    Science.gov (United States)

    Vinkler, Chana; Leshinsky-Silver, Esther; Michelson, Marina; Haas, Dorothea; Lerman-Sagie, Tally; Lev, Dorit

    2014-01-01

    Genetic syndromes with proportionate severe short stature are rare. We describe two sisters born to nonconsanguineous parents with severe linear growth retardation, poor weight gain, microcephaly, characteristic facial features, cutaneous syndactyly of the toes, high myopia, and severe intellectual disability. During infancy and early childhood, the girls had transient hepatosplenomegaly and low blood cholesterol levels that normalized later. A thorough evaluation including metabolic studies, radiological, and genetic investigations were all normal. Cholesterol metabolism and transport were studied and no definitive abnormality was found. No clinical deterioration was observed and no metabolic crises were reported. After due consideration of other known hereditary causes of post-natal severe linear growth retardation, microcephaly, and intellectual disability, we propose that this condition represents a newly recognized autosomal recessive multiple congenital anomaly-intellectual disability syndrome. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events

    NARCIS (Netherlands)

    Barter, Philip; Gotto, Antonio M.; LaRosa, John C.; Maroni, Jaman; Szarek, Michael; Grundy, Scott M.; Kastelein, John J. P.; Bittner, Vera; Fruchart, Jean-Charles

    2007-01-01

    BACKGROUND: High-density lipoprotein (HDL) cholesterol levels are a strong inverse predictor of cardiovascular events. However, it is not clear whether this association is maintained at very low levels of low-density lipoprotein (LDL) cholesterol. METHODS: A post hoc analysis of the recently

  16. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes.

    Science.gov (United States)

    Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard

    2011-06-01

    Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.

  17. Ezetimibe Increases Endogenous Cholesterol Excretion in Humans.

    Science.gov (United States)

    Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Ostlund, Richard E

    2017-05-01

    Ezetimibe improves cardiovascular outcomes when added to optimum statin treatment. It lowers low-density lipoprotein cholesterol and percent intestinal cholesterol absorption, but the exact cardioprotective mechanism is unknown. We tested the hypothesis that the dominant effect of ezetimibe is to increase the reverse transport of cholesterol from rapidly mixing endogenous cholesterol pool into the stool. In a randomized, placebo-controlled, double-blind parallel trial in 24 healthy subjects with low-density lipoprotein cholesterol 100 to 200 mg/dL, we measured cholesterol metabolism before and after a 6-week treatment period with ezetimibe 10 mg/d or placebo. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d 7 in a lipid emulsion and dietary cholesterol with cholesterol-d 5 and sitostanol-d 4 solubilized in oil. Plasma and stool samples collected during a cholesterol- and phytosterol-controlled metabolic kitchen diet were analyzed by mass spectrometry. Ezetimibe reduced intestinal cholesterol absorption efficiency 30±4.3% (SE, P <0.0001) and low-density lipoprotein cholesterol 19.8±1.9% ( P =0.0001). Body cholesterol pool size was unchanged, but fecal endogenous cholesterol excretion increased 66.6±12.2% ( P <0.0001) and percent cholesterol excretion from body pools into the stool increased 74.7±14.3% ( P <0.0001), whereas plasma cholesterol turnover rose 26.2±3.6% ( P =0.0096). Fecal bile acids were unchanged. Ezetimibe increased the efficiency of reverse cholesterol transport from rapidly mixing plasma and tissue pools into the stool. Further work is needed to examine the potential relation of reverse cholesterol transport and whole body cholesterol metabolism to coronary events and the treatment of atherosclerosis. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01603758. © 2017 American Heart Association, Inc.

  18. Trapping crystal nucleation of cholesterol monohydrate

    DEFF Research Database (Denmark)

    Solomonov, I.; Weygand, M.J.; Kjær, K.

    2005-01-01

    Crystalline nucleation of cholesterol at the air-water interface has been studied via grazing incidence x-ray diffraction using synchrotron radiation. The various stages of cholesterol molecular assembly from monolayer to three bilayers incorporating interleaving hydrogen-bonded water layers......, at least initially, an intralayer cholesterol rearrangement in a single-crystal-to-single-crystal transition. The preferred nucleation of the monoclinic phase of cholesterol . H2O followed by transformation to the stable monohydrate phase may be associated with an energetically more stable cholesterol...... bilayer arrangement of the former and a more favorable hydrogen-bonding arrangement of the latter. The relevance of this nucleation process of cholesterol monohydrate to pathological crystallization of cholesterol from cell biomembranes is discussed....

  19. Characterization of placental cholesterol transport

    DEFF Research Database (Denmark)

    Lindegaard, Marie L; Wassif, Christopher A; Vaisman, Boris

    2008-01-01

    Patients with Smith-Lemli-Opitz syndrome (SLOS) are born with multiple congenital abnormalities. Postnatal cholesterol supplementation is provided; however, it cannot correct developmental malformations due to in utero cholesterol deficit. Increased transport of cholesterol from maternal to fetal...... circulation might attenuate congenital malformations. The cholesterol transporters Abca1, Abcg1, and Sr-b1 are present in placenta; however, their potential role in placental transport remains undetermined. In mice, expression analyses showed that Abca1 and Abcg1 transcripts increased 2-3-fold between...... embryonic days 13.5 and 18.5 in placental tissue; whereas, Sr-b1 expression decreased. To examine the functional role of Abca1, Abcg1 and Sr-b1 we measured the maternal-fetal transfer of (14)C-cholesterol in corresponding mutant embryos. Disruption of either Abca1 or Sr-b1 decreased cholesterol transfer...

  20. Increased hepatic cholesterol esterification with essential fatty acid deficiency (EFAD): relationship to plasma lipoprotein (LP) cholesterol content

    International Nuclear Information System (INIS)

    Ney, D.M.; Ziboh, V.A.; Schneeman, B.O.

    1986-01-01

    EFAD in the rat is associated with hepatic accumulation of esterified cholesterol and altered distribution of cholesterol between plasma and hepatic tissue. Little is known regarding the impact of EFAD on LP composition. To determine the relationship between hepatic cholesterol esterification and plasma lP composition in control (C) and EFAD male Wistar rats, the authors induced EFAD with continuous intragastric (IG) infusion of EFA-free solutions containing 3.5% of calories as triolein for 7 and 14 days. C animals received IG infusion of solutions containing 3.5% of calories as linoleic acid. Data in the EFAD groups reveal: (i) marked decreases in hepatic EFAs and increases in monoenoic acids; (ii) progressive increases in hepatic content of triglyceride and esterified cholesterol with 7 and 14 days of feeding; (iii) assay of acyl CoA:cholesterol acyltransferase activity in hepatic tissue using 14 C-cholesterol demonstrates an increase in hepatic cholesterol esterification when compared to C animals. Increased hepatic cholesterol esterification correlates with elevated levels of esterified cholesterol in plasma VLDL and HDL particles. These data indicate that the elevated levels of cholesterol esters in LP particles is due, at least in part, to increased hepatic cholesterol esterification with EFAD

  1. Recovery and purification of cholesterol from cholesterol-β-cyclodextrin inclusion complex using ultrasound-assisted extraction.

    Science.gov (United States)

    Li, Yong; Chen, Youliang; Li, Hua

    2017-01-01

    Response surface methodology was used to optimize ultrasound-assisted ethanol extraction (UAE) of cholesterol from cholesterol-β-cyclodextrin (C-β-CD) inclusion complex prepared from duck yolk oil. The best extraction conditions were solvent-solid ratio 10mL/g, ultrasonic power 251W, extraction temperature 56°C and sonication time 36min. Under these conditions, the highest cholesterol extraction yield and cholesterol content obtained 98.12±0.25% and 43.38±0.61mg/g inclusion complex, respectively. As compared with Reflux extraction and Soxhlet extraction, the UAE was more efficient and economical. To increase the purity of crude cholesterol extraction, silica gel column chromatography and crystallization were carried out. Finally, cholesterol was obtained at 95.1% purity, 71.7% recovery and 22.0% yield. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cholesterol Medicines: MedlinePlus Health Topic

    Science.gov (United States)

    ... heart diseases . There are two main types of cholesterol. LDL is the "bad" cholesterol. A high LDL level leads to a buildup of cholesterol in ... 75 years old, you have diabetes, and your LDL cholesterol level is 70 mg/dL or higher You ...

  3. The cholesterol space of the rat

    International Nuclear Information System (INIS)

    Chevallier, F.

    1959-01-01

    The experiments consisted in feeding daily to rats the same mass of radioactive cholesterol, over variable time intervals. From the evolution of the specific radioactivity of cholesterol carbon-14 in the organs as a function of time, information relative to the transport of cholesterol in the organism may be obtained. 1) The cholesterol space, defined as the group of molecules capable of being transferred from the organs into the serum and vice versa, represents at the most 50 per cent of the total cholesterol of the adult rat. 2) The incessant interchange between the tissual and the serum cholesterol renews entirely or for the most part the cholesterol molecules contained in the following organs: spleen, heart, adipose tissue, suprarenal glands, lungs, bone marrow, liver, erythrocytes. For a second group of organs: skin, testicles, kidneys, colon, bones, muscles, only a fraction of their cholesterol is renewable by this process. No transfer can be detected at the level of the brain. 3) The relative speeds of the various means of appearance (absorption, synthesis) and disappearance (excretion, transformation) of the cholesterol from its space are such that a stationary isotopic state is established around the eighth day, when the animal absorbs 5 milligrams of radioactive cholesterol daily. (author) [fr

  4. Transintestinal cholesterol excretion in humans

    NARCIS (Netherlands)

    Reeskamp, Laurens F.; Meessen, Emma C. E.; Groen, Albert K.

    2018-01-01

    Purpose of review To discuss recent insights into the measurement and cellular basis of transintestinal cholesterol excretion (TICE) in humans and to explore TICE as a therapeutic target for increasing reverse cholesterol transport. Recent findings TICE is the net effect of cholesterol excretion by

  5. Relative variations of gut microbiota in disordered cholesterol metabolism caused by high-cholesterol diet and host genetics.

    Science.gov (United States)

    Bo, Tao; Shao, Shanshan; Wu, Dongming; Niu, Shaona; Zhao, Jiajun; Gao, Ling

    2017-08-01

    Recent studies performed provide mechanistic insight into effects of the microbiota on cholesterol metabolism, but less focus was given to how cholesterol impacts the gut microbiota. In this study, ApoE -/- Sprague Dawley (SD) rats and their wild-type counterparts (n = 12) were, respectively, allocated for two dietary condition groups (normal chow and high-cholesterol diet). Total 16S rDNA of fecal samples were extracted and sequenced by high-throughput sequencing to determine differences in microbiome composition. Data were collected and performed diversity analysis and phylogenetic analysis. The influence of cholesterol on gut microbiota was discussed by using cholesterol dietary treatment as exogenous cholesterol disorder factor and genetic modification as endogenous metabolic disorder factor. Relative microbial variations were compared to illustrate the causality and correlation of cholesterol and gut microbiota. It turned out comparing to genetically modified rats, exogenous cholesterol intake may play more effective role in changing gut microbiota profile, although the serum cholesterol level of genetically modified rats was even higher. Relative abundance of some representative species showed that the discrepancies due to dietary variation were more obvious, whereas some low abundance species changed because of genetic disorders. Our results partially demonstrated that gut microbiota are relatively more sensitive to dietary variation. Nevertheless, considering the important effect of bacteria in cholesterol metabolism, the influence to gut flora by "genetically caused cholesterol disorder" cannot be overlooked. Manipulation of gut microbiota might be an effective target for preventing cholesterol-related metabolic disorders. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Cholesterol and related sterols autoxidation.

    Science.gov (United States)

    Zerbinati, Chiara; Iuliano, Luigi

    2017-10-01

    Cholesterol is a unique lipid molecule providing the building block for membranes, hormones, vitamin D and bile acid synthesis. Metabolism of cholesterol involves several enzymes acting on the sterol nucleus or the isooctyl tail. In the recent years, research interest has been focused on oxysterols, cholesterol derivatives generated by the addition of oxygen to the cholesterol backbone. Oxysterols can be produced enzymatically or by autoxidation. Autoxidation of cholesterol proceeds through type I or type II mechanisms. Type I autoxidation is initiated by free radical species, such as those arising from the superoxide/hydrogen peroxide/hydroxyl radical system. Type II autoxidation occurs stoichiometrically by non-radical highly reactive oxygen species such as singlet oxygen, HOCl, and ozone. The vulnerability of cholesterol towards high reactive species has raised considerable interest for mechanistic studies and for the potential biological activity of oxysterols, as well as for the use of oxysterols as biomarkers for the non-invasive study of oxidative stress in vivo. Copyright © 2017. Published by Elsevier Inc.

  7. High Cholesterol in Children and Teens

    Science.gov (United States)

    ... dairy products. The body needs some cholesterol to work properly. But if your child or teen has high cholesterol (too much cholesterol in the blood), he or she has a higher risk of coronary artery disease and other heart diseases. What causes high cholesterol in children and teens? Three main ...

  8. The effect of 24S-hydroxycholesterol on cholesterol homeostasis in neurons: quantitative changes to the cortical neuron proteome.

    Science.gov (United States)

    Wang, Yuqin; Muneton, Sabina; Sjövall, Jan; Jovanovic, Jasmina N; Griffiths, William J

    2008-04-01

    In humans, the brain represents only about 2% of the body's mass but contains about one-quarter of the body's free cholesterol. Cholesterol is synthesized de novo in brain and removed by metabolism to oxysterols. 24S-Hydoxycholesterol represents the major metabolic product of cholesterol in brain, being formed via the cytochrome P450 (CYP) enzyme CYP46A1. CYP46A1 is expressed exclusively in brain, normally by neurons. In this study, we investigated the effect of 24S-hydroxycholesterol on the proteome of rat cortical neurons. With the use of two-dimensional liquid chromatography linked to nanoelectrospray tandem mass spectrometry, over 1040 proteins were identified including members of the cholesterol, isoprenoid and fatty acid synthesis pathways. With the use of stable isotope labeling technology, the protein expression patterns of enzymes in these pathways were investigated. 24S-Hydroxycholesterol was found to down-regulate the expression of members of the cholesterol/isoprenoid synthesis pathways including 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (EC 2.3.3.10), diphosphomevalonate decarboxylase (EC 4.1.1.33), isopentenyl-diphosphate delta isomerase (EC 5.3.3.2), farnesyl-diphosphate synthase (Geranyl trans transferase, EC 2.5.1.10), and dedicated sterol synthesis enzymes, farnesyl-diphosphate farnesyltransferase 1 (squalene synthase, EC 2.5.1.21) and methylsterol monooxygenase (EC 1.14.13.72). The expression of many enzymes in the cholesterol/isoprenoid and fatty acid synthesis pathways are regulated by the membrane-bound transcription factors named sterol regulatory element-binding proteins (SREBPs), which themselves are both transcriptionally and post-transcriptionally regulated. The current proteomic data indicates that 24S-hydroxycholesterol down-regulates cholesterol synthesis in neurons, possibly, in a post-transcriptional manner through SREBP-2. In contrast to cholesterol metabolism, enzymes responsible for the synthesis of fatty acids were not

  9. Histone deacetylase inhibition decreases cholesterol levels in neuronal cells by modulating key genes in cholesterol synthesis, uptake and efflux.

    Directory of Open Access Journals (Sweden)

    Maria João Nunes

    Full Text Available Cholesterol is an essential component of the central nervous system and increasing evidence suggests an association between brain cholesterol metabolism dysfunction and the onset of neurodegenerative disorders. Interestingly, histone deacetylase inhibitors (HDACi such as trichostatin A (TSA are emerging as promising therapeutic approaches in neurodegenerative diseases, but their effect on brain cholesterol metabolism is poorly understood. We have previously demonstrated that HDACi up-regulate CYP46A1 gene transcription, a key enzyme in neuronal cholesterol homeostasis. In this study, TSA was shown to modulate the transcription of other genes involved in cholesterol metabolism in human neuroblastoma cells, namely by up-regulating genes that control cholesterol efflux and down-regulating genes involved in cholesterol synthesis and uptake, thus leading to an overall decrease in total cholesterol content. Furthermore, co-treatment with the amphipathic drug U18666A that can mimic the intracellular cholesterol accumulation observed in cells of Niemman-Pick type C patients, revealed that TSA can ameliorate the phenotype induced by pathological cholesterol accumulation, by restoring the expression of key genes involved in cholesterol synthesis, uptake and efflux and promoting lysosomal cholesterol redistribution. These results clarify the role of TSA in the modulation of neuronal cholesterol metabolism at the transcriptional level, and emphasize the idea of HDAC inhibition as a promising therapeutic tool in neurodegenerative disorders with impaired cholesterol metabolism.

  10. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  11. Controlling Cholesterol with Statins

    Science.gov (United States)

    ... For Consumers Home For Consumers Consumer Updates Controlling Cholesterol with Statins Share Tweet Linkedin Pin it More ... not, the following tips can help keep your cholesterol in check: Talk with your healthcare provider about ...

  12. The Interpretation of Cholesterol Balance Derived Synthesis Data and Surrogate Noncholesterol Plasma Markers for Cholesterol Synthesis under Lipid Lowering Therapies

    Directory of Open Access Journals (Sweden)

    Frans Stellaard

    2017-01-01

    Full Text Available The cholesterol balance procedure allows the calculation of cholesterol synthesis based on the assumption that loss of endogenous cholesterol via fecal excretion and bile acid synthesis is compensated by de novo synthesis. Under ezetimibe therapy hepatic cholesterol is diminished which can be compensated by hepatic de novo synthesis and hepatic extraction of plasma cholesterol. The plasma lathosterol concentration corrected for total cholesterol concentration (R_Lath as a marker of de novo cholesterol synthesis is increased during ezetimibe treatment but unchanged under treatment with ezetimibe and simvastatin. Cholesterol balance derived synthesis data increase during both therapies. We hypothesize the following. (1 The cholesterol balance data must be applied to the hepatobiliary cholesterol pool. (2 The calculated cholesterol synthesis value is the sum of hepatic de novo synthesis and the net plasma—liver cholesterol exchange rate. (3 The reduced rate of biliary cholesterol absorption is the major trigger for the regulation of hepatic cholesterol metabolism under ezetimibe treatment. Supportive experimental and literature data are presented that describe changes of cholesterol fluxes under ezetimibe, statin, and combined treatments in omnivores and vegans, link plasma R_Lath to liver function, and define hepatic de novo synthesis as target for regulation of synthesis. An ezetimibe dependent direct hepatic drug effect cannot be excluded.

  13. Nanoscale Membrane Domain Formation Driven by Cholesterol

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Vattulainen, Ilpo

    2017-01-01

    Biological membranes generate specific functions through compartmentalized regions such as cholesterol-enriched membrane nanodomains that host selected proteins. Despite the biological significance of nanodomains, details on their structure remain elusive. They cannot be observed via microscopic...... dipalmitoylphosphatidylcholine and cholesterol - the "minimal standard" for nanodomain formation. The simulations reveal how cholesterol drives the formation of fluid cholesterol-rich nanodomains hosting hexagonally packed cholesterol-poor lipid nanoclusters, both of which show registration between the membrane leaflets....... The complex nanodomain substructure forms when cholesterol positions itself in the domain boundary region. Here cholesterol can also readily flip-flop across the membrane. Most importantly, replacing cholesterol with a sterol characterized by a less asymmetric ring region impairs the emergence of nanodomains...

  14. Preparation of cholesterol oxidase nanoparticles and their application in amperometric determination of cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, Sheetal; Rawal, Rachna; Sonia; Ramrati; Pundir, C. S., E-mail: pundircs@rediffmail.com [M. D. University, Department of Biochemistry (India)

    2013-09-15

    The nanoparticle (NP) aggregates of commercial cholesterol oxidase (ChOx) were prepared by desolvation method. The formation and characterization of ChOxNP aggregates were studied by transmission electron microscopy and scanning electron microscopy. NP aggregates were more stable, active and had a higher shelf life than that of free enzyme. An amperometric cholesterol biosensor was constructed by immobilizing ChOxNPs onto Au electrode. The biosensor showed optimum response within 8 s at pH 6.0 and 35 Degree-Sign C, when polarized at +0.27 V versus Ag/AgCl. The biosensor possesses high sensitivity and measures cholesterol concentrations as low as 1.56 mg/dl. The working linear range was 12.5-700 mg/dl for cholesterol. The biosensor was evaluated and employed for measurement of total cholesterol in human serum. The enzyme electrode lost 50 % of its initial activity during its regular use for 180 times over a period of 90 days when stored in 0.1 M sodium phosphate buffer, pH 7.0 at 4 Degree-Sign C.

  15. Preparation of cholesterol oxidase nanoparticles and their application in amperometric determination of cholesterol

    International Nuclear Information System (INIS)

    Chawla, Sheetal; Rawal, Rachna; Sonia; Ramrati; Pundir, C. S.

    2013-01-01

    The nanoparticle (NP) aggregates of commercial cholesterol oxidase (ChOx) were prepared by desolvation method. The formation and characterization of ChOxNP aggregates were studied by transmission electron microscopy and scanning electron microscopy. NP aggregates were more stable, active and had a higher shelf life than that of free enzyme. An amperometric cholesterol biosensor was constructed by immobilizing ChOxNPs onto Au electrode. The biosensor showed optimum response within 8 s at pH 6.0 and 35 °C, when polarized at +0.27 V versus Ag/AgCl. The biosensor possesses high sensitivity and measures cholesterol concentrations as low as 1.56 mg/dl. The working linear range was 12.5–700 mg/dl for cholesterol. The biosensor was evaluated and employed for measurement of total cholesterol in human serum. The enzyme electrode lost 50 % of its initial activity during its regular use for 180 times over a period of 90 days when stored in 0.1 M sodium phosphate buffer, pH 7.0 at 4 °C

  16. Effect of Processing Methods on Cholesterol Contents and Cholesterol Oxides Formation in Some Dairy Products

    International Nuclear Information System (INIS)

    AlRowaily, Meshref A

    2008-01-01

    The effects of pasteurization, boiling, microwaving, processing and storage of milk and some locally produced dairy products on cholesterol contents and cholesterol oxides formation were studied and evaluated. The 7-ketocholesterol were not detected (ND) in all raw milk samples. On the contrary, heating of milk led to formation of cholesterol oxidation products (COPs), mostly, 7- ketocholesterol in different quantities. No significant effect of heating of milk on cholesterol level was observed with the exception of the ultra-high temperature (UHT) milk prepared from milk powder heated at 140 + - 1.0 degree C for 4 sec showed the highest value of 7-ketocholesterol (80.97 mgg-1), followed by microwave heated milk for 5 min (31.29 mgg-1), whereas the lowest value was in milk pasteurized at 85 + - 1.0 degree C for 16 sec (3.125 mgg-1). Commercial storage showed no significant effect on cholesterol and 7-ketocholestrol but lowered cholesterol concentration and increased 7-ketocholestrol level of UHT reconstituted milk. Cholesterol content of both yogurt and labaneh strained by centrifugal separator showed significant decrease while 7-ketochostrol level was increased significantly with refrigerated storage. The findings are discussed in the context with the results of previous similar studies. (author)

  17. Global marketing of cholesterol-lowering drugs as therapy.

    Science.gov (United States)

    Elimimian, Jonathan U; Gilmore, James M; Singletary, Tony J

    2006-01-01

    Pharmaceutical marketing services (PMS) are a key component of pharmaceutical companies' marketing strategies in that they create links between the pharmaceutical company and the physician. They are is also a link between physician and patients locally and globally. PMS discussed in this paper provide various services from tangible to intangible products in order to increase the physicians and pharmacists prescribing activities of their treatment modalities. Given the high cost of recruiting, training, and supporting PMS global marketing efforts, it is important for PMS channels to understand the significance of pharmaceutical multinational companies to ascribe to prescription drug services provided in Thailand. This created the unique marketing environment for the pharmaceutical companies. This study examines whether there is a gap in the existing cholesterol-lowering medication prescribed by physicians in Thailand and the newly introduced brand to the U.S. market. The degree of the new product adoption is analyzed through physician prescription frequency and records. Results of the study indicate there is significant improvement in the health conditions of the users of the new cholesterol medication among Thailand patients. Physicians in Thailand were, however, faced with competing brands in the market due to aggressiveness of advertising and promotion by multinational pharmaceutical marketing and manufacturers Associations. Perceived value and benefit to users were significant outcome of the study. More diagnostic and prescriptive research is recommended to cover Southeast Asia and other parts of the developing countries.

  18. Cholesterol in unusual places

    Energy Technology Data Exchange (ETDEWEB)

    Kucerka, N; Nieh, M P; Marquardt, D; Harroun, T A; Wassail, S R; Katsaras, J, E-mail: John.Katsaras@nrc.gc.ca, E-mail: Norbert.Kucerka@nrc.gc.ca

    2010-11-01

    Cholesterol is an essential component of mammalian cells, and is required for building and maintaining cell membranes, regulating their fluidity, and possibly acting as an antioxidant. Cholesterol has also been implicated in cell signaling processes, where it has been suggested that it triggers the formation of lipid rafts in the plasma membrane. Aside from cholesterol's physiological roles, what is also becoming clear is its poor affinity for lipids with unsaturated fatty acids as opposed to saturated lipids, such as sphingomyelin with which it forms rafts. We previously reported the location of cholesterol in membranes with varying degrees of acyl chain unsaturation as determined by neutron diffraction studies (Harroun et al 2006 Biochemistry 45, 1227; Harroun et al 2008 Biochemistry 47, 7090). In bilayers composed of phosphatidylcholine (PC) molecules with a saturated acyl chain at the sn-1 position or a monounsaturated acyl chain at both sn-1 and sn-2 positions, cholesterol was found in its much-accepted 'upright' position. However, in dipolyunsaturated 1,2-diarachidonyl phosphatidylcholine (20:4-20:4PC) membranes the molecule was found sequestered in the center of the bilayers. In further experiments, mixing l-palmitoyl-2-oleoyl phosphatidylcholine (16:0-18:1 PC) with 20:4-20:4PC resulted in cholesterol reverting to its upright orientation at approximately 40 mol% 16:0-18:1 PC. Interestingly, the same effect was achieved with only 5 mol% 1,2-dimyristoyl phosphatidylchoile (14:0-14:0PC).

  19. Cholesterol in unusual places

    International Nuclear Information System (INIS)

    Kucerka, N; Nieh, M P; Marquardt, D; Harroun, T A; Wassail, S R; Katsaras, J

    2010-01-01

    Cholesterol is an essential component of mammalian cells, and is required for building and maintaining cell membranes, regulating their fluidity, and possibly acting as an antioxidant. Cholesterol has also been implicated in cell signaling processes, where it has been suggested that it triggers the formation of lipid rafts in the plasma membrane. Aside from cholesterol's physiological roles, what is also becoming clear is its poor affinity for lipids with unsaturated fatty acids as opposed to saturated lipids, such as sphingomyelin with which it forms rafts. We previously reported the location of cholesterol in membranes with varying degrees of acyl chain unsaturation as determined by neutron diffraction studies (Harroun et al 2006 Biochemistry 45, 1227; Harroun et al 2008 Biochemistry 47, 7090). In bilayers composed of phosphatidylcholine (PC) molecules with a saturated acyl chain at the sn-1 position or a monounsaturated acyl chain at both sn-1 and sn-2 positions, cholesterol was found in its much-accepted 'upright' position. However, in dipolyunsaturated 1,2-diarachidonyl phosphatidylcholine (20:4-20:4PC) membranes the molecule was found sequestered in the center of the bilayers. In further experiments, mixing l-palmitoyl-2-oleoyl phosphatidylcholine (16:0-18:1 PC) with 20:4-20:4PC resulted in cholesterol reverting to its upright orientation at approximately 40 mol% 16:0-18:1 PC. Interestingly, the same effect was achieved with only 5 mol% 1,2-dimyristoyl phosphatidylchoile (14:0-14:0PC).

  20. [Cholesterol reducing food certainly is useful].

    Science.gov (United States)

    Stalenhoef, A F

    1997-12-27

    The effect of a low-cholesterol diet in open intervention studies depends in the long run on motivation, knowledge and dedication. The mean decrease of the serum cholesterol level is 10% (range: 0-20). Epidemiological and cohort studies clearly prove a connection between the intake of saturated fat, the serum cholesterol level and the risk of coronary heart disease and death. High-fat food slows down the clearance of the degradation products rich in cholesterol which appear in the blood after a meal and which are highly atherogenic (these products are not found at a fasting cholesterol assay). Cholesterol-reducing nutrition has additional useful effects, for instance on the blood pressure and the coagulation. The recommendations for healthy, low-cholesterol nutrition for the population as a whole apply particularly to patients with a high risk of coronary heart disease. Although advice given to individuals often has a disappointing effect, influencing the life pattern should be included in the strategy to reduce the risk of coronary heart disease.

  1. Phospholipase A2-treated human high-density lipoprotein and cholesterol movements: exchange processes and lecithin: cholesterol acyltransferase reactivity.

    Science.gov (United States)

    Chollet, F; Perret, B P; Chap, H; Douste-Blazy, L

    1986-02-12

    Human HDL3 (d 1.125-1.21 g/ml) were treated by an exogenous phospholipase A2 from Crotalus adamenteus in the presence of albumin. Phosphatidylcholine hydrolysis ranged between 30 and 90% and the reisolated particle was essentially devoid of lipolysis products. (1) An exchange of free cholesterol was recorded between radiolabelled erythrocytes at 5-10% haematocrit and HDL3 (0.6 mM total cholesterol) from 0 to 12-15 h. Isotopic equilibration was reached. Kinetic analysis of the data indicated a constant rate of free cholesterol exchange of 13.0 microM/h with a half-time of equilibration around 3 h. Very similar values of cholesterol exchange, specific radioactivities and kinetic parameters were measured when phospholipase-treated HDL replaced control HDL. (2) The lecithin: cholesterol acyltransferase reactivity of HDL3, containing different amounts of phosphatidylcholine, as achieved by various degrees of phospholipase A2 treatment, was measured using a crude preparation of lecithin: cholesterol acyltransferase (the d 1.21-1.25 g/ml plasma fraction). The rate of esterification was determined between 0 and 12 h. Following a 15-30% lipolysis, the lecithin: cholesterol acyltransferase reactivity of HDL3 was reduced about 30-40%, and then continued to decrease, though more slowly, as the phospholipid content was further lowered in the particle. (3) The addition of the lecithin: cholesterol acyltransferase preparation into an incubation medium made of labelled erythrocytes and HDL3 promoted a movement of radioactive cholesterol out of cells, above the values of exchange, and an accumulation of cholesteryl esters in HDL. This reflected a mass consumption of free cholesterol, from both the cellular and the lipoprotein compartments upon the lecithin: cholesterol acyltransferase action. As a consequence of a decreased reactivity, phospholipase-treated HDL (with 2/3 of phosphatidylcholine hydrolyzed) proved much less effective in the lecithin: cholesterol acyltransferase

  2. The expression of cholesterol metabolism genes in monocytes from HIV-infected subjects suggests intracellular cholesterol accumulation.

    Science.gov (United States)

    Feeney, Eoin R; McAuley, Nuala; O'Halloran, Jane A; Rock, Clare; Low, Justin; Satchell, Claudette S; Lambert, John S; Sheehan, Gerald J; Mallon, Patrick W G

    2013-02-15

    Human immunodeficiency virus (HIV) infection is associated with increased cardiovascular risk and reduced high-density lipoprotein cholesterol (HDL-c). In vitro, HIV impairs monocyte-macrophage cholesterol efflux, a major determinant of circulating HDL-c, by increasing ABCA1 degradation, with compensatory upregulation of ABCA1 messenger RNA (mRNA). We examined expression of genes involved in cholesterol uptake, metabolism, and efflux in monocytes from 22 HIV-positive subjects on antiretroviral therapy (ART-Treated), 30 untreated HIV-positive subjects (ART-Naive), and 22 HIV-negative controls (HIV-Neg). HDL-c was lower and expression of ABCA1 mRNA was higher in ART-Naive subjects than in both ART-Treated and HIV-Neg subjects (both P ART-Treated and ART-Naive subjects than in HIV-Neg controls. In vivo, increased monocyte ABCA1 expression in untreated HIV-infected patients and normalization of ABCA1 expression with virological suppression by ART supports direct HIV-induced impairment of cholesterol efflux previously demonstrated in vitro. However, decreased expression of cholesterol sensing, uptake, and synthesis genes in both untreated and treated HIV infection suggests that both HIV and ART affect monocyte cholesterol metabolism in a pattern consistent with accumulation of intramonocyte cholesterol.

  3. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    Energy Technology Data Exchange (ETDEWEB)

    Alán, Lukáš, E-mail: lukas.alan@fgu.cas.cz; Špaček, Tomáš; Pajuelo Reguera, David; Jabůrek, Martin; Ježek, Petr

    2016-07-01

    Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators. We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (> 48 h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity. - Highlights: • The mechanism for mitochondrial nucleoid clustering is proposed. • DNA intercalators (Doxorubicin or Ethidium Bromide) prevent TFAM

  4. Niacin to Boost Your HDL "Good" Cholesterol

    Science.gov (United States)

    Niacin can boost 'good' cholesterol Niacin is a B vitamin that may raise your HDL ("good") cholesterol. But side effects might outweigh benefits for most ... been used to increase high-density lipoprotein (HDL) cholesterol — the "good" cholesterol that helps remove low-density ...

  5. The fate and role of macromolecules synthesized during mammalian oocyte meiotic maturation. I. Autoradiographic topography of newly synthesized RNA and protein in the germinal vesicle of the pig and rabbit

    International Nuclear Information System (INIS)

    Motlik, J.; Kopecny, V.; Pivko, J.

    1978-01-01

    Pig and rabbit oocytes were cytoautoradiographically checked for their synthetic activities during meiotic maturation. Tritiated uridine and lysine or 35 S-methionine were introduced into the culture medium in which the oocytes were maintained either immediately at the beginning of the germinal vesicle breakdown in vitro or after reaching a more advanced stage of this process in vitro or in vivo. Some oocytes were maintained thereafter in a cold medium to trace the metabolism of the labelled protein. In addition to uridine- 3 H incorporation into the nucleolus and nucleoplasm, during pig oocyte maturation it was found that an intensive RNA synthesis site appeared in association with condensing chromocentres of the GV II. A considerable proportion of oocytes from slaughterhouse material did not show intensive GV activity in RNA synthesis during maturation in vitro. In the pig and rabbit oocyte it was shown that the newly synthesized 3 H-lysine-labelled protein accumulated to a high degree in the GV and in the nucleolus. The labelled protein accumulated in the GV up to the stage of GV IV (pig) and persisted during the chase period in the ooplasm; it was found to be associated with chromosomes of metaphase I (pig) or metaphase II (rabbit) of the meiotic division. The process of protein accumulation in the GV was not influenced by meiotic arrest during oocyte culture in autologous follicular fluid. A similar accumulation of the label in the GV was detected in oocytes which were cultured in a medium enriched by 35 S-methionine. In some oocytes the labelled protein failed to accumulate in the nucleolar area during maturation in vitro

  6. Intestinal cholesterol secretion : future clinical implications

    NARCIS (Netherlands)

    Jakulj, L.; Besseling, J.; Stroes, E. S. G.; Groen, A. K.

    2013-01-01

    Together with the liver, the intestine serves as a homeostatic organ in cholesterol metabolism. Recent evidence has substantiated the pivotal role of the intestine in reverse cholesterol transport (RCT). RCT is a fundamental antiatherogenic pathway, mediating the removal of cholesterol from tissues

  7. Intestinal cholesterol secretion: future clinical implications

    NARCIS (Netherlands)

    Jakulj, L.; Besseling, J.; Stroes, E. S. G.; Groen, A. K.

    2013-01-01

    Together with the liver, the intestine serves as a homeostatic organ in cholesterol metabolism. Recent evidence has substantiated the pivotal role of the intestine in reverse cholesterol transport (RCT). RCT is a fundamental antiatherogenic pathway, mediating the removal of cholesterol from tissues

  8. DIETARY-CHOLESTEROL INDUCED DOWN-REGULATION OF INTESTINAL 3-HYDROXY-3-METHYLGLUTARYL COENZYME-A REDUCTASE-ACTIVITY IS DIMINISHED IN RABBITS WITH HYPERRESPONSE OF SERUM-CHOLESTEROL TO DIETARY-CHOLESTEROL

    NARCIS (Netherlands)

    MEIJER, GW; SMIT, MJ; VANDERPALEN, JGP; KUIPERS, F; VONK, RJ; VANZUTPHEN, BFM; BEYNEN, AC

    Key enzymes of cholesterol metabolism were studied in two inbred strains of rabbits with hyper- or hyporesponse of serum cholesterol to dietary cholesterol. Baseline 3-hydroxy-3-methylglutaryl (HMG)CoA reductase activity in liver was similar in hypo- and hyperresponders, but that in intestine was

  9. Dietary cholesterol and fats at a young age : do they influence cholesterol metabolism in adult life?

    NARCIS (Netherlands)

    Temmerman, A.M.; Vonk, R.J.; Niezen-Koning, K.; Berger, R.; Fernandes, J.

    1989-01-01

    The effects of dietary cholesterol and fats on cholesterol metabolism later in life were studied in Mongolian gerbils. Three groups were given a basic diet with soybean oil, palm kernel oil amounting to 8.75% (w/w), or the basic diet only. In three other groups, cholesterol (0.05%) was added to the

  10. Imaging appearances of cholesterol pneumonia

    International Nuclear Information System (INIS)

    Miao Yanwei; Zhang Jingwen; Wu Jianlin; Zhou Yong; Li Mingwu; Lei Zhen; Shi Lifu

    2006-01-01

    Objection: To analyze the imaging appearances of cholesterol pneumonia. Methods We retrospectively analyzed the X-ray and CT findings of 3 patients with cholesterol pneumonia confirmed pathologically and reviewed correlative literature. Results: Lesions similar to mass were found in X-ray and CT imaging of three cases. Two of them appeared cavity with fluid-level and one showed multiple ring enhancement after CT contrast. The course of disease was very. long and it had no respond to antibiotic therapy. Amounts of foam cells rich in cholesterol crystal were detected in pathological examination. Conclusions: Cholesterol pneumonia is a rare chronic pulmonary idiopathic disease, and the radiological findings can do some help to its diagnosis. (authors)

  11. Solid-phase extraction of the alcohol abuse biomarker phosphatidylethanol using newly synthesized polymeric sorbent materials containing quaternary heterocyclic groups.

    Science.gov (United States)

    Duarte, Mariana; Jagadeesan, Kishore Kumar; Billing, Johan; Yilmaz, Ecevit; Laurell, Thomas; Ekström, Simon

    2017-10-13

    Phosphatidylethanol (PEth) is an interesting biomarker finding increased use for detecting long term alcohol abuse with high specificity and sensitivity. Prior to detection, sample preparation is an unavoidable step in the work-flow of PEth analysis and new protocols may facilitate it. Solid-phase extraction (SPE) is a versatile sample preparation method widely spread in biomedical laboratories due to its simplicity of use and the possibility of automation. In this work, SPE was used for the first time to directly extract PEth from spiked human plasma and spiked human blood. A library of polymeric SPE materials with different surface functionalities was screened for PEth extraction in order to identify the surface characteristics that control PEth retention and recovery. The plasma samples were diluted 1:10 (v/v) in water and spiked at different concentrations ranging from 0.3 to 5μM. The library of SPE materials was then evaluated using the proposed SPE method and detection was done by LC-MS/MS. One SPE material efficiently retained and recovered PEth from spiked human plasma. With this insight, four new SPE materials were formulated and synthesized based on the surface characteristics of the best SPE material found in the first screening. These new materials were tested with spiked human blood, to better mimic a real clinical sample. All the newly synthetized materials outperformed the pre-existing commercially available materials. Recovery values for the new SPE materials were found between 29.5% and 48.6% for the extraction of PEth in spiked blood. A material based on quaternized 1-vinylimidazole with a poly(trimethylolpropane trimethacrylate) backbone was found suitable for PEth extraction in spiked blood showing the highest analyte recovery in this experiment, 48.6%±6.4%. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The influence of saponins on cell membrane cholesterol.

    Science.gov (United States)

    Böttger, Stefan; Melzig, Matthias F

    2013-11-15

    We studied the influence of structurally different saponins on the cholesterol content of cellular membranes. Therefore a cell culture model using ECV-304 urinary bladder carcinoma cells was developed. To measure the cholesterol content we used radiolabeled (3)H-cholesterol which is chemically and physiologically identical to natural cholesterol. The cells were pre-incubated with (3)H-cholesterol and after a medium change, they were treated with saponins to assess a saponin-induced cholesterol liberation from the cell membrane. In another experiment the cells were pre-incubated with saponins and after a medium change, they were treated with (3)H-cholesterol to assess a saponin-induced inhibition of cholesterol uptake into the cell membrane. Furthermore, the membrane toxicity of all applied saponins was analyzed using extracellular LDH quantification and the general cytotoxicity was analyzed using a colorimetric MTT-assay and DNA quantification. Our results revealed a correlation between membrane toxicity and general cytotoxicity. We also compared the results from the experiments on the saponin-induced cholesterol liberation as well as the saponin-induced inhibition of cholesterol uptake with the membrane toxicity. A significant reduction in the cell membrane cholesterol content was noted for those saponins who showed membrane toxicity (IC50 saponins either liberated (3)H-cholesterol from intact cell membranes or blocked the integration of supplemented (3)H-cholesterol into the cell membrane. Saponins with little influence on the cell membrane (IC50 >100 μM) insignificantly altered the cell membrane cholesterol content. The results suggested that the general cytotoxicity of saponins is mainly dependent on their membrane toxicity and that the membrane toxicity might be caused by the loss of cholesterol from the cell membrane. We also analyzed the influence of a significantly membrane toxic saponin on the cholesterol content of intracellular membranes such as those

  13. Influence of dietary cholesterol on 26-hydroxycholesterol and the effect of 26-hydroxycholesterol on the intracellular free calcium level

    International Nuclear Information System (INIS)

    Kou, I.L.

    1987-01-01

    The purpose of this study was to investigate the factors influencing serum level of 26-hydroxycholesterol after long-term consumption of cholesterol by animals. It is also to examine the effect of this sterol on intracellular free calcium level. Purified 26-hydroxycholesterol was synthesized from kryptogenin by the Clemmemsen and Wolff-Kishner reduction method. 26-Hydroxycholesterol was also used for fatty acid esters syntheses, and to study its influence on membranes. Tritiated 26-hydroxycholesterol which was synthesized by an enzymatic method, was used to monitor the 26-hydroxycholesterol loss during the procedure. The ester form of 26-hydroxycholesterol was also synthesized, and used to investigate its effects on membranes. The HPLC method that was developed for the analysis of 26-hydroxycholesterol levels in animal tissues was accurate, efficient, and reproducible for the determination of 26-hydroxycholesterol in plasma. However, it was not suitable for the analysis of other tissues, due to the overlapping of peaks making quantitation difficult

  14. Cholesterol transfer at endosomal-organelle membrane contact sites.

    Science.gov (United States)

    Ridgway, Neale D; Zhao, Kexin

    2018-06-01

    Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.

  15. Cholesterol lowering effects of mono-lactose-appended β-cyclodextrin in Niemann–Pick type C disease-like HepG2 cells

    Directory of Open Access Journals (Sweden)

    Keiichi Motoyama

    2015-11-01

    Full Text Available The Niemann–Pick type C disease (NPC is one of inherited lysosomal storage disorders, emerges the accumulation of unesterified cholesterol in endolysosomes. Currently, 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD has been applied for the treatment of NPC. HP-β-CyD improved hepatosplenomegaly in NPC patients, however, a high dose of HP-β-CyD was necessary. Therefore, the decrease in dose by actively targeted-β-CyD to hepatocytes is expected. In the present study, to deliver β-CyD selectively to hepatocytes, we newly fabricated mono-lactose-appended β-CyD (Lac-β-CyD and evaluated its cholesterol lowering effects in NPC-like HepG2 cells, cholesterol accumulated HepG2 cells induced by treatment with U18666A. Lac-β-CyD (degree of substitution of lactose (DSL 1 significantly decreased the intracellular cholesterol content in a concentration-dependent manner. TRITC-Lac-β-CyD was associated with NPC-like HepG2 cells higher than TRITC-β-CyD. In addition, TRITC-Lac-β-CyD was partially localized with endolysosomes after endocytosis. Thus, Lac-β-CyD entered NPC-like HepG2 cells via asialoglycoprotein receptor (ASGPR-mediated endocytosis and decreased the accumulation of intracellular cholesterol in NPC-like HepG2 cells. These results suggest that Lac-β-CyD may have the potential as a drug for the treatment of hepatosplenomegaly in NPC disease.

  16. Phytosterol glycosides reduce cholesterol absorption in humans

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% (P lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content. PMID:19246636

  17. In vitro studies of immunoglobulin heavy-chain binding protein (BiP, GRP78). Interactions of BiP with newly synthesized proteins and adenine nucleotides

    International Nuclear Information System (INIS)

    Kassenbrock, C.K.

    1988-01-01

    Here we examine the interaction of BiP with newly synthesized polypeptides in an in vitro protein translations-translocation system. We find that BiP forms tight complexes with nonglycosylated yeast invertase and incorrectly disulfide-bonded prolactin but not with glycosylated invertase or correctly disulfide-bonded prolactin. Moreover, BiP associates detectably only with completed chains of prolactin, not with chains undergoing synthesis. We conclude that BiP recognizes and binds with high affinity to aberrantly folded or aberrantly glycosylated polypeptides in vitro, but not to all nascent chains as they are folding. BiP also binds APT and can be purified by APT affinity chromatography. We show that submicromolar levels of ATP or ADP decrease the rate of absorption of 125 I-BiP to nitrocellulose filters coated with protein or nonionic detergents. ATP and ADP also protect portions of BiP from proteolytic degradation. In contrast, micromolar levels of AMP increase the rate of adsorption and the rate of proteolytic degradation of BiP. We also show that an ATPase activity co-purifies with BiP, but its slow turnover number suggests a regulatory, rather than a functional role. The BiP-associated ATPase shares several properties with the related cytoplasmic protein, HSC70/clathrin uncoating ATPase

  18. Intracellular Cholesterol Trafficking and Impact in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Fabian Arenas

    2017-11-01

    Full Text Available Cholesterol is a critical component of membrane bilayers where it plays key structural and functional roles by regulating the activity of diverse signaling platforms and pathways. Particularly enriched in brain, cholesterol homeostasis in this organ is singular with respect to other tissues and exhibits a heterogeneous regulation in distinct brain cell populations. Due to the key role of cholesterol in brain physiology and function, alterations in cholesterol homeostasis and levels have been linked to brain diseases and neurodegeneration. In the case of Alzheimer disease (AD, however, this association remains unclear with evidence indicating that either increased or decreased total brain cholesterol levels contribute to this major neurodegenerative disease. Here, rather than analyzing the role of total cholesterol levels in neurodegeneration, we focus on the contribution of intracellular cholesterol pools, particularly in endolysosomes and mitochondria through its trafficking via specialized membrane domains delineated by the contacts between endoplasmic reticulum and mitochondria, in the onset of prevalent neurodegenerative diseases such as AD, Parkinson disease, and Huntington disease as well as in lysosomal disorders like Niemann-Pick type C disease. We dissect molecular events associated with intracellular cholesterol accumulation, especially in mitochondria, an event that results in impaired mitochondrial antioxidant defense and function. A better understanding of the mechanisms involved in the distribution of cholesterol in intracellular compartments may shed light on the role of cholesterol homeostasis disruption in neurodegeneration and may pave the way for specific intervention opportunities.

  19. Cholesterol asymmetry in synaptic plasma membranes.

    Science.gov (United States)

    Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P

    2011-03-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  20. LW-214, a newly synthesized flavonoid, induces intrinsic apoptosis pathway by down-regulating Trx-1 in MCF-7 human breast cells.

    Science.gov (United States)

    Pan, Di; Li, Wei; Miao, Hanchi; Yao, Jing; Li, Zhiyu; Wei, Libin; Zhao, Li; Guo, Qinglong

    2014-02-15

    In this study, the anticancer effect of LW-214, a newly synthesized flavonoid, against MCF-7 human breast cancer cells and the underlying mechanisms were investigated. LW-214 triggered the mitochondrial apoptotic pathway by increasing Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (ΔΨm) and caspase-9 activation, degradation of poly (ADP-ribose) polymerase (PARP), cytochrome c (Cyt c) release and apoptosis-inducing factor (AIF) transposition. Further research revealed that both the reactive oxygen species (ROS) generation and the apoptosis signal regulating kinase 1 (ASK1) activation by LW-214 were induced by down-regulating the thioredoxin-1 (Trx-1) expression. The ROS elevation and ASK1 activation induced a sustained phosphorylation of c-Jun N-terminal kinase (JNK), while SP600125, as known as JNK inhibitor, almost reversed LW-214-induced apoptosis in MCF-7 cells. Overexpression of Trx-1 in MCF-7 cells attenuated LW-214-mediated apoptosis as well as the JNK activation and reversed the expression of mitochondrial apoptosis-related protein. Accordingly, the in vivo study showed that LW-214 exhibited a potential antitumor effect in BALB/c species mice inoculated MCF-7 tumor with low systemic toxicity, and the mechanism was the same as in vitro study. Taken together, these findings indicated that LW-214 may down-regulated Trx-1 function, causing intracellular ROS generation and releasing the ASK1, and lead to JNK activation, which consequently induced the mitochondrial apoptosis in vitro and in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity.

    Science.gov (United States)

    Sag, Duygu; Cekic, Caglar; Wu, Runpei; Linden, Joel; Hedrick, Catherine C

    2015-02-27

    ATP-binding cassette transporter G1 (ABCG1) promotes cholesterol efflux from cells and regulates intracellular cholesterol homeostasis. Here we demonstrate a role of ABCG1 as a mediator of tumour immunity. Abcg1(-/-) mice have dramatically suppressed subcutaneous MB49-bladder carcinoma and B16-melanoma growth and prolonged survival. We show that reduced tumour growth in Abcg1(-/-) mice is myeloid cell intrinsic and is associated with a phenotypic shift of the macrophages from a tumour-promoting M2 to a tumour-fighting M1 within the tumour. Abcg1(-/-) macrophages exhibit an intrinsic bias towards M1 polarization with increased NF-κB activation and direct cytotoxicity for tumour cells in vitro. Overall, our study demonstrates that the absence of ABCG1 inhibits tumour growth through modulation of macrophage function within the tumour, and illustrates a link between cholesterol homeostasis and cancer.

  2. Can non-cholesterol sterols and lipoprotein subclasses distribution predict different patterns of cholesterol metabolism and statin therapy response?

    Science.gov (United States)

    Gojkovic, Tamara; Vladimirov, Sandra; Spasojevic-Kalimanovska, Vesna; Zeljkovic, Aleksandra; Vekic, Jelena; Kalimanovska-Ostric, Dimitra; Djuricic, Ivana; Sobajic, Sladjana; Jelic-Ivanovic, Zorana

    2017-03-01

    Cholesterol homeostasis disorders may cause dyslipidemia, atherosclerosis progression and coronary artery disease (CAD) development. Evaluation of non-cholesterol sterols (NCSs) as synthesis and absorption markers, and lipoprotein particles quality may indicate the dyslipidemia early development. This study investigates associations of different cholesterol homeostasis patterns with low-density (LDL) and high-density lipoproteins (HDL) subclasses distribution in statin-treated and statin-untreated CAD patients, and potential use of aforementioned markers for CAD treatment optimization. The study included 78 CAD patients (47 statin-untreated and 31 statin-treated) and 31 controls (CG). NCSs concentrations were quantified using gas chromatography- flame ionization detection (GC-FID). Lipoprotein subclasses were separated by gradient gel electrophoresis. In patients, cholesterol-synthesis markers were significantly higher comparing to CG. Cholesterol-synthesis markers were inversely associated with LDL size in all groups. For cholesterol homeostasis estimation, each group was divided to good and/or poor synthetizers and/or absorbers according to desmosterol and β-sitosterol median values. In CG, participants with reduced cholesterol absorption, the relative proportion of small, dense LDL was higher in those with increased cholesterol synthesis compared to those with reduced synthesis (p<0.01). LDL I fraction was significantly higher in poor synthetizers/poor absorbers subgroup compared to poor synthetizers/good absorbers (p<0.01), and good synthetizers/poor absorbers (p<0.01). Statin-treated patients with increased cholesterol absorption had increased proportion of LDL IVB (p<0.05). The results suggest the existence of different lipoprotein abnormalities according to various patterns of cholesterol homeostasis. Desmosterol/β-sitosterol ratio could be used for estimating individual propensity toward dyslipidemia development and direct the future treatment.

  3. Impaired cholesterol esterification in primary brain cultures of the lysosomal cholesterol storage disorder (LCSD) mouse mutant

    International Nuclear Information System (INIS)

    Patel, S.C.; Suresh, S.; Weintroub, H.; Brady, R.O.; Pentchev, P.G.

    1987-01-01

    Esterification of cholesterol was investigated in primary neuroglial cultures obtained from newborn lysosomal cholesterol storage disorder (LCSD) mouse mutants. An impairment in 3 H-oleic acid incorporation into cholesteryl esters was demonstrated in cultures of homozygous LCSD brain. Primary cultures derived from other phenotypically normal pups of the carrier breeders esterified cholesterol at normal levels or at levels which were intermediary between normal and deficient indicating a phenotypic expression of the LCSD heterozygote genotype. These observations on LCSD mutant brain cells indicate that the defect in cholesterol esterification is closely related to the primary genetic defect and is expressed in neuroglial cells in culture

  4. Microwave assisted direct saponification for the simultaneous determination of cholesterol and cholesterol oxides in shrimp.

    Science.gov (United States)

    Souza, Hugo A L; Mariutti, Lilian R B; Bragagnolo, Neura

    2017-05-01

    A novel microwave-assisted direct saponification method for the simultaneous determination of cholesterol and cholesterol oxides in shrimp was developed and validated. Optimal saponification conditions, determined by means of an experimental design, were achieved using 500mg of sample and 20mL of 1mol/L KOH ethanol solution for 16min at 45°C at maximum power at 200W and magnetic stirring at 120rpm. Higher extraction of cholesterol oxides in a reduced saponification time (∼75 times) was achieved in comparison with the direct cold saponification method. The new method showed low detection (≤0.57μg/mL) and quantification (≤1.73μg/mL) limits, good repeatability (≤10.50% intraday and ≤8.56% interday) and low artifact formation (evaluated by using a deuterated cholesterol-D6 standard). Raw, salted and dried-salted shrimps were successfully analyzed by the validated method. The content of cholesterol oxides increased after salting and decreased after drying. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Characteristics of human hypo- and hyperresponders to dietary cholesterol.

    Science.gov (United States)

    Katan, M B; Beynen, A C

    1987-03-01

    The characteristics of people whose serum cholesterol level is unusually susceptible to consumption of cholesterol were investigated. Thirty-two volunteers from the general population of Wageningen, the Netherlands, each participated in three controlled dietary trials in 1982. A low-cholesterol diet was fed during the first half and a high-cholesterol diet during the second half of each trial, and the change (response) of serum cholesterol was measured. The responses in the three trials were averaged to give each subject's mean responsiveness. Fecal excretion of cholesterol and its metabolites were measured in the second trial, and body cholesterol synthesis was calculated. Responsiveness showed a positive correlation with serum high density lipoprotein2 (HDL2) cholesterol (r = 0.41, p less than 0.05) and with serum total cholesterol level on a high-cholesterol diet (r = 0.31, p = 0.09). A negative relation was found with habitual cholesterol consumption (r = -0.62, p less than 0.01), with body mass index (r = -0.50, p less than 0.01), and with the rate of endogenous cholesterol synthesis (r = -0.40, p less than 0.05), but not with the reaction of endogenous cholesterol synthesis rate to an increased intake of cholesterol. No relation was found with age, sex, total caloric needs, or the ratio of primary to secondary fecal steroids. Upon multiple regression analysis, only habitual cholesterol intake and serum total and HDL2 cholesterol levels contributed significantly to the explanation of variance in responsiveness. Thus, a low habitual cholesterol intake, a high serum HDL2 cholesterol level, or a low body weight do not make one less susceptible to dietary cholesterol-induced hypercholesterolemia.

  6. National Cholesterol Education Month

    Centers for Disease Control (CDC) Podcasts

    2009-09-01

    Do you know your cholesterol numbers? Your doctor can do a simple test to check your cholesterol levels and help you make choices that lower your risk for heart disease and stroke.  Created: 9/1/2009 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 9/9/2009.

  7. Phytosterol glycosides reduce cholesterol absorption in humans.

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Anderson Spearie, Catherine L; Ostlund, Richard E

    2009-04-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received approximately 300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4-5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6+/-4.8% (Pphytosterol esters 30.6+/-3.9% (P=0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content.

  8. Topical cholesterol in clofazimine induced ichthyosis

    Directory of Open Access Journals (Sweden)

    Pandey S

    1994-01-01

    Full Text Available Topical application of 10% cholesterol in petrolatum significantly (P< 0.05 controlled the development of ichthyosis in 62 patients taking 100 mg clofazimine daily for a period of 3 months. However, topical cholesterol application did not affect the lowering of serum cholesterol induced by oral clofazimine. Probable mechanism of action is being discussed.

  9. Phytosterol glycosides reduce cholesterol absorption in humans

    OpenAIRE

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series ...

  10. Analysis of Cholesterol Trafficking with Fluorescent Probes

    DEFF Research Database (Denmark)

    Maxfield, Frederick R.; Wustner, Daniel

    2012-01-01

    Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport...... that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy...... and by multiphoton microscopy are described. Some label-free methods for imaging cholesterol itself are also discussed briefly....

  11. A Physicochemical and Pharmacological Study of the Newly Synthesized Complex of Albendazole and the Polysaccharide Arabinogalactan from Larch Wood.

    Science.gov (United States)

    Chistyachenko, Yulia S; Meteleva, Elizaveta S; Pakharukova, Maria Y; Katokhin, Aleksey V; Khvostov, Mikhail V; Varlamova, Anastasiya I; Glamazdin, Igor I; Khalikov, Salavat S; Polyakov, Nikolay E; Arkhipov, Ivan A; Tolstikova, Tatyana G; Mordvinov, Viatcheslav A; Dushkin, Alexander V; Lyakhov, Nikolay Z

    2015-01-01

    Inclusion complexes of albendazole (ABZ) with the polysaccharide arabinogalactan from larch wood Larix sibirica and Larix gmelinii were synthesized using a solid-state mechanochemical technology. We investigated physicochemical properties of the synthesized complexes in the solid state and in aqueous solutions as well as their anthelmintic activity against Trichinella spiralis, Hymenolepis nаna, Fasciola hepatica, Opisthorchis felineus, and mixed nematodoses of sheep. Formation of the complexes was demonstrated by means of intrinsic solubility and the NMR relaxation method. The mechanochemically synthesized complexes were more stable in comparison with the complex produced by mixing solutions of the components. The complexes of ABZ showed anthelmintic activity at 10-fold lower doses than did free ABZ. The complexes also showed lower acute toxicity and hepatotoxicity. These results suggest that it is possible to design new drugs on the basis of the ABZ:arabinogalactan complex that are safer and more effective than albendazole.

  12. LCAT, HDL Cholesterol and Ischemic Cardiovascular Disease: A Mendelian Randomization Study of HDL Cholesterol in 54,500 Individuals

    DEFF Research Database (Denmark)

    Haase, Christiane L; Tybjærg-Hansen, Anne; Ali Qayyum, Abbas

    2012-01-01

    , S208T (rs4986970, allele frequency 4%), associated with HDL cholesterol levels in both the CCHS and the CGPS was used to study causality of HDL cholesterol using instrumental variable analysis.Results:Epidemiologically, in the CCHS, a 13% (0.21 mmol/liter) decrease in plasma HDL cholesterol levels...... was associated with an 18% increase in risk of MI. S208T associated with a 13% (0.21 mmol/liter) decrease in HDL cholesterol levels but not with increased risk of MI or other ischemic end points. The causal odds ratio for MI for a 50% reduction in plasma HDL cholesterol due to S208T genotype in both studies......Background:Epidemiologically, high-density lipoprotein (HDL) cholesterol levels associate inversely with risk of ischemic cardiovascular disease. Whether this is a causal relation is unclear.Methods:We studied 10,281 participants in the Copenhagen City Heart Study (CCHS) and 50,523 participants...

  13. Biliary cholesterol secretion : More than a simple ABC

    NARCIS (Netherlands)

    Dikkers, Arne; Tietge, Uwe J. F.

    2010-01-01

    Biliary cholesterol secretion is a process important for 2 major disease complexes, atherosclerotic cardiovascular disease and cholesterol gallstone disease With respect to cardiovascular disease, biliary cholesterol secretion is regarded as the final step for the elimination of cholesterol

  14. The effects of cholesterol on learning and memory.

    Science.gov (United States)

    Schreurs, Bernard G

    2010-07-01

    Cholesterol is vital to normal brain function including learning and memory but that involvement is as complex as the synthesis, metabolism and excretion of cholesterol itself. Dietary cholesterol influences learning tasks from water maze to fear conditioning even though cholesterol does not cross the blood brain barrier. Excess cholesterol has many consequences including peripheral pathology that can signal brain via cholesterol metabolites, pro-inflammatory mediators and antioxidant processes. Manipulations of cholesterol within the central nervous system through genetic, pharmacological, or metabolic means circumvent the blood brain barrier and affect learning and memory but often in animals already otherwise compromised. The human literature is no less complex. Cholesterol reduction using statins improves memory in some cases but not others. There is also controversy over statin use to alleviate memory problems in Alzheimer's disease. Correlations of cholesterol and cognitive function are mixed and association studies find some genetic polymorphisms are related to cognitive function but others are not. In sum, the field is in flux with a number of seemingly contradictory results and many complexities. Nevertheless, understanding cholesterol effects on learning and memory is too important to ignore.

  15. What Are High Blood Cholesterol and Triglycerides?

    Science.gov (United States)

    ... Reduction Cholesterol What Are High Blood Cholesterol and Triglycerides? Cholesterol travels to the body’s cells through the ... doctor about medicines that can help. What are triglycerides? Triglycerides are the most common type of fat ...

  16. Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1.

    Science.gov (United States)

    Budelier, Melissa M; Cheng, Wayland W L; Bergdoll, Lucie; Chen, Zi-Wei; Janetka, James W; Abramson, Jeff; Krishnan, Kathiresan; Mydock-McGrane, Laurel; Covey, Douglas F; Whitelegge, Julian P; Evers, Alex S

    2017-06-02

    Voltage-dependent anion channel-1 (VDAC1) is a highly regulated β-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope-labeled tag, FLI -tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to Thr 83 and Glu 73 , respectively. When Glu 73 was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Tyr 62 within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol-binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important Glu 73 residue. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice

    NARCIS (Netherlands)

    Bura, Kanwardeep S.; Lord, Caleb; Marshall, Stephanie; McDaniel, Allison; Thomas, Gwyn; Warrier, Manya; Zhang, Jun; Davis, Matthew A.; Sawyer, Janet K.; Shah, Ramesh; Wilson, Martha D.; Dikkers, Arne; Tietge, Uwe J. F.; Collet, Xavier; Rudel, Lawrence L.; Temel, Ryan E.; Brown, J. Mark

    Reverse cholesterol transport (RCT) can proceed through the classic hepatobiliary route or through the non-biliary transintestinal cholesterol efflux (TICE) pathway. Scavenger receptor class B type I (SR-BI) plays a critical role in the classic hepatobiliary route of RCT. However, the role of SR-BI

  18. Cholesterol Perturbs Lipid Bilayers Nonuniversally

    International Nuclear Information System (INIS)

    Pan Jianjun; Mills, Thalia T.; Tristram-Nagle, Stephanie; Nagle, John F.

    2008-01-01

    Cholesterol is well known to modulate the physical properties of biomembranes. Using modern x-ray scattering methods, we have studied the effects of cholesterol on the bending modulus K C , the thickness D HH , and the orientational order parameter S xray of lipid bilayers. We find that the effects are different for at least three classes of phospholipids characterized by different numbers of saturated hydrocarbon chains. Most strikingly, cholesterol strongly increases K C when both chains of the phospholipid are fully saturated but not at all when there are two monounsaturated chains

  19. Dietary cholesterol, heart disease risk and cognitive dissonance.

    Science.gov (United States)

    McNamara, Donald J

    2014-05-01

    In the 1960s, the thesis that dietary cholesterol contributes to blood cholesterol and heart disease risk was a rational conclusion based on the available science at that time. Fifty years later the research evidence no longer supports this hypothesis yet changing the dietary recommendation to limit dietary cholesterol has been a slow and at times contentious process. The preponderance of the clinical and epidemiological data accumulated since the original dietary cholesterol restrictions were formulated indicate that: (1) dietary cholesterol has a small effect on the plasma cholesterol levels with an increase in the cholesterol content of the LDL particle and an increase in HDL cholesterol, with little effect on the LDL:HDL ratio, a significant indicator of heart disease risk, and (2) the lack of a significant relationship between cholesterol intake and heart disease incidence reported from numerous epidemiological surveys. Over the last decade, many countries and health promotion groups have modified their dietary recommendations to reflect the current evidence and to address a now recognised negative consequence of ineffective dietary cholesterol restrictions (such as inadequate choline intake). In contrast, health promotion groups in some countries appear to suffer from cognitive dissonance and continue to promote an outdated and potentially hazardous dietary recommendation based on an invalidated hypothesis. This review evaluates the evidence for and against dietary cholesterol restrictions and the potential consequences of such restrictions.

  20. Immobilization of cholesterol esterase and cholesterol oxidase onto sol-gel films for application to cholesterol biosensor

    International Nuclear Information System (INIS)

    Singh, Suman; Singhal, Rahul; Malhotra, B.D.

    2007-01-01

    Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto tetraethylorthosilicate (TEOS) sol-gel films. The tetraethylorthosilicate sol-gel/ChEt/ChOx enzyme films thus prepared have been characterized using scanning electron microscopic (SEM), UV-vis spectroscopic, Fourier-transform-infrared (FTIR) spectroscopic and amperometric techniques, respectively. The results of photometric measurements carried out on tetraethylorthosilicate sol-gel/ChEt/ChOx reveal thermal stability up to 55 deg. C, response time as 180 s, linearity up to 780 mg dL -1 (12 mM), shelf life of 1 month, detection limit of 12 mg dL -1 and sensitivity as 5.4 x 10 -5 Abs. mg -1 dL -1

  1. Newly developed chitosan-silver hybrid nanoparticles: biosafety and apoptosis induction in HepG2 cells

    International Nuclear Information System (INIS)

    El-Sherbiny, Ibrahim M.; Salih, Ehab; Yassin, Abdelrahman M.; Hafez, Elsayed E.

    2016-01-01

    The present study reports the biosafety assessment, the exact molecular effects, and apoptosis induction of newly developed chitosan-silver hybrid nanoparticles (Cs–Ag NPs) in HepG2 cells. The investigated hybrid NPs were green synthesized using Cs/grape leaves aqueous extract (Cs/GLE) or Cs/GLE NPs as reducing and stabilizing agents. The successful formation of Cs/GLE NPs and Cs–Ag hybrid NPs has been confirmed by UV–Vis spectrophotometry, FTIR spectroscopy, XRD, and HRTEM. From the TEM analysis, the prepared Cs/GLE NPs are uniform and spherical with an average size of 150 nm, and the AgNPs (5–10 nm) were formed mainly on their surface. The UV–Vis spectra of Cs–Ag NPs showed a surface plasmon resonance (SPR) peak at about 450 nm confirming their formation. The synthesized Cs–Ag NPs were found to be crystalline as shown by XRD patterns with fcc phase oriented along the (111), (200), (220), and (311) planes. The cytotoxicity patterns, the antiproliferative activities, and the possible mechanisms of anticancer activity at molecular level of the newly developed Cs–Ag hybrid NPs were investigated. Cytotoxicity patterns of all the preparations demonstrated that the nontoxic treatment concentrations are ranged from 0.39 to 50 %, and many of the newly prepared Cs–Ag hybrid NPs showed high anticancer activities against HpG2 cells, and induced cellular apoptosis by downregulating BCL2 gene and upregulating P53.Graphical Abstract

  2. Newly developed chitosan-silver hybrid nanoparticles: biosafety and apoptosis induction in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Sherbiny, Ibrahim M., E-mail: ielsherbiny@Zewailcity.edu.eg; Salih, Ehab [Zewail City of Science and Technology, Center for Materials Science (Egypt); Yassin, Abdelrahman M. [Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, Biopharmaceutical Product Research Department (Egypt); Hafez, Elsayed E. [City of Scientific Research and Technology Applications, Plant Protection and Biomolecular Diagnosis Department (Egypt)

    2016-07-15

    The present study reports the biosafety assessment, the exact molecular effects, and apoptosis induction of newly developed chitosan-silver hybrid nanoparticles (Cs–Ag NPs) in HepG2 cells. The investigated hybrid NPs were green synthesized using Cs/grape leaves aqueous extract (Cs/GLE) or Cs/GLE NPs as reducing and stabilizing agents. The successful formation of Cs/GLE NPs and Cs–Ag hybrid NPs has been confirmed by UV–Vis spectrophotometry, FTIR spectroscopy, XRD, and HRTEM. From the TEM analysis, the prepared Cs/GLE NPs are uniform and spherical with an average size of 150 nm, and the AgNPs (5–10 nm) were formed mainly on their surface. The UV–Vis spectra of Cs–Ag NPs showed a surface plasmon resonance (SPR) peak at about 450 nm confirming their formation. The synthesized Cs–Ag NPs were found to be crystalline as shown by XRD patterns with fcc phase oriented along the (111), (200), (220), and (311) planes. The cytotoxicity patterns, the antiproliferative activities, and the possible mechanisms of anticancer activity at molecular level of the newly developed Cs–Ag hybrid NPs were investigated. Cytotoxicity patterns of all the preparations demonstrated that the nontoxic treatment concentrations are ranged from 0.39 to 50 %, and many of the newly prepared Cs–Ag hybrid NPs showed high anticancer activities against HpG2 cells, and induced cellular apoptosis by downregulating BCL2 gene and upregulating P53.Graphical Abstract.

  3. The Role of Macrophage Lipophagy in Reverse Cholesterol Transport

    Directory of Open Access Journals (Sweden)

    Se-Jin Jeong

    2017-03-01

    Full Text Available Macrophage cholesterol efflux is a central step in reverse cholesterol transport, which helps to maintain cholesterol homeostasis and to reduce atherosclerosis. Lipophagy has recently been identified as a new step in cholesterol ester hydrolysis that regulates cholesterol efflux, since it mobilizes cholesterol from lipid droplets of macrophages via autophagy and lysosomes. In this review, we briefly discuss recent advances regarding the mechanisms of the cholesterol efflux pathway in macrophage foam cells, and present lipophagy as a therapeutic target in the treatment of atherosclerosis.

  4. Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis.

    Science.gov (United States)

    Gao, Yansong; Zhou, Yulian; Goldstein, Joseph L; Brown, Michael S; Radhakrishnan, Arun

    2017-05-26

    Scap is a polytopic protein of endoplasmic reticulum (ER) membranes that transports sterol regulatory element-binding proteins to the Golgi complex for proteolytic activation. Cholesterol accumulation in ER membranes prevents Scap transport and decreases cholesterol synthesis. Previously, we provided evidence that cholesterol inhibition is initiated when cholesterol binds to loop 1 of Scap, which projects into the ER lumen. Within cells, this binding causes loop 1 to dissociate from loop 7, another luminal Scap loop. However, we have been unable to demonstrate this dissociation when we added cholesterol to isolated complexes of loops 1 and 7. We therefore speculated that the dissociation requires a conformational change in the intervening polytopic sequence separating loops 1 and 7. Here we demonstrate such a change using a protease protection assay in sealed membrane vesicles. In the absence of cholesterol, trypsin or proteinase K cleaved cytosolic loop 4, generating a protected fragment that we visualized with a monoclonal antibody against loop 1. When cholesterol was added to these membranes, cleavage in loop 4 was abolished. Because loop 4 is part of the so-called sterol-sensing domain separating loops 1 and 7, these results support the hypothesis that cholesterol binding to loop 1 alters the conformation of the sterol-sensing domain. They also suggest that this conformational change helps transmit the cholesterol signal from loop 1 to loop 7, thereby allowing separation of the loops and facilitating the feedback inhibition of cholesterol synthesis. These insights suggest a new structural model for cholesterol-mediated regulation of Scap activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Cholesterol metabolism in blood cells of irradiated rats

    International Nuclear Information System (INIS)

    Novoselova, E.G.; Kulagina, T.P.; Potekhina, N.I.

    1985-01-01

    Cholesterol metabolism in blood erythrocytes and lymphocytes of irradiated rats has been investigated. It has been found that at all terms and doses of irradiation, a suppression of the synthesis of erythrocyte cholesterol is observed. The increase of cholesterol quantiy in erythrocytes upon total gamma irradiation in the 10 Gr dose possibly is the result of growth of cholesterol transfer from plasma into erythrocyte cells. The study of the cholesterol synthesis in suspension of lymphocytes elminated from peripheral blood of control and irradiated rats has shown that at irradiation doses of 4 and 10 Gr in an hour acivation of cholesterol synthesis in vitro takes places

  6. Immobilization of cholesterol esterase and cholesterol oxidase onto sol-gel films for application to cholesterol biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suman [Central Mechanical Engineering Research Institute, G. Avenue, Durgapur 713209, West Bengal (India); Singhal, Rahul [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Malhotra, B.D. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)]. E-mail: bansi.malhotra@gmail.com

    2007-01-23

    Cholesterol oxidase (ChOx) and cholesterol esterase (ChEt) have been covalently immobilized onto tetraethylorthosilicate (TEOS) sol-gel films. The tetraethylorthosilicate sol-gel/ChEt/ChOx enzyme films thus prepared have been characterized using scanning electron microscopic (SEM), UV-vis spectroscopic, Fourier-transform-infrared (FTIR) spectroscopic and amperometric techniques, respectively. The results of photometric measurements carried out on tetraethylorthosilicate sol-gel/ChEt/ChOx reveal thermal stability up to 55 deg. C, response time as 180 s, linearity up to 780 mg dL{sup -1} (12 mM), shelf life of 1 month, detection limit of 12 mg dL{sup -1} and sensitivity as 5.4 x 10{sup -5} Abs. mg{sup -1} dL{sup -1}.

  7. Inhibitory action of conventional food-grade natural antioxidants and of natural antioxidants of new development on the thermal-induced oxidation of cholesterol.

    Science.gov (United States)

    Valenzuela, Alfonso; Sanhueza, Julio; Alonso, Pilar; Corbari, Alicia; Nieto, Susana

    2004-03-01

    Cholesterol is a molecule with an unsaturated bond; therefore, like polyunsaturated fatty acids, it is prone to oxidation. Cholesterol oxidation products (COPs) are found in many common foods and have been shown to be atherogenic, cytotoxic, mutagenic and possibly carcinogenic. Therefore, efforts to prevent or to avoid COPs formation during manufacture and/or processing of foods are of high priority. The effect of natural antioxidants on COPs formation has not been extensively studied. We assayed the effect of some widely applied natural antioxidants, such as tocopherol homologs (alpha-T, gamma-T, and delta-T) and rosemary extract, and of some natural products of newly developed as antioxidants, such as the flavonoids quercetin, catechin, morin, and rutin, and also of an alkaloid-derived product, boldine, to inhibit cholesterol oxidation of soybean oil, added of cholesterol, induced in the Rancimat test conditions (150 degrees C and air bubbling). Formation of six different COPs at the induction period and at the 100 microS conductivity value was monitored by gas chromatography. Under the experimental conditions gamma-T, quercetin, and rosemary extract prove effective to inhibit both soybean oil oxidation and COP formation. alpha-T, catechin, and morin are less efficient to prevent COP formation. delta-T, rutin and boldine are devoid of protective action against COP formation. gamma-T, quercetin and rosemary extract may inhibit COP formation from the nucleus and from the lateral chain of the cholesterol molecule.

  8. Preservation of genes involved in sterol metabolism in cholesterol auxotrophs: facts and hypotheses.

    Directory of Open Access Journals (Sweden)

    Giovanna Vinci

    Full Text Available BACKGROUND: It is known that primary sequences of enzymes involved in sterol biosynthesis are well conserved in organisms that produce sterols de novo. However, we provide evidence for a preservation of the corresponding genes in two animals unable to synthesize cholesterol (auxotrophs: Drosophila melanogaster and Caenorhabditis elegans. PRINCIPAL FINDINGS: We have been able to detect bona fide orthologs of several ERG genes in both organisms using a series of complementary approaches. We have detected strong sequence divergence between the orthologs of the nematode and of the fruitfly; they are also very divergent with respect to the orthologs in organisms able to synthesize sterols de novo (prototrophs. Interestingly, the orthologs in both the nematode and the fruitfly are still under selective pressure. It is possible that these genes, which are not involved in cholesterol synthesis anymore, have been recruited to perform different new functions. We propose a more parsimonious way to explain their accelerated evolution and subsequent stabilization. The products of ERG genes in prototrophs might be involved in several biological roles, in addition to sterol synthesis. In the case of the nematode and the fruitfly, the relevant genes would have lost their ancestral function in cholesterogenesis but would have retained the other function(s, which keep them under pressure. CONCLUSIONS: By exploiting microarray data we have noticed a strong expressional correlation between the orthologs of ERG24 and ERG25 in D. melanogaster and genes encoding factors involved in intracellular protein trafficking and folding and with Start1 involved in ecdysteroid synthesis. These potential functional connections are worth being explored not only in Drosophila, but also in Caenorhabditis as well as in sterol prototrophs.

  9. Membrane Cholesterol Modulates Superwarfarin Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan; Braun, David; Polak, Paul E.; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L.

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.

  10. The effects of phytosterols present in natural food matrices on cholesterol metabolism and LDL-cholesterol: a controlled feeding trial.

    Science.gov (United States)

    Lin, X; Racette, S B; Lefevre, M; Spearie, C A; Most, M; Ma, L; Ostlund, R E

    2010-12-01

    Extrinsic phytosterols supplemented to the diet reduce intestinal cholesterol absorption and plasma low-density lipoprotein (LDL)-cholesterol. However, little is known about their effects on cholesterol metabolism when given in native, unpurified form and in amounts achievable in the diet. The objective of this investigation was to test the hypothesis that intrinsic phytosterols present in unmodified foods alter whole-body cholesterol metabolism. In all, 20 out of 24 subjects completed a randomized, crossover feeding trial wherein all meals were provided by a metabolic kitchen. Each subject consumed two diets for 4 weeks each. The diets differed in phytosterol content (phytosterol-poor diet, 126 mg phytosterols/2000 kcal; phytosterol-abundant diet, 449 mg phytosterols/2000 kcal), but were otherwise matched for nutrient content. Cholesterol absorption and excretion were determined by gas chromatography/mass spectrometry after oral administration of stable isotopic tracers. The phytosterol-abundant diet resulted in lower cholesterol absorption (54.2±2.2% (95% confidence interval 50.5%, 57.9%) vs 73.2±1.3% (69.5%, 76.9%), Pphytosterol-poor diet. Plasma lathosterol/cholesterol ratio rose by 82% (from 0.71±0.11 (0.41, 0.96) to 1.29±0.14 μg/mg (0.98, 1.53), Pphytosterols at levels present in a healthy diet are biologically active and have large effects on whole-body cholesterol metabolism not reflected in circulating LDL. More work is needed to assess the effects of phytosterol-mediated fecal cholesterol excretion on coronary heart disease risk in humans.

  11. Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles.

    Science.gov (United States)

    Bawazer, Lukmaan A; Izumi, Michi; Kolodin, Dmitriy; Neilson, James R; Schwenzer, Birgit; Morse, Daniel E

    2012-06-26

    The way nature evolves and sculpts materials using proteins inspires new approaches to materials engineering but is still not completely understood. Here, we present a cell-free synthetic biological platform to advance studies of biologically synthesized solid-state materials. This platform is capable of simultaneously exerting many of the hierarchical levels of control found in natural biomineralization, including genetic, chemical, spatial, structural, and morphological control, while supporting the evolutionary selection of new mineralizing proteins and the corresponding genetically encoded materials that they produce. DNA-directed protein expression and enzymatic mineralization occur on polystyrene microbeads in water-in-oil emulsions, yielding synthetic surrogates of biomineralizing cells that are then screened by flow sorting, with light-scattering signals used to sort the resulting mineralized composites differentially. We demonstrate the utility of this platform by evolutionarily selecting newly identified silicateins, biomineralizing enzymes previously identified from the silica skeleton of a marine sponge, for enzyme variants capable of synthesizing silicon dioxide (silica) or titanium dioxide (titania) composites. Mineral composites of intermediate strength are preferentially selected to remain intact for identification during cell sorting, and then to collapse postsorting to expose the encoding genes for enzymatic DNA amplification. Some of the newly selected silicatein variants catalyze the formation of crystalline silicates, whereas the parent silicateins lack this ability. The demonstrated bioengineered route to previously undescribed materials introduces in vitro enzyme selection as a viable strategy for mimicking genetic evolution of materials as it occurs in nature.

  12. Status of non-HDL-cholesterol and LDL-cholesterol among subjects with and without metabolic syndrome.

    Science.gov (United States)

    Khan, Sikandar Hayat; Asif, Naveed; Ijaz, Aamir; Manzoor, Syed Mohsin; Niazi, Najumusaquib Khan; Fazal, Nadeem

    2018-04-01

    To to compare non-high-density lipoprotein and low-density lipoprotein cholesterol among subjects with or without metabolic syndrome, glycation status and nephropathic changes. The comparative cross-sectional study was carried out from Dec 21, 2015, to Nov 15, 2016, at the department of pathology and medicine PNS HAFEEZ and department of chemical pathology and clinical endocrinology (AFIP), and comprised patients of either gender visiting the out-patient department for routine screening. They were evaluated for anthropometric indices, blood pressure and sampled for lipid profile, fasting plasma glucose, glycated haemoglobin, insulin, and urine albumin-to-creatinine ratio. Subjects were segregated based upon presence (Group1) or absence (Group2) of metabolic syndrome based upon criteria of National Cholesterol Education Programme and the International Diabetes Federation. Differences in high and low density lipoprotein cholesterols were calculated between the groups. Of the 229 subjects, 120(52.4%) were women and 109(47.6%) were men. Overall, there were 107(46.7%) subjects in Group 1, and 122(53.3%) in Group 2. Non-high-density lipoprotein cholesterol was significantly different between subjects with and without metabolic syndrome as per both the study criteria (p<0.05 each). . Non-high-density lipoprotein cholesterol levels were higher in subjects with metabolic syndrome.

  13. Manipulation of Host Cholesterol by Obligate Intracellular Bacteria

    Directory of Open Access Journals (Sweden)

    Dhritiman Samanta

    2017-05-01

    Full Text Available Cholesterol is a multifunctional lipid that plays important metabolic and structural roles in the eukaryotic cell. Despite having diverse lifestyles, the obligate intracellular bacterial pathogens Chlamydia, Coxiella, Anaplasma, Ehrlichia, and Rickettsia all target cholesterol during host cell colonization as a potential source of membrane, as well as a means to manipulate host cell signaling and trafficking. To promote host cell entry, these pathogens utilize cholesterol-rich microdomains known as lipid rafts, which serve as organizational and functional platforms for host signaling pathways involved in phagocytosis. Once a pathogen gains entrance to the intracellular space, it can manipulate host cholesterol trafficking pathways to access nutrient-rich vesicles or acquire membrane components for the bacteria or bacteria-containing vacuole. To acquire cholesterol, these pathogens specifically target host cholesterol metabolism, uptake, efflux, and storage. In this review, we examine the strategies obligate intracellular bacterial pathogens employ to manipulate cholesterol during host cell colonization. Understanding how obligate intracellular pathogens target and use host cholesterol provides critical insight into the host-pathogen relationship.

  14. [Phytosterols: another way to reduce LDL cholesterol levels].

    Science.gov (United States)

    Bitzur, Rafael; Cohen, Hofit; Kamari, Yehuda; Harats, Dror

    2013-12-01

    Phytosterols are sterols found naturally in various oils from plants. Phytosterols compete with cholesterol for a place in the mixed micelles, needed for cholesterol absorption by the small intestine. As a result, cholesterol absorption, either from food or from bile salts is lowered by about 50%, leading to a towering of about 10% of blood cholesterol level, despite an increase in hepatic cholesterol synthesis. This reduction is achieved when phytosterols are given both as monotherapy, and in addition to statin therapy. The average Western diet contains about 400-800 mg of phytosterols per day, while the dose needed for lowering the blood cholesterol level is about 2-3 grams per day. Therefore, for the purpose of reducing blood cholesterol, they should be given either as phytosterol-enriched food or as supplements. The reduction in the level of LDL-choLesterol achieved with phytosterols may reduce the risk of coronary disease by about 25%. Hence, the American Heart Association recommended the consumption of phytosterols, as part of a balanced diet, for towering blood cholesterol levels.

  15. Transport of cholesterol autoxidation products in rabbit lipoproteins

    International Nuclear Information System (INIS)

    Peng, Shi-Kaung; Phillips, G.A.; Xia, Guang-Zhi; Morin, R.J.

    1987-01-01

    Radiolabeled pure [4- 14 C] cholesterol was kept at 60 0 C under air to autoxidize for 5 weeks, after which approximately 12% cholesterol oxidation products were formed. The mixture, suspended in gelatin, was given to rabbits by gastric gavage. Rabbits were killed 4, 24 and 48 h after treatment. Cholesterol and its autoxidation products were separated by thin-layer chromatography into 5 fractions and radioactivities of each fraction were measured. Percentages of each fraction of cholesterol oxidation products and cholesterol in the original mixture before administration and in the rabbit sera after administration were similar, suggesting that the rates of absorption of cholesterol oxidation products are not significantly different from that of cholesterol. Lipoproteins were fractioned by ultracentrifugation into VLDL, LDL and HDL. Radioactivities of each fraction in lipoproteins separated by thin layer chromatography showed that fractions containing cholestane-3β, 5α, 6β-triol, 7α- and 7β-hydroxycholesterol and 7-ketocholesterol were more selectively transported in VLDL, whereas most of the 25-hydroxycholesterol was present in LDL. HDL contained only minute amounts of cholesterol oxidation products. 22 refs

  16. HDL cholesterol: atherosclerosis and beyond

    NARCIS (Netherlands)

    Bochem, A.E.

    2013-01-01

    Cardiovascular disease (CVD) is the leading cause of death in the Western world. Myocardial infarction and stroke are the result of a compromised blood flow which may result from cholesterol accumulation in the vessel wall due to high plasma levels of LDL cholesterol. High plasma levels of HDL

  17. Cholesterol oxidation products and their biological importance

    DEFF Research Database (Denmark)

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr

    2016-01-01

    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low...... and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have...

  18. Remnant cholesterol as a cause of ischemic heart disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Benn, Marianne; Nordestgaard, Børge G

    2014-01-01

    This review focuses on remnant cholesterol as a causal risk factor for ischemic heart disease (IHD), on its definition, measurement, atherogenicity, and levels in high risk patient groups; in addition, present and future pharmacological approaches to lowering remnant cholesterol levels...... are considered. Observational studies show association between elevated levels of remnant cholesterol and increased risk of cardiovascular disease, even when remnant cholesterol levels are defined, measured, or calculated in different ways. In-vitro and animal studies also support the contention that elevated...... levels of remnant cholesterol may cause atherosclerosis same way as elevated levels of low-density lipoprotein (LDL) cholesterol, by cholesterol accumulation in the arterial wall. Genetic studies of variants associated with elevated remnant cholesterol levels show that an increment of 1mmol/L (39mg...

  19. Effects of apolipoproteins on the kinetics of cholesterol exchange

    International Nuclear Information System (INIS)

    Letizia, J.Y.; Phillips, M.C.

    1991-01-01

    The effects of apolipoproteins on the kinetics of cholesterol exchange have been investigated by monitoring the transfer of [ 14 C]cholesterol from donor phospholipid/cholesterol complexes containing human apolipoproteins A, B, or C. Negatively charged discoidal and vesicular particles containing purified apolipoproteins complexed with lipid and a trace of [ 14 C]cholesterol were incubated with a 10-fold excess of neutral, acceptor, small unilamellar vesicles. The donor and acceptor particles were separated by chromatogrphy of DEAE-Sepharose, and the rate of movement of labeled cholesterol was analyzed as a first-order exchange process. The kinetics of exchange of cholesterol from both vesicular and discoidal complexes that contain apoproteins are consistent with an aqueous diffusion mechanism, as has been established previously for PC/cholesterol SUV. Apolipoproteins A-I, A-II, reduced and carboxymethylated A-11, and B-100 present in SUV at the same lipid/protein (w/w) ratio all enhance the rate of cholesterol exchange to about the same degree. Cholesterol molecules exchange more rapidly from discoidal complexes. Generally, as the diameter of apoprotein/phospholipid/cholesterol discs decreases, t 1/2 for cholesterol exchange decreases. Since small bilayer discs have a relatively high ratio of boundary to face surface area, cholesterol molecules desorb more rapidly than from larger discs. The modulation of lipid packing by the apoprotein molecules present at the surface of lipoprotein particles affects the rate of cholesterol exchange from such particles

  20. MooPoong (Gye Young Jeong) increases HDL-cholesterol but decreases LDL cholesterol and body-weight.

    Science.gov (United States)

    Chung, Hwan-Suck; Hong, Seung-Heon; Do, Keum-Rok; Rhee, Hyung-Koo; Jung, Sung-Ki; Hwang, Woo-Jun; Kim, Hyung-Min

    2004-05-01

    MooPoong (MP, Gye Young Jeong), a Korean traditional wine, has been used as a prevention and treatment agent of blood circulatory trouble. To evaluate such an effect of MP, we analyzed whether the plasma levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and body weight change after rats were fed on high fat diet with MP for 8 weeks. Plasma LDL cholesterol level decreased by 5.6% in 0.128% MP treated group and by 11.1% in 0.640% MP treated group. However, HDL cholesterol was increased by 6.7% in 0.128% MP diet group and 33.3% in 0.640% MP diet group. In addition, there was a significant weight loss in the MP treated group compared with the high-fat diet group (P < 0.05). Our findings indicate that MP may contain compounds with actions which can treat blood circulatory trouble as well as overweight.

  1. Cholesterol Levels: What You Need to Know: MedlinePlus Health Topic

    Science.gov (United States)

    ... lipoprotein ( LDL ) cholesterol and high-density lipoprotein ( HDL ) cholesterol. LDL (bad) cholesterol - the main source of cholesterol buildup ... Teens How to Lower Cholesterol How to Lower Cholesterol with Diet LDL: The "Bad" Cholesterol Nutrition Statins Triglycerides VLDL Cholesterol ...

  2. THE REDUCTION OF CHOLESTEROL WITH CUPPING THERAPY ON CHOLESTEROL REDUCTION IN PATIENTS WITH HYPERCHOLESTEROLEMIA

    Directory of Open Access Journals (Sweden)

    Zahid Fikri

    2017-04-01

    Full Text Available Introduction: Hypercholesterolemia is a risk factor causes of death at younger ages. Hypercholesterolemia may increase the risk of atherosclerosis, coronary heart disease, pancreatitis (pancreas inflammation in organs, diabetes mellitus, thyroid disorders, liver disease and kidney disease. Many patients with hypercholesterolemia using cupping therapy. Cupping therapy is alternative treatment process of throwing dirty blood from the body through the skin surface. The objective of this study was to determine the effect of cupping therapy to decrease cholesterol levels in patients with hypercholesterolemia. Method: Design used in this study was quasy experimental design. The population is all patients with hypercholesterolemia in the health center plaza Gresik. The total sample is 18 respondents, taken according to inclusion criteria. Independent variable is the cupping therapy. The dependent variable was the decrease in cholesterol levels. Data were collected using a questionnaire and observation of cholesterol. Data were analyzed using independent t-test and paired t tests with signi fi cance level α < 0.05. Result: The results show that cholesterol levels in patients with hypercholesterolemia treated groups decreased majority. Independent statistical analysis using t-test showed p = 0.001 and with the Paired t-test p value = 0.003. Discussion: This result means that there are significant effects of cupping therapy on cholesterol reduction in patients with hypercholesterolemia aged 45 years and over. Further research needs to be done in control diet, lifestyle and daily activities for the success of cupping therapy.

  3. The response of the prostate to circulating cholesterol: activating transcription factor 3 (ATF3 as a prominent node in a cholesterol-sensing network.

    Directory of Open Access Journals (Sweden)

    Jayoung Kim

    Full Text Available Elevated circulating cholesterol is a systemic risk factor for cardiovascular disease and metabolic syndrome, however the manner in which the normal prostate responds to variations in cholesterol levels is poorly understood. In this study we addressed the molecular and cellular effects of elevated and suppressed levels of circulating cholesterol on the normal prostate. Integrated bioinformatic analysis was performed using DNA microarray data from two experimental formats: (1 ventral prostate from male mice with chronically elevated circulating cholesterol and (2 human prostate cells exposed acutely to cholesterol depletion. A cholesterol-sensitive gene expression network was constructed from these data and the transcription factor ATF3 was identified as a prominent node in the network. Validation experiments confirmed that elevated cholesterol reduced ATF3 expression and enhanced proliferation of prostate cells, while cholesterol depletion increased ATF3 levels and inhibited proliferation. Cholesterol reduction in vivo alleviated dense lymphomononuclear infiltrates in the periprostatic adipose tissue, which were closely associated with nerve tracts and blood vessels. These findings open new perspectives on the role of cholesterol in prostate health, and provide a novel role for ATF3, and associated proteins within a large signaling network, as a cholesterol-sensing mechanism.

  4. To Study the Activity of Paraoxonase-1 and High Density Lipoprotein-Cholesterol in Alcoholic Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Pooja Nemagoudar

    2017-01-01

    Full Text Available Background: Alcoholic liver cirrhosis is the most common complication of ethanol abuse. Alcoholic fatty liver progresses to alcoholic hepatitis, cirrhosis and liver failure. Lipoproteins are synthesized by the liver and secreted into the circulation. Alcoholic liver cirrhosis causes alteration in lipoprotein metabolism producing liver steatosis and necrosis. Paraoxonase-1 (PON-1 is an enzyme synthesized in liver and has an esterase activity towards lipid peroxides and circulates in plasma bound to High-Density Lipoproteins-cholesterol (HDL-c. Aim and Objectives: To determine the activity of PON-1 and levels of HDL-c in alcoholic liver disease and to correlate PON-1 activity with HDL-c. Materials and Methods: A Cross sectional study done in Department of Biochemistry and Department of Medicine, Belagavi Institute of Medical Sciences, Belagavi, Karnataka, India, from 1st December 2014 to 31st January 2016 Study included 50 males (age range 25-55 years with alcoholic liver cirrhosis and 50 healthy male participants (age range 25-55 years. PON-1 activity was estimated using spectrophotometric method by the hydrolysis of phenylacetate. HDL-c level was measured by cholesterol oxidase-peroxidase method. Results: The serum PON-1 activity and levels of HDL-c in patients with alcoholic liver cirrhosis were significantly reduced (p<0.001 compared with controls. Conclusion: A significant decrease in PON-1 and HDL-c in alcoholic liver cirrhosis may contribute to the risk of atherosclerosis in alcoholic liver cirrhosis patients.

  5. Increases in plasma plant sterols stabilize within four weeks of plant sterol intake and are independent of cholesterol metabolism.

    Science.gov (United States)

    Ras, R T; Koppenol, W P; Garczarek, U; Otten-Hofman, A; Fuchs, D; Wagner, F; Trautwein, E A

    2016-04-01

    Plant sterols (PS) lower plasma LDL-cholesterol through partial inhibition of intestinal cholesterol absorption. Although PS themselves are poorly absorbed, increased intakes of PS result in elevated plasma concentrations. In this paper, we report time curves of changes in plasma PS during 12 weeks of PS intake. Furthermore, the impact of cholesterol synthesis and absorption on changes in plasma PS is explored. The study was a double-blind, randomized, placebo-controlled, parallel-group study with the main aim to investigate the effects of PS on vascular function (clinicaltrials.gov: NCT01803178). Hypercholesterolemic but otherwise healthy men and women (n = 240) consumed low-fat spreads without or with added PS (3 g/d) for 12 weeks after a 4-week run-in period. Blood sampling was performed at week 0, 4, 8 and 12. Basal cholesterol-standardized concentrations of lathosterol and sitosterol + campesterol were used as markers of cholesterol synthesis and absorption, respectively. In the PS group, plasma sitosterol and campesterol concentrations increased within the first 4 weeks of intervention by 69% (95%CI: 58; 82) starting at 7.2 μmol/L and by 28% (95%CI: 19; 39) starting at 11.4 μmol/L, respectively, and remained stable during the following 8 weeks. Placebo-corrected increases in plasma PS were not significantly different between high and low cholesterol synthesizers (P-values >0.05). Between high and low cholesterol absorbers, no significant differences were observed, except for the cholesterol-standardized sum of four major plasma PS (sitosterol, campesterol, brassicasterol and stigmasterol) showing larger increases in low absorbers (78.3% (95%CI: 51.7; 109.5)) compared to high absorbers (40.8% (95%CI: 19.9; 65.5)). Increases in plasma PS stabilize within 4 weeks of PS intake and do not seem impacted by basal cholesterol synthesis or absorption efficiency. This study was registered at clinicaltrials.gov (NCT01803178). Copyright © 2015 The Italian Society of

  6. Portulaca oleracea reduces triglyceridemia, cholesterolemia, and improves lecithin: cholesterol acyltransferase activity in rats fed enriched-cholesterol diet.

    Science.gov (United States)

    Zidan, Y; Bouderbala, S; Djellouli, F; Lacaille-Dubois, M A; Bouchenak, M

    2014-10-15

    The effects of Portulaca oleracea (Po) lyophilized aqueous extract were determined on the serum high-density lipoproteins (HDL2 and HDL3) amounts and composition, as well as on lecithin: cholesterol acyltansferase (LCAT) activity. Male Wistar rats (n = 12) were fed on 1% cholesterol-enriched diet for 10 days. After this phase, hypercholesterolemic rats (HC) were divided into two groups fed the same diet supplemented or not with Portulaca oleracea (Po-HC) (0.5%) for four weeks. Serum total cholesterol (TC) and triacylglycerols (TG), and liver TG values were respectively 1.6-, 1.8-, and 1.6-fold lower in Po-HC than in HC group. Cholesterol concentrations in LDL-HDL1, HDL2, and HDL3 were respectively 1.8, 1.4-, and 2.4-fold decreased in Po-HC group. HDL2 and HDL3 amounts, which were the sum of apolipoproteins (apos), TG, cholesteryl esters (CE), unesterified cholesterol (UC), and phospholipids (PL) contents, were respectively 4.5-fold higher and 1.2-fold lower with Po treatment. Indeed, enhanced LCAT activity (1.2-fold), its cofactor-activator apo A-I (2-fold) and its reaction product HDL2-CE (2.1-fold) were observed, whereas HDL3-PL (enzyme substrate) and HDL3-UC (acyl group acceptor) were 1.2- and 2.4-fold lower. Portulaca oleracea reduces triglyceridemia, cholesterolemia, and improves reverse cholesterol transport in rat fed enriched-cholesterol diet, contributing to anti-atherogenic effects. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Atorvastatin treatment lowers fasting remnant-like particle cholesterol and LDL subfraction cholesterol without affecting LDL size in type 2 diabetes mellitus: Relevance for non-HDL cholesterol and apolipoprotein B guideline targets

    NARCIS (Netherlands)

    Kappelle, Paul J. W. H.; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.

    2010-01-01

    The extent to which atorvastatin treatment affects LDL size, LDL subfraction levels and remnant-like particle cholesterol (RLP-C) was determined in type 2 diabetes. We also compared LDL size and RLP-C in relation to guideline cut-off values for LDL cholesterol, non-HDL cholesterol and apolipoprotein

  8. Atorvastatin treatment lowers fasting remnant-like particle cholesterol and LDL subfraction cholesterol without affecting LDL size in type 2 diabetes mellitus : Relevance for non-HDL cholesterol and apolipoprotein B guideline targets

    NARCIS (Netherlands)

    Kappelle, Paul J.W.H.; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.

    The extent to which atorvastatin treatment affects LDL size, LDL subfraction levels and remnant-like particle cholesterol (RLP-C) was determined in type 2 diabetes. We also compared LDL size and RLP-C in relation to guideline cut-off values for LDL cholesterol, non-HDL cholesterol and apolipoprotein

  9. Cholesterol esterification by mouse liver homogenate. Contribution to the study of ACYL-CoA: Cholesterol ACYL transferase in mammalian liver

    International Nuclear Information System (INIS)

    Soares, M.G.C.B.

    1976-01-01

    A cholesterol- esterifying enzyme from mouse liver has been partially characterized. The enzyme which showed optimum activity at pH 7,1 and required ATP and CoA, was identified as an acyl CoA: cholesterol acyl transferase (E.C.2.3.1.26). As a fuction of time the percentage of esterified cholesterol increased linearly during the first hour of incubation and continued to increase but not linearly with 4 hours, after which time no further net esterefication was observed. The relative concentration of esterified cholesterol remained constant between the fourth and twelveth hours of incubation but afterwards decreased when the incubation continued until 24 hours. The cholesterol- esterifying activity was 24,0+- 2,9 nmoles cholesterol esterified per gram tissue wet weight per minute. The mean percentages of free cholesterol esterified in and 24 hours respectively were 14,8+- 1,6 e 21,9+- 4,5. The subfractionation of labelled cholesteryl esters after one hour incubation of liver homogenate with 4-C 14 -Cholesterol showed the order of preference for the formation of the different ester classes to be monounsatured > diunsatured ≥ saturated >> polyunsaturated. The properties of the enzyme frommouse liver do not markedly differ from those of the previously recorded ACAT activity of rat liver. (Author) [pt

  10. Survival of adult neurons lacking cholesterol synthesis in vivo.

    Science.gov (United States)

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-02

    Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  11. Survival of adult neurons lacking cholesterol synthesis in vivo

    Directory of Open Access Journals (Sweden)

    Möbius Wiebke

    2007-01-01

    Full Text Available Abstract Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1, which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  12. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    Science.gov (United States)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  13. Extreme nonfasting remnant cholesterol vs extreme LDL cholesterol as contributors to cardiovascular disease and all-cause mortality in 90000 individuals from the general population.

    Science.gov (United States)

    Varbo, Anette; Freiberg, Jacob J; Nordestgaard, Børge G

    2015-03-01

    Increased nonfasting remnant cholesterol, like increased LDL cholesterol, is causally associated with increased risk for ischemic heart disease (IHD). We tested the hypothesis that extreme concentrations of nonfasting remnant and LDL cholesterol are equal contributors to the risk of IHD, myocardial infarction (MI), and all-cause mortality. We compared stepwise increasing concentrations of nonfasting remnant and LDL cholesterol for association with risk of IHD, MI, and all-cause mortality in approximately 90 000 individuals from the Danish general population. During up to 22 years of complete follow-up, 4435 participants developed IHD, 1722 developed MI, and 8121 died. Compared with participants with nonfasting remnant cholesterol cholesterol of 0.5-0.99 mmol/L (19.3-38.2 mg/dL) to 2.4 (1.9-2.9) for remnant cholesterol of ≥1.5 mmol/L (58 mg/dL) (P for trend LDL cholesterol LDL cholesterol of 3-3.99 mmol/L (115.8-154 mg/dL) to 2.3 (1.9-2.8) for LDL cholesterol of ≥5 mmol/L (193 mg/dL) (P cholesterol (P LDL cholesterol (P cholesterol concentrations were associated stepwise with all-cause mortality ranging from hazard ratio 1.0 (0.9-1.1) to 1.6 (1.4-1.9) (P LDL cholesterol concentrations were associated with decreased all-cause mortality risk in a U-shaped pattern, with hazard ratios from 0.8 (0.7-0.8) to 0.9 (0.8-1.0) (P = 0.002). After mutual adjustment, LDL cholesterol best predicted MI, and remnant cholesterol best predicted all-cause mortality. Both lipoproteins were associated equally with risk of IHD and MI; however, only nonfasting remnant cholesterol concentrations were associated stepwise with increased all-cause mortality risk. © 2015 American Association for Clinical Chemistry.

  14. Cholesterol: the debate should be terminated.

    Science.gov (United States)

    Nathan, David G

    2017-07-01

    Here, I offer personal perspectives on cholesterol homeostasis that reflect my belief that certain aspects of the debate have been overstated.-Nathan, D. G. Cholesterol: the debate should be terminated. © FASEB.

  15. Cold labelled substrate and estimation of cholesterol esterification rate in lecithin cholesterol acyltransferase radioassay

    International Nuclear Information System (INIS)

    Dobiasova, M.; Schuetzova, M.

    1986-01-01

    A new method is described of cold labelling of blood serum, plasma and body fluids containing lecithin cholesterol acyltransferase (LCAT) and/or lipoproteins for radioassay to assess the cholesterol esterification rate. The method uses the principle of transfer, in refrigeration conditions, of 14 C-cholesterol from filter paper discs to the fluids. The preparation of the disc guarantees homogeneous labelling and high stability. The use of the labelling disc was shown to be reliable, easy and fast and suitable for accurate assessment of LCAT reaction, applicable in the widest possible enzyme concentration range. It was also, found suited for the measurement of the esterification rate of rabbit intraocular fluid which is a medium with the lowest contents of the substrate and LCAT. (L.O.)

  16. Isolation of Cholesterol from an Egg Yolk

    Science.gov (United States)

    Taber, Douglass F.; Li, Rui; Anson, Cory M.

    2011-01-01

    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  17. Tuberculosis treatment raises total cholesterol level and restores ...

    African Journals Online (AJOL)

    aghomotsegin

    2013-10-09

    Oct 9, 2013 ... and restores high density lipoprotein cholesterol (HDL- ... cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and triglycerides (TG) were determined .... However, we found a strong negative correlation (r = - 0.96,.

  18. Lack of P2Y(13) in mice fed a high cholesterol diet results in decreased hepatic cholesterol content, biliary lipid secretion and reverse cholesterol transport

    NARCIS (Netherlands)

    Lichtenstein, Laeticia; Serhan, Nizar; Annema, Wijtske; Combes, Guillaume; Robaye, Bernard; Boeynaems, Jean-Marie; Perret, Bertrand; Tietge, Uwe J. F.; Laffargue, Muriel; Martinez, Laurent O.

    2013-01-01

    Background: The protective effect of HDL is mostly attributed to their metabolic function in reverse cholesterol transport (RCT), a process whereby excess cellular cholesterol is taken up from peripheral cells, processed in HDL particles, and later delivered to the liver for further metabolism and

  19. Atorvastatin increases HDL cholesterol by reducing CETP expression in cholesterol-fed APOE*3-Leiden.CETP mice

    NARCIS (Netherlands)

    Haan, W. de; Hoogt, C.C. van der; Westerterp, M.; Hoekstra, M.; Dallinga-Thie, G.M.; Princen, H.M.G.; Romijn, J.A.; Jukema, J.W.; Havekes, L.M.; Rensen, P.C.N.

    2008-01-01

    Objective: In addition to lowering low-density lipoprotein (LDL)-cholesterol, statins modestly increase high-density lipoprotein (HDL)-cholesterol in humans and decrease cholesteryl ester transfer protein (CETP) mass and activity. Our aim was to determine whether the increase in HDL depends on CETP

  20. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport[S

    Science.gov (United States)

    Kuwano, Takashi; Bi, Xin; Cipollari, Eleonora; Yasuda, Tomoyuki; Lagor, William R.; Szapary, Hannah J.; Tohyama, Junichiro; Millar, John S.; Billheimer, Jeffrey T.; Lyssenko, Nicholas N.; Rader, Daniel J.

    2017-01-01

    Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preβ HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT. PMID:28137768

  1. New conception concerning the dynamical state of cholesterol in rat; Conception nouvelle concernant l'etat dynamyque du cholesterol chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-03-15

    It presents the study of the cholesterol metabolism in rats. This thesis has been divided in three chapters. In a first part, it will discuss about the dynamic state of biological constituents in organism and in particular the dynamic state of cholesterol. This matter will be considered, firstly under its theoretical aspect and secondly under an experimental point of view with isotopic techniques. The current data on the dynamic state of cholesterol will allow to identify the essential points which are the subject of this research. In particular, the full understanding of the different cholesterol origins (diet, biosynthesis or formation of cholesterol from degradation or transformation of precursors as acetate or butyric acid for example) and the different cholesterol disappearance way (excretion, destruction, transformation or esters formation) is necessary to further research. In a second part, the experimental techniques and methods are described. A brief presentation of the methods for the study of the cholesterol transport and synthesis will be given as well as the experimental conditions and in particular the animal diet and cholesterol ingestion, the administration of acetate and {gamma}-phenyl {alpha}-aminobutyric. The different preparations of the {sup 14}C labelled cholesterol are also described as well as the extraction and measuring of the specific {sup 14}C radioactivity in the animal tissues extract, carbon dioxide gas and sodium acetate. Finally, the results will be given and discussed according to the way of intake: a radioactive cholesterol ingestion or an acetate intraperitoneal injection. (M.P.)

  2. Cholesterol esterase activity of human intestinal mucosa

    International Nuclear Information System (INIS)

    Ponz de Leon, M.; Carubbi, F.; Di Donato, P.; Carulli, N.

    1985-01-01

    It has been suggested that cholesterol absorption in humans is dependent on bile acid pool composition and that expansion of the cholic acid pool size is followed by an increase of the absorption values. Similar observations were reported in rats. In the present study, therefore, the authors investigated some general properties of human intestinal cholesterol esterase, with particular emphasis on the effect of bile acids on this enzymatic activity. Twenty-nine segments of small intestine were taken during operations; the enzymatic activity was studied by using mucosal homogenate as a source of enzyme and oleic acid, cholesterol, and 14 C-labeled cholesterol as substrates. The time-activity relationship was linear within the first two hours; optimal pH for esterification ranged between 5 and 6.2. There was little difference between the esterifying activity of the jejunal and ileal mucosa. Esterification of cholesterol was observed with all the investigated fatty acids but was maximal with oleic acid. Bile acids did not affect cholesterol esterase activity when present in the incubation mixture at 0.1 and 1.0 mM; the enzymatic activity, however, was significantly inhibited when bile acids were added at 20 mM. In conclusion, this study has shown that the human intestinal mucosa possesses a cholesterol esterase activity; at variance with the rat, however, the human enzyme does not seem to be stimulated by trihydroxy bile acids

  3. Melanocortin signaling in the CNS directly regulates circulating cholesterol

    OpenAIRE

    Perez-Tilve, Diego; Hofmann, Susanna M; Basford, Joshua; Nogueiras, Ruben; Pfluger, Paul T; Patterson, James T; Grant, Erin; Wilson-Perez, Hilary E; Granholm, Norman A; Arnold, Myrtha; Trevaskis, James L; Butler, Andrew A; Davidson, William S; Woods, Stephen C; Benoit, Stephen C

    2010-01-01

    Cholesterol circulates in the blood in association with triglycerides and other lipids, and elevated blood low-density lipoprotein cholesterol carries a risk for metabolic and cardiovascular disorders, whereas high-density lipoprotein (HDL) cholesterol in the blood is thought to be beneficial. Circulating cholesterol is the balance among dietary cholesterol absorption, hepatic synthesis and secretion, and the metabolism of lipoproteins by various tissues. We found that the CNS is also an impo...

  4. Pectin penta-oligogalacturonide reduces cholesterol accumulation by promoting bile acid biosynthesis and excretion in high-cholesterol-fed mice.

    Science.gov (United States)

    Zhu, Ru-Gang; Sun, Yan-Di; Hou, Yu-Ting; Fan, Jun-Gang; Chen, Gang; Li, Tuo-Ping

    2017-06-25

    Haw pectin penta-oligogalacturonide (HPPS) has important role in improving cholesterol metabolism and promoting the conversion of cholesterol to bile acids (BA) in mice fed high-cholesterol diet (HCD). However, the mechanism is not clear. This study aims to investigate the effects of HPPS on cholesterol accumulation and the regulation of hepatic BA synthesis and transport in HCD-fed mice. Results showed that HPPS significantly decreased plasma and hepatic TC levels but increased plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) levels, compared to HCD. BA analysis showed that HPPS markedly decreased hepatic and small intestine BA levels but increased the gallbladder BA levels, and finally decreased the total BA pool size, compared to HCD. Studies of molecular mechanism revealed that HPPS promoted hepatic ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor BI (SR-BI) expression but did not affect ATB binding cassette transporter G5/G8 (ABCG5/8) expression. HPPS inactivated hepatic farnesoid X receptor (FXR) and target genes expression, which resulted in significant increase of cholesterol 7α-hydroxylase 1 (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) expression, with up-regulations of 204.2% and 33.5% for mRNA levels, respectively, compared with HCD. In addition, HPPS markedly enhanced bile salt export pump (BSEP) expression but didn't affect the sodium/taurocholate co-transporting polypeptide (NTCP) expression. In conclusion, the study revealed that HPPS reduced cholesterol accumulation by promoting BA synthesis in the liver and excretion in the feces, and might promote macrophage-to-liver reverse cholesterol transport (RCT) but did not liver-to-fecal RCT. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The cholesterol-lowering effect of coconut flakes in humans with moderately raised serum cholesterol.

    Science.gov (United States)

    Trinidad, Trinidad P; Loyola, Anacleta S; Mallillin, Aida C; Valdez, Divinagracia H; Askali, Faridah C; Castillo, Joan C; Resaba, Rosario L; Masa, Dina B

    2004-01-01

    This study investigated the effect of coconut flakes on serum cholesterol levels of humans with moderately raised serum cholesterol in 21 subjects. The serum total cholesterol of subjects differed and ranged from 259 to 283 mg/dL. The study was conducted in a double-blind randomized crossover design on a 14-week period, consisting of four 2-week experimental periods, with each experimental period separated by a 2-week washout period. The test foods were as follows: corn flakes as the control food, oat bran flakes as the reference food, and corn flakes with 15% and 25% dietary fiber from coconut flakes (made from coconut flour production). Results showed a significant percent reduction in serum total and low-density lipoprotein (LDL) cholesterol (in mg/dL) for all test foods, except for corn flakes, as follows: oat bran flakes, 8.4 +/- 1.4 and 8.8 +/- 6.0, respectively; 15% coconut flakes, 6.9 +/- 1.1 and 11.0 +/- 4.0, respectively; and 25% coconut flakes, 10.8 +/- 1.3 and 9.2 +/- 5.4, respectively. Serum triglycerides were significantly reduced for all test foods: corn flakes, 14.5 +/- 6.3%; oat bran flakes, 22.7 +/- 2.9%; 15% coconut flakes, 19.3 +/- 5.7%; and 25% coconut flakes, 21.8 +/- 6.0%. Only 60% of the subjects were considered for serum triglycerides reduction (serum triglycerides >170 mg/dL). In conclusion, both 15% and 25% coconut flakes reduced serum total and LDL cholesterol and serum triglycerides of humans with moderately raised serum cholesterol levels. Coconut flour is a good source of both soluble and insoluble dietary fiber, and both types of fiber may have significant role in the reduction of the above lipid biomarker. To our knowledge, this is the first study conducted to show a relationship between dietary fiber from a coconut by-product and a lipid biomarker. Results from this study serves as a good basis in the development of coconut flakes/flour as a functional food, justifying the increased production of coconut and coconut by-products.

  6. Remnant Cholesterol, Low-Density Lipoprotein Cholesterol, and Blood Pressure as Mediators From Obesity to Ischemic Heart Disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Benn, Marianne; Smith, George Davey

    2015-01-01

    RATIONALE: Obesity leads to increased ischemic heart disease (IHD) risk, but the risk is thought to be mediated through intermediate variables and may not be caused by increased weight per se. OBJECTIVE: To test the hypothesis that the increased IHD risk because of obesity is mediated through...... variables and using genetic variants associated with these. During ≤22 years of follow-up 13 945 participants developed IHD. The increased IHD risk caused by obesity was partly mediated through elevated levels of nonfasting remnant cholesterol and low-density lipoprotein cholesterol, through elevated blood...... obesity were low-density lipoprotein cholesterol with 8%, systolic blood pressure with 7%, and remnant cholesterol with 7% excess risk of IHD. Corresponding observational excess risks using conventional body mass index were 21%, 11%, and 20%, respectively. CONCLUSIONS: The increased IHD risk because...

  7. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity.

    Science.gov (United States)

    Paiva, Aline Dias; de Oliveira, Michelle Dias; de Paula, Sérgio Oliveira; Baracat-Pereira, Maria Cristina; Breukink, Eefjan; Mantovani, Hilário Cuquetto

    2012-11-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by Bacteria and some Archaea. The assessment of the toxic potential of antimicrobial peptides is important in order to apply these peptides on an industrial scale. The aim of the present study was to investigate the in vitro cytotoxic and haemolytic potential of bovicin HC5, as well as to determine whether cholesterol influences bacteriocin activity on model membranes. Nisin, for which the mechanism of action is well described, was used as a reference peptide in our assays. The viability of three distinct eukaryotic cell lines treated with bovicin HC5 or nisin was analysed by using the MTT assay and cellular morphological changes were determined by light microscopy. The haemolytic potential was evaluated by using the haemoglobin liberation assay and the role of cholesterol on bacteriocin activity was examined by using model membranes composed of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) and DPoPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine). The IC(50) of bovicin HC5 and nisin against Vero cells was 65.42 and 13.48 µM, respectively. When the MTT assay was performed with MCF-7 and HepG2 cells, the IC(50) obtained for bovicin HC5 was 279.39 and 289.30 µM, respectively, while for nisin these values were 105.46 and 112.25 µM. The haemolytic activity of bovicin HC5 against eukaryotic cells was always lower than that determined for nisin. The presence of cholesterol did not influence the activity of either bacteriocin on DOPC model membranes, but nisin showed reduced carboxyfluorescein leakage in DPoPC membranes containing cholesterol. In conclusion, bovicin HC5 only exerted cytotoxic effects at concentrations that were greater than the concentration needed for its biological activity, and the presence of cholesterol did not affect its interaction with model membranes.

  8. Nano magnetic solid phase extraction for preconcentration of lead ions in environmental samples by a newly synthesized reagent.

    Science.gov (United States)

    Golshekan, Mostafa; Shariati, Shahab

    2013-01-01

    In this study, magnetite nanoparticles with particle size lower than 47 nm were synthesized and were applied for preconcentration of Pb2+ ions from aqueous solutions. To preconcentrate the Pb2+ ions, the surface of the synthesized nano particles was modified with sodium dodecyl sulfate (SDS) as an anionic surfactant. A new chelating agent (2-((E)-2-amino-4,5-dinitrophenylimino)methyl)phenol) was synthesized and used to form a very stable complex with Pb2+ ions. The lead ions formed complexes and were quantitatively extracted with SDS-coated magnetite nanoparticles. After magnetic separation of adsorbent, the adsorbent was eluted with 0.5% (v/v) HC1 in dimethyl sulfoxide (DMSO) prior to analysis by flame atomic absorption spectrometry (FAAS). Orthogonal array design (OAD) was used to study and optimize the different experimental parameters. Under the optimum conditions, enhancement factor up to 63.5 was achieved for extraction from only 10 mL of sample solution and the relative standard deviation (RSD %) of the method was lower than 2.8%. The obtained calibration curve was linear in the range of 1-300 pg L-' with reasonable linearity (r2 > 0.998). The limit of detection (LOD) based on S/N = 3 was 0.04 microg L(-1) for 10 mL sample volumes. Finally, applicability of the proposed method was successfully confirmed by preconcentration and determination of trace amounts of lead ions in environmental samples and satisfactory results were obtained.

  9. Cholesterol suppresses antimicrobial effect of statins

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Haeri

    2015-12-01

    Full Text Available Objective(s:Isoprenoid biosynthesis is a key metabolic pathway to produce a wide variety of biomolecules such as cholesterol and carotenoids, which target cell membranes. On the other hand, it has been reported that statins known as inhibitors of isoprenoid biosynthesis and cholesterol lowering agents, may have a direct antimicrobial effect on the some bacteria. The exact action of statins in microbial metabolism is not clearly understood. It is possible that statins inhibit synthesis or utilization of some sterol precursor necessary for bacterial membrane integrity. Accordingly, this study was designed in order to examine if statins inhibit the production of a compound, which can be used in the membrane, and whether cholesterol would replace it and rescue bacteria from toxic effects of statins. Materials and Methods: To examine the possibility we assessed antibacterial effect of statins with different classes; lovastatin, simvastatin, and atorvastatin, alone and in combination with cholesterol on two Gram-positive (Staphylococcus aureus and Enterococcus faecalis and two Gram-negative (Pseudomonas aeruginosa and Escherichia coli bacteria using gel diffusion assay. Results: Our results showed that all of the statins except for lovastatin had significant antibacterial property in S. aureus, E. coli, and Enter. faecalis. Surprisingly, cholesterol nullified the antimicrobial action of effective statins in statin-sensitive bacteria. Conclusion: It is concluded that statins may deprive bacteria from a metabolite responsible for membrane stability, which is effectively substituted by cholesterol.

  10. The role of cholesterol metabolism and cholesterol transport in carcinogenesis; A review of scientific findings, relevant to future cancer therapeutics.

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Cruz

    2013-09-01

    Full Text Available While the unique metabolic activities of malignant tissues as potential targets for cancer therapeutics has been the subject of several recent reviews, the role of cholesterol metabolism in this context is yet to be fully explored. Cholesterol is an essential component of mammalian cell membranes as well as a precursor of bile acids and steroid hormones. The hypothesis that cancer cells need excess cholesterol and intermediates of the cholesterol biosynthesis pathway to maintain a high level of proliferation is well accepted, however the mechanisms by which malignant cells and tissues reprogram cholesterol synthesis, uptake and efflux are yet to be fully elucidated as potential therapeutic targets. High and low density plasma lipoproteins, area the likely major suppliers of cholesterol to cancer cells and tumors, potentially via receptor mediated mechanisms. This review is primarily focused on the role(s of lipoproteins in carcinogenesis, and their future roles as drug delivery vehicles for targeted cancer chemotherapy.

  11. Cholesterol: a novel regulatory role in myelin formation.

    Science.gov (United States)

    Saher, Gesine; Quintes, Susanne; Nave, Klaus-Armin

    2011-02-01

    Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease.

  12. Cholesterol synthesis by human fetal hepatocytes: effect of lipoproteins

    International Nuclear Information System (INIS)

    Carr, B.R.; Simpson, E.R.

    1984-01-01

    The purpose of the present investigation was to determine the effect of various lipoproteins on the rate of cholesterol synthesis of human fetal liver cells maintained in culture. This was accomplished by measuring the rate of incorporation of tritium from tritiated water or carbon 14-labeled acetate into cholesterol in human fetal liver cells. Optimal conditions for each assay were determined. When human fetal liver cells were maintained in the presence of low-density lipoprotein, cholesterol synthesis was inhibited in a concentration-dependent fashion. Intermediate--density lipoprotein and very-low-density lipoprotein also suppressed cholesterol synthesis in human fetal liver cells. In contrast, high-density lipoprotein stimulated cholesterol synthesis in human fetal liver cells. The results of the present as well as our previous investigations suggest that multiple interrelationships exist between fetal liver cholesterol synthesis and lipoprotein-cholesterol utilization by the human fetal adrenal gland and that these processes serve to regulate the lipoprotein-cholesterol levels in fetal plasma

  13. Astragalus polysaccharides lowers plasma cholesterol through mechanisms distinct from statins.

    Directory of Open Access Journals (Sweden)

    Yunjiu Cheng

    Full Text Available To determine the efficacy and underlying mechanism of Astragalus polysaccharides (APS on plasma lipids in hypercholesterolemia hamsters. The effect of APS (0.25 g/kg/d on plasma and liver lipids, fecal bile acids and neutral sterol, cholesterol absorption and synthesis, HMG-CoA reductase activity, and gene and protein expressions in the liver and small intestine was investigated in twenty-four hypercholesterolemia hamsters. Treatment periods lasted for three months. APS significantly lowered plasma total cholesterol by 45.8%, triglycerides by 30%, and low-density lipoprotein-cholesterol by 47.4%, comparable to simvastatin. Further examinations revealed that APS reduced total cholesterol and triglycerides in the liver, increased fecal bile acid and neutral sterol excretion, inhibited cholesterol absorption, and by contrast, increased hepatic cholesterol synthesis and HMG-CoA reductase activity. Plasma total cholesterol or low-density lipoprotein-cholesterol levels were significantly correlated with cholesterol absorption rates. APS up-regulated cholesterol-7α-hydroxylase and LDL-receptor gene expressions. These new findings identify APS as a potential natural cholesterol lowering agent, working through mechanisms distinct from statins.

  14. Cholesterol in myelin biogenesis and hypomyelinating disorders.

    Science.gov (United States)

    Saher, Gesine; Stumpf, Sina Kristin

    2015-08-01

    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cholesterol biosynthesis in polychlorinated biphenyl-treated rats

    International Nuclear Information System (INIS)

    Kling, D.; Gamble, W.

    1982-01-01

    After administration of polychlorinated biphenly (PCB) at 0.055 (w/w) of the diet to Wistar rats for 30 days, followed by intraperitioneal injection of tritiated water, [ 14 C]mevalonate, and [ 14 C]acetate, there was a decrease in cholesterol biosynthesis in rat liver. No significant change in cholesterol formation was observed when PCB was administered at 0.01% (w/w) of the diet. In vitro inhibition of cholesterol synthesis by rat liver microsomes was observed with PCB. Squalene 2,3-oxidocyclase activity of rat liver microsomes was not significantly altered. Desmosterol delta 24 reductase activity was inhibited only at relatively high concentrations of PCB. There was increased incorporation of radioactivity into squalene and lanosterol, in vitro, in the presence of PCB. The primary inhibition of cholesterol biosynthesis appears to be at the demethylation and rearrangement reactions between lanosterol and cholesterol in the biosynthetic pathway

  16. Regulation of direct transintestinal cholesterol excretion in mice

    NARCIS (Netherlands)

    van der Velde, Astrid E.; Vrins, Carlos L. J.; van den Oever, Karin; Seemann, Ingar; Elferink, Ronald P. J. Oude; van Eck, Miranda; Kuipers, Folkert; Groen, Albert K.

    2008-01-01

    Biliary secretion is generally considered to be an obligate step in the pathway of excess cholesterol excretion from the body. We have recently shown that an alternative route exists. Direct transintestinal cholesterol efflux ( TICE) contributes significantly to cholesterol removal in mice. Our aim

  17. Regulation of direct transintestinal cholesterol excretion in mice

    NARCIS (Netherlands)

    van der Velde, Astrid E.; Vrins, Carlos L. J.; van den Oever, Karin; Seemann, Ingar; Oude Elferink, Ronald P. J.; van Eck, Miranda; Kuipers, Folkert; Groen, Albert K.

    2008-01-01

    Biliary secretion is generally considered to be an obligate step in the pathway of excess cholesterol excretion from the body. We have recently shown that an alternative route exists. Direct transintestinal cholesterol efflux (TICE) contributes significantly to cholesterol removal in mice. Our aim

  18. Elevated Remnant Cholesterol Causes Both Low-Grade Inflammation and Ischemic Heart Disease, Whereas Elevated Low-Density Lipoprotein Cholesterol Causes Ischemic Heart Disease Without Inflammation

    DEFF Research Database (Denmark)

    Varbo, Anette; Benn, Marianne; Tybjærg-Hansen, Anne

    2013-01-01

    Elevated nonfasting remnant cholesterol and low-density lipoprotein (LDL) cholesterol are causally associated with ischemic heart disease (IHD), but whether elevated nonfasting remnant cholesterol and LDL cholesterol both cause low-grade inflammation is currently unknown....

  19. HDL Cholesterol and Risk of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Haase, Christiane L; Tybjærg-Hansen, Anne; Nordestgaard, Børge G

    2015-01-01

    Observationally, low levels of HDL cholesterol are consistently associated with increased risk of type 2 diabetes. Therefore, plasma HDL cholesterol increasing has been suggested as a novel therapeutic option to reduce the risk of type 2 diabetes. Whether levels of HDL cholesterol are causally as...

  20. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion

    Directory of Open Access Journals (Sweden)

    Ting Chen

    2016-01-01

    Full Text Available Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD. The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD supplement with perilla oil (POH for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion.

  1. New conception concerning the dynamical state of cholesterol in rat; Conception nouvelle concernant l'etat dynamyque du cholesterol chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-03-15

    It presents the study of the cholesterol metabolism in rats. This thesis has been divided in three chapters. In a first part, it will discuss about the dynamic state of biological constituents in organism and in particular the dynamic state of cholesterol. This matter will be considered, firstly under its theoretical aspect and secondly under an experimental point of view with isotopic techniques. The current data on the dynamic state of cholesterol will allow to identify the essential points which are the subject of this research. In particular, the full understanding of the different cholesterol origins (diet, biosynthesis or formation of cholesterol from degradation or transformation of precursors as acetate or butyric acid for example) and the different cholesterol disappearance way (excretion, destruction, transformation or esters formation) is necessary to further research. In a second part, the experimental techniques and methods are described. A brief presentation of the methods for the study of the cholesterol transport and synthesis will be given as well as the experimental conditions and in particular the animal diet and cholesterol ingestion, the administration of acetate and {gamma}-phenyl {alpha}-aminobutyric. The different preparations of the {sup 14}C labelled cholesterol are also described as well as the extraction and measuring of the specific {sup 14}C radioactivity in the animal tissues extract, carbon dioxide gas and sodium acetate. Finally, the results will be given and discussed according to the way of intake: a radioactive cholesterol ingestion or an acetate intraperitoneal injection. (M.P.)

  2. Hypercholesterolemia: The Role of Schools in Cholesterol Screening.

    Science.gov (United States)

    Price, James H.; Casler, Suzanne M.

    1997-01-01

    Examines the prevalence of cardiovascular disease risk factors among children and adolescents, the pros and cons of cholesterol screening among youth, cholesterol assessments of at-risk youth, and the role of schools in cholesterol education and screening (focusing on comprehensive school health education and services). (SM)

  3. Cholesterol and myelin biogenesis.

    Science.gov (United States)

    Saher, Gesine; Simons, Mikael

    2010-01-01

    Myelin consists of several layers of tightly compacted membranes wrapped around axons in the nervous system. The main function of myelin is to provide electrical insulation around the axon to ensure the rapid propagation of nerve conduction. As the myelinating glia terminally differentiates, they begin to produce myelin membranes on a remarkable scale. This membrane is unique in its composition being highly enriched in lipids, in particular galactosylceramide and cholesterol. In this review we will summarize the role of cholesterol in myelin biogenesis in the central and peripheral nervous system.

  4. Regulation of biliary cholesterol secretion and reverse cholesterol transport

    NARCIS (Netherlands)

    Dikkers, Arne

    2016-01-01

    According to the World Health Organization the number one cause of death throughout the world is cardiovascular disease. Therefore, there is an urgent need for new therapeutic strategies to prevent and treat cardiovascular disease. One possible way is to target the HDL-driven reverse cholesterol

  5. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Matthias Orth

    2012-01-01

    Full Text Available Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer’s disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules. We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.

  6. Different patterns in the risk of newly developed fatty liver and lipid changes with tamoxifen versus aromatase inhibitors in postmenopausal women with early breast cancer: A propensity score-matched cohort study.

    Science.gov (United States)

    Hong, Namki; Yoon, Han Gyul; Seo, Da Hea; Park, Seho; Kim, Seung Il; Sohn, Joo Hyuk; Rhee, Yumie

    2017-09-01

    Management of metabolic complications of long-term adjuvant endocrine therapy in early breast cancer remained an unmet need. We aimed to compare the effects of tamoxifen (TMX) and aromatase inhibitors (AIs) on the risk of fatty liver in conjunction with longitudinal changes in the serum lipid parameters. Among 1203 subjects who were taking adjuvant TMX or AI (anastrozole or letrozole) without fatty liver at baseline, those taking TMX or AI were 1:1 matched on the propensity score. The primary outcome was newly developed fatty liver detected on annual liver ultrasonography. Among 328 matched subjects (mean age 53.5 years, body mass index 22.9 kg/m 2 ), 62 cases of fatty liver in the TMX group and 41 cases in the AI group were detected in a total of 987.4 person-years. The incidence rate of fatty liver was higher in the TMX group than in the AI group (128.7 versus 81.1 per 1000 person-years, P = 0.021), particularly within the first 2 years of therapy. TMX was associated with an increased 5-year risk of newly developed fatty liver (adjusted hazard ratio 1.61, P = 0.030) compared with AI independent of obesity and cholesterol level. Subjects who developed fatty liver had higher triglycerides (TGs) and lower high-density lipoprotein cholesterol (HDL-C) level at baseline than those without, which was sustained during follow-up despite the serum cholesterol-lowering effect of TMX. TMX independently increased the 5-year risk of newly developed fatty liver compared with AI in postmenopausal women with early breast cancer. Our findings suggest the need for considering the risk of fatty liver as a different adverse event profile between AI and TMX, particularly in patients with obesity, high TGs and low HDL-C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Sex Differences in the Hepatic Cholesterol Sensing Mechanisms in Mice

    Directory of Open Access Journals (Sweden)

    Ingemar Björkhem

    2013-09-01

    Full Text Available Cholesterol is linked to many multifactorial disorders, including different forms of liver disease where development and severity depend on the sex. We performed a detailed analysis of cholesterol and bile acid synthesis pathways at the level of genes and metabolites combined with the expression studies of hepatic cholesterol uptake and transport in female and male mice fed with a high-fat diet with or without cholesterol. Lack of dietary cholesterol led to a stronger response of the sterol sensing mechanism in females, resulting in higher expression of cholesterogenic genes compared to males. With cholesterol in the diet, the genes were down-regulated in both sexes; however, males maintained a more efficient hepatic metabolic flux through the pathway. Females had higher content of hepatic cholesterol but this was likely not due to diminished excretion but rather due to increased synthesis and absorption. Dietary cholesterol and sex were not important for gallbladder bile acids composition. Neither sex up-regulated Cyp7a1 upon cholesterol loading and there was no compensatory up-regulation of Abcg5 or Abcg8 transporters. On the other hand, females had higher expression of the Ldlr and Cd36 genes. These findings explain sexual dimorphism of cholesterol metabolism in response to dietary cholesterol in a high-fat diet in mice, which contributes to understanding the sex-basis of cholesterol-associated liver diseases.

  8. Lack of Cholesterol Awareness among Physicians Who Smoke

    Directory of Open Access Journals (Sweden)

    Richard E. Scranton

    2009-02-01

    Full Text Available Cigarette use is a known risk factor for the development of coronary artery disease (CAD as it adversely affects HDL cholesterol levels and promotes thrombogenesis. Smoking may also be associated with behavioral characteristics that potentiate the risk of CAD. A lack of cholesterol knowledge would indicate an aversion to a prevention-oriented lifestyle. Thus, our goal was to determine the association between tobacco use and knowledge of self-reported cholesterol among male physicians. Using the 1982 and follow-up questionnaires from the physician health study, we report the changes in the frequencies of awareness of self-reported total cholesterol and cardiovascular risk factors among the 22,067 participants. We classified physicians as being aware of their cholesterol if they reported a cholesterol level and unaware if the question was left unanswered. In 1997, 207 physicians were excluded, as the recorded cholesterol was not interpretable, leaving 21,860 for our follow up analyses. Using unadjusted logistic models, we determined the odds ratios (OR and 95% confidence intervals (CI of not reporting a cholesterol level in either 1982 or 1997 for each specified risk factor. We then evaluated whether the lack of cholesterol awareness at both time points was associated with the use of tobacco throughout the study. After 14-years of follow up, cholesterol awareness increased from 35.9 to 58.6 percent. During this period, the frequency of hypertension and hyperlipidemia treatment increased (13.5 to 40.5% and 0.57% to 19.6% respectively, as did the diagnosis of diabetes (2.40 to 7.79%. Behavioral characteristics such as a sedentary lifestyle and obesity also increased (27.8 to 42% and 43.5 to 53.5%, respectively, however the proportion of current smokers deceased from 11.1 to 4.05%. The percentages of individuals being unaware of their cholesterol decreased in all risk factor groups. However, individuals were likely to be unaware of their cholesterol

  9. Whole body and tissue cholesterol turnover in the baboon

    International Nuclear Information System (INIS)

    Dell, R.B.; Mott, G.E.; Jackson, E.M.; Ramakrishnan, R.; Carey, K.D.; McGill, H.C. Jr.; Goodman, D.S.

    1985-01-01

    Cholesterol turnover was studied in four baboons by injecting [ 14 C]cholesterol 186 days and [ 3 H]cholesterol 4 days before necropsy, and fitting a two- or three-pool model to the resulting specific activity-time data. At necropsy, cholesterol mass and specific activity were determined for the total body and for many tissues. The principal aim of this study was to estimate the extent of cholesterol synthesis in the side pools of the model, by computing the amount of side pool synthesis needed to equal the measured total body cholesterol. Central pool synthesis varied from 61 to 89% of the total cholesterol production rate. Moreover, the finding that the measured total body cholesterol fell within the range obtained from the kinetic analysis by using reasonable assumptions, provides evidence for the physiological validity of the model. A second aim of this study was to explore cholesterol turnover in various tissues. A pool model predicts that rapidly turning over tissues will have higher specific activities at early times and lower specific activities at later times after injection of tracer relative to slowly turning over tissues, except where significant synthesis occurs. Results in all four baboons were similar. Turnover rates for the different tissues loosely fell into three groups which were turning over at fast, intermediate, and slow rates. Finally, the magnitude of variation of cholesterol specific activity was moderate for several distributed tissues (fat, muscle, arteries, and the alimentary tract), but was small for liver. Cholesterol turnover in serial biopsies of skin, muscle, and fat could, however, be fitted with a single pool to estimate tissue turnover rates

  10. What Can We Learn about Cholesterol's Transmembrane Distribution Based on Cholesterol-Induced Changes in Membrane Dipole Potential?

    DEFF Research Database (Denmark)

    Falkovich, Stanislav G.; Martinez-Seara, Hector; Nesterenko, Alexey M.

    2016-01-01

    Cholesterol is abundant in the plasma membranes of animal cells and is known to regulate a variety of membrane properties. Despite decades of research, the transmembrane distribution of cholesterol is still a matter of debate. Here we consider this outstanding issue through atomistic simulations ...

  11. Aortic wall damage in mice unable to synthesize ascorbic acid.

    Science.gov (United States)

    Maeda, N; Hagihara, H; Nakata, Y; Hiller, S; Wilder, J; Reddick, R

    2000-01-18

    By inactivating the gene for L-gulono-gamma-lactone oxidase, a key enzyme in ascorbic acid synthesis, we have generated mice that, like humans, depend on dietary vitamin C. Regular chow, containing about 110 mg/kg of vitamin C, is unable to support the growth of the mutant mice, which require L-ascorbic acid supplemented in their drinking water (330 mg/liter). Upon withdrawal of supplementation, plasma and tissue ascorbic acid levels decreased to 10-15% of normal within 2 weeks, and after 5 weeks the mutants became anemic, began to lose weight, and die. Plasma total antioxidative capacities were approximately 37% normal in homozygotes after feeding the unsupplemented diet for 3-5 weeks. As plasma ascorbic acid decreased, small, but significant, increases in total cholesterol and decreases in high density lipoprotein cholesterol were observed. The most striking effects of the marginal dietary vitamin C were alterations in the wall of aorta, evidenced by the disruption of elastic laminae, smooth muscle cell proliferation, and focal endothelial desquamation of the luminal surface. Thus, marginal vitamin C deficiency affects the vascular integrity of mice unable to synthesize ascorbic acid, with potentially profound effects on the pathogenesis of vascular diseases. Breeding the vitamin C-dependent mice with mice carrying defined genetic mutations will provide numerous opportunities for systematic studies of the role of antioxidants in health and disease.

  12. Cholesterol monohydrate nucleation in ultrathin films on water

    DEFF Research Database (Denmark)

    Rapaport, H.; Kuzmenko, I.; Lafont, S.

    2001-01-01

    The growth of a cholesterol crystalline phase, three molecular layers thick at the air-water interface, was monitored by grazing incidence x-ray diffraction and x-ray reflectivity. Upon compression, a cholesterol film transforms from a monolayer of trigonal symmetry and low crystallinity to a tri......The growth of a cholesterol crystalline phase, three molecular layers thick at the air-water interface, was monitored by grazing incidence x-ray diffraction and x-ray reflectivity. Upon compression, a cholesterol film transforms from a monolayer of trigonal symmetry and low crystallinity...... in pathological lipid deposits....

  13. 2013 Cholesterol Guidelines Revisited: Percent LDL Cholesterol Reduction or Attained LDL Cholesterol Level or Both for Prognosis?

    NARCIS (Netherlands)

    Bangalore, Sripal; Fayyad, Rana; Kastelein, John J.; Laskey, Rachel; Amarenco, Pierre; Demicco, David A.; Waters, David D.

    2016-01-01

    The 2013 American College of Cardiology (ACC)/American Heart Association (AHA) guideline on the treatment of blood cholesterol recommends moderate- to high-intensity statins for patients with atherosclerotic cardiovascular disease but departs from the traditional treat-to-target approach. Whether

  14. Inclusion of Almonds in a Cholesterol-Lowering Diet Improves Plasma HDL Subspecies and Cholesterol Efflux to Serum in Normal-Weight Individuals with Elevated LDL Cholesterol.

    Science.gov (United States)

    Berryman, Claire E; Fleming, Jennifer A; Kris-Etherton, Penny M

    2017-08-01

    Background : Almonds may increase circulating HDL cholesterol when substituted for a high-carbohydrate snack in an isocaloric diet, yet little is known about the effects on HDL biology and function. Objective: The objective was to determine whether incorporating 43 g almonds/d in a cholesterol-lowering diet would improve HDL subspecies and function, which were secondary study outcomes. Methods: In a randomized, 2-period, crossover, controlled-feeding study, a diet with 43 g almonds/d (percentage of total energy: 51% carbohydrate, 16% protein, and 32% total and 8% saturated fat) was compared with a similar diet with an isocaloric muffin substitution (58% carbohydrate, 15% protein, and 26% total and 8% saturated fat) in men and women with elevated LDL cholesterol. Plasma HDL subspecies and cholesterol efflux from J774 macrophages to human serum were measured at baseline and after each diet period. Diet effects were examined in all participants ( n = 48) and in normal-weight (body mass index: almond diet, compared with the control diet, increased α-1 HDL [mean ± SEM: 26.7 ± 1.5 compared with 24.3 ± 1.3 mg apolipoprotein A-I (apoA-I)/dL; P = 0.001]. In normal-weight participants, the almond diet, relative to the control diet, increased α-1 HDL (33.7 ± 3.2 compared with 28.4 ± 2.6 mg apoA-I/dL), the α-1 to pre-β-1 ratio [geometric mean (95% CI): 4.3 (3.3, 5.7) compared with 3.1 (2.4, 4.0)], and non-ATP-binding cassette transporter A1 cholesterol efflux (8.3% ± 0.4% compared with 7.8% ± 0.3%) and decreased pre-β-2 (3.8 ± 0.4 compared with 4.6 ± 0.4 mg apoA-I/dL) and α-3 (23.5 ± 0.9 compared with 26.9 ± 1.1 mg apoA-I/dL) HDL ( P almonds for a carbohydrate-rich snack within a lower-saturated-fat diet may be a simple strategy to maintain a favorable circulating HDL subpopulation distribution and improve cholesterol efflux in normal-weight individuals with elevated LDL cholesterol. This trial was registered at clinicaltrials.gov as NCT01101230. © 2017

  15. Nonlinear associations between plasma cholesterol levels and neuropsychological function.

    Science.gov (United States)

    Wendell, Carrington R; Zonderman, Alan B; Katzel, Leslie I; Rosenberger, William F; Plamadeala, Victoria V; Hosey, Megan M; Waldstein, Shari R

    2016-11-01

    Although both high and low levels of total and low-density lipoprotein (LDL) cholesterol have been associated with poor neuropsychological function, little research has examined nonlinear effects. We examined quadratic relations of cholesterol to performance on a comprehensive neuropsychological battery. Participants were 190 older adults (53% men, ages 54-83) free of major medical, neurologic, and psychiatric disease. Measures of fasting plasma total and high-density lipoprotein (HDL) cholesterol were assayed, and LDL cholesterol was calculated. Participants completed neuropsychological measures of attention, executive function, memory, visuospatial judgment, and manual speed and dexterity. Multiple regression analyses examined cholesterol levels as quadratic predictors of each measure of cognitive performance, with age (dichotomized as Reproduction II ( b = -.0020, p = .026) and log of the Trail Making Test, Part B (b = .0001, p = .044). Quadratic associations between HDL cholesterol and cognitive performance were nonsignificant. Results indicate differential associations between cholesterol and neuropsychological function across different ages and domains of function. High and low total and LDL cholesterol may confer both risk and benefit for suboptimal cognitive function at different ages. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice

    NARCIS (Netherlands)

    Boer, J.F. de; Schonewille, M.; Boesjes, M.; Wolters, H.; Bloks, V.W.; Bos, T.; Dijk, T.H. van; Jurdzinski, A.; Boverhof, R.; Wolters, J.C.; Kuivenhoven, J.A.; Deursen, J.M.A. van; Elferink, R.P.; Moschetta, A.; Kremoser, C.; Verkade, H.J.; Kuipers, F.; Groen, A.K.

    2017-01-01

    BACKGROUND & AIMS: The role of the intestine in the maintenance of cholesterol homeostasis increasingly is recognized. Fecal excretion of cholesterol is the last step in the atheroprotective reverse cholesterol transport pathway, to which biliary and transintestinal cholesterol excretion (TICE)

  17. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice.

    Science.gov (United States)

    Martel, Catherine; Li, Wenjun; Fulp, Brian; Platt, Andrew M; Gautier, Emmanuel L; Westerterp, Marit; Bittman, Robert; Tall, Alan R; Chen, Shu-Hsia; Thomas, Michael J; Kreisel, Daniel; Swartz, Melody A; Sorci-Thomas, Mary G; Randolph, Gwendalyn J

    2013-04-01

    Reverse cholesterol transport (RCT) refers to the mobilization of cholesterol on HDL particles (HDL-C) from extravascular tissues to plasma, ultimately for fecal excretion. Little is known about how HDL-C leaves peripheral tissues to reach plasma. We first used 2 models of disrupted lymphatic drainage from skin--1 surgical and the other genetic--to quantitatively track RCT following injection of [3H]-cholesterol-loaded macrophages upstream of blocked or absent lymphatic vessels. Macrophage RCT was markedly impaired in both models, even at sites with a leaky vasculature. Inhibited RCT was downstream of cholesterol efflux from macrophages, since macrophage efflux of a fluorescent cholesterol analog (BODIPY-cholesterol) was not altered by impaired lymphatic drainage. We next addressed whether RCT was mediated by lymphatic vessels from the aortic wall by loading the aortae of donor atherosclerotic Apoe-deficient mice with [2H]6-labeled cholesterol and surgically transplanting these aortae into recipient Apoe-deficient mice that were treated with anti-VEGFR3 antibody to block lymphatic regrowth or with control antibody to allow such regrowth. [2H]-Cholesterol was retained in aortae of anti-VEGFR3-treated mice. Thus, the lymphatic vessel route is critical for RCT from multiple tissues, including the aortic wall. These results suggest that supporting lymphatic transport function may facilitate cholesterol clearance in therapies aimed at reversing atherosclerosis.

  18. Cytoplasmic assembly of snRNP particles from stored proteins and newly transcribed snRNA's in L929 mouse fibroblasts

    International Nuclear Information System (INIS)

    Sauterer, R.A.; Feeney, R.J.; Zieve, G.W.

    1988-01-01

    Newly synthesized snRNAs appear transiently in the cytoplasm where they assemble into ribonucleoprotein particles, the snRNP particles, before returning permanently to the interphase nucleus. In this report, bona fide cytoplasmic fractions, prepared by cell enucleation, are used for a quantitative analysis of snRNP assembly in growing mouse fibroblasts. The half-lives and abundances of the snRNP precursors in the cytoplasm and the rates of snRNP assembly are calculated in L929 cells. With the exception of U6, the major snRNAs are stable RNA species; U1 is almost totally stable while U2 has a half-life of about two cell cycles. In contrast, the majority of newly synthesized U6 decays with a half-life of about 15 h. The relative abundances of the newly synthesized snRNA species U1, U2, U3, U4 and U6 in the cytoplasm are determined by Northern hybridization using cloned probes and are approximately 2% of their nuclear abundance. The half-lives of the two major snRNA precursors in the cytoplasm (U1 and U2) are approximately 20 min as determined by labeling to steady state. The relative abundance of the snRNP B protein in the cytoplasm is determined by Western blotting with the Sm class of autoantibodies and is approximately 25% of the nuclear abundance. Kinetic studies, using the Sm antiserum to immunoprecipitate the methionine-labeled snRNP proteins, suggest that the B protein has a half-life of 90 to 120 min in the cytoplasm. These data are discussed and suggest that there is a large pool of more stable snRNP proteins in the cytoplasm available for assembly with the less abundant but more rapidly turning-over snRNAs

  19. The hedgehog receptor patched is involved in cholesterol transport.

    Directory of Open Access Journals (Sweden)

    Michel Bidet

    Full Text Available Sonic hedgehog (Shh signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened.Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement of the intracellular cholesterol concentration induces Smoothened enrichment in the plasma membrane, which is a crucial step for the signaling activation. We found that binding of Shh protein to its receptor Patched, which involves Patched internalization, increases the intracellular concentration of cholesterol and decreases the efflux of a fluorescent cholesterol derivative (BODIPY-cholesterol from these cells. Treatment of fibroblasts with cyclopamine, an antagonist of Shh signaling, inhibits Patched expression and reduces BODIPY-cholesterol efflux, while treatment with the Shh pathway agonist SAG enhances Patched protein expression and BODIPY-cholesterol efflux. We also show that over-expression of human Patched in the yeast S. cerevisiae results in a significant boost of BODIPY-cholesterol efflux. Furthermore, we demonstrate that purified Patched binds to cholesterol, and that the interaction of Shh with Patched inhibits the binding of Patched to cholesterol.Our results suggest that Patched may contribute to cholesterol efflux from cells, and to modulation of the intracellular cholesterol concentration. This activity is likely responsible for the inhibition of the enrichment of Smoothened in the plasma membrane, which is an important step in Shh pathway activation.

  20. Biochemical and Bioimaging Evidence of Cholesterol in Acquired Cholesteatoma

    DEFF Research Database (Denmark)

    Thorsted, Bjarne; Bloksgaard, Maria; Groza, Alexandra

    2016-01-01

    : The results show that the total lipid content of the cholesteatoma matrix is similar to that of stratum corneum from skin and that the cholesteatoma matrix unquestionably contains cholesterol. The cholesterol content in the cholesteatoma matrix is increased by over 30% (w/w dry weight) compared to the control....... The cholesterol sulfate content is below 1% of the total lipids in both the cholesteatoma and the control. Cholesterol ester was reduced by over 30% when compared to the control. CONCLUSIONS: The content of cholesterol in the cholesteatoma matrix is significantly different from that in stratum corneum from skin...

  1. Mechanisms of foam cell formation in atherosclerosis.

    Science.gov (United States)

    Chistiakov, Dimitry A; Melnichenko, Alexandra A; Myasoedova, Veronika A; Grechko, Andrey V; Orekhov, Alexander N

    2017-11-01

    Low-density lipoprotein (LDL) and cholesterol homeostasis in the peripheral blood is maintained by specialized cells, such as macrophages. Macrophages express a variety of scavenger receptors (SR) that interact with lipoproteins, including SR-A1, CD36, and lectin-like oxLDL receptor-1 (LOX-1). These cells also have several cholesterol transporters, including ATP-binding cassette transporter ABCA1, ABCG1, and SR-BI, that are involved in reverse cholesterol transport. Lipids internalized by phagocytosis are transported to late endosomes/lysosomes, where lysosomal acid lipase (LAL) digests cholesteryl esters releasing free cholesterol. Free cholesterol in turn is processed by acetyl-CoA acetyltransferase (ACAT1), an enzyme that transforms cholesterol to cholesteryl esters. The endoplasmic reticulum serves as a depot for maintaining newly synthesized cholesteryl esters that can be processed by neutral cholesterol ester hydrolase (NCEH), which generates free cholesterol that can exit via cholesterol transporters. In atherosclerosis, pro-inflammatory stimuli upregulate expression of scavenger receptors, especially LOX-1, and downregulate expression of cholesterol transporters. ACAT1 is also increased, while NCEH expression is reduced. This results in deposition of free and esterified cholesterol in macrophages and generation of foam cells. Moreover, other cell types, such as endothelial (ECs) and vascular smooth muscle cells (VSMCs), can also become foam cells. In this review, we discuss known pathways of foam cell formation in atherosclerosis.

  2. Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles

    Science.gov (United States)

    Nirala, Narsingh R.; Saxena, Preeti S.; Srivastava, Anchal

    2018-02-01

    We develop a simple colorimetric method for determination of free cholesterol in aqueous solution based on functionalized gold nanoparticles with cholesterol oxidase. Functionalized gold nanoparticles interact with free cholesterol to produce H2O2 in proportion to the level of cholesterol visually is being detected. The quenching in optical properties and agglomeration of functionalized gold nanoparticles play a key role in cholesterol sensing due to the electron accepting property of H2O2. While the lower ranges of cholesterol (lower detection limit i.e. 0.2 mg/dL) can be effectively detected using fluorescence study, the absorption study attests evident visual color change which becomes effective for detection of higher ranges of cholesterol (lower detection limit i.e. 19 mg/dL). The shades of red gradually change to blue/purple as the level of cholesterol detected (as evident at 100 mg/dL) using unaided eye without the use of expensive instruments. The potential of the proposed method to be applied in the field is shown by the proposed cholesterol measuring color wheel.

  3. Use of stable isotopes in the study of human cholesterol metabolism

    International Nuclear Information System (INIS)

    Virelizier, H.; Hagemann, R.

    1979-01-01

    An experimental procedure based on the use of stable isotopes spiked molecules of cholesterol, allows the measurement in faecal cholesterol of the relative parts coming from the plasma by transfer (deuterium spiked molecules), from the non absorbed alimentary cholesterol ( 13 C spiked molecules) and from the external intestinal secretion (not labelled way). The patient receive a dose of D 8 (2, 2', 3, 4, 4', 6, 7, 7') cholesterol intravenously and an oral dose of 3,4 13 C cholesterol. The plasmatic cholesterol transfer is calculated from the ratio of the measured dilutions of the faecal and plasmatic D 8 cholesterol. The non absorbed cholesterol is estimated from the percentage of 13 C cholesterol measured in the faecal sterols within the six days following the oral dose ingestion. The D 8 cholesterol dilutions are measured using the GC-MS technique on the trimethylsilyl derivatives of cholesterol. Dilutions up to 1/4000 can be measured. The 13 C enriched faecal cholesterol is converted into CO 2 and the 13 C/ 12 C ratios are measured on a dual collector mass spectrometer. Dilutions up to 1/5000 of the 3,4 13 C cholesterol can be detected. The details of the analytical procedure are given

  4. Remnant cholesterol, low-density lipoprotein cholesterol, and blood pressure as mediators from obesity to ischemic heart disease.

    Science.gov (United States)

    Varbo, Anette; Benn, Marianne; Smith, George Davey; Timpson, Nicholas J; Tybjaerg-Hansen, Anne; Nordestgaard, Børge G

    2015-02-13

    Obesity leads to increased ischemic heart disease (IHD) risk, but the risk is thought to be mediated through intermediate variables and may not be caused by increased weight per se. To test the hypothesis that the increased IHD risk because of obesity is mediated through lipoproteins, blood pressure, glucose, and C-reactive protein. Approximately 90 000 participants from Copenhagen were included in a Mendelian randomization design with mediation analyses. Associations were examined using conventional measurements of body mass index and intermediate variables and using genetic variants associated with these. During ≤22 years of follow-up 13 945 participants developed IHD. The increased IHD risk caused by obesity was partly mediated through elevated levels of nonfasting remnant cholesterol and low-density lipoprotein cholesterol, through elevated blood pressure, and possibly also through elevated nonfasting glucose levels; however, reduced high-density lipoprotein cholesterol and elevated C-reactive protein levels were not mediators in genetic analyses. The 3 intermediate variables that explained the highest excess risk of IHD from genetically determined obesity were low-density lipoprotein cholesterol with 8%, systolic blood pressure with 7%, and remnant cholesterol with 7% excess risk of IHD. Corresponding observational excess risks using conventional body mass index were 21%, 11%, and 20%, respectively. The increased IHD risk because of obesity was partly mediated through elevated levels of nonfasting remnant and low-density lipoprotein cholesterol and through elevated blood pressure. Our results suggest that there may be benefit to gain by reducing levels of these risk factors in obese individuals not able to achieve sustained weight loss. © 2014 American Heart Association, Inc.

  5. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis.

    Science.gov (United States)

    Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J

    2017-12-08

    Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Implications of lower risk thresholds for statin treatment in primary prevention: analysis of CPRD and simulation modelling of annual cholesterol monitoring.

    Science.gov (United States)

    McFadden, Emily; Stevens, Richard; Glasziou, Paul; Perera, Rafael

    2015-01-01

    To estimate numbers affected by a recent change in UK guidelines for statin use in primary prevention of cardiovascular disease. We modelled cholesterol ratio over time using a sample of 45,151 men (≥40years) and 36,168 women (≥55years) in 2006, without statin treatment or previous cardiovascular disease, from the Clinical Practice Research Datalink. Using simulation methods, we estimated numbers indicated for new statin treatment, if cholesterol was measured annually and used in the QRISK2 CVD risk calculator, using the previous 20% and newly recommended 10% thresholds. We estimate that 58% of men and 55% of women would be indicated for treatment by five years and 71% of men and 73% of women by ten years using the 20% threshold. Using the proposed threshold of 10%, 84% of men and 90% of women would be indicated for treatment by 5years and 92% of men and 98% of women by ten years. The proposed change of risk threshold from 20% to 10% would result in the substantial majority of those recommended for cholesterol testing being indicated for statin treatment. Implications depend on the value of statins in those at low to medium risk, and whether there are harms. Copyright © 2014. Published by Elsevier Inc.

  7. Cholesterol Level: Can It Be Too Low?

    Science.gov (United States)

    ... total cholesterol level has been associated with some health problems. Doctors are still trying to find out more about the connection between low cholesterol and health risks. There is no consensus on how to ...

  8. Cholesterol granuloma of the petrous apex: CT diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Lo, W.W.M.; Solti-Bohman, L.G.; Brackmann, D.E.; Gruskin, P.

    1984-12-01

    Cholesterol granuloma of the petrous apex is a readily recognizable and treatable entity that is more common than previously realized. Cholesterol granuloma grows slowly in the petrous apex as a mass lesion until it produces hearing loss, tinnitus, vertigo, and facial twitching. Twelve cases of cholesterol granuloma of the petrous apex are illustrated; ten of these analyzed in detail, especially with respect to CT findings. A sharply and smoothly marginated expansile lesion in the petrous apex, isodense with plain and nonenhancing on CT, is in all probability a cholesterol granuloma. Preoperative recognition by CT is important for planning proper treatment.

  9. Cholesterol granuloma of the petrous apex: CT diagnosis

    International Nuclear Information System (INIS)

    Lo, W.W.M.; Solti-Bohman, L.G.; Brackmann, D.E.; Gruskin, P.

    1984-01-01

    Cholesterol granuloma of the petrous apex is a readily recognizable and treatable entity that is more common than previously realized. Cholesterol granuloma grows slowly in the petrous apex as a mass lesion until it produces hearing loss, tinnitus, vertigo, and facial twitching. Twelve cases of cholesterol granuloma of the petrous apex are illustrated; ten of these analyzed in detail, especially with respect to CT findings. A sharply and smoothly marginated expansile lesion in the petrous apex, isodense with plain and nonenhancing on CT, is in all probability a cholesterol granuloma. Preoperative recognition by CT is important for planning proper treatment

  10. Simultaneous measurement of cholesterol 7 alpha-hydroxylase activity by reverse-phase high-performance liquid chromatography using both endogenous and exogenous [4-14C]cholesterol as substrate

    International Nuclear Information System (INIS)

    Hylemon, P.B.; Studer, E.J.; Pandak, W.M.; Heuman, D.M.; Vlahcevic, Z.R.; Chiang, J.Y.

    1989-01-01

    The HPLC-spectrophotometric method for measuring cholesterol 7 alpha-hydroxylase activity was modified by using a C-18 reverse-phase column to separate 7 alpha-hydroxy-4-cholesten-3-one and 4-cholesten-3-one and by adding 7 beta-hydroxycholesterol to each reaction mixture as an internal recovery standard. With this method, we were able to simultaneously measure cholesterol 7 alpha-hydroxylase activity using endogenous cholesterol and exogenous [4- 14 C]cholesterol as substrate. Rat liver cytosol differentially stimulated (286%) the 7 alpha-hydroxylation of exogenous [4- 14 C]-cholesterol. In contrast, total cholesterol 7 alpha-hydroxylase activity was stimulated only 35% by cytosol. This method should prove useful for studying mechanisms of cholesterol delivery to cholesterol 7 alpha-hydroxylase

  11. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode.

    Science.gov (United States)

    Gholivand, Mohammad Bagher; Khodadadian, Mehdi

    2014-03-15

    Cholesterol oxidase (ChOx) and catalase (CAT) were co-immobilized on a graphene/ionic liquid-modified glassy carbon electrode (GR-IL/GCE) to develop a highly sensitive amperometric cholesterol biosensor. The H2O2 generated during the enzymatic reaction of ChOx with cholesterol could be reduced electrocatalytically by immobilized CAT to obtain a sensitive amperometric response to cholesterol. The direct electron transfer between enzymes and electrode surface was investigated by cyclic voltammetry. Both enzymes showed well-defined redox peaks with quasi-reversible behaviors. An excellent sensitivity of 4.163 mA mM(-1)cm(-2), a response time less than 6s, and a linear range of 0.25-215 μM (R(2)>0.99) have been observed for cholesterol determination using the proposed biosensor. The apparent Michaelis-Menten constant (KM(app)) was calculated to be 2.32 mM. The bienzymatic cholesterol biosensor showed good reproducibility (RSDsascorbic acid and uric acid. The CAT/ChOx/GR-IL/GCE showed excellent analytical performance for the determination of free cholesterol in human serum samples. © 2013 Elsevier B.V. All rights reserved.

  12. Cholesterol, bile acid and triglyceride metabolism intertwined

    NARCIS (Netherlands)

    Schonewille, Marleen

    2016-01-01

    Hyperlipidemie wordt gekarakteriseerd door verhoogd plasma cholesterol en/of triglyceriden en sterk geassocieerd met het risico op cardiovasculaire aandoeningen. Dit proefschrift beschrijft onderzoek naar de regulatie van plasma cholesterol en triglyceriden concentraties en de achterliggende

  13. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    OpenAIRE

    Matthias Orth; Stefano Bellosta

    2012-01-01

    Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein...

  14. Cholesterol turnover and metabolism in two patients with abetalipoproteinemia

    International Nuclear Information System (INIS)

    Goodman, D.S.; Deckelbaum, R.J.; Palmer, R.H.; Dell, R.B.; Ramakrishnan, R.; Delpre, G.; Beigel, Y.; Cooper, M.

    1983-01-01

    Total body turnover of cholesterol was studied in two patients with abetalipoproteinemia, a 32-year-old man and a 31-year-old woman. The patients received [14C]cholesterol intravenously, and the resulting specific activity-time curves (for 40 and 30 weeks, respectively) were fitted with a three-pool model. Parameters were compared with those from studies of cholesterol turnover in 82 normal and hyperlipidemic subjects. A three-pool model gave the best fit for the abetalipoproteinemic patients, as well as for the 82 previously studied subjects, suggesting general applicability of this model. Cholesterol production rates in the two abetalipoproteinemic subjects (0.82 and 0.89 g/day) were close to values predicted for persons of their body weight. Thus, total body turnover rate of cholesterol was quite normal in abetalipoproteinemia, confirming previous reports. Very low values (9.2 and 8.4 g) were found for M1, the size of the rapidly exchanging compartment pool 1, in the two abetalipoproteinemic subjects. These values were well below the values predicted (from the comparison study population) for normal persons of this size with low plasma cholesterol levels. For one patient, total body exchangeable cholesterol was very low, although not significantly below the predicted values for a person of his size. In the second patient, the observed estimate for total body exchangeable cholesterol was well within the range of values predicted for persons of her size with low to extremely low cholesterol levels

  15. Organo-Functionalization of Silicon Nanocrystals Synthesized by Inductively Coupled Plasma Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Don-Sung; Choe, Dong-Hoe; Jeong, Hyun-Dam [Chonnam National University, Gwangju (Korea, Republic of); Yoo, Seung-Wan; Kim, Jung-Hyung [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-05-15

    Octadecyl-terminated silicon nanocrystals (ODE-Si NCs) are obtained via a surface-initiated thermal hydrosilylation reaction on hydride-terminated Si NCs (H-Si NCs). Pristine Si NCs were synthesized at the gram scale by using inductively coupled plasma chemical vapor deposition (ICP-CVD) . The H-Si NCs were produced through a chemical etching process with hydrofluoric acid (HF), ethanol (EtOH), and distilled water (d-H{sub 2}O). The results obtained from X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) indicate that the synthesized Si NCs obtained via ICP-CVD have diamond cubic-structured silicon with a grain size of 10 nm and a densely packed Si NC array consisting of individual NCs. Organo-functionalized Si NCs, i.e., ODE-Si NCs, are well soluble in organic solvent whereas pristine Si NCs synthesized through ICP-CVD are not. The surface chemistry of the ODE-Si NCs was confirmed via Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy ({sup 1}H-NMR), and field emission transmission electron microscopy (FE-TEM). Thereby, these newly synthesized and scalable organo-functionalized Si NCs are applicable as raw materials for practical use in devices by tuning the surface chemistry with various capping molecules.

  16. Mucins and calcium phosphate precipitates additively stimulate cholesterol crystallization

    NARCIS (Netherlands)

    van den Berg, A. A.; van Buul, J. D.; Tytgat, G. N.; Groen, A. K.; Ostrow, J. D.

    1998-01-01

    Human biliary mucin and calcium binding protein (CBP) influence formation of both calcium salt precipitates and cholesterol crystals and colocalize in the center of cholesterol gallstones. We investigated how physiological concentrations of these proteins regulate cholesterol crystallization in

  17. Cholesterol Balance in Prion Diseases and Alzheimer’s Disease

    Science.gov (United States)

    Hannaoui, Samia; Shim, Su Yeon; Cheng, Yo Ching; Corda, Erica; Gilch, Sabine

    2014-01-01

    Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD. PMID:25419621

  18. Cholesterol Balance in Prion Diseases and Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Samia Hannaoui

    2014-11-01

    Full Text Available Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD: whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD.

  19. Membrane cholesterol mediates the cellular effects of monolayer graphene substrates.

    Science.gov (United States)

    Kitko, Kristina E; Hong, Tu; Lazarenko, Roman M; Ying, Da; Xu, Ya-Qiong; Zhang, Qi

    2018-02-23

    Graphene possesses extraordinary properties that promise great potential in biomedicine. However, fully leveraging these properties requires close contact with the cell surface, raising the concern of unexpected biological consequences. Computational models have demonstrated that graphene preferentially interacts with cholesterol, a multifunctional lipid unique to eukaryotic membranes. Here we demonstrate an interaction between graphene and cholesterol. We find that graphene increases cell membrane cholesterol and potentiates neurotransmission, which is mediated by increases in the number, release probability, and recycling rate of synaptic vesicles. In fibroblasts grown on graphene, we also find an increase in cholesterol, which promotes the activation of P2Y receptors, a family of receptor regulated by cholesterol. In both cases, direct manipulation of cholesterol levels elucidates that a graphene-induced cholesterol increase underlies the observed potentiation of each cell signaling pathway. These findings identify cholesterol as a mediator of graphene's cellular effects, providing insight into the biological impact of graphene.

  20. FLIM studies of 22- and 25-NBD-cholesterol in living HEK293 cells: Plasma membrane change induced by cholesterol depletion

    Czech Academy of Sciences Publication Activity Database

    Ostašov, Pavel; Sýkora, Jan; Brejchová, Jana; Olžyńska, Agnieszka; Hof, Martin; Svoboda, Petr

    167-168, FEB-MAR (2013), s. 62-69 ISSN 0009-3084 R&D Projects: GA ČR(CZ) GAP207/12/0919 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 ; RVO:61388955 Keywords : cholesterol depletion * beta-Cyclodextrin * 22-NBD-cholesterol * 25-NBD-cholesterol * FLIM studies * intact HEK293 cells Subject RIV: CE - Biochemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 2.593, year: 2013

  1. Normal Non-HDL Cholesterol, Low Total Cholesterol, and HDL Cholesterol Levels in Sickle Cell Disease Patients in the Steady State: A Case-Control Study of Tema Metropolis.

    Science.gov (United States)

    Ephraim, Richard K D; Adu, Patrick; Ake, Edem; Agbodzakey, Hope; Adoba, Prince; Cudjoe, Obed; Agoni, Clement

    2016-01-01

    Background. Abnormal lipid homeostasis in sickle cell disease (SCD) is characterized by defects in plasma and erythrocyte lipids and may increase the risk of cardiovascular disease. This study assessed the lipid profile and non-HDL cholesterol level of SCD patients. Methods. A hospital-based cross-sectional study was conducted in 50 SCD patients, in the steady state, aged 8-28 years, attending the SCD clinic, and 50 healthy volunteers between the ages of 8-38 years. Serum lipids were determined by enzymatic methods and non-HDL cholesterol calculated by this formula: non-HDL-C = TC-HDL-C. Results. Total cholesterol (TC) ( p = 0.001) and high-density lipoprotein cholesterol (HDL-C) ( p < 0.0001) were significantly decreased in cases compared to controls. The levels of non-HDL-C, low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) were similar among the participants. The levels of decrease in TC and HDL were associated with whether a patient was SCD-SS or SCD-SC. Systolic blood pressure and diastolic blood pressure were each significantly associated with increased VLDL [SBP, p = 0.01, OR: 0.74 (CI: 0.6-0.93); DBP, p = 0.023, OR: 1.45 (CI: 1.05-2.0)]. Conclusion. Dyslipidemia is common among participants in this study. It was more pronounced in the SCD-SS than in SCD-SC. This dyslipidemia was associated with high VLDL as well as increased SBP and DBP.

  2. Biochemical characterization of cholesterol-reducing Eubacterium.

    Science.gov (United States)

    Mott, G E; Brinkley, A W; Mersinger, C L

    1980-12-01

    We characterized two isolates of cholesterol-reducing Eubacterium by conducting conventional biochemical tests and by testing various sterols and glycerolipids as potential growth factors. In media containing cholesterol and plasmenylethanolamine, the tests for nitrate reduction, indole production, and gelatin and starch hydrolyses were negative, and no acid was produced from any of 22 carbohydrates. Both isolates hydrolyzed esculin to esculetin, indicating beta-glycosidase activity. In addition to plasmenylethanolamine, five other lipids which contain an alkenyl ether residue supported growth of Eubacterium strain 403 in a lecithin-cholesterol base medium. Of six steroids tested, cholesterol, cholest-4-en-3-one, cholest-4-en-3 beta-ol (allocholesterol), and androst-5-en-3 beta-ol-17-one supported growth of Eubacterium strain 403. All four steroids were reduced to the 3 beta-ol, 5 beta-H products. The delta 5 steroids cholest-5-en-3 alpha-ol (epicholesterol) and 22,23-bisnor-5-cholenic acid-3-beta-ol were not reduced and did not support growth of the Eubacterium strain.

  3. Apolipoprotein A-1 (apoA-1) deposition in, and release from, the enterocyte brush border: a possible role in transintestinal cholesterol efflux (TICE)?

    Science.gov (United States)

    Danielsen, E Michael; Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte; Frenzel, Franz

    2012-03-01

    Transintestinal cholesterol efflux (TICE) has been proposed to represent a non-hepatobiliary route of cholesterol secretion directly "from blood to gut" and to play a physiologically significant role in excretion of neutral sterols, but so far little is known about the proteins involved in the process. We have previously observed that apolipoprotein A-1 (apoA-1) synthesized by enterocytes of the small intestine is mainly secreted apically into the gut lumen during fasting where its assembly into chylomicrons and basolateral discharge is at a minimal level. In the present work we showed, both by immunomicroscopy and subcellular fractionation, that a fraction of the apically secreted apoA-1 in porcine small intestine was not released from the cell surface but instead deposited in the brush border. Cholesterol was detected in immunoisolated microvillar apoA-1, and it was partially associated with detergent resistant membranes (DRMs), indicative of localization in lipid raft microdomains. The apolipoprotein was not readily released from microvillar vesicles by high salt or by incubation with phosphatidylcholine-specific phospholipase C or trypsin, indicating a relatively firm attachment to the membrane bilayer. However, whole bile or taurocholate efficiently released apoA-1 at low concentrations that did not solubilize the transmembrane microvillar protein aminopeptidase N. Based on these findings and the well known role played by apoA-1 in extrahepatic cellular cholesterol removal and reverse cholesterol transport (RCT), we propose that brush border-deposited apoA-1 in the small intestine acts in TICE by mediating cholesterol efflux into the gut lumen. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Butter increased total and LDL cholesterol compared with olive oil but resulted in higher HDL cholesterol compared with a habitual diet

    DEFF Research Database (Denmark)

    Engel, Sara; Tholstrup, Tine

    2015-01-01

    BACKGROUND: Butter is known to have a cholesterol-raising effect and, therefore, has often been included as a negative control in dietary studies, whereas the effect of moderate butter intake has not been elucidated to our knowledge. OBJECTIVE: We compared the effects of moderate butter intake...... their habitual diets. The study included 47 healthy men and women (mean ± SD total cholesterol: 5.22 ± 0.90 mmol/L) who substituted a part of their habitual diets with 4.5% of energy from butter or refined olive oil. RESULTS: Study subjects were 70% women with a mean age and body mass index (in kg/m(2)) of 40.......4 y and 23.5, respectively. Butter intake increased total cholesterol and LDL cholesterol more than did olive oil intake (P cholesterol compared with the run-in period (P

  5. Plasma HDL-cholesterol and triglycerides, but not LDL-cholesterol, are associated with insulin secretion in non-diabetic subjects.

    Science.gov (United States)

    Natali, Andrea; Baldi, Simona; Bonnet, Fabrice; Petrie, John; Trifirò, Silvia; Tricò, Domenico; Mari, Andrea

    2017-04-01

    Experimental data support the notion that lipoproteins might directly affect beta cell function, however clinical data are sparse and inconsistent. We aimed at verifying whether, independently of major confounders, serum lipids are associated with alterations in insulin secretion or clearance non-diabetic subjects. Cross sectional and observational prospective (3.5yrs), multicentre study in which 1016 non-diabetic volunteers aged 30-60yrs. and with a wide range of BMI (20.0-39.9kg/m 2 ) were recruited in a setting of University hospital ambulatory care (RISC study). baseline fasting lipids, fasting and OGTT-induced insulin secretion and clearance (measured by glucose and C-peptide modeling), peripheral insulin sensitivity (by the euglycemic clamp). Lipids and OGTT were repeated in 980 subjects after 3.5years. LDL-cholesterol did not show independent associations with fasting or stimulated insulin secretion or clearance. After accounting for potential confounders, HDL-cholesterol displayed negative and triglycerides positive independent associations with fasting and OGTT insulin secretion; neither with insulin clearance. Low HDL-cholesterol and high triglycerides were associated with an increase in glucose-dependent and a decrease in non-glucose-dependent insulin secretion. Over 3.5years both an HDL-cholesterol decline and a triglycerides rise were associated with an increase in fasting insulin secretion independent of changes in body weight or plasma glucose. LDL-cholesterol does not seem to influence any major determinant of insulin bioavailability while low HDL-cholesterol and high triglycerides might contribute to sustain the abnormalities in insulin secretion that characterize the pre-diabetic state. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Thermodynamic studies of bilirubin/cholesterol mixtures at the air/water interface

    International Nuclear Information System (INIS)

    Xie Anjian; Shen Yuhua; Xia Bing; Chen Hongbo; Ouyang Jianming

    2005-01-01

    Mixed monolayers of cholesterol and bilirubin spread at the air/water interface were used as model systems to examine the cholesterol effect on bilirubin. Miscibility and interactions between cholesterol and bilirubin were studied based on the analysis of the surface pressure-molecular area isotherms. From the isotherm data differentiated with respect to area, the condensing effect of cholesterol on the mixed monolayers could be observed distinctly. By studying surface compressibility modulus of bilirubin/cholesterol binary system vs. molecule area, we show that the liquid expanded-condensed phase transition (LE-C) of bilirubin was eliminated by cholesterol. In monolayers, bilirubin and cholesterol were found to be miscible at low surface pressure and immiscible at high surface pressure by studying the excess molecular areas of bilirubin/cholesterol system vs. mole fraction of bilirubin. The results from excess free energy of bilirubin/cholesterol system vs. mole fraction of bilirubin (X BR ) show that the maximum negative value of ΔG exc appeared at X BR =0.6, which indicates the formation of a bilirubin/cholesterol complex (M B-C ) of 3:2 stoichiometry as a result of the strong hydrogen bond between the polar groups of cholesterol and bilirubin and the self-assembly characteristics of cholesterol

  7. Enzymatic-fluorometric quantification of cholesterol in bovine milk

    DEFF Research Database (Denmark)

    Larsen, Torben

    2012-01-01

    The present paper describes an enzymatic–fluorometric method for the determination of cholesterol in milk and other opaque matrices. The initial step of the method is to liberate chemically and physically bound cholesterol from the milk fat globule membrane by enzymatic action. The method is able...... to discriminate between esterified and free cholesterol in milk. The analysis is cost effective and is developed to work directly on whole, fresh milk thereby eliminating time consuming and tedious pre-treatment procedures of the sample. More than 1000 milk samples were analysed on the day of sampling. The total...... concentration of milk cholesterol ranged from 80 to 756 μM (n = 1068; mean 351 μM). Milk cholesterol was significantly correlated to milk fat concentration as analysed by mid-infra red spectrometry (r = 0.630; n = 853) and by an enzymatic–fluorometric method (triacylglycerol) (r = 0.611; n = 842)....

  8. Fibronectin synthesized by a human hepatoma cell line

    International Nuclear Information System (INIS)

    Glasgow, J.E.; Colman, R.W.

    1984-01-01

    Fibronectin is a family of immunologically similar glycoproteins which mediate a variety of cell-cell and cell-substratum interactions. It is a constituent of the extracellular matrix of connective tissue and circulates in plasma. When suspension and adherent cultures of a human hepatoma cell line (SK-HEP-1) were incubated in serum-free medium, the resulting conditioned medium contained material which was specifically immunoprecipitated by antisera to human plasma fibronectin. By double immunodiffusion, a component in the conditioned culture medium was shown to form a line of identity with fibronectin in human plasma and to migrate as an alpha 2- to beta-globulin during immunoelectrophoresis. Human fibronectin was quantified in conditioned medium by electroimmunodiffusion, and was found to increase for at least three days at about 0.1 micrograms/10(6) cells/day. Adherent cultures of SK-HEP-1 cells were incubated with L-[ 35 S]methionine to label newly synthesized proteins. Labeled fibronectin in conditioned medium or in cell extracts comigrated with fibronectin in human plasma as shown by autoradiography following crossed-immunoelectrophoresis. Fibronectin was demonstrated in the extra-cellular matrix of adherent SK-HEP-1 cultures by immunofluorescence. It was shown previously that SK-HEP-1 cells synthesize alpha 1-protease inhibitor, one of the products of normal hepatocytes. The finding that these hepatoma cells also synthesize fibronectin supports the concept that the hepatocyte may be one source of circulating fibronectin, a possibility consistent with the established role of this cell type in blood plasma protein synthesis

  9. Exploration of molecular interactions in cholesterol superlattices: effect of multibody interactions.

    Science.gov (United States)

    Huang, Juyang

    2002-08-01

    Experimental evidences have indicated that cholesterol may adapt highly regular lateral distributions (i.e., superlattices) in a phospholipid bilayer. We investigated the formations of superlattices at cholesterol mole fraction of 0.154, 0.25, 0.40, and 0.5 using Monte Carlo simulation. We found that in general, conventional pairwise-additive interactions cannot produce superlattices. Instead, a multibody (nonpairwise) interaction is required. Cholesterol superlattice formation reveals that although the overall interaction between cholesterol and phospholipids is favorable, it contains two large opposing components: an interaction favoring cholesterol-phospholipid mixing and an unfavorable acyl chain multibody interaction that increases nonlinearly with the number of cholesterol contacts. The magnitudes of interactions are in the order of kT. The physical origins of these interactions can be explained by our umbrella model. They most likely come from the requirement for polar phospholipid headgroups to cover the nonpolar cholesterol to avoid the exposure of cholesterol to water and from the sharp decreasing of acyl chain conformation entropy due to cholesterol contact. This study together with our previous work demonstrate that the driving force of cholesterol-phospholipid mixing is a hydrophobic interaction, and multibody interactions dominate others over a wide range of cholesterol concentration.

  10. Extreme nonfasting remnant cholesterol vs extreme LDL cholesterol as contributors to cardiovascular disease and all-cause mortality in 90000 individuals from the general population

    DEFF Research Database (Denmark)

    Varbo, Anette; Freiberg, Jacob J; Nordestgaard, Børge G

    2015-01-01

    BACKGROUND: Increased nonfasting remnant cholesterol, like increased LDL cholesterol, is causally associated with increased risk for ischemic heart disease (IHD). We tested the hypothesis that extreme concentrations of nonfasting remnant and LDL cholesterol are equal contributors to the risk of IHD......, myocardial infarction (MI), and all-cause mortality. METHODS: We compared stepwise increasing concentrations of nonfasting remnant and LDL cholesterol for association with risk of IHD, MI, and all-cause mortality in approximately 90 000 individuals from the Danish general population. During up to 22 years...... of complete follow-up, 4435 participants developed IHD, 1722 developed MI, and 8121 died. RESULTS: Compared with participants with nonfasting remnant cholesterol cholesterol of 0.5-0.99 mmol/L (19.3-38.2 mg/dL) to 2...

  11. Regulation of α1 Na/K-ATPase Expression by Cholesterol*

    OpenAIRE

    Chen, Yiliang; Li, Xin; Ye, Qiqi; Tian, Jiang; Jing, Runming; Xie, Zijian

    2011-01-01

    We have reported that α1 Na/K-ATPase regulates the trafficking of caveolin-1 and consequently alters cholesterol distribution in the plasma membrane. Here, we report the reciprocal regulation of α1 Na/K-ATPase by cholesterol. Acute exposure of LLC-PK1 cells to methyl β-cyclodextrin led to parallel decreases in cellular cholesterol and the expression of α1 Na/K-ATPase. Cholesterol repletion fully reversed the effect of methyl β-cyclodextrin. Moreover, inhibition of intracellular cholesterol tr...

  12. Alterations of serum cholesterol and serum lipoprotein in breast cancer of women

    OpenAIRE

    Hasija, Kiran; Bagga, Hardeep K.

    2005-01-01

    Fasting blood sample of 50 normal subjects (control) and 100 patients of breast cancer were investigated for serum total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol, very low density lipoprotein, high density lipoprotein cholesterol:low density lipoprotein cholesterol ratio and total cholesterol:high density lipoprotein cholesterol ratio during breast cancer of women. Five cancer stages, types, age groups, parity and menopausal status were undertaken...

  13. Molecular interactions between bile salts, phospholipids and cholesterol : relevance to bile formation, cholesterol crystallization and bile salt toxicity

    NARCIS (Netherlands)

    Moschetta, Antonio

    2001-01-01

    Cholesterol is a nonpolar lipid dietary constituent, absorbed from the small intestine, transported in blood and taken up by the liver. In bile, the sterol is solubilized in mixed micelles by bile salts and phospholipids. In case of supersaturation, cholesterol is kept in vesicles with phospholipid

  14. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology.

    Science.gov (United States)

    Ayuyan, Artem G; Cohen, Fredric S

    2018-02-27

    Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways. Copyright © 2018. Published by

  15. Alcohol consumption stimulates early stemps in reverse cholesterol transport

    NARCIS (Netherlands)

    Gaag, van der M.S.; Tol, van A.; Vermunt, S.H.F.; Scheek, L.M.; Schaafsma, G.; Hendriks, H.F.J.

    2001-01-01

    Alcohol consumption is associated with increased HDL cholesterol levels, which may indicate stimulated reverse cholesterol transport. The mechanism is, however, not known. The aim of this study was to evaluate the effects of alcohol consumption on the first two steps of the reverse cholesterol

  16. Alcohol consumption stimulates early steps in reverse cholesterol transport

    NARCIS (Netherlands)

    Gaag, M.S. van der; Tol, A. van; Vermunt, S.H.F.; Scheek, L.M.; Schaafsma, G.; Hendriks, H.F.J.

    2001-01-01

    Alcohol consumption is associated with increased HDL cholesterol levels, which may indicate stimulated reverse cholesterol transport. The mechanism is, however, not known. The aim of this study was to evaluate the effects of alcohol consumption on the first two steps of the reverse cholesterol

  17. Cholesterol and Health

    Indian Academy of Sciences (India)

    fats and oil in the diet on the other hand. Gallstones result from ... such factors as high levels of estrogens, multiple pregnancies, obesity, genetic factors and certain ... protein with an inner core of cholesterol and triglycerides. Lipoproteins are ...

  18. Human plasma lecithin-cholesterol acyltransferase

    International Nuclear Information System (INIS)

    Jauhiainen, M.; Stevenson, K.J.; Dolphin, P.J.

    1988-01-01

    Lecithin-cholesterol acyltransferase (LCAT) is a plasma enzyme which catalyzes the transacylation of the fatty acid at the sn-2 position of lecithin to cholesterol forming lysolecithin and cholesteryl ester. The substrates for and products of this reaction are present within the plasma lipoproteins upon which the enzyme acts to form the majority of cholesteryl ester in human plasma. The authors proposed a covalent catalytic mechanism of action for LCAT in which serine and histidine residues mediate lecithin cleavage and two cysteine residues cholesterol esterification. With the aid of sulfhydryl reactive trivalent organoarsenical compounds which are specific for vicinal thiols they have probed the geometry of the catalytic site. They conclude that the two catalytic cysteine residues of LCAT (Cys 31 and Cys 184 ) are vicinal with a calculated distance between their sulfur atoms of 3.50-3.62 A. The additional residue alkylated by teh bifunctional reagent is within the catalytic site and may represent a previously identified catalytic serine or histidine residue

  19. Time-resolved fluorescence monitoring of cholesterol in peripheral blood mononuclear cells

    Science.gov (United States)

    Martinakova, Z.; Horilova, J.; Lajdova, I.; Marcek Chorvatova, A.

    2014-12-01

    Precise evaluation of intracellular cholesterol distribution is crucial for improving diagnostics of diseased states associated with cholesterol alteration. Time-resolved fluorescence techniques are tested for non-invasive investigation of cholesterol in living cells. Fluorescent probe NBD attached to cholesterol was employed to evaluate cholesterol distribution in peripheral blood mononuclear cells (PBMC) isolated from the human blood. Fluorescence Lifetime Imaging Microscopy (FLIM) was successfully applied to simultaneously monitor the spatial distribution and the timeresolved characteristics of the NBD-cholesterol fluorescence in PBMC. Gathered data are the first step in the development of a new perspective non-invasive diagnostic method for evaluation of cholesterol modifications in diseases associated with disorders of lipid metabolism.

  20. The origin of cholesterol in chyle demonstrated by nuclear indicator methods

    International Nuclear Information System (INIS)

    Vyas, M.

    1962-01-01

    In order to obtain information about the mechanism of the intestinal absorption of cholesterol, rats having a lymphatic abdominal fistula are used. The animals receive either 4- 14 C- cholesterol subcutaneously or orally, or the 1- 14 C acetate. The study of the specific radio-activities of the cholesterol in chyle, in serum, in the lining, and in the intestinal contents makes it possible to define the roles played by the transfer cholesterol from the serum, by the cholesterol synthesised intestinally, and by the absorption cholesterol, in the formations of the lymph and of the chylomicrons. A new theory is proposed for the mechanism of cholesterol absorption. (author) [fr

  1. Ursodeoxycholic Acid for the Treatment of Cholesterol Gallstones

    International Nuclear Information System (INIS)

    Zaater, M.K.

    2011-01-01

    Cholesterol is the principal constituent of more than three quarters of gallstones. Pure cholesterol crystals are quite soft, and protein contributes importantly to the strength of cholesterol stones. The risk of gallstones does not correlate with total serum cholesterol levels, but it does correlate with decreased high-density lipoprotein cholesterol and increased triglyceride levels. At least 10 percent of adults have gallstones where female: male ratio of about 2:1 in the younger age groups with increasing prevalence with age. Nine patients with gallstones (6 females and 3 males) were included in the study. Patients were treated with ursodeoxycholic acids tablets in two oral doses, one after breakfast, and the other after dinner for 9 months. Ultrasound examination was repeated every 3 months. Re-examination by abdominal ultrasonography revealed that gallstone 1 cm or less in diameter disappeared within 6 months, and the largest stone 3.06 cm in diameter disappeared within 9 months.

  2. Bad cholesterol and good mood: exploring the link

    Directory of Open Access Journals (Sweden)

    Yashaswi Gupta

    2016-01-01

    Full Text Available It is a well-known fact that high cholesterol increases the risks of heart disease. Hence, physicians actively encourage cholesterol-lowering interventions using medications and lifestyle modifications. However, there is considerable evidence that aggressive lowering of cholesterol is associated with depression, bipolar disorders, violent behaviour, and suicidal ideation. It has been hypothesised that low cholesterol leads to low levels of serotonin, a chemical that is responsible for maintaining mood balance. South Korea and India have highest number of suicides in Asia. It is a significant challenge for physicians to search an alternative that will not only maintain healthy level of cholesterol, but also contribute to psychological well-being of the patient. Generally, the role of diet and physical activity is considered secondary to medications. However, dietary supplements like coenzyme Q10 (CoQ10, omega-3 fatty acids, niacin, and physical activity like Yoga are extremely beneficial for improving lipid profile and symptoms of depression.

  3. Cholesterol in brain disease: sometimes determinant and frequently implicated

    Science.gov (United States)

    Martín, Mauricio G; Pfrieger, Frank; Dotti, Carlos G

    2014-01-01

    Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell–cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function. PMID:25223281

  4. Characterization of Newly Synthesized ZrFe2O5 Nanomaterial and Investigations of Its Tremendous Photocatalytic Properties under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Shaukat Ali Shahid

    2013-01-01

    Full Text Available High functional ZrFe2O5 nanoparticles were synthesized using coprecipitation technique. The chemical composition of nanomaterials was studied by energy-dispersive X-ray (EDX. To observe the morphology, field emission scanning electron microscopy (FE-SEM was used. X-ray diffraction (XRD technique was utilized to appraise the structure of the synthesized material. The photocatalytic behavior of ZrFe2O5 nano-particles was investigated by measuring the degradation rate of toluidine blue O (TBO dye in aqueous solution in the presence of ZrFe2O5 nano-particles under visible light irradiation. A steady decrease in absorption peak under visible light irradiation was observed by increasing exposure time. The degradation efficiency was observed as 92% after 140 min of exposure to visible light. Besides, ZrFe2O5 nanophotocatalyst could be recovered and recycled easily. The rate of TBO and total organic carbon (TOC removal under visible light irradiation decreased by only 5% and 10%, respectively, after seven cycles of use, demonstrating the high photostability of the synthesized nano-photocatalyst material.

  5. Dietary cholesterol promotes repair of demyelinated lesions in the adult brain.

    Science.gov (United States)

    Berghoff, Stefan A; Gerndt, Nina; Winchenbach, Jan; Stumpf, Sina K; Hosang, Leon; Odoardi, Francesca; Ruhwedel, Torben; Böhler, Carolin; Barrette, Benoit; Stassart, Ruth; Liebetanz, David; Dibaj, Payam; Möbius, Wiebke; Edgar, Julia M; Saher, Gesine

    2017-01-24

    Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in the developing CNS; however, whether cholesterol insufficiency contributes to remyelination failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and neurological parameters in mouse models of demyelination and remyelination. In the cuprizone model, acute disease reduces serum cholesterol levels that can be restored by dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and restores the balance of growth factors, creating a permissive environment for repair. This leads to attenuated axon damage, enhanced remyelination and improved motor learning. Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation does not exacerbate disease expression. These findings emphasize the safety of dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of cholesterol in promoting repair after demyelinating episodes.

  6. Pitfalls in the detection of cholesterol in Huntington's disease models.

    Science.gov (United States)

    Marullo, Manuela; Valenza, Marta; Leoni, Valerio; Caccia, Claudio; Scarlatti, Chiara; De Mario, Agnese; Zuccato, Chiara; Di Donato, Stefano; Carafoli, Ernesto; Cattaneo, Elena

    2012-10-11

    Background Abnormalities in brain cholesterol homeostasis have been reported in Huntington's disease (HD), an adult-onset neurodegenerative disorder caused by an expansion in the number of CAG repeats in the huntingtin (HTT) gene. However, the results have been contradictory with respect to whether cholesterol levels increase or decrease in HD models. Biochemical and mass spectrometry methods show reduced levels of cholesterol precursors and cholesterol in HD cells and in the brains of several HD animal models. Abnormal brain cholesterol homeostasis was also inferred from studies in HD patients. In contrast, colorimetric and enzymatic methods indicate cholesterol accumulation in HD cells and tissues. Here we used several methods to investigate cholesterol levels in cultured cells in the presence or absence of mutant HTT protein. Results Colorimetric and enzymatic methods with low sensitivity gave variable results, whereas results from a sensitive analytical method, gas chromatography-mass spectrometry, were more reliable. Sample preparation, high cell density and cell clonality also influenced the detection of intracellular cholesterol. Conclusions Detection of cholesterol in HD samples by colorimetric and enzymatic assays should be supplemented by detection using more sensitive analytical methods. Care must be taken to prepare the sample appropriately. By evaluating lathosterol levels using isotopic dilution mass spectrometry, we confirmed reduced cholesterol biosynthesis in knock-in cells expressing the polyQ mutation in a constitutive or inducible manner. *Correspondence should be addressed to Elena Cattaneo: elena.cattaneo@unimi.it.

  7. Endoscopic Transnasal Approach for Cholesterol Granuloma of the Petrous Apex

    Directory of Open Access Journals (Sweden)

    Mohammad Samadian

    2015-01-01

    Full Text Available Cholesterol granulomas are rare round or ovoid cysts. They contain cholesterol crystals surrounded by foreign bodies of giant cells and are characterized by chronic inflammation. Large cholesterol granuloma can compress surrounding tissue especially cranial nerves. There are several types of surgery for the resection of cholesterol granuloma. We describe 4 cases of cholesterol granuloma operated on via transnasal endoscopic approach. In this report, we describe radiologic and pathologic features of this lesion and explain the advantages and disadvantages of transsphenoidal endoscopic approach for these rare lesions.

  8. Plasma cholesterol and related lipid levels of seemingly healthy ...

    African Journals Online (AJOL)

    The purpose of this study was achieved through analysis of fasting plasma samples for the following: Total cholesterol (TC), Triacylglycerols (TG), High density lipoprotein cholesterol (HDL), Low density lipoprotein cholesterol (LDL), and molar ratios of LDL/HDL, TC/ HDL, and TC/TG. Methods: One hundred and seventy four ...

  9. The relationships of markers of cholesterol homeostasis with carotid intima-media thickness.

    Directory of Open Access Journals (Sweden)

    Oliver Weingärtner

    Full Text Available BACKGROUND: The relationship of cholesterol homeostasis and carotid intima-media thickness (cIMT is unknown. To address this, we assessed markers of cholesterol homeostasis (serum plant sterols and cholesterol precursor concentrations as surrogate measures of cholesterol absorption and synthesis, respectively and cIMT in a middle-aged, statin-naive population. METHODS: In this prospective study of primary prevention cIMT was measured by ultrasound in 583 hospital employees aged 25-60 years without prevalent cardiovascular disease or lipid-modifying medication. The serum concentrations of plant sterols (as markers of cholesterol absorption were measured by gas-liquid chromatography. Lathosterol serum concentrations were quantitated to assess hepatic cholesterol synthesis. RESULTS: cIMT correlated positively with serum cholesterol (r = 0.22, P<0.0005 and lathosterol-to-cholesterol (r = 0.18, P<0.001. In contrast, plant sterols, as markers of cholesterol absorption, showed a weak negative correlation to cIMT measurements (r = -0.18; P<0.001 for campesterol-to-cholesterol. Stratifying subjects by serum sterol levels, we found that cIMT increased continuously over quintiles of serum cholesterol (P<0.0005 and was positively associated to serum lathosterol-to-cholesterol levels (P = 0.007, on the other hand, plant sterol levels showed a weak negative association to cIMT (P<0.001 for campesterol-to-cholesterol. CONCLUSIONS: In this population without prevalent cardiovascular diseases or lipid-modifying medication, markers of increased endogenous cholesterol synthesis correlated positively with cIMT, while markers of cholesterol absorption showed a weakly negative correlation. These data suggest that not only total serum cholesterol levels but also differences in cholesterol homeostasis are associated with cIMT.

  10. The structure of a cholesterol-trapping protein

    Science.gov (United States)

    cholesterol-trapping protein Contact: Dan Krotz, dakrotz@lbl.gov Berkeley Lab Science Beat Lab website index Institute researchers determined the three-dimensional structure of a protein that controls cholesterol level in the bloodstream. Knowing the structure of the protein, a cellular receptor that ensnares

  11. Newly Synthesized Water Soluble Cholinium-Purpurin Photosensitizers and Their Stabilized Gold Nanoparticles as Promising Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Young Key Shim

    2008-05-01

    Full Text Available For possible future use in Photodynamic Therapy (PDT and/or Photothermal Therapy (PTT of cancer and screening of cancer cells a new type of ionic liquid photosensitizer –Cholinium-Purpurin-18 (Chol-Pu-18 – was synthesized and small gold (Au nanoparticles, stabilized by this photosensitizer were prepared without adding any particular reducing agents and CTAB. UV-Vis spectroscopy and Transmission Electron Microscopy (TEM were used for characterization of the nanoparticles and FAB-MS and NMR of the ionic liquid choline hydroxide, purpurin carboxylate and their ionic liquid type of photosensitizer were obtained.

  12. A Cholesterol-Sensitive Regulator of the Androgen Receptor

    Science.gov (United States)

    2010-07-01

    Oncogene (2010) 29, 3745–3747; doi:10.1038/onc.2010.132; published online 3 May 2010 Cholesterol is a sterol that serves as a metabolic precursor to other...bioactive sterols , such as nuclear receptor ligands, and also has a major role in plasma membrane structure. Cholesterol and long- chain...cholesterol synthesis (these drugs are generically termed ‘statins’), have been reported to inhibit cancer incidence or progres- sion in some studies. Although

  13. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis.

    Science.gov (United States)

    Millard, E E; Srivastava, K; Traub, L M; Schaffer, J E; Ory, D S

    2000-12-08

    The Niemann-Pick type C1 (NPC1) protein is a key participant in intracellular trafficking of low density lipoprotein cholesterol, but its role in regulation of sterol homeostasis is not well understood. To characterize further the function of NPC1, we generated stable Chinese hamster ovary (CHO) cell lines overexpressing the human NPC1 protein (CHO/NPC1). NPC1 overexpression increases the rate of trafficking of low density lipoprotein cholesterol to the endoplasmic reticulum and the rate of delivery of endosomal cholesterol to the plasma membrane (PM). CHO/NPC1 cells exhibit a 1.5-fold increase in total cellular cholesterol and up to a 2.9-fold increase in PM cholesterol. This increase in PM cholesterol is closely paralleled by a 3-fold increase in de novo cholesterol synthesis. Inhibition of cholesterol synthesis results in marked redistribution of PM cholesterol to intracellular sites, suggesting an unsuspected role for NPC1 in internalization of PM cholesterol. Despite elevated total cellular cholesterol, CHO/NPC1 cells exhibit increased cholesterol synthesis, which may be attributable to both resistance to oxysterol suppression of sterol-regulated gene expression and to reduced endoplasmic reticulum cholesterol levels under basal conditions. Taken together, these studies provide important new insights into the role of NPC1 in the determination of the levels and distribution of cellular cholesterol.

  14. Cholesterol-Lowering Probiotics as Potential Biotherapeutics for Metabolic Diseases

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2012-01-01

    Full Text Available Cardiovascular diseases are one of the major causes of deaths in adults in the western world. Elevated levels of certain blood lipids have been reported to be the principal cause of cardiovascular disease and other disabilities in developed countries. Several animal and clinical trials have shown a positive association between cholesterol levels and the risks of coronary heart disease. Current dietary strategies for the prevention of cardiovascular disease advocate adherence to low-fat/low-saturated-fat diets. Although there is no doubt that, in experimental conditions, low-fat diets offer an effective means of reducing blood cholesterol concentrations on a population basis, these appear to be less effective, largely due to poor compliance, attributed to low palatability and acceptability of these diets to the consumers. Due to the low consumer compliance, attempts have been made to identify other dietary components that can reduce blood cholesterol levels. Supplementation of diet with fermented dairy products or lactic acid bacteria containing dairy products has shown the potential to reduce serum cholesterol levels. Various approaches have been used to alleviate this issue, including the use of probiotics, especially Bifidobacterium spp. and Lactobacillus spp.. Probiotics, the living microorganisms that confer health benefits on the host when administered in adequate amounts, have received much attention on their proclaimed health benefits which include improvement in lactose intolerance, increase in natural resistance to infectious disease in gastrointestinal tract, suppression of cancer, antidiabetic, reduction in serum cholesterol level, and improved digestion. In addition, there are numerous reports on cholesterol removal ability of probiotics and their hypocholesterolemic effects. Several possible mechanisms for cholesterol removal by probiotics are assimilation of cholesterol by growing cells, binding of cholesterol to cellular surface

  15. Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Zhang CY

    2014-10-01

    Full Text Available Can Yang Zhang, Di Xiong, Yao Sun, Bin Zhao, Wen Jing Lin, Li Juan Zhang School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China Abstract: A novel amphiphilic triblock pH-sensitive poly(ß-amino ester-g-poly(ethylene glycol methyl ether-cholesterol (PAE-g-MPEG-Chol was designed and synthesized via the Michael-type step polymerization and esterification condensation method. The synthesized copolymer was determined with proton nuclear magnetic resonance and gel permeation chromatography. The grafting percentages of MPEG and cholesterol were determined as 10.93% and 62.02%, calculated from the area of the characteristic peaks, respectively. The amphiphilic copolymer was confirmed to self-assemble into core/shell micelles in aqueous solution at low concentrations. The critical micelle concentrations were 6.92 and 15.14 mg/L at pH of 7.4 and 6.0, respectively, obviously influenced by the changes of pH values. The solubility of pH-responsive PAE segment could be transformed depending on the different values of pH because of protonation–deprotonation of the amino groups, resulting in pH sensitivity of the copolymer. The average particle size of micelles increased from 125 nm to 165 nm with the pH decreasing, and the zeta potential was also significantly changed. Doxorubicin (DOX was entrapped into the polymeric micelles with a high drug loading level. The in vitro DOX release from the micelles was distinctly enhanced with the pH decreasing from 7.4 to 6.0. Toxicity testing proved that the DOX-loaded micelles exhibited high cytotoxicity in HepG2 cells, whereas the copolymer showed low toxicity. The results demonstrated how pH-sensitive PAE-g-MPEG-Chol micelles were proved to be a potential vector in hydrophobic drug delivery for tumor therapy. Keywords: micelle, pH-sensitive, cholesterol, poly(ß-amino ester, drug delivery

  16. Biochemical characterization of cholesterol-reducing Eubacterium.

    OpenAIRE

    Mott, G E; Brinkley, A W; Mersinger, C L

    1980-01-01

    We characterized two isolates of cholesterol-reducing Eubacterium by conducting conventional biochemical tests and by testing various sterols and glycerolipids as potential growth factors. In media containing cholesterol and plasmenylethanolamine, the tests for nitrate reduction, indole production, and gelatin and starch hydrolyses were negative, and no acid was produced from any of 22 carbohydrates. Both isolates hydrolyzed esculin to esculetin, indicating beta-glycosidase activity. In addit...

  17. Changes in the serum profiles of lipids and cholesterol in sheep ...

    African Journals Online (AJOL)

    The samples were used for haematological and parasitological analyses and determination of serum concentrations of total cholesterol, triglycerides, high density lipoprotein-cholesterol (HDL-cholesterol) and low density lipoproteincholesterol (LDL-cholesterol). All animals in the infected group showed parasitaemia by day ...

  18. Biomedical, lifestyle and psychosocial characteristics of people newly diagnosed with type 2 diabetes

    DEFF Research Database (Denmark)

    Khunti, K.; Skinner, T. C.; Heller, S.

    2008-01-01

    Aims: To describe the characteristics of newly diagnosed people with Type 2 diabetes (T2DM) and compare these with published studies. Methods: Baseline data of participants recruited to the DESMOND randomized controlled trial conducted in 13 sites across England and Scotland were used. Biomedical...... measures and questionnaires on psychological characteristics were collected within 4 weeks of diagnosis. Results: Of 1109 participants referred, 824 consented to participate (74.3%). Mean (± sd) age was 59.5 ± 12 years and 54.9% were male. Mean HbA1c was 8.1 ± 2.1% and did not differ by gender. Mean body...... mass index (BMI) was significantly higher in women (33.7 vs. 31.3 kg/m2; P 30 kg/m2). Total cholesterol was significantly higher in women (5.6 vs. 5.2 mmol/l; P

  19. Spontaneous insertion of GPI anchors into cholesterol-rich membrane domains

    Directory of Open Access Journals (Sweden)

    Jing Li

    2018-05-01

    Full Text Available GPI-Anchored proteins (GPI-APs can be exogenously transferred onto bilayer membranes both in vivo and in vitro, while the mechanism by which this transfer process occurs is unknown. In this work, we used atomistic molecular dynamics simulations and free energy calculations to characterize the essential influence of cholesterol on insertion of the GPI anchors into plasma membranes. We demonstrate, both dynamically and energetically, that in the presence of cholesterol, the tails of GPI anchors are able to penetrate inside the core of the lipid membrane spontaneously with a three-step mechanism, while in the absence of cholesterol no spontaneous insertion was observed. We ascribe the failure of insertion to the strong thermal fluctuation of lipid molecules in cholesterol-free bilayer, which generates a repulsive force in entropic origin. In the presence of cholesterol, however, the fluctuation of lipids is strongly reduced, thus decreasing the barrier for the anchor insertion. Based on this observation, we propose a hypothesis that addition of cholesterol creates vertical creases in membranes for the insertion of acyl chains. Moreover, we find that the GPI anchor could also spontaneously inserted into the boundary between cholesterol-rich and cholesterol-depleted domains. Our results shed light on the mechanism of cholesterol-mediated interaction between membrane proteins with acyl chain and plasma membranes in living cells.

  20. Spontaneous insertion of GPI anchors into cholesterol-rich membrane domains

    Science.gov (United States)

    Li, Jing; Liu, Xiuhua; Tian, Falin; Yue, Tongtao; Zhang, Xianren; Cao, Dapeng

    2018-05-01

    GPI-Anchored proteins (GPI-APs) can be exogenously transferred onto bilayer membranes both in vivo and in vitro, while the mechanism by which this transfer process occurs is unknown. In this work, we used atomistic molecular dynamics simulations and free energy calculations to characterize the essential influence of cholesterol on insertion of the GPI anchors into plasma membranes. We demonstrate, both dynamically and energetically, that in the presence of cholesterol, the tails of GPI anchors are able to penetrate inside the core of the lipid membrane spontaneously with a three-step mechanism, while in the absence of cholesterol no spontaneous insertion was observed. We ascribe the failure of insertion to the strong thermal fluctuation of lipid molecules in cholesterol-free bilayer, which generates a repulsive force in entropic origin. In the presence of cholesterol, however, the fluctuation of lipids is strongly reduced, thus decreasing the barrier for the anchor insertion. Based on this observation, we propose a hypothesis that addition of cholesterol creates vertical creases in membranes for the insertion of acyl chains. Moreover, we find that the GPI anchor could also spontaneously inserted into the boundary between cholesterol-rich and cholesterol-depleted domains. Our results shed light on the mechanism of cholesterol-mediated interaction between membrane proteins with acyl chain and plasma membranes in living cells.

  1. Cholesterol Assimilation by Lactobacillus Probiotic Bacteria: An In Vitro Investigation

    Directory of Open Access Journals (Sweden)

    Catherine Tomaro-Duchesneau

    2014-01-01

    Full Text Available Excess cholesterol is associated with cardiovascular diseases (CVD, an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and cholesterol assimilation. This work investigates 11 Lactobacillus strains for cholesterol assimilation. Probiotic strains for investigation were selected from the literature: Lactobacillus reuteri NCIMB 11951, L. reuteri NCIMB 701359, L. reuteri NCIMB 702655, L. reuteri NCIMB 701089, L. reuteri NCIMB 702656, Lactobacillus fermentum NCIMB 5221, L. fermentum NCIMB 8829, L. fermentum NCIMB 2797, Lactobacillus rhamnosus ATCC 53103 GG, Lactobacillus acidophilus ATCC 314, and Lactobacillus plantarum ATCC 14917. Cholesterol assimilation was investigated in culture media and under simulated intestinal conditions. The best cholesterol assimilator was L. plantarum ATCC 14917 (15.18 ± 0.55 mg/1010 cfu in MRS broth. L. reuteri NCIMB 701089 assimilated over 67% (2254.70 ± 63.33 mg/1010 cfu of cholesterol, the most of all the strains, under intestinal conditions. This work demonstrates that probiotic bacteria can assimilate cholesterol under intestinal conditions, with L. reuteri NCIMB 701089 showing great potential as a CVD therapeutic.

  2. Common structural features of cholesterol binding sites in crystallized soluble proteins.

    Science.gov (United States)

    Bukiya, Anna N; Dopico, Alejandro M

    2017-06-01

    Cholesterol-protein interactions are essential for the architectural organization of cell membranes and for lipid metabolism. While cholesterol-sensing motifs in transmembrane proteins have been identified, little is known about cholesterol recognition by soluble proteins. We reviewed the structural characteristics of binding sites for cholesterol and cholesterol sulfate from crystallographic structures available in the Protein Data Bank. This analysis unveiled key features of cholesterol-binding sites that are present in either all or the majority of sites: i ) the cholesterol molecule is generally positioned between protein domains that have an organized secondary structure; ii ) the cholesterol hydroxyl/sulfo group is often partnered by Asn, Gln, and/or Tyr, while the hydrophobic part of cholesterol interacts with Leu, Ile, Val, and/or Phe; iii ) cholesterol hydrogen-bonding partners are often found on α-helices, while amino acids that interact with cholesterol's hydrophobic core have a slight preference for β-strands and secondary structure-lacking protein areas; iv ) the steroid's C21 and C26 constitute the "hot spots" most often seen for steroid-protein hydrophobic interactions; v ) common "cold spots" are C8-C10, C13, and C17, at which contacts with the proteins were not detected. Several common features we identified for soluble protein-steroid interaction appear evolutionarily conserved. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  3. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    Science.gov (United States)

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Absorption and transport of cholesterol autoxidation derivatives in rabbits

    International Nuclear Information System (INIS)

    Peng, S.K.; Morin, R.J.; Phillips, G.A.; Xia, G.Z.

    1986-01-01

    Spontaneously autoxidized products of cholesterol have been demonstrated to be angiotoxic and possibly atherogenic. This study investigates the absorption and transport of these cholesterol oxidation derivatives (COD's) as compared to cholesterol. 14 C-labeled cholesterol autoxidized by incubation in a 60 0 C water bath for 5 weeks, then suspended in gelatin and given to New Zealand white rabbits by gastric gavage. Rabbits were sacrificed 24 hours after treatment. COD's were separated by thin layer chromatography (TLC) and radioactivities of each COD and cholesterol were measured. Percentages of each COD and cholesterol in the original mixture before administration and in the rabbits' serum after administration are almost identical, suggesting that the rates of absorption of COD's are not significantly different from that of cholesterol. Lipoproteins were fractionated by ultracentrifugation into VLDL, LDL and HDL. Radioactivities of each COD separated by TLC in each lipoprotein fraction showed that cholestane-3β,5α,6β-triol, 7α- and 7β-hydroxycholesterol and 7-ketocholesterol were predominantly present in VLDL (3 x serum concentration) and 25-hydroxycholesterol was predominantly in LDL (2.5 x serum concentration). HDL contained only minute amounts of COD's. The increased levels of COD's in VLDL and LDL may contribute to the atherogenicity of these lipoprotein

  5. Effect of cholesterol deposition on bacterial adhesion to contact lenses.

    Science.gov (United States)

    Babaei Omali, Negar; Zhu, Hua; Zhao, Zhenjun; Ozkan, Jerome; Xu, Banglao; Borazjani, Roya; Willcox, Mark D P

    2011-08-01

    To examine the effect of cholesterol on the adhesion of bacteria to silicone hydrogel contact lenses. Contact lenses, collected from subjects wearing Acuvue Oasys or PureVision lenses, were extracted in chloroform:methanol (1:1, v/v) and amount of cholesterol was estimated by thin-layer chromatography. Unworn lenses were soaked in cholesterol, and the numbers of Pseudomonas aeruginosa strains or Staphylococcus aureus strains that adhered to the lenses were measured. Cholesterol was tested for effects on bacterial growth by incubating bacteria in medium containing cholesterol. From ex vivo PureVision lenses, 3.4 ± 0.3 μg/lens cholesterol was recovered, and from Acuvue Oasys lenses, 2.4 ± 0.2 to 1.0 ± 0.1 μg/lens cholesterol was extracted. Cholesterol did not alter the total or viable adhesion of any strain of P. aeruginosa or S. aureus (p > 0.05). However, worn PureVision lenses reduced the numbers of viable cells of P. aeruginosa (5.8 ± 0.4 log units) compared with unworn lenses (6.4 ± 0.2 log units, p = 0.001). Similarly, there were fewer numbers of S. aureus 031 adherent to worn PureVision (3.05 ± 0.8 log units) compared with unworn PureVision (4.6 ± 0.3 log units, p = 0.0001). Worn Acuvue Oasys lenses did not affect bacterial adhesion. Cholesterol showed no effect on the growth of any test strain. Although cholesterol has been shown to adsorb to contact lenses during wear, this lipid does not appear to modulate bacterial adhesion to a lens surface.

  6. Changes to cholesterol trafficking in macrophages by Leishmania parasites infection.

    Science.gov (United States)

    Semini, Geo; Paape, Daniel; Paterou, Athina; Schroeder, Juliane; Barrios-Llerena, Martin; Aebischer, Toni

    2017-08-01

    Leishmania spp. are protozoan parasites that are transmitted by sandfly vectors during blood sucking to vertebrate hosts and cause a spectrum of diseases called leishmaniases. It has been demonstrated that host cholesterol plays an important role during Leishmania infection. Nevertheless, little is known about the intracellular distribution of this lipid early after internalization of the parasite. Here, pulse-chase experiments with radiolabeled cholesteryl esterified to fatty acids bound to low-density lipoproteins indicated that retention of this source of cholesterol is increased in parasite-containing subcellular fractions, while uptake is unaffected. This is correlated with a reduction or absence of detectable NPC1 (Niemann-Pick disease, type C1), a protein responsible for cholesterol efflux from endocytic compartments, in the Leishmania mexicana habitat and infected cells. Filipin staining revealed a halo around parasites within parasitophorous vacuoles (PV) likely representing free cholesterol accumulation. Labeling of host cell membranous cholesterol by fluorescent cholesterol species before infection revealed that this pool is also trafficked to the PV but becomes incorporated into the parasites' membranes and seems not to contribute to the halo detected by filipin. This cholesterol sequestration happened early after infection and was functionally significant as it correlated with the upregulation of mRNA-encoding proteins required for cholesterol biosynthesis. Thus, sequestration of cholesterol by Leishmania amastigotes early after infection provides a basis to understand perturbation of cholesterol-dependent processes in macrophages that were shown previously by others to be necessary for their proper function in innate and adaptive immune responses. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Cholesterol as a Causative Factor in Alzheimer Disease: A Debatable Hypothesis

    Science.gov (United States)

    Wood, W. Gibson; Li, Ling; Müller, Walter E.; Eckert, Gunter P.

    2014-01-01

    High serum/plasma cholesterol levels have been suggested as a risk factor for Alzheimer disease (AD). Some reports, mostly retrospective epidemiological studies, have observed a decreased prevalence of AD in patients taking the cholesterol lowering drugs, statins. The strongest evidence causally linking cholesterol to AD is provided by experimental studies showing that adding/reducing cholesterol alters amyloid precursor protein (APP) and amyloid beta-protein (Aβ) levels. However, there are problems with the cholesterol-AD hypothesis. Cholesterol levels in serum/plasma and brain of AD patients do not support cholesterol as a causative factor in AD. Prospective studies on statins and AD have largely failed to show efficacy. Even the experimental data are open to interpretation given that it is well-established that modification of cholesterol levels has effects on multiple proteins, not only APP and Aβ. The purpose of this review, therefore, is to examine the above-mentioned issues and discuss the pros and cons of the cholesterol-AD hypothesis, and the involvement of other lipids in the mevalonate pathway, such as isoprenoids and oxysterols, in AD. PMID:24329875

  8. Trans-intestinal cholesterol efflux is not mediated through high density lipoprotein

    NARCIS (Netherlands)

    Vrins, Carlos L. J.; Ottenhoff, Roelof; van den Oever, Karin; de Waart, Dirk R.; Kruyt, J. Kar; Zhao, Ying; van Berkel, Theo J. C.; Havekes, Louis M.; Aerts, Johannes M.; van Eck, Miranda; Rensen, Patrick C. N.; Groen, Albert K.

    2012-01-01

    Transintestinal cholesterol efflux (TICE) provides an attractive target to increase body cholesterol excretion. At present, the cholesterol donor responsible for direct delivery of plasma cholesterol to the intestine is unknown. In this study, we investigated the role of HDL in TICE. ATP-binding

  9. Stroke secondary to multiple spontaneous cholesterol emboli.

    Science.gov (United States)

    Pascual, M; Baumgartner, J M; Bounameaux, H

    1991-01-01

    We describe one male, 49-year-old diabetic patient in whom regressive stroke with aphasia and right-sided hemiparesia was related to multiple small emboli in the left paraventricular cortex. Simultaneous presence of several cholesterol emboli in the left eye ground and detection of an atheromatous plaque at the homolateral carotid bifurcation let assume that the cerebral emboli originated from that plaque and also consisted of cholesterol crystals. The patient was discharged on low-dose aspirin (100 mg/day) after neurologic improvement. Follow-up at one year revealed clinical stability, recurrence of the cholesterol emboli at the eye ground examination and no change of the carotid plaque. Cholesterol embolization with renal failure, hypertension and peripheral arterial occlusions causing skin ulcerations is classical in case of atheromatous aortic disease but stroke has rarely been reported in this syndrome. However, more frequent use of invasive procedures (arteriography, transluminal angioplasty, vascular surgery) or thrombolytic treatment might increase its incidence in the near future.

  10. Effect of medicinal plants on the crystallization of cholesterol

    Science.gov (United States)

    Saraswathi, N. T.; Gnanam, F. D.

    1997-08-01

    One of the least desirable calcifications in the human body is the mineral deposition in atherosclerosis plaques. These plaques principally consist of lipids such as cholesterol, cholesteryl esters, phospholipids and triglycerides. Chemical analysis of advanced plaques have shown the presence of considerable amounts of free cholesterol identified as cholesterol monohydrate crystals. Cholesterol has been crystallized in vitro. The extracts of some of the Indian medicinal plants detailed below were used as additives to study their effect on the crystallization behaviour of cholesterol. It has been found that many of the herbs have inhibitory effect on the crystallization such as nucleation, crystal size and habit modification. The inhibitory effect of the plants are graded as Commiphora mughul > Aegle marmeleos > Cynoden dactylon > Musa paradisiaca > Polygala javana > Alphinia officinarum > Solanum trilobatum > Enicostemma lyssopifolium.

  11. Effect of ionizing radiation on cholesterol in aqueous dispersion

    International Nuclear Information System (INIS)

    Lakritz, L.; Maerker, G.

    1989-01-01

    Aqueous sodium stearate dispersions of cholesterol were irradiated at 0-2 degrees C with absorbed doses ranging from 2.5 to 50 kGy. The resulting mixture of cholesterol derivatives was isolated and examined for 7-ketocholesterol and cholesterol 5 alpha, 6 alpha-epoxide and 5 beta, 6 beta-epoxide content. Concentrations of all three compounds increased with dose, while the ratio of 7-ketocholesterol to total epoxides decreased with increasing dose. The ratio of 7-ketocholestrol to the epoxides was approximately 1 or below at all dose levels while the same ratio in autoxidations of cholesterol in dispersions was normally 6 or greater. The change in the keto/epoxide ratio may be a means for determining whether meat or other foods containing cholesterol have been subjected to ionizing radiation

  12. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Loubet, Bastien; Olzynska, Agnieszka

    2014-01-01

    We claim that (1) cholesterol protects bilayers from disruption caused by lipid oxidation by sequestering conical shaped oxidized lipid species such as 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PZPC) away from phospholipid, because cholesterol and the oxidized lipid have complementary...... shapes and (2) mixtures of cholesterol and oxidized lipids can self-assemble into bilayers much like lysolipid–cholesterol mixtures. The evidence for bilayer protection comes from molecular dynamics (MD) simulations and dynamic light scattering (DLS) measurements. Unimodal size distributions of extruded...... vesicles (LUVETs) made up of a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and PZPC containing high amounts of PZPC are only obtained when cholesterol is present in high concentrations. In simulations, bilayers containing high amounts of PZPC become porous, unless cholesterol is also present...

  13. Cholesterol Assimilation with Isolated lactobacilli Strains of Fars’ Local Dairy Products

    Directory of Open Access Journals (Sweden)

    A Emami

    2008-12-01

    Full Text Available ABSTRACT: Introduction & Objective: Cholesterol is an important compound in most of the biological reactions which the excess of it can be seen as a harmful compound of causing heart diseases. The aim of the present study was to evaluate the cholesterol removal property and also its pathway by dairy lactobacillus in in vitro condition under different bile salts concentration. Materials & Methods: After isolation of lactobacillus strains from dairy products, they were identified with chemical tests and their growths were evaluated under presence of cholesterol and bile salts. The method of action of the bacillus in cholesterol removal was assayed by spectrophotometer method. Collected data was analyzed by SPSS software. Results: result of this study showed that any strains of the bacteria had the ability of cholesterol removal (7.82-34.69 µg/ml. L.casei had more competence for removal of cholesterol in compare to the rest of bacilli. The evaluation of cholesterol cell wall attachment revealed that most of removed cholesterols have been changed to the other products. Conclusion: Considering the result of this study, it can be concluded that cholesterol removal has a direct association with growth of bacteria where the L. casei with high growth rate had more capability of cholesterol removal. Whereas the Lactobacillus can remove the cholesterol with different methods, results of this study showed that dairy products, especially yogurt, can remove the harmful substances such as cholesterol using non chemical methods. The results of this study could be expanded on human use if more study and research could be carried out.

  14. Endogenous Cholesterol Excretion Is Negatively Associated With Carotid Intima-Media Thickness in Humans.

    Science.gov (United States)

    Lin, Xiaobo; Racette, Susan B; Ma, Lina; Wallendorf, Michael; Dávila-Román, Victor G; Ostlund, Richard E

    2017-12-01

    Epidemiological studies strongly suggest that lipid factors independent of low-density lipoprotein cholesterol contribute significantly to cardiovascular disease risk. Because circulating lipoproteins comprise only a small fraction of total body cholesterol, the mobilization and excretion of cholesterol from plasma and tissue pools may be an important determinant of cardiovascular disease risk. Our hypothesis is that fecal excretion of endogenous cholesterol is protective against atherosclerosis. Cholesterol metabolism and carotid intima-media thickness were quantitated in 86 nondiabetic adults. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d 7 solubilized in a lipid emulsion and dietary cholesterol by cholesterol-d 5 and the nonabsorbable stool marker sitostanol-d 4 . Plasma and stool samples were collected while subjects consumed a cholesterol- and phytosterol-controlled metabolic kitchen diet and were analyzed by mass spectrometry. Carotid intima-media thickness was negatively correlated with fecal excretion of endogenous cholesterol ( r =-0.426; P cholesterol ( r =-0.472; P ≤0.0001), and daily percent excretion of cholesterol from the rapidly mixing cholesterol pool ( r =-0.343; P =0.0012) and was positively correlated with percent cholesterol absorption ( r =+0.279; P =0.0092). In a linear regression model controlling for age, sex, systolic blood pressure, hemoglobin A1c, low-density lipoprotein, high-density lipoprotein cholesterol, and statin drug use, fecal excretion of endogenous cholesterol remained significant ( P =0.0008). Excretion of endogenous cholesterol is strongly, independently, and negatively associated with carotid intima-media thickness. The reverse cholesterol transport pathway comprising the intestine and the rapidly mixing plasma, and tissue cholesterol pool could be an unrecognized determinant of cardiovascular disease risk not reflected in circulating lipoproteins. Further work is needed to relate measures of

  15. Structured triglycerides containing caprylic (8:0) and oleic (18:1) fatty acids reduce blood cholesterol concentrations and aortic cholesterol accumulation in hamsters.

    Science.gov (United States)

    Wilson, Thomas A; Kritchevsky, David; Kotyla, Timothy; Nicolosi, Robert J

    2006-03-01

    The effects of structured triglycerides containing one long chain fatty acid (oleic acid, C18:1) and one short chain saturated fatty acid (caprylic acid, 8:0) on lipidemia, liver and aortic cholesterol, and fecal neutral sterol excretion were investigated in male Golden Syrian hamsters fed a hypercholesterolemic regimen consisting of 89.9% commercial ration to which was added 10% coconut oil and 0.1% cholesterol (w/w). After 2 weeks on the HCD diet, the hamsters were bled, following an overnight fast (16 h) and placed into one of three dietary treatments of eight animals each based on similar plasma cholesterol levels. The hamsters either continued on the HCD diet or were placed on diets in which the coconut oil was replaced by one of two structured triglycerides, namely, 1(3),2-dicaproyl-3(1)-oleoylglycerol (OCC) or 1,3-dicaproyl-2-oleoylglycerol (COC) at 10% by weight. Plasma total cholesterol (TC) in hamsters fed the OCC and COC compared to the HCD were reduced 40% and 49%, respectively (Pstructured triglyceride oils had lower blood cholesterol levels and lower aortic accumulation of cholesterol compared to the control fed hamsters.

  16. Influence of molecular packing and phospholipid type on rates of cholesterol exchange

    International Nuclear Information System (INIS)

    Lund-Katz, S.; Laboda, H.M.; McLean, L.R.; Phillips, M.C.

    1988-01-01

    The rates of [ 14 C]cholesterol transfer from small unilamellar vesicles containing cholesterol dissolved in bilayers of different phospholipids have been determined to examine the influence of phospholipid-cholesterol interactions on the rate of cholesterol desorption from the lipid-water interface. At 37 0 C, for vesicles containing 10 mol % cholesterol, the half-times for exchange are about 1, 13, and 80 h, respectively, for unsaturated PC, saturated PC, and SM. In order to probe how differences in molecular packing in the bilayers cause the rate constants for cholesterol desorption to be in the order unsaturated PC > saturated PC > SM, nuclear magnetic resonance (NMR) and monolayer methods were used to evaluate the cholesterol physical state and interactions with phospholipid. The NMR relaxation parameters for [4- 13 C] cholesterol reveal no differences in molecular dynamics in the above bilayers. The greater van der Waals interaction in the SM monolayer (or bilayer) compared to PC gives rise to a larger condensation by cholesterol. This is a direct demonstration of the greater interaction of cholesterol with SM compared to PC. An estimate of the van der Waals interactions between cholesterol and these phospholipids has been used to derive a relationship between the ratio of the rate constants for cholesterol desorption and the relative molecular areas (lateral packing density) in two bilayers. This analysis suggests that differences in cholesterol-phospholipid van der Waals interaction energy are an important cause of varying rates of cholesterol exchange from different host phospholipid bilayers

  17. Effect of different fat-enriched meats on non-cholesterol sterols and oxysterols as markers of cholesterol metabolism: Results of a randomized and cross-over clinical trial.

    Science.gov (United States)

    Baila-Rueda, L; Mateo-Gallego, R; Pérez-Calahorra, S; Lamiquiz-Moneo, I; de Castro-Orós, I; Cenarro, A; Civeira, F

    2015-09-01

    Different kinds of fatty acids can affect the synthesis, absorption, and elimination of cholesterol. This study was carried out to assess the associations of cholesterol metabolism with the intake of two meats with different fatty acid composition in healthy volunteers. The study group was composed of 20 subjects (12 males and eight females; age, 34.4 ± 11.6 years; body mass index (BMI), 23.5 ± 2.3 kg/m(2); low-density lipoprotein (LDL) cholesterol, 2.97 ± 0.55 mmol/l; high-density lipoprotein (HDL) cholesterol, 1.61 ± 0.31 mmol/l; triglycerides (TG), 1.06 ± 0.41 mmol/l) who completed a 30-day randomized and cross-over study to compare the cholesterol metabolism effect of 250 g of low-fat lamb versus 250 g of high-fat lamb per day in their usual diet. Cholesterol absorption, synthesis, and elimination were estimated from the serum non-cholesterol sterol and oxysterol concentrations analyzed by a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No changes in weight, plasma lipids, or physical activity were observed across the study. Cholesterol intestinal absorption was decreased with both diets. Cholesterol synthesis and elimination decreased during the low-fat lamb dietary intervention (ρ = 0.048 and ρ = 0.005, respectively). Acute changes in the diet fat content modify the synthesis, absorption, and biliary elimination of cholesterol. These changes were observed even in the absence of total and LDL cholesterol changes in plasma. ClinicalTrials.gov PRS, NCT02259153. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Differential Membrane Dipolar Orientation Induced by Acute and Chronic Cholesterol Depletion.

    Science.gov (United States)

    Sarkar, Parijat; Chakraborty, Hirak; Chattopadhyay, Amitabha

    2017-06-30

    Cholesterol plays a crucial role in cell membrane organization, dynamics and function. Depletion of cholesterol represents a popular approach to explore cholesterol-sensitivity of membrane proteins. An emerging body of literature shows that the consequence of membrane cholesterol depletion often depends on the actual process (acute or chronic), although the molecular mechanism underlying the difference is not clear. Acute depletion, using cyclodextrin-type carriers, is faster relative to chronic depletion, in which inhibitors of cholesterol biosynthesis are used. With the overall goal of addressing molecular differences underlying these processes, we monitored membrane dipole potential under conditions of acute and chronic cholesterol depletion in CHO-K1 cells, using a voltage-sensitive fluorescent dye in dual wavelength ratiometric mode. Our results show that the observed membrane dipole potential exhibits difference under acute and chronic cholesterol depletion conditions, even when cholesterol content was identical. To the best of our knowledge, these results provide, for the first time, molecular insight highlighting differences in dipolar reorganization in these processes. A comprehensive understanding of processes in which membrane cholesterol gets modulated would provide novel insight in its interaction with membrane proteins and receptors, thereby allowing us to understand the role of cholesterol in cellular physiology associated with health and disease.

  19. Blood cholesterol level in Sudanese females with hyperthyroidism

    International Nuclear Information System (INIS)

    Ahmed, N. M.

    2004-08-01

    In view to high incidence of thyroid dis function among Sudanese females, this study was conducted, essentially to study the effect of thyroid disorders on lipids metabolism, mainly on total cholesterol. In this study samples were collected from RIA laboratory in Sudan Atomic Energy Commission. 50 hyperthyroidism females were selected as a study group of age range (20-55) years. In addition 47 samples were collected with same age of study group used as control group. Thyroid related hormones thyroxine T4, triiodothyronine T3, thyroid stimulating hormone TSH using the sensitive radioimmunoassay method and cholesterol were measured for the two groups using enzymatic-calorimetric test. Statistical analysis were done with SPSS computer program to compare the cholesterol levels in the control subjects with the patients levels. The results showed significantly decreased cholesterol level of patient group when compared with the control group (p<0.01). At the end of this study the result was agreed well with previous results concerning cholesterol level as affected by thyroid disorder. (Author)

  20. [Screening and optimization of cholesterol conversion strain].

    Science.gov (United States)

    Fan, Dan; Xiong, Bingjian; Pang, Cuiping; Zhu, Xiangdong

    2014-10-04

    Bacterial strain SE-1 capable of transforming cholesterol was isolated from soil and characterized. The transformation products were identified. Fermentation conditions were optimized for conversion. Cholesterol was used as sole carbon source to isolate strain SE-1. Morphology, physiological and biochemical characteristics of strain SE-1 were studied. 16S rRNA gene was sequenced and subjected to phylogenetic analysis. Fermentation supernatants were extracted with chloroform, the transformation products were analyzed by silica gel thin layer chromatography and Sephadex LH20. Their structures were identified by 1H-NMR and 13C-NMR. Fermentation medium including carbon and nitrogen, methods of adding substrates and fermentation conditions for Strain SE-1 were optimized. Strain SE-1 was a Gram-negative bacterium, exhibiting the highest homologs to Burkholderia cepacia based on the physiological analysis. The sequence analysis of 16S rRNA gene of SE-1 strain and comparison with related Burkholderia show that SE-1 strain was very close to B. cepacia (Genbank No. U96927). The similarity was 99%. The result of silica gel thin layer chromatography shows that strain SE-1 transformed cholesterol to two products, 7beta-hydroxycholesterol and the minor product was 7-oxocholesterol. The optimum culture conditions were: molasses 5%, (NH4 )2SO4 0.3%, 4% of inoculation, pH 7.5 and 36 degrees C. Under the optimum culture condition, the conversion rate reached 34.4% when concentration of cholesterol-Tween 80 was 1 g/L. Cholesterol 7beta-hydroxylation conversion rate under optimal conditions was improved by 20.8%. Strain SE-1 isolated from soil is capable of converting cholesterol at lab-scale.

  1. Tympanomastoid cholesterol granulomas: Immunohistochemical evaluation of angiogenesis.

    Science.gov (United States)

    Iannella, Giannicola; Di Gioia, Cira; Carletti, Raffaella; Magliulo, Giuseppe

    2017-08-01

    This study investigates the immunohistochemical expression of vascular endothelial growth factor (VEGF) and CD34 in patients treated for middle ear and mastoid cholesterol granulomas to evaluate the angiogenesis and vascularization of this type of lesion. A correlation between the immunohistochemical data and the radiological and intraoperative evidence of temporal bone marrow invasion and blood source connection was performed to validate this hypothesis. Retrospective study. Immunohistochemical expression of VEGF and CD34 in a group of 16 patients surgically treated for cholesterol granuloma was examined. Middle ear cholesteatomas with normal middle ear mucosa and external auditory canal skin were used as the control groups. The radiological and intraoperative features of cholesterol granulomas were also examined. In endothelial cells, there was an increased expression of angiogenetic growth factor receptors in all the cholesterol granulomas in this study. The quantitative analysis of VEGF showed a mean value of 37.5, whereas the CD34 quantitative analysis gave a mean value of 6.8. Seven patients presented radiological or intraoperative evidence of bone marrow invasion, hematopoietic potentialities, or blood source connections that might support the bleeding theory. In all of these cases there was computed tomography or intraoperative evidence of bone erosion of the middle ear and/or temporal bone structures. The mean values of VEGF and CD34 were 41.1 and 7.7, respectively. High values of VEGF and CD34 are present in patients with cholesterol granulomas. Upregulation of VEGF and CD34 is indicative of a remarkable angiogenesis and a widespread vascular concentration in cholesterol granulomas. 3b. Laryngoscope, 127:E283-E290, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Plasma Ubiquinone, Alpha-Tocopherol and Cholesterol in Man

    DEFF Research Database (Denmark)

    Karlsson, Jan; Diamant, Bertil; Edlund, Per Olof

    1992-01-01

    Farmakologi, Coenzyme Q10, free cholesterol, vitamin E, antioxidants, Alpha-Tocopherol, vitamin Q, plasma, LDL-particle......Farmakologi, Coenzyme Q10, free cholesterol, vitamin E, antioxidants, Alpha-Tocopherol, vitamin Q, plasma, LDL-particle...

  3. Voluntary exercise increases cholesterol efflux but not macrophage reverse cholesterol transport in vivo in mice

    Directory of Open Access Journals (Sweden)

    Kuipers Folkert

    2010-07-01

    Full Text Available Abstract Physical exercise beneficially impacts on the plasma lipoprotein profile as well as on the incidence of cardiovascular events and is therefore recommended in primary and secondary prevention strategies against atherosclerotic cardiovascular disease. However, the underlying mechanisms of the protective effect of exercise remain largely unknown. Therefore, the present study tested the hypothesis that voluntary exercise in mice impacts on cholesterol efflux and in vivo reverse cholesterol transport (RCT. After two weeks of voluntary wheel running (average 10.1 ± 1.4 km/day plasma triglycerides were lower (p

  4. HYPOLIPEMIC THERAPY AND LOW SERUM CHOLESTEROL CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Vladmila Bojanic

    2004-01-01

    Full Text Available Low concentration of plasma lipoproteins (hypolipoproteinemia presents decreasing concentrations of all or particular lipids components. Classification of hypolipoproteinemia (hypoLP divides them into: primary (hereditary and secondary. Primary hipoLP are rare diseases and their main characteristic is disorder of apolipoproteins synthesis, which leads to low serum cholesterol concentration. Secondary hipoLP are presented in many diseases. They have diagnostic, prognostic significance and present good therapeutic marker. However, modern therapeutic approaches for aggressive lipid lowering pointed out many questions about physiological limits for cholesterol lowering. These approaches, also, open many questions about consequences of low serum concentration of total cholesterol and triglicerides.

  5. Strategies for increasing house staff management of cholesterol with inpatients.

    Science.gov (United States)

    Boekeloo, B O; Becker, D M; Levine, D M; Belitsos, P C; Pearson, T A

    1990-01-01

    This study tested the effectiveness of two conceptually different chart audit-based approaches to modifying physicians' clinical practices to conform with quality-assurance standards. The objective was to increase intern utilization of cholesterol management opportunities in the inpatient setting. Using a clinical trial study design, 29 internal medicine interns were randomly assigned to four intervention groups identified by the intervention they received: control, reminder checklists (checklists), patient-specific feedback (feedback), or both interventions (combined). Over a nine-month period, intern management of high blood cholesterol levels in internal medicine inpatients (n = 459) was monitored by postdischarge chart audit. During both a baseline and subsequent intervention period, interns documented significantly more cholesterol management for inpatients with coronary artery disease (CAD) than without CAD. During baseline, 27.3%, 24.3%, 21.7%, 12.4%, 5.4%, and 2.7% of all inpatient charts had intern documentation concerning a low-fat hospital diet, cholesterol history, screening blood cholesterol level assessment, follow-up lipid profile, nutritionist consult, and preventive cardiology consult, respectively. The feedback intervention significantly increased overall intern-documented cholesterol management among inpatients with CAD. The checklists significantly decreased overall intern-documented cholesterol management. Feedback appears to be an effective approach to increasing intern cholesterol management in inpatients.

  6. Regulation of alpha1 Na/K-ATPase expression by cholesterol.

    Science.gov (United States)

    Chen, Yiliang; Li, Xin; Ye, Qiqi; Tian, Jiang; Jing, Runming; Xie, Zijian

    2011-04-29

    We have reported that α1 Na/K-ATPase regulates the trafficking of caveolin-1 and consequently alters cholesterol distribution in the plasma membrane. Here, we report the reciprocal regulation of α1 Na/K-ATPase by cholesterol. Acute exposure of LLC-PK1 cells to methyl β-cyclodextrin led to parallel decreases in cellular cholesterol and the expression of α1 Na/K-ATPase. Cholesterol repletion fully reversed the effect of methyl β-cyclodextrin. Moreover, inhibition of intracellular cholesterol trafficking to the plasma membrane by compound U18666A had the same effect on α1 Na/K-ATPase. Similarly, the expression of α1, but not α2 and α3, Na/K-ATPase was significantly reduced in the target organs of Niemann-Pick type C mice where the intracellular cholesterol trafficking is blocked. Mechanistically, decreases in the plasma membrane cholesterol activated Src kinase and stimulated the endocytosis and degradation of α1 Na/K-ATPase through Src- and ubiquitination-dependent pathways. Thus, the new findings, taken together with what we have already reported, revealed a previously unrecognized feed-forward mechanism by which cells can utilize the Src-dependent interplay among Na/K-ATPase, caveolin-1, and cholesterol to effectively alter the structure and function of the plasma membrane.

  7. N-acyl phosphatidylethanolamines affect the lateral distribution of cholesterol in membranes

    DEFF Research Database (Denmark)

    Térová, B.; Slotte, J.P.; Petersen, G.

    2005-01-01

    -acyl-POPE) or N-acyl-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-DPPE), and how the molecules interacted with cholesterol. The gel ¿ liquid crystalline transition temperature of sonicated N-acyl phosphatidylethanolamine vesicles in water correlated positively with the number of palmitic acyl chains...... in the molecules. Based on diphenylhexatriene steady state anisotropy measurements, the presence of 33 mol% cholesterol in the membranes removed the phase transition from N-oleoyl-POPE bilayers, but failed to completely remove it from N-palmitoyl-DPPE and N-palmitoyl-POPE bilayers, suggesting rather weak...... interaction of cholesterol with the N-saturated NAPEs. The rate of cholesterol desorption from mixed monolayers containing N-palmitoyl-DPPE and cholesterol (1:1 molar ratio) was much higher compared to cholesterol/DPPE binary monolayers, suggesting a weak cholesterol interaction with N-palmitoyl-DPPE also...

  8. Recognition of Odontogenic Cyst-Fluid Cholesterol Concentration ...

    African Journals Online (AJOL)

    Background: Hypercholesterolaemia is a risk factor for cardiovascular diseases. Serum cholesterol is usually determined to know if a subject is at a risk of heart diseases. This lipid is found in most fluids in the body including the odontogenic cyst-fluid. We investigated the concentration of cholesterol in the odontogenic ...

  9. Cholesterol Protects the Oxidized Lipid Bilayer from Water Injury

    DEFF Research Database (Denmark)

    Owen, Michael C; Kulig, Waldemar; Rog, Tomasz

    2018-01-01

    In an effort to delineate how cholesterol protects membrane structure under oxidative stress conditions, we monitored the changes to the structure of lipid bilayers comprising 30 mol% cholesterol and an increasing concentration of Class B oxidized 1-palmitoyl-2-oleoylphosphatidylcholine (POPC...... in a characteristic reduction in bilayer thickness and increase in area per lipid, thereby increasing the exposure of the membrane hydrophobic region to water. However, cholesterol was observed to help reduce water injury by moving into the bilayer core and forming more hydrogen bonds with the oxPLs. Cholesterol also...... resists altering its tilt angle, helping to maintain membrane integrity. Water that enters the 1-nm-thick core region remains part of the bulk water on either side of the bilayer, with relatively few water molecules able to traverse through the bilayer. In cholesterol-rich membranes, the bilayer does...

  10. Association between cholesterol plasma levels and craving among heroin users.

    Science.gov (United States)

    Lin, Shih-Hsien; Yang, Yen Kuang; Lee, Sheng-Yu; Hsieh, Pei Chun; Chen, Po See; Lu, Ru-Band; Chen, Kao Chin

    2012-12-01

    Lipids may play some roles in the central nervous system functions that are associated with drug addiction. To date, cholesterol is known to influence relapse of cocaine use. However, the relationship between cholesterol and heroin craving is unclear. This study examined the concurrent association between cholesterol and craving. The serum lipid levels of 70 heroin users who were undergoing or had undergone a methadone maintenance therapy were measured. Their craving and demographic data were assessed. Total cholesterol and low-density lipoprotein cholesterol are negatively associated with craving before (r = -0.33, P cognitive aspect of craving and may be a potential marker to predict risk of drug relapse.

  11. Electrical and optical properties of gold nanoparticles: applications in gold nanoparticles-cholesterol oxidase integrated systems for cholesterol sensing

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Urmila; Goswami, Pranab, E-mail: pgoswami@iitg.ernet.in [Indian Institute of Technology Guwahati, Department of Biotechnology (India)

    2012-03-15

    We describe here the application of electrical and optical properties of gold nanoparticles (AuNPs) in conjunction with cholesterol oxidase (ChOx) for cholesterol estimation. The electrocatalytic property of AuNPs was studied with spectrophotometric technique using a redox dye 2,6-dichloroindophenol (DCPIP), where AuNPs found to increase the electron transfer rate between ChOx and DCPIP by {approx}1.68-fold. This study demonstrated AuNPs as efficient electron transfer mediator for ChOx based electrochemical cholesterol biosensors. Optocatalytic property of AuNPs was used in the AuNPs seed mediated enlargement system to develop an optical detection path for cholesterol. This optical method exhibited a linear detection range of 0.01-0.1 mM and a detection limit of 10 {mu}M cholesterol. The effect of AuNPs size (13-21 nm) on the catalytic properties of AuNPs was also studied. Spectrophotometric analysis of the electron transfer process between ChOx and DCPIP with different sized AuNPs showed highest electron transfer efficiency with smaller (13 nm) AuNPs. The electrochemical bioelectrode fabricated with AuNPs and ChOx gave consensus results. Contrastingly, AuNPs size did not affect its optocatalytic activity and eventually the performance of the optical method based on the growth of AuNPs. The findings of the present study offer useful insight and perspectives for fabricating highly sensitive analytical systems based on AuNPs-ChOx complexes.

  12. Recent perspectives on the role of nutraceuticals as cholesterol-lowering agents.

    Science.gov (United States)

    Ward, Natalie; Sahebkar, Amirhossein; Banach, Maciej; Watts, Gerald

    2017-12-01

    Reduction in circulating cholesterol is an important step in lowering cardiovascular risk. Although statins are the most frequently prescribed cholesterol-lowering medication, there remains a significant portion of patients who require alternative treatment options. Nutraceuticals are increasingly popular as cholesterol-lowering agents. Despite the lack of long-term trials evaluating their use on cardiovascular endpoints and mortality, several studies have demonstrated their potential cholesterol-lowering effects. The purpose of this review is to provide an update on the role of nutraceuticals as cholesterol-lowering agents. The present review will focus on individual nutraceutical compounds, which have shown modest cholesterol-lowering abilities, as well as combination nutraceuticals, which may offer potential additive and/or synergistic effects. Berberine, red yeast rice, and plant sterols have moderate potential as cholesterol-lowering agents. Combination nutraceuticals, including the proprietary formulation, Armolipid Plus, appear to confer additional benefit on plasma lipid profiles, even when taken with statins and other agents. Although robust, long-term clinical trials to examine the effects of nutraceuticals on clinical outcomes are still required, their cholesterol-lowering ability, together with their reported tolerance and safety, offer a pragmatic option for lowering plasma cholesterol levels.

  13. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng; Wang, Lin-Long [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Ping, Jie, E-mail: pingjie@whu.edu.cn [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Wang, Hui [Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2015-06-01

    Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreased steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine

  14. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals

    International Nuclear Information System (INIS)

    Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng; Wang, Lin-Long; Ping, Jie; Wang, Hui

    2015-01-01

    Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreased steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine

  15. A Population-Based Study of Cholesterol Measurements in the Oldest Old

    DEFF Research Database (Denmark)

    Gils, Charlotte; Christensen, Kaare; Nybo, Mads

    2015-01-01

    BACKGROUND: Effect of lipid-lowering treatment in the oldest old is a matter of debate as there is no unequivocal evidence of statins being beneficial among the oldest. The need for cholesterol measurements is therefore also questionable, but the frequency of cholesterol measurements in the oldest......+ living on the Island of Funen. The development in trends for cholesterol measurements was analysed in age groups of 5-years interval using linear regression analysis. RESULTS: A total of 30,424 persons with a cholesterol measurement entered the study. The total number of cholesterol measurements...... increased by 246% during the observation period. The percentage of people having a cholesterol measurement increased significantly (p

  16. Phytosterol ester processing in the small intestine: impact on cholesterol availability for absorption and chylomicron cholesterol incorporation in healthy humans[S

    Science.gov (United States)

    Amiot, Marie Josèphe; Knol, Diny; Cardinault, Nicolas; Nowicki, Marion; Bott, Romain; Antona, Claudine; Borel, Patrick; Bernard, Jean-Paul; Duchateau, Guus; Lairon, Denis

    2011-01-01

    Phytosterols (plant sterols and stanols) can lower intestinal cholesterol absorption, but the complex dynamics of the lipid digestion process in the presence of phytosterol esters (PEs) are not fully understood. We performed a clinical experiment in intubated healthy subjects to study the time course of changes in the distribution of all lipid moieties present in duodenal phases during 4 h of digestion of meals with 3.2 g PE (PE meal) or without (control meal) PE. In vitro experiments under simulated gastrointestinal conditions were also performed. The addition of PE did not alter triglyceride (TG) hydrolysis in the duodenum or subsequent chylomicron TG occurrence in the circulation. In contrast, cholesterol accumulation in the duodenum aqueous phase was markedly reduced in the presence of PE (−32%, P < 0.10). In vitro experiments confirmed that PE reduces cholesterol transfer into the aqueous phase. The addition of PE resulted in a markedly reduced presence of meal-derived hepta-deuterated cholesterol in the circulation, i.e., in chylomicrons (−43%, PE meal vs. control; P < 0.0001) and plasma (−54%, PE meal vs. control; P < 0.0001). The present data show that addition of PE to a meal does not alter TG hydrolysis but displaces cholesterol from the intestinal aqueous phase and lowers chylomicron cholesterol occurrence in humans. PMID:21482714

  17. Decomposition of cholesterol by some organisms isolated from certain Egyptian soils

    International Nuclear Information System (INIS)

    Ahmed, A.S.

    1994-01-01

    Some soil microorganisms exhibit a good growth on cholesterol mineral salts agar medium with a uniform distribution of cholesterol as a sole carbon study, 74 strains succeeded to grow on mineral salts agar medium supplied with 0.1% (w/v) cholesterol as the sole source of carbon. Out of these microorganisms, only 43 strains of actinomyces formed zones of translucency on the cholesterol agar medium. Colorimetric determination showed that the total cholesterol decomposition ranges between (74.0-99.0%) for the different actinomyces. One strain was considered a new variety and proved to be the most potent cholesterol decomposer according to its ability to decompose the highest amount of cholesterol as the sole source of carbon, and hence was chosen for further study. It was identified to the species level as pseudo nocardia compact var. nov, chole-rugosa, S-39 B B II. The influence of temperature, incubation period, shaking and buffers on cholesterol decomposition were also investigated. Optimum temperature and buffer were 30 degree C(at ph 7.0-7.2) after 8 days at 120 r.p.m. in a medium containing 0.01 M phosphate buffer and 0.1 m (w/v) cholesterol. The maximum cholesterol decomposition at an incubation temperature of 30 degree C was detected in the presence of L-glutamine

  18. A Statistical Study of Serum Cholesterol Level by Gender and Race.

    Science.gov (United States)

    Tharu, Bhikhari Prasad; Tsokos, Chris P

    2017-07-25

    Cholesterol level (CL) is growing concerned as health issue in human health since it is considered one of the causes in heart diseases. A study of cholesterol level can provide insight about its nature and characteristics. A cross-sectional study. National Health and Nutrition Examination Survey (NHANS) II was conducted on a probability sample of approximately 28,000 persons in the USA and cholesterol level is obtained from laboratory results. Samples were selected so that certain population groups thought to be at high risk of malnutrition. Study included 11,864 persons for CL cases with 9,602 males and 2,262 females with races: whites, blacks, and others. Non-parametric statistical tests and goodness of fit test have been used to identify probability distributions. The study concludes that the cholesterol level exhibits significant racial and gender differences in terms of probability distributions. The study has concluded that white people are relatively higher at risk than black people to have risk line and high risk cholesterol. The study clearly indicates that black males normally have higher cholesterol. Females have lower variation in cholesterol than males. There exists gender and racial discrepancies in cholesterol which has been identified as lognormal and gamma probability distributions. White individuals seem to be at a higher risk of having high risk cholesterol level than blacks. Females tend to have higher variation in cholesterol level than males.

  19. Cholesterol crystallization within hepatocyte lipid droplets and its role in murine NASH.

    Science.gov (United States)

    Ioannou, George N; Subramanian, Savitha; Chait, Alan; Haigh, W Geoffrey; Yeh, Matthew M; Farrell, Geoffrey C; Lee, Sum P; Savard, Christopher

    2017-06-01

    We recently reported that cholesterol crystals form in hepatocyte lipid droplets (LDs) in human and experimental nonalcoholic steatohepatitis. Herein, we assigned WT C57BL/6J mice to a high-fat (15%) diet for 6 months, supplemented with 0%, 0.25%, 0.5%, 0.75%, or 1% dietary cholesterol. Increasing dietary cholesterol led to cholesterol loading of the liver, but not of adipose tissue, resulting in fibrosing steatohepatitis at a dietary cholesterol concentration of ≥0.5%, whereas mice on lower-cholesterol diets developed only simple steatosis. Hepatic cholesterol crystals and crown-like structures also developed at a dietary cholesterol concentration ≥0.5%. Crown-like structures consisted of activated Kupffer cells (KCs) staining positive for NLRP3 and activated caspase 1, which surrounded and processed cholesterol crystal-containing remnant LDs of dead hepatocytes. The KCs processed LDs at the center of crown-like structures in the extracellular space by lysosomal enzymes, ultimately transforming into lipid-laden foam cells. When HepG2 cells were exposed to LDL cholesterol, they developed cholesterol crystals in LD membranes, which caused activation of THP1 cells (macrophages) grown in coculture; upregulation of TNF-alpha , NLRP3, and interleukin 1beta ( IL1β ) mRNA; and secretion of IL-1beta. In conclusion, cholesterol crystals form on the LD membrane of hepatocytes and cause activation and cholesterol loading of KCs that surround and process these LDs by lysosomal enzymes.

  20. Combined spectroscopic, DFT, TD-DFT and MD study of newly synthesized thiourea derivative

    Science.gov (United States)

    Menon, Vidya V.; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Bielenica, Anna; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, Christian

    2018-03-01

    A novel thiourea derivative, 1-(3-bromophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea (ANF-22) is synthesized and characterized by FTIR, FT-Raman and NMR spectroscopy experimentally and theoretically. A detailed conformational analysis of the title molecule has been conducted in order to locate the lowest energy geometry, which was further subjected to the detailed investigation of spectroscopic, reactive, degradation and docking studies by density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Time dependent DFT (TD-DFT) calculations have been used also in order to simulate UV spectra and investigate charge transfer within molecule. Natural bond orbital analysis has been performed analyzing the charge delocalization and using HOMO and LUMO energies the electronic properties are analyzed. Molecular electrostatic potential map is used for the quantitative measurement of active sites in the molecule. In order to determine the locations possibly prone to electrophilic attacks we have calculated average local ionization energies and mapped them to the electron density surface. Further insight into the local reactivity properties have been obtained by calculation of Fukui functions, also mapped to the electron density surface. Possible degradation properties by the autoxidation mechanism have been assessed by calculations of bond dissociation energies for hydrogen abstraction. Atoms of title molecule with significant interactions with water molecules have been determined by calculations of radial distribution functions. The title compound can be a lead compound for developing new analgesic drug.

  1. The Canadian experience: why Canada decided against an upper limit for cholesterol.

    Science.gov (United States)

    McDonald, Bruce E

    2004-12-01

    Canada, like the United States, held a "consensus conference on cholesterol" in 1988. Although the final report of the consensus panel recommended that total dietary fat not exceed 30 percent and saturated fat not exceed 10 percent of total energy intake, it did not specify an upper limit for dietary cholesterol. Similarly, the 1990, Health Canada publication "Nutrition Recommendations: The Report of the Scientific Review Committee" specified upper limits for total and saturated fat in the diet but did not specify an upper limit for cholesterol. Canada's Guidelines for Healthy Eating, a companion publication from Health Canada, suggested that Canadians "choose low-fat dairy products, lean meats, and foods prepared with little or no fat" while enjoying "a variety of foods." Many factors contributed to this position but a primary element was the belief that total dietary fat and saturated fat were primary dietary determinants of serum total and low-density lipoprotein (LDL) cholesterol levels, not dietary cholesterol. Hence, Canadian health authorities focused on reducing saturated fat and trans fats in the Canadian diet to help lower blood cholesterol levels rather than focusing on limiting dietary cholesterol. In an effort to allay consumer concern with the premise that blood cholesterol level is linked to dietary cholesterol, organizations such as the Canadian Egg Marketing Agency (CEMA) reminded health professionals, including registered dietitians, family physicians and nutrition educators, of the extensive data showing that there is little relationship between dietary cholesterol intake and cardiovascular mortality. In addition, it was pointed out that for most healthy individuals, endogenous synthesis of cholesterol by the liver adjusts to the level of dietary cholesterol intake. Educating health professionals about the relatively weak association between dietary cholesterol and the relatively strong association between serum cholesterol and saturated fat and

  2. PPARγ regulates the expression of cholesterol metabolism genes in alveolar macrophages

    International Nuclear Information System (INIS)

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S.; Malur, Achut G.; Thomassen, Mary Jane

    2010-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPARγ has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPARγ regulates cholesterol influx, efflux, and metabolism. PPARγ promotes cholesterol efflux through the liver X receptor-alpha (LXRα) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPARγ knockout (PPARγ KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXRα and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPARγ would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPARγ) to restore PPARγ expression in the alveolar macrophages of PPARγ KO mice. Our results show that the alveolar macrophages of PPARγ KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPARγ (1) induced transcription of LXRα and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPARγ regulates cholesterol metabolism in alveolar macrophages.

  3. Emerging roles of the intestine in control of cholesterol metabolism

    NARCIS (Netherlands)

    Kruit, Janine-K.; Groen, Albert K.; van Berkel, Theo J.; Kuipers, Folkert

    2006-01-01

    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis, clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor

  4. Immobilization of cholesterol oxidase in LbL films and detection of cholesterol using ac measurements

    International Nuclear Information System (INIS)

    Moraes, Marli L.; Souza, Nara C. de; Hayasaka, Caio O.; Ferreira, Marystela; Rodrigues Filho, Ubirajara P.; Riul, Antonio; Zucolotto, Valtencir; Oliveira, Osvaldo N.

    2009-01-01

    The preserved activity of immobilized biomolecules in layer-by-layer (LbL) films can be exploited in various applications, including biosensing. In this study, cholesterol oxidase (COX) layers were alternated with layers of poly(allylamine hydrochloride) (PAH) in LbL films whose morphology was investigated with atomic force microscopy (AFM). The adsorption kinetics of COX layers comprised two regimes, a fast, first-order kinetics process followed by a slow process fitted with a Johnson-Mehl-Avrami (JMA) function, with exponent ∼ 2 characteristic of aggregates growing as disks. The concept based on the use of sensor arrays to increase sensitivity, widely employed in electronic tongues, was extended to biosensing with impedance spectroscopy measurements. Using three sensing units, made of LbL films of PAH/COX and PAH/PVS (polyvinyl sulfonic acid) and a bare gold interdigitated electrode, we were able to detect cholesterol in aqueous solutions down to the 10 -6 M level. This high sensitivity is attributed to the molecular-recognition interaction between COX and cholesterol, and opens the way for clinical tests to be made with low cost, fast experimental procedures

  5. Regulation of neuronal APL-1 expression by cholesterol starvation.

    Directory of Open Access Journals (Sweden)

    Mary Wiese

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a neurodegenerative disorder characterized by the deposition of β-amyloid plaques composed primarily of the amyloid-β peptide, a cleavage product of amyloid precursor protein (APP. While mutations in APP lead to the development of Familial Alzheimer's Disease (FAD, sporadic AD has only one clear genetic modifier: the ε4 allele of the apolipoprotein E (ApoE gene. Cholesterol starvation in Caenorhabditis elegans leads to molting and arrest phenotypes similar to loss-of-function mutants of the APP ortholog, apl-1 (amyloid precursor-like protein 1, and lrp-1 (lipoprotein receptor-related protein 1, suggesting a potential interaction between apl-1 and cholesterol metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Previously, we found that RNAi knock-down of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. Here we find the same defect is recapitulated during lrp-1 knock-down and by cholesterol starvation. A cholesterol-free diet or loss of lrp-1 directly affects APL-1 levels as both lead to loss of APL-1::GFP fluorescence in neurons. However, loss of cholesterol does not affect global transcription or protein levels as seen by qPCR and Western blot. CONCLUSIONS: Our results show that cholesterol and lrp-1 are involved in the regulation of synaptic transmission, similar to apl-1. Both are able to modulate APL-1 protein levels in neurons, however cholesterol changes do not affect global apl-1 transcription or APL-1 protein indicating the changes are specific to neurons. Thus, regulation of synaptic transmission and molting by LRP-1 and cholesterol may be mediated by their ability to control APL-1 neuronal protein expression.

  6. Nutritional evaluation of structured lipid containing omega 6 fatty acid synthesized from coconut oil in rats.

    Science.gov (United States)

    Rao, Reena; Lokesh, Belur R

    2003-06-01

    Coconut oil is rich in medium chain fatty acids, but deficient in polyunsaturated fatty acids (PUFA). Structured lipids (SL) enriched with omega 6 PUFA were synthesized from coconut oil triglycerides by employing enzymatic acidolysis with free fatty acids obtained from safflower oil. Rats were fed a diet containing coconut oil, coconut oil-safflower oil blend (1:0.7 w/ w) or structured lipid at 10% levels for a period of 60 days. The SL lowered serum cholesterol levels by 10.3 and 10.5% respectively in comparison with those fed coconut oil and blended oil. Similarly the liver cholesterol levels were also decreased by 35.9 and 26.6% respectively in animals fed structured lipids when compared to those fed on coconut oil or the blended oil. Most of the decrease observed in serum cholesterol levels of animals fed structured lipids was found in LDL fraction. The triglyceride levels in serum showed a decrease by 17.5 and 17.4% while in the liver it was reduced by 45.8 and 23.5% in the structured lipids fed animals as compared to those fed coconut oil or blended oil respectively. Differential scanning calorimetric studies indicated that structured lipids had lower melting points and solid fat content when compared to coconut oil or blended oils. These studies indicated that enrichment of coconut oil triglycerides with omega 6 fatty acids lowers its solid fat content. The omega 6 PUFA enriched structured lipids also exhibited hypolipidemic activity.

  7. Cholesterol Removal from Whole Egg by Crosslinked β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    H. J. Jeong

    2014-04-01

    Full Text Available This study was carried out to optimize cholesterol removal in whole egg using crosslinked β-cyclodextrin (β-CD and to recycle the β-CD. Various factors for optimizing conditions were concentration of the β-CD, mixing temperature, mixing time, mixing speed and centrifugal speed. In the result of this study, the optimum conditions of cholesterol removal were 25% crosslinked β-CD, 40°C mixing temperature, 30 min mixing time, 1,200 rpm mixing speed and 2,810×g centrifugal speed. The recycling was repeated five times. The cholesterol removal was 92.76% when treated with the optimum conditions. After determining the optimum conditions, the recyclable yields of the crosslinked β-CD ranged from 86.66% to 87.60% in the recycling and the percentage of cholesterol removal was over 80% until third recycling. However, the cholesterol removal efficiency was decreased when the number of repeated recycling was increased. Based on the result of this study, it was concluded that the crosslinked β-CD was efficient for cholesterol removal in whole egg, and recycling is possible for only limited repeating times due to the interaction of the β-CD and egg protein.

  8. Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries

    Directory of Open Access Journals (Sweden)

    Meritxell Reverter

    2014-05-01

    Full Text Available Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN. Here, using Chinese hamster ovary (CHO Niemann-Pick type C1 (NPC1 mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6 accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs. This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.

  9. Taurocholate Deconjugation and Cholesterol Binding by Indigenous Dadih Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    USMAN PATO

    2005-09-01

    Full Text Available High serum cholesterol levels have been associated with an increased risk for human coronary heart disease. Lowering of serum cholesterol has been suggested to prevent the heart disease. To reduce serum cholesterol levels one may consumed diet supplementat of fermented dairy product such as dadih. Lactic acid bacteria present in dadih may alter serum cholesterol by directly bind to dietary cholesterol and/or deconjugation of bile salts. Acid and bile tolerance, deconjugation of sodium taurocholate, and the cholesterol-binding ability of lactic acid bacteria from dadih were examined. Among ten dadih lactic acid bacteria tested, six strains namely I-11, I-2775, K-5, I-6257, IS-7257, and B-4 could bind cholesterol and deconjugate sodium taurocholate. However, the last four strains were very sensitive to bile. Therefore, Lactobacillus fermentum I-11 and Leuconostoc lactis subsp. lactis I-2775 those were tolerant to acid and oxgall (bile and deconjugated sodium taurocholate and bound cholesterol could be recommended as probiotic to prevent coronary heart disease.

  10. Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol

    DEFF Research Database (Denmark)

    Manna, Moutusi; Niemelä, Miia; Tynkkynen, Joona

    2016-01-01

    ) - a prototypical G protein-coupled receptor - is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates b2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located...... near the transmembrane helices 5-7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however...... cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions....

  11. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling

    Science.gov (United States)

    Luchetti, Giovanni; Sircar, Ria; Kong, Jennifer H; Nachtergaele, Sigrid; Sagner, Andreas; Byrne, Eamon FX; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2016-01-01

    Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility. DOI: http://dx.doi.org/10.7554/eLife.20304.001 PMID:27705744

  12. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-Ay mice

    Directory of Open Access Journals (Sweden)

    Beppu Fumiaki

    2012-09-01

    Full Text Available Abstract Background Fucoxanthin is a xanthophyll present in brown seaweeds and has several beneficial effects, including anti-obesity and anti-diabetic effects. However, we and another group previously observed that fucoxanthin increases serum cholesterol levels in rodents. Cholesterol is an important component of cell membranes and biosynthesis of bile acids. Serum cholesterol levels are also closely associated with atherosclerosis. Therefore, we sought to identify the mechanism underlying the increase in serum cholesterol levels by fucoxanthin. Methods Diabetic/obese KK-Ay mice were fed a diet containing 0.2% fucoxanthin for 4 weeks. The mice were sacrificed, and total blood samples were collected for the measurement of serum total cholesterol, HDL-cholesterol and non-HDL-cholesterol levels. Cholesterol content in tissues was also analyzed. Real-time PCR and Western blotting were performed to determine hepatic mRNA and protein expression of genes involved in cholesterol metabolism, respectively. Results Dietary fucoxanthin significantly increased serum HDL and non-HDL cholesterol levels, and reduced hepatic cholesterol content. In liver, the expression of SREBP1, SREBP2 and their target genes involved in cholesterol biosynthesis significantly increased and tended to increase in the fucoxanthin-fed mice, respectively. In contrast, hepatic levels of LDLR and SR-B1 proteins which is important factors for LDL-cholesterol and HDL-cholesterol uptake in the liver from serum, decreased to 60% and 80% in the fucoxanthin-fed mice, respectively, compared with the control mice. Further, we found that dietary fucoxanthin significantly increased the mRNA expression of proprotein convertase subtilisin/kexin type 9 (PCSK9, which enhances intracellular degradation of LDLR in lysosomes. Conclusions Fucoxanthin increased HDL-cholesterol and non-HDL-cholesterol levels in KK-Ay mice by inducing SREBP expression and reduced cholesterol uptake in the liver via

  13. Cholesterol Check (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2015-09-10

    High blood cholesterol is a risk factor for cardiovascular disease. This podcast discusses the importance of a healthy diet and regular cholesterol screening.  Created: 9/10/2015 by MMWR.   Date Released: 9/10/2015.

  14. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.

    Directory of Open Access Journals (Sweden)

    Zahedi Mujawar

    2006-10-01

    Full Text Available Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1-infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings

  15. Treatment of young rats with cholestyramine or a hypercholesterolemic diet does not influence the response of serum cholesterol to dietary cholesterol in later life

    NARCIS (Netherlands)

    Beynen, A.C.; Bruijne, J.J. de; Katan, M.B.

    1985-01-01

    Groups of 10 female Wistar rats (aged 4 weeks) were fed for 29 days either a low-cholesterol commercial diet, a commercial diet containing 2% (w/w) cholesterol, 0.5% cholate and 5% olive oil or a diet containing 2% cholestyramine. The rats were then fed the low-cholesterol commercial diet for the

  16. LDL-Cholesterol Increases the Transcytosis of Molecules through Endothelial Monolayers.

    Science.gov (United States)

    Magalhaes, Ana; Matias, Inês; Palmela, Inês; Brito, Maria Alexandra; Dias, Sérgio

    2016-01-01

    Cholesterol has been identified as a causative factor in numerous pathologies including atherosclerosis and cancer. One of the frequent effects of elevated cholesterol levels in humans is the compromise of endothelial function due to activation of pro-inflammatory signalling pathways. While the mechanisms involved in endothelial activation by cholesterol during an inflammatory response are well established, less is known about the mechanisms by which cholesterol may affect endothelial barrier function, which were the subject of the present study. Here we show that low density lipoprotein (LDL) increases the permeability of endothelial monolayers to high molecular weight dextrans in an LDL receptor and cholesterol-dependent manner. The increased permeability seen upon LDL treatment was not caused by disruption of cell-to-cell junctions as determined by a normal localization of VE-Cadherin and ZO-1 proteins, and no major alterations in transendothelial electrical resistance or permeability to fluorescein. We show instead that LDL increases the level of high molecular weight transcytosis and that this occurs in an LDL receptor, cholesterol and caveolae-dependent way. Our findings contribute to our understanding of the systemic pathological effects of elevated cholesterol and the transport of cargo through endothelial monolayers.

  17. Pitfalls in the detection of cholesterol in Huntington’s disease models

    Science.gov (United States)

    Marullo, Manuela; Valenza, Marta; Leoni, Valerio; Caccia, Claudio; Scarlatti, Chiara; De Mario, Agnese; Zuccato, Chiara; Di Donato, Stefano; Carafoli, Ernesto; Cattaneo, Elena

    2012-01-01

    Background Abnormalities in brain cholesterol homeostasis have been reported in Huntington’s disease (HD), an adult-onset neurodegenerative disorder caused by an expansion in the number of CAG repeats in the huntingtin (HTT) gene. However, the results have been contradictory with respect to whether cholesterol levels increase or decrease in HD models. Biochemical and mass spectrometry methods show reduced levels of cholesterol precursors and cholesterol in HD cells and in the brains of several HD animal models. Abnormal brain cholesterol homeostasis was also inferred from studies in HD patients. In contrast, colorimetric and enzymatic methods indicate cholesterol accumulation in HD cells and tissues. Here we used several methods to investigate cholesterol levels in cultured cells in the presence or absence of mutant HTT protein. Results Colorimetric and enzymatic methods with low sensitivity gave variable results, whereas results from a sensitive analytical method, gas chromatography-mass spectrometry, were more reliable. Sample preparation, high cell density and cell clonality also influenced the detection of intracellular cholesterol. Conclusions Detection of cholesterol in HD samples by colorimetric and enzymatic assays should be supplemented by detection using more sensitive analytical methods. Care must be taken to prepare the sample appropriately. By evaluating lathosterol levels using isotopic dilution mass spectrometry, we confirmed reduced cholesterol biosynthesis in knock-in cells expressing the polyQ mutation in a constitutive or inducible manner. *Correspondence should be addressed to Elena Cattaneo: elena.cattaneo@unimi.it PMID:23145355

  18. The intestinal absorption of dietary cholesterol by hypercholesterolemic (type II) and normocholesterolemic humans.

    Science.gov (United States)

    Connor, W E; Lin, D S

    1974-04-01

    The incomplete absorption of dietary cholesterol may represent an adaptive intestinal barrier that prevents hypercholesterolemia. To explore this mechanism, we compared cholesterol absorption in 15 normocholesterolemic and 6 hypercholesterolemic (type II) subjects fed background cholesterol-free formula diets with 40% of calories as fat. Each test meal consisted of a breakfast into which was incorporated scrambled egg yolk containing 300-500 mg of cholesterol and [4-(14)C]cholesterol (3-22 muCi), either naturally incorporated into the yolk cholesterol by previous isotope injection into the laying hen or added in peanut oil to the yolk of the test breakfast. In some instances [1alpha-(3)H]cholesterol was the radioactive marker. The radioactivity of the fecal neutral sterol fraction was determined in daily stool samples for the next 7 days to provide an estimate of unabsorbed dietary cholesterol. The amount of absorbed and reexcreted labeled cholesterol proved negligible. Most unabsorbed dietary cholesterol appeared in the stool on the second or third day after the meal, and 95% or more was recovered in the stool by 6 days. Plasma specific activity curves were usually maximal at 48 h. Normal subjects absorbed 44.5+/-9.3 (SD) of the administered cholesterol (range 25.9-60.3). Hypercholesterolemics absorbed the same percentage of cholesterol as normals: 47.6+/-12.6% (range 29.3-67.3). Absorption was similar whether the radiolabeled cholesterol was added to egg yolk or naturally incorporated in it (42.1+/-9.3 vs. 48.9+/-9.8%). Six normal subjects were fed a cholesterol-free formula for 4 wk, and then different amounts of cholesterol (110-610 mg/day) were added for another 4 wk. At the end of each period, single test meals containing either 110, 310, or 610 mg of cholesterol and [1alpha-(3)H]cholesterol were administered. Cholesterol absorption was 42.3+/-6.0% and 45.4+/-8.3% for the two dietary periods, respectively. The absolute cholesterol absorption was linearly

  19. Cholesterol-Lowering Effect of Allicin on Hypercholesterolemic ICR Mice

    Directory of Open Access Journals (Sweden)

    Yin Lu

    2012-01-01

    Full Text Available Allicin was discussed as an active compound with regard to the beneficial effects of garlic in atherosclerosis. The aim of this study was to investigate the cholesterol-lowering properties of allicin. In order to examine its effects on hypercholesterolemia in male ICR mice, this compound with doses of 5, 10, or 20 mg/kg body weight was given orally daily for 12 weeks. Changes in body weight and daily food intake were measured regularly during the experimental period. Final contents of serum cholesterol, triglyceride, glucose, and hepatic cholesterol storage were determined. Following a 12-week experimental period, the body weights of allicin-fed mice were less than those of control mice on a high-cholesterol diet by 38.24±7.94% (P<0.0001 with 5 mg/kg allicin, 39.28±5.03% (P<0.0001 with 10 mg/kg allicin, and 41.18±5.00% (P<0.0001 with 20 mg/kg allicin, respectively. A decrease in daily food consumption was also noted in most of the treated animals. Meanwhile, allicin showed a favorable effect in reducing blood cholesterol, triglycerides, and glucose levels and caused a significant decrease in lowering the hepatic cholesterol storage. Accordingly, both in vivo and in vitro results demonstrated a potential value of allicin as a pronounced cholesterol-lowering candidate, providing protection against the onset of atherosclerosis.

  20. Moderate alcohol consumption increases cholesterol efflux mediated by ABCA1

    NARCIS (Netherlands)

    Beulens, J.W.J.; Sierksma, A.; Tol, A. van; Fournier, N.; Gent, T. van; Paul, J.L.; Hendriks, H.F.J.

    2004-01-01

    Moderate alcohol consumption increases HDL cholesterol, which is involved in reverse cholesterol transport (RCT). The aim of this study was to investigate the effect of moderate alcohol consumption on cholesterol efflux, using J774 mouse macrophages and Fu5AH cells, and on other parameters in the

  1. Cholesterol, Cholesterol-Lowering Medication Use, and Breast Cancer Outcome in the BIG 1-98 Study

    DEFF Research Database (Denmark)

    Borgquist, Signe; Giobbie-Hurder, Anita; Ahern, Thomas P

    2017-01-01

    on cholesterol levels and hypercholesterolemia per se may counteract the intended effect of aromatase inhibitors. Patients and Methods The Breast International Group (BIG) conducted a randomized, phase III, double-blind trial, BIG 1-98, which enrolled 8,010 postmenopausal women with early-stage, hormone receptor......-positive invasive breast cancer from 1998 to 2003. Systemic levels of total cholesterol and use of CLM were measured at study entry and every 6 months up to 5.5 years. Cumulative incidence functions were used to describe the initiation of CLM in the presence of competing risks. Marginal structural Cox proportional...

  2. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  3. Circulating Cholesterol Levels May Link to the Factors Influencing Parkinson’s Risk

    Directory of Open Access Journals (Sweden)

    Lijun Zhang

    2017-09-01

    Full Text Available ObjectivesA growing literature suggests that circulating cholesterol levels have been associated with Parkinson’s disease (PD. In this study, we investigated a possible causal basis for the cholesterol-PD link.MethodsFasting plasma cholesterol levels were obtained from 91 PD and 70 age- and gender-matched controls from an NINDS PD Biomarkers Program cohort at the Pennsylvania State University College of Medicine. Based on the literature, genetic polymorphisms in selected cholesterol management genes (APOE, LDLR, LRP1, and LRPAP1 were chosen as confounding variables because they may influence both cholesterol levels and PD risk. First, the marginal structure model was applied, where the associations of total- and LDL-cholesterol levels with genetic polymorphisms, statin usage, and smoking history were estimated using linear regression. Then, potential causal influences of total- and LDL-cholesterol on PD occurrence were investigated using a generalized propensity score approach in the second step.ResultsBoth statins (p < 0.001 and LRP1 (p < 0.03 influenced total- and LDL-cholesterol levels. There also was a trend for APOE to affect total- and LDL-cholesterol (p = 0.08 for both, and for LRPAR1 to affect LDL-cholesterol (p = 0.05. Conversely, LDLR did not influence plasma cholesterol levels (p > 0.19. Based on propensity score methods, lower total- and LDL-cholesterol were significantly linked to PD (p < 0.001 and p = 0.04, respectively.ConclusionThe current study suggests that circulating total- and LDL-cholesterol levels potentially may be linked to the factor(s influencing PD risk. Further studies to validate these results would impact our understanding of the role of cholesterol as a risk factor in PD, and its relationship to recent public health controversies.

  4. Optimizing the effect of plant sterols on cholesterol absorption in man.

    Science.gov (United States)

    Mattson, F H; Grundy, S M; Crouse, J R

    1982-04-01

    During three experimental periods, nine adults were hospitalized on a metabolic ward and fed a meal containing 500 mg of cholesterol as a component of scrambled eggs. In addition, the meal contained: 1) no additive, 2) 1 g beta-sitosterol, or 3) 2 g beta-sitosteryl oleate. Stools for the succeeding 5 days were analyzed to determine the percentage of the cholesterol in the test meal that was absorbed. The addition of beta-sitosterol resulted in a 42% decrease in cholesterol absorption; the beta-sitosteryl oleate caused a 33% reduction. These results indicate that the judicious addition of beta-sitosterol or beta-sitosteryl oleate to meals containing cholesterol-rich foods will result in a significant decrease in cholesterol absorption, with a consequent decrease in plasma cholesterol.

  5. Lecithin Cholesterol Acyltransferase: An Anti- or Pro-atherogenic Factor?

    OpenAIRE

    Rousset, Xavier; Shamburek, Robert; Vaisman, Boris; Amar, Marcelo; Remaley, Alan T.

    2011-01-01

    Lecithin cholesterol acyl transferase (LCAT) is a plasma enzyme that esterifies cholesterol and raises high-density lipoprotein cholesterol, but its role in atherosclerosis is not clearly established. Studies of various animal models have yielded conflicting results, but studies done in rabbits and non-human primates, which more closely simulate human lipoprotein metabolism, indicate that LCAT is likely atheroprotective. Although suggestive, there are also no biomarker studies that mechanisti...

  6. Role of low density lipoprotein-bound cholesterol esters in acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Cutts, J.L.; Madden, E.A.; Melnykovych, G.

    1986-01-01

    The glucocorticoid sensitive CEM-C7 T-cell line was derived from human acute lymphoblastic leukemia cells by Norman and Thompson. Madden et al. have demonstrated that this growth inhibitory effect is due in part to a glucocorticoid-mediated inhibition of cholesterol synthesis and can be partially reversed by cholesterol dispersions. To further delineate the role of cholesterol in this growth inhibition, they have examined the ability of low density lipoprotein (LDL)-bound [ 3 H]cholesterol linoleate to reverse the growth inhibitory effect of 1 μM dexamethasone (Dex) on the CEM-C7 cells. LDL-bound cholesterol linoleate was unable to reverse the Dex-mediated growth inhibition, although incorporation of [ 14 C] acetate into free cholesterol was inhibited by 29%, following the Brown and Goldstein model. The presence of Dex further inhibited acetate incorporation into free cholesterol in the LDL-treated cells. Under all conditions, more than 99% of the acetate incorporated into cholesterol was present as free cholesterol, while over 87% of the LDL-bound cholesterol linoleate taken up remained in the ester compartment. These results indicate that CEM-C7 cells are unable to utilize LDL-bound cholesterol esters as a source of free cholesterol and rely on endogenous synthesis for their free cholesterol requirements

  7. Absence of regulation of tumor cholesterogenesis in cell-free synthesizing systems

    International Nuclear Information System (INIS)

    Azrolan, N.; Coleman, P.S.

    1986-01-01

    In tumors, cholesterol synthesis de novo is deregulated relative to normal tissues. But no previous study has demonstrated the decontrol of tumor cholesterogenesis with cell-free cytosolic systems. They have utilized a lipid synthesizing, post-mitochondrial supernatant system (PMS), with 14 C-citrate as substrate, to characterize the cholesterogenic pathway in Morris Hepatoma 3924A and normal rat liver. The rate of cholesterogenesis in the hepatoma PMS was 6-fold higher than that in the liver system on a per cell basis. The ratio of sterol-to-fatty acid synthesis was also significantly greater in the tumor versus the liver PMS. The authors determined the steady-state carbon flux through the early intermediates of the lipogenic pathways. Whereas the liver system displayed a metabolic crossover point at the HMG-CoA reductase reaction, the hepatoma system showed no evidence of control at this rate-limiting site of sterol synthesis. Furthermore, acetyl-CoA formation from added citrate (via ATP-citrate lyase) exhibited rates of 42% and 88% in excess of that required for lipidogenesis by liver and tumor PMS systems, respectively. Clearly, a cell-free PMS system from tumor tissue displays the property of deregulated lipidogenesis, especially cholesterol biosynthesis. The authors suggest that deregulated and continuously operating cholesterogenesis would provide for an increased level of a mevalonate-derived sterol pathway intermediate proposed as a trigger for DNA synthesis and cell proliferation in tumors

  8. Beta-glucans and cholesterol

    Czech Academy of Sciences Publication Activity Database

    Šíma, Petr; Vannucci, Luca; Větvička, V.

    2017-01-01

    Roč. 41, č. 4 (2017), s. 1799-1808 ISSN 1107-3756 Institutional support: RVO:61388971 Keywords : cholesterol * beta-glucans * diet Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.341, year: 2016

  9. Studies on the site of protein and RNA syntheses in poxvirus-infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakaue, Y [Osaka Univ. (Japan). Research Inst. for Microbial Diseases

    1974-04-01

    Pulse labelling of short time and the chase of it were conducted to Poxvirus-infected cells using /sup 3/H-uridine and /sup 3/H-leucine with high concentration, and autoradiography (AR) was taken. As the result, protein synthesis, which was in accordance with ''B''-type inclusion, was markedly observed in one-minute labelling at the site of protein synthesis of infected cells. Although the protein synthesis was observed at the peripheral site of ''A''-type inclusion, it was not found within inclusions. However, it was found from the experiment of chase that protein collected markedly within ''B''-type inclusion. They were found that ''B''-type inclusion is the site of Virus DNA synthesis as well as the site of Virus mRNA synthesis, and that it is also absolutely possible for ''B''-type inclusion to synthesize Virus protein. In addition, it was found that ''A''-type inclusion is not the site of synthesis, but newly-synthesized protein.

  10. Studies on the site of protein and RNA syntheses in poxvirus-infected cells

    International Nuclear Information System (INIS)

    Sakaue, Yoshihiro

    1974-01-01

    Pulse labelling of short time and the chase of it were conducted to Poxvirus-infected cells using 3 H-uridine and 3 H-leucine with high concentration, and autoradiography (AR) was taken. As the result, protein synthesis, which was in accordance with ''B''-type inclusion, was markedly observed in one-minute labelling at the site of protein synthesis of infected cells. Although the protein synthesis was observed at the peripheral site of ''A''-type inclusion, it was not found within inclusions. However, it was found from the experiment of chase that protein collected markedly within ''B''-type inclusion. They were found that ''B''-type inclusion is the site of Virus DNA synthesis as well as the site of Virus mRNA synthesis, and that it is also absolutely possible for ''B''-type inclusion to synthesize Virus protein. In addition, it was found that ''A''-type inclusion is not the site of synthesis, but newly-synthesized protein. (Ichikawa, K.)

  11. Clinical relevance of non-fasting and postprandial hypertriglyceridemia and remnant cholesterol

    DEFF Research Database (Denmark)

    Nordestgaard, Børge G; Freiberg, Jacob J

    2011-01-01

    Non-fasting triglycerides are measured at any time within up to 8 h (14 h) after any normal meal, while postprandial triglycerides are measured at a fixed time point within up to 8 h (14 h) of a standardised fat tolerance test. The simplest possible way of evaluating remnant cholesterol is non......-fasting/postprandial total cholesterol minus low-density lipoprotein (LDL) cholesterol minus high-density lipoprotein (HDL) cholesterol. Elevated levels of non-fasting/postprandial triglycerides directly correlate with elevated remnant cholesterol. In the general population, 38% of men have non......-fasting/postprandial triglycerides > 2mmol/L (>176 mg/dL) while 45% of men have non-fasting/postprandial triglyceride levels of 1-2 mmol/L (89-176 mg/dL); corresponding fractions in women are 20% and 47%. Also, 31% of men have remnant cholesterol levels > 1mmol/L (>39 mg/dL) while 46% of men have remnant cholesterol levels of 0...

  12. Circulating zonulin levels in newly diagnosed Chinese type 2 diabetes patients.

    Science.gov (United States)

    Zhang, D; Zhang, L; Zheng, Y; Yue, F; Russell, R D; Zeng, Y

    2014-11-01

    Studies suggest that type 2 diabetes mellitus is associated with increased gut permeability. Human zonulin is the only physiological mediator discovered to date that is known to regulate gut permeability reversibly by disassembling intestinal tight junctions. However, the relationship between zonulin and type 2 diabetes remains to be defined, and no Chinese population-based data were reported. The aim of this study was to investigate the association between serum zonulin levels and type 2 diabetes in a Chinese Han population. 143 newly diagnosed type 2 diabetes patients, 124 patients with impaired glucose tolerance and 121 subjects with normal glucose tolerance were enrolled in this study. Serum zonulin was measured by ELISA. Patients with type 2 diabetes had higher serum zonulin levels than impaired or normal glucose tolerant subjects. Serum zonulin correlated with body mass index, waist-to-hip ratio, triglyceride, total cholesterol, HDL-C, fasting plasma glucose, 2h plasma glucose, HbA1c, tumor necrosis factor α, interleukin 6, HOMA-IR and QUICK index using correlation analysis (p zonulin levels were independently associated with insulin resistance (β = 0.024, p = 0.005). In logistic regression analysis, zonulin levels were an independent predictor of type 2 diabetes (OR = 1.080, p = 0.037). Serum zonulin levels are significantly elevated in newly diagnosed Chinese Type 2 diabetes patients, and are associated with dyslipidemia, inflammation and insulin resistance, indicating a potential role of zonulin in the pathophysiology of type 2 diabetes in Chinese. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Tissue sterol composition in Atlantic salmon (Salmo salar L.) depends on the dietary cholesterol content and on the dietary phytosterol:cholesterol ratio, but not on the dietary phytosterol content.

    Science.gov (United States)

    Sissener, Nini H; Rosenlund, Grethe; Stubhaug, Ingunn; Liland, Nina S

    2018-03-01

    The aim of the study was to investigate how the dietary sterol composition, including cholesterol, phytosterol:cholesterol ratio and phytosterols, affect the absorption, biliary excretion, retention, tissue storage and distribution of cholesterol and individual phytosterols in Atlantic salmon (Salmo salar L.). A feeding trial was conducted at two different temperatures (6 and 12°C), using nine different diets with varying contents of phytosterols, cholesterol and phytosterol:cholesterol ratio. Cholesterol retention values were clearly dependent on dietary cholesterol, and showed that fish fed cholesterol levels phytosterol:cholesterol ratio, but not on the dietary phytosterol content in itself. Campesterol and brassicasterol appeared to be the phytosterols with the highest intestinal absorption in Atlantic salmon. There was a high biliary excretion of campesterol, but not of brassicasterol, which accumulated in tissues and particularly in adipose tissue, with 2-fold-higher retention at 12°C compared with 6°C. Campesterol had the second highest retention of the phytosterols in the fish, but with no difference between the two temperatures. Other phytosterols had very low retention. Although brassicasterol retention decreased with increasing dietary phytosterols, campesterol retention decreased with increasing dietary cholesterol, indicating differences in the uptake mechanisms for these two sterols.

  14. Low serum cholesterol, serotonin metabolism, and violent death

    NARCIS (Netherlands)

    P.H.A. Steegmans

    1995-01-01

    textabstractA high serum cholesterol level is a well documented risk factor for atherosclerotic cardiovascular disease. Consequently, a low serum cholesterol has in general been viewed as beneficial. However, since the early 70s, results from several cohort studies and randomized trials have

  15. LDL cholesterol still a problem in old age?

    DEFF Research Database (Denmark)

    Postmus, Iris; Deelen, Joris; Sedaghat, Sanaz

    2015-01-01

    BACKGROUND: Observational studies in older subjects have shown no or inverse associations between cholesterol levels and mortality. However, in old age plasma low-density lipoprotein cholesterol (LDL-C) may not reflect the lifetime level due to reverse causality, and hence the risk may...

  16. Trans-intestinal cholesterol effl ux is not mediated through high density lipoprotein

    NARCIS (Netherlands)

    Vrins, C.L.; Ottenhoff, R.; Oever, K. van den; Waart, D.R. de; Kruyt, J.K.; Zhao, Y.; Berkel, T.J. van; Havekes, L.M.; Aerts, J.M.; Eck, M. van; Rensen, P.C.; Groen, A.K.

    2012-01-01

    Transintestinal cholesterol efflux (TICE) provides an attractive target to increase body cholesterol excretion. At present, the cholesterol donor responsible for direct delivery of plasma cholesterol to the intestine is unknown. In this study, we investigated the role of HDL in TICE. ATP-binding

  17. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine.

    Directory of Open Access Journals (Sweden)

    Takanari Nakano

    Full Text Available Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1, an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to

  18. Remnant cholesterol as a causal risk factor for ischemic heart disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Benn, Marianne; Tybjærg-Hansen, Anne

    2013-01-01

    The aim of this study was to test the hypothesis that elevated nonfasting remnant cholesterol is a causal risk factor for ischemic heart disease independent of reduced high-density lipoprotein (HDL) cholesterol.......The aim of this study was to test the hypothesis that elevated nonfasting remnant cholesterol is a causal risk factor for ischemic heart disease independent of reduced high-density lipoprotein (HDL) cholesterol....

  19. LDL cholesterol estimation in patients with the metabolic syndrome

    OpenAIRE

    Gazi, Irene; Tsimihodimos, Vasilis; Filippatos, Theodosios D; Saougos, Vasilios G; Bairaktari, Eleni T; Tselepis, Alexandros D; Elisaf, Moses

    2006-01-01

    Abstract Background The Friedewald formula (LDL-F) for the estimation of low-density lipoprotein (LDL) cholesterol concentrations is the most often used formula in clinical trials and clinical practice. However, much concern has been raised as to whether this formula is applicable in all patient populations such as the presence of chylomicronaemia and/or hypertriglyceridaemia. The aim of the present study was to evaluate various LDL cholesterol calculation formulas as well as LDL cholesterol ...

  20. Break the fast? Update on patient preparation for cholesterol testing.

    Science.gov (United States)

    Naugler, Christopher; Sidhu, Davinder

    2014-10-01

    To provide an update on the clinical usefulness of nonfasting versus fasting lipid testing to improve patient compliance, patient safety, and clinical assessment in cholesterol testing. Recommendations are identified as supported by good, fair, and poor (conflicting or insufficient) evidence, according to the classifications adopted by the Canadian Task Force on Preventive Health Care. Screening for dyslipidemia as a risk factor for coronary artery disease and management of lipid-lowering medications are key parts of primary care. Recent evidence has questioned the fasting requirement for lipid testing. In population-based studies, total cholesterol, high-density lipoprotein cholesterol, and non-low-density lipoprotein cholesterol all varied by an average of 2% with fasting status. For routine screening, nonfasting cholesterol measurement is now a reasonable alternative to a fasting cholesterol measurement. For patients with diabetes, the fasting requirement might be an important safety issue because of problems with hypoglycemia. For the monitoring of triglyceride and low-density lipoprotein cholesterol levels in patients taking lipid-lowering medications, fasting becomes more important. Fasting for routine lipid level determinations is largely unnecessary and unlikely to affect patient clinical risk stratification, while nonfasting measurement might improve patient compliance and safety. Copyright© the College of Family Physicians of Canada.

  1. Fabricating an Amperometric Cholesterol Biosensor by a Covalent Linkage between Poly(3-thiopheneacetic acid and Cholesterol Oxidase

    Directory of Open Access Journals (Sweden)

    Kuo-Chuan Ho

    2009-03-01

    Full Text Available In this study, use of the covalent enzyme immobilization method was proposed to attach cholesterol oxidase (ChO on a conducting polymer, poly(3-thiopheneacetic acid, [poly(3-TPAA]. Three red-orange poly(3-TPAA films, named electrodes A, B and C, were electropolymerized on a platinum electrode by applying a constant current of 1.5 mA, for 5, 20 and 100 s, respectively. Further, 1-ethyl-3-(3-dimethylamiopropylcarbodiimide hydrochloride (EDC‧HCl and N-hydroxysuccinimide (NHS were used to activate the free carboxylic groups of the conducting polymer. Afterwards, the amino groups of the cholesterol oxidase were linked on the activated groups to form peptide bonds. The best sensitivity obtained for electrode B is 4.49 mA M-1 cm-2,with a linear concentration ranging from 0 to 8 mM, which is suitable for the analysis of cholesterol in humans. The response time (t95 is between 70 and 90 s and the limit of detection is 0.42 mM, based on the signal to noise ratio equal to 3. The interference of species such as ascorbic acid and uric acid increased to 5.2 and 10.3% of the original current response, respectively, based on the current response of cholesterol (100%. With respect to the long-term stability, the sensing response retains 88% of the original current after 13 days.

  2. Fabricating an Amperometric Cholesterol Biosensor by a Covalent Linkage between Poly(3-thiopheneacetic acid) and Cholesterol Oxidase.

    Science.gov (United States)

    Nien, Po-Chin; Chen, Po-Yen; Ho, Kuo-Chuan

    2009-01-01

    In this study, use of the covalent enzyme immobilization method was proposed to attach cholesterol oxidase (ChO) on a conducting polymer, poly(3-thiopheneacetic acid), [poly(3-TPAA)]. Three red-orange poly(3-TPAA) films, named electrodes A, B and C, were electropolymerized on a platinum electrode by applying a constant current of 1.5 mA, for 5, 20 and 100 s, respectively. Further, 1-ethyl-3-(3-dimethylamiopropyl)carbodiimide hydrochloride (EDC · HCl) and N-hydroxysuccinimide (NHS) were used to activate the free carboxylic groups of the conducting polymer. Afterwards, the amino groups of the cholesterol oxidase were linked on the activated groups to form peptide bonds. The best sensitivity obtained for electrode B is 4.49 mA M(-1) cm(-2), with a linear concentration ranging from 0 to 8 mM, which is suitable for the analysis of cholesterol in humans. The response time (t(95)) is between 70 and 90 s and the limit of detection is 0.42 mM, based on the signal to noise ratio equal to 3. The interference of species such as ascorbic acid and uric acid increased to 5.2 and 10.3% of the original current response, respectively, based on the current response of cholesterol (100%). With respect to the long-term stability, the sensing response retains 88% of the original current after 13 days.

  3. Rat-liver cholesterol 7α-hydroxylase. Pt. 1

    International Nuclear Information System (INIS)

    Cantfort, J. van; Renson, J.; Gielen, J.

    1975-01-01

    A new assay is described to measure the activity of cholesterol 7α-hydroxylase and compared to the conventional 14 C method used by other investigators. This method is based on the mechanism of the enzymic hydroxylation, i.e. a direct and stereospecific substitution of the 7α-hydrogen by a hydroxyl group. [7α- 3 H]cholesterol is incubated at 37 0 C and in the presence of molecular O 2 , in a medium buffered by potassium phosphate at pH 7.4 and containing liver microsomes (or 9,000 x g supernatant), NADPH, MgCl 2 and cysteamine. Tween-80 (1.5 mg/ml) is used to introduce enough substrate (300 μM) in the incubation mixture to saturate the ezyme (K(m) = 100 μM). Under these conditions the tritiated water released into the incubation medium reflects accurately the enzymic activity. The results obtained with this method are similar to the one obtained with a [4- 14 C]cholesterol technique (r = 0.96; P 3 H]cholesterol method is a complete independence from further metabolism of the first enzymic product, the 7α-hydroxycholesterol, the tritiated water representing the entire cholesterol 7α-hydroxylase activity. (orig.) [de

  4. Hepatic cholesterol ester hydrolase in human liver disease.

    Science.gov (United States)

    Simon, J B; Poon, R W

    1978-09-01

    Human liver contains an acid cholesterol ester hydrolase (CEH) of presumed lysosomal origin, but its significance is unknown. We developed a modified CEH radioassay suitable for needle biopsy specimens and measured hepatic activity of this enzyme in 69 patients undergoing percutaneous liver biopsy. Histologically normal livers hydrolyzed 5.80 +/- 0.78 SEM mumoles of cholesterol ester per hr per g of liver protein (n, 10). Values were similar in alcoholic liver disease (n, 17), obstructive jaundice (n, 9), and miscellaneous hepatic disorders (n, 21). In contrast, mean hepatic CEH activity was more than 3-fold elevated in 12 patients with acute hepatitis, 21.05 +/- 2.45 SEM mumoles per hr per g of protein (P less than 0.01). In 2 patients studied serially, CEH returned to normal as hepatitis resolved. CEH activity in all patients paralleled SGOT levels (r, 0.84; P less than 0.01). There was no correlation with serum levels of free or esterified cholesterol nor with serum activity of lecithin-cholesterol acyltransferase, the enzyme responsible for cholesterol esterification in plasma. These studies confirm the presence of CEH activity in human liver and show markedly increased activity in acute hepatitis. The pathogenesis and clinical significance of altered hepatic CEH activity in liver disease require further study.

  5. The Success Story of LDL Cholesterol Lowering.

    Science.gov (United States)

    Pedersen, Terje R

    2016-02-19

    We can look back at >100 years of cholesterol research that has brought medicine to a stage where people at risk of severe or fatal coronary heart disease have a much better prognosis than before. This progress has not come about without resistance. Perhaps one of the most debated topics in medicine, the cholesterol controversy, could only be brought to rest through the development of new clinical research methods that were capable of taking advantage of the amazing achievements in basic and pharmacological science after the second World War. It was only after understanding the biochemistry and physiology of cholesterol synthesis, transport and clearance from the blood that medicine could take advantage of drugs and diets to reduce the risk of atherosclerotic diseases. This review points to the highlights of the history of low-density lipoprotein-cholesterol lowering, with the discovery of the low-density lipoprotein receptor and its physiology and not only the development of statins as the stellar moments but also the development of clinical trial methodology as an effective tool to provide scientifically convincing evidence. © 2016 American Heart Association, Inc.

  6. Effect of cholesterol nucleation-promoting activity on cholesterol solubilization in model bile

    NARCIS (Netherlands)

    Groen, A. K.; Ottenhoff, R.; Jansen, P. L.; van Marle, J.; Tytgat, G. N.

    1989-01-01

    Human bile contains a factor with cholesterol nucleation-promoting activity that binds to concanavalin A-Sepharose. In this study we have investigated the effect of this activity on the dynamics of lipid solubilization in supersaturated model bile. A concanavalin A binding protein fraction of human

  7. Atherosclerosis in familial lines of pigeons fed exogenous cholesterol.

    Science.gov (United States)

    Patton, N M; Brown, R V; Middleton, C C

    1975-01-01

    Exogenous cholesterol was fed to F1 pigeons of high and low serum cholesterol differentiated lines of White Carneau and Racing Homer pigeons that had previously been developed by selection and positive assortive mating. The serum cholesterol response of the various high and low lines was dependent upon the breed and the amount of cholesterol in the diet. Racing Homer pigeons were found to be more resistant to aortic atherosclerosis and more susceptible to coronary atherosclerosis than White Carneau pigeons. Data from necropsy examinations showed significant differences in both aortic and coronary atherosclerosis between lines within the White Carneau breed, but no differences between lines of the Racing Homer breed. Mean organ weights for the 4 lines of pigeons were reported.

  8. Alpinumisoflavone and abyssinone V 4'-methylether derived from Erythrina lysistemon (Fabaceae) promote HDL-cholesterol synthesis and prevent cholesterol gallstone formation in ovariectomized rats.

    Science.gov (United States)

    Mvondo, Marie A; Njamen, Dieudonné; Kretzschmar, Georg; Imma Bader, Manuela; Tanee Fomum, Stephen; Wandji, Jean; Vollmer, Günter

    2015-07-01

    Erythrina lysistemon was found to improve lipid profile in ovariectomized rats. Alpinumisoflavone (AIF) and abyssinone V 4'-methylether (AME) derived from this plant induced analogous effects on lipid profile and decreased atherogenic risks. To highlight the molecular mechanism of action of these natural products, we evaluated their effects on the expression of some estrogen-sensitive genes associated with cholesterol synthesis (Esr1 and Apoa1) and cholesterol clearance (Ldlr, Scarb1 and Cyp7a1). Ovariectomized rats were subcutaneously treated for three consecutive days with either compound at the daily dose of 0.1, 1 and 10 mg/kg body weight (BW). Animals were sacrificed thereafter and their liver was collected. The mRNA of genes of interest was analysed by quantitative real-time polymerase chain reaction. Both compounds downregulated the mRNA expression of Esr1, a gene associated with cholesterogenesis and cholesterol gallstone formation. AME leaned the Apoa1/Scarb1 balance in favour of Apoa1, an effect promoting high-density lipoprotein (HDL)-cholesterol formation. It also upregulated the mRNA expression of Ldlr at 1 mg/kg/BW per day (25%) and 10 mg/kg/BW per day (133.17%), an effect favouring the clearance of low-density lipoprotein (LDL)-cholesterol. Both compounds may also promote the conversion of cholesterol into bile acids as they upregulated Cyp7a1 mRNA expression. AIF and AME atheroprotective effects may result from their ability to upregulate mechanisms promoting HDL-cholesterol and bile acid formation. © 2015 Royal Pharmaceutical Society.

  9. Exercise Enhances Whole-Body Cholesterol Turnover in Mice

    NARCIS (Netherlands)

    Meissner, Maxi; Havinga, Rick; Boverhof, Renze; Kema, Ido; Groen, Albert K.; Kuipers, Folkert

    MEISSNER, M., R. HAVINGA, R. BOVERHOF, I. KEMA, A. K. GROEN, and F. KUIPERS. Exercise Enhances Whole-Body Cholesterol Turnover in Mice. Med. Sci. Sports Exerc., Vol. 42, No. 8, pp. 1460-1468, 2010. Purpose: Regular exercise reduces cardiovascular risk in humans by reducing cholesterol levels, but

  10. Cholesterol Check (A Minute of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    Heart disease and stroke are among the leading causes of death in the U.S. One of the main risk factors is high blood cholesterol. In this podcast, Dr. Carla Mercado discusses the importance of a healthy diet and regular screening to prevent high blood cholesterol.

  11. Plasma cholesterol and sodium in some Nigerians | Ighoroje ...

    African Journals Online (AJOL)

    Cholesterol moderates the fluidity of cell membrane and this in turn controls the transmembrane movement of Na+. We have thus attempted to investigate the relationship of serum cholesterol and Na+ concentrations in some Nigerians. Blood samples were obtained from 122 healthy adult Nigerians and the plasma ...

  12. Fluorimetric determination of cholesterol in hypercholesterolemia serum

    Science.gov (United States)

    Lan, Xiufeng; Liu, Jiangang; Liu, Ying; Luo, Xiaosen; Lu, Jian; Ni, Xiaowu

    2005-01-01

    With the increase of people"s living standard and the changes of living form, the number of people who suffer from hypercholesterolemia is increasing. It is not only harmful to heart and blood vessel, but also leading to obstruction of cognition. The conventional blood detection technology has weakness such as complex operation, long detecting period, and bad visibility. In order to develop a new detection method that can checkout hypercholesterolemia conveniently, spectroscopy of cholesterol in hypercholesterolemia serum is obtained by the multifunctional grating spectrograph. The experiment results indicate that, under the excitation of light-emitting diode (LED) with the wavelength at 407 nm, the serum from normal human and the hypercholesterolemia serum emit different fluorescence spectra. The former can emit one fluorescence region with the peak locating at 516 nm while the latter can emit two more regions with peaks locating at 560 nm and 588 nm. Moreover, the fluorescence intensity of serum is non-linear increasing with the concentration of cholesterol increases when the concentration of cholesterol is lower than 13.8 mmol/L, and then, with the concentration of cholesterol increase, the fluorescence intensity decreases. However, the fluorescence intensity is still much higher than that of serum from normal human. Conclusions can be educed from the experiments: the intensity and the shape of fluorescence spectra of hypercholesterolemia serum are different of those of normal serum, from which the cholesterol abnormal in blood can be judged. The consequences in this paper may offer an experimental reference for the diagnosis of the hypercholesterolemia.

  13. Lipoprotein cholesterol uptake mediates upregulation of bile acid synthesis by increasing cholesterol 7a-hydroxylase but not sterol 27- hydroxylase gene expression in cultured rat hepatocytes.

    NARCIS (Netherlands)

    Post, S.M.; Twisk, J.W.R.; van der Fits, L.T.E.; Wit, E.C.M.; Hoekman, M.F.M.; Mager, W.H.; Princen, H.M.G.

    1999-01-01

    Lipoproteins may supply substrate for the formation of bile acids, and the amount of hepatic cholesterol can regulate bile-acid synthesis and increase cholesterol 7α-hydroxylase expression. However, the effect of lipoprotein cholesterol on sterol 27-hydroxylase expression and the role of different

  14. Cholesterol granuloma of the orbit: An atypical presentation

    Directory of Open Access Journals (Sweden)

    Syed A R Rizvi

    2014-01-01

    Full Text Available Cholesterol granuloma is a rare, well-defined lesion of the orbit. In the orbit, diploe of the frontal bone is involved almost exclusively. We report an atypical case of cholesterol granuloma involving superomedial quadrant of orbit. A 42-year-old male presented with progressive, painless, proptosis with infero-temporal displacement of left eye. A large mass was felt beneath the bony orbital margin in the superomedial quadrant of the left orbit. Computerized tomography (CT scan revealed an extraconal superomedial, heterogeneous enhancing mass which was isodense with brain and pushing the globe inferolaterally and anteriorly. Excision biopsy of the tumor revealed the typical features of a cholesterol granuloma without any epithelial elements. Cholesterol granuloma of the orbit is a rare entity, but it can be diagnosed and differentiated from other lesions of the superior orbit by its characteristic clinical, radiological and histopathological features. An appropriate intervention in time carries a good prognosis with almost no recurrence.

  15. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-01

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  16. Rapeseed oil, olive oil, plant sterols, and cholesterol metabolism: an ileostomy study.

    Science.gov (United States)

    Ellegård, L; Andersson, H; Bosaeus, I

    2005-12-01

    To study whether olive oil and rapeseed oil have different effects on cholesterol metabolism. Short-term experimental study, with controlled diets. Outpatients at a metabolic-ward kitchen. A total of nine volunteers with conventional ileostomies. Two 3-day diet periods; controlled diet including 75 g of rapeseed oil or olive oil. Cholesterol absorption, ileal excretion of cholesterol, and bile acids. Serum levels of cholesterol and bile acid metabolites. Differences between diets evaluated with Wilcoxon's signed rank sum test. Rapeseed oil diet contained 326 mg more plant sterols than the olive oil diet. Rapeseed oil tended to decrease cholesterol absorption by 11% (P = 0.050), and increased excretion of cholesterol, bile acids, and their sum as sterols by 9% (P = 0.021), 32% (P = 0.038), and 51% (P = 0.011) compared to olive oil. A serum marker for bile acid synthesis (7alpha-hydroxy-4-cholesten-3-one) increased by 28% (P = 0.038) within 10 h of consumption, and serum cholesterol levels decreased by 7% (P = 0.024), whereas a serum marker for cholesterol synthesis (lathosterol) as well as serum levels of plant sterols remained unchanged. Rapeseed oil and olive oil have different effects on cholesterol metabolism. Rapeseed oil, tends to decrease cholesterol absorption, increases excretion of cholesterol and bile acids, increases serum marker of bile acid synthesis, and decreases serum levels of cholesterol compared to olive oil. This could in part be explained by different concentrations of natural plant sterols. Supported by the Göteborg Medical Society, the Swedish Medical Society, the Swedish Board for Agricultural Research (SJFR) grant 50.0444/98 and by University of Göteborg.

  17. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  18. Cholesterol-Binding Sites in GIRK Channels: The Devil is in the Details.

    Science.gov (United States)

    Rosenhouse-Dantsker, Avia

    2018-01-01

    In recent years, it has become evident that cholesterol plays a direct role in the modulation of a variety of ion channels. In most cases, cholesterol downregulates channel activity. In contrast, our earlier studies have demonstrated that atrial G protein inwardly rectifying potassium (GIRK) channels are upregulated by cholesterol. Recently, we have shown that hippocampal GIRK currents are also upregulated by cholesterol. A combined computational-experimental approach pointed to putative cholesterol-binding sites in the transmembrane domain of the GIRK2 channel, the primary subunit in hippocampal GIRK channels. In particular, the principal cholesterol-binding site was located in the center of the transmembrane domain in between the inner and outer α-helices of 2 adjacent subunits. Further studies pointed to a similar cholesterol-binding site in GIRK4, a major subunit in atrial GIRK channels. However, a close look at a sequence alignment of the transmembrane helices of the 2 channels reveals surprising differences among the residues that interact with the cholesterol molecule in these 2 channels. Here, we compare the residues that form putative cholesterol-binding sites in GIRK2 and GIRK4 and discuss the similarities and differences among them.

  19. Syntheses and anti-microbial evaluation of new quinoline scaffold derived pyrimidine derivatives

    Directory of Open Access Journals (Sweden)

    Shikha S. Dave

    2016-09-01

    Full Text Available A series of diversely substituted chalcones derived from a quinoline scaffold, e.g. (E-3-(2-chloroquinolin-3-yl-1-(2-hydroxyphenyl prop-2-en-1-one and its pyrimidine analogues e.g. 2-[2-amino-6-(2-chloroquinolin-3-yl-5,6-dihydropyrimidin-4-yl]phenols have been prepared by condensation of 2-chloro-3-formyl quinoline with differently substituted 2-hydroxy acetophenones and further treatment with guanidine carbonate. All the newly synthesized compounds have been evaluated for their in vitro growth inhibitory activity against Escherichia coli, Pseudomonas vulgaris, Bacillus subtilis, Staphylococcus aureus, Staphylococcus typhi, Candida albicans, Aspergillus niger and Pseudomonas chrysogenum.

  20. Ordering effects of cholesterol and its analogues

    DEFF Research Database (Denmark)

    Róg, Tomasz; Pasenkiewicz-Gierula, Marta; Vattulainen, Ilpo

    2009-01-01

    Without any exaggeration, cholesterol is one of the most important lipid species in eukaryotic cells. Its effects on cellular membranes and functions range from purely mechanistic to complex metabolic ones, besides which it is also a precursor of the sex hormones (steroids) and several vitamins....... In this review, we discuss the biophysical effects of cholesterol on the lipid bilayer, in particular the ordering and condensing effects, concentrating on the molecular level or inter-atomic interactions perspective, starting from two-component systems and proceeding to many-component ones e.g., modeling lipid...... rafts. Particular attention is paid to the roles of the methyl groups in the cholesterol ring system, and their possible biological function. Although our main research methodology is computer modeling, in this review we make extensive comparisons between experiments and different modeling approaches....

  1. Cholesterol: Top Five Foods to Lower Your Numbers

    Science.gov (United States)

    ... enough trans fats in a day to be unhealthy and increase cholesterol. If a food label lists "partially hydrogenated oil," it has trans fat, and it's best to avoid it. In addition to changing your diet, making other heart-healthy lifestyle changes is key to improving your cholesterol. Exercising, ...

  2. How to Lower Cholesterol

    Science.gov (United States)

    ... includes high triglyceride levels, low HDL (good) cholesterol levels, and being overweight with a large waist measurement (more than 40 inches for men and more than 35 inches for women). Physical Activity. Everyone should get regular physical activity (30 minutes ...

  3. Exchanging a few commercial, regularly consumed food items with improved fat quality reduces total cholesterol and LDL-cholesterol: a double-blind, randomised controlled trial.

    Science.gov (United States)

    Ulven, Stine M; Leder, Lena; Elind, Elisabeth; Ottestad, Inger; Christensen, Jacob J; Telle-Hansen, Vibeke H; Skjetne, Anne J; Raael, Ellen; Sheikh, Navida A; Holck, Marianne; Torvik, Kristin; Lamglait, Amandine; Thyholt, Kari; Byfuglien, Marte G; Granlund, Linda; Andersen, Lene F; Holven, Kirsten B

    2016-10-01

    The healthy Nordic diet has been previously shown to have health beneficial effects among subjects at risk of CVD. However, the extent of food changes needed to achieve these effects is less explored. The aim of the present study was to investigate the effects of exchanging a few commercially available, regularly consumed key food items (e.g. spread on bread, fat for cooking, cheese, bread and cereals) with improved fat quality on total cholesterol, LDL-cholesterol and inflammatory markers in a double-blind randomised, controlled trial. In total, 115 moderately hypercholesterolaemic, non-statin-treated adults (25-70 years) were randomly assigned to an experimental diet group (Ex-diet group) or control diet group (C-diet group) for 8 weeks with commercially available food items with different fatty acid composition (replacing SFA with mostly n-6 PUFA). In the Ex-diet group, serum total cholesterol (PLDL-cholesterol (Pcholesterol and LDL-cholesterol, respectively. No difference in change in plasma levels of inflammatory markers (high-sensitive C-reactive protein, IL-6, soluble TNF receptor 1 and interferon-γ) was observed between the groups. In conclusion, exchanging a few regularly consumed food items with improved fat quality reduces total cholesterol, with no negative effect on levels of inflammatory markers. This shows that an exchange of a few commercially available food items was easy and manageable and led to clinically relevant cholesterol reduction, potentially affecting future CVD risk.

  4. Thermodynamic study on competitive solubilization of cholesterol and beta-sitosterol in bile salt micelles.

    Science.gov (United States)

    Matsuoka, Keisuke; Hirosawa, Takashi; Honda, Chikako; Endo, Kazutoyo; Moroi, Yoshikiyo; Shibata, Osamu

    2007-07-01

    Differences in the preferential solubilization of cholesterol and competitive solubilizates (beta-sitosterol and aromatic compounds) in bile salt micelles was systematically studied by changing the molar ratio of cholesterol to competitive solubilizates. The cholesterol solubility in a mixed binary system (cholesterol and beta-sitosterol) was almost half that of the cholesterol alone system, regardless of the excess beta-sitosterol quantity added. On the other hand, the mutual solubilities of cholesterol and pyrene were not inhibited by their presence in binary mixed crystals. Finally, the cholesterol solubility was measured by changing the alkyl chain length of n-alkylbenzenes. When tetradecylbenzene was added to the bile solution, the cholesterol solubility decreased slightly and was below the original cholesterol solubility. Based on Gibbs energy change (DeltaG degrees ) for solubilization, chemicals that inhibit cholesterol solubility in their combined crystal systems showed a larger negative DeltaG degrees value than cholesterol alone.

  5. Viral MicroRNAs Repress the Cholesterol Pathway, and 25-Hydroxycholesterol Inhibits Infection.

    Science.gov (United States)

    Serquiña, Anna K P; Kambach, Diane M; Sarker, Ontara; Ziegelbauer, Joseph M

    2017-07-11

    From various screens, we found that Kaposi's sarcoma-associated herpesvirus (KSHV) viral microRNAs (miRNAs) target several enzymes in the mevalonate/cholesterol pathway. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR [a rate-limiting step in the mevalonate pathway]), and farnesyl-diphosphate farnesyltransferase 1 (FDFT1 [a committed step in the cholesterol branch]) are repressed by multiple KSHV miRNAs. Transfection of viral miRNA mimics in primary endothelial cells (human umbilical vein endothelial cells [HUVECs]) is sufficient to reduce intracellular cholesterol levels; however, small interfering RNAs (siRNAs) targeting only HMGCS1 did not reduce cholesterol levels. This suggests that multiple targets are needed to perturb this tightly regulated pathway. We also report here that cholesterol levels were decreased in de novo -infected HUVECs after 7 days. This reduction is at least partially due to viral miRNAs, since the mutant form of KSHV lacking 10 of the 12 miRNA genes had increased cholesterol compared to wild-type infections. We hypothesized that KSHV is downregulating cholesterol to suppress the antiviral response by a modified form of cholesterol, 25-hydroxycholesterol (25HC). We found that the cholesterol 25-hydroxylase (CH25H) gene, which is responsible for generating 25HC, had increased expression in de novo -infected HUVECs but was strongly suppressed in long-term latently infected cell lines. We found that 25HC inhibits KSHV infection when added exogenously prior to de novo infection. In conclusion, we found that multiple KSHV viral miRNAs target enzymes in the mevalonate pathway to modulate cholesterol in infected cells during latency. This repression of cholesterol levels could potentially be beneficial to viral infection by decreasing the levels of 25HC. IMPORTANCE A subset of viruses express unique microRNAs (miRNAs), which act like cellular miRNAs to generally repress host gene

  6. Association between blood cholesterol level with periodontal status of coronary heart disease patients

    Science.gov (United States)

    Valensia, Rosy; Masulili, Sri Lelyati C.; Lessang, Robert; Radi, Basuni

    2017-02-01

    Coronary heart disease (CHD) is an abnormal narrowing of heart arteries associated with local accumulation of lipids, in the form of cholesterol and triglycerides. Periodontal disease is a chronic inflammatory that suggests link to the development of CHD. In periodontitis have been reported changes in lipid profile, include increased of cholesterol levels of blood. Objective: to analyse correlation between blood cholesterol level with periodontal status of CHD and non CHD subjects. Methods: Periodontal status and blood cholesterol level of 60 CHD and 40 non CHD subjects was measured. Result: Blood cholesterol level in CHD subjects differs from non CHD subjects (p=0.032). Blood cholesterol level correlates with pocket depth (p=0.003) and clinical attachment loss (CAL) (p=0.000) in CHD subjects. Blood cholesterol level correlates with pocket depth (p=0.010) in non CHD subjects. There is no significant correlation between blood cholesterol level and bleeding on probing (BOP) in CHD subjects. There is no significant correlation between blood cholesterol level with BOP and CAL in non CHD subjects. Conclusion: Blood cholesterol level in control group is higher than CHD patients. Blood cholesterol level positively associated with pocket depth (r=0.375) and CAL (r=0.450) in CHD patients. Blood cholesterol level is positively associated with pocket depth (r=0.404) in control group.

  7. Increased membrane cholesterol in lymphocytes diverts T-cells toward an inflammatory response.

    Directory of Open Access Journals (Sweden)

    Jacqueline Surls

    Full Text Available Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40-50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4(+Foxp3(+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response.

  8. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    Science.gov (United States)

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  9. The fate of chylomicron cholesterol in the rat. 1. research into the storing of chylomicrons (1961); Destinee du cholesterol des chylomicrons chez le rat. 1. recherches sur le stockage des chylomicrons (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, F; Maurice, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Rats conditioned to take their dally meal between midnight and 2 a.m. are given at midnight, by stomach tubing, 0,5 mg 4-{sup 14}C-cholesterol, and are sacrificed in the following hours. During the most active phase of intestinal absorption, specific radioactivities of free and esterified liver cholesterol and of serum cholesterol are practically equal. Consequently, captation of absorbed cholesterol by the liver is not detectable. The results obtained exclude, on the other hand, the possibility that the lungs might play a similar role. The problem of the fate of chylomicron cholesterol is discussed. In order to avoid any ambiguity in this discussion, we have determined the concentration and specific radioactivity of free and esterified cholesterol in chylomicrons and lymph obtained by continuous drainage of chyle. 5 p. 100 of the radioactive cholesterol of chyle are found in lymph: in chylomicrons, the radioactivity of free cholesterol is higher than that of esterified cholesterol. (authors) [French] Des rats, conditionnes a ingerer leur repas quotidien entre minuit et 2 heures, recoivent a minuit, par tubage gastrique 0,5 mg de cholesterol 4-C{sup 14} et sont sacrifies dans les heures qui suivent. Pendant la phase la plus active de l'absorption intestinale les valeurs des radioactivites specifiques du cholesterol libre et esterifie du foie, et du cholesterol du serum sont pratiquement egales. En consequence, la captation par le foie du cholesterol d'absorption n'est pas decelable. Les resultats obtenus permettent, par contre, d'exclure la possibilite pour les poumons de jouer un role analogue. Le probleme de la destinee du cholesterol des chylomicrons est discute. Pour ecarter toute ambiguite dans cette discussion, on a determine la concentration et la radioactivite specifique du cholesterol libre et esterifie dans les chylomicrons et la lymphe obtenus par le drainage continu du chyle. 5 p. 100 du cholesterol radioactif du chyle se trouve dans la lymphe; dans les

  10. Lp(a-cholesterol is associated with HDL-cholesterol in overweight and obese African American children and is not an independent risk factor for CVD

    Directory of Open Access Journals (Sweden)

    Sharma Sushma

    2012-01-01

    Full Text Available Abstract Background The role of Lipoprotein (a cholesterol {Lp(a-C}as an additional and/or independent risk factor for cardiovascular disease (CVD is not clear. We evaluated the associations between Lp(a-C and other CVD risk factors including plasma lipoprotein concentrations and body fatness in overweight and obese African American children. Methods A cross-sectional analysis was carried out using data from a sample of 121 African American children aged 9-11 years with Body Mass Index (BMI's greater than the 85th percentile. Body height, weight and waist circumference (WC were measured. Fasting plasma concentrations of Lp(a-C, Total cholesterol (TC, High density lipoprotein cholesterol (HDL-C, Very low density lipoprotein cholesterol (VLDL-C, Intermediate density lipoprotein cholesterol (IDL-C, Low density lipoprotein cholesterol (LDL-C, and Triacylglycerides (TAG were analyzed using the vertical auto profile (VAP cholesterol method. Results After adjusting for child age, gender, and pubertal status, Lp(a-C was positively associated with both HDL-C and TC, and negatively associated with VLDL-C and TAG. Including BMIz and WC as additional covariates did not alter the direction of the relationships between Lp(a-C and the other lipoproteins. Finally, after adjusting for the other plasma lipoproteins, Lp(a-C remained strongly associated with HDL-C, whereas the associations of Lp(a-C with the other lipoproteins were not significant when HDL-C was simultaneously included in the regression models. Conclusions Lp(a-C was positively associated with HDL-C and this association is not influenced by other lipoprotein subclasses or by the degree of obesity. We conclude that Lp(a cholesterol is not an independent risk factor for CVD in African American children.

  11. Cholesterol regulates DAF-16 nuclear localization and fasting-induced longevity in C. elegans.

    Science.gov (United States)

    Ihara, Akiko; Uno, Masaharu; Miyatake, Koichi; Honjoh, Sakiko; Nishida, Eisuke

    2017-01-01

    Cholesterol has attracted significant attention as a possible lifespan regulator. It has been reported that serum cholesterol levels have an impact on mortality due to age-related disorders such as cardiovascular disease. Diet is also known to be an important lifespan regulator. Dietary restriction retards the onset of age-related diseases and extends lifespan in various organisms. Although cholesterol and dietary restriction are known to be lifespan regulators, it remains to be established whether cholesterol is involved in dietary restriction-induced longevity. Here, we show that cholesterol deprivation suppresses longevity induced by intermittent fasting, which is one of the dietary restriction regimens that effectively extend lifespan. We also found that cholesterol is required for the fasting-induced upregulation of transcriptional target genes such as the insulin/IGF-1 pathway effector DAF-16 and that cholesterol deprivation suppresses the long lifespan of the insulin/IGF-1 receptor daf-2 mutant. Remarkably, we found that cholesterol plays an important role in the fasting-induced nuclear accumulation of DAF-16. Moreover, knockdown of the cholesterol-binding protein NSBP-1, which has been shown to bind to DAF-16 in a cholesterol-dependent manner and to regulate DAF-16 activity, suppresses both fasting-induced longevity and DAF-16 nuclear accumulation. Furthermore, this suppression was not additive to the cholesterol deprivation-induced suppression, which suggests that NSBP-1 mediates, at least in part, the action of cholesterol to promote fasting-induced longevity and DAF-16 nuclear accumulation. These findings identify a novel role for cholesterol in the regulation of lifespan. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Characterization of starter kimchi fermented with Leuconostoc kimchii GJ2 and its cholesterol-lowering effects in rats fed a high-fat and high-cholesterol diet.

    Science.gov (United States)

    Jo, Se Yeon; Choi, Eun A; Lee, Jae Joon; Chang, Hae Choon

    2015-10-01

    The hypocholesterolemic effects of lactic acid bacteria and kimchi have been demonstrated previously. However, the kimchi fermentation process still relies on naturally present microorganisms. To obtain functional kimchi with consistent quality, we validated the capacity of Leuconostoc kimchii GJ2 as a starter culture to control kimchi fermentation. Moreover, cholesterol-lowering effects of starter kimchi as a health-promoting product were explored. Bacteriocin production by Lc. kimchii GJ2 was highly enhanced in the presence of 5% Lactobacillus sakei NJ1 cell fractions. When kimchi was fermented with bacteriocin-enhanced Lc. kimchii GJ2, Lc. kimchii GJ2 became overwhelmingly predominant (98.3%) at the end of fermentation and maintained its dominance (up to 82%) for 84 days. Growing as well as dead cells of Lc. kimchii GJ2 showed high cholesterol assimilation (in vitro). Rats were fed a high-fat and high-cholesterol diet supplemented with starter kimchi. The results showed that feeding of starter kimchi significantly reduced serum total cholesterol, triglyceride and low-density lipoprotein cholesterol levels. Additionally, atherogenic index, cardiac risk factor and triglyceride and total cholesterol levels in liver and epididymal adipose tissue decreased significantly in rats fed starter kimchi. Kimchi fermented with Lc. kimchii GJ2 as a starter culture has efficient cholesterol-lowering effects. © 2014 Society of Chemical Industry.

  13. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials.

    Science.gov (United States)

    Ho, Hoang V T; Sievenpiper, John L; Zurbau, Andreea; Blanco Mejia, Sonia; Jovanovski, Elena; Au-Yeung, Fei; Jenkins, Alexandra L; Vuksan, Vladimir

    2016-10-01

    Oats are a rich source of β-glucan, a viscous, soluble fibre recognised for its cholesterol-lowering properties, and are associated with reduced risk of CVD. Our objective was to conduct a systematic review and meta-analysis of randomised-controlled trials (RCT) investigating the cholesterol-lowering potential of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for the risk reduction of CVD. MEDLINE, Embase, CINAHL and Cochrane CENTRAL were searched. We included RCT of ≥3 weeks of follow-up, assessing the effect of diets enriched with oat β-glucan compared with controlled diets on LDL-cholesterol, non-HDL-cholesterol or apoB. Two independent reviewers extracted data and assessed study quality and risk of bias. Data were pooled using the generic inverse-variance method with random effects models and expressed as mean differences with 95 % CI. Heterogeneity was assessed by the Cochran's Q statistic and quantified by the I 2-statistic. In total, fifty-eight trials (n 3974) were included. A median dose of 3·5 g/d of oat β-glucan significantly lowered LDL-cholesterol (-0·19; 95 % CI -0·23, -0·14 mmol/l, Pcholesterol (-0·20; 95 % CI -0·26, -0·15 mmol/l, PLDL-cholesterol (I 2=79 %) and non-HDL-cholesterol (I 2=99 %). Pooled analyses showed that oat β-glucan has a lowering effect on LDL-cholesterol, non-HDL-cholesterol and apoB. Inclusion of oat-containing foods may be a strategy for achieving targets in CVD reduction.

  14. How well does cholesteryl hemisuccinate mimic cholesterol in saturated phospholipid bilayers?

    DEFF Research Database (Denmark)

    Kulig, W.; Tynkkynen, J.; Javanainen, M.

    2014-01-01

    Cholesteryl hemisuccinate is a detergent that is often used to replace cholesterol in crystallization of membrane proteins. Here we employ atomistic molecular dynamics simulations to characterize how well the properties of cholesteryl hemisuccinate actually match those of cholesterol in saturated...... protein-free lipid membranes. We show that the protonated form of cholesteryl hemisuccinate mimics many of the membrane properties of cholesterol quite well, while the deprotonated form of cholesteryl hemisuccinate is less convincing in this respect. Based on the results, we suggest that cholesteryl...... hemisuccinate in its protonated form is a quite faithful mimic of cholesterol for membrane protein crystallization, if specific cholesterol-protein interactions (not investigated here) are not playing a crucial role....

  15. Barley β-glucan reduces blood cholesterol levels via interrupting bile acid metabolism.

    Science.gov (United States)

    Wang, Yanan; Harding, Scott V; Thandapilly, Sijo J; Tosh, Susan M; Jones, Peter J H; Ames, Nancy P

    2017-11-01

    Underlying mechanisms responsible for the cholesterol-lowering effect of β-glucan have been proposed, yet have not been fully demonstrated. The primary aim of this study was to determine whether the consumption of barley β-glucan lowers cholesterol by affecting the cholesterol absorption, cholesterol synthesis or bile acid synthesis. In addition, this study was aimed to assess whether the underlying mechanisms are related to cholesterol 7α hydroxylase (CYP7A1) SNP rs3808607 as proposed by us earlier. In a controlled, randomised, cross-over study, participants with mild hypercholesterolaemia (n 30) were randomly assigned to receive breakfast containing 3 g high-molecular weight (HMW), 5 g low-molecular weight (LMW), 3 g LMW barley β-glucan or a control diet, each for 5 weeks. Cholesterol absorption was determined by assessing the enrichment of circulating 13C-cholesterol over 96 h following oral administration; fractional rate of synthesis for cholesterol was assessed by measuring the incorporation rate of 2H derived from deuterium oxide within the body water pool into the erythrocyte cholesterol pool over 24 h; bile acid synthesis was determined by measuring serum 7α-hydroxy-4-cholesten-3-one concentrations. Consumption of 3 g HMW β-glucan decreased total cholesterol (TC) levels (P=0·029), but did not affect cholesterol absorption (P=0·25) or cholesterol synthesis (P=0·14). Increased bile acid synthesis after consumption of 3 g HMW β-glucan was observed in all participants (P=0·049), and more pronounced in individuals carrying homozygous G of rs3808607 (P=0·033). In addition, a linear relationship between log (viscosity) of β-glucan and serum 7α-HC concentration was observed in homozygous G allele carriers. Results indicate that increased bile acid synthesis rather than inhibition of cholesterol absorption or synthesis may be responsible for the cholesterol-lowering effect of barley β-glucan. The pronounced TC reduction in G allele carriers of rs

  16. Apolipoprotein e genotype, plasma cholesterol, and cancer: a Mendelian randomization study.

    LENUS (Irish Health Repository)

    Trompet, Stella

    2009-12-01

    Observational studies have shown an association between low plasma cholesterol levels and increased risk of cancer, whereas most randomized clinical trials involving cholesterol-lowering medications have not shown this association. Between 1997 and 2002, the authors assessed the association between plasma cholesterol levels and cancer risk, free from confounding and reverse causality, in a Mendelian randomization study using apolipoprotein E (ApoE) genotype. ApoE genotype, plasma cholesterol levels, and cancer incidence and mortality were measured during a 3-year follow-up period among 2,913 participants in the Prospective Study of Pravastatin in the Elderly at Risk. Subjects within the lowest third of plasma cholesterol level at baseline had increased risks of cancer incidence (hazard ratio (HR) = 1.90, 95% confidence interval (CI): 1.34, 2.70) and cancer mortality (HR = 2.03, 95% CI: 1.23, 3.34) relative to subjects within the highest third of plasma cholesterol. However, carriers of the ApoE2 genotype (n = 332), who had 9% lower plasma cholesterol levels than carriers of the ApoE4 genotype (n = 635), did not have increased risk of cancer incidence (HR = 0.86, 95% CI: 0.50, 1.47) or cancer mortality (HR = 0.70, 95% CI: 0.30, 1.60) compared with ApoE4 carriers. These findings suggest that low cholesterol levels are not causally related to increased cancer risk.

  17. Current Views on Genetics and Epigenetics of Cholesterol Gallstone Disease

    Directory of Open Access Journals (Sweden)

    Agostino Di Ciaula

    2013-01-01

    Full Text Available Cholesterol gallstone disease, one of the commonest digestive diseases in western countries, is induced by an imbalance in cholesterol metabolism, which involves intestinal absorption, hepatic biosynthesis, and biliary output of cholesterol, and its conversion to bile acids. Several components of the metabolic syndrome (e.g., obesity, type 2 diabetes, dyslipidemia, and hyperinsulinemia are also well-known risk factors for gallstones, suggesting the existence of interplay between common pathophysiological pathways influenced by insulin resistance, genetic, epigenetic, and environmental factors. Cholesterol gallstones may be enhanced, at least in part, by the abnormal expression of a set of the genes that affect cholesterol homeostasis and lead to insulin resistance. Additionally, epigenetic mechanisms (mainly DNA methylation, histone acetylation/deacetylation, and noncoding microRNAs may modify gene expression in the absence of an altered DNA sequence, in response to different lithogenic environmental stimuli, such as diet, lifestyle, pollutants, also occurring in utero before birth. In this review, we will comment on various steps of the pathogenesis of cholesterol gallstones and interaction between environmental and genetic factors. The epigenomic approach may offer new options for therapy of gallstones and better possibilities for primary prevention in subjects at risk.

  18. Impact of Dietary Cholesterol on the Pathophysiology of Infectious and Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Catherine J. Andersen

    2018-06-01

    Full Text Available Cellular cholesterol metabolism, lipid raft formation, and lipoprotein interactions contribute to the regulation of immune-mediated inflammation and response to pathogens. Lipid pathways have been implicated in the pathogenesis of bacterial and viral infections, whereas altered lipid metabolism may contribute to immune dysfunction in autoimmune diseases, such as systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. Interestingly, dietary cholesterol may exert protective or detrimental effects on risk, progression, and treatment of different infectious and autoimmune diseases, although current findings suggest that these effects are variable across populations and different diseases. Research evaluating the effects of dietary cholesterol, often provided by eggs or as a component of Western-style diets, demonstrates that cholesterol-rich dietary patterns affect markers of immune inflammation and cellular cholesterol metabolism, while additionally modulating lipoprotein profiles and functional properties of HDL. Further, cholesterol-rich diets appear to differentially impact immunomodulatory lipid pathways across human populations of variable metabolic status, suggesting that these complex mechanisms may underlie the relationship between dietary cholesterol and immunity. Given the Dietary Guidelines for Americans 2015–2020 revision to no longer include limitations on dietary cholesterol, evaluation of dietary cholesterol recommendations beyond the context of cardiovascular disease risk is particularly timely. This review provides a comprehensive and comparative analysis of significant and controversial studies on the role of dietary cholesterol and lipid metabolism in the pathophysiology of infectious disease and autoimmune disorders, highlighting the need for further investigation in this developing area of research.

  19. Cholesterol can modulate mitochondrial aquaporin-8 expression in human hepatic cells.

    Science.gov (United States)

    Danielli, Mauro; Capiglioni, Alejo M; Marrone, Julieta; Calamita, Giuseppe; Marinelli, Raúl A

    2017-05-01

    Hepatocyte mitochondrial aquaporin-8 (mtAQP8) works as a multifunctional membrane channel protein that facilitates the uptake of ammonia for its detoxification to urea as well as the mitochondrial release of hydrogen peroxide. Since early oligonucleotide microarray studies in liver of cholesterol-fed mice showed an AQP8 downregulation, we tested whether alterations of cholesterol content per se modulate mtAQP8 expression in human hepatocyte-derived Huh-7 cells. Cholesterol loading with methyl-β-cyclodextrin (mβCD):cholesterol complexes downregulated the proteolytic activation of cholesterol-responsive sterol regulatory element-binding protein (SREBP) transcriptions factors 1 and 2, and the expression of the target gene 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under such conditions, mtAQP8 mRNA and protein expressions were significantly reduced. In contrast, cholesterol depletion using mβCD alone increased SREBP-1 and 2 activation and upregulated HMGCR and mtAQP8 mRNA and protein expressions. The results suggest that cholesterol can regulate transcriptionally human hepatocyte mtAQP8 expression likely via SREBPs. The functional implications of our findings are discussed. © 2017 IUBMB Life, 69(5):341-346, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  20. PPAR{gamma} regulates the expression of cholesterol metabolism genes in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S. [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Department of Microbiology and Immunology, East Carolina University (United States)

    2010-03-19

    Peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPAR{gamma} has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPAR{gamma} regulates cholesterol influx, efflux, and metabolism. PPAR{gamma} promotes cholesterol efflux through the liver X receptor-alpha (LXR{alpha}) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPAR{gamma} knockout (PPAR{gamma} KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXR{alpha} and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPAR{gamma} would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPAR{gamma}) to restore PPAR{gamma} expression in the alveolar macrophages of PPAR{gamma} KO mice. Our results show that the alveolar macrophages of PPAR{gamma} KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPAR{gamma} (1) induced transcription of LXR{alpha} and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPAR{gamma} regulates cholesterol metabolism in alveolar macrophages.