WorldWideScience

Sample records for newly generated waste

  1. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  2. Los Alamos Plutonium Facility newly generated TRU waste certification

    International Nuclear Information System (INIS)

    Gruetzmacher, K.; Montoya, A.; Sinkule, B.; Maez, M.

    1997-01-01

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory's (LANL's) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from expensive characterization activities such as those associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form

  3. Certification document for newly generated contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Box, W.D.; Setaro, J.

    1984-01-01

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP

  4. Westinghouse Hanford Company plan for certifying newly generated contact-handled transuranic waste for emplacement in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Sheehan, J.S.

    1992-07-01

    Westinghouse Hanford Company (Westinghouse Hanford) currently manages an interim storage site for Westinghouse Hanford and non-Westinghouse Hanford-generated transuranic (TRU) waste and operates TRU waste generating facilities within the Hanford Site in Washington State. Approval has been received from the Waste Acceptance Criteria Certification Committee (WACCC) and Westinghouse Hanford TRU waste generating facilities to certify newly generated contact-handled TRU (CH-TRU) solid waste to meet the Waste Acceptance Criteria (WAC). This document describes the plan for certifying newly generated CH-TRU solid waste to meet the WAC requirements for storage at the Waste Isolation Pilot Plant (WIPP) site. Attached to this document are facility-specific certification plans for the Westinghouse Hanford TRU waste generators that have received WACCC approval. The certification plans describe operations that generate CH-TRU solid waste and the specific procedures by which these wastes will be certified and segregated from uncertified wastes at the generating facilities. All newly generated CH-TRU solid waste is being transferred to the Transuranic Storage and Assay Facility (TRUSAF) and/or a controlled storage facility. These facilities will store the waste until the certified TRU waste can be sent to the WIPP site and the non-certified TRU waste can be sent to the Waste Receiving and Processing Facility. All non-certifiable TRU waste will be segregated and clearly identified

  5. Planning for the Management and Disposition of Newly Generated TRU Waste from REDC

    International Nuclear Information System (INIS)

    Coffey, D. E.; Forrester, T. W.; Krause, T.

    2002-01-01

    This paper describes the waste characteristics of newly generated transuranic waste from the Radiochemical Engineering and Development Center at the Oak Ridge National Laboratory and the basic certification structure that will be proposed by the University of Tennessee-Battelle and Bechtel Jacobs Company LLC to the Waste Isolation Pilot Plant for this waste stream. The characterization approach uses information derived from the active production operations as acceptable knowledge for the Radiochemical Engineering and Development Center transuranic waste. The characterization approach includes smear data taken from processing and waste staging hot cells, as well as analytical data on product and liquid waste streams going to liquid waste disposal. Bechtel Jacobs Company and University of Tennessee-Battelle are currently developing the elements of a Waste Isolation Pilot Plant-compliant program with a plan to be certified by the Waste Isolation Pilot Plant for shipment of newly generated transuranic waste in the next few years. The current activities include developing interface plans, program documents, and waste stream specific procedures

  6. Guidelines for developing certification programs for newly generated TRU waste

    International Nuclear Information System (INIS)

    Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.; Geoffrion, R.R.

    1983-05-01

    These guidelines were prepared with direction from the US Department of Energy (DOE) Transuranic (TRU) Waste Management Program in support of the DOE effort to certify that newly generated TRU wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The guidelines provide instructions for generic Certification Program preparation for TRU-waste generators preparing site-specific Certification Programs in response to WIPP requirements. The guidelines address all major aspects of a Certification Program that are necessary to satisfy the WIPP Waste Acceptance Criteria and their associated Compliance Requirements and Certification Quality Assurance Requirements. The details of the major element of a Certification Program, namely, the Certification Plan, are described. The Certification Plan relies on supporting data and control documentation to provide a traceable, auditable account of certification activities. Examples of specific parts of the Certification Plan illustrate the recommended degree of detail. Also, a brief description of generic waste processes related to certification activities is included

  7. Savannah River Certification Plan for newly generated, contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Wierzbicki, K.S.

    1986-01-01

    This Certification Plan document describes the necessary processes and methods for certifying unclassified, newly generated, contact-handled solid transuranic (TRU) waste at the Savannah River Plant and Laboratory (SRP, SRL) to comply with the Waste Isolation Pilot Plant Waste Acceptance Criteria (WIPP-WAC). Section 2 contains the organizational structure as related to waste certification including a summary of functional responsibilities, levels of authority, and lines of communication of the various organizations involved in certification activities. Section 3 describes general plant operations and TRU waste generation. Included is a description of the TRU Waste classification system. Section 4 contains the SR site TRU Waste Quality Assurance Program Plan. Section 5 describes waste container procurement, inspection, and certification prior to being loaded with TRU waste. Certification of waste packages, after package closure in the waste generating areas, is described in Section 6. The packaging and certification of individual waste forms is described in Attachments 1-5. Included in each attachment is a description of controls used to ensure that waste packages meet all applicable waste form compliance requirements for shipment to the WIPP. 3 figs., 3 tabs

  8. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    International Nuclear Information System (INIS)

    Herbst, A.K.

    2000-01-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state

  9. Westinghouse Hanford Company plan for certifying newly generated contact -- handled transuranic waste. Revision 1

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Backlund, E.G.

    1995-09-01

    All transuranic (TRU) waste generators are required by US Department of Energy (DOE) Order 5820.2A to package their TRU waste in order to comply wit the Waste Isolation Pilot Plant (WIPP) -- Waste Acceptance Criteria (WAC) or keep non-certifiable containers segregated. The Westinghouse Hanford Company (WHC) Transuranic Waste Certification Plan was developed to ensure that TRU newly generated waste at WHC meets the DOE Order 5820.2A and the WHC-WAC which includes the State of Washington Department of Ecology -- Washington Administrative Code (DOE-WAC). The metho used at WHC to package TRU waste are described in sufficient detail to meet the regulations. This document is organized to provide a brief overview of waste generation operations at WHC. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. This plan describes how WHC complies with all applicable regulations and requirements set forth in the latest approved revision of WHC-EP-0063-4

  10. Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective

    International Nuclear Information System (INIS)

    Orchard, B.J.; Harvego, L.A.; Carlson, T.L.; Grant, R.P.

    2009-01-01

    The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation's expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answers to national infrastructure needs. As a result of the Laboratory's NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL's contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL's TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: (1

  11. TRU [transuranic] waste certification compliance requirements for acceptance of newly generated contact-handled wastes to be shipped to the Waste Isolation Pilot Plant: Revision 2

    International Nuclear Information System (INIS)

    1989-01-01

    Compliance requirements are presented for certifying that unclassified, newly generated (NG), contact-handled (CH) transuranic (TRU) solid wastes from defense programs meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). Where appropriate, transportation and interim storage requirements are incorporated; however, interim storage sites may have additional requirements consistent with these requirements. All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for stored or buried waste are not addressed in this document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig

  12. Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet

    International Nuclear Information System (INIS)

    Abotsi, G.M.K.; Bostick, D.T.; Beck, D.E.

    1996-05-01

    The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere

  13. CHARACTERIZATION OF CURRENTLY GENERATED TRANUSRANIC WASTE AT THE LOS ALAMOS NATIONAL LABORATORY'S PLUTONIUM PRODUCTION FACILITY

    International Nuclear Information System (INIS)

    Dodge, Robert L.; Montoya, Andy M.

    2003-01-01

    By the time the Waste Isolation Pilot Plant (WIPP) completes its Disposal Phase in FY 2034, the Department of Energy (DOE) will have disposed of approximately 109,378 cubic meters (m3) of Transuranic (TRU) waste in WIPP (1). If DOE adheres to its 2005 Pollution Prevention Goal of generating less than 141m3/yr of TRU waste, approximately 5000 m3 (4%) of that TRU waste will be newly generated (2). Because of the overwhelming majority (96%) of TRU waste destined for disposal at WIPP is legacy waste, the characterization and certification requirements were developed to resolve those issues related to legacy waste. Like many other DOE facilities Los Alamos National Laboratory (LANL) has a large volume (9,010m3) of legacy Transuranic Waste in storage (3). Unlike most DOE facilities LANL will generate approximately 140m3 of newly generated TRU waste each year3. LANL's certification program was established to meet the WIPP requirements for legacy waste and does not take advantage of the fundamental differences in waste knowledge between newly generated and legacy TRU waste

  14. Generational differences among newly licensed registered nurses.

    Science.gov (United States)

    Keepnews, David M; Brewer, Carol S; Kovner, Christine T; Shin, Juh Hyun

    2010-01-01

    Responses of 2369 newly licensed registered nurses from 3 generational cohorts-Baby Boomers, Generation X, and Generation Y-were studied to identify differences in their characteristics, work-related experiences, and attitudes. These responses revealed significant differences among generations in: job satisfaction, organizational commitment, work motivation, work-to-family conflict, family-to-work conflict, distributive justice, promotional opportunities, supervisory support, mentor support, procedural justice, and perceptions of local job opportunities. Health organizations and their leaders need to anticipate intergenerational differences among newly licensed nurses and should provide for supportive working environments that recognize those differences. Orientation and residency programs for newly licensed nurses should be tailored to the varying needs of different generations. Future research should focus on evaluating the effectiveness of orientation and residency programs with regard to different generations so that these programs can be tailored to meet the varying needs of newly licensed nurses at the start of their careers. Copyright 2010 Mosby, Inc. All rights reserved.

  15. Continuous organic waste digester and methane gas generator

    Energy Technology Data Exchange (ETDEWEB)

    Araneta, V.A.

    1979-01-01

    A patent on the construction of a utility model of an industrial product of a continuous organic-waste digester and methane-gas generator is described. It comprises an airtight chamber to receive slurry of organic waste; a gas-water scrubber to purge carbon dioxide, odor-omitting gases and froth or scrum from newly formed methane gas evolving from said slurry of organic wastes; and two dually functioning slurry-feed and -discharge pipes connected to a reversible pump. It has one pipe with an opening at the base of an airtight chamber and the other pipe with up-ended openings below the fluid level of the slurry to be accumulated in the airtight chamber.

  16. Time-series-based hybrid mathematical modelling method adapted to forecast automotive and medical waste generation: Case study of Lithuania.

    Science.gov (United States)

    Karpušenkaitė, Aistė; Ruzgas, Tomas; Denafas, Gintaras

    2018-05-01

    The aim of the study was to create a hybrid forecasting method that could produce higher accuracy forecasts than previously used 'pure' time series methods. Mentioned methods were already tested with total automotive waste, hazardous automotive waste, and total medical waste generation, but demonstrated at least a 6% error rate in different cases and efforts were made to decrease it even more. Newly developed hybrid models used a random start generation method to incorporate different time-series advantages and it helped to increase the accuracy of forecasts by 3%-4% in hazardous automotive waste and total medical waste generation cases; the new model did not increase the accuracy of total automotive waste generation forecasts. Developed models' abilities to forecast short- and mid-term forecasts were tested using prediction horizon.

  17. Implementation of SAP Waste Management System

    International Nuclear Information System (INIS)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-01-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  18. Training waste generators: The first responder in proper waste management

    International Nuclear Information System (INIS)

    Jones, E.

    1989-01-01

    Dealing with waste effectively requires a ''cradle to grave'' approach to waste management. The first step in that chain of custody is the waste generator. The waste generator plays the key role in the correct identification, packaging, and disposal of waste. The Technical Resources and Training Section at the Oak Ridge National Laboratory (ORNL) has developed several short training programs for waste generators. This training presents a consistent approach to proper handling of waste within the ORNL waste management system. This training has been developed for generators of solid low-level radioactive waste, hazardous and mixed waste, and transuranic waste. In addition to the above, a Waste Minimization training program has been developed for use by all organizations at ORNL who generate any type of hazardous waste. These training programs represent a combined effort of the training staff and the technical staff to assure that all ORNL staff accept their responsibility for handling all types of radioactive and hazardous wastes correctly from its generation to its disposal. 4 refs

  19. Waste generator services implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  20. Waste generator services implementation plan

    International Nuclear Information System (INIS)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999

  1. Characteristics of transuranic waste at Department of Energy sites

    International Nuclear Information System (INIS)

    Jensen, R.T.; Wilkinson, F.J. III.

    1983-05-01

    This document reports data and information on TRU waste from all DOE generating and storage sites. The geographical location of the sites is shown graphically. There are four major sections in this document. The first three cover the TRU waste groups known as Newly Generated, Stored, and Buried Wastes. Subsections are included under Newly Generated and Stored on contact-handled and remote-handled waste. These classifications of waste are defined, and the current or expected totals of each are given. Figure 1.3 shows the total amount of Buried and Stored TRU waste. Preparation of this document began in 1981, and most of the data are as of December 31, 1980. In a few cases data were reported to December 31, 1981, and these have been noted. The projections in the Newly Generated section were made, for the most part, at the end of 1981

  2. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  3. Reduced waste generation technical work plan

    International Nuclear Information System (INIS)

    1987-05-01

    The United States Department of Energy has established policies for avoiding plutonium losses to the waste streams and minimizing the generation of wastes produced at its nuclear facilities. This policy is evidenced in DOE Order 5820.2, which states ''Technical and administrative controls shall be directed towards reducing the gross volume of TRU waste generated and the amount of radioactivity in such waste.'' To comply with the DOE directive, the Defense Transuranic Waste Program (DTWP) supports and provides funding for specific research and development tasks at the various DOE sites to reduce the generation of waste. This document has been prepared to give an overview of current and past Reduced Waste Generation task activities which are to be based on technical and cost/benefit factors. The document is updated annually, or as needed, to reflect the status of program direction. Reduced Waste Generation (RWG) tasks encompass a wide range of goals which are basically oriented toward (1) avoiding the generation of waste, (2) changing processes or operations to reduce waste, (3) converting TRU waste into LLW by sorting or decontamination, and (4) reducing volumes through operations such as incineration or compaction

  4. Factors affecting the rural domestic waste generation

    Directory of Open Access Journals (Sweden)

    A.R. Darban Astane

    2017-12-01

    Full Text Available The current study was carried out to evaluate the quantity and quality of rural domestic waste generation and to identify the factors affecting it in rural areas of Khodabandeh county in Zanjan Province, Iran. Waste samplings consisted of 318 rural households in 11 villages. In order to evaluate the quality and quantity of the rural domestic waste, waste production was classified into 12 groups and 2 main groups of organic waste and solid waste. Moreover, kriging interpolation technique in ARC-GIS software was used to evaluate the spatial distribution of the generated domestic waste and ultimately multiple regression analysis was used to evaluate the factors affecting the generation of domestic waste. The results of this study showed that the average waste generated by each person was 0.588 kilograms per day. with the share of organic waste generated by each person being 0.409 kilograms per day and the share of solid waste generated by each person being 0.179 kilograms per day. The results from spatial distribution of waste generation showed a certain pattern in three groups and a higher rate of waste generation in the northern and northwestern parts, especially in the subdistrict. The results of multiple regression analysis showed that the households’ income, assets, age, and personal attitude are respectively the most important variables affecting waste generation. The housholds’ attitude and indigenous knowledge on efficient use of materials are also the key factors which can help reducing waste generation.

  5. Dynamics of radioactive waste generation

    International Nuclear Information System (INIS)

    Dogaru, Daniela; Virtopeanu, Cornelia; Ivan, Alexandrina

    2008-01-01

    In Romania there are in operation three facilities licensed for collection, treatment and storage of radioactive waste resulted from industry, research, medicine, and agriculture, named institutional radioactive waste. The repository, which is of near surface type, is designed for disposing institutional radioactive waste. The institutional radioactive wastes generated are allowed to be disposed into repository according to the waste acceptance criteria, defined for the disposal facility. The radioactive wastes which are not allowed for disposal are stored on the site of each facility which is special authorised for this. The paper describes the dynamics of generation of institutional waste in Romania, both for radioactive waste which are allowed to be disposed into repository and for radioactive waste which are not allowed to be disposed of. (authors)

  6. Waste Generation Overview, Course 23263

    International Nuclear Information System (INIS)

    Simpson, Lewis Edward

    2016-01-01

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identify the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.

  7. Waste Generation Overview, Course 23263

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-28

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identify the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.

  8. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    International Nuclear Information System (INIS)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2

  9. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    Implementation of a plan to charge waste management costs to the facility that generates such waste requires a long-term commitment and consistent administration. The benefit is that generators are provided the incentive to optimize waste management practices if the charges are appropriately applied. This paper summarizes (1) a plan to charge waste generators, (2) the administrative structure of the plan, (3) a comparison between the rate structure and changes in waste disposal operations, and (4) issues that have surfaced as the plan is implemented. 2 refs., 1 fig., 1 tab

  10. Systematic evaluation of options to avoid generation of noncertifiable transuranic (TRU) waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Boak, J.M.; Kosiewicz, S.T.; Triay, I.; Gruetzmacher, K.; Montoya, A.

    1998-03-01

    At present, >35% of the volume of newly generated transuranic (TRU) waste at Los Alamos National Laboratory is not certifiable for transport to the Waste Isolation Pilot Plant (WIPP). Noncertifiable waste would constitute 900--1,000 m 3 of the 2,600 m 3 of waste projected during the period of the Environmental Management (EM) Accelerated Cleanup: Focus on 2006 plan (DOE, 1997). Volume expansion of this waste to meet thermal limits would increase the shipped volume to ∼5,400 m 3 . This paper presents the results of efforts to define which TRU waste streams are noncertifiable at Los Alamos, and to prioritize site-specific options to reduce the volume of certifiable waste over the period of the EM Accelerated Cleanup Plan. A team of Los Alamos TRU waste generators and waste managers reviewed historic generation rates and thermal loads and current practices to estimate the projected volume and thermal load of TRU waste streams for Fiscal Years 1999--2006. These data defined four major problem TRU waste streams. Estimates were also made of the volume expansion that would be required to meet the permissible wattages for all waste. The four waste streams defined were: (1) 238 Pu-contaminated combustible waste from production of Radioactive Thermoelectric Generators (RTGs) with 238 Pu activity which exceeds allowable shipping limits by 10--100X. (2) 241 Am-contaminated cement waste from plutonium recovery processes (nitric and hydrochloric acid recovery) are estimated to exceed thermal limits by ∼3X. (3) 239 Pu-contaminated combustible waste, mainly organic waste materials contaminated with 239 Pu and 241 Am, is estimated to exceed thermal load requirements by a factor of ∼2X. (4) Oversized metal waste objects, (especially gloveboxes), cannot be shipped as is to WIPP because they will not fit in a standard waste box or drum

  11. Waste Generation in Denmark 1994-2005

    DEFF Research Database (Denmark)

    Brix, Louise Lykke; Bentzen, Jan Børsen

    In recent years the amount of waste generated by Danish firms has increased significantly. In the present analysis we use the decomposition analysis, which has been widely used in the energy economics literature to explain the mechanisms influencing energy consumption and CO2 emissions. In this p......In recent years the amount of waste generated by Danish firms has increased significantly. In the present analysis we use the decomposition analysis, which has been widely used in the energy economics literature to explain the mechanisms influencing energy consumption and CO2 emissions....... In this paper the methodology is transferred to the topic of waste generation and is used to analyse why the amount of business waste is increasing. The empirical application is related to data for the volumes of waste generated in the Danish economy for the main sectors as well as the manufacturing sector...... covering the time span 1994-2005 has been included. By means of the Log-Mean Divisia Index Method (LMDI) an algebraic decomposition of the data for the waste amounts generated is performed. This methodology separates the increases in waste amounts into effects related to economic activity, industrial...

  12. Estimation of construction and demolition waste using waste generation rates in Chennai, India.

    Science.gov (United States)

    Ram, V G; Kalidindi, Satyanarayana N

    2017-06-01

    A large amount of construction and demolition waste is being generated owing to rapid urbanisation in Indian cities. A reliable estimate of construction and demolition waste generation is essential to create awareness about this stream of solid waste among the government bodies in India. However, the required data to estimate construction and demolition waste generation in India are unavailable or not explicitly documented. This study proposed an approach to estimate construction and demolition waste generation using waste generation rates and demonstrated it by estimating construction and demolition waste generation in Chennai city. The demolition waste generation rates of primary materials were determined through regression analysis using waste generation data from 45 case studies. Materials, such as wood, electrical wires, doors, windows and reinforcement steel, were found to be salvaged and sold on the secondary market. Concrete and masonry debris were dumped in either landfills or unauthorised places. The total quantity of construction and demolition debris generated in Chennai city in 2013 was estimated to be 1.14 million tonnes. The proportion of masonry debris was found to be 76% of the total quantity of demolition debris. Construction and demolition debris forms about 36% of the total solid waste generated in Chennai city. A gross underestimation of construction and demolition waste generation in some earlier studies in India has also been shown. The methodology proposed could be utilised by government bodies, policymakers and researchers to generate reliable estimates of construction and demolition waste in other developing countries facing similar challenges of limited data availability.

  13. Municipal Solid Waste management

    OpenAIRE

    Mirakovski, Dejan; Hadzi-Nikolova, Marija; Doneva, Nikolinka

    2010-01-01

    Waste management covers newly generated waste or waste from an onging process. When steps to reduce or even eliminate waste are to be considered, it is imperative that considerations should include total oversight, technical and management services of the total process.From raw material to the final product this includes technical project management expertise, technical project review and pollution prevention technical support and advocacy.Waste management also includes handling of waste, in...

  14. Central waste complex interim safety basis

    International Nuclear Information System (INIS)

    Cain, F.G.

    1995-01-01

    This interim safety basis provides the necessary information to conclude that hazards at the Central Waste Complex are controlled and that current and planned activities at the CWC can be conducted safely. CWC is a multi-facility complex within the Solid Waste Management Complex that receives and stores most of the solid wastes generated and received at the Hanford Site. The solid wastes that will be handled at CWC include both currently stored and newly generated low-level waste, low-level mixed waste, contact-handled transuranic, and contact-handled TRU mixed waste

  15. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    International Nuclear Information System (INIS)

    1994-02-01

    This report is DOE's first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992

  16. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  17. Municipal solid waste generation in Kathmandu, Nepal.

    Science.gov (United States)

    Dangi, Mohan B; Pretz, Christopher R; Urynowicz, Michael A; Gerow, Kenneth G; Reddy, J M

    2011-01-01

    Waste stream characteristics must be understood to tackle waste management problems in Kathmandu Metropolitan City (KMC), Nepal. Three-stage stratified cluster sampling was used to evaluate solid waste data collected from 336 households in KMC. This information was combined with data collected regarding waste from restaurants, hotels, schools and streets. The study found that 497.3 g capita(-1) day(-1) of solid waste was generated from households and 48.5, 113.3 and 26.1 kg facility(-1) day(-1) of waste was generated from restaurants, hotels and schools, respectively. Street litter measured 69.3 metric tons day(-1). The average municipal solid waste generation rate was 523.8 metric tons day(-1) or 0.66 kg capita(-1) day(-1) as compared to the 320 metric tons day(-1) reported by the city. The coefficient of correlation between the number of people and the amount of waste produced was 0.94. Key household waste constituents included 71% organic wastes, 12% plastics, 7.5% paper and paper products, 5% dirt and construction debris and 1% hazardous wastes. Although the waste composition varied depending on the source, the composition analysis of waste from restaurants, hotels, schools and streets showed a high percentage of organic wastes. These numbers suggest a greater potential for recovery of organic wastes via composting and there is an opportunity for recycling. Because there is no previous inquiry of this scale in reporting comprehensive municipal solid waste generation in Nepal, this study can be treated as a baseline for other Nepalese municipalities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    The Department of Energy (DOE) has recognized the need for waste management that incorporates improved waste-handling techniques and more stringent regulatory requirements to prevent future liabilities such as Superfund sites. DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). This paper summarizes a plan to charge waste generators, the administrative structure of the plan, a comparison between the rate structure and changes in waste disposal operations, and issues that have surfaced as the plan is implemented

  19. Model for future waste generation

    Energy Technology Data Exchange (ETDEWEB)

    Sundqvist, Jan-Olov; Stenmarck, Aasa; Ekvall, Tomas

    2010-06-15

    The research presented in this report is part of the effort to estimate future Swedish waste quantities in the research programme Towards Sustainable Waste Management. More specifically, we estimate future waste coefficients that are designed to be fed into EMEC, which describes the Swedish economy in terms of 26 industrial sectors, a public sector, and households. Production in the model of industry and public sector requires input of labour, capital, energy, and other commodities. With waste-intensity coefficients added to each production parameter in each sector, EMEC can calculate the future waste quantities generated in different economic scenarios. To produce the waste-intensity coefficients, we make a survey of the current Swedish waste statistics. For each waste category from each sector we estimate whether the quantity depends primarily on the production in the sector, on the inputs of commodities, on the depreciation of capital goods, or on the size of the workforce in the sector. We calculate current waste-intensity coefficients by dividing the waste quantities by the parameter(s) to which they are assigned. We also present five different scenarios to describe how the waste intensity can develop until the year 2030. As far as possible and when deemed to be relevant, we have set the industrial waste generation to depend on the use of a commodity or an energy carrier. The quantity of spent vehicles and most equipment is set to depend on the depreciation of capital goods. Some wastes have been allocated to the staff, for example household waste from business. The quantities of wastes from households have a similar approach where every waste category is assigned to a combination of 26 different commodities

  20. Data analytics approach to create waste generation profiles for waste management and collection.

    Science.gov (United States)

    Niska, Harri; Serkkola, Ari

    2018-04-30

    Extensive monitoring data on waste generation is increasingly collected in order to implement cost-efficient and sustainable waste management operations. In addition, geospatial data from different registries of the society are opening for free usage. Novel data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. In this paper, a data-based approach based on the self-organizing map (SOM) and the k-means algorithm is developed for creating a set of waste generation type profiles. The approach is demonstrated using the extensive container-level waste weighting data collected in the metropolitan area of Helsinki, Finland. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information e.g. for the basis of tailored feedback services for waste producers and the planning and optimization of waste collection and recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Waste Generation Overview Refresher, Course 21464

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-13

    This course, Waste Generation Overview Refresher (COURSE 21464), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to- grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL.

  2. Annual report of waste generation and pollution prevention progress 1997

    International Nuclear Information System (INIS)

    1998-09-01

    This sixth Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 36 reporting sites from 1993 through 1997. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, to be achieved by December 31, 1999. Excluding sanitary waste, routine operations waste generation increased three percent from 1996 to 1997, and decreased 61 percent overall from 1993 to 1997. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1997 waste generation to the 1993 baseline. However, it is important to note that increases in low-level radioactive and low-level mixed waste generation could reverse this achievement. From 1996 to 1997, low-level radioactive waste generation increased 10 percent, and low-level mixed waste generation increased slightly. It is critical that DOE sites continue to reduce routine operations waste generation for all waste types, to ensure that DOE's Complex-Wide Waste Reduction Goals are achieved by December 31, 1999

  3. Combustion and fuel loading characteristics of Hanford Site transuranic solid waste

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1994-01-01

    The Waste Receiving and Processing (WRAP) Facility is being designed for construction in the north end of the Central Waste Complex. The WRAP Facility will receive, store, and process radioactive solid waste of both transuranic (TRU) and mixed waste (mixed radioactive-chemical waste) categories. Most of the waste is in 208-L (55-gal) steel drums. Other containers such as wood and steel boxes, and various sized drums will also be processed in the facility. The largest volume of waste and the type addressed in this report is TRU in 208-L (55-gal) drums that is scheduled to be processed in the Waste Receiving and Processing Facility Module 1 (WRAP 1). Half of the TRU waste processed by WRAP 1 is expected to be retrieved stored waste and the other half newly generated waste. Both the stored and new waste will be processed to certify it for permanent storage in the Waste Isolation Pilot Plant (WIPP) or disposal. The stored waste will go through a process of retrieval, examination, analysis, segregation, repackaging, relabeling, and documentation before certification and WIPP shipment. Newly generated waste should be much easier to process and certify. However, a substantial number of drums of both retrievable and newly generated waste will require temporary storage and handling in WRAP. Most of the TRU waste is combustible or has combustible components. Therefore, the presence of a substantial volume of drummed combustible waste raises concern about fire safety in WRAP and similar waste drum storage facilities. This report analyzes the fire related characteristics of the expected WRAP TRU waste stream

  4. Medical and Biohazardous Waste Generator's Guide (Revision 2)

    International Nuclear Information System (INIS)

    Waste Management Group

    2006-01-01

    These guidelines describe procedures to comply with all Federal and State laws and regulations and Lawrence Berkeley National Laboratory (LBNL) policy applicable to State-regulated medical and unregulated, but biohazardous, waste (medical/biohazardous waste). These guidelines apply to all LBNL personnel who: (1) generate and/or store medical/biohazardous waste, (2) supervise personnel who generate medical/biohazardous waste, or (3) manage a medical/biohazardous waste pickup location. Personnel generating biohazardous waste at the Joint Genome Institute/Production Genomics Facility (JGI/PGF) are referred to the guidelines contained in Section 9. Section 9 is the only part of these guidelines that apply to JGI/PGF. Medical/biohazardous waste referred to in this Web site includes biohazardous, sharps, pathological and liquid waste. Procedures for proper storage and disposal are summarized in the Solid Medical/Biohazardous Waste Disposal Procedures Chart. Contact the Waste Management Group at 486-7663 if you have any questions regarding medical/biohazardous waste management

  5. Charging for waste motivates generators to optimize waste control at the source

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1988-01-01

    The Department of Energy (DOE) has recognized the need for waste management that incorporates improved waste-handling techniques and more stringent regulatory requirements to prevent future liabilities such as Superfund sites. DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to generators creates an incentive to optimize processes so that less waste is produced, and it provides a basis for determining the cost effectiveness of capital improvements so that the mature phase of waste management can be attained. Improving waste management practices requires a long-range commitment and consistent administration. Making this commitment and providing adequate funding for proper waste disposal are most cost-effective measures than the alternative of paying for remedial actions after improper disposal. This paper summarizes a plan to charge waste generators, the administrative structure of the plan, a comparison between the rate structure and changes in waste disposal operations, and issues that have surfaced as the plan is implemented

  6. The UK waste input-output table: Linking waste generation to the UK economy.

    Science.gov (United States)

    Salemdeeb, Ramy; Al-Tabbaa, Abir; Reynolds, Christian

    2016-10-01

    In order to achieve a circular economy, there must be a greater understanding of the links between economic activity and waste generation. This study introduces the first version of the UK waste input-output table that could be used to quantify both direct and indirect waste arisings across the supply chain. The proposed waste input-output table features 21 industrial sectors and 34 waste types and is for the 2010 time-period. Using the waste input-output table, the study results quantitatively confirm that sectors with a long supply chain (i.e. manufacturing and services sectors) have higher indirect waste generation rates compared with industrial primary sectors (e.g. mining and quarrying) and sectors with a shorter supply chain (e.g. construction). Results also reveal that the construction, mining and quarrying sectors have the highest waste generation rates, 742 and 694 tonne per £1m of final demand, respectively. Owing to the aggregated format of the first version of the waste input-output, the model does not address the relationship between waste generation and recycling activities. Therefore, an updated version of the waste input-output table is expected be developed considering this issue. Consequently, the expanded model would lead to a better understanding of waste and resource flows in the supply chain. © The Author(s) 2016.

  7. Power generation from waste wood

    Energy Technology Data Exchange (ETDEWEB)

    Nitsche, H

    1980-04-18

    Since the energy crisis, power generation from waste wood has become increasingly important. The most profitable way to use waste wood in woodworking plants with an annual production of 100 to 150,000 m/sup 3/ solid measure of wood chips and bark is by combustion and thermal energy recovery. In plants with an annual production of 10,000 m/sup 3/ solid measure of wood chips and bark, electric power generation is a suitable application.

  8. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    International Nuclear Information System (INIS)

    Hladek, K.L.

    1997-01-01

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  9. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  10. Estimation of restaurant solid waste generation rates

    International Nuclear Information System (INIS)

    Heck, H.H.; Major, I.

    2002-01-01

    Most solid waste utilities try to create a billing schedule that is proportional to solid waste generation rates. This research was trying to determine if the current billing rate structure was appropriate or if a different rate structure should be implemented. A multiple regression model with forward stepwise addition was developed which accurately predicts weekly solid waste generation rates for restaurants. The model was based on a study of daily solid waste generation at twenty-one different businesses. The weight and volume of solid waste generated was measure daily for two weeks during the winter and two weeks during the summer. Researchers followed the collection truck and measured the volume and weight of the container contents. Data was collected on the following independent variables describing each establishment; weight of waste per collection, volume per collection, container utilization factor, building area, contract haulers bill, yearly property tax, yearly solid waste tax, average number of collections per week, type of restaurant, modal number of collections per week, storage container size, waste density, number of employees, number of hours open per week, and weekly collection capacity (collections per week times storage container size). Independent variables were added to the regression equation based on their partial correlation coefficient and confidence level. The regression equations developed had correlation coefficients of 0.87 to 1.00, which was much better than the correlation coefficient (0.84) of an existing model DeGeare and Ongerth (1971) and a correlation coefficient of 0.54 based on the current solid waste disposal tax. (author)

  11. Factors determining waste generation in Spanish towns and cities.

    Science.gov (United States)

    Prades, Miriam; Gallardo, Antonio; Ibàñez, Maria Victoria

    2015-01-01

    This paper analyzes the generation and composition of municipal solid waste in Spanish towns and cities with more than 5000 inhabitants, which altogether account for 87% of the Spanish population. To do so, the total composition and generation of municipal solid waste fractions were obtained from 135 towns and cities. Homogeneity tests revealed heterogeneity in the proportions of municipal solid waste fractions from one city to another. Statistical analyses identified significant differences in the generation of glass in cities of different sizes and in the generation of all fractions depending on the hydrographic area. Finally, linear regression models and residuals analysis were applied to analyze the effect of different demographic, geographic, and socioeconomic variables on the generation of waste fractions. The conclusions show that more densely populated towns, a hydrographic area, and cities with over 50,000 inhabitants have higher waste generation rates, while certain socioeconomic variables (people/car) decrease that generation. Other socioeconomic variables (foreigners and unemployment) show a positive and null influence on that waste generation, respectively.

  12. Second Generation Waste Package Design Study

    International Nuclear Information System (INIS)

    Armijo, J.S.; Misra, M.; Kar, Piyush

    2007-01-01

    The following describes the objectives of Project Activity 023 ''Second Generation Waste Package Design Study'' under DOE Cooperative Agreement DE-FC28-04RW12232. The objectives of this activity are: to review the current YMP baseline environment and establish corrosion test environments representative of the range of dry to intermittently wet conditions expected in the drifts as a function of time; to demonstrate the oxidation and corrosion resistance of A588 weathering steel and reference Alloy 22 samples in the representative dry to intermittently dry conditions; and to evaluate backfill and design features to improve the thermal performance analyses of the proposed second-generation waste packages using existing models developed at the University of Nevada, Reno(UNR). The work plan for this project activity consists of three major tasks: Task 1. Definition of expected worst-case environments (humidity, liquid composition and temperature) at waste package outer surfaces as a function of time, and comparison with environments defined in the YMP baseline; Task 2. Oxidation and corrosion tests of proposed second-generation outer container material; and Task 3. Second Generation waste package thermal analyses. Full funding was not provided for this project activity

  13. Study on reducing the generation of general waste

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Aoki, Isao; Watahiki, Masatoshi

    2000-04-01

    On August 1999, the Director of Tokai Work proposed an activity regarding recycling and reuse of general waste generated from Tokai Works. The activity was initiated by the Waste Management and Fuel Cycle Research Center, and is now being in progress through out the Tokai Works. In the course of this activity, Plutonium Fuel Center had settled the working Group and the issues related to the waste reductive have been examined. This report collects the problems that became obvious through the survey of existing segregation method, treatment process, and the amount of the waste generation, and accounts for the concrete methodology for the recycling and reuse of general waste. In order to reduce waste, it is necessary to aware of the facing issues and adopt the countermeasures proposed in this report whenever possible. The activity will then leads us to reduce waste generation, which in turn will enable us to make 100% waste recycling possible. (author)

  14. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site`s centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million.

  15. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site's centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million

  16. Long-term management USDOE transuranic waste

    International Nuclear Information System (INIS)

    Bennett, W.S.; Gilbert, K.V.; Lowrey, R.Y.

    1982-01-01

    Activities for permanent disposal of US DOE TRU waste are presently focused on newly generated and stored waste. The buried waste and contaminated soils pose no near term problem. Decisions on any possible actions for these wastes will be deferred until the newly generated and stored wastes are being placed into disposal on a routine basis. Several elements must be in place before such disposal can become routine. These elements consist of: a disposal facility; waste acceptance criteria; waste certification mechanisms; waste processing facilities; and a waste transportation system. Each of these elements has been the subject of considerable activity in the recent past. Progress and plans for each element are summarized. As of January 1981, DOE has 60,500 m 3 of waste classified as Transuranic waste (TRU) in retrievable storage, and projects that additional TRU waste will be generated at an average rate of 4500 m 3 per year for the next 10 years. Over 99% of this waste is contact handled, with the remainder being remote handled, i.e., surface radiation dose levels exceeding 200 mrem/h. An estimated 273,000 m 3 of TRU waste were placed in shallow land burial prior to establishment of the 1970 policy. In addition, large quantities of soil at DOE sites are contaminated with TRU elements due to disposal of liquid wastes and by contact of soil with solid, buried waste whose original containers are now badly degraded. Possibly as much as 10,000,000 m 3 of soil are contaminated above 10 nCi/gm. Less than 1,000,000 m 3 are estimated to be contaminated above 100 nCi/gm

  17. Just-in-time characterization and certification of DOE-generated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arrenholz, D.A.; Primozic, F.J. [Benchmark Environmental Corp., Albuquerque, NM (United States); Robinson, M.A. [Los Alamos National Lab., NM (United States)

    1995-12-31

    Transportation and disposal of wastes generated by Department of Energy (DOE) activities, including weapons production and decontamination and decommissioning (D&D) of facilities, require that wastes be certified as complying with various regulations and requirements. These certification requirements are typically summarized by disposal sites in their specific waste acceptance criteria. Although a large volume of DOE wastes have been generated by past activities and are presently in storage awaiting disposal, a significant volume of DOE wastes, particularly from D&D projects. have not yet been generated. To prepare DOE-generated wastes for disposal in an efficient manner. it is suggested that a program of just-in-time characterization and certification be adopted. The goal of just-in-time characterization and certification, which is based on the just-in-time manufacturing process, is to streamline the certification process by eliminating redundant layers of oversight and establishing pro-active waste management controls. Just-in-time characterization and certification would rely on a waste management system in which wastes are characterized at the point of generation, precertified as they are generated (i.e., without iterative inspections and tests subsequent to generation and storage), and certified at the point of shipment, ideally the loading dock of the building from which the wastes are generated. Waste storage would be limited to accumulating containers for cost-efficient transportation.

  18. Just-in-time characterization and certification of DOE-generated wastes

    International Nuclear Information System (INIS)

    Arrenholz, D.A.; Primozic, F.J.; Robinson, M.A.

    1995-01-01

    Transportation and disposal of wastes generated by Department of Energy (DOE) activities, including weapons production and decontamination and decommissioning (D ampersand D) of facilities, require that wastes be certified as complying with various regulations and requirements. These certification requirements are typically summarized by disposal sites in their specific waste acceptance criteria. Although a large volume of DOE wastes have been generated by past activities and are presently in storage awaiting disposal, a significant volume of DOE wastes, particularly from D ampersand D projects. have not yet been generated. To prepare DOE-generated wastes for disposal in an efficient manner. it is suggested that a program of just-in-time characterization and certification be adopted. The goal of just-in-time characterization and certification, which is based on the just-in-time manufacturing process, is to streamline the certification process by eliminating redundant layers of oversight and establishing pro-active waste management controls. Just-in-time characterization and certification would rely on a waste management system in which wastes are characterized at the point of generation, precertified as they are generated (i.e., without iterative inspections and tests subsequent to generation and storage), and certified at the point of shipment, ideally the loading dock of the building from which the wastes are generated. Waste storage would be limited to accumulating containers for cost-efficient transportation

  19. Radioactive waste assessment using 'minimum waste generation' scenario - summary report March 1984

    International Nuclear Information System (INIS)

    Richardson, J.A.; Goodill, D.R.; Tymons, B.J.

    1984-11-01

    This report describes an assessment of radioactive waste management arisings from a defined nuclear power generation - Scheme 1. Scheme 1 assumes a minimum waste generation scenario with raw waste arisings from 3 main groups; (i) existing and committed commercial reactors; (ii) fuel reprocessing plants, (iii) research, industry and medicine. No decommissioning wastes are considered except for arisings from the final fuel cores from decommissioned reactors. The study uses the SIMULATION2 code which models waste material flows through the system. With a knowledge of the accumulations and average production rates of the raw wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data bases for the inventory calculations and the assumptions concerning future operation of nuclear facilities were those current in 1983. Both the inventory data and plans for the future of existing nuclear installations have been updated since these calculations were completed. Therefore the results from this assessment do not represent the most up-to-date information available. The report does, however, illustrate the methodology of assessment and indicates the type of information that can be generated. (author)

  20. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    International Nuclear Information System (INIS)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature

  1. Solid waste generation in reprocessing nuclear fuel

    International Nuclear Information System (INIS)

    North, E.D.

    1975-01-01

    Estimates are made of the solid wastes generated annually from a 750-ton/year plant (such as the NFS West Valley plant): high-level waste, hulls, intermediate level waste, failed equipment, HEPA filters, spent solvent, alpha contaminated combustible waste, and low specific activity waste. The annual volume of each category is plotted versus the activity level

  2. A Survey of Municipal Solid Waste Generation in 22 Regions of Tehran With Solid Waste Reduction Approach

    Directory of Open Access Journals (Sweden)

    MA Abduli

    2015-07-01

    Methods: The study was a descriptive cross-sectional one conducted from 2010 to 2014. Relevant officials of the waste recovery in 22 regions of Tehran were approached in order to collect data about municipal solid waste generation through interviewing, filling out questionnaires, conducting field visits from Aradkooh Disposal and Processing Complex and collecting information on disposal and destiny of wastes. Then the data were compiled and analyzed. Results: Total solid waste generation in Tehran from 2010 to 2014 amounted to respectively 3389662, 3399344, 3449338 and 3245157 Metric Tons, categorized into three groups of municipal, companies and townships and hospital wastes. Most of the generated waste produced in Tehran was that of households and commercial (known as municipal waste from 22 Regions of Tehran. Based on the surveys conducted, per capita solid waste generation of 11 regions of Tehran ranged from 550 to 1000 grams and in other 11 ones from 1000 to 1521 grams per capita per day. The lowest and highest waste generation rate belonged respectively to region 13 with 556 grams and region 12 with 1521 grams per capita per day in 2011. Conclusion: Comparing per capita generation of municipal solid waste in different municipal regions in Tehran with maximum acceptable capacity of waste generation indicates the deviation of waste generation of all Tehran regions from the standard acceptable amount. Therefore, not only is it necessary to plan and take strategic measures to reduce Tehran waste generation but also these programs and measures should be specific to each region considering its specifications and solid waste quality and quantity.

  3. Solid waste generation and characterization in the University of Lagos for a sustainable waste management.

    Science.gov (United States)

    Adeniran, A E; Nubi, A T; Adelopo, A O

    2017-09-01

    Waste characterization is the first step to any successful waste management policy. In this paper, the characterization and the trend of solid waste generated in University of Lagos, Nigeria was carried out using ASTM D5231-92 and Resource Conservation Reservation Authority RCRA Waste Sampling Draft Technical Guidance methods. The recyclable potential of the waste is very high constituting about 75% of the total waste generated. The estimated average daily solid waste generation in Unilag Akoka campus was estimated to be 32.2tons. The solid waste characterization was found to be: polythene bags 24% (7.73tons/day), paper 15% (4.83tons/day), organic matters 15%, (4.83tons/day), plastic 9% (2.90tons/day), inert materials 8% (2.58tons/day), sanitary 7% (2.25tons/day), textile 7% (2.25tons/day), others 6% (1.93tons/day), leather 4% (1.29tons/day) metals 3% (0.97tons/day), glass 2% (0.64tons/day) and e-waste 0% (0.0tons/day). The volume and distribution of polythene bags generated on campus had a positive significant statistical correlation with the distribution of commercial and academic structures on campus. Waste management options to optimize reuse, recycling and reduce waste generation were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Impact of socioeconomic status on municipal solid waste generation rate.

    Science.gov (United States)

    Khan, D; Kumar, A; Samadder, S R

    2016-03-01

    The solid waste generation rate was expected to vary in different socioeconomic groups due to many environmental and social factors. This paper reports the assessment of solid waste generation based on different socioeconomic parameters like education, occupation, income of the family, number of family members etc. A questionnaire survey was conducted in the study area to identify the different socioeconomic groups that may affect the solid waste generation rate and composition. The average waste generated in the municipality is 0.41 kg/capita/day in which the maximum waste was found to be generated by lower middle socioeconomic group (LMSEG) with average waste generation of 0.46 kg/capita/day. Waste characterization indicated that there was no much difference in the composition of wastes among different socioeconomic groups except ash residue and plastic. Ash residue is found to increase as we move lower down the socioeconomic groups with maximum (31%) in lower socioeconomic group (LSEG). The study area is a coal based city hence application of coal and wood as fuel for cooking in the lower socioeconomic group is the reason for high amount of ash content. Plastic waste is maximum (15%) in higher socioeconomic group (HSEG) and minimum (1%) in LSEG. Food waste is a major component of generated waste in almost every socioeconomic group with maximum (38%) in case of HSEG and minimum (28%) in LSEG. This study provides new insights on the role of various socioeconomic parameters on generation of household wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Food waste from Danish households: Generation and composition

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2016-01-01

    Sustainable solutions for reducing food waste require a good understanding of food waste generation and composition, including avoidable and unavoidable food waste. We analysed 12 tonnes of residual household waste collected from 1474 households, without source segregation of organic waste. Food...... waste was divided into six fractions according to avoidability, suitability for home-composting and whether or not it was cooked, prepared or had been served within the household. The results showed that the residual household waste generation rate was 434 ± 18 kg per household per year, of which 183...... ± 10 kg per year was food waste. Unavoidable food waste amounted to 80 ± 6 kg per household per year, and avoidable food waste was 103 ± 9 kg per household per year. Food waste mass was influenced significantly by the number of occupants per household (household size) and the housing type. The results...

  6. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  7. Pathways for Disposal of Commercially-Generated Tritiated Waste

    International Nuclear Information System (INIS)

    Halverson, Nancy V.

    2016-01-01

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  8. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  9. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  10. Defense Waste Management Plan for buried transuranic-contaminated waste, transuranic-contaminated soil, and difficult-to-certify transuranic waste

    International Nuclear Information System (INIS)

    1987-06-01

    GAO recommended that DOE provide specific plans for permanent disposal of buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; cost estimates for permanent disposal of all TRU waste, including the options for the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; and specific discussions of environmental and safety issues for the permanent disposal of TRU waste. Purpose of this document is to respond to the GAO recommendations by providing plans and cost estimates for the long-term isolation of the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste. This report also provides cost estimates for processing and certifying stored and newly generated TRU waste, decontaminating and decommissioning TRU waste processing facilities, and interim operations

  11. Charging generators for waste management costs

    International Nuclear Information System (INIS)

    Berry, J.B.; Homan, F.J.

    1987-01-01

    DOE-Oak Ridge Operations (DOE-ORO) has recognized that an effective waste management program focuses on control at the source and that the burden for responsible waste management can be placed on generators by charging for waste management costs. The principle of including the waste management costs in the total cost of the product, even when the product is research and development, is being implemented at Oak Ridge National Laboratory (ORNL). Charging waste management costs to the pollutor creates an incentive to optimize processes so that less waste is produced and provides a basis for determining the cost effectiveness. 2 refs., 1 fig., 1 tab

  12. Annual report of waste generation and pollution prevention progress 1995

    International Nuclear Information System (INIS)

    1997-02-01

    This fourth Annual Report presents and analyzes 1995 DOE complex-wide waste generation and pollution prevention activities at 40 reporting sites in 25 States, and trends DOE waste generation from 1991 through 1995. DOE has established a 50% reduction goal (relative to the 1993 baseline) for routine operations radioactive and hazardous waste generation, due by December 31, 1999. Routine operations waste generation decreased 37% from 1994 to 1995, and 43% overall from 1993--1995

  13. Radioactive wastes with negligible heat generation suitable for disposal

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1987-01-01

    It is planned to dispose of radioactive wastes with negligible heat generation in the Konrad repository. Preliminary waste acceptance requirements are derived taking the results of site-specific safety assessments as a basis. These requirements must be fulfilled by the waste packages on delivery. The waste amounts which are currently stored and those anticipated up to the year 2000 are discussed. The disposability of these waste packages in the Konrad repository was evaluated. This examination reveals that basically almost all radioactive wastes with negligible heat generation can be accepted. (orig.) [de

  14. Developing models for the prediction of hospital healthcare waste generation rate.

    Science.gov (United States)

    Tesfahun, Esubalew; Kumie, Abera; Beyene, Abebe

    2016-01-01

    An increase in the number of health institutions, along with frequent use of disposable medical products, has contributed to the increase of healthcare waste generation rate. For proper handling of healthcare waste, it is crucial to predict the amount of waste generation beforehand. Predictive models can help to optimise healthcare waste management systems, set guidelines and evaluate the prevailing strategies for healthcare waste handling and disposal. However, there is no mathematical model developed for Ethiopian hospitals to predict healthcare waste generation rate. Therefore, the objective of this research was to develop models for the prediction of a healthcare waste generation rate. A longitudinal study design was used to generate long-term data on solid healthcare waste composition, generation rate and develop predictive models. The results revealed that the healthcare waste generation rate has a strong linear correlation with the number of inpatients (R(2) = 0.965), and a weak one with the number of outpatients (R(2) = 0.424). Statistical analysis was carried out to develop models for the prediction of the quantity of waste generated at each hospital (public, teaching and private). In these models, the number of inpatients and outpatients were revealed to be significant factors on the quantity of waste generated. The influence of the number of inpatients and outpatients treated varies at different hospitals. Therefore, different models were developed based on the types of hospitals. © The Author(s) 2015.

  15. Characterization of waste streams and suspect waste from largest Los Alamos National Laboratory generators

    International Nuclear Information System (INIS)

    Soukup, J.D.; Erpenbeck, G.J.

    1995-01-01

    A detailed waste stream characterization of 4 primary generators of low level waste at LANL was performed to aid in waste minimization efforts. Data was compiled for these four generators from 1988 to the present for analyses. Prior waste minimization efforts have focused on identifying waste stream processes and performing source materials substitutions or reductions where applicable. In this historical survey, the generators surveyed included an accelerator facility, the plutonium facility, a chemistry and metallurgy research facility, and a radiochemistry research facility. Of particular interest in waste minimization efforts was the composition of suspect low level waste in which no radioactivity is detected through initial survey. Ultimately, this waste is disposed of in the LANL low level permitted waste disposal pits (thus filling a scarce and expensive resource with sanitary waste). Detailed analyses of the waste streams from these 4 facilities, have revealed that suspect low level waste comprises approximately 50% of the low level waste by volume and 47% by weight. However, there are significant differences in suspect waste density when one considers the radioactive contamination. For the 2 facilities that deal primarily with beta emitting activation and spallation products (the radiochemistry and accelerator facilities), the suspect waste is much lower density than all low level waste coming from those facilities. For the 2 facilities that perform research on transuranics (the chemistry and metallurgy research and plutonium facilities), suspect waste is higher in density than all the low level waste from those facilities. It is theorized that the low density suspect waste is composed primarily of compactable lab trash, most of which is not contaminated but can be easily surveyed. The high density waste is theorized to be contaminated with alpha emitting radionuclides, and in this case, the suspect waste demonstrates fundamental limits in detection

  16. Waste container weighing data processing to create reliable information of household waste generation.

    Science.gov (United States)

    Korhonen, Pirjo; Kaila, Juha

    2015-05-01

    Household mixed waste container weighing data was processed by knowledge discovery and data mining techniques to create reliable information of household waste generation. The final data set included 27,865 weight measurements covering the whole year 2013 and it was selected from a database of Helsinki Region Environmental Services Authority, Finland. The data set contains mixed household waste arising in 6m(3) containers and it was processed identifying missing values and inconsistently low and high values as errors. The share of missing values and errors in the data set was 0.6%. This provides evidence that the waste weighing data gives reliable information of mixed waste generation at collection point level. Characteristic of mixed household waste arising at the waste collection point level is a wide variation between pickups. The seasonal variation pattern as a result of collective similarities in behaviour of households was clearly detected by smoothed medians of waste weight time series. The evaluation of the collection time series against the defined distribution range of pickup weights on the waste collection point level shows that 65% of the pickups were from collection points with optimally dimensioned container capacity and the collection points with over- and under-dimensioned container capacities were noted in 9.5% and 3.4% of all pickups, respectively. Occasional extra waste in containers occurred in 21.2% of the pickups indicating the irregular behaviour of individual households. The results of this analysis show that processing waste weighing data using knowledge discovery and data mining techniques provides trustworthy information of household waste generation and its variations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs

  18. Detailed adsorption mechanism of plasmid DNA by newly isolated cellulose from waste flower spikes of Thypa latifolia using quantum chemical calculations.

    Science.gov (United States)

    Mujtaba, Muhammad; Kaya, Murat; Akyuz, Lalehan; Erdonmez, Demet; Akyuz, Bahar; Sargin, Idris

    2017-09-01

    Current study was designed to use the newly obtained cellulose from waste flower spikes of Thypa latifolia plant for plasmid DNA adsorption. Cellulose was isolated according to a previously described method including acid and base treatment, and cellulose content was recorded as 17%. T. latifolia cellulose was physicochemically characterized via FT-IR, TGA and SEM techniques. Detailed mechanism of plasmid DNA adsorption by newly isolated cellulose was described using chemical quantum calculations. To check the effect of Cu ++ immobilization on the affinity of cellulose for plasmid DNA, copper ions were immobilized onto T. latifolia cellulose. pUC18 plasmid DNA was used for adsorption studies. Membranes prepared with only T. latifolia cellulose and Cu ++ immobilized T. latifolia cellulose revealed different adsorption ratios as 43.9 and 86.9% respectively. This newly isolated cellulose from waste flower spikes of T. latifolia can be utilized as a suitable carrier for plasmid DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Municipal solid waste generation and disposal in Robe town, Ethiopia.

    Science.gov (United States)

    Erasu, Duguma; Faye, Tesfaye; Kiros, Amaha; Balew, Abel

    2018-04-20

    The amount of solid waste generated in developing countries is rising from time to time due to economic growth, change in consumer behavior and lifestyles of people. But it is hard to manage and handle the increase of solid waste with existing waste management infrastructure. Thus, the management system of solid waste is very poor and become a serious problem. The main purpose of this study is to quantify the volume of solid waste generated and investigate factors affecting generation and disposal of wastes in the study area. The result of this study indicated that total waste generated from households was about 97.092kg/day.Furthermore, the study reveals that the solid waste generation rate of the town is 0.261kg/person/day.About 57.5% of solid waste is properly disposed of to landfill site whereas the remaining 42.5% is illegally dumped at the roadsides and open fields. Implication Statement Nowadays, in developing countries there is high concentration of people in urban areas and cause for the generation of enormous concentration of municipal waste in urban areas. Therefore this finding will be important for various policy makers and town planners. It may also serve as a benchmark for the municipal authorities of the town for whom the problem is still invisible and negligible and can push environmental protection authorities to reexamine the implementation of their policies and strategies with regard to the broader issues of human and environmental health condition of town dwellers.

  20. Newly invented biobased materials from low-carbon, diverted waste fibers: research methods, testing, and full-scale application in a case study structure

    Science.gov (United States)

    Julee A Herdt; John Hunt; Kellen Schauermann

    2016-01-01

    This project demonstrates newly invented, biobased construction materials developed by applying lowcarbon, biomass waste sources through the Authors’ engineered fiber processes and technology. If manufactured and applied large-scale the project inventions can divert large volumes of cellulose waste into high-performance, low embodied energy, environmental construction...

  1. Medical and Biohazardous Waste Generator's Guide (Revision2)

    Energy Technology Data Exchange (ETDEWEB)

    Waste Management Group

    2006-11-29

    These guidelines describe procedures to comply with all Federal and State laws and regulations and Lawrence Berkeley National Laboratory (LBNL) policy applicable to State-regulated medical and unregulated, but biohazardous, waste (medical/biohazardous waste). These guidelines apply to all LBNL personnel who: (1) generate and/or store medical/biohazardous waste, (2) supervise personnel who generate medical/biohazardous waste, or (3) manage a medical/biohazardous waste pickup location. Personnel generating biohazardous waste at the Joint Genome Institute/Production Genomics Facility (JGI/PGF) are referred to the guidelines contained in Section 9. Section 9 is the only part of these guidelines that apply to JGI/PGF. Medical/biohazardous waste referred to in this Web site includes biohazardous, sharps, pathological and liquid waste. Procedures for proper storage and disposal are summarized in the Solid Medical/Biohazardous Waste Disposal Procedures Chart. Contact the Waste Management Group at 486-7663 if you have any questions regarding medical/biohazardous waste management.

  2. Methodology for generating waste volume estimates

    International Nuclear Information System (INIS)

    Miller, J.Q.; Hale, T.; Miller, D.

    1991-09-01

    This document describes the methodology that will be used to calculate waste volume estimates for site characterization and remedial design/remedial action activities at each of the DOE Field Office, Oak Ridge (DOE-OR) facilities. This standardized methodology is designed to ensure consistency in waste estimating across the various sites and organizations that are involved in environmental restoration activities. The criteria and assumptions that are provided for generating these waste estimates will be implemented across all DOE-OR facilities and are subject to change based on comments received and actual waste volumes measured during future sampling and remediation activities. 7 figs., 8 tabs

  3. The S-curve for forecasting waste generation in construction projects.

    Science.gov (United States)

    Lu, Weisheng; Peng, Yi; Chen, Xi; Skitmore, Martin; Zhang, Xiaoling

    2016-10-01

    Forecasting construction waste generation is the yardstick of any effort by policy-makers, researchers, practitioners and the like to manage construction and demolition (C&D) waste. This paper develops and tests an S-curve model to indicate accumulative waste generation as a project progresses. Using 37,148 disposal records generated from 138 building projects in Hong Kong in four consecutive years from January 2011 to June 2015, a wide range of potential S-curve models are examined, and as a result, the formula that best fits the historical data set is found. The S-curve model is then further linked to project characteristics using artificial neural networks (ANNs) so that it can be used to forecast waste generation in future construction projects. It was found that, among the S-curve models, cumulative logistic distribution is the best formula to fit the historical data. Meanwhile, contract sum, location, public-private nature, and duration can be used to forecast construction waste generation. The study provides contractors with not only an S-curve model to forecast overall waste generation before a project commences, but also with a detailed baseline to benchmark and manage waste during the course of construction. The major contribution of this paper is to the body of knowledge in the field of construction waste generation forecasting. By examining it with an S-curve model, the study elevates construction waste management to a level equivalent to project cost management where the model has already been readily accepted as a standard tool. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    Science.gov (United States)

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1993-10-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL's Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL's research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL's acceptance criteria for hazardous chemical waste

  6. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1993-02-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This Paper describes a mathematical model design to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (author)

  7. Modelling gas generation in radioactive waste repositories

    International Nuclear Information System (INIS)

    Agg, P.J.

    1992-07-01

    In a repository containing low- and intermediate-level waste, gas generation will occur principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. This paper describes a mathematical model designed to address gas generation by these mechanisms. The metal corrosion model incorporates a three-stage process encompassing both aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. Gas concentrations have been measured over a period of three years in large-scale drum experiments designed to simulate repository conditions. Model predictions are confirmed against the experimental measurements, and a prediction is then made of gas concentrations and generation rates over an assessment period of one million years in a radioactive waste repository. (Author)

  8. Annual report of waste generation and pollution prevention progress 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities.

  9. Annual report of waste generation and pollution prevention progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments.

  10. Annual report of waste generation and pollution prevention progress 1999

    International Nuclear Information System (INIS)

    2000-01-01

    This Annual Report summarizes and highlights waste generation, waste reduction, pollution prevention accomplishments, and cost avoidance for 44 U.S. Department of Energy reporting sites for Calendar Year 1999. This section summarizes Calendar Year 1999 Complex-wide waste generation and pollution prevention accomplishments

  11. Methodology for quantification of waste generated in Spanish railway construction works

    International Nuclear Information System (INIS)

    Guzmán Báez, Ana de; Villoria Sáez, Paola; Río Merino, Mercedes del; García Navarro, Justo

    2012-01-01

    Highlights: ► Two equations for C and D waste estimation in railway construction works are developed. ► Mixed C and D waste is the most generated category during railway construction works. ► Tunnel construction is essential to quantify the waste generated during the works. ► There is a relationship between C and D waste generated and railway functional units. ► The methodology proposed can be used to obtain new constants for other areas. - Abstract: In the last years, the European Union (EU) has been focused on the reduction of construction and demolition (C and D) waste. Specifically, in 2006, Spain generated roughly 47 million tons of C and D waste, of which only 13.6% was recycled. This situation has lead to the drawing up of many regulations on C and D waste during the past years forcing EU countries to include new measures for waste prevention and recycling. Among these measures, the mandatory obligation to quantify the C and D waste expected to be originated during a construction project is mandated. However, limited data is available on civil engineering projects. Therefore, the aim of this research study is to improve C and D waste management in railway projects, by developing a model for C and D waste quantification. For this purpose, we develop two equations which estimate in advance the amount, both in weight and volume, of the C and D waste likely to be generated in railway construction projects, including the category of C and D waste generated for the entire project.

  12. Source segregation of food waste in office areas: Factors affecting waste generation rates and quality

    DEFF Research Database (Denmark)

    Edjabou, Vincent Maklawe Essonanawe; Boldrin, Alessio; Scheutz, Charlotte

    2015-01-01

    Existing legislation mandates that the amount of waste being recycled should be increased. Among others, in its Resource Strategy Plan, the Danish Government decided that at least 60% of food waste generated by the service sector, including in office areas, should be source-sorted and collected...... separately by 2018. To assess the achievability of these targets, source-sorted food waste and residual waste from office areas was collected and weighed on a daily basis during 133 working days. Waste composition analyses were conducted every week to investigate the efficiency of the source-sorting campaign...... and the purity of the source-sorted food waste. The moisture content of source-sorted food waste and residual waste fractions, and potential methane production from source-sorted food waste, was also investigated.Food waste generation equated to 23. ±. 5. kg/employee/year, of which 20. ±. 5. kg...

  13. Estimation of construction waste generation and management in Thailand.

    Science.gov (United States)

    Kofoworola, Oyeshola Femi; Gheewala, Shabbir H

    2009-02-01

    This study examines construction waste generation and management in Thailand. It is estimated that between 2002 and 2005, an average of 1.1 million tons of construction waste was generated per year in Thailand. This constitutes about 7.7% of the total amount of waste disposed in both landfills and open dumpsites annually during the same period. Although construction waste constitutes a major source of waste in terms of volume and weight, its management and recycling are yet to be effectively practiced in Thailand. Recently, the management of construction waste is being given attention due to its rapidly increasing unregulated dumping in undesignated areas, and recycling is being promoted as a method of managing this waste. If effectively implemented, its potential economic and social benefits are immense. It was estimated that between 70 and 4,000 jobs would have been created between 2002 and 2005, if all construction wastes in Thailand had been recycled. Additionally it would have contributed an average savings of about 3.0 x 10(5) GJ per year in the final energy consumed by the construction sector of the nation within the same period based on the recycling scenario analyzed. The current national integrated waste management plan could enhance the effective recycling of construction and demolition waste in Thailand when enforced. It is recommended that an inventory of all construction waste generated in the country be carried out in order to assess the feasibility of large scale recycling of construction and demolition waste.

  14. Gas generation from transuranic waste degradation: an interim assessment

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1979-10-01

    A review of all available, applicable data pertaining to gas generation from the degradation of transuranic waste matrix material and packaging is presented. Waste forms are representative of existing defense-related TRU wastes and include cellulosics, plastics, rubbers, concrete, process sludges, and mild steel. Degradation mechanisms studied were radiolysis, thermal, bacterial, and chemical corrosion. Gas generation rates are presented in terms of moles of gas produced per year per drum, and in G(gas) values for radiolytic degradation. Comparison of generation rates is made, as is a discussion of potential short- and long-term concerns. Techniques for reducing gas generation rates are discussed. 6 figures, 10 tables

  15. Review of the radioactive waste management system in Nigeria

    International Nuclear Information System (INIS)

    Ogundare, F O

    2003-01-01

    The management of radioactive waste in Nigeria from early 1960 to date is reviewed. As in many developing countries, waste management in Nigeria has been shown to be ineffective. The factors that are responsible for this ineffectiveness are identified and discussed. The steps being taken by and the opportunities available to the newly established Nigerian Nuclear Regulatory Authority towards addressing this problem of ineffectiveness are discussed. The efforts of this newly set up body towards managing the resultant radioactive wastes that will be generated during the use of a reactor and an accelerator that will soon be commissioned in Nigeria are also mentioned. Likely ways of further addressing the problems militating against waste management in developing countries are suggested. (review)

  16. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  17. Generation of electronic waste in India: Current scenario, dilemmas ...

    African Journals Online (AJOL)

    This paper tries to quantify the amount of E-waste generated in India with the related stakeholder involvement. Electronic waste (E-waste) or waste electrical and electronic equipments (WEEE), which is relatively a recent addition to the hazardous waste stream, is drawing rapid attention across the globe as the quantity ...

  18. Construction and demolition waste generation rates for high-rise buildings in Malaysia.

    Science.gov (United States)

    Mah, Chooi Mei; Fujiwara, Takeshi; Ho, Chin Siong

    2016-12-01

    Construction and demolition waste continues to sharply increase in step with the economic growth of less developed countries. Though the construction industry is large, it is composed of small firms with individual waste management practices, often leading to the deleterious environmental outcomes. Quantifying construction and demolition waste generation allows policy makers and stakeholders to understand the true internal and external costs of construction, providing a necessary foundation for waste management planning that may overcome deleterious environmental outcomes and may be both economically and environmentally optimal. This study offers a theoretical method for estimating the construction and demolition project waste generation rate by utilising available data, including waste disposal truck size and number, and waste volume and composition. This method is proposed as a less burdensome and more broadly applicable alternative, in contrast to waste estimation by on-site hand sorting and weighing. The developed method is applied to 11 projects across Malaysia as the case study. This study quantifies waste generation rate and illustrates the construction method in influencing the waste generation rate, estimating that the conventional construction method has a waste generation rate of 9.88 t 100 m -2 , the mixed-construction method has a waste generation rate of 3.29 t 100 m -2 , and demolition projects have a waste generation rate of 104.28 t 100 m -2 . © The Author(s) 2016.

  19. Hazardous waste database: Waste management policy implications for the US Department of Energy's Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Antonopoulos, A.A.; Hartmann, H.M.; Koebnick, B.; Dovel, M.; Stoll, P.W.

    1994-01-01

    The hazardous waste risk assessment modeling (HaWRAM) database is being developed to analyze the risk from treatment technology operations and potential transportation accidents associated with the hazardous waste management alternatives. These alternatives are being assessed in the Department of Energy's Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). To support the risk analysis, the current database contains complexwide detailed information on hazardous waste shipments from 45 Department of Energy installations during FY 1992. The database is currently being supplemented with newly acquired data. This enhancement will improve database information on operational hazardous waste generation rates, and the level and type of current on-site treatment at Department of Energy installations

  20. Radioactive Waste Management Produced from the Generator Tc-99m Products

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Affan Ahmad; Tuyono

    2012-01-01

    Generator Tc-99m product is used in hospitals will result in radioactive waste both solid waste in the form of a column compacted Tc-99m Generator, bottles vials and bottles of saline fluid path series: burning of solid waste in the form of paper straw, hand gloves, and cardboard (vial packing boxes and wrapping Generator) and liquid waste form leaching results lead pot and enclosure. So that these wastes pose no radiological consequences for both humans and the environment, it must be properly managed in accordance with the provisions. In order to realize these expectations should be made so that the radioactive waste management system can be handled effectively, optimal, economical, safe and secure and in accordance with applicable regulations. Management system is in it include: procedures for handling radioactive waste, solid waste compacted, burning of solid waste management, liquid waste handling, shipment of radioactive waste and determination of the amount of radiation doses received by workers who handle radioactive waste. (author)

  1. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste

  2. Audits of hazardous waste TSDFs let generators sleep easy

    International Nuclear Information System (INIS)

    Carr, F.H.

    1990-01-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them

  3. Annual report of waste generation and pollution prevention progress, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report.

  4. Annual report of waste generation and pollution prevention progress, 1994

    International Nuclear Information System (INIS)

    1996-09-01

    This Report summarizes the waste generation and pollution prevention activities of the major operational sites in the Department of Energy (DOE). We are witnessing progress in waste reduction from routine operations that are the focus of Department-wide reduction goals set by the Secretary on May 3,1996. The goals require that by the end of 1999, we reduce, recycle, reuse, and otherwise avoid waste generation to achieve a 50 percent reduction over 1993 levels. This Report provides the first measure of our progress in waste reduction and recycling against our 1993 waste generation baseline. While we see progress in reducing waste from our normal operations, we must begin to focus attention on waste generated by cleanup and facilities stabilization activities that are the major functions of the Office of Environmental Management. Reducing the generation of waste is one of the seven principles that I have established for the Office of Environmental Management Ten Year Plan. As part of our vision to complete a major portion of the environmental cleanup at DOE sites over the next ten years, we must utilize the potential of the pollution prevention program to reduce the cost of our cleanup program. We have included the Secretarial goals as part of the performance measures for the Ten Year Plan, and we are committed to implementing pollution prevention ideas. Through the efforts of both Federal and contractor employees, our pollution prevention program has reduced waste and the cost of our operations. I applaud their efforts and look forward to reporting further waste reduction progress in the next annual update of this Report

  5. Fate of Gases generated from Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M.; Francis, A. J. [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Francis, A. J. [Brookhaven National Laboratory, New York (United States)

    2013-05-15

    The backfill materials such as cement, bentonite or crushed rock are used as engineered barriers against groundwater infiltration and radionuclide transport. Gas generation from radioactive wastes is attributed to radiolysis, corrosion of metals, and degradation of organic materials. Corrosion of steel drums and biodegradation of organic materials in L/ILW can generate gas which causes pressure build up and has the potential to compromise the integrity of waste containers and release the radionuclides and other contaminants into the environment. Performance assessment therefore requires a detailed understanding of the source and fate of gas generation and transport within the disposal system. Here we review the sources and fate of various type of gases generated from nuclear wastes and repositories. Studies on modeling of the fate and transport of repository gases primarily deal with hydrogen and CO{sub 2}. Although hydrogen and carbon dioxide are the major gases of concern, microbial transformations of these gases in the subterranean environments could be significant. Metabolism of hydrogen along with the carbon dioxide results in the formation of methane, low molecular weight organic compounds and cell biomass and thus could affect the total inventory in a repository environment. Modeling studies should take into consideration of both the gas generation and consumption processes over the long-term.

  6. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    International Nuclear Information System (INIS)

    Lebersorger, S.; Beigl, P.

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  7. Survey of a technology to introduce the waste-fueled power generation. Basic manual for introduction of the waste-fueled power generation; Haikibutsu hatsuden donyu gijutsu chosa. Haikibutsu hatsuden donyu kihon manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Local government offices, etc., which are expected to shoulder responsibility for introducing the waste-fueled power generation, want to need exact information on technical information concerning the waste-fueled power generation and the method to materialize the introduction plan, etc. Therefore, Electric Power Development Co. surveyed and studied it under the contract with NEDO. The results were collected together as a basic manual for introduction of the waste-fueled power generation. As an outline of the waste-fueled power generation, the manual explains the significance, the present situation and potentials, the waste-fueled power system, an outline of working out the waste-fueled power generation plan, an outline of construction and operation/maintenance of the waste-fueled power generation, an outline of various systems relating to the waste-fueled power generation, etc. As the items for the study of making a concrete plan for power generation equipment, the manual explains the amount of refuse to be incinerated, the present status of generation capacity as viewed from the quality of refuse, the quality of refuse and the design of power generation equipment, boiler efficiency, power generation efficiency, construction cost and operation cost, etc. In addition, the paper describes a case study of the waste-fueled power generation plan. 118 figs., 39 tabs.

  8. Radioactive waste generated from JAERI partitioning-transmutation cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Shinichi, Nakayama; Yasuji, Morita; Kenji, Nishihara [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2001-07-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI processes. Long-lived radionuclides such as {sup 14}C and {sup 59}Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (author)

  9. Waste generation comparison: Coal-fired versus nuclear power plants

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1998-01-01

    Low-level radioactive waste generation and disposal attract a great deal of attention whenever the nuclear industry is scrutinized by concerned parties, be it the media, the public, or political interests. It is therefore important to the nuclear industry that this issue be put into perspective relative to other current forms of energy production. Most of the country's fossil-fueled power comes from coal-fired plants, with oil and gas as other fuel sources. Most of the generated waste also comes from coal plants. This paper, therefore, compares waste quantities generated by a typical (1150-MW(electric)) pressurized water reactor (PWR) to that of a comparably sized coal-fired power plant

  10. Radioactive Wastes Generated From JAERI Partitioning-Transmutation Fuel Cycle

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Morita, Yasuji; Nishihara, Kenji

    2003-01-01

    Production of lower-level radioactive wastes, as well as the reduction in radioactivity of HLW, is an important performance indicator in assessing the viability of a partitioning-transmutation system. We have begun to identify the chemical compositions and to quantify the amounts of radioactive wastes that may be generated by JAERI's processes. Long-lived radionuclides such as 14 C and 59 Ni and spallation products of Pb-Bi coolants are added to the existing inventory of these nuclides that are generated in the current fuel cycle. Spent salts of KCl-LiCl, which is not generated from the current fuel cycle, will be introduced as a waste. (authors)

  11. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  12. Annual report of waste generation and pollution prevention progress 1998; ANNUAL

    International Nuclear Information System (INIS)

    NONE

    1999-01-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities

  13. Municipal solid waste generation in municipalities: quantifying impacts of household structure, commercial waste and domestic fuel.

    Science.gov (United States)

    Lebersorger, S; Beigl, P

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  15. Generation and management of waste electric vehicle batteries in China.

    Science.gov (United States)

    Xu, ChengJian; Zhang, Wenxuan; He, Wenzhi; Li, Guangming; Huang, Juwen; Zhu, Haochen

    2017-09-01

    With the increasing adoption of EVs (electric vehicles), a large number of waste EV LIBs (electric vehicle lithium-ion batteries) were generated in China. Statistics showed generation of waste EV LIBs in 2016 reached approximately 10,000 tons, and the amount of them would be growing rapidly in the future. In view of the deleterious effects of waste EV LIBs on the environment and the valuable energy storage capacity or materials that can be reused in them, China has started emphasizing the management, reuse, and recycling of them. This paper presented the generation trend of waste EV LIBs and focused on interrelated management development and experience in China. Based on the situation of waste EV LIBs management in China, existing problems were analyzed and summarized. Some recommendations were made for decision-making organs to use as valuable references to improve the management of waste EV LIBs and promote the sustainable development of EVs.

  16. 40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.

    Science.gov (United States)

    2010-07-01

    ... conditionally exempt small quantity generator waste. 273.8 Section 273.8 Protection of Environment ENVIRONMENTAL....8 Applicability—household and conditionally exempt small quantity generator waste. (a) Persons... universal wastes defined at § 273.9; and/or (2) Conditionally exempt small quantity generator wastes that...

  17. A comparative study on per capita waste generation according to a waste collecting system in Korea.

    Science.gov (United States)

    Oh, Jung Hwan; Lee, Eui-Jong; Oh, Jeong Ik; Kim, Jong-Oh; Jang, Am

    2016-04-01

    As cities are becoming increasingly aware of problems related to conventional mobile collection systems, automated pipeline-based vacuum collection (AVAC) systems have been introduced in some densely populated urban areas. The reasons are that in addition to cost savings, AVAC systems can be efficient, hygienic, and environmentally friendly. Despite difficulties in making direct comparisons of municipal waste between a conventional mobile collection system and an AVAC system, it is meaningful to measure the quantities in each of these collection methods either in total or on a per capita generation of waste (PCGW, g/(day*capita)) basis. Thus, the aim of this study was to assess the difference in per capita generation of household waste according to the different waste collection methods in Korea. Observations on household waste show that there were considerable differences according to waste collection methods. The value of per capita generation of food waste (PCGF) indicates that a person in a city using AVAC produces 60 % of PCGF (109.58 g/(day*capita)), on average, compared with that of a truck system (173.10 g/(day*capita)) as well as 23 %p less moisture component than that with trucks. The value of per capita generation of general waste (PCGG) in a city with an AVAC system showed 147.73 g/(day*capita), which is 20 % less than that with trucks delivered (185 g/(day*capita)). However, general waste sampled from AVAC showed a 35 %p increased moisture content versus truck delivery.

  18. An innovative simulation tool for waste to energy generation opportunities

    Directory of Open Access Journals (Sweden)

    Bilal Abderezzak

    2017-03-01

    Full Text Available The new world energy policies encourage the use of renewable energy sources with clean technologies, and abandon progressively the fossil fuel dependence. Another energy generation trend called commonly the “Waste-to-Energy” solution, uses organic waste as a response for two major problems: energy generation and waste management. Thanks to the anaerobic digestion, the organic waste can provide a biogas composed essentially from Carbone dioxide (CO2 and Methane (CH4. This work aims essentially to help students, researchers and even decision makers to consider the importance of biogas generation. The proposed tool is the last version of our previous tool which is enhanced and completed. It presents the potential to produce biogas of any shortlisted kind of waste, including also some energy valorization ways. A technical economical data are introduced for eventual feasibility studies.

  19. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  20. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  1. Ferrocyanide tank waste stability

    International Nuclear Information System (INIS)

    Fowler, K.D.

    1993-01-01

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove 137 CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes

  2. Savannah River solid radioactive waste forecast, FY 1986

    International Nuclear Information System (INIS)

    Thomas, S.D.

    1986-07-01

    The 1986 Solid Waste Forecast considers two types of waste: nonretrievable and retrievable (transuranic) waste. The effect of new facilities (DWPF, Naval Fuels, etc.) beginning operation coupled with plant-wide efforts to compact or reduce the volume of waste sent to 643-7G will tend to stabilize the solid waste generation rate over the forecast period (CY 1986--1995). Volume reduction by incineration and compaction, which is expected to increase during the forecast period, could reduce the volume of nonretrievable waste requiring burial by 50%. The volume of transuranic (TRU) waste generated each year is expected to increase to approximately 32,000 ft 3 /yr in 1987 and then decrease and stabilize at 17,000 ft 3 /yr TRU during the forecast period. A program is underway to process and dispose of all retrievably stored TRU waste and newly generated waste over approximately a 16-year period beginning in 1993. This program will reduce the amount of waste that must be shipped to the Waste Isolation Pilot Plant (WIPP) for permanent disposal and process that waste which is not certifiable for the WIPP. 9 figs., 7 tabs

  3. Prediction of combustible waste generation and estimate of potential energy by applying waste to energy technologies in Korea

    International Nuclear Information System (INIS)

    Lee, Jang-Soo; Cho, Sung-Jin; Jung, Hae-Young; Lee, Ki-Bae; Seo, Yong-Chil

    2010-01-01

    In 2007 total waste generation rate in Korea was 318,670 ton,day. In general waste generation rate shows rising trend since 2000. Wastes are composed of municipal waste 14.9 % industrial waste 34.1 % and construction waste 51.0 %. Treatment of wastes by recycling was 81.1 % landfill 11.1 % incineration 5.3 % and ocean dumping 2.4 %. National waste energy policies have been influenced by various factors such as environmental problem economy technology level (could be made energy), and so on. Korea has the worlds third dense population density environmental pollution load per unit land area is the highest in OECD countries caused due to the fast development in economy, industrialization and urbanization in recent. Also, land area per person is just 2,072 m 2 . Landfill capacity reaches the upper limit, industrial waste generation is increasing. Searching new-renewable energy is vital to substitute fossil fuel considering its increasing price. Korea is the world's 10th biggest energy consuming country and 97% of energy depends on importing. Korea aims to increases supply of new-renewable energy by 5% until the 2011. In this study, we computed the amount of combustible waste from municipality generated by the multiple regression analysis. The existing technologies for converting waste to energy were surveyed and the technologies under development or utilizing in future were also investigated. Based on the technology utilization, the amount of energy using waste to energy technology could be estimated in future. (author)

  4. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    Energy Technology Data Exchange (ETDEWEB)

    González Pericot, N., E-mail: natalia.gpericot@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Villoria Sáez, P., E-mail: paola.villoria@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Del Río Merino, M., E-mail: mercedes.delrio@upm.es [Escuela Técnica Superior de Edificación, Universidad Politécnica de Madrid, Calle Juan de Herrera n°6, 28040 Madrid (Spain); Liébana Carrasco, O., E-mail: oscar.liebana@uem.es [Escuela de Arquitectura, Universidad Europea de Madrid, Calle Tajo s/n, 28670 Villaviciosa de Odón (Spain)

    2014-11-15

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.

  5. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    International Nuclear Information System (INIS)

    González Pericot, N.; Villoria Sáez, P.; Del Río Merino, M.; Liébana Carrasco, O.

    2014-01-01

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites

  6. Methodology for quantification of waste generated in Spanish railway construction works.

    Science.gov (United States)

    de Guzmán Báez, Ana; Villoria Sáez, Paola; del Río Merino, Mercedes; García Navarro, Justo

    2012-05-01

    In the last years, the European Union (EU) has been focused on the reduction of construction and demolition (C&D) waste. Specifically, in 2006, Spain generated roughly 47million tons of C&D waste, of which only 13.6% was recycled. This situation has lead to the drawing up of many regulations on C&D waste during the past years forcing EU countries to include new measures for waste prevention and recycling. Among these measures, the mandatory obligation to quantify the C&D waste expected to be originated during a construction project is mandated. However, limited data is available on civil engineering projects. Therefore, the aim of this research study is to improve C&D waste management in railway projects, by developing a model for C&D waste quantification. For this purpose, we develop two equations which estimate in advance the amount, both in weight and volume, of the C&D waste likely to be generated in railway construction projects, including the category of C&D waste generated for the entire project. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. WRAP Module 1 waste characterization plan

    International Nuclear Information System (INIS)

    Mayancsik, B.A.

    1995-01-01

    The purpose of this document is to present the characterization methodology for waste generated, processed, or otherwise the responsibility of the Waste Receiving and Processing (WRAP) Module 1 facility. The scope of this document includes all solid low level waste (LLW), transuranic (TRU), mixed waste (MW), and dangerous waste. This document is not meant to be all-inclusive of the waste processed or generated within WRAP Module 1, but to present a methodology for characterization. As other streams are identified, the method of characterization will be consistent with the other streams identified in this plan. The WRAP Module 1 facility is located in the 200 West Area of the Hanford Site. The facility's function is two-fold. The first is to verify/characterize, treat and repackage contact handled (CH) waste currently in retrievable storage in the LLW Burial Grounds, Hanford Central Waste Complex, and the Transuranic Storage and Assay Facility (TRUSAF). The second is to verify newly generated CH TRU waste and LLW, including MW. The WRAP Module 1 facility provides NDE and NDA of the waste for both drums and boxes. The NDE is used to identify the physical contents of the waste containers to support waste characterization and processing, verification, or certification. The NDA results determine the radioactive content and distribution of the waste

  8. Waste Minimization Improvements Achieved Through Six Sigma Analysis Result In Significant Cost Savings

    International Nuclear Information System (INIS)

    Mousseau, Jeffrey D.; Jansen, John R.; Janke, David H.; Plowman, Catherine M.

    2003-01-01

    Improved waste minimization practices at the Department of Energy's (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) are leading to a 15% reduction in the generation of hazardous and radioactive waste. Bechtel, BWXT Idaho, LLC (BBWI), the prime management and operations contractor at the INEEL, applied the Six Sigma improvement process to the INEEL Waste Minimization Program to review existing processes and define opportunities for improvement. Our Six Sigma analysis team: composed of an executive champion, process owner, a black belt and yellow belt, and technical and business team members used this statistical based process approach to analyze work processes and produced ten recommendations for improvement. Recommendations ranged from waste generator financial accountability for newly generated waste to enhanced employee recognition programs for waste minimization efforts. These improvements have now been implemented to reduce waste generation rates and are producing positive results

  9. High-Level Waste Vitrification Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Lopez

    1999-08-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035.

  10. High-Level Waste Vitrification Facility Feasibility Study

    International Nuclear Information System (INIS)

    D. A. Lopez

    1999-01-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035

  11. National profile on commercially generated low-level radioactive mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T. [Oak Ridge National Lab., TN (United States)

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

  12. National profile on commercially generated low-level radioactive mixed waste

    International Nuclear Information System (INIS)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T.

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ''National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.'' The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy's (DOES) management of mixed waste and generally does not address wastes from remedial action activities

  13. Assessment of plastic waste generation and its potential recycling of household solid waste in Can Tho City, Vietnam.

    Science.gov (United States)

    Thanh, Nguyen Phuc; Matsui, Yasuhiro; Fujiwara, Takeshi

    2011-04-01

    Plastic solid waste has become a serious problem when considering the disposal alternatives following the sequential hierarchy of sound solid waste management. This study was undertaken to assess the quantity and composition of household solid waste, especially plastic waste to identify opportunities for waste recycling. A 1-month survey of 130 households was carried out in Can Tho City, the capital city of the Mekong Delta region in southern Vietnam. Household solid waste was collected from each household and classified into ten physical categories; especially plastic waste was sorted into 22 subcategories. The average household solid waste generation rate was 281.27 g/cap/day. The compostable and recyclable shares respectively accounted for high percentage as 80.74% and 11%. Regarding plastic waste, the average plastic waste generation rate was 17.24 g/cap/day; plastic packaging and plastic containers dominated with the high percentage, 95.64% of plastic waste. Plastic shopping bags were especially identified as the major component, accounting for 45.72% of total plastic waste. Relevant factors such as household income and household size were found to have an existing correlation to plastic waste generation in detailed composition. The household habits and behaviors of plastic waste discharge and the aspects of environmental impacts and resource consumption for plastic waste disposal alternatives were also evaluated.

  14. Estimating maquiladora hazardous waste generation on the U.S./Mexico border

    Science.gov (United States)

    Bowen, Mace M.; Kontuly, Thomas; Hepner, George F.

    1995-03-01

    Maquiladoras, manufacturing plants that primarily assemble foreign components for reexport, are located in concentrations along the northern frontier of the US/Mexico border. These plants process a wide variety of materials using modern industrial technologies within the context of developing world institutions and infrastructure. Hazardous waste generation by maquiladoras represents a critical environmental management issue because of the spatial concentration of these plants in border municipalities where the infrastructure for waste management is nonexistent or poor. These border municipalities contain rapidly increasing populations, which further stress their waste handling infrastructure capacities while exposing their populations to greater contaminant risks. Limited empirical knowledge exists concerning hazardous waste types and generation rates from maquiladorsas. There is no standard reporting method for waste generation or methodology for estimating generation rates at this time. This paper presents a method that can be used for the rapid assessment of hazardous waste generation. A first approximation of hazardous waste generation is produced for maquiladoras in the three municipalities of Nogales, Sonora, Mexicali, Baja California, and Cd. Juarez, Chihuahua, using the INVENT model developed by the World Bank. In addition, our intent is to evaluate the potential of the INVENT model for adaptation to the US/Mexico border industrial situation. The press of border industrial development, especially with the recent adoption of the NAFTA, make such assessments necessary as a basis for the environmental policy formulation and management needed in the immediate future.

  15. Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes

    International Nuclear Information System (INIS)

    Dole, L.R.; Friedman, H.A.

    1986-01-01

    Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages

  16. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    International Nuclear Information System (INIS)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-01-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval

  17. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    Science.gov (United States)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  18. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    Energy Technology Data Exchange (ETDEWEB)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan [Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  19. Quantifying and analysing food waste generated by Indonesian undergraduate students

    Science.gov (United States)

    Mandasari, P.

    2018-03-01

    Despite the fact that environmental consequences derived from food waste have been widely known, studies on the amount of food waste and its influencing factors have relatively been paid little attention. Addressing this shortage, this paper aimed to quantify monthly avoidable food waste generated by Indonesian undergraduate students and analyse factors influencing the occurrence of avoidable food waste. Based on data from 106 undergraduate students, descriptive statistics and logistic regression were applied in this study. The results indicated that 4,987.5 g of food waste was generated in a month (equal to 59,850 g yearly); or 47.05 g per person monthly (equal to 564.62 g per person per a year). Meanwhile, eating out frequency and gender were found to be significant predictors of food waste occurrence.

  20. WRAP Module 1 sampling strategy and waste characterization alternatives study

    Energy Technology Data Exchange (ETDEWEB)

    Bergeson, C.L.

    1994-09-30

    The Waste Receiving and Processing Module 1 Facility is designed to examine, process, certify, and ship drums and boxes of solid wastes that have a surface dose equivalent of less than 200 mrem/h. These wastes will include low-level and transuranic wastes that are retrievably stored in the 200 Area burial grounds and facilities in addition to newly generated wastes. Certification of retrievably stored wastes processing in WRAP 1 is required to meet the waste acceptance criteria for onsite treatment and disposal of low-level waste and mixed low-level waste and the Waste Isolation Pilot Plant Waste Acceptance Criteria for the disposal of TRU waste. In addition, these wastes will need to be certified for packaging in TRUPACT-II shipping containers. Characterization of the retrievably stored waste is needed to support the certification process. Characterization data will be obtained from historical records, process knowledge, nondestructive examination nondestructive assay, visual inspection of the waste, head-gas sampling, and analysis of samples taken from the waste containers. Sample characterization refers to the method or methods that are used to test waste samples for specific analytes. The focus of this study is the sample characterization needed to accurately identify the hazardous and radioactive constituents present in the retrieved wastes that will be processed in WRAP 1. In addition, some sampling and characterization will be required to support NDA calculations and to provide an over-check for the characterization of newly generated wastes. This study results in the baseline definition of WRAP 1 sampling and analysis requirements and identifies alternative methods to meet these requirements in an efficient and economical manner.

  1. WRAP Module 1 sampling strategy and waste characterization alternatives study

    International Nuclear Information System (INIS)

    Bergeson, C.L.

    1994-01-01

    The Waste Receiving and Processing Module 1 Facility is designed to examine, process, certify, and ship drums and boxes of solid wastes that have a surface dose equivalent of less than 200 mrem/h. These wastes will include low-level and transuranic wastes that are retrievably stored in the 200 Area burial grounds and facilities in addition to newly generated wastes. Certification of retrievably stored wastes processing in WRAP 1 is required to meet the waste acceptance criteria for onsite treatment and disposal of low-level waste and mixed low-level waste and the Waste Isolation Pilot Plant Waste Acceptance Criteria for the disposal of TRU waste. In addition, these wastes will need to be certified for packaging in TRUPACT-II shipping containers. Characterization of the retrievably stored waste is needed to support the certification process. Characterization data will be obtained from historical records, process knowledge, nondestructive examination nondestructive assay, visual inspection of the waste, head-gas sampling, and analysis of samples taken from the waste containers. Sample characterization refers to the method or methods that are used to test waste samples for specific analytes. The focus of this study is the sample characterization needed to accurately identify the hazardous and radioactive constituents present in the retrieved wastes that will be processed in WRAP 1. In addition, some sampling and characterization will be required to support NDA calculations and to provide an over-check for the characterization of newly generated wastes. This study results in the baseline definition of WRAP 1 sampling and analysis requirements and identifies alternative methods to meet these requirements in an efficient and economical manner

  2. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    International Nuclear Information System (INIS)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also

  3. Assessment of national waste generation in EU Member States’ efficiency

    OpenAIRE

    Halkos, George; Petrou, Kleoniki Natalia

    2018-01-01

    Waste generation and management may be considered as either a by-product of economic actions or even used as input to economic activity like energy recovery. Every country produces different amounts of municipal solid waste (MSW) and with different composition. This paper deals with the efficiency of 28 EU Member States for the years 2008, 2010 and 2012 by employing Data Envelopment Analysis (DEA) and by using eight parameters, namely waste generation, employment rate, capital formation, GDP,...

  4. Management of radioactive wastes with negligible heat generation

    International Nuclear Information System (INIS)

    Alter, U.

    1990-01-01

    In the Federal Republic of Germany only one company is responsible for the management of radioactive wastes with negligible heat generations. This is the Company for Nuclear Service (GNS mbH). It was the intention of the competent authorities of the FRG to intensify state control during conditioning, intermediate storage and transport of low- and medium level radioactive waste. A guideline provides that the responsibility of the waste producers and of those concerned with conditioning, storage and transport of radioactive waste is assigned in the individual case and that the qualitative and quantitative registration of all waste streams will be ensured. An overview of the radioactive waste management within the last two years in the FRG is presented. (orig./DG)

  5. Thirty-year solid waste generation forecast for facilities at SRS

    International Nuclear Information System (INIS)

    1994-07-01

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D ampersand D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis of future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast

  6. Gas generation phenomena in radioactive waste transportation packaging

    International Nuclear Information System (INIS)

    Nigrey, P.J.

    1998-01-01

    The interaction of radiation from radioactive materials with the waste matrix can lead to the deterioration of the waste form resulting in the possible of gaseous species. Depending on the type and characteristics of the radiation source, the generation of hydrogen may predominate. Since the interaction of alpha particles with the waste form results in significant energy transfer, other gases such as carbon oxides, methane, nitrogen oxides, oxygen, water, and helium are possible. The type of gases produced from the waste forms is determined by the mechanisms involved in the waste degradation. For transuranic wastes, the identified degradation mechanisms are reported to be caused by radiolysis, thermal decomposition or dewatering, chemical corrosion, and bacterial action. While all these mechanisms may be responsible for the building of gases during the storage of wastes, radiolysis and thermal decomposition appear to be main contributors during waste transport operations. (authors)

  7. Food waste from Danish households: Generation and composition

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte

    2016-01-01

    waste was divided into six fractions according to avoidability, suitability for home-composting and whether or not it was cooked, prepared or had been served within the household. The results showed that the residual household waste generation rate was 434 ± 18 kg per household per year, of which 183...

  8. Comparative assessment of the environmental impact of wastes from electricity generation systems

    International Nuclear Information System (INIS)

    Torres, C.; Smith, G.M.; Linsley, G.; Hossain, S.

    1994-01-01

    The paper describes an outline methodology for assessing and comparing the environmental impact arising from management of the wastes from nuclear and other electricity generation systems. The assessment framework is applicable to wastes from all generation systems, including nuclear, fossil and renewable fuel systems, and can also be applied to the management of mixed hazardous waste. The major energy technologies in terms of waste production can be classified according to three major categories of fuels: fossil, nuclear and renewable. The emphasis in this description is on nuclear utility low-level and mixed wastes and waste streams. The methodology may be used to support the project on Data Bases and Methodologies for Comparative Assessment of Different Energy Sources for Electricity Generation (DECADES project, (2)) which is being developed by the International Atomic Energy Agency in collaboration with other international agencies. The DECADES project has the overall objective to improve the abilities for comparative assessment of energy chains for electricity generation. The objective of a methodology such as that described here is to ensure that waste management aspects are included effectively in comparative assessments of energy systems. This paper discusses the waste strams arising from nuclear power plants

  9. Forecasting municipal solid waste generation using prognostic tools and regression analysis.

    Science.gov (United States)

    Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria

    2016-11-01

    For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. GABA regulates synaptic integration of newly generated neurons in the adult brain

    Science.gov (United States)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  11. Self-disposal option for heat-generating waste - 59182

    International Nuclear Information System (INIS)

    Ojovan, Michael I.; Poluektov, Pavel P.; Kascheev, Vladimir A.

    2012-01-01

    Self-descending heat generating capsules can be used for disposal of dangerous radioactive wastes in extremely deep layers of the Earth preventing any release of radionuclides into the biosphere. Self-disposal option for heat-generating radioactive waste such as spent fuel, high level reprocessing waste or spent sealed radioactive sources, known also as rock melting concept, was considered in the 70's as a viable alternative disposal option by both Department of Energy in the USA and Atomic Industry Ministry in the USSR. Self-disposal is currently reconsidered as a potential alternative route to existing options for solving the nuclear waste problem and is associated with the renaissance of nuclear industry. Self- disposal option utilises the heat generated by decaying radionuclides of radioactive waste inside a heavy and durable capsule to melt the rock on its way down. As the heat from radionuclides within the capsule partly melts the enclosing rock, the relatively low viscosity and density of the silicate melt allow the capsule to be displaced upwards past the heavier capsule as it sinks. Eventually the melt cools and solidifies (e.g. vitrifies or crystallizes), sealing the route along which the capsule passed. Descending or self-disposal continues until enough heat is generated by radionuclides to provide partial melting of surrounding rock. Estimates show that extreme depths of several tens and up to hundred km can be reached by capsules which could never be achieved by other techniques. Self- disposal does not require complex and expensive disposal facilities and provides a minimal footprint used only at operational stage. It has also an extremely high non- proliferation character and degree of safety. Utilisation of heat generated by relatively short-lived radionuclides diminishes the environmental uncertainties of self-disposal and increases the safety of this concept. Self-sinking heat-generating capsules could be launched from the bottom of the sea as

  12. Prediction of municipal solid waste generation using nonlinear autoregressive network.

    Science.gov (United States)

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A

    2015-12-01

    Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.

  13. Quantitative assessment of medical waste generation in the capital city of Bangladesh

    International Nuclear Information System (INIS)

    Patwary, Masum A.; O'Hare, William Thomas; Street, Graham; Maudood Elahi, K.; Hossain, Syed Shahadat; Sarker, Mosharraf H.

    2009-01-01

    There is a concern that mismanagement of medical waste in developing countries may be a significant risk factor for disease transmission. Quantitative estimation of medical waste generation is needed to estimate the potential risk and as a basis for any waste management plan. Dhaka City, the capital of Bangladesh, is an example of a major city in a developing country where there has been no rigorous estimation of medical waste generation based upon a thorough scientific study. These estimates were obtained by stringent weighing of waste in a carefully chosen, representative, sample of HCEs, including non-residential diagnostic centres. This study used a statistically designed sampling of waste generation in a broad range of Health Care Establishments (HCEs) to indicate that the amount of waste produced in Dhaka can be estimated to be 37 ± 5 ton per day. The proportion of this waste that would be classified as hazardous waste by World Health Organisation (WHO) guidelines was found to be approximately 21%. The amount of waste, and the proportion of hazardous waste, was found to vary significantly with the size and type of HCE.

  14. Economic evaluation of volume reduction for Defense transuranic waste

    International Nuclear Information System (INIS)

    Brown, C.M.

    1982-03-01

    The economics of volume reduction of retrievably stored and newly generated DOE transuranic wastes are evaluated by comparing the costs of reduction of the wastes with the savings possible in transportation and disposal. A general approach to the comparison of TRU waste volume reduction costs and cost savings is developed, an initial set of cost data is established, conclusions to support selecting technologies and facilities for the disposal of DOE transuranic waste are developed. Section I outlines the analysis which considers seven types of volume reduction from incineration and compaction of combustibles to compaction, size reduction, shredding, melting, and decontamination of metals. The study considers the volume reduction of contact-handled, newly generated and retrievably stored DOE transuranic wastes. Section II of this report describes the analytical approach, assumptions, and flow of waste material through sites. Section III presents the waste inventories, disposal and transportation savings, and volume reduction techniques and costs. Section IV contains the results and conclusions of the study. The major conclusions drawn from the study are: For DOE sites with a small amount of waste requiring disposal ( 3 /year) the cost of volume reduction is greater than the transportation and disposal savings from volume reduction provided the waste requires little additional preparation to meet transportation and disposal criteria. Wastes that do not meet these criteria require site specific economic analysis outside the general evaluations of this study. For Idaho National Engineering Laboratory, incineration and metal shredding are cost-effective, provided a facility is to be constructed as a consequence of repackaging the fraction of stored waste which may require repackaging and immobilizing chemical process waste to meet disposal criteria

  15. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    International Nuclear Information System (INIS)

    French, David M.; Hayes, Timothy A.; Pope, Howard L.; Enriquez, Alejandro E.; Carson, Peter H.

    2013-01-01

    In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards are being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely productive Waste

  16. Wastes power generation introduction manual. Main edition; Haikibutsu hatsuden donyu manual. Honpen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A practical and specific working manual was prepared that satisfies the standards and criteria defined in the relevant law such as the Sanitation and Environment Ordinance No. 249, the guideline for generation of dioxins caused by refuse disposal, and that enables the reports evaluating the wastes quantitatively to be submitted to heads of the local governments when persons in charge of planning the introduction of wastes power generation at local governments discuss the wastes power generation systems. Taking general combustible wastes and sewage sludge treatments as the object, this paper details from the economic performance to size of wastes treatment at the priority limit for the power generation facility introduction. The subject power generation systems include the following: the stoker furnace/separation type ash melting furnace power generation system, the fluidized bed/separation type ash melting furnace power generation system, and the direct type gasification melting furnace power generation system, whose establishment of safety, reliability and stability have been verified by full-size system operation record available at the local governments, the gas turbine re-powering composite type power generation system (gas turbine power plants are installed beside the incineration furnaces) that makes high-efficiency power generation possible, and the RDF power generation system (power generation by mixed combustion with general refuses, and power generation using RDF (refuse derived fuel) exclusive combustion). Other important discussion and assessment items include environment and resource utilization performances. (NEDO)

  17. Feasibility of deep ocean disposal of heat generating waste. V.1

    International Nuclear Information System (INIS)

    Hemming, C.R.

    1988-06-01

    This report summarises the research performed in the UK during the period 1977 to 1987 as part of the international programme investigating the feasibility of ocean disposal of heat generating radioactive waste. This study has involved: (i) the definition of the disposal operations needed to meet the minimum requirements for safely emplacing waste on or under the floor of the deep ocean; (ii) the identification and characterisation of areas of the deep ocean that might be suitable for containing heat generating waste; (iii) a study of the processes by which radionuclides might migrate through the multiple barriers that isolate the waste from man's environment; and (iv) a calculation of the radiological impact of the conceptual deep ocean repository. It is concluded that, from a technical and scientific viewpoint, disposal of heat generating waste in the deep ocean could provide a safe, economic and feasible alternative to deep disposal on land. (author)

  18. Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byung Heung; Ko, Won Il

    2011-01-01

    Which nuclear fuel cycle option to deploy is of great importance in the sustainability of nuclear power. SFR fuel cycle employing pyroprocessing (named as Pyro- SFR Cycle) is one promising fuel cycle option in the near future. Radioactive waste generation is a key criterion in nuclear fuel cycle system analysis, which considerably affects the future development of nuclear power. High population with small territory is one special characteristic of ROK, which makes the waste management pretty important. In this study, particularly the amount of waste generation with regard to the promising advanced fuel cycle option was evaluated, because the difficulty of deploying an underground repository for HLW disposal requires a longer time especially in ROK

  19. Evaluation of site-generated radioactive waste treatment and disposal methods for the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Jardine, L.J.

    1989-01-01

    This study identifies the sources of radioactive wastes that may be generated at the proposed high-level waste (HLW) repository at Yucca Mountain, NV, estimates the waste quantities and characteristics, compares technologies available for waste treatment and disposal, and develops recommended concepts for site-generated waste treatment and disposal. The scope of this study is limited to operations during the emplacement phase, in which 70,000 MTU of high-level waste will be received and emplaced at the proposed repository. The evaluations consider all radioactive wastes generated during normal operations in surface and underground facilities. Wastes generated as a result of accidents are not addressed; accidents that could result in large quantities of radioactive waste are expected to occur very infrequently and temporary, portable systems could be used for any necessary cleanup. The results of this study can be used to develop more definitive plans for managing the site-generated wastes and as a basis for the design of associated facilities at the proposed repository

  20. Factors contributing to the waste generation in building projects of Pakistan

    International Nuclear Information System (INIS)

    Memon, N.A.; Memon, F.A.

    2016-01-01

    Generation of construction waste is a worldwide issue that concerns not only governments but also the building actors involved in construction industry. For developing countries like Pakistan, rising levels of waste generation, due to the rapid growth of towns and cities have become critical issue. Therefore this study is aimed to detect the factors, which are the main causes of construction waste generation. Questionnaire survey has been conducted to achieve this task and RIW (Relative Importance Weight) method has been used to analyze the results of this study. The important factors contributing to the generation of construction as identified in this study are: frequent changes/ revision in design during construction process; poor scheduling; unavailability of storage; poor workmanship; poor layout; inefficient planning and scheduling of resources and lack of coordination among supervision staff deployed at site. Based on the identified factors, the study also has presented some suggestions for the reduction of construction waste in building construction projects of Pakistan. (author)

  1. Extreme E-waste generated from successful Operations Management?

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Zhilyaev, Dmitry; Parajuly, Keshav

    This paper identifies how research in the field of Operations Management (OM) has been extremely successful in reducing costs for the manufacturing of electrical and electronic equipment by focusing on design for assembly and manufacturing. The downside is the generation of extreme amounts of e......-waste. Based on a literature survey, 2251 kg of e-waste and on case study, this research identifies the need to extend product lifetimes to drive down e-waste. The study concludes that more research is needed on designs for disassembly, repair, refurbishment, and remanufacturing to meet future requirements...

  2. Review, mapping and analysis of the agricultural plastic waste generation and consolidation in Europe.

    Science.gov (United States)

    Briassoulis, Demetres; Babou, Epifania; Hiskakis, Miltiadis; Scarascia, Giacomo; Picuno, Pietro; Guarde, Dorleta; Dejean, Cyril

    2013-12-01

    A review of agricultural plastic waste generation and consolidation in Europe is presented. A detailed geographical mapping of the agricultural plastic use and waste generation in Europe was conducted focusing on areas of high concentration of agricultural plastics. Quantitative data and analysis of the agricultural plastic waste generation by category, geographical distribution and compositional range, and physical characteristics of the agricultural plastic waste per use and the temporal distribution of the waste generation are presented. Data were collected and cross-checked from a variety of sources, including European, national and regional services and organizations, local agronomists, retailers and farmers, importers and converters. Missing data were estimated indirectly based on the recorded cultivated areas and the characteristics of the agricultural plastics commonly used in the particular regions. The temporal distribution, the composition and physical characteristics of the agricultural plastic waste streams were mapped by category and by application. This study represents the first systematic effort to map and analyse agricultural plastic waste generation and consolidation in Europe.

  3. Second generation waste package design and storage concept for the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Armijo, Joseph Sam; Kar, Piyush; Misra, Manoranjan

    2006-01-01

    The reference waste package design and operating mode to be used in the Yucca Mountain Repository is reviewed. An alternate (second generation) operating concept and waste package design is proposed to reduce the risk of localized corrosion of waste packages and to reduce repository costs. The second generation waste package design and storage concept is proposed for implementation after the initial licensing and operation of the reference repository design. Implementation of the second generation concept at Yucca Mountain would follow regulatory processes analogous to those used successfully to extend the design life and uprate the power of commercial light water nuclear reactors in the United States. The second generation concept utilizes the benefits of hot dry storage to minimize the potential for localized corrosion of the waste package by liquid electrolytes. The second generation concept permits major reductions in repository costs by increasing the number of fuel assemblies stored in each waste package, by eliminating the need for titanium drip shields and by fabricating the outer container from corrosion resistant low alloy carbon steel

  4. Generation of and control measures for, e-waste in Hong Kong

    International Nuclear Information System (INIS)

    Chung Shanshan; Lau Kayan; Zhang Chan

    2011-01-01

    While accurately estimating electrical and electronic waste (e-waste) generation is important for building appropriate infrastructure for its collection and recycling, making reliable estimates of this kind is difficult in Hong Kong owing to the fact that neither accurate trade statistics nor sales data of relevant products are available. In view of this, data of e-products consumption at household level was collected by a tailor-made questionnaire survey from the public for obtaining a reasonable e-waste generation estimate. It was estimated that on average no more than 80,443 tonnes (11.5 kg/capita) of waste is generated from non-plasma and non-liquid crystal display televisions, refrigerators, washing machines, air-conditioners and personal computers each year by Hong Kong households. However, not more than 17% of this is disposed as waste despite a producer responsibility scheme (PRS) not being in place because of the existence of a vibrant e-waste trading sector. The form of PRS control that can possibly win most public support is one that would involve the current e-waste traders as a major party in providing the reverse logistics with a visible recycling charge levied at the point of importation. This reverse logistic service should be convenient, reliable and highly accessible to the consumers.

  5. Current Status of Municipal Solid Waste Generation in Malaysia

    OpenAIRE

    Budhiarta, Iwan; Siwar, Chamhuri; Basri, Hassan

    2012-01-01

    Recent investigations in 2010 resulted information that population of Kuala Lumpur City Area has reached 1.66 million people (JPM, 2009). With the population growth rate of 6.1 percent, then the population in the year 2010 can be estimated at least to 1.69 million people. The number of municipal solid waste generated from Kuala Lumpur State Territory and delivered to TBTS was recorded of 2,000 tonnes per day. Accordingly, the solid waste generation average for any person is 1.2 kilograms a da...

  6. Conceptual framework for the study of food waste generation and prevention in the hospitality sector.

    Science.gov (United States)

    Papargyropoulou, Effie; Wright, Nigel; Lozano, Rodrigo; Steinberger, Julia; Padfield, Rory; Ujang, Zaini

    2016-03-01

    Food waste has significant detrimental economic, environmental and social impacts. The magnitude and complexity of the global food waste problem has brought it to the forefront of the environmental agenda; however, there has been little research on the patterns and drivers of food waste generation, especially outside the household. This is partially due to weaknesses in the methodological approaches used to understand such a complex problem. This paper proposes a novel conceptual framework to identify and explain the patterns and drivers of food waste generation in the hospitality sector, with the aim of identifying food waste prevention measures. This conceptual framework integrates data collection and analysis methods from ethnography and grounded theory, complemented with concepts and tools from industrial ecology for the analysis of quantitative data. A case study of food waste generation at a hotel restaurant in Malaysia is used as an example to illustrate how this conceptual framework can be applied. The conceptual framework links the biophysical and economic flows of food provisioning and waste generation, with the social and cultural practices associated with food preparation and consumption. The case study demonstrates that food waste is intrinsically linked to the way we provision and consume food, the material and socio-cultural context of food consumption and food waste generation. Food provisioning, food consumption and food waste generation should be studied together in order to fully understand how, where and most importantly why food waste is generated. This understanding will then enable to draw detailed, case specific food waste prevention plans addressing the material and socio-economic aspects of food waste generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Comparative study of municipal solid waste generation and composition in Shiraz city (2014

    Directory of Open Access Journals (Sweden)

    A. Norouzian Baghani

    2017-06-01

    Full Text Available Background: Exponential growths of population and urbanization, and the development of social economy have resulted in an increase in the amount of MSW generation throughout the world. Objective: The present study aimed to survey qualitative and quantitative analysis of solid waste in Shiraz city and comparative these results with the world scenario of solid wastes generation for improving the sustainable management of solid waste. Methods: This cross-sectional study was conducted in 2014 in nine municipality regions Shiraz with a total population of approximately 1,549,354 people. Basic data was gathered through Shiraz waste management organization. Then generation (per capita and constituent percent of the solid waste were evaluated based on the sampling and field analyzing from reliable guidelines. Data were analyzed with Stata-13 and Excel statistical software. Kolmogorov-Smirnov test used for the normality of variables. Means were compared by Student T test and Mann-Whitney test. Findings: The rate of solid waste generated in the Shiraz city was 222.65 kg per person per year in 2014. Statistical analysis showed that the variables of organic materials, paper and cardboard, glass and metal between developed and developing countries were a significant difference (P0.05. Conclusion: Solid waste per capita in Shiraz city (about 600 g/day was near to the average amount of solid waste generation in Iran and other developing countries. Due to the high content of organic material in municipal solid waste of Shiraz, minimization of these material and separation of dry and wet solid wastes must be noted from the people and municipalities.

  8. Evaluation and development of a policy for waste generation control - electric and electronic waste management

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    Although a policy to reduce waste amount and promote recycling for large electric appliances was introduced, it is still in the initial stage operated in a form of recommendation and the general management system of electric and electronic waste has not established yet. In this study, the generation and disposal of electric and electronic waste were examined and the effectiveness of present policy was evaluated. Based on the analysis, a policy for the more appropriate electric and electronic waste management was presented. 34 refs., 4 figs., 51 tabs.

  9. Considerations for reduction of gas generation in a low-level radioactive waste repository

    International Nuclear Information System (INIS)

    Cho, Chan Hee; Son, Jung Kwon; Lee, Myung Chan; Song, Myung Jae

    1997-01-01

    In a low-level radioactive waste repository, H 2 , CO 2 , and CH 4 will be generated principally by the coupled processes of metal corrosion and microbial degradation of cellulosic waste. The metal corrosion model incorporates a three-stage process encompassing aerobic and anaerobic corrosion regimes; the microbial degradation model simulates the activities of eight different microbial populations, which are maintained as functions both of pH and of the concentrations of particular chemical species. A prediction is made for gas concentrations and generation rates over an assessment period of ten thousand years in a radioactive waste repository. The results suggest that H 2 is the principal gas generated within the radioactive waste cavern. The generation rates of CO 2 and CH 4 are likely to be insignificant by comparison with H 2 . Therefore, an effective way to decrease gas generation in a radioactive waste repository seems to be to reduce metal content since the generation rate of H 2 is most sensitive to the concentration of steel

  10. Impaired mastication reduced newly generated neurons at the accessory olfactory bulb and pheromonal responses in mice.

    Science.gov (United States)

    Utsugi, Chizuru; Miyazono, Sadaharu; Osada, Kazumi; Matsuda, Mitsuyoshi; Kashiwayanagi, Makoto

    2014-12-01

    A large number of neurons are generated at the subventricular zone (SVZ) even during adulthood. In a previous study, we have shown that a reduced mastication impairs both neurogenesis in the SVZ and olfactory functions. Pheromonal signals, which are received by the vomeronasal organ, provide information about reproductive and social states. Vomeronasal sensory neurons project to the accessory olfactory bulb (AOB) located on the dorso-caudal surface of the main olfactory bulb. Newly generated neurons at the SVZ migrate to the AOB and differentiate into granule cells and periglomerular cells. This study aimed to explore the effects of changes in mastication on newly generated neurons and pheromonal responses. Bromodeoxyuridine-immunoreactive (BrdU-ir; a marker of DNA synthesis) and Fos-ir (a marker of neurons excited) structures in sagittal sections of the AOB after exposure to urinary odours were compared between the mice fed soft and hard diets. The density of BrdU-ir cells in the AOB in the soft-diet-fed mice after 1 month was essentially similar to that of the hard-diet-fed mice, while that was lower in the soft-diet-fed mice for 3 or 6 months than in the hard-diet-fed mice. The density of Fos-ir cells in the soft-diet-fed mice after 2 months was essentially similar to that in the hard-diet-fed mice, while that was lower in the soft-diet-fed mice for 4 months than in the hard-diet-fed mice. The present results suggest that impaired mastication reduces newly generated neurons at the AOB, which in turn impairs olfactory function at the AOB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Electricity generation in Nigeria from municipal solid waste using the ...

    African Journals Online (AJOL)

    Electricity generation in Nigeria from municipal solid waste using the Swedish Wasteto-Energy Model. ... Journal of Applied Sciences and Environmental Management ... Waste-to-energy (WTE) technology in Nigeria is still at the infancy stage ...

  12. 1994 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    1995-09-01

    Many Waste Minimization/Pollution Prevention successes at the Hanford Site occur every day without formal recognition. A few of the successful projects are: T-Plant helps facilities reuse equipment by offering decontamination services for items such as gas cylinders, trucks, and railcars, thus saving disposal and equipment replacement costs. Custodial Services reviewed its use of 168 hazardous cleaning products, and, through a variety of measures, replaced them with 38 safer substitutes, one for each task. Scrap steel contaminated with low level radioactivity from the interim stabilization of 107-K and 107-C was decontaminated and sold to a vendor for recycling. Site-wide programs include the following: the Pollution Prevention Opportunity Assessment (P2OA) program at the Hanford site was launched during 1994, including a training class, a guidance document, technical assistance, and goals; control over hazardous materials purchased was achieved by reviewing all purchase requisitions of a chemical nature; the Office Supply Reuse Program was established to redeploy unused or unwanted office supply items. In 1994, pollution prevention activities reduced approximately 274,000 kilograms of hazardous waste, 2,100 cubic meters of radioactive and mixed waste, 14,500,000 kilograms of sanitary waste, and 215,000 cubic meters off liquid waste and waste water. Pollution Prevention activities also saved almost $4.2 million in disposal, product, and labor costs. Overall waste generation increased in 1994 due to increased work and activity typical for a site with an environmental restoration mission. However, without any Waste Minimization/Pollution Prevention activities, solid radioactive waste generation at Hanford would have been 25% higher, solid hazardous waste generation would have been 30% higher, and solid sanitary waste generation would have been 60% higher

  13. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    The objective of this study was to predict tensile stress levels in thin-walled titanium alloy and thick-walled carbon steel containers designed for the ocean disposal of heat-generating radioactive wastes. Results showed that tensile stresses would be produced in both designs by the expansion of the lead filter, for a temperature rise of 200 0 C. Tensile stress could be reduced if the waste heat output at disposal was reduced. Initial stresses for the titanium-alloy containers could be relieved by heat treatment. (UK)

  14. FRIDA: A model for the generation and handling of solid waste in Denmark

    DEFF Research Database (Denmark)

    Larsen, Helge V.; Møller Andersen, Frits

    2012-01-01

    Since 1994, Danish waste treatment plants have been obliged to report to the Danish EPA the annual amounts of waste treated. Applying these data, we analyse the development, link amounts of waste to economic and demographic variables, and present a model for the generation and treatment of waste...... in Denmark. Using the model and official projections of the economic development, a baseline projection for the generation and treatment of waste is presented. © 2012 Elsevier B.V. All rights reserved....

  15. Underground disposal of UK heat-generating wastes: repository design considerations

    International Nuclear Information System (INIS)

    Steadman, J.A.

    1993-12-01

    The report discusses the likely differences in design between a deep repository for disposal of UK heat-generating radioactive wastes and that of the planned Nirex ILW/LLW repository at Sellafield, based on a review of international published information. The main differences arise from the greater heat and radiation outputs of the waste, and in the case of intact PWR spent fuel elements, the greater length and weight of the disposal packages. Published cost estimates for other OECD countries for disposal of heat-generating wastes are considerably lower than that for the UK, partly because in most cases they are for co-disposal with a larger quantity of ILW. (author)

  16. The global economic and regulatory determinants of household food waste generation: A cross-country analysis.

    Science.gov (United States)

    Chalak, Ali; Abou-Daher, Chaza; Chaaban, Jad; Abiad, Mohamad G

    2016-02-01

    Food is generally wasted all along the supply chain, with an estimated loss of 35percent generated at the consumer level. Consequently, household food waste constitutes a sizable proportion of the total waste generated throughout the food supply chain. Yet such wastes vary drastically between developed and developing countries. Using data collected from 44 countries with various income levels, this paper investigates the impact of legislation and economic incentives on household food waste generation. The obtained results indicate that well-defined regulations, policies and strategies are more effective than fiscal measures in mitigating household food waste generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    Energy Technology Data Exchange (ETDEWEB)

    French, David M. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hayes, Timothy A. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pope, Howard L. [Aspen Resources Ltd., Inc., P.O. Box 3038, Boulder, CO 80307 (United States); Enriquez, Alejandro E. [LANL NCO-4, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Carson, Peter H. [LANL NPI-7, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2013-07-01

    In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards are being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely

  18. Thermoelectric as recovery and harvesting of waste heat from portable generator

    Science.gov (United States)

    Mustafa, S. N.; Kamarrudin, N. S.; Hashim, M. S. M.; Bakar, S. A.; Razlan, Z. M.; Harun, A.; Ibrahim, I.; Faizi, M. K.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.

    2017-10-01

    Generation of waste heat was ineluctable especially during energy producing process. Waste heat falls into low temperature grade make it complicated to utilize. Thermoelectric generator (TEG) offers opportunity to harvest any temperature grade heat into useful electricity. This project is covered about recovery and utilizing waste heat from portable electric generator by using a TEG which placed at exhaust surface. Temperature difference at both surfaces of TEG was enhanced with supplying cold air from a wind blower. It is found that, even at low air speed, the TEG was successfully produced electricity with aid from DC-DC booster. Results shows possibility to harvest low temperature grade heat and still exist areas for continual improvement.

  19. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  20. Preliminary identification of interfaces for certification and transfer of TRU waste to WIPP

    International Nuclear Information System (INIS)

    Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.

    1982-02-01

    This study complements the national program to certify that newly generated and stored, unclassified defense transuranic (TRU) wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The objectives of this study were to identify (1) the existing organizational structure at each of the major waste-generating and shipping sites and (2) the necessary interfaces between the waste shippers and WIPP. The interface investigations considered existing waste management organizations at the shipping sites and the proposed WIPP organization. An effort was made to identify the potential waste-certifying authorities and the lines of communication within these organizations. The long-range goal of this effort is to develop practicable interfaces between waste shippers and WIPP to enable the continued generation, interim storage, and eventual shipment of certified TRU wastes to WIPP. Some specific needs identified in this study include: organizational responsibility for certification procedures and quality assurance (QA) program; simple QA procedures; and specification and standardization of reporting forms and procedures, waste containers, and container labeling, color coding, and code location

  1. The effect of gender and age structure on municipal waste generation in Poland

    International Nuclear Information System (INIS)

    Talalaj, Izabela Anna; Walery, Maria

    2015-01-01

    Highlights: • An effect of gender and age structure on municipal waste generation was presented. • The waste accumulation index is influenced by a number of unemployed women. • Greater share of women in society contributes to greater waste production. • A model describing the analyzed dependences was determined. - Abstract: In this study the effect of gender and age structure on municipal waste generation was investigated. The data from 10-year period, from 2001 to 2010 year, were taken into consideration. The following parameters of gender and age structure were analyzed: men and woman quantity, female to male ratio, number of working, pre-working and post-working age men/women, number of unemployed men/women. The results have showed a strong correlation of annual per capita waste generation rate with number of unemployed women (r = 0.70) and female to male ratio (r = 0.81). This indicates that waste generation rate is more depended on ratio of men and women that on quantitative size of each group. Using the regression analysis a model describing the dependence between female to male ratio, number of unemployed woman and waste quantity was determined. The model explains 70% of waste quantity variation. Obtained results can be used both to improve waste management and to a fuller understanding of gender behavior

  2. The effect of gender and age structure on municipal waste generation in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Talalaj, Izabela Anna, E-mail: izabela.tj@gmail.com; Walery, Maria, E-mail: m.walery@pb.edu.pl

    2015-06-15

    Highlights: • An effect of gender and age structure on municipal waste generation was presented. • The waste accumulation index is influenced by a number of unemployed women. • Greater share of women in society contributes to greater waste production. • A model describing the analyzed dependences was determined. - Abstract: In this study the effect of gender and age structure on municipal waste generation was investigated. The data from 10-year period, from 2001 to 2010 year, were taken into consideration. The following parameters of gender and age structure were analyzed: men and woman quantity, female to male ratio, number of working, pre-working and post-working age men/women, number of unemployed men/women. The results have showed a strong correlation of annual per capita waste generation rate with number of unemployed women (r = 0.70) and female to male ratio (r = 0.81). This indicates that waste generation rate is more depended on ratio of men and women that on quantitative size of each group. Using the regression analysis a model describing the dependence between female to male ratio, number of unemployed woman and waste quantity was determined. The model explains 70% of waste quantity variation. Obtained results can be used both to improve waste management and to a fuller understanding of gender behavior.

  3. Generation and management of medical waste in Serbia: A review

    Directory of Open Access Journals (Sweden)

    Šerović Radmila M.

    2016-01-01

    Full Text Available This study presents generation, quantities and medical waste (MW management in Serbia. It represents assessment methods and total annual MW generation by categories. It was concluded that pharmaceutical (64% and infectious (32% MW production is the largest. According to available data, MW management in Serbia is currently at low level, except when it comes to infectious waste. Research proposed simpler treatment methods in existing autoclaves and complex methods (incineration and plasma-pyrolysis, as well as short-term and long-term solutions. Predicted MW growing amount requires existing capacity increase for processing and new solutions application. Installed autoclaves capacity could be increased by increasing working time, in order to avoid additional investment. However, treatment in autoclave is only suitable for infectious MW. For other medical waste, which main fractions are pharmaceutical and chemical waste, there is no infrastructure. As temporary solution, pharmaceutical waste is treated abroad which in longer period is not financially feasible. Considering that MW treatment in Serbia currently is based on health facilities network equipped with autoclaves, as central (CTF and local (LTF treatments facilities for infectious waste treatment, it is recommended additional capacity implementation for treatment of non-infectious waste to this network, with simultaneous management level optimization of whole MW.

  4. Radioactive waste assessment using 'moderate growth in nuclear electricity generation' scenario

    International Nuclear Information System (INIS)

    Richardson, J.A.; Goodill, D.R.; Tymons, B.J.

    1985-05-01

    This report describes an assessment of radioactive waste management arisings from a defined nuclear power generation scenario -Scheme 3. Scheme 3 assumes a moderate growth in nuclear generation scenario with raw waste arisings from 3 main groups: (i) existing and committed commercial reactors; (ii) fuel reprocessing plants; (iii) research, industry and medicine. No decommissioning wastes are considered except for arisings from the final fuel cores from decommissioned reactors. The study uses the SIMULATION2 code which models waste material flows through the system. With a knowledge of the accumulations and average production rates of the raw wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data bases for the inventory calculations and the assumptions concerning future operation of nuclear facilities were those current in 1983. Both the inventory data and plans for the future of existing nuclear installations have been updated since these calculations were completed. Therefore the results from this assessment do not represent the most up-to-date information available. The report does, however, illustrate the methodology of assessment, and indicates the type of information that can be generated. (author)

  5. Mixed waste treatment options for wastes generated at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1991-01-01

    The Idaho National Engineering Laboratory has generated mixed wastes (MWs) during its daily operations. MWs contain both radioactive and hazardous components, as defined by the Department of Energy and the Environmental Protection Agency. Treatment and disposal of stored MWs, as well as future generated MWs, are required to meet all regulations specified by the regulating agencies. This report reviews proven and emerging technologies that can treat MWs. It also provides a method for selection of the appropriate technology for treatment of a particular waste stream. The report selects for further consideration various treatments that can be used to treat MWs that fall under Land Disposal Restrictions. The selection methodology was used to arrive at these treatments. 63 refs., 7 figs., 23 tabs

  6. Hanford Waste Vitrification Plant hydrogen generation

    International Nuclear Information System (INIS)

    King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K.

    1996-02-01

    The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H 2 . CO 2 , N 2 0, NO, and NH 3 . For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H 2 , CO, CO 2 , N 2 , N 2 O and NO

  7. Gas generation and migration analysis for TRU waste disposal system

    International Nuclear Information System (INIS)

    Ando, Kenichi; Noda, Masaru; Yamamoto, Mikihiko; Mihara, Morihiro

    2005-09-01

    In TRU waste disposal system, significant quantities of gases may be generated due to metal corrosion, radiolysis effect and microorganism activities. It is therefore recommended that the potential impact of gas generation and migration on TRU waste repository should be evaluated. In this study, gas generation rates were calculated in the repository and gas migration analysis in the disposal system were carried out using two phase flow model with results of gas generation rates. First, the time dependencies of gas generation rate in each TRU waste repositories were evaluated based on amounts of metal, organic matter and radioactivity. Next, the accumulation pressure of gases and expelled pore water volume nuclides in the repository were calculated by TOUGH2 code. After that, the results showed that the increase of gas pressure was the range of 1.3 to 1.4 MPa. In the repository with and without buffer, the rate of expelled pore water was 0.006 - 0.009 m 3 /y and 0.018 - 0.24m 3 /y, respectively. In addition, the radioactive gas migration through the repository and geosphere are evaluated. And re-saturation analysis is also performed to evaluate the initial condition of the system. (author)

  8. Urban solid waste generation and disposal in Mexico: a case study.

    Science.gov (United States)

    Buenrostro, O; Bocco, G; Bernache, G

    2001-04-01

    The adequate management of municipal solid waste in developing countries is difficult because of the scarcity of studies about their composition. This paper analyses the composition of urban solid waste (USW) in the city of Morelia, Michoacán, Mexico. Residential and non-residential waste sources were sampled, and a structured interview was made to evaluate the socioeconomic characteristics of the studied area. Also, to determine the seasonal patterns of solid waste generation and the efficiency level of the collection service, quantification of solid waste deposited in the dumping ground was measured. Our results show that the recorded amount of SW deposited in the municipal dumping-ground is less than the estimated amount of SW generated; for this reason, the former amount is not recommended as an unbiased indicator for planning public waste collection services. It is essential that dumping-grounds are permanently monitored and that the incoming waste be weighed in order to have a more efficient record of USW deposited in the dumping-ground per day; these data are fundamental for developing adequate managing strategies.

  9. Policy and practices in the United States of America for DOE-generated nuclear wastes

    International Nuclear Information System (INIS)

    Gilbert, F.C.

    1984-01-01

    Throughout the history of attempts to utilize atomic power in the USA, health and safety have been primary considerations in programme policy formulation. A brief historical review of the US nuclear waste management policy formulation over the years aids understanding of our current management strategy for government-generated (primarily defence-related) nuclear wastes. Scientists involved in the Manhattan project during World War II were aware of the dangers of radioactive wastes. The first reaction to this concern was the establishment of a health physics programme to monitor radioactive hazards in Manhattan District Laboratories. The Atomic Energy Act of 1946, which established the Atomic Energy Commission, called for protection of the health and safety of the public as well as atomic workers. That concept has been continued and strengthened, throughout the history of nuclear waste management in the USA. Passage of the Atomic Energy Act of 1954 required consideration of radioactive wastes generated by private industry as well as those produced by the Manhattan projects. Commercial waste management policy was based on the already established policy for management of government-generated wastes and is the subject of a separate paper at this symposium. Current US policy is to maintain separate but complementary programmes for nuclear wastes generated by government activities and those from commercial sources. US policy and practices for management of government-generated radioactive waste are summarized. Key organizational structure relating to waste management responsibility is presented. (author)

  10. Volume reduction of radioactive concrete waste generated from KRR-2 and UCP

    International Nuclear Information System (INIS)

    Min, B. Y.; Choi, W. K.; Park, J. W.; Lee, K. W.

    2009-01-01

    As a part of a technical development for the volume reduction and stabilization of contaminated concrete wastes generated by dismantling a research reactor and uranium conversion plant, we have developed the volume reduction technology and immobilization of fine powder applicable to an activated heavy weight concrete generated by dismantling KRR-2 and a uranium contaminated light weight concrete produced from a UCP decommissioning. During a decommissioning of nuclear plants and facilities, large quantities of contaminated concrete wastes are generated. The decommissioning of the retired TRIGA MARK II and III research reactors and a uranium conversion plant has been under way. In Korea, two decommissioning projects such as the decommissioning of the retired research reactors (KRR-1 and 2) and a uranium conversion plant (UCP) at the Korea Atomic Energy Research Institute (KAERI) has been carried out. By dismantling KRR-2, more than 260 tons of radioactive concrete wastes are generated among the total 2,000 tons of concrete wastes and more than 60 tons of concrete wastes contaminated with uranium compounds are generated in UCP decommissioning up to now. The volume reduction and recycling of the wastes is essential to reduce the waste management cost with expecting that an approximate disposal cost for low level radioactive waste will be more than 5,000 US dollars per 200 liter waste drum in Korea. It is well known that most of the radioactivity exist in cement mortar and paste composed of concrete. In this context, the volume reduction of concrete waste is based on the separation of radioactive concrete into a clean recyclable aggregates and a radioactive fine cement powder, which can be readily performed by heating to weaken the adherence force between the cement matrix and the aggregates followed by mechanical crushing and milling processes. In this study, we have investigated the characteristics of separation of aggregates and the distribution of radioactivity into

  11. Minimizing generator liability while disposing hazardous waste

    International Nuclear Information System (INIS)

    Canter, L.W.; Lahlou, M.; Pendurthi, R.P.

    1991-01-01

    Potential liabilities associated with hazardous waste disposal are related to waste properties, disposal practices and the potential threat to people and the environment in case of a pollutant release. Based on various regulations, these liabilities are enforceable and longstanding. A methodology which can help hazardous waste generators select a commercial disposal facility with a relatively low risk of potential liability is described in this paper. The methodology has two parts. The first part has 8 categories encompassing 30 factors common to all facilities, and the second part includes one category dealing with 5 factors on specific wastes and treatment/disposal technologies. This two-part evaluation feature enables the user to adapt the methodology to any type of waste disposal. In determining the scores for the factors used in the evaluation. an unranked paired comparison technique with slight modifications was used to weight the relative importance of the individual factors. In the methodology it is possible for the user to redefine the factors and change the scoring system. To make the methodology more efficient, a user-friendly computer program has been developed; the computer program is written so that desired changes in the methodology can be readily implemented

  12. Exergetic life cycle assessment of cement production process with waste heat power generation

    International Nuclear Information System (INIS)

    Sui, Xiuwen; Zhang, Yun; Shao, Shuai; Zhang, Shushen

    2014-01-01

    Highlights: • Exergetic life cycle assessment was performed for the cement production process. • Each system’s efficiency before and after waste heat power generation was analyzed. • The waste heat power generation improved the efficiency of each production system. • It provided technical support for the implementation of energy-saving schemes. - Abstract: The cement industry is an industry that consumes a considerable quantity of resources and energy and has a very large influence on the efficient use of global resources and energy. In this study, exergetic life cycle assessment is performed for the cement production process, and the energy efficiency and exergy efficiency of each system before and after waste heat power generation is investigated. The study indicates that, before carrying out a waste heat power generation project, the objective energy efficiencies of the raw material preparation system, pulverized coal preparation system and rotary kiln system are 39.4%, 10.8% and 50.2%, respectively, and the objective exergy efficiencies are 4.5%, 1.4% and 33.7%, respectively; after carrying out a waste heat power generation project, the objective energy efficiencies are 45.8%, 15.5% and 55.1%, respectively, and the objective exergy efficiencies are 7.8%, 2.8% and 38.1%, respectively. The waste heat power generation project can recover 3.7% of the total input exergy of a rotary kiln system and improve the objective exergy efficiencies of the above three systems. The study can identify degree of resource and energy utilization and the energy-saving effect of a waste heat power generation project on each system, and provide technical support for managers in the implementation of energy-saving schemes

  13. Gas generation from low-level radioactive waste: Concerns for disposal

    International Nuclear Information System (INIS)

    Siskind, B.

    1992-01-01

    The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H 2 ) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW

  14. Food waste generation and industrial uses: A review.

    Science.gov (United States)

    Girotto, Francesca; Alibardi, Luca; Cossu, Raffaello

    2015-11-01

    Food waste is made up of materials intended for human consumption that are subsequently discharged, lost, degraded or contaminated. The problem of food waste is currently on an increase, involving all sectors of waste management from collection to disposal; the identifying of sustainable solutions extends to all contributors to the food supply chains, agricultural and industrial sectors, as well as retailers and final consumers. A series of solutions may be implemented in the appropriate management of food waste, and prioritised in a similar way to waste management hierarchy. The most sought-after solutions are represented by avoidance and donation of edible fractions to social services. Food waste is also employed in industrial processes for the production of biofuels or biopolymers. Further steps foresee the recovery of nutrients and fixation of carbon by composting. Final and less desirable options are incineration and landfilling. A considerable amount of research has been carried out on food waste with a view to the recovery of energy or related products. The present review aims to provide an overview of current debate on food waste definitions, generation and reduction strategies, and conversion technologies emerging from the biorefinery concept. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. User's manual for applicants proposing on-site burial of self-generated radioactive waste

    International Nuclear Information System (INIS)

    Tolbert, M.E.M.; Loretan, P.A.

    1987-01-01

    This document describes, for medical and research institutions as well as industrial generators of low-level radioactive waste, the NRC or state submittal requirements for authorizing the on-site burial of self-generated radioactive waste. An important part of completing the license application for operation justifying this alternative for waste disposal over other alternatives. Reasons that might be considered acceptable might include the need to dispose of large volumes of low activity waste that would otherwise take up valuable space in commercial sites; the ability to demonstrate that this method of disposal will result in reduced exposures to the public; the ability to show that the prohibitive costs of other methods of disposal would be detrimental to the progress of significant research which generates radioactive waste. 19 refs., 3 figs., 4 tabs

  16. Can we always ignore ship-generated food waste?

    International Nuclear Information System (INIS)

    Polglaze, John

    2003-01-01

    Considerable quantities of food waste can be generated at a rapid rate in ships, particularly those with large numbers of people onboard. By virtue of the amounts involved and its nature, food waste is potentially the most difficult to manage component of a ship's garbage stream, however, in most sea areas it may be dealt with by the simple expedient of direct discharge to sea. As a consequence, only minimal attention is paid to food waste management by many ship and port operators and advisory bodies, and there is a paucity of information in the available literature. The determination that management of ships' food waste is inconsequential is, however, incorrect in many circumstances. Disposal to sea is not always possible due to restrictions imposed by MARPOL 73/78 and other marine pollution control instruments. Effective management of food waste can be critical for ships that operate in areas where disposal is restricted or totally prohibited

  17. Management of radioactive waste generated from nuclear power reactors in Korea

    International Nuclear Information System (INIS)

    Jeong-Mook Kim

    2000-01-01

    Fundamental objectives and efforts to safely manage radioactive wastes generating from the expanding nuclear power industry in the Republic of Korea are described. Management, treatment and storage of radioactive wastes arising in different form are addressed. A long tern plan to reduce the volume of solid waste is outlined. (author)

  18. Ocean disposal of heat generating waste

    International Nuclear Information System (INIS)

    1985-06-01

    A number of options for the disposal of vitrified heat generating waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the engineering and operational aspects of the Penetrator Option for ocean disposal to enable technical comparisons with other options to be made. In the Penetrator Option concept, waste would be loaded into carefully designed containers which would be launched at a suitable deep ocean site where they would fall freely through the water and would embed themselves completely within the seabed sediments. Radiological protection would be provided by a multi-barrier system including the vitrified waste form, the penetrator containment, the covering sediment and the ocean. Calculations and demonstration have shown that penetrators could easily achieve embedment depths in excess of 30m and preliminary radiological assessments indicate that 30m of intact sediment would be an effective barrier for radionuclide isolation. The study concludes that a 75mm thickness of low carbon steel appears to be sufficient to provide a containment life of 500 to 1000 years during which time the waste heat output would have decayed to an insignificant level. Disposal costs have been assessed. (author)

  19. Evaluation of Absorbents for Compatibility with Site Generated Hazardous and Mixed Liquid Wastes

    International Nuclear Information System (INIS)

    Oji, L.N.

    2002-01-01

    SRS Solid Waste requested SRTC to perform a literature-based evaluation of sorbents, which are compatible with hazardous mixed waste being generated on site. Polypropylene-based materials and ground corn cob (Toxi-dry), because of their compatibility with the Consolidated Incinerator Facility (CIF) process, are the only two spill stabilization agents which are recommended for use on site (IS manual, Waste Acceptance Criteria 3.18). While ensuring minimal potential for undesired reactions between spills and spill control agents, Solid Waste wants to increase the number of site approved absorbents to give waste generators more flexibility in choosing liquid spill immobilization agents

  20. Status and integration of studies of gas generation in Hanford wastes

    International Nuclear Information System (INIS)

    Pederson, L.R.; Bryan, S.A.

    1996-10-01

    The purpose of this report is to review recent progress in determining the mechanism, kinetics, and stoichiometry of gas generation in Hanford waste tanks. Information has been gathered from the results of (1) laboratory studies with simulated wastes; (2) laboratory studies with actual waste core samples (Tanks SY-101 and SY-103); (3) studies of thermal and radiolytic reactions in the gas phase; (4) gas solubility evaluations; and (5) in-tank gas composition data. The results of laboratory studies using simulated wastes, which were aimed at determining chemical mechanisms responsible for gas generation, are summarized in Section 2. Emphasized are findings from work performed at the Georgia Institute of Technology (GIT), which was conducted under subcontract to Pacific Northwest National Laboratory (PNNL) and completed in FY 1996. Thermally activated pathways for the decomposition of hydroxyethylethylene-diaminetriacetic acid (HEDTA, trisodium salt) in simulated wastes were established by this work, among other accomplishments

  1. Status and integration of studies of gas generation in Hanford wastes

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Bryan, S.A.

    1996-10-01

    The purpose of this report is to review recent progress in determining the mechanism, kinetics, and stoichiometry of gas generation in Hanford waste tanks. Information has been gathered from the results of (1) laboratory studies with simulated wastes; (2) laboratory studies with actual waste core samples (Tanks SY-101 and SY-103); (3) studies of thermal and radiolytic reactions in the gas phase; (4) gas solubility evaluations; and (5) in-tank gas composition data. The results of laboratory studies using simulated wastes, which were aimed at determining chemical mechanisms responsible for gas generation, are summarized in Section 2. Emphasized are findings from work performed at the Georgia Institute of Technology (GIT), which was conducted under subcontract to Pacific Northwest National Laboratory (PNNL) and completed in FY 1996. Thermally activated pathways for the decomposition of hydroxyethylethylene-diaminetriacetic acid (HEDTA, trisodium salt) in simulated wastes were established by this work, among other accomplishments.

  2. Management of low level waste generated from ISER

    International Nuclear Information System (INIS)

    Mizushina, Tomoyuki

    1987-01-01

    Low level wastes are generated during nuclear power plant operation. In the case of ISER, low level wastes from the reactor are basically the same as of existing light water reactors. Various low level wastes, including solid, liquid and gaseous, are listed and discussed. In normal operation, high-activity wastes are not subjected to any treatment. For contaminated equipment or reactor parts, it may be desirable to transfer most of the activity to liquid phase through an appropriate decontamination procedure. Highly active solid wastes are usually fixed in a solid form through incorporation into either concrete or asphalt as containment material. Decantation and filtration treatments are usually sufficient before dilution and release of liquid wastes into the environment. Except for ordinary gas filtration, there in normally no other treatment. Under certain circumstances, however, it may be important to apply the decay storage before release to the atmosphere. In accidental circumstances, specific filtration is recommended or even sometimes needed. There are some alternatives for storage and-or disposal of low level wastes. In many cases, shallow land burial is chosen as a realistic method for storage and-or disposal of solid waste. In chosing a disposal method, the radiation dose rate from solid wastes or the specific activity should be taken into account. Boric acid is a retarder for cement setting. This effect of boric acid is inhibited by adding a complexing agent before mixing the waste with cement. (Nogami, K.)

  3. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    Wiltsee, G.A. Jr.; Easterly, J.; Vence, T.

    1993-12-01

    In this report, the Electric Power Research Institute (EPRI) intends to help utility companies evaluate biomass and wastes for power generation. These fuels may be alternatives or supplements to fossil fuels in three applications: (1) utility boiler coining; (2) dedicated combustion/energy recovery plants; and 3) dedicated gasification/combined cycle plants. The report summarizes data on biomass and waste properties, and evaluates the cost and performance of fuel preparation and power generation technologies. The primary biomass and waste resources evaluated are: (1) wood wastes (from forests, mills, construction/demolition, and orchards) and short rotation woody crops; (2) agricultural wastes (from fields, animals, and processing) and herbaceous energy crops; and (3) consumer or industrial wastes (e.g., municipal solid waste, scrap tires, sewage sludge, auto shredder waste). The major fuel types studied in detail are wood, municipal solid waste, and scrap tires. The key products of the project include the BIOPOWER model of biomass/waste-fired power plant performance and cost. Key conclusions of the evaluation are: (1) significant biomass and waste fuel resources are available; (2) biomass power technology cannot currently compete with natural gas-fired combined cycle technology; (3) coining biomass and waste fuels with coal in utility and industrial boilers is the most efficient, lowest cost, and lowest risk method of energy recovery from residual materials; (4) better biomass and waste fuel production and conversion technology must be developed, with the help of coordinated government energy and environmental policies and incentives; and (5) community partnerships can enhance the chances for success of a project

  4. Specifying the Concept of Future Generations for Addressing Issues Related to High-Level Radioactive Waste.

    Science.gov (United States)

    Kermisch, Celine

    2016-12-01

    The nuclear community frequently refers to the concept of "future generations" when discussing the management of high-level radioactive waste. However, this notion is generally not defined. In this context, we have to assume a wide definition of the concept of future generations, conceived as people who will live after the contemporary people are dead. This definition embraces thus each generation following ours, without any restriction in time. The aim of this paper is to show that, in the debate about nuclear waste, this broad notion should be further specified and to clarify the related implications for nuclear waste management policies. Therefore, we provide an ethical analysis of different management strategies for high-level waste in the light of two principles, protection of future generations-based on safety and security-and respect for their choice. This analysis shows that high-level waste management options have different ethical impacts across future generations, depending on whether the memory of the waste and its location is lost, or not. We suggest taking this distinction into account by introducing the notions of "close future generations" and "remote future generations", which has important implications on nuclear waste management policies insofar as it stresses that a retrievable disposal has fewer benefits than usually assumed.

  5. Performance validation of commercially available mobile waste-assay systems: Preliminary report

    International Nuclear Information System (INIS)

    Schanfein, M.; Bonner, C.; Maez, R.

    1997-01-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content to reduce the radioactive hazard to the public. Validation of the waste-assay systems' performance is critical for establishing the credibility of the assay results for storage and disposal purposes. Canberra Nuclear has evaluated regulations worldwide and identified standard, modular, neutron- and gamma-waste-assay systems that can be used to characterize a large portion of existing and newly generated transuranic (TRU) and low-level waste. Before making claims of guaranteeing any system's performance for specific waste types, the standardized systems' performance be evaluated. 7 figs., 11 tabs

  6. Performance validation of commercially available mobile waste-assay systems: Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Schanfein, M.; Bonner, C.; Maez, R. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content to reduce the radioactive hazard to the public. Validation of the waste-assay systems` performance is critical for establishing the credibility of the assay results for storage and disposal purposes. Canberra Nuclear has evaluated regulations worldwide and identified standard, modular, neutron- and gamma-waste-assay systems that can be used to characterize a large portion of existing and newly generated transuranic (TRU) and low-level waste. Before making claims of guaranteeing any system`s performance for specific waste types, the standardized systems` performance be evaluated. 7 figs., 11 tabs.

  7. Healthcare waste generation and management practice in government health centers of Addis Ababa, Ethiopia.

    Science.gov (United States)

    Tadesse, Menelik Legesse; Kumie, Abera

    2014-11-25

    Healthcare wastes are hazardous organic and inorganic wastes. The waste disposal management in Addis Ababa city is seen unscientific manner. The waste management practice in the health facilities are poor and need improvement. This study will help different organizations, stakeholders and policy makers to correct and improve the existing situation of healthcare waste legislation and enforcement and training of staff in the healthcare facilities in Addis Ababa. The study aimed to assess the existing generation and management practice of healthcare waste in selected government health centers of Addis Ababa. The cross-sectional study was conducted to quantify waste generation rate and evaluate its management system. The study area was Addis Ababa. The sample size was determined by simple random sampling technique, the sampling procedure involved 10 sub-cities of Addis Ababa. Data were collected using both waste collecting and measuring equipment and check list. The Data was entered by EPI INFO version 6.04d and analyzed by and SPSS for WINDOW version15. The mean (±SD) healthcare waste generation rate was 9.61 ± 3.28 kg/day of which (38%) 3.64 ± 1.45 kg/day was general or non-hazardous waste and (62%) 5.97 ± 2.31 kg/day was hazardous. The mean healthcare waste generation rate between health centers was a significant different with Kurskal-Wallis test (χ2 = 21.83, p-value = 0.009). All health centers used safety boxes for collection of sharp wastes and all health centers used plastic buckets without lid for collection and transportation of healthcare waste. Pre treatment of infectious wastes was not practiced by any of the health centers. All health centers used incinerators and had placenta pit for disposal of pathological waste however only seven out of ten pits had proper covering material. Segregation of wastes at point of generation with appropriate collection materials and pre- treatment of infectious waste before disposal should be practiced

  8. Managing California's low-level waste: state policy and waste generators

    International Nuclear Information System (INIS)

    Pasternak, A.D.; Cramer, E.N.

    1985-01-01

    Since 1982, public and private organizations in California that use radioactive materials and generate low-level radioactive waste have worked together through the California Radioactive Materials Management Forum (CRMMF) to assure the continued safe disposal of low-level waste (LLW). The forum's corporate and institutional members include electric utilities, universities, hospitals, industries, professional societies, and firms engaged in biological research and the manufacture of radiopharmaceuticals. In addition, over 200 individuals are members. The objectives of CRMMF are: (a) establishing a disposal facility for LLW in California and (b) maintaining access to the existing disposal sites in Washington, Nevada, and South Carolina until a California site is licensed and operating. This paper describes the forum's programs in the areas of legislation, litigation, and public information that contribute to the achievement of these objectives

  9. Methodology for assessing performance of waste management systems

    International Nuclear Information System (INIS)

    Meshkov, N.K.; Herzenberg, C.L.; Camasta, S.F.

    1988-01-01

    The newly revised draft DOE Order 5820.2, Chapter 3, requires that DOE low-level waste shall be managed on a systematic basis using the most appropriate combination of waste generation reduction, segregation, treatment, and disposal practices so that the radioactive components are contained and the overall cost effectiveness is minimized. This order expects each site to prepare and maintain an overall waste management systems performance assessment supporting the combination of waste management practices used in generation reduction segregation, treatment, packaging, storage, and disposal. A document prepared by EG and G Idaho, Inc. for the Department of Energy called Guidance for Conduct of Waste Management Systems Performance Assessment is specifically intended to provide the approach necessary to meet the systems performance assessment requirement of DOE Order 5820.2, Chapter 3, and other applicable state regulations dealing with LLW (low-level radioactive wastes). Methods and procedures are needed for assessing the performance of a waste management system. This report addresses this need. The purpose of the methodology provided in this report is to select the optimal way to manage particular sets of waste streams from generation to disposal in a safe and cost-effective manner, and thereby assist the DOE LLW mangers in complying with the DOE Order 5820.2, Chapter 3, and the associated guidance document

  10. Systematic analysis method for radioactive wastes generated from nuclear research facilities

    International Nuclear Information System (INIS)

    Kameo, Yutaka; Ishimori, Ken-ichiro; Haraga, Tomoko; Shimada, Asako; Katayama, Atsushi; Nakashima, Mikio; Takahashi, Kuniaki

    2011-01-01

    Analytical methods have been developed for the simple and rapid determination of radioactive nuclides, which are selected as important nuclides for the safety assessment of the disposal of wastes generated from research facilities. We advanced the development of a high-efficiency nondestructive measurement technique for γ-ray-emitting nuclides, simple and rapid methods for the pretreatment of hard-to-dissolve samples and subsequent radiochemical separation, and rapid determination methods for long-lived nuclides. In order to establish a system to analyze the important nuclides in various kinds of sample, actual radioactive wastes such as concentrated liquid waste, activated concrete, and metal pipes were analyzed by the present method. The results showed that the present method was well suited for a rapid and simple determination of low-level radioactive wastes generated from research facilities. (author)

  11. The challenges and issues facing the radioactive waste management in Croatia

    International Nuclear Information System (INIS)

    Subasic', D.; Saler, A.

    1994-01-01

    There are substantial experiences in Croatia in the field of radioactive waste management concerning both the waste from nuclear applications and waste generated at nuclear power plant. The essential issue now is how set-up infrastructure and to realize institutional and capacity building to get adjusted to needs of the newly independent state. In connection to this, the issues related to national radioactive waste management strategy, past and new organization of the Regulatory Body, and changes in legislation and regulations are discussed. In addition, some on-going projects important for realization of a complete radioactive waste management in the country round up the present situation in the field of radioactive waste management in Croatia

  12. Generation, transport and conduct of radioactive wastes of low and intermediate level

    International Nuclear Information System (INIS)

    Lizcano, D.; Jimenez, J.

    2005-01-01

    The technological development of the last decades produced an increment in the application of the radiations in different human activities. The effect of it has been it the production of radioactive wastes of all the levels. In Mexico, some of the stages of the administration of the waste of low and intermediate level have not been completely resolved, as the case of the treatment and the final storage. In this work aspects of the generation, the transport and the administration of radioactive waste of low and intermediate level produced in the non energy applications from the radioactive materials to national level, indicating the generated average quantities, transported and tried annually by the National Institute of Nuclear Research (ININ). The main generators of wastes in Mexico, classified according to the activity in which the radioactive materials are used its are listed. Some of the main processes of treatment of radioactive wastes broadly applied in the world and those that are used at the moment in our country are also presented. (Author)

  13. Generation and collection of restaurant waste: Characterization and evaluation at a case study in Italy.

    Science.gov (United States)

    Tatàno, Fabio; Caramiello, Cristina; Paolini, Tonino; Tripolone, Luca

    2017-03-01

    Because restaurants (as a division of the hospitality sector) contribute to the generation of commercial and institutional waste, thus representing both a challenge and an opportunity, the objective of the present study was to deepen the knowledge of restaurant waste in terms of the qualitative and quantitative characteristics of waste generation and the performance achievable by the implementation of a separate collection scheme. In this study, the generated waste was characterized and the implemented separate collection was evaluated at a relevant case study restaurant in a coastal tourist area of Central Italy (Marche Region, Adriatic Sea side). The qualitative (compositional) characterization of the generated total restaurant waste showed considerable incidences of, in decreasing order, food (28.2%), glass (22.6%), paper/cardboard (19.1%), and plastic (17.1%). The quantitative (parametric) characterization of the generated restaurant waste determined the unit generation values of total waste and individual fractions based on the traditional employee and area parameters and the peculiar meal parameter. In particular, the obtained representative values per meal were: 0.72kgmeal -1 for total waste, and ranging, for individual fractions, from 0.20 (for food) to 0.008kgmeal -1 (for textile). Based on the critical evaluation of some of the resulting unit waste generation values, possible influences of restaurant practices, conditions, or characteristics were pointed out. In particular, food waste generation per meal can likely be limited by: promoting and using local, fresh, and quality food; standardizing and limiting daily menu items; basing food recipes on consolidated cooking knowledge and experience; and limiting plate sizes. The evaluation of the monthly variation of the monitored separate collection, ranging from an higher level of 52.7% to a lower level of 41.4%, indicated the following: a reduction in the separate collection level can be expected at times of

  14. Purification and solidification of reactor wastes at a Canadian nuclear generating station

    International Nuclear Information System (INIS)

    Buckley, L.P.; Burt, D.A.

    1981-06-01

    Chalk River Nuclear Laboratories are developing methods to condition power reactor wastes and to immobilize their radionuclides. Evaporation alone and combined with bituminization has been an important part of the program. After testing at the laboratories a 0.5 m 2 wiped-film evaporator was sent to the Douglas Point Nuclear Generating Station (220 MWe) to demonstrate its suitability to handle typical reactor liquid wastes. Two specific tasks undertaken with the wiped-film evaporator were successfully completed. The first was purification of contaminated heavy water which had leaked from the moderator circuit. The heavy water is normally recovered, cleaned by filters and ion-exchange resin and then upgraded by electrolysis. Cleaning the heavy water with the wiped-film evaporator produced better quality water for upgrading than had been achieved by any previous method and at much lower operating cost. The second task was to concentrate and immobilize a decontamination waste. The waste was generated from the decontamination of pump bowls used in the primary heat transport circuit. The simultaneous addition of the liquid waste and bitumen emulsion to the wiped-film evaporator produced a solid containing 30 wt% waste solids in a bitumen matrix. The volume reduction achieved was 16:1 based on the volumes of initial liquid waste and the final product generated. The quantity sent to storage was 20 times less than had the waste been immobilized in a cement matrix. The successful demonstration has resulted in a proposal to install a wiped-film evaporator at the station to clean heavy water and immobilize decontamination wastes. (author)

  15. The concept of responsibility to future generations for the management and storage of radioactive waste

    International Nuclear Information System (INIS)

    Vial, E.

    2004-01-01

    Recognition of the concept of responsibility to future generations seems, to imply the need to assume responsibility today for radioactive waste legacy of the past as well as for the waste that is currently being generated. However, this view of things, or more precisely this interpretation, is clouded by the lack of a clear definition of the concept of responsibility towards future generations. The concept has been used mainly in connection with long-lived radioactive wastes, which pose the greatest management problem as it so so far exceeds any human scale of reference. Consideration for future generations has to be a factor in the management of all types of radioactive waste, be it short, medium or long-lived waste or very low, low, intermediate or highly radioactive waste. As a general rule the concept of responsibility has made focus on long lived waste, whatever its level of radioactivity. The current alternatives for the management of radioactive waste may be: interim storage, final disposal, incineration, transmutation, to lower the radioactivity of the wastes. These different alternatives are discussed because they are not all genuine solutions and need to be deepened. (N.C.)

  16. The current waste generation and management trends in South Africa: A Review

    CSIR Research Space (South Africa)

    Nkosi, N

    2013-04-01

    Full Text Available This paper, a continuation and expansion of the work of Muzenda et al, 2012 [1] looks at the current waste generation and management trends in South Africa. The waste tyre problem in South Africa is also briefly discussed. Solid waste management...

  17. Potential ability of zeolite to generate high-temperature vapor using waste heat

    Science.gov (United States)

    Fukai, Jun; Wijayanta, Agung Tri

    2018-02-01

    In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

  18. Defense transuranic waste program strategy document

    International Nuclear Information System (INIS)

    1982-07-01

    This document summarizes the strategy for managing transuranic (TRU) wastes generated in defense and research activities regulated by the US Department of Energy. It supercedes a document issued in July 1980. In addition to showing how current strategies of the Defense Transuranic Waste Program (DTWP) are consistent with the national objective of isolating radioactive wastes from the biosphere, this document includes information about the activities of the Transuranic Lead Organization (TLO). To explain how the DTWP strategy is implemented, this document also discusses how the TLO coordinates and integrates the six separate elements of the DTWP: (1) Waste Generation Site Activities, (2) Storage Site Activities, (3) Burial Site Activities, (4) Technology Development, (5) Transportation Development, and (6) Permanent Disposal. Storage practices for TRU wastes do not pose short-term hazards to public health and safety or to the environment. Isolation of TRU wastes in a deep-mined geologic repository is considered the most promising of the waste disposal alternatives available. This assessment is supported by the DOE Record of Decision to proceed with research and development work at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico - a deep-mined geologic research and development project. In support of the WIPP research project and the permanent disposal of TRU waste, the DTWP strategy for the near term will concentrate on completion of procedures and the design and construction of all facilities necessary to certify newly-generated (NG) and stored TRU wastes for emplacement in the WIPP. In addition, the strategy involves evaluating alternatives for disposing of some transuranic wastes by methods which may allow for on-site disposal of these wastes and yet preserve adequate margins of safety to protect public health and the environment

  19. Gas generation from radiolytic attack of TRU-contaminated hydrogenous waste

    International Nuclear Information System (INIS)

    Zerwekh, A.

    1979-06-01

    In 1970, the Waste Management and Transportation Division of the Atomic Energy Commission ordered a segregation of transuranic (TRU)-contaminated solid wastes. Those below a contamination level of 10 nCi/g could still be buried; those above had to be stored retrievably for 20 y. The possibility that alpha-radiolysis of hydrogenous materials might produce toxic, corrosive, and flammable gases in retrievably stored waste prompted an investigation of gas identities and generation rates in the laboratory and field. Typical waste mixtures were synthesized and contaminated for laboratory experiments, and drums of actual TRU-contaminated waste were instrumented for field testing. Several levels of contamination were studied, as well as pressure, temperature, and moisture effects. G (gas) values were determined for various waste matrices, and degradation products were examined

  20. WTP Waste Feed Qualification: Hydrogen Generation Rate Measurement Apparatus Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-01

    The generation rate of hydrogen gas in the Hanford tank waste will be measured during the qualification of the staged tank waste for processing in the Hanford Tank Waste Treatment and Immobilization Plant. Based on a review of past practices in measurement of the hydrogen generation, an apparatus to perform this measurement has been designed and tested for use during waste feed qualification. The hydrogen generation rate measurement apparatus (HGRMA) described in this document utilized a 100 milliliter sample in a continuously-purged, continuously-stirred vessel, with measurement of hydrogen concentration in the vent gas. The vessel and lid had a combined 220 milliliters of headspace. The vent gas system included a small condenser to prevent excessive evaporative losses from the sample during the test, as well as a demister and filter to prevent particle migration from the sample to the gas chromatography system. The gas chromatograph was an on line automated instrument with a large-volume sample-injection system to allow measurement of very low hydrogen concentrations. This instrument automatically sampled the vent gas from the hydrogen generation rate measurement apparatus every five minutes and performed data regression in real time. The fabrication of the hydrogen generation rate measurement apparatus was in accordance with twenty three (23) design requirements documented in the conceptual design package, as well as seven (7) required developmental activities documented in the task plan associated with this work scope. The HGRMA was initially tested for proof of concept with physical simulants, and a remote demonstration of the system was performed in the Savannah River National Laboratory Shielded Cells Mockup Facility. Final verification testing was performed using non-radioactive simulants of the Hanford tank waste. Three different simulants were tested to bound the expected rheological properties expected during waste feed qualification testing. These

  1. ANALYZING CERTAIN CHRACTERISTICS OF MUNICIPAL SOLID WASTE GENERATION IN THE PROCES S OF WASTE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Gábriel Györgyi T #336;ZSÉR

    2010-01-01

    Full Text Available Based on the regulations of Act XLIII/2000 on Waste Management to implement the strategic objectives and targets in the Act for the prevalence of the basic waste management principles a National Waste Management Plan II will be worked out and then accepted by the Parliament as part of the National Environmental Protection Programme. On the basis of the national plan the administrative bodies of environmental protection in accordance with the regional settlement and d evelopment programmes make a regional waste management project with the inclusion of the regional, local authorities, and other authorities concerned as well as the non governmental organisations for environmental protection. In our research we analyze the correlation between municipal solid waste per capita and urbanisation level. We have conducted similar calculations in the filed of population density and income. The study was carried out on a micro region level. Our analysis can help determine the framework conditions and factors that influence waste generation, and therefore should be taken into consideration when designing waste policies .

  2. TRU waste transportation -- The flammable gas generation problem

    International Nuclear Information System (INIS)

    Connolly, M.J.; Kosiewicz, S.T.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site's inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons

  3. Safe Management of Waste Generated during Shale Gas Operations

    Science.gov (United States)

    Kukulska-Zając, Ewa; Król, Anna; Holewa-Rataj, Jadwiga

    2017-04-01

    Exploration and exploitation of hydrocarbon deposits, regardless of their type, are connected with the generation of waste, which may have various environmental effects. Such wastes may pose a serious risk to the surrounding environment and public health because they usually contain numerous potentially toxic chemicals. Waste associated with exploration and exploitation of unconventional hydrocarbon deposits is composed of a mixture of organic and inorganic materials, the qualitative and quantitative composition of which changes widely over time, depending on numerous factors. As a result the proper characteristic of this type of waste is very important. Information gained from detailed chemical analyses of drilling chemicals, drilling wastes, and flowback water can be used to manage shale gas-related wastes more appropriately, to develop treatment methods, to store the waste, and assess the potential environmental and health risk. The following paper will focus mainly on the results of research carried out on waste samples coming from the unconventional hydrogen exploration sites. Additionally, regulatory frameworks applicable to the management of wastes produced during this type of works will be discussed. The scope of research concerning physicochemical parameters for this type of wastes will also be presented. The presented results were obtained during M4ShaleGas project realization. The M4ShaleGas project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 640715.

  4. Electrical and Electronical Waste Generation in Turkey: Bursa Case Study

    Directory of Open Access Journals (Sweden)

    Güray SALİHOĞLU

    2016-10-01

    Full Text Available Electrical and electronical equipment that gradually take more place in our daily life, spend their service life in short times and become an e-waste problem to be solved.  Because of the hazardous components they contain, e-waste can cause environmental and human health threats if they are not properly managed. If they are managed properly, they can be a valuable raw material source, since they contain valuable metals such as copper, silver, gold, palladium and recyclable components such as plastics and metals. According to a research conducted in 2014, the global e-waste amount accounts to a source worth 52 billion $; however, only 16% of this source has been properly recycled. It is important to know the potential e-waste amount and the behaviors of people in the production of e-waste to realize a proper e-waste management in our country. The amount and property of electrical and electronic equipment and e-waste generation potential per person in Bursa was investigated in this study. A questionnaire was prepared and applied to a group of people including 31 families (100 person. The questions were to investigate the behaviors in the use, replacement, and management of electrical and electronical equipment. The findings showed that usage of lamps (fluorescent and others were higher than the other equipment, and usage of mobile phones were found to be highest in terms of devices. It was also found that when the mobiles become e-waste since the owners do not want to use them, they are not just thrown away and kept at homes instead. E-waste generation potential of a person from the families investigated was estimated to be 8.14 kg/year.

  5. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    International Nuclear Information System (INIS)

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications

  6. Selection of efficient options for processing and storage of radioactive waste in countries with small amounts of waste generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    The report is intended to assist decision makers in countries using nuclear energy for non-power applications to organize their waste management practices. It describes methodologies, criteria and options for the selection of appropriate technologies for processing and storage of low and intermediate level radioactive waste from different nuclear applications. The report reviews both technical and non-technical factors important for decision making and planning, and for implementation of waste management activities at the country and facility levels. It makes practical recommendations for the selection of particular technologies for different scales of waste generation. These wastes may arise from production of radionuclides and their application in industry, agriculture, medicine, education and research. The report also considers waste generated at research reactors, research centers and research laboratories using radioisotopes, as well as waste from decommissioning of research reactors and small nuclear facilities such as hot cells, laboratories and irradiation facilities. Management of uranium mining and milling waste and management of spent fuel from research reactors are not considered in this report. Discussed in detail are: the basic legal, regulatory, administrative and technical requirements set up in a national waste management system and review of the factors and components affecting the selection of an appropriate national waste management system. the origins and characteristics of radioactive waste from different nuclear applications. the technical factors that might affect the selection of waste processing and storage technologies, the main waste management steps, information on available technologies, the basis for planning of waste processing and storage and the selection of a particular option for radioactive waste processing and storage in countries with a different scale of nuclear applications.

  7. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP)

  8. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil

    International Nuclear Information System (INIS)

    Araújo, Marcelo Guimarães; Magrini, Alessandra; Mahler, Cláudio Fernando; Bilitewski, Bernd

    2012-01-01

    Highlights: ► Literature of WEEE generation in developing countries is reviewed. ► We analyse existing estimates of WEEE generation for Brazil. ► We present a model for WEEE generation estimate. ► WEEE generation of 3.77 kg/capita year for 2008 is estimated. ► Use of constant lifetime should be avoided for non-mature market products. - Abstract: Sales of electrical and electronic equipment are increasing dramatically in developing countries. Usually, there are no reliable data about quantities of the waste generated. A new law for solid waste management was enacted in Brazil in 2010, and the infrastructure to treat this waste must be planned, considering the volumes of the different types of electrical and electronic equipment generated. This paper reviews the literature regarding estimation of waste electrical and electronic equipment (WEEE), focusing on developing countries, particularly in Latin America. It briefly describes the current WEEE system in Brazil and presents an updated estimate of generation of WEEE. Considering the limited available data in Brazil, a model for WEEE generation estimation is proposed in which different methods are used for mature and non-mature market products. The results showed that the most important variable is the equipment lifetime, which requires a thorough understanding of consumer behavior to estimate. Since Brazil is a rapidly expanding market, the “boom” in waste generation is still to come. In the near future, better data will provide more reliable estimation of waste generation and a clearer interpretation of the lifetime variable throughout the years.

  9. Radiolytic gas generation in plutonium contaminated waste materials

    International Nuclear Information System (INIS)

    Kazanjian, A.R.

    1976-01-01

    Many plutonium contaminated waste materials decompose into gaseous products because of exposure to alpha radiation. The gases generated (usually hydrogen) over long-storage periods may create hazardous conditions. To determine the extent of such hazards, knowing the gas generation yields is necessary. These yields were measured by contacting some common Rocky Flats Plant waste materials with plutonium and monitoring the enclosed atmospheres for extensive periods of time. The materials were Plexiglas, polyvinyl chloride, glove-box gloves, machining oil, carbon tetrachloride, chlorothene VG solvent, Kimwipes (dry and wet), polyethylene, Dowex-1 resin, and surgeon's gloves. Both 239 Pu oxide and 238 Pu oxide were used as radiation sources. The gas analyses were made by mass spectrometry and the results obtained were the total gas generation, the hydrogen generation, the oxygen consumption rate, and the gas composition over the entire storage period. Hydrogen was the major gas produced in most of the materials. The total gas yields varied from 0.71 to 16 cm 3 (standard temperature pressure) per day per curie of plutonium. The oxygen consumption rates varied from 0.0088 to 0.070 millimoles per day per gram of plutonium oxide-239 and from 0.0014 to 0.0051 millimoles per day per milligram 238 Pu

  10. Modeling Hydrogen Generation Rates in the Hanford Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Camaioni, Donald M.; Bryan, Samuel A.; Hallen, Richard T.; Sherwood, David J.; Stock, Leon M.

    2004-03-29

    This presentation describes a project in which Hanford Site and Environmental Management Science Program investigators addressed issues concerning hydrogen generation rates in the Hanford waste treatment and immobilization plant. The hydrogen generation rates of radioactive wastes must be estimated to provide for safe operations. While an existing model satisfactorily predicts rates for quiescent wastes in Hanford underground storage tanks, pretreatment operations will alter the conditions and chemical composition of these wastes. Review of the treatment process flowsheet identified specific issues requiring study to ascertain whether the model would provide conservative values for waste streams in the plant. These include effects of adding hydroxide ion, alpha radiolysis, saturation with air (oxygen) from pulse-jet mixing, treatment with potassium permanganate, organic compounds from degraded ion exchange resins and addition of glass-former chemicals. The effects were systematically investigated through literature review, technical analyses and experimental work.

  11. Precipitation-filtering technology for uranium waste solution generated on washing-electrokinetic decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam, E-mail: kimsum@kaeri.re.kr; Park, Uk-Ryang; Kim, Seung-Soo; Moon, Jei-Kwon

    2015-05-15

    Graphical abstract: A recycling process diagram for the volume reduction of waste solution generated from washing-electrokinetic decontamination. - Highlights: • A process for recycling a waste solution generated was developed. • The total metal precipitation rate by NaOH in a supernatant after precipitation was the highest at pH 9. • The uranium radioactivity in the treated solution upon injection of 0.2 g of alum was lower. • After drying, the volume of sludge was reduced to 35% of the initial sludge volume. - Abstract: Large volumes of uranium waste solution are generated during the operation of washing-electrokinetic decontamination equipment used to remove uranium from radioactive soil. A treatment technology for uranium waste solution generated upon washing-electrokinetic decontamination for soil contaminated with uranium has been developed. The results of laboratory-size precipitation experiments were as follows. The total amount of metal precipitation by NaOH for waste solution was highest at pH 11. Ca(II), K(I), and Al(III) ions in the supernatant partially remained after precipitation, whereas the concentration of uranium in the supernatant was below 0.2 ppm. Also, when NaOH was used as a precipitant, the majority of the K(I) ions in the treated solution remained. The problem of CaO is to need a long dissolution time in the precipitation tank, while Ca(OH){sub 2} can save a dissolution time. However, the volume of the waste solution generated when using Ca(OH){sub 2} increased by 8 mL/100 mL (waste solution) compared to that generated when using CaO. NaOH precipitant required lower an injection volume lower than that required for Ca(OH){sub 2} or CaO. When CaO was used as a precipitant, the uranium radioactivity in the treated solution at pH 11 reached its lowest value, compared to values of uranium radioactivity at pH 9 and pH 5. Also, the uranium radioactivity in the treated solution upon injection of 0.2 g of alum with CaO or Ca(OH){sub 2} was

  12. Production of Biogas from wastes Blended with CowDung for Electricity generation-A Case study

    Science.gov (United States)

    Muthu, D.; Venkatasubramanian, C.; Ramakrishnan, K.; Sasidhar, Jaladanki

    2017-07-01

    The country’s production of solid waste generation is piling up year after year and the generation of Bio-Gas finds a fruitful solution to overcome this problem. This technology can contribute to energy conservation if the economic viability and social acceptance of this technology are favorable. Our campus has a number of hostel buildings which generates large quantum of kitchen waste and sewage per day. This research will have process ofcarrying out survey, characterization of kitchen waste from several kitchens & Canteens and knowing the potential for biogas production. The waste generated from kitchen and sewage from the hostels is given as feedstock to produce 600 m3 of biogas per day with cow dung as byproduct. The methane gas generated from Biogas is purified and this is used for power generation. Two biogas engine generators of 30 kVA and 50 kVA were installed. This power is used for backup power for girl’s hostel lighting load. From this study it is concluded that the generation of Biogas production and its usage for power production is the best option to handle these large quantum of sewage, kitchen waste generated from various buildings and also treated effluent from biogas plant and the biomass generated is a wealth for doing agriculture for any community ultimately it protects the environment.

  13. Major factors contributing to the construction waste generation in building projects of Iraq

    Directory of Open Access Journals (Sweden)

    Khaleel Tareq

    2018-01-01

    Full Text Available Due to the economic growth and improvement of the construction industry witnessed by most countries, there has become a crucial need for employing modern possibilities in the construction sector to build taller, longer and deeper structures. However, one aspect that heads forward with the same intensity is the generation of 100 million tons of construction waste every year. This generation has occurred due to several factors with different levels of importance. Hence, this study reveals 15 factors influencing construction waste generation and categorizes them into 3 groups, (materials management on site, (materials handling, transportation and storage and (site management and practices. A questionnaire survey of 100 respondents was distributed among different engineers to assess the construction waste factors. Results showed that damage of materials on site, double handling of materials and incompetent contractor’s technical staff were the most significant factors of each category with Relative Importance Indexes (RII of 0.866, 0.844 and 0.83, respectively. These findings will help the practitioners to reduce construction waste quantities in sites and improve waste management performance factors to control the construction waste problems.

  14. Waste generated in high-rise buildings construction: a quantification model based on statistical multiple regression.

    Science.gov (United States)

    Parisi Kern, Andrea; Ferreira Dias, Michele; Piva Kulakowski, Marlova; Paulo Gomes, Luciana

    2015-05-01

    Reducing construction waste is becoming a key environmental issue in the construction industry. The quantification of waste generation rates in the construction sector is an invaluable management tool in supporting mitigation actions. However, the quantification of waste can be a difficult process because of the specific characteristics and the wide range of materials used in different construction projects. Large variations are observed in the methods used to predict the amount of waste generated because of the range of variables involved in construction processes and the different contexts in which these methods are employed. This paper proposes a statistical model to determine the amount of waste generated in the construction of high-rise buildings by assessing the influence of design process and production system, often mentioned as the major culprits behind the generation of waste in construction. Multiple regression was used to conduct a case study based on multiple sources of data of eighteen residential buildings. The resulting statistical model produced dependent (i.e. amount of waste generated) and independent variables associated with the design and the production system used. The best regression model obtained from the sample data resulted in an adjusted R(2) value of 0.694, which means that it predicts approximately 69% of the factors involved in the generation of waste in similar constructions. Most independent variables showed a low determination coefficient when assessed in isolation, which emphasizes the importance of assessing their joint influence on the response (dependent) variable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Systematic characterization of generation and management of e-waste in China.

    Science.gov (United States)

    Duan, Huabo; Hu, Jiukun; Tan, Quanyin; Liu, Lili; Wang, Yanjie; Li, Jinhui

    2016-01-01

    Over the last decade, there has been much effort to promote the management of e-waste in China. Policies have been affected to prohibit imports and to control pollution. Research has been conducted in laboratories and on large-scale industrial operations. A subsidy system to support sound e-waste recycling has been put in place. However, the handling of e-waste is still a concern in China and the issue remains unresolved. There has been relatively little work to follow up this issue or to interpret continuing problems from the perspective of sustainable development. This paper first provides a brief overview of conventional and emerging environmental pollution in Chinese "famous" e-waste dismantling areas, including Guiyu in Guangdong and Wenling in Zhejiang. Environmentalists have repeatedly proven that these areas are significantly polluted. Importing and backyard recycling are decreasing but are ongoing. Most importantly, no work is being done to treat or remediate the contaminated environmental media. The situation is exacerbated by the rising tide of e-waste generated by domestic update of various electronics. This study, therefore, employs a Sales Obsolescence Model approach to predict the generation of e-waste. When accounting for weight, approximately 8 million tons of e-waste will be generated domestically in 2015, of which around 50% is ferrous metals, followed by miscellaneous plastic (30%), copper metal and cables (8%), aluminum (5%), and others (7%). Of this, 3.6% will come from scrap PCBs and 0.2% from lead CRT glass. While more and more end-of-life electronics have been collected and treated by formal or licensed recyclers in China in terms of our analysis, many of them only have dismantling and separation activities. Hazardous e-wastes, including those from PCBs, CRT glass, and brominated flame retardant (BFR) plastics, have become problematic and probably flow to small or backyard recyclers without environmentally sound management. Traditional

  16. Examining of solid waste generation and community awareness between city center and suburban area in Medan City, Indonesia

    Science.gov (United States)

    Khair, H.; Putri, C. N.; Dalimunthe, R. A.; Matsumoto, T.

    2018-02-01

    Municipal solid waste (MSW) management is still an issue in many cities in Indonesia including Medan. Understanding the waste generation, its characteristic and communities involvement could provide effective solid waste management. This research compares waste generation from people who live in the city center and suburban area. The research also examines the willingness and participation of community about environmental aspect, especially solid waste management. The method of waste generation used Indonesian Nasional Standard 19-3964-1994. The city center generates 0.295 kg/person/day of solid waste and 0.180 kg/person/day for suburbs. The result showed that there are the common amount of waste compositions between the city center and suburban area. The majority waste composition was an organic fraction. Questionnaires were distributed to examine the community awareness. The descriptive statistic used to analyze the data. The result showed that people living in the city center are slightly higher in community awareness than in the suburb. This paper highlights that area of living could give some effect to solid waste generation, waste composition and rate of awareness.

  17. Future trends in computer waste generation in India.

    Science.gov (United States)

    Dwivedy, Maheshwar; Mittal, R K

    2010-11-01

    The objective of this paper is to estimate the future projection of computer waste in India and to subsequently analyze their flow at the end of their useful phase. For this purpose, the study utilizes the logistic model-based approach proposed by Yang and Williams to forecast future trends in computer waste. The model estimates future projection of computer penetration rate utilizing their first lifespan distribution and historical sales data. A bounding analysis on the future carrying capacity was simulated using the three parameter logistic curve. The observed obsolete generation quantities from the extrapolated penetration rates are then used to model the disposal phase. The results of the bounding analysis indicate that in the year 2020, around 41-152 million units of computers will become obsolete. The obsolete computer generation quantities are then used to estimate the End-of-Life outflows by utilizing a time-series multiple lifespan model. Even a conservative estimate of the future recycling capacity of PCs will reach upwards of 30 million units during 2025. Apparently, more than 150 million units could be potentially recycled in the upper bound case. However, considering significant future investment in the e-waste recycling sector from all stakeholders in India, we propose a logistic growth in the recycling rate and estimate the requirement of recycling capacity between 60 and 400 million units for the lower and upper bound case during 2025. Finally, we compare the future obsolete PC generation amount of the US and India. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Study of physical properties, gas generation and gas retention in simulated Hanford waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

    1993-04-01

    The purpose of this study was to establish the chemical and physical processes responsible for the generation and retention of gases within high-level waste from Tank 101-SY on the Hanford Site. This research, conducted using simulated waste on a laboratory scale, supports the development of mitigation/remediation strategies for Tank 101-SY. Simulated waste formulations are based on actual waste compositions. Selected physical properties of the simulated waste are compared to properties of actual Tank 101-SY waste samples. Laboratory studies using aged simulated waste show that significant gas generation occurs thermally at current tank temperatures (∼60 degrees C). Gas compositions include the same gases produced in actual tank waste, primarily N 2 , N 2 O, and H 2 . Gas stoichiometries have been shown to be greatly influenced by several organic and inorganic constituents within the simulated waste. Retention of gases in the simulated waste is in the form of bubble attachment to solid particles. This attachment phenomenon is related to the presence of organic constituents (HEDTA, EDTA, and citrate) of the simulated waste. A mechanism is discussed that relates the gas bubble/particle interactions to the partially hydrophobic surface produced on the solids by the organic constituents

  19. A New and Sound Technology for Biogas from Solid Waste and Biomass

    International Nuclear Information System (INIS)

    Busch, G.; Grossmann, J.; Sieber, M.; Burkhardt, M.

    2009-01-01

    Organic waste, as a main constituent of municipal solid waste, has as well as solid biomass a high potential for biogas generation. Despite the importance of biogas generation from these materials, the availability of large-scale biogas processes lacks behind the demand. A newly developed double-stage solid-liquid biogas process, consisting of an open hydrolysis stage and a fixed-bed methane reactor, allows the biogas production from almost all biodegradable solid waste and renewable resources like maize, grass, sugar cane, etc. Furthermore, residues from industrial processes, like the glycerine waste water from biodiesel production, can also be converted into biogas successfully. Due to the strong separation of hydrolysis and methanation, the process is extremely stable. No malfunction has been detected so far. The open hydrolysis releases CO 2 and allows oxidation of sulfur. Consequently, the biogas has a high methane (>72%) and low H 2 S concentration (<100 ppm). Stirrers or other agitation equipment are not necessary; only liquids are pumped. The biogas generation becomes controllable for the first time; thus, the actual generation can be easily adapted to the consumption

  20. An empirical investigation of construction and demolition waste generation rates in Shenzhen city, South China

    International Nuclear Information System (INIS)

    Lu Weisheng; Yuan Hongping; Li Jingru; Hao, Jane J.L.; Mi Xuming; Ding Zhikun

    2011-01-01

    The construction and demolition waste generation rates (C and D WGRs) is an important factor in decision-making and management of material waste in any construction site. The present study investigated WGRs by conducting on-site waste sorting and weighing in four ongoing construction projects in Shenzhen city of South China. The results revealed that WGRs ranged from 3.275 to 8.791 kg/m 2 and miscellaneous waste, timber for formwork and falsework, and concrete were the three largest components amongst the generated waste. Based on the WGRs derived from the research, the paper also discussed the main causes of waste in the construction industry and attempted to connect waste generation with specific construction practices. It was recommended that measures mainly including performing waste sorting at source, employing skilful workers, uploading and storing materials properly, promoting waste management capacity, replacing current timber formwork with metal formwork and launching an incentive reward program to encourage waste reduction could be potential solutions to reducing current WGRs in Shenzhen. Although these results were derived from a relatively small sample and so cannot justifiably be generalized, they do however add to the body of knowledge that is currently available for understanding the status of the art of C and D waste management in China.

  1. Basic diagnosis of solid waste generated at Agua Blanca State Park to propose waste management strategies.

    Science.gov (United States)

    Laines Canepa, José Ramón; Zequeira Larios, Carolina; Valadez Treviño, Maria Elena Macías; Garduza Sánchez, Diana Ivett

    2012-03-01

    State parks are highly sensitive areas of great natural importance and tourism value. Herein a case study involving a basic survey of solid waste which was carried out in 2006 in Agua Blanca State Park, Macuspana, Tabasco, Mexico with two sampling periods representing the high and low tourist season is presented. The survey had five objectives: to find out the number of visitors in the different seasons, to consider the daily generation of solid waste from tourist activities, to determine bulk density, to select and quantify sub-products; and to suggest a possible treatment. A daily average of 368 people visited the park: 18,862 people in 14 days during the high season holiday (in just one day, Easter Sunday, up to 4425 visitors) and 2092 visitors in 43 days during the low season. The average weight of the generated solid waste was 61.267 kg day(-1) and the generated solid waste average per person was 0.155 kg person(-1 ) day(-1). During the high season, the average increased to 0.188 kg person(-1 ) day(-1) and during the low season, the average decreased to 0.144 kg person(-1 ) day(-1). The bulk density average was 75.014 kg m(-3), the maximum value was 92.472 kg m(-3) and the minimum was 68.274 kg m(-3). The sub-products comprised 54.52% inorganic matter; 32.03% organic matter, 10.60% non-recyclable and 2.85% others. Based on these results, waste management strategies such as reuse/recycling, aerobic and anaerobic digestion, the construction of a manual landfill and the employment of a specialist firm were suggested.

  2. Generation and management of solid waste resulting from tourist activities of the Porto de Galinhas - P

    Directory of Open Access Journals (Sweden)

    Jaqueline Guimarães Santos

    2015-04-01

    Full Text Available The significant solid waste generation, coupled with the lack of proper management of the waste generated, has been one of the issues of concern and conducting research on the part of scholars in the field. Tourism as an activity that positively impacts and negativity a given location, has emerged as an activity that can generate a lot of waste, especially in periods of high season, considering the increase of people moving to the tourist destinations. Accordingly, this study aims to analyze the generation and management of solid waste resulting from tourism in Porto de Galinhas, PE. We performed an exploratory, descriptive, qualitative study, conducted in the form of a case study in Porto de Galinhas, PE. The data collection was done interviews together social actors, as well as non-participant observation during data collection. The results showed that tourism activities in Porto de Galinhas result in a high amount of solid waste, and these are directed to inappropriate places. Although fate presents a combination of recyclable materials, RECYCLE, reuses this not a significant amount, given the proportion of waste generated.

  3. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  4. Processing of transuranic waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    Daugherty, B.A.; Gruber, L.M.; Mentrup, S.J.

    1986-01-01

    Transuranic wastes at the Savannah River Plant (SRP) have been retrievably stored on concrete pads since early 1972. This waste is stored primarily in 55-gallon drums and large carbon steel boxes. Higher activity drums are placed in concrete culverts. In support of a National Program to consolidate and permanently dispose of this waste, a major project is planned at SRP to retrieve and process this waste. This project, the TRU Waste Facility (TWF), will provide equipment and processes to retrieve TRU waste from 20-year retrievable storage and prepare it for permanent disposal at the Waste Isolation Pilot Plant (WIPP) geological repository in New Mexico. This project is an integral part of the SRP Long Range TRU Waste Management Program to reduce the amount of TRU waste stored at SRP. The TWF is designed to process 15,000 cubic feet of retrieved waste and 6200 cubic feet of newly generated waste each year of operation. This facility is designed to minimize direct personnel contact with the waste using state-of-the-art remotely operated equipment

  5. Adverse Effects of Waste Generation in Calabar Urban, Nigeria ...

    African Journals Online (AJOL)

    Adverse Effects of Waste Generation in Calabar Urban, Nigeria. ... degradation, blocking of drainage and emission of greenhouse gases. We found a number of health hazards, ranging from pollution to diseases on both human and animals.

  6. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling

    International Nuclear Information System (INIS)

    Dyson, Brian; Chang, N.-B.

    2005-01-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach - system dynamics modeling - for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool - Stella[reg]. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues

  7. Decree 2211: Standards to control the generation and handling of dangerous wastes

    International Nuclear Information System (INIS)

    1992-01-01

    This Decree has for object to establish the conditions under which should be carried out the activities of generation and handling of dangerous waste, in order to prevent damages to health and to the atmosphere. It includes: definitions; a list of sources of waste; a list of constituent of dangerous waste; the characteristics of danger; a lists of maximum permissible concentrations in leachates, handling of dangerous waste, criterion for transport, monitoring form, storage areas, treatment and final disposition, storage, elimination, incineration, recycling, reuse and recovery, installation and operation of security backfilling, book of waste record, control of activities, obligations in charge of those who manage dangerous waste, and trans border movements of dangerous waste [es

  8. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-11-01

    The detailed radiological assessment of any proposed operations for the disposal of heat-generating radioactive waste in deep ocean sediments would require data describing expected embedment depths and spacing of the waste. In this study a theoretical model which predicts penetrator trajectories from launch through to rest in the sediment has been produced and has been used to generate data for environmental models. The trajectory model has been used to study the effects of small imperfections and launch parameters on the motion of a reference penetrator through water and sediment. The model predicts that the horizontal displacements of the penetrators' final resting places in the sediment from their launch positions at the ocean surface could be limited to less than 15m by twisting their tail fins uniformly by just one degree to induce spinning. The reference penetrator is predicted to achieve satisfactory embedment depth for all the cases considered including allowance for the effect of curved penetration paths in the seabed. However, the ability of the model to represent highly non-linear sediment penetration paths is demonstrated. Distribution histograms of seabed impact points relative to specific release points are presented. The area of seabed required is calculated. (author)

  9. Consumption patterns and household hazardous solid waste generation in an urban settlement in Mexico

    International Nuclear Information System (INIS)

    Delgado Otoniel, Buenrostro; Liliana, Marquez-Benavides; Gaona Francelia, Pinette

    2008-01-01

    Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442 ton/day of domestic waste are produced, including 7.1 ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied

  10. An overview of the transportation of radioactive waste at Ontario Power Generation facilities

    International Nuclear Information System (INIS)

    Holmes, P.

    2006-01-01

    The Radioactive Material Transportation Department (RMT) ensures regulatory compliance in radioactive material shipping within Ontario Power Generation (OPG). OPG provides a radioactive shipping program, high quality carrier service, stringent packaging maintenance, and quality assurance oversight to the corporation's nuclear facilities and its customers. This paper will speak to the transport of radioactive waste in Ontario Power Generation. It will also mention non-waste shipments and the quality assurance programme used at Ontario Power Generation to ensure a high quality transportation system. (author)

  11. An empirical investigation of construction and demolition waste generation rates in Shenzhen city, South China.

    Science.gov (United States)

    Lu, Weisheng; Yuan, Hongping; Li, Jingru; Hao, Jane J L; Mi, Xuming; Ding, Zhikun

    2011-04-01

    The construction and demolition waste generation rates (C&D WGRs) is an important factor in decision-making and management of material waste in any construction site. The present study investigated WGRs by conducting on-site waste sorting and weighing in four ongoing construction projects in Shenzhen city of South China. The results revealed that WGRs ranged from 3.275 to 8.791 kg/m(2) and miscellaneous waste, timber for formwork and falsework, and concrete were the three largest components amongst the generated waste. Based on the WGRs derived from the research, the paper also discussed the main causes of waste in the construction industry and attempted to connect waste generation with specific construction practices. It was recommended that measures mainly including performing waste sorting at source, employing skilful workers, uploading and storing materials properly, promoting waste management capacity, replacing current timber formwork with metal formwork and launching an incentive reward program to encourage waste reduction could be potential solutions to reducing current WGRs in Shenzhen. Although these results were derived from a relatively small sample and so cannot justifiably be generalized, they do however add to the body of knowledge that is currently available for understanding the status of the art of C&D waste management in China. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Hydrogen sulfide generation in shipboard oily-water waste. Part 3. Ship factors

    Energy Technology Data Exchange (ETDEWEB)

    Hodgeman, D.K.; Fletcher, L.E.; Upsher, F.J.

    1995-04-01

    The chemical and microbiological composition of bilge-water in ships of the Royal Australian Navy has been investigated in relation to the formation of hydrogen sulfide by sulfate-reducing bacteria. Sulfate-reducing bacteria were found in most ships in populations up to 800,000 per mL. Sulfate in the wastes is provided by sea-water. Sea-water constitutes up to 60% (median 20%) of the wastes analysed. Evidence for generation of hydrogen sulfide in the ships was found directly as sulfide or indirectly as depressed sulfate concentrations. The low levels of sulfide found in bilge-water from machinery spaces suggested the ventilation systems were effectively removing the gas from the working area. The effect of storage of the wastes under conditions which simulated the oily- water holding tanks of ships were also investigated. Some wastes were found to produce large quantities of hydrogen sulfide on storage. The wastes that failed to produce hydrogen sulfide were investigated to identify any specific nutritional deficiencies. Some organic substances present in bilge-water, such as lactate or biodegradable cleaning agents, and phosphate strongly influenced the generation of hydrogen sulfide in stored oily-water wastes.

  13. The radiolytic and radiolytically induced gas generation in Hanford waste tanks

    International Nuclear Information System (INIS)

    Jonah, C.D.; Meisel, D.; Sauer, M.C. Jr.

    1994-01-01

    A task force operating in ANL/CHM has been developing a mechanistic understanding of the radiolytic processes that lead to the generation and retention of gases within tanks of radioactive waste at the Hanford site. This chemistry is one of the important factors that must be considered in devising remediation procedures to eliminate the great potential hazard of these tanks. A quantitative description of much of the chemistry involved in the production of H 2 and, to a lesser extent, in the production of N 2 O has been achieved. Direct radiolytic generation was experimentally quantified and this new information was utilized in computer modeling to provide predictive capabilities so that changes of chemical composition of various waste tanks under different remediation procedures could be assessed. Oxygen in the waste solutions is effectively consumed upon irradiation and thus is of no concern. The mechanism of the radiolytic degradation of the chelators was established. The end products are simple organic molecules, in particularly, formaldehyde and glyoxylate, that are very efficient in the thermal generation of H 2

  14. Hazardous medical waste generation rates of different categories of health-care facilities

    International Nuclear Information System (INIS)

    Komilis, Dimitrios; Fouki, Anastassia; Papadopoulos, Dimitrios

    2012-01-01

    Highlights: ► We calculated hazardous medical waste generation rates (HMWGR) from 132 hospitals. ► Based on a 22-month study period, HMWGR were highly skewed to the right. ► The HMWGR varied from 0.00124 to 0.718 kg bed −1 d −1 . ► A positive correlation existed between the HMWGR and the number of hospital beds. ► We used non-parametric statistics to compare rates among hospital categories. - Abstract: Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed −1 d −1 , using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed −1 d −1 , for the public psychiatric hospitals, to up to 0.72 kg bed −1 d −1 , for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed −1 d −1 , for the psychiatric clinics, to up to 0.49 kg bed −1 d −1 , for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes generated by the public cancer treatment and university hospitals, respectively.

  15. Oak Ridge National Laboratory Transuranic Waste Certification Program

    International Nuclear Information System (INIS)

    Smith, J.H.; Bates, L.D.; Box, W.D.; Aaron, W.S.; Setaro, J.A.

    1988-08-01

    The US Department of Energy (DOE) has requested that all DOE facilities handling defense transuranic (TRU) waste develop and implement a program whereby all TRU waste will be contained, stored, and shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in the DOE certification documents WIPP-DOE-069, 114, 120, 137, 157, and 158. The program described in this report describes how Oak Ridge National Laboratory (ORNL) intends to comply with these requirements and the techniques and procedures used to ensure that ORNL TRU wastes are certifiable for shipment to WIPP. This document describes the program for certification of newly generated (NG) contact-handled transuranic (CH-TRU) waste. Previsions have been made for addenda, which will extend the coverage of this document to include certification of stored CH-TRU and NG and stored remote-handled transuranic (RH-TRU) waste, as necessary. 24 refs., 11 figs., 4 tabs

  16. A model of gas generation and transport within TRU [transuranic] waste drums

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1987-01-01

    Gas generation from the radiolytic decomposition of organic material contaminated with plutonium is modeled. Concentrations of gas throughout the waste drum are determined using a diffusional transport model. The model accurately reproduces experimentally measured gas concentrations. With polyethylene waste in unvented drums, the model predicts that hydrogen gas can accumulate to concentrations greater than 4 mole percent (lower flammable limit) with about 5 Ci of plutonium. Polyethylene provides a worst case for combustible waste material. If the drum liner is punctured and a carbon composite filter vent is installed in the drum lid, the plutonium loading can be increased to 240 Ci without generating flammable gas mixtures. 5 refs., 7 figs., 4 tabs

  17. De-Inventory Plan for Transuranic Waste Stored at Area G

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Christensen, Davis V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shepard, Mark D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-21

    This report describes the strategy and detailed work plan developed by Los Alamos National Laboratory (LANL) to disposition transuranic (TRU) waste stored at its Area G radioactive waste storage site. The focus at this time is on disposition of 3,706 m3 of TRU waste stored above grade by June 30, 2014, which is one of the commitments within the Framework Agreement: Realignment of Environmental Priorities between the Department of Energy (DOE) National Nuclear Security Administration (NNSA) and the State of New Mexico Environment Department (NMED), Reference 1. A detailed project management schedule has been developed to manage this work and better ensure that all required activities are aligned and integrated. The schedule was developed in conjunction with personnel from the NNSA Los Alamos Site Office (LASO), the DOE Carlsbad Field Office (CBFO), the Central Characterization Project (CCP), and Los Alamos National Security, LLC (LANS). A detailed project management schedule for the remainder of the above grade inventory and the below grade inventory will be developed and incorporated into the De-Inventory Plan by December 31, 2012. This schedule will also include all newly-generated TRU waste received at Area G in FYs 2012 and 2013, which must be removed by no later than December 31, 2014, under the Framework Agreement. The TRU waste stored above grade at Area G is considered to be one of the highest nuclear safety risks at LANL, and the Defense Nuclear Facility Safety Board has expressed concern for the radioactive material at risk (MAR) contained within the above grade TRU waste inventory and has formally requested that DOE reduce the MAR. A large wildfire called the Las Conchas Fire burned extensive areas west of LANL in late June and July 2011. Although there was minimal to no impact by the fire to LANL, the fire heightened public concern and news media attention on TRU waste storage at Area G. After the fire, New Mexico Governor Susana Martinez also

  18. Seasonal analysis of the generation and composition of solid waste: potential use--a case study.

    Science.gov (United States)

    Aguilar-Virgen, Quetzalli; Taboada-González, Paul; Ojeda-Benítez, Sara

    2013-06-01

    Ensenada health officials lack pertinent information on the sustainable management of solid waste, as do health officials from other developing countries. The aims of this research are: (a) to quantify and analyze the household solid wastes generated in the city of Ensenada, Mexico, and (b) to project biogas production and estimate generation of electrical energy. The characterization study was conducted by socioeconomic stratification in two seasonal periods, and the biogas and electrical energy projections were performed using the version 2.0 Mexico Biogas Model. Per capita solid waste generation was 0.779 ± 0.019 kg per person per day within a 98 % confidence interval. Waste composition is composed mainly of food scraps at 36.25 %, followed by paper and cardboard at 21.85 %, plastic at 12.30 %, disposable diapers at 6.26 %, and textiles at 6.28 %. The maximum capacity for power generation is projected to be 1.90 MW in 2019. Waste generated could be used as an intermediate in different processes such as recycling (41.04 %) and energy recovery (46.63 %). The electrical energy that could be obtained using the biogas generated at the Ensenada sanitary landfill would provide roughly 60 % of the energy needed for street lighting.

  19. Assessment of healthcare waste generation rate and its ...

    African Journals Online (AJOL)

    Assessment of healthcare waste generation rate and its management system in health centers of Bench Maji Zone. ... Background: It is known that the basic role of healthcare system is to preserve the health of patients and protect the public from diseases. However, in the process of performing these activities, health ...

  20. The CANDU-PHW generating system waste arisings

    International Nuclear Information System (INIS)

    Simmons, G.R.

    1979-03-01

    In this report, the volume of material and level of contained radioactive nuclides are tabulated for wastes arising from four fuel cycles which might be operated in CANDU-PHW (CANada Deuterium Uranium - Pressurized Heavy Water) reactors. The data presented, based on Canadian experience and/or studies, cover the range of conditioned waste volumes which could be expected from steady-state (no growth), CANDU-PHW-powered electrical generating systems. The wastes arising from operation and decommissioning of facilities in each phase of each fuel cycle are estimated. Each fuel cycle is considered to operate in isolation with the data given in terms of quantities per gigawatt-year of electricity produced. Three of the fuel cycles for which data are presented, the natural uranium once-through cycle, the plutonium-enriched uranium cycle (plutonium recycle) and the low-burnup uranium-enriched thorium cycle (thorium and uranium recycle), were studied by INFCE WG.7 (the International Nuclear Fuel Cycle Evaluation, Working Group 7) as fuel cycles 4, 5 and 6. The high-burnup uranium-enriched thorium cycle is included for comparison. INFCE WG.7 selected many common reference parameters which are applied uniformly to all seven INFCE WG.7 reference fuel cycles in determining waste arisings. Where these parameters differ from the data of Canadian origin given in the body of this report, the INFCE WG.7 data are given in an appendix. The waste management costs associated with operation of each INFCE WG.7 reference fuel cycle were calculated and compared by the working group. An arbitrary set of costing parameters and disposal technologies was selected by the working group for application to each of the reference fuel cycles. The waste management and disposal costs for the PHW reactor fuel cycles based on these arbitrary cost parameters are given in an appendix. (author)

  1. Characterization Of Solid Wastes Generated By A Community In ...

    African Journals Online (AJOL)

    on and organic fertilizers from household wastes could be transferred to the community to create jobs and gener-ate income. Landfills and relocation of refuse dumps far from the community were suggested as alternative disposal methods to ...

  2. analysis of the measured medical waste generation at amana

    African Journals Online (AJOL)

    kagonji

    2011-08-16

    Aug 16, 2011 ... In this study the medical waste generation rates at Amana and Ligula hospitals ...... making the situation difficult to administrators to plan and budget. ..... Management Meeting, Peacock Hotel, Dar es Salaam, 9th-11th June,.

  3. Is It Better to Burn or Bury Waste for Clean Electricity Generation?

    Science.gov (United States)

    The generation of electricity through renewables has increased 5% since 2002. Although considerably less prominent than solar and wind, the use of municipal solid waste (MSW) to generate electricity represents roughly 14 percent of U.S. non-hydro renewable electricity generation....

  4. Estimation of construction and demolition waste volume generation in new residential buildings in Spain.

    Science.gov (United States)

    Villoria Sáez, Paola; del Río Merino, Mercedes; Porras-Amores, César

    2012-02-01

    The management planning of construction and demolition (C&D) waste uses a single indicator which does not provide enough detailed information. Therefore the determination and implementation of other innovative and precise indicators should be determined. The aim of this research work is to improve existing C&D waste quantification tools in the construction of new residential buildings in Spain. For this purpose, several housing projects were studied to determine an estimation of C&D waste generated during their construction process. This paper determines the values of three indicators to estimate the generation of C&D waste in new residential buildings in Spain, itemizing types of waste and construction stages. The inclusion of two more accurate indicators, in addition to the global one commonly in use, provides a significant improvement in C&D waste quantification tools and management planning.

  5. Generation, on-site storage; handling and processing of industrial waste of Tehran

    International Nuclear Information System (INIS)

    Abduli, M.A.

    1997-01-01

    This paper describes out the present status of generation, on-site handling, processing and storage of industrial waste in Tehran. In this investigation, 67 large scale factories of different industrial groups were randomly selected. Above cited functional elements of these factories were surveyed. In this investigation a close contact with each factory was required, thus a questionnaire was prepared and distributed among these factories. The relationship between daily weight of the industrial waste (Y) and number of employer of each factory (x) is found to be Y=547.4 + 0.58 x. The relationship between daily volume of industrial waste (V), and daily weight of waste generated in each factory (Y) can be described by V=1.56 + 0.00078 Y. About 68% of the factories have their own interim storage site and the rest of the factories do not possess any on-site storage facility

  6. Entropy Generation of Desalination Powered by Variable Temperature Waste Heat

    Directory of Open Access Journals (Sweden)

    David M. Warsinger

    2015-10-01

    Full Text Available Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF, multiple effect distillation (MED, multistage vacuum membrane distillation (MSVMD, humidification-dehumidification (HDH, and organic Rankine cycles (ORCs paired with mechanical technologies of reverse osmosis (RO and mechanical vapor compression (MVC. The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.

  7. Testing various types of agricultural wastes for the production of generator gas

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B

    1982-05-08

    The aim of the project was to get an improved basis for the assessment of aretes which was required for use in a Swedish gas generator. It was found that waste which possessed high contents of ashes with a low melting point were unsuitable as a fuel. Four types of waste were tested. The shells of coconuts were applicable as fuel. The design of the generator had to be modified in order to use pellets of straw or compressed sugar-canes.

  8. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    Energy Technology Data Exchange (ETDEWEB)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  9. Estimation of centerline temperature of the waste form for the rare earth waste generated from pyrochemical process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung-Hoon, E-mail: mrchoijh@kaeri.re.kr; Eun, Hee-Chul; Lee, Tae-Kyo; Lee, Ki-Rak; Han, Seung-Youb; Jeon, Min-Ku; Park, Hwan-Seo; Ahn, Do-Hee

    2017-01-15

    Estimation of centerline temperature of nuclear glass waste form for each waste stream is very essential in the period of storage because the centerline temperature being over its glass transition temperature results in the increase of leaching rate of radioactive nuclides due to the devitrification of glass waste form. Here, to verify the effects of waste form diameter and transuranic element content in the rare earth waste on the centerline temperature of the waste form, the surrogate rare earth glass waste generated from pyrochemical process was immobilized with SiO{sub 2}−Al{sub 2}O{sub 3}−B{sub 2}O{sub 3} glass frit system, and thermal properties of the rare earth glass waste form were determined by thermomechanical analysis and thermal conductivity analysis. The estimation of centerline temperature was carried out using the experimental thermal data and steady-state conduction equation in a long and solid cylinder type waste form. It was revealed that thermal stability of waste form in case of 0.3 m diameter was not affected by the TRU content even in the case of 80% TRU recovery ratio in the electrowinning process, meaning that the waste form of 0.3 m diameter is thermally stable due to the low centerline temperature relative to its glass transition temperature of the rare earth glass waste form.

  10. Evaluation Of Electricity Generation From Animal Based Wastes In A Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Duduyemi Oladejo

    2015-04-01

    Full Text Available ABSTRACT Electric current from organic waste of poultry droppings were generated with A Microbial Fuel Cell MFC technology to evaluate affects of temperature 30 to 50oC 100gl 300gl and 500gl slurry concentrations prepared with the distilled water and inoculated when introduced into the anodic chamber. A constant concentration of 50gl of the oxidizing agent Potassium ferricyanide at the cathode chamber was prepared to evaluate the voltage and current generated by the set up for 7 days in each case. Higher slurry concentrations were observed to generate higher initial current and voltage than in lower concentrations. Higher slurry concentrations also demonstrated sustained power generation up to the day 6 before decline. A maximum current of 1.1V and 0.15 mA was achieved while the temperature variation was observed to have minimal effect within the range considered at low concentration. A MFC is a biochemical-catalyzed system capable of generating electricity as a by-product also providing an alternative method of waste treatment. Application Alternative power source and waste treatment.

  11. Healthcare waste generation and its management system: the case ...

    African Journals Online (AJOL)

    Healthcare waste generation and its management system: the case of health ... of an environmental risk to health care workers, the public and the environment at large. ... Only four out of ten health centers used local type of incinerators, while ...

  12. Management and disposition of off-site laboratory-generated mixed/low level waste

    International Nuclear Information System (INIS)

    Fisher, D.L.

    1993-10-01

    The Fernald Environmental Management Project (FEMP) is the first Department of Energy (DOE) site to take back mixed and low level waste generated at commercial laboratories from chemical analyses and treatability studies on samples taken from the site. This paper discusses the steps addressed and the issues resolved in order to initiate the task of taking back mixed/low level waste. Such issues included regulatory, waste management and contractual issues

  13. Characteristics and Generation of Household Hazardous Waste (HHW in Semarang City Indonesia

    Directory of Open Access Journals (Sweden)

    Fikri Elanda

    2018-01-01

    Full Text Available Most of Household Hazardous Waste (HHW is currently mixed with domestics waste. So that, it can impact human health and environmental quality. One important aspect in the management strategy is to determine the quantity generated and characteristics of HHW. The method used to determine the characteristics HHW refers to SNI 19-2454-2002, while the HHW generation refers to the SNI 19-3694-1994 calculated based on weight and volume. Research was conducted in four districts of Semarang. The samples used in this study were 400 families calculated based on the proportion of Slovin Formula. The characteristic of HHW in Semarang City is mainly infectious (79%, then poisonous (13%, combustible (6% and corrosive materials (2%. The quantity HHW generated is 0.01 kg/person/day equivalent with 5.1% of municipal solid waste (MSW in Semarang (linear equations : y=1,278x+82,00 (volume, y=0,216x+13,89 (weight.

  14. Characteristics and Generation of Household Hazardous Waste (HHW) in Semarang City Indonesia

    Science.gov (United States)

    Fikri, Elanda; Purwanto; Sunoko, Henna Rya

    2018-02-01

    Most of Household Hazardous Waste (HHW) is currently mixed with domestics waste. So that, it can impact human health and environmental quality. One important aspect in the management strategy is to determine the quantity generated and characteristics of HHW. The method used to determine the characteristics HHW refers to SNI 19-2454-2002, while the HHW generation refers to the SNI 19-3694-1994 calculated based on weight and volume. Research was conducted in four districts of Semarang. The samples used in this study were 400 families calculated based on the proportion of Slovin Formula. The characteristic of HHW in Semarang City is mainly infectious (79%), then poisonous (13%), combustible (6%) and corrosive materials (2%). The quantity HHW generated is 0.01 kg/person/day equivalent with 5.1% of municipal solid waste (MSW) in Semarang (linear equations : y=1,278x+82,00 (volume), y=0,216x+13,89 (weight).

  15. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China.

    Science.gov (United States)

    Xiao, Lishan; Lin, Tao; Chen, Shaohua; Zhang, Guoqin; Ye, Zhilong; Yu, Zhaowu

    2015-01-01

    The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas.

  16. Ozone pretreatment of process waste water generated in course of fluoroquinolone production.

    Science.gov (United States)

    Daoud, Fares; Pelzer, David; Zuehlke, Sebastian; Spiteller, Michael; Kayser, Oliver

    2017-10-01

    During production of active pharmaceutical ingredients, process waste water is generated at several stages of manufacturing. Whenever possible, the resulting waste water will be processed by conventional waste water treatment plants. Currently, incineration of the process waste water is the method to eliminate compounds with high biological activity. Thus, ozone treatment followed by biological waste water treatment was tested as an alternative method. Two prominent representatives of the large group of fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) were investigated, focussing on waste water of the bulk production. Elimination of the target compounds and generation of their main transformation products were determined by liquid chromatography - high resolution mass spectrometry (LC-HRMS). The obtained results demonstrated, that the concentration of moxifloxacin and its metabolites can be effectively reduced (>99.7%) prior entering the receiving water. On the contrary, the concentration of ciprofloxacin and its metabolites remained too high for safe discharge, necessitating application of prolonged ozonation for its further degradation. The required ozonation time can be estimated based on the determined kinetics. To assure a low biological activity the ecotoxicity of the ozonated waste water was investigated using three trophic levels. By means of multiple-stage mass spectrometry (MS n ) experiments several new transformation products of the fluoroquinolones were identified. Thus, previously published proposed structures could be corrected or confirmed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Environmental justice implications of industrial hazardous waste generation in India: a national scale analysis

    Science.gov (United States)

    Basu, Pratyusha; Chakraborty, Jayajit

    2016-12-01

    While rising air and water pollution have become issues of widespread public concern in India, the relationship between spatial distribution of environmental pollution and social disadvantage has received less attention. This lack of attention becomes particularly relevant in the context of industrial pollution, as India continues to pursue industrial development policies without sufficient regard to its adverse social impacts. This letter examines industrial pollution in India from an environmental justice (EJ) perspective by presenting a national scale study of social inequities in the distribution of industrial hazardous waste generation. Our analysis connects district-level data from the 2009 National Inventory of Hazardous Waste Generating Industries with variables representing urbanization, social disadvantage, and socioeconomic status from the 2011 Census of India. Our results indicate that more urbanized and densely populated districts with a higher proportion of socially and economically disadvantaged residents are significantly more likely to generate hazardous waste. The quantity of hazardous waste generated is significantly higher in more urbanized but sparsely populated districts with a higher proportion of economically disadvantaged households, after accounting for other relevant explanatory factors such as literacy and social disadvantage. These findings underscore the growing need to incorporate EJ considerations in future industrial development and waste management in India.

  18. Automated methodology for estimating waste streams generated from decommissioning contaminated facilities

    International Nuclear Information System (INIS)

    Toth, J.J.; King, D.A.; Humphreys, K.K.; Haffner, D.R.

    1994-01-01

    As part of the DOE Programmatic Environmental Impact Statement (PEIS), a viable way to determine aggregate waste volumes, cost, and direct labor hours for decommissioning and decontaminating facilities is required. In this paper, a methodology is provided for determining waste streams, cost and direct labor hours from remediation of contaminated facilities. The method is developed utilizing U.S. facility remediation data and information from several decommissioning programs, including reactor decommissioning projects. The method provides for rapid, consistent analysis for many facility types. Three remediation scenarios are considered for facility D ampersand D: unrestricted land use, semi-restricted land use, and restricted land use. Unrestricted land use involves removing radioactive components, decontaminating the building surfaces, and demolishing the remaining structure. Semi-restricted land use involves removing transuranic contamination and immobilizing the contamination on-site. Restricted land use involves removing the transuranic contamination and leaving the building standing. In both semi-restricted and restricted land use scenarios, verification of containment with environmental monitoring is required. To use the methodology, facilities are placed in a building category depending upon the level of contamination, construction design, and function of the building. Unit volume and unit area waste generation factors are used to calculate waste volumes and estimate the amount of waste generated in each of the following classifications: low-level, transuranic, and hazardous waste. Unit factors for cost and labor hours are also applied to the result to estimate D ampersand D cost and labor hours

  19. Engineering/design of a co-generation waste-to-energy facility

    International Nuclear Information System (INIS)

    Bajaj, K.S.; Virgilio, R.J.

    1992-01-01

    Five hundred fifteen thousand tons of Municipal Solid Waste (MSW) is being generated every day in America. At present 68% of this trash is dumped into landfill operations. As the amount of garbage is increasing daily, the amount of land reserved for landfills is diminishing rapidly. With the sentiment of the public that you produce it, you keep it, the import-export of waste between the counties and states for the landfills, no longer appears to be feasible, especially when combined with expensive disposal costs. One method of reducing the quantity of waste sent to landfills is through the use of waste-to-energy facilities - the technology of resource recovery - the technology of today INCINERATION. All cogeneration projects are not alike. This paper examines several aspects of the electrical system of a particular municipal solid waste-to-energy project at Charleston, S.C. which includes plant auxiliary loads as well as a utility interconnection through a step-up transformer

  20. The thermo-mechanical behaviour of a salt dome with a heat-generating waste repository

    International Nuclear Information System (INIS)

    Janssen, L.G.J.; Prij, J.; Kevenaar, J.W.A.M.; Jong, C.J.T.; Klok, J.; Beemsterboer, C.

    1984-01-01

    This report reviews the analytical work on the disposal of radioactive waste in salt domes performed at ECN in the period 1 January 1980 to 31 December 1982. Chapter 4 in the main report covers the global temperature and deformation analyses of the salt dome and the surrounding rocks. The attached three topical reports cover self-contained parts of the study. The computer program TASTE developed to analyse, at acceptable cost and with, for engineering purposes, sufficient accuracies, the temperature rises in the salt dome due to the stored heat-generating waste is described in Annex 1. Annex 2 gives a description of the extended finite element program GOLIA. The program has been extended to make it suitable for the creep analysis of salt domes with repositories of heat-generating waste. The study on the closing and sealing of boreholes wit heat-generating waste is reported in Annex 3

  1. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-12-01

    A study of container designs for heat generating radioactive waste disposal in the deep ocean sediments is presented. The purpose of the container would be to isolate the waste from the environment for a period of 500 to 1000 years. The container designs proposed are based on the use of either corrosion allowance or corrosion resistant metals. Appropriate overpack wall thicknesses are suggested for each design using the results of corrosion studies and experiments but these are necessarily preliminary and data relevant to corrosion in deep ocean sediments remain sparse. It is concluded that the most promising design concept involves a thin titanium alloy overpack in which all internal void spaces are filled with lead or cement grout. In situ temperatures for the sediment adjacent to the emplaced 50 year cooled waste containers are calculated to reach about 260 deg C. The behaviour of the sediments at such a high temperature is not well understood and the possibility of 100 years interim storage is recommended for consideration to allow further cooling. Further corrosion data and sediment thermal studies would be required to fully confirm the engineering feasibility of these designs. (author)

  2. Thermal analysis of a heat generating waste repository on the seabed

    International Nuclear Information System (INIS)

    Maynard, M.J.; Butler, T.P.; Firmin, G.H.

    1987-02-01

    The time dependent thermal behaviour of a repository containing heat generating waste has been investigated during loading, transport, and subsequent emplacement on the seabed. Variations of less than 1 0 C in the sealed repository water temperature were calculated to be sufficient to create adequate water circulation. Conservative 1-D analyses were used to estimate a maximum repository water temperature of 256 0 C, occuring about 3 years after emplacement. The temperature distributions within the heat generating waste canisters and grouted titanium tubes have been calculated using 2-D axisymmetric finite element models. Peak temperatures at the waste centre-line were found to be approx. 40 0 C above the repository water temperature. The sensitivity of the results to assumed thermal parameters and to the effect of sediment accumulation have been considered. The possibility and consequences of steam formation within a vented repository have been discussed. (author)

  3. Baseline for food waste generation - A case study in Universiti Tun Hussein Onn Malaysia cafeterias

    Science.gov (United States)

    Alias, A. R.; Mokhlis, N. A. Mohd; Zainun, N. Y.

    2017-11-01

    Increasing population and economy status have contributed to the increasing volume of solid wastes produced in Malaysia and it creates problems on the existing solid waste management system. Ineffective waste management system was one of the issues that often discussed. The purpose of this study was to suggest the best method for managing food waste in Universiti Tun Hussein Onn Malaysia (UTHM) cafeterias. The scope of the study was to identify the type and quantity of waste generated in each cafeteria. The study area was carried out at six cafeteria in UTHM including residential college cafeteria which are Tun Dr. Ismail (TDI), Tun Fatimah (TF) and Tun Syed Nasir (TSN), G3’s cafeteria, Arked, and Dr. Munie’s cafeteria located at the Faculty of Civil and Environmental Engineering (FKAAS). In this study, food waste was quantified in unit of kilogram (kg). Results of the study showed that total food waste in selected UTHM’s cafeterias was 6197.5 kg for two months. Food waste generated in G3’s cafeteria was the highest value with 1823.5 kg among another cafeteria. This is due to strategic location for students and staff to take meals, the variety of food sold and reasonable price were major factors of generating food waste. Meanwhile, the Dr. Munie's Cafeteria located in FKAAS recorded the least total production of food waste as staffs and students take their meals at others cafeterias. Through literature review, there are list of methods on waste management were identified and composting method was suggested for food waste management in UTHM since the waste was produce in very large quantity.

  4. Co-generation potentials of municipal solid waste landfills in Serbia

    OpenAIRE

    Bošković Goran B.; Josijević Mladen M.; Jovičić Nebojša M.; Babić Milun J.

    2016-01-01

    Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55%) and carbon dioxide (40-45%) (both GHGs), has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine econo...

  5. Alternatives generation and analysis for phase I intermediate waste feed staging system design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Britton, M.D.

    1996-10-02

    This document provides; a decision analysis summary; problem statement; constraints, requirements, and assumptions; decision criteria; intermediate waste feed staging system options and alternatives generation and screening; intermediate waste feed staging system design concepts; intermediate waste feed staging system alternative evaluation and analysis; and open issues and actions.

  6. THE PILOT STUDY OF CHARACTERISTICS OF HOUSEHOLD WASTE GENERATED IN SUBURBAN PARTS OF RURAL AREAS

    Directory of Open Access Journals (Sweden)

    Aleksandra Steinhoff-Wrześniewska

    2015-02-01

    Full Text Available The subject of the studies were waste generated in suburban households, in 3-bag system. The sum of wastes generated during the four analyzed seasons (spring, summer, autumn, winter – 1 year, in the households under study, per 1 person, amounted to 170,3 kg (in wet mass basis. For 1 person, most domestic waste was generated in autumn – 45,5 kg per capita and the least in winter – 39,0 kg per capita. The analysis performed of sieved composition (size fraction showed that fractions: >100 mm, 40–100 mm, 20–40 mm constituted totally 80% of the mass of wastes (average in a year. The lowest fraction (<10 mm, whose significant part constitutes ashes, varied depending on the season of year: from 3.5% to 12.8%. In the morphological composition of the households analyzed (on average in 4 seasons, biowastes totally formed over 53% of the whole mass of wastes. A significant part of waste generated were also glass waste (10,7% average per year and disposable nappies (8,3% average per year. The analysis of basic chemical components of biowastes showed that in case of utilizing them for production of compost, it would be necessary to modify (correct the ratios C/N and C/P. Analysis of the chemical composition showed that the biowastes were characterized by very high moisture content and neutral pH.

  7. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  8. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China.

    Directory of Open Access Journals (Sweden)

    Lishan Xiao

    Full Text Available The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas.

  9. Generation and composition of medical wastes from private medical microbiology laboratories.

    Science.gov (United States)

    Komilis, Dimitrios; Makroleivaditis, Nikolaos; Nikolakopoulou, Eftychia

    2017-03-01

    A study on the generation rate and the composition of solid medical wastes (MW) produced by private medical microbiology laboratories (PMML) was conducted in Greece. The novelty of the work is that no such information exists in the literature for this type of laboratories worldwide. Seven laboratories were selected with capacities that ranged from 8 to 88 examinees per day. The study lasted 6months and daily recording of MW weights was done over 30days during that period. The rates were correlated to the number of examinees, examinations and personnel. Results indicated that on average 35% of the total MW was hazardous (infectious) medical wastes (IFMW). The IFMW generation rates ranged from 11.5 to 32.5g examinee -1 d -1 while an average value from all 7 labs was 19.6±9.6g examinee -1 d -1 or 2.27±1.11g examination -1 d -1 . The average urban type medical waste generation rate was 44.2±32.5g examinee -1 d -1 . Using basic regression modeling, it was shown that the number of examinees and examinations can be predictors of the IFMW generation, but not of the urban type MW generation. The number of examinations was a better predictor of the MW amounts than the number of examinees. Statistical comparison of the means of the 7PMML was done with standard ANOVA techniques after checking the normality of the data and after doing the appropriate transformations. Based on the results of this work, it is approximated that 580 tonnes of infectious MW are generated annually by the PMML in Greece. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Environmental impact statement on management of commercially generated radioactive wastes

    International Nuclear Information System (INIS)

    Shupe, M.W.; Kreiter, M.R.

    1979-01-01

    This report describes the generic environmental impact statement on the management of generated high-level and transuranic radioactive wastes. The contents of the statement are summarized. The alternatives considered include: geologic disposal; chemical resynthesis; very deep hole disposal; rock melting concept; island disposal; subseabed disposal; icesheet disposal; reverse well disposal; transmutation treatment; and space disposal concepts. The types and quantities of wastes considered are from 3 different fuel cycles for the LWR reactor: once through; uranium-only recycle; and uranium and platinum recycle

  11. Greater-than-Class C low-level radioactive waste characterization. Appendix D-3: Characterization of greater-than-Class C low-level radioactive waste from other generators

    International Nuclear Information System (INIS)

    Fish, L.W.

    1994-09-01

    The Other Generators category includes all greater-than-Class C low-level radioactive waste (GTCC LLW) that is not generated or held by nuclear utilities or sealed sources licensees or that is not stored at Department of Energy facilities. To determine the amount of waste within this category, 90 LLW generators were contacted; 13 fit the Other Generators category. Based on information received from the 13 identified Other Generators, the GTCC LLW Management Program was able to (a) characterize the nature of industries in this category, (b) estimate the 1993 inventory of Other Generator waste for high, base, and low cases, and (c) project inventories to the year 2035 for high, base, and low cases. Assumptions were applied to each of the case estimates to account for generators who may not have been identified in this study

  12. Water and waste water management Generation Victoria - Latrobe Valley

    Energy Technology Data Exchange (ETDEWEB)

    Longmore, G. [Hazelwood Power Corporation, VIC (Australia); Pacific Power (International) Pty. Ltd., Sydney, NSW (Australia)

    1995-12-31

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled `SECV Latrobe Valley Water and Wastewater Management Strategy`. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs.

  13. Water and waste water management Generation Victoria - Latrobe Valley

    International Nuclear Information System (INIS)

    Longmore, G.

    1995-01-01

    Water is a necessary resource for coal fired power plant and waste water is generated. The efficient management of water and waste water systems becomes an important operational environmental factor. This paper describes the development and implementation of a ten year water and waste water management strategy for the Latrobe Valley Group of brown coal fired power stations in Victoria. In early 1991, a team was put together of representatives from each power site to develop the strategy entitled 'SECV Latrobe Valley Water and Wastewater Management Strategy'. The strategy was developed with extensive public consultation, which was a factor in protracting the process such that the final document was not promulgated until late 1992. However, the final comprehensive document endorsed and agreed by management, has since attracted favourable comment as a model of its type. (author). 2 figs

  14. Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project: FY 1994--FY 2001

    International Nuclear Information System (INIS)

    1993-12-01

    This Waste Generation Forecast for DOE-ORO's Environmental Restoration OR-1 Project. FY 1994--FY 2001 is the third in a series of documents that report current estimates of the waste volumes expected to be generated as a result of Environmental Restoration activities at Department of Energy, Oak Ridge Operations Office (DOE-ORO), sites. Considered in the scope of this document are volumes of waste expected to be generated as a result of remedial action and decontamination and decommissioning activities taking place at these sites. Sites contributing to the total estimates make up the DOE-ORO Environmental Restoration OR-1 Project: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Y-12 Plant, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and the off-site contaminated areas adjacent to the Oak Ridge facilities (collectively referred to as the Oak Ridge Reservation Off-Site area). Estimates are available for the entire fife of all waste generating activities. This document summarizes waste estimates forecasted for the 8-year period of FY 1994-FY 2001. Updates with varying degrees of change are expected throughout the refinement of restoration strategies currently in progress at each of the sites. Waste forecast data are relatively fluid, and this document represents remediation plans only as reported through September 1993

  15. Steam generation by combustion of processed waste fats

    Energy Technology Data Exchange (ETDEWEB)

    Pudel, F.; Lengenfeld, P. [OEHMI Forschung und Ingenieurtechnik GmbH, Magdeburg (Germany)

    1993-12-31

    The use of specially processed waste fats as a fuel oil substitute offers, at attractive costs, an environmentally friendly alternative to conventional disposal like refuse incineration or deposition. For that purpose the processed fat is mixed with EL fuel oil and burned in a standard steam generation plant equipped with special accessories. The measured emission values of the combustion processes are very low.

  16. Radioisotope waste processing systems

    International Nuclear Information System (INIS)

    Machida, Tadashi

    1978-01-01

    The Atomic Energy Safety Bureau established the policy entitled ''On Common Processing System of Radioactive Wastes'' consulting with the Liaison Committee of Radioactive Waste Processing. Japan Atomic Energy Research Institute (JAERI) and Japan Radioisotope Association (JRIA) had been discussing the problems required for the establishment of the common disposal facilities based on the above policy, and they started the organization in spring, 1978. It is a foundation borrowing equipments from JAERI though installing newly some of them not available from JAERI, and depending the fund on JRIA. The operation expenses will be borne by those who want to dispose the wastes produced. The staffs are sent out from JAERI and JRIA. For animal wastes contaminated with RI, formaldehyde dipping should be abolished, but drying and freezing procedures will be taken before they are burnt up in a newly planned exclusive furnace with disposing capacity of 50 kg/hour. To settle the problems of other wastes, enough understanding and cooperation of users are to be requested. (Kobatake, H.)

  17. Methane generation from waste materials

    Science.gov (United States)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  18. Waste generation and pollution prevention progress fact sheet: Nevada Test Site

    International Nuclear Information System (INIS)

    1994-01-01

    The Nevada Test Site is responsible for maintaining nuclear testing capability, supporting science-based Stockpile Stewardship experiments, maintaining nuclear agency response capability, applying environmental restoration techniques to areas affected by nuclear testing, managing low-level and mixed radioactive waste, investigating demilitarization technologies, investigating counter- proliferation technologies, supporting work-for-others programs and special Department of Defense activities, operating a hazardous materials spill test center, and providing for the commercial development of the site. This fact sheet provides information on routine waste generation and projected reduction by waste type. Also, materials recycled by the Nevada Test Site in 1994 are listed

  19. Radioactive wastes: a problem of morality between generations

    International Nuclear Information System (INIS)

    MacLean, D.

    1984-01-01

    Nowhere are the intergenerational moral issues posed more explicitly that in debates over nuclear power and the disposal of radioactive wastes. A survey of some of the ethical issues covers energy supply and risk and the problem of determining a cost-benefit of resources use and conservation that maximizes supply and minimizes risk. The author identifies three arguments against energy policy based on cost-benefit analysis: 1 reliability, 2 fairness, and 3 the lack of subjective value. All three suggest the need to determine not only what our obligations to future generations are, but also the underlying basis of these obligations in our system of values. The radioactive waste issue has an urgency, for options are opening and closing. 13 references

  20. Generation, characterization and reuse of solid wastes from a biodiesel production plant.

    Science.gov (United States)

    Oliveira, Fernando Jorge Santos; Santana, Daniele Dos Santos; Costa, Simone Soraya Brito; Oliveira, Lenise Diniz; Liduino, Vitor Silva; Servulo, Eliana Flávia Camporese

    2017-03-01

    The aim of this study was to identify and characterize industrial solid wastes generated by a biodiesel production plant in Brazil, as well as to present strategies for the management of these materials. This plant produces every year around 100,000tons of biodiesel from vegetable oils and animal fats. The methodology of the study included technical visits, interviews with the operational and environmental management staff as well as analysis of documents, reports and computerized data systems. An approach to reduce the generation of hazardous waste was investigated. It was take into account the amount of raw material that was processed, reduction of landfill disposal, and the maximization of the their recycling and reuse. The study also identified the sources of waste generation and accordingly prepared an evaluation matrix to determine the types of waste with the higher potential for minimization. The most important residue of the process was the filter material impregnated with oil and biodiesel, requiring, therefore, measures for its minimization. The use of these residues in the production of ceramic artefacts (light bricks) was considered to be very promising, since no significant effect on the physico-chemical and mechanical properties of the artefacts produced was observed. Phytotoxicity test using seeds of Lactuva sativa (lettuce), Brassica juncea (mustard), Abelmoschus esculentus (okra), Chrysanthemum leucanthemum (daisy), Dendranthema grandiflorum (chrysanthemum) and Allium porrum (leek) were carried out. The results clearly show incorporation of the waste material into bricks did not influence relative germination and relative root elongation in comparison to control tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Assessment of the health care waste generation rates and its management system in hospitals of Addis Ababa, Ethiopia, 2011

    Directory of Open Access Journals (Sweden)

    Debere Mesfin Kote

    2013-01-01

    Full Text Available Abstract Background Healthcare waste management options are varying in Ethiopia. One of the first critical steps in the process of developing a reliable waste management plan requires a widespread understanding of the amount and the management system. This study aimed to assess the health care waste generation rate and its management system in some selected hospitals located in Addis Ababa, Ethiopia. Methods Six hospitals in Addis Ababa, (three private and three public, were selected using simple random sampling method for this work. Data was recorded by using an appropriately designed questionnaire, which was completed for the period of two months. The calculations were based on the weights of the health care wastes that were regularly generated in the selected hospitals over a one week period during the year 2011. Average generation indexes were determined in relation to certain important factors, like the type of hospitals (public vs private. Results The median waste generation rate was found to be varied from 0.361- 0.669 kg/patient/day, comprised of 58.69% non-hazardous and 41.31% hazardous wastes. The amount of waste generated was increased as the number of patients flow increased (rs=1. Public hospitals generated high proportion of total health care wastes (59.22% in comparison with private hospitals (40.48%. The median waste generation rate was significantly vary between hospitals with Kruskal-Wallis test (X2=30.65, p=0.0001. The amount of waste was positively correlated with the number of patients (p Conclusion These findings revealed that the management of health care waste at hospitals in Addis Ababa city was poor.

  2. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Science.gov (United States)

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  3. Program for certification of waste from contained firing facility: Establishment of waste as non-reactive and discussion of potential waste generation problems

    International Nuclear Information System (INIS)

    Green, L.; Garza, R.; Maienschein, J.; Pruneda, C.

    1997-01-01

    Debris from explosives testing in a shot tank that contains 4 weight percent or less of explosive is shown to be non-reactive under the specified testing protocol in the Code of Federal Regulations. This debris can then be regarded as a non-hazardous waste on the basis of reactivity, when collected and packaged in a specified manner. If it is contaminated with radioactive components (e.g. depleted uranium), it can therefore be disposed of as radioactive waste or mixed waste, as appropriate (note that debris may contain other materials that render it hazardous, such as beryllium). We also discuss potential waste generation issues in contained firing operations that are applicable to the planned new Contained Firing Facility (CFF). The goal of this program is to develop and document conditions under which shot debris from the planned Contained Firing Facility (CFF) can be handled, shipped, and accepted for waste disposal as non-reactive radioactive or mixed waste. This report fulfills the following requirements as established at the outset of the program: 1. Establish through testing the maximum level of explosive that can be in a waste and still have it certified as non-reactive. 2. Develop the procedure to confirm the acceptability of radioactive-contaminated debris as non-reactive waste at radioactive waste disposal sites. 3. Outline potential disposal protocols for different CFF scenarios (e.g. misfires with scattered explosive)

  4. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust

  5. pH neutralization of the by-product sludge waste water generated from waste concrete recycling process using the carbon mineralization

    Science.gov (United States)

    Ji, Sangwoo; Shin, Hee-young; Bang, Jun Hwan; Ahn, Ji-Whan

    2017-04-01

    About 44 Mt/year of waste concrete is generated in South Korea. More than 95% of this waste concrete is recycled. In the process of regenerating and recycling pulmonary concrete, sludge mixed with fine powder generated during repeated pulverization process and water used for washing the surface and water used for impurity separation occurs. In this way, the solid matter contained in the sludge as a by-product is about 40% of the waste concrete that was input. Due to the cement component embedded in the concrete, the sludge supernatant is very strong alkaline (pH about 12). And it is necessary to neutralization for comply with environmental standards. In this study, carbon mineralization method was applied as a method to neutralize the pH of highly alkaline waste water to under pH 8.5, which is the water quality standard of discharged water. CO2 gas (purity 99%, flow rate 10ml/min.) was injected and reacted with the waste water (Ca concentration about 750mg/L) from which solid matter was removed. As a result of the experiment, the pH converged to about 6.5 within 50 minutes of reaction. The precipitate showed high whiteness. XRD and SEM analysis showed that it was high purity CaCO3. For the application to industry, it is needed further study using lower concentration CO2 gas (about 14%) which generated from power plant.

  6. Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur, Malaysia.

    Science.gov (United States)

    Saeed, Mohamed Osman; Hassan, Mohd Nasir; Mujeebu, M Abdul

    2009-07-01

    This paper presents a forecasting study of municipal solid waste generation (MSWG) rate and potential of its recyclable components in Kuala Lumpur (KL), the capital city of Malaysia. The generation rates and composition of solid wastes of various classes such as street cleansing, landscape and garden, industrial and constructional, institutional, residential and commercial are analyzed. The past and present trends are studied and extrapolated for the coming years using Microsoft office 2003 Excel spreadsheet assuming a linear behavior. The study shows that increased solid waste generation of KL is alarming. For instance, the amount of daily residential SWG is found to be about 1.62 kg/capita; with the national average at 0.8-0.9 kg/capita and is expected to be increasing linearly, reaching to 2.23 kg/capita by 2024. This figure seems reasonable for an urban developing area like KL city. It is also found that, food (organic) waste is the major recyclable component followed by mix paper and mix plastics. Along with estimated population growth and their business activities, it has been observed that the city is still lacking in terms of efficient waste treatment technology, sufficient fund, public awareness, maintaining the established norms of industrial waste treatment etc. Hence it is recommended that the concerned authority (DBKL) shall view this issue seriously.

  7. Municipal solid waste generation rates and its management at Yusmarg forest ecosystem, a tourist resort in Kashmir.

    Science.gov (United States)

    Bhat, Rouf Ahmad; Nazir, Rumisa; Ashraf, Samia; Ali, Mudasir; Bandh, Suhaib A; Kamili, Azra N

    2014-02-01

    The present study was carried out at Yusmarg, a forest ecosystem and tourist resort, in the Kashmir valley during 2012 with the objectives of determining the municipal solid waste (MSW) generation rates per capita and on a daily basis, and assessing the existing MSW system. It was estimated that daily generation of MSW at Yusmarg by tourists, as well as residents, was 107.74 kg; on average, the MSW generated at each site was about 36.48 kg/day. The per capita generation of MSW was highest (0.97 kg/person/day) at site 1 followed by 0.288 kg/person/day at site 2 and 0.201 kg/person/day at site 3, with an average per capita MSW generation rate of 0.484 kg/person/day. Manual segregation of the collected wastes showed that it comprised some recyclable, combustible, compostable and inert materials. Among the different waste categories, 56% of waste was recyclable materials, 29% was compostable wastes, 9% was combustible wastes and 6% was inert materials. The present study infers that MSW management in Yusmarg was inappropriate, and infrastructure, skilled manpower and a proper scientific disposal mechanism is lacking in the area. In order to conserve the forest wealth of the area there is a great need to focus on the solid waste problem of the tourist resort.

  8. A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569

    International Nuclear Information System (INIS)

    Boe, Timothy; Lemieux, Paul; Schultheisz, Daniel; Peake, Tom; Hayes, Colin

    2013-01-01

    Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri R ArcGIS R scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus R -MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel R 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

  9. Thermodynamic analysis of waste heat power generation system

    International Nuclear Information System (INIS)

    Guo, Jiangfeng; Xu, Mingtian; Cheng, Lin

    2010-01-01

    In the present work, a waste heat power generation system is analyzed based on the criteria with and without considering the heat/exergy loss to the environment. For the criteria without considering the heat/exergy loss to the environment, the first- and second-law efficiencies display different tendencies with the variations of some system parameters. When the heat/exergy loss to the environment is taken into consideration, the first and second law efficiencies display the same tendency. Thus, choosing the appropriate expressions for the performance criteria is crucial for the optimization design of the waste heat power generation system. It is found that there are two approaches to improving the system performance: one is to improve the heat/exergy input; the other is to enhance the heat-work conversion ability of the system. The former would deteriorate the environment if the heat-work conversion ability of the system remains unchanged; the latter could reduce the environmental impact but it's restricted by the heat/exergy input. Therefore, the optimal operation condition should be achieved at the trade-off between the heat/exergy input and the heat-work conversion ability of the system.

  10. Fresh, frozen, or ambient food equivalents and their impact on food waste generation in Dutch households.

    Science.gov (United States)

    Janssen, Anke M; Nijenhuis-de Vries, Mariska A; Boer, Eric P J; Kremer, Stefanie

    2017-09-01

    In Europe, it is estimated that more than 50% of total food waste - of which most is avoidable - is generated at household level. Little attention has been paid to the impact on food waste generation of consuming food products that differ in their method of food preservation. This exploratory study surveyed product-specific possible impacts of different methods of food preservation on food waste generation in Dutch households. To this end, a food waste index was calculated to enable relative comparisons of the amounts of food waste from the same type of foods with different preservation methods on an annual basis. The results show that, for the majority of frozen food equivalents, smaller amounts were wasted compared to their fresh or ambient equivalents. The waste index (WI) proposed in the current paper confirms the hypothesis that it may be possible to reduce the amount of food waste at household level by encouraging Dutch consumers to use (certain) foods more frequently in a frozen form (instead of fresh or ambient). However, before this approach can be scaled to population level, a more detailed understanding of the underlying behavioural causes with regard to food provisioning and handling and possible interactions is required. Copyright © 2017. Published by Elsevier Ltd.

  11. The calculation and estimation of wastes generated by decommissioning of nuclear facilities. Tokai works and Ningyo-toge Environmental Engineering Center

    International Nuclear Information System (INIS)

    Ayame, Y.; Tanabe, T.; Takahashi, K.; Takeda, S.

    2001-07-01

    This investigation was conducted as a part of planning the low-level radioactive waste management program (LLW management program). The aim of this investigation was contributed to compile the radioactive waste database of JNC's LLW management program. All nuclear facilities of the Tokai works and Ningyo-toge Environmental Engineering Center were investigated in this work. The wastes generated by the decommissioning of each nuclear facility were classified into radioactive waste and others (exempt waste and non-radioactive waste), and the amount of the wastes was estimated. The estimated amounts of radioactive wastes generated by decommissioning of the nuclear facilities are as follows. (1) Tokai works: The amount of waste generated by decommissioning of nuclear facilities of the Tokai works is about 1,079,100 ton. The amount of radioactive waste is about 15,400 ton. The amount of exempt waste and non-radioactive waste is about 1,063,700 ton. (2) Ningyo-toge Environmental Engineering Center: The amount of waste generated by decommissioning of nuclear facilities of Ningyo-toge Environmental Engineering Center is about 112,500 ton. The amount of radioactive waste is about 7,800 ton. The amount of exempt waste and non-radioactive waste is about 104,700 ton. (author)

  12. Forecasting generation of urban solid waste in developing countries--a case study in Mexico.

    Science.gov (United States)

    Buenrostro, O; Bocco, G; Vence, J

    2001-01-01

    Based on a study of the composition of urban solid waste (USW) and of socioeconomic variables in Morelia, Mexico, generation rates were estimated. In addition, the generation of residential solid waste (RSW) and nonresidential solid waste (NRSW) was forecasted by means of a multiple linear regression (MLR) analysis. For residential sources, the independent variables analyzed were monthly wages, persons per dwelling, age, and educational level of the heads of the household. For nonresidential sources, variables analyzed were number of employees, area of facilities, number of working days, and working hours per day. The forecasted values for residential waste were similar to those observed. This approach may be applied to areas in which available data are scarce, and in which there is an urgent need for the planning of adequate management of USW.

  13. An empirical model for prediction of household solid waste generation rate - A case study of Dhanbad, India.

    Science.gov (United States)

    Kumar, Atul; Samadder, S R

    2017-10-01

    Accurate prediction of the quantity of household solid waste generation is very much essential for effective management of municipal solid waste (MSW). In actual practice, modelling methods are often found useful for precise prediction of MSW generation rate. In this study, two models have been proposed that established the relationships between the household solid waste generation rate and the socioeconomic parameters, such as household size, total family income, education, occupation and fuel used in the kitchen. Multiple linear regression technique was applied to develop the two models, one for the prediction of biodegradable MSW generation rate and the other for non-biodegradable MSW generation rate for individual households of the city Dhanbad, India. The results of the two models showed that the coefficient of determinations (R 2 ) were 0.782 for biodegradable waste generation rate and 0.676 for non-biodegradable waste generation rate using the selected independent variables. The accuracy tests of the developed models showed convincing results, as the predicted values were very close to the observed values. Validation of the developed models with a new set of data indicated a good fit for actual prediction purpose with predicted R 2 values of 0.76 and 0.64 for biodegradable and non-biodegradable MSW generation rate respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of post-disposal gas generation in a repository for spent fuel, high-level waste and long-lived intermediate level waste sited in opalinus clay

    International Nuclear Information System (INIS)

    Johnson, L.; Marschall, P.; Zuidema, P.; Gribi, P.

    2004-07-01

    This comprehensive report issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at post-disposal gas generation in a repository for spent fuel and highly radioactive wastes in Opalinus clay strata. This study provides a comprehensive treatment of the issue of gas generation in a repository for spent fuel (SF), vitrified high-level waste (HLW) and long-lived intermediate-level waste (ILW), sited in the Opalinus clay of the Zuercher Weinland in northern Switzerland. The issue of how gas generation in and transport from waste repositories may influence disposal system performance has been under study for many years, both at Nagra and internationally. The report consists of three main parts: (i) A synthesis of basic information on the host rock and on details of repository construction; (ii) A discussion on gas transport characteristics of the engineered barrier system and the geosphere; (iii) A discussion on the effects of gas on system performance, based on the available information on gas generation, gas transport properties and gas pathways provided in the previous parts of the report. Simplified model calculations based on a mass balance approach for the gas generated within the repository are presented and discussed

  15. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Cleary, Martin; Wang, Xiaowei; Kempf, Nicholas; Schoensee, Luke; Yang, Jian; Joshi, Giri; Meda, Lakshmikanth

    2015-01-01

    Highlights: • A thermoelectric generator (TEG) is fabricated using nanostructured half-Heusler materials. • The TE unicouple devices produce superior power density above 5 W/cm"2. • A TEG system with over 1 kW power output is demonstrated by recovering automotive waste heat. - Abstract: Given increasing energy use as well as decreasing fossil fuel sources worldwide, it is no surprise that interest in promoting energy efficiency through waste heat recovery is also increasing. Thermoelectric generators (TEGs) are one of the most promising pathways for waste heat recovery. Despite recent thermoelectric efficiency improvement in nanostructured materials, a variety of challenges have nevertheless resulted in few demonstrations of these materials for large-scale waste heat recovery. Here we demonstrate a high-performance TEG by combining high-efficiency nanostructured bulk materials with a novel direct metal brazing process to increase the device operating temperature. A unicouple device generates a high power density of 5.26 W cm"−"2 with a 500 °C temperature difference between hot and cold sides. A 1 kW TEG system is experimentally demonstrated by recovering the exhaust waste heat from an automotive diesel engine. The TEG system operated with a 2.1% heat-to-electricity efficiency under the average temperature difference of 339 °C between the TEG hot- and cold-side surfaces at a 550 °C exhaust temperature. The high-performance TEG reported here open up opportunities to use TEGs for energy harvesting and power generation applications.

  16. Conceptual framework for the study of food waste generation and prevention in the hospitality sector

    NARCIS (Netherlands)

    Papargyropoulou, Effie; Wright, Nigel; Lozano, Rodrigo|info:eu-repo/dai/nl/36412380X; Steinberger, Julia; Padfield, Rory; Ujang, Zaini

    2016-01-01

    Food waste has significant detrimental economic, environmental and social impacts. The magnitude and complexity of the global food waste problem has brought it to the forefront of the environmental agenda; however, there has been little research on the patterns and drivers of food waste generation,

  17. Next generation of high-efficient waste incinerators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jappe Frandsen, F.

    2010-11-15

    Modern society produces increasing amounts of combustible waste which may be utilized for heat and power production, at a lower emission of CO{sub 2}, e.g. by substituting a certain fraction of energy from fossil fuel-fired power stations. In 2007, 20.4 % of the district heating and 4.5 % of the power produced in Denmark came from thermal conversion of waste, and waste is a very important part of a future sustainable, and independent, Danish energy supply [Frandsen et al., 2009; Groen Energi, 2010]. In Denmark, approx 3.3 Mtons of waste was produced in 2005, an amount predicted to increase to 4.4 Mtons by the year 2030. According to Affald Danmark, 25 % of the current WtE plant capacity in Denmark is older than 20 years, which is usually considered as the technical and economical lifetime of WtE plants. Thus, there is a need for installation of a significant fraction of new waste incineration capacity, preferentially with an increased electrical efficiency, within the next few years. Compared to fossil fuels, waste is difficult to handle in terms of pre-treatment, combustion, and generation of reusable solid residues. In particular, the content of inorganic species (S, Cl, K, Na, etc.) is problematic, due to enhanced deposition and corrosion - especially at higher temperatures. This puts severe constraints on the electrical efficiency of grate-fired units utilizing waste, which seldom exceeds 26-27%, campared to 46-48 % for coal combustion in suspension. The key parameters when targeting higher electrical efficiency are the pressure and temperature in the steam cycle, which are limited by high-temperature corrosion, boiler- and combustion-technology. This report reviews some of the means that can be applied in order to increase the electrical efficiency in plants firing waste on a grate. (Author)

  18. Automatic deodorizing system for waste water from radioisotope facilities using an ozone generator

    International Nuclear Information System (INIS)

    Kawamura, Hiroko; Hirata, Yasuki

    2002-01-01

    We applied an ozone generator to sterilize and to deodorize the waste water from radioisotope facilities. A small tank connected to the generator is placed outside of the drainage facility founded previously, not to oxidize the other apparatus. The waste water is drained 1 m 3 at a time from the tank of drainage facility, treated with ozone and discharged to sewer. All steps proceed automatically once the draining work is started remotely in the office. The waste water was examined after the ozone treatment for 0 (original), 0.5, 1.0, 1.5 and 2.0 h. Regarding original waste water, the sum of coliform groups varied with every examination repeated - probably depend on the colibacilli used in experiments; hydrogen sulfide, biochemical oxygen demand and the offensive odor increased with increasing coliform groups. The ozone treatment remarkably decreased hydrogen sulfide and the offensive odor, decreased coliform groups when the original water had rich coliforms. (author)

  19. Automatic deodorizing system for waste water from radioisotope facilities using an ozone generator

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroko; Hirata, Yasuki [Kyushu Univ., Fukuoka (Japan). Radioisotope Center; Taguchi, Kenji [Riken Co. Ltd., Kitakyushu, Fukuoka (Japan)

    2002-03-01

    We applied an ozone generator to sterilize and to deodorize the waste water from radioisotope facilities. A small tank connected to the generator is placed outside of the drainage facility founded previously, not to oxidize the other apparatus. The waste water is drained 1 m{sup 3} at a time from the tank of drainage facility, treated with ozone and discharged to sewer. All steps proceed automatically once the draining work is started remotely in the office. The waste water was examined after the ozone treatment for 0 (original), 0.5, 1.0, 1.5 and 2.0 h. Regarding original waste water, the sum of coliform groups varied with every examination repeated - probably depend on the colibacilli used in experiments; hydrogen sulfide, biochemical oxygen demand and the offensive odor increased with increasing coliform groups. The ozone treatment remarkably decreased hydrogen sulfide and the offensive odor, decreased coliform groups when the original water had rich coliforms. (author)

  20. Electricity generation comparison of food waste-based bioenergy with wind and solar powers: A mini review

    Directory of Open Access Journals (Sweden)

    Ngoc Bao Dung Thi

    2016-09-01

    Full Text Available The food waste treatment-based anaerobic digestion has been proven to play a primary role in electricity industry with high potentially economic benefits, which could reduce electricity prices in comparison with other renewable energy resources such as wind and solar power. The levelized costs of electricity were reported to be 65, 190, 130 and 204 US$ MWh−1 for food waste treatment in anaerobic landfill, anaerobic digestion biogas, solar power, and wind power, respectively. As examples, the approaches of food waste treatment via anaerobic digestion to provide a partial energy supply for many countries in future were estimated as 42.9 TWh yr−1 in China (sharing 0.87% of total electricity generation, 7.04 TWh yr−1 in Japan (0.64% of total electricity generation and 13.3 TWh yr−1 in the US (0.31% of total electricity generation. Electricity generation by treating food waste is promised to play an important role in renewable energy management. Comparing with wind and solar powers, converting food waste to bioenergy provides the lowest investment costs (500 US$ kW−1 and low operation cost (0.1 US$ kWh−1. With some limits in geography and season of other renewable powers, using food waste for electricity generation is supposedly to be a suitable solution for balancing energy demand in many countries.

  1. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay

    Energy Technology Data Exchange (ETDEWEB)

    Oribe-Garcia, Iraia, E-mail: iraia.oribe@deusto.es; Kamara-Esteban, Oihane; Martin, Cristina; Macarulla-Arenaza, Ana M.; Alonso-Vicario, Ainhoa

    2015-05-15

    Highlights: • We have modelled household waste generation in Biscay municipalities. • We have identified relevant characteristics regarding household waste generation. • Factor models are used in order to identify the best subset of explicative variables. • Biscay’s municipalities are grouped by means of hierarchical clustering. - Abstract: The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The present works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation.

  2. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay

    International Nuclear Information System (INIS)

    Oribe-Garcia, Iraia; Kamara-Esteban, Oihane; Martin, Cristina; Macarulla-Arenaza, Ana M.; Alonso-Vicario, Ainhoa

    2015-01-01

    Highlights: • We have modelled household waste generation in Biscay municipalities. • We have identified relevant characteristics regarding household waste generation. • Factor models are used in order to identify the best subset of explicative variables. • Biscay’s municipalities are grouped by means of hierarchical clustering. - Abstract: The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The present works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation

  3. Models of municipal solid waste generation and collection costs applicable to all municipalities in Thailand

    Directory of Open Access Journals (Sweden)

    Chira Bureecam

    2015-08-01

    Full Text Available The aim of this paper is to identify and measure the variables which influence municipal solid waste (MSW generation and collection costs in Thai municipality. The empirical analysis is based on the information derived from a survey conducted in a sample size of 570 municipalities across the country. The results from the MSW generation model indicate that the population density, the household size and the size of municipality are the significant determinant of waste generation. Meanwhile, with regards to the MSW collection cost model, the results showed some existence of positive in the volume of MSW collected, population density, the distance between the center of municipality to the disposal site the hazardous sorting and the size of municipality whereas, there were no evidence of the frequency of collection and the ratio of recycled material to waste generation on cost.

  4. Public comments on the draft generic environmental impact statement for management of commercially generated radioactive waste

    International Nuclear Information System (INIS)

    Kreiter, M.R.; Unruh, C.M.; McCallum, R.F.

    1980-01-01

    The US Department of Energy has the responsibility for developing the technology required for managing commercial radioactive wastes in an environmentally acceptable manner. As part of this responsibility, DOE has prepared a draft environmental impact statement on the management of commercially generated radioactive waste. The draft was issued for public comment in April of 1979; five public hearings were held. The draft GEIS is intended to provide environmental input for the selection of an appropriate program strategy for the permanent isolation of commercially generated high-level and transuranic wastes. The scope of such a strategy includes research and development into alternative treatment processes and emplacement media, site investigations into candidate media, and the examination of advanced waste management technologies. The draft statement describes the commercial radioactive wastes that would have to be managed for very long periods of time from an assumed nuclear generation scenario of 10,000 GWe-yr of power over a 65-year period ending in 2040

  5. Safe operation of existing radioactive waste management facilities at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Pham Van Lam; Ong Van Ngoc; Nguyen Thi Nang

    2000-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the former TRIGA MARK-II in 1982 and put into operation in March 1984. The combined technology for radioactive waste management was newly designed and put into operation in 1984. The system for radioactive waste management at the Dalat Nuclear Research Institute (DNRI) consists of radioactive liquid waste treatment station and disposal facilities. The treatment methods used for radioactive liquid waste are coagulation and precipitation, mechanical filtering and ion- exchange. Near-surface disposal of radioactive wastes is practiced at DNRI In the disposal facilities eight concrete pits are constructed for solidification and disposal of low level radioactive waste. Many types of waste generated in DNRI and in some Nuclear Medicine Departments in the South of Vietnam are stored in the disposal facilities. The solidification of sludge has been done by cementation. Hydraulic compactor has done volume reduction of compatible waste. This paper presents fifteen-years of safe operation of radioactive waste management facilities at DNRI. (author)

  6. Methodology of site generation for evaluation of the behaviour of radioactive waste storage

    International Nuclear Information System (INIS)

    Ruiz Rivas, C.; Eguilior Diez, S.

    1997-01-01

    The present report summarizes the purpose of methodology for the site generation in the evaluation of high-level radioactive waste storage for long-term. This work is developed into the project Safety analysis long-term of high-level radioactive waste. This project is carried on for CIEMAT and ENRESA

  7. A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Timothy [Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711 (United States); Lemieux, Paul [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schultheisz, Daniel; Peake, Tom [U.S. Environmental Protection Agency, Washington, DC 20460 (United States); Hayes, Colin [Eastern Research Group, Inc, Morrisville, NC 26560 (United States)

    2013-07-01

    Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri{sup R} ArcGIS{sup R} scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus{sup R}-MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel{sup R} 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

  8. Steam generators lay-up optimization and derived wastes reduction

    International Nuclear Information System (INIS)

    Rabeau, A.M.; Viricel, L.; Foct, F.; Lemaire, P.; Moreaux, D.

    2002-01-01

    Today, EDF plants face a new release permit after a steam generators (SGs) wet lay-up, so that the legal authorizations for wastes release to the environment, renewed or being renewed by the safety authorities, allow smallest quantities of wastes than earlier. In this context, EDF studies the optimization of SGs lay-up conditions, and especially of the hydrazine concentration, in order to reduce the liquid wastes releases to the environment, while keeping low corrosion conditions. At the same time, EDF examines a treatment for hydrazine elimination in liquid wastes before their releases. An experimental study has been conducted in order to evaluate the efficiency of hydrazine to control materials corrosion and of nitrogen gas phase to deaerate water. The consequences of lay-up conditions on carbon steel corrosion has also been studied. In the absence of an efficient alternative reagent, hydrazine remains necessary but implies a great care due to its carcinogenic risks and to its toxicity for aquatic organisms. This choice implies studying a method for hydrazine elimination before its release to the environment. The hydrazine elimination from SGs lay-up wastes could be achieved within about one day, by adding about 700 to 800 liters of 30% hydrogen peroxide solution to eliminate 100 kg hydrazine. Copper sulfate would have to be added if copper is not present in the wastes; the copper content in the wastes should be around 100 to 200 μg/kg for the reaction to be fast enough, which is consistent with the legal authorization for copper release to the environment. The nuclear power plants would have to adjust the quantity of hydrogen peroxide to add to the wastes to be treated, based on the quantity of hydrazine to eliminate, in order to avoid any excess of hydrogen peroxide in the wastes at the end of the treatment, since this species is not allowed to be released to the environment. Moreover, the hydrogen peroxide treatment should not have any significant impact on

  9. A modern solid waste management strategy--the generation of new by-products.

    Science.gov (United States)

    Fudala-Ksiazek, Sylwia; Pierpaoli, Mattia; Kulbat, Eliza; Luczkiewicz, Aneta

    2016-03-01

    To benefit the environment and society, EU legislation has introduced a 'zero waste' strategy, in which waste material should be converted to resources. Such legislation is supported by the solid waste hierarchy concept, which is a set of priorities in waste management. Under this concept, municipal solid waste plants (MSWPs) should be equipped with sorting and recycling facilities, composting/incineration units and landfill prisms for residual bulk disposal. However, each of the aforementioned facilities generates by-products that must be treated. This project focuses on the leachates from landfill prisms, including modern prism (MP) that meet EU requirements and previous prism (PP) that provide for the storage of permitted biodegradable waste as well as technological wastewaters from sorting unit (SU) and composting unit (CU), which are usually overlooked. The physico-chemical parameters of the liquid by-products collected over 38 months were supported by quantitative real-time PCR (qPCR) amplifications of functional genes transcripts and a metagenomic approach that describes the archaeal and bacterial community in the MP. The obtained data show that SU and especially CU generate wastewater that is rich in nutrients, organic matter and heavy metals. Through their on-site pre-treatment and recirculation via landfill prisms, the landfill waste decomposition process may be accelerated because of the introduction of organic matter and greenhouse gas emissions may be increased. These results have been confirmed by the progressive abundance of both archaeal community and the methyl coenzyme M reductase (mcrA) gene. The resulting multivariate data set, supported by a principal component analysis, provides useful information for the design, operation and risk assessment of modern MSWPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Generation of Domestic Solid Waste in Tikrit City and The Effects of Family Size and Incomes Level on the Rate of Generation

    Directory of Open Access Journals (Sweden)

    Waleed M. Al Abed Raba

    2013-04-01

    Full Text Available     This research included collection and analysis of (2800 samples from four different neighborhoods in Tikrit over the seasons of the year to cover seasonal changes in the generation rate of domestic solid waste. The generation rate of domestic solid waste is (0.460 kg / person / day. The results also showed that summer season is the most season that produced solid waste (0.487 kg / person / day. While winter is the lowest season (0.422 kg / person / day. The results indicated that Friday and Saturday are the most producing days (0.629 , 0.557 kg / person / days, respectively. The results showed the impact of rural character of Aalam region in reducing the rate of generation of domestic solid waste as the rate of generation of the neighborhoods of the four studied areas was (0.460 kg / person / day. SPSS program using has been adopted as a method of statistical analysis to study the effect of family size and income level have on the generation rate in the city, where the results showed that family size adversely affects the generation rate of solid waste, also the lowest generation rate was recorded for families with high income level.                                                                                                                                  

  11. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    Directory of Open Access Journals (Sweden)

    Simon P Rout

    Full Text Available The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP including α and β forms of isosaccharinic acid (ISA and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118 in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2 hr(-1 (SE ± 2.9 × 10(-3. These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  12. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    A number of options for the disposal of vitrified heat-generating radioactive waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the feasibility of three designs for containers which would isolate the waste from the environment for a minimum period of 500 to 1000 years. The study was sub-divided into the following major sections: manufacturing feasibility; stress analysis; integrity in accidents; cost benefit review. The candidate container designs were taken from the results of a previous study by Ove Arup and Partners (1985) and were developed as the study progressed. Their major features can be summarised as follows: (A) a thin-walled corrosion-resistant metal shell filled with lead or cement grout. (B) an unfilled thick-walled carbon steel shell. (C) an unfilled carbon steel shell planted externally with corrosion-resistant metal. Reference repository conditions in clay, granite and salt, reference disposal operations and metals corrosion data have been taken from various European Community radioactive waste management research and engineering projects. The study concludes that design Types A and B are feasible in manufacturing terms but design Type C is not. It is recommended that model containers should be produced to demonstrate the proposed methods of manufacture and that they should be tested to validate the analytical techniques used. (author)

  13. Radioactive liquid waste processing method

    International Nuclear Information System (INIS)

    Nishi, Takashi; Baba, Tsutomu; Fukazawa, Tetsuo; Matsuda, Masami; Chino, Koichi; Ikeda, Takashi.

    1993-01-01

    As an adsorbent used for removing radioactive nuclides such as cesium and strontium from radioactive liquid wastes generated from a reprocessing plant, a silicon compound having siloxane bonds constituted by silicon and oxygen and having silanol groups constituted by silicon, oxygen and hydrogen, or an inorganic material mainly comprising aluminosilicate constituted with silicon, oxygen and aluminum is used. In the adsorbent of the present invention, since silica main skeletons are partially decomposed in an aqueous alkaline solution to newly form silanol groups having a cation adsorbing property, pretreatment such as pH adjustment is not necessary. (T.M.)

  14. A review of national municipal solid waste generation assessments in the USA.

    Science.gov (United States)

    Tonjes, David J; Greene, Krista L

    2012-08-01

    Municipal solid waste (MSW) is generated in very large quantities (probably between 200 and 400 million tonnes per year) in the USA. MSW is generated at millions of places and there is no one precise, general definition for MSW that is generally applied-despite US Environmental Protection Agency efforts. As an element of both commerce and politics, reporting may be framed towards particular ends. Therefore, the two best known assessments of the quantity of US MSW production differ by approximately 50%. The assessors understand some of the reasons for the differences, but our analysis suggests that there are profound factors, not openly discussed, that affect estimates of waste stream size. Many regulators propose that strict, universal formats be adopted so that there is consistency in waste reporting; we note that this will not change the materials requiring management, only what is counted. Therefore, the most accurate assessments may be those where controllable errors are minimized but which suffer from differing definitions of 'MSW'.

  15. NOx reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture

    DEFF Research Database (Denmark)

    Botheju, Deshai; Glarborg, Peter; Tokheim, Lars-Andre

    2012-01-01

    Amine reclaimer wastes (ARW) generated in CO2 capture processes demand suitable disposal means. Such wastes contain remaining amine, NH3 and other degradation compounds. This study investigated the potential of using ARW as a NOx reducing agent, under laboratory conditions in a flow reactor....../NO ratios (waste product, together with its demonstrated NOx reduction capability and its calorific value contribution, makes it attractive as an additive...

  16. Investigation of thermolytic hydrogen generation rate of tank farm simulated and actual waste

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Howe, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-15

    To support resolution of Potential Inadequacies in the Safety Analysis for the Savannah River Site (SRS) Tank Farm, Savannah River National Laboratory conducted research to determine the thermolytic hydrogen generation rate (HGR) with simulated and actual waste. Gas chromatography methods were developed and used with air-purged flow systems to quantify hydrogen generation from heated simulated and actual waste at rates applicable to the Tank Farm Documented Safety Analysis (DSA). Initial simulant tests with a simple salt solution plus sodium glycolate demonstrated the behavior of the test apparatus by replicating known HGR kinetics. Additional simulant tests with the simple salt solution excluding organics apart from contaminants provided measurement of the detection and quantification limits for the apparatus with respect to hydrogen generation. Testing included a measurement of HGR on actual SRS tank waste from Tank 38. A final series of measurements examined HGR for a simulant with the most common SRS Tank Farm organics at temperatures up to 140 °C. The following conclusions result from this testing.

  17. A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons

    Directory of Open Access Journals (Sweden)

    Vogt Weisenhorn Daniela M

    2010-12-01

    Full Text Available Abstract Background Lack of appropriate tools and techniques to study fate and functional integration of newly generated neurons has so far hindered understanding of neurogenesis' relevance under physiological and pathological conditions. Current analyses are either dependent on mitotic labeling, for example BrdU-incorporation or retroviral infection, or on the detection of transient immature neuronal markers. Here, we report a transgenic mouse model (DCX-CreERT2 for time-resolved fate analysis of newly generated neurons. This model is based on the expression of a tamoxifen-inducible Cre recombinase under the control of a doublecortin (DCX promoter, which is specific for immature neuronal cells in the CNS. Results In the DCX-CreERT2 transgenic mice, expression of CreERT2 was restricted to DCX+ cells. In the CNS of transgenic embryos and adult DCX-CreERT2 mice, tamoxifen administration caused the transient translocation of CreERT2 to the nucleus, allowing for the recombination of loxP-flanked sequences. In our system, tamoxifen administration at E14.5 resulted in reporter gene activation throughout the developing CNS of transgenic embryos. In the adult CNS, neurogenic regions were the primary sites of tamoxifen-induced reporter gene activation. In addition, reporter expression could also be detected outside of neurogenic regions in cells physiologically expressing DCX (e.g. piriform cortex, corpus callosum, hypothalamus. Four weeks after recombination, the vast majority of reporter-expressing cells were found to co-express NeuN, revealing the neuronal fate of DCX+ cells upon maturation. Conclusions This first validation demonstrates that our new DCX-CreERT2 transgenic mouse model constitutes a powerful tool to investigate neurogenesis, migration and their long-term fate of neuronal precursors. Moreover, it allows for a targeted activation or deletion of specific genes in neuronal precursors and will thereby contribute to unravel the molecular

  18. Immobilized High-Level Waste (HLW) Interim Storage Alternative Generation and analysis and Decision Report - second Generation Implementing Architecture

    International Nuclear Information System (INIS)

    CALMUS, R.B.

    2000-01-01

    Two alternative approaches were previously identified to provide second-generation interim storage of Immobilized High-Level Waste (IHLW). One approach was retrofit modification of the Fuel and Materials Examination Facility (FMEF) to accommodate IHLW. The results of the evaluation of the FMEF as the second-generation IHLW interim storage facility and subsequent decision process are provided in this document

  19. Trans generational ethics: protecting future generations against nuclear waste hazards. Some ethical considerations

    International Nuclear Information System (INIS)

    Cornelis, G.C.

    2002-01-01

    This paper describes the activities launched at SCK x CEN, intended to explore ethical and other non-technical aspects when dealing with the time scales considered in the high-level waste disposal program. Especially the issues of retrievability and precaution will be focused on which will be philosophically contextualised. Many questions will be raised in order to sensitize all stakeholders for the trans-disciplinary character of the trans-generational problem at hand. (author)

  20. Release protocol to address DOE moratorium on shipments of waste generated in radiologically controlled areas

    International Nuclear Information System (INIS)

    Rathbun, L.A.; Boothe, G.F.

    1992-10-01

    On May 17, 1991 the US DOE Office of Waste Operations issued a moratorium on the shipment of hazardous waste from radiologically contaminated or potentially contaminated areas on DOE sites to offsite facilities not licensed for radiological material. This document describes a release protocol generated by Westinghouse Hanford submitted for US DOE approval. Topics considered include designating Radiological Materials Management Areas (RMMAs), classification of wastes, handling of mixed wastes, detection limits

  1. The impact of socioeconomic factors on municipal solid waste generation in São Paulo, Brazil.

    Science.gov (United States)

    Vieira, Victor H Argentino de Morais; Matheus, Dácio R

    2018-01-01

    Social factors have not been sufficiently explored in municipal solid waste management studies. Latin America has produced even fewer studies with this approach; technical and economic investigations have prevailed. We explored the impacts of socioeconomic factors on municipal solid waste generation in Greater Sao Paulo, which includes 39 municipalities. We investigated the relations between municipal solid waste generation and social factors by Pearson's correlation coefficient. The Student's t-test (at p ← 0.01) proved significance, and further regression analysis was performed with significant factors. We considered 10 socioeconomic factors: population, rural population, density, life expectancy, education (secondary, high and undergraduate level), income per capita, inequality and human development. A later multicollinearity analysis resulted in the determination of inequality (r p = 0.625) and income per capita (r p = 0.607) as major drivers. The results showed the relevance of considering social aspects in municipal solid waste management and isolated inequality as an important factor in planning. Inequality must be used as a complementary factor to income, rather than being used exclusively. Inequality may explain differences of waste generation between areas with similar incomes because of consumption patterns. Therefore, unequal realities demand unequal measures to avoid exacerbation, for example, pay-as-you-throw policies instead of uniform fees. Unequal realities also highlight the importance of tiering policies beyond the waste sector, such as sustainable consumption.

  2. Purification and solidification of reactor wastes at a Canadian nuclear generating station

    International Nuclear Information System (INIS)

    Buckley, L.P.; Burt, D.A.

    1981-01-01

    The study aimed at development and demonstration of volume reduction and solidification of CANDU reactor wastes has been underway at Chalk River Nuclear Laboratories in the Province of Ontario, Canada. The study comprises membrane separation processes, evaporator appraisal and immobilization of concentrated wastes in bitumen. This paper discusses the development work with a wiped-film evaporator and the successful completion of demonstration tests at Douglas Point Nuclear Generating Station. Heavy water from the moderator system was purified and wastes arising from pump bowl decontamination were immobilized in bitumen with the wiped-film evaporator that was used in the development tests at Chalk River

  3. Sampling and analysis plan for sampling of liquid waste streams generated by 222-S Laboratory Complex operations

    International Nuclear Information System (INIS)

    Benally, A.B.

    1997-01-01

    This Sampling and Analysis Plan (SAP) establishes the requirements and guidelines to be used by the Waste Management Federal Services of Hanford, Inc. personnel in characterizing liquid waste generated at the 222-S Laboratory Complex. The characterization process to verify the accuracy of process knowledge used for designation and subsequent management of wastes consists of three steps: to prepare the technical rationale and the appendix in accordance with the steps outlined in this SAP; to implement the SAP by sampling and analyzing the requested waste streams; and to compile the report and evaluate the findings to the objectives of this SAP. This SAP applies to portions of the 222-S Laboratory Complex defined as Generator under the Resource Conservation and Recovery Act (RCRA). Any portion of the 222-S Laboratory Complex that is defined or permitted under RCRA as a treatment, storage, or disposal (TSD) facility is excluded from this document. This SAP applies to the liquid waste generated in the 222-S Laboratory Complex. Because the analytical data obtained will be used to manage waste properly, including waste compatibility and waste designation, this SAP will provide directions for obtaining and maintaining the information as required by WAC173-303

  4. Reducing waste generation and radiation exposure by analytical method modification

    International Nuclear Information System (INIS)

    Ekechukwu, A.A.

    1996-01-01

    The primary goal of an analytical support laboratory has traditionally been to provide accurate data in a timely and cost effective fashion. Added to this goal is now the need to provide the same high quality data while generating as little waste as possible. At the Savannah River Technology Center (SRTC), we have modified and reengineered several methods to decrease generated waste and hence reduce radiation exposure. These method changes involved improving detection limits (which decreased the amount of sample required for analysis), decreasing reaction and analysis time, decreasing the size of experimental set-ups, recycling spent solvent and reagents, and replacing some methods. These changes had the additional benefits of reducing employee radiation exposure and exposure to hazardous chemicals. In all cases, the precision, accuracy, and detection limits were equal to or better than the replaced method. Most of the changes required little or no expenditure of funds. This paper describes these changes and discusses some of their applications

  5. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    International Nuclear Information System (INIS)

    1997-01-01

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste

  6. HIERARCHIAL DESIGN AND EVALUATION OF PROCESSES TO GENERATE WASTE-RECYCLED FEEDS

    Science.gov (United States)

    Hierarchical Design and Evaluation of Processes to Generate Waste-Recycled FeedsRaymond L. SmithU.S. Environmental Protection AgencyOffice of Research and DevelopmentNational Risk Management Research Laboratory26 W. Martin Luther King DriveCincinna...

  7. Project B-589, 300 Area transuranic waste interim storage project engineering study

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1985-08-01

    The purpose of the study was to look at various alternatives of taking newly generated, remote-handled transuranic waste (caisson waste) in the 300 Area, performing necessary transloading operations and preparing the waste for storage. The prepared waste would then be retrieved when the Waste Isolation Pilot Plant becomes operational and transshipped to the repository in New Mexico with a minimum of inspection and packaging. The scope of this study consisted of evaluating options for the transloading of the TRU wastes for shipment to a 200 Area storage site. Preconceptual design information furnished as part of the engineering study is listed below: produce a design for a clean, sealed waste canister; hot cell loadout system for the waste; in-cell loading or handling equipment; determine transshipment cask options; determine assay system requirements (optional); design or specify transport equipment required; provide a SARP cost estimate; determine operator training requirements; determine waste compaction equipment needs if desirable; develop a cost estimate and approximate schedule for a workable system option; and update the results presented in WHC Document TC-2025

  8. Assessment of Power Generation Potential from Municipal Solid Wastes: A Case Study of Hyderabad City, Sindh, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Safar Korai

    2014-06-01

    Full Text Available This paper is an attempt to estimate the power generation potential through utilization of municipal solid waste (MSW in order to overcome energy crisis, faced by country now a days. The waste-to-energy has proven itself to be an environment friendly solution for the disposal of municipal solid waste. Representative samples of the MSW were collected from the open dumping sites of solid wastes and analyzed for calorific value by using a Bomb Calorimeter in the laboratory. Net and gross calorific value of mixed MSW were obtained as 6519 & 6749 kcal/kg, respectively. Based upon its calorific value, net power generation was estimated as 1512 kWh per ton of MSW generated. This shows that MSW generated in the study area is more suitable for thermal treatment process. In this regard, different thermal treatment technologies have been compared with respect to various parameters and mass burn incinerator is found suitable for generation of power. This technology for conversion of MSW into power generation would not only be beneficial to meet the power demand but also reduce the environmental pollution to certain extent.

  9. Household solid waste generation rate and physical composition analysis: case of Sekondi-Takoradi Metropolis in the western region, Ghana

    Directory of Open Access Journals (Sweden)

    Eugene Atta Nyankson

    2015-06-01

    Full Text Available Sekondi-Takoradi Metropolis, one of the rapidly expanding cities of Ghana has been facing serious problems with solid waste management. This is mainly due to the lack of available information about the types and quantity of solid waste generation in the area. Hence, the objective of this study was to determine the rate of household solid waste generation and its composition in the aforesaid city. The methodology and procedures for this study were derived from the Standard Test Method for Determination of the Composition of Unprocessed MSW (ASTM D 5231-92. All samples were hand sorted into 6 waste categories (paper, plastic, organics, metals, glass, and other waste. The study revealed that by weight, organic wastes constitutes the largest proportion of household solid waste (38% followed by 19% plastics, 7% papers, 4% metals, 4% glass and 28% other wastes (comprising of sand, stones, ash, inert substances. The rate of daily waste generation per capita in the low, middle and high income households were 0.27±0.19, 0.4±0.19 and 0.58±0.24 kg/cap/day, respectively. The study revealed that there is no waste treatment or recovery facility established within the metropolis hence no significant waste recovery and reuse activities exist. The study showed that more than 38 % of the waste generated in Sekondi-Takoradi Metropolis is decomposable organic matter that can be re-used through composting as well as 34% of the waste having recycling potential thereby considerably mitigating the solid waste problem. DOI: http://dx.doi.org/10.3126/ije.v4i2.12644 International Journal of Environment Vol.4(2 2015: 221-235

  10. Nanophotonic-Engineered Photothermal Harnessing for Waste Heat Management and Pyroelectric Generation.

    Science.gov (United States)

    Wang, Xiao-Qiao; Tan, Chuan Fu; Chan, Kwok Hoe; Xu, Kaichen; Hong, Minghui; Kim, Sang-Woo; Ho, Ghim Wei

    2017-10-24

    At present, there are various limitations to harvesting ambient waste heat which include the lack of economically viable material and innovative design features that can efficiently recover low grade heat for useful energy conversion. In this work, a thermal nanophotonic-pyroelectric (TNPh-pyro) scheme consisting of a metamaterial multilayer and pyroelectric material, which performs synergistic waste heat rejection and photothermal heat-to-electricity conversion, is presented. Unlike any other pyroelectric configuration, this conceptual design deviates from the conventional by deliberately employing back-reflecting NIR to enable waste heat reutilization/recuperation to enhance pyroelectric generation, avoiding excessive solar heat uptake and also retaining high visual transparency of the device. Passive solar reflective cooling up to 4.1 °C is demonstrated. Meanwhile, the photothermal pyroelectric performance capitalizing on the back-reflecting effect shows an open circuit voltage (V oc ) and short circuit current (I sc ) enhancement of 152 and 146%, respectively. In addition, the designed photoactive component (TiO 2 /Cu) within the metamaterial multilayer provides the TNPh-pyro system with an effective air pollutant photodegradation functionality. Finally, proof-of-concept for concurrent photothermal management and enhanced solar pyroelectric generation under a real outdoor environment is demonstrated.

  11. The impact of regulatory compliance behavior on hazardous waste generation in European private healthcare facilities

    OpenAIRE

    Botelho, Anabela

    2013-01-01

    Along with the increased provision of healthcare by private outpatient healthcare facilities within the EU countries, there is also an increase on waste generation from these facilities. A significant fraction of this waste is amongst the most hazardous of all wastes arising in communities, posing significant risks to people and the environment if inappropriately managed. The growing awareness that mismanagement of healthcare waste has serious environmental and public health consequences is r...

  12. Hazardous Waste Management for the Small Quantity Generator. Teacher Edition.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructional package for teaching about the regulations imposed on small quantity generators by the Environmental Protection Agency (EPA) under the Resource Conservation Recovery Act is organized around ll program objectives: students will be able to (l) determine a hazardous waste from lists or by identifying characteristics; (2) identify…

  13. Potential Co-Generation of Electrical Energy from Mill Waste: A Case Study of the Malaysian Furniture Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2016-04-01

    Full Text Available Furniture manufacturing in Malaysia is an established industry driven primarily by the availability of raw materials and labor. However, the industry suffers from the low-recovery rate of its materials, as it produces a substantial amount of waste during the manufacturing process. Although smaller waste fragments, or off-cuts, are recovered for other purposes, the splinters, shavings, and coarse dust have little economic value and are often discarded. Because wood is a well-established source of bioenergy, this study investigated the potential use of mill waste from the furniture-manufacturing industry for electrical energy generation. Waste from the rubberwood, bamboo, and rattan furniture industries was evaluated for its potential electrical energy generation, and the amount was compared with the electrical energy that was consumed by the furniture industry. The study also compared the emission of greenhouse gases from the combustion of these waste materials against fossil fuels used to generate electricity to assess its potential in terms of the environmental benefits. In conclusion, such mill waste could be utilized as substitute for fossil fuel to generate energy in the furniture industry.

  14. The thermoelectric generators use for waste heat utilization from cement plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2017-01-01

    Production often entails the formation of by-product which is waste heat. One of the equipment processing heat into electricity is a thermoelectric generator. Its operation is based on the principle of thermoelectric phenomenon, which is known as a Seebeck phenomenon. The simplicity of thermoelectric phenomena allows its use in various industries, in which the main waste product is in the form of heat with the temperature of several hundred degrees. The study analyses the possibility of the thermoelectric systems use for the waste heat utilization resulting in the cement production at the cement plant. The location and design of the thermoelectric system that could be implemented in cement plant is chosen. The analysis has been prepared in the IPSEpro software.

  15. Waste generation and utilisation in micro-sized furniture-manufacturing enterprises in Turkey.

    Science.gov (United States)

    Top, Y

    2015-01-01

    The number of small-scale businesses within most national economies is generally high, especially in developing countries. Often these businesses have a weak economic status and limited environmental awareness. The type and amount of waste produced, and the recycling methods adopted by these businesses during their operation can have negative effects on the environment. This study investigated the types of waste generated and the recycling methods adopted in micro-sized enterprises engaged in the manufacture of furniture. An assessment was also made of whether the characteristics of the enterprise had any effect on the waste recycling methods that were practised. A survey was conducted of 31 enterprises in the furniture industry in Gumushane province, Turkey, which is considered a developing economy. Surveys were undertaken via face-to-face interviews. It was found that medium-density fibreboard (MDF), and to a lesser extent, chipboard, were used in the manufacture of furniture, and two major types of waste in the form of fine dust and small fragments of board are generated during the cutting of these boards. Of the resulting composite board waste, 96.9% was used for heating homes and workplaces, where it was burnt under conditions of incomplete combustion. Enterprises were found to have adopted other methods to utilise their wastes in addition to using them as fuel. Such enterprises include those operating from a basement or first floor of a building in the cities, those continuing production throughout the year, those in need for capital and those enterprises not operating a dust-collection system. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  16. 1993 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    Kirkendall, J.R.; Engel, J.A.

    1994-01-01

    More important than waste generation numbers, the pollution prevention and waste minimization successes achieved at Hanford in 1993 have reduced waste and improved operations at the Site. Just a few of these projects are: A small research nuclear reactor, unused and destined for disposal as low level radioactive waste, was provided to a Texas University for their nuclear research program, avoiding 25 cubic meters of waste and saving $116,000. By changing the slope on a asphalt lot in front of a waste storage pad, run-off rainwater was prevented from becoming mixed low level waste water, preventing 40 cubic meters of waste and saving $750,000. Through more efficient electrostatic paint spraying equipment and a solvent recovery system, a paint shop reduced hazardous waste by 3,500 kilograms, saving $90,800. During the demolition of a large decommissioned building, more than 90% of the building's material was recycled by crushing the concrete for use on-Site and selling the steel to an off-Site recycler, avoiding a total of 12,600 metric tons of waste and saving $450,000. Additionally, several site-wide programs have avoided large quantities of waste, including the following: Through expansion of the paper and office waste recycling program which includes paper, cardboard, newspaper, and phone books, 516 metric tons of sanitary waste was reduced, saving $68,000. With the continued success of the excess chemicals program, which finds on-Site and off-Site customers for excess chemical materials, hazardous waste was reduced by 765,000 liters of liquid chemicals and 50 metric tons of solid chemicals, saving over $700,000 in disposal costs

  17. Wastes power generation introduction manual. Material edition; Haikibutsu hatsuden donyu manual. Shiryohen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This paper collects and puts into order the materials used in preparing the manual. The materials were classified into the power generation system database related to discussion of the economic performance, case studies, technical materials, other referential materials and glossary. The database shows power generation efficiency, auxiliary power ratio, construction cost, utility cost and number of operators. The case studies present examples of economy calculations on the five recommended power generation systems at a wastes treatment capacity of 180 tons a day. Technical materials put into order the technological discussions on efficiency improvement, environmental measures (suppression of discharge of dioxins, measures for their removal, and the effects thereof), refuse derived fuel (RDF) and power plant operating techniques. The other referential materials collect laws, notifications, and guidelines related to the Welfare Ministry, laws, notifications, criteria and related to the Ministry of International Trade and Industry, and materials related to LCA, forms of power generation business entities, general wastes disposal business, and electric business bonds. The glossary explains terms required for operation and understanding of the manual. (NEDO)

  18. Generation of organic waste from institutions in Denmark: case study of the Technical University of Denmark

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Boldrin, Alessio; Scheutz, Charlotte

    at least 60% of organic waste – that cannot be prevented or reduced –generated by service sector, should be source-segregated and collected separately. In order to establish the baseline of the current situation, and to allow for any evaluation of performance against target indicators, data on solid waste...... generation and composition are required. The overall aim of this study was to quantify the potential for source-segregated organic waste as well as mixed waste from institution. This study was carried at the Department of Environmental Engineering at Technical University of Denmark. In the course...... and public holidays, when the offices were officially closed. Furthermore, the composition of source-segregated organic waste was analysed to investigate its purity. During the sampling period, the number of employees coming to work at the department was recorded. These data were used to investigate any...

  19. Lixiviation of plutonium contaminated solid wastes by aqueous solution of electro-generated reducing agents

    International Nuclear Information System (INIS)

    Agarande, Michelle

    1991-01-01

    This study concerns the development of the new concept for the decontamination of plutonium bearing solid wastes, based on the lixiviation of the wastes using electro-generated reducing agents. First, a comparative study of the kinetics of the dissolution of pure PuO 2 (prepared by calcination of Pu (IV) oxalate at 450 C) in sulfuric acid media, with different reducing agents, was realized. Qualitatively these reagents can be sorted in three groups: 1 / fast kinetics for Cr(II), V(II) and U(III); 2 / slow kinetics for Ti(III); 3 / very slow kinetics for V(III) and U(VI). In order to contribute to the design of an electrochemical reactor for the generation of the reducing agents usable for the lixiviation of plutonium bearing solid wastes, the study of the diffusion coefficients of both oxidized and reduced forms of different redox couples, at different temperatures, was undertaken. The results of this study also permits, from the knowledge of the diffusional activation energy of the ions, to conclude that the dissolution of pure plutonium dioxide under the action of these reducing agents is not diffusion limited. The feasibility of the plutonium decontamination treatment of synthetic or real solid wastes was then studied at laboratory scale using electro-generated V(II), which is with Cr(II) among the best reagents. The efficiency of the treatment was good, (80 pc Pu solubilisation yield), especially in the case of cellulosic or miscellaneous organic wastes. (author) [fr

  20. Extraction of lead from waste CRT funnel glass by generating lead sulfide - An approach for electronic waste management.

    Science.gov (United States)

    Hu, Biao; Hui, Wenlong

    2017-09-01

    Waste cathode ray tube (CRT) funnel glass is the key and difficult points in waste electrical and electronic equipment (WEEE) disposal. In this paper, a novel and effective process for the detoxification and reutilization of waste CRT funnel glass was developed by generating lead sulfide precipitate via a high-temperature melting process. The central function in this process was the generation of lead sulfide, which gathered at the bottom of the crucible and was then separated from the slag. Sodium carbonate was used as a flux and reaction agent, and sodium sulfide was used as a precipitating agent. The experimental results revealed that the lead sulfide recovery rate initially increased with an increase in the amount of added sodium carbonate, the amount of sodium sulfide, the temperature, and the holding time and then reached an equilibrium value. The maximum lead sulfide recovery rate was approximately 93%, at the optimum sodium carbonate level, sodium sulfide level, temperature, and holding time of 25%, 8%, 1200°C, and 2h, respectively. The glass slag can be made into sodium and potassium silicate by hydrolysis in an environmental and economical process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Inter-generational Decision Making for Radioactive Waste Disposal, Policy and Science: Regulatory Protection Forever?

    International Nuclear Information System (INIS)

    Regnier, E.P.; Wallo, A.

    2006-01-01

    Assumptions about this generation's duty to future generations underlie decisions on regulatory requirements for disposal of radioactive waste. Regulatory provisions related to time of compliance, dose criteria, and institutional controls, for example, continue to be topics of discussion as regulations are revised or compared. Subjective and difficult ethical issues are either explicit or implicit in these discussions. The information and criteria used must be relevant and help make good decisions that, ideally, increase the overall welfare of future generations. To what extent can or should science usefully inform such decision-making? Both the National Academies of Science and the National Academy of Public Administration (NAPA) have reported on this topic, albeit from different viewpoints. This paper explains and expands upon the rationale used for setting compliance time periods such as the Department of Energy's requirement for a 1,000 year time of compliance with dose limits for low-level radioactive waste disposal facilities. It evaluates radioactive waste disposal against principles of equity recommended by NAPA. Radioactive waste disposal standards require evaluation of impacts much farther into the future than has been common for other endeavors with very long term effects. While performance assessment analyses provide much useful information, their inherent uncertainties over long time periods preclude the projection of reality. Thus, the usefulness of extremely long projections in supporting good decisions that promote the welfare of future generations is limited. Such decisions are fundamentally a question of resource allocation, equity, and fairness. (authors)

  2. The status and developments of leather solid waste treatment: A mini-review.

    Science.gov (United States)

    Jiang, Huiyan; Liu, Junsheng; Han, Wei

    2016-05-01

    Leather making is one of the most widespread industries in the world. The production of leather goods generates different types of solid wastes and wastewater. These wastes will pollute the environment and threat the health of human beings if they are not well treated. Consequently, the treatment of pollution caused by the wastes from leather tanning is really important. In comparison with the disposal of leather wastewater, the treatment of leather solid wastes is more intractable. Hence, the treatment of leather solid wastes needs more innovations. To keep up with the rapid development of the modern leather industry, various innovative techniques have been newly developed. In this mini-review article, the major achievements in the treatment of leather solid wastes are highlighted. Emphasis will be placed on the treatment of chromium-tanned solid wastes; some new approaches are also discussed. We hope that this mini-review can provide some valuable information to promote the broad understanding and effective treatment of leather solid wastes in the leather industry. © The Author(s) 2016.

  3. Plasma destruction of North Carolina's hazardous waste based of hazardous waste generated between the years of 1989 and 1992

    International Nuclear Information System (INIS)

    Williams, D.L.

    1994-01-01

    The purpose of this research is to analyze the applicability of the plasma waste destruction technology to North Carolina hazardous waste streams. This study outlines the current regulations, existing technologies, and innovative technologies being considered as hazardous waste treatment alternatives. From this foundation, the study proceeds to identify the superiority of the plasma waste destruction technology. Specific areas of discussion include: temperature capabilities, waste residence time requirements, destruction removal efficiencies, operational efficiencies, economic issues, safety, and maintenance. This study finds the plasma destruction technology to be fully effective and superior to conventional facilities. The technology completely destroys hydrocarbons and can reduce the volume of many other hazardous wastes on the order of one part per million. The required residence time of waste in a plasma facility for effective destruction is a fraction of a second, while the rotary kiln incinerator maintains an average residence time of approximately 5 seconds. Also mass and heat balance calculations are performed to quantify the effectiveness and efficiency of this technology. It is found that one day's average amount of hazardous waste generated in the state of North Carolina can be destroyed in approximately thirty seconds using a standard one megawatt power source. Yet, before this technology is adopted as North Carolina's primary hazardous waste destruction technology, further study is needed so that all issues considered in this research can be conducted in great detail

  4. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Huckaby, J.L.; Bryan, S.A.; Johnson, G.D.

    2000-01-01

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report

  5. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    International Nuclear Information System (INIS)

    Mahoney, Lenna A.; Huckaby, James L.; Bryan, Samuel A.; Johnson, Gerald D.

    2000-01-01

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, flammability and detonability limits of the gas constituents, and availability of ignition sources. The intrinsic flammability (or non-flammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, and volume of the release and the tank ventilation rate, which are not covered in this report

  6. A Basic Accounting of Variation in Municipal Solid-Waste Generation at the County Level in Texas, 2006: Groundwork for Applying Metabolic-Rift Theory to Waste Generation

    Science.gov (United States)

    Clement, Matthew Thomas

    2009-01-01

    Environmental social scientists debate whether or not modern development reduces society's impact on the biosphere. The empirical research informing the discussion has not yet adequately examined the social determinants of municipal solid-waste (MSW) generation, an increasingly relevant issue, both ecologically and sociologically. A primary…

  7. Minimization of the volume and Pu content of the waste generated at a plutonium fuel fabrication plant

    International Nuclear Information System (INIS)

    Pauwels, H.

    1992-01-01

    The amounts of waste generated during 1987, 1989 and a past reference period have been reported in great detail. The main conclusions which can be drawn from these figures are: (i) for all kinds of waste, the waste-to-product ratio has decreased very substantially during the past few years. This reduction results partly from a scale effect, i.e. the better load factor of the plant, and partly from Belgonucleare's continuous effort to minimize the radioactive waste arisings; (ii) the ratio of the Pu content of the waste to the total Pu throughput of the plant has also decreased substantially; (iii) the mean Pu content of the solid Pu contaminated waste equals 1.39 g Pu per unit volume of 25 l. Only for a small fraction of this waste (<5% by volume) does the Pu content exceed 5 g per unit volume of 25 l; (iv) even after the implementation of waste reducing measures, some 45% of the solid Pu contaminated waste is generated by operations which involve the handling and transfer of powders. Finally, some 63% of the total amount of Pu in the waste can be imputed to these operations

  8. Optimization of a waste heat recovery system with thermoelectric generators by three-dimensional thermal resistance analysis

    International Nuclear Information System (INIS)

    Huang, Gia-Yeh; Hsu, Cheng-Ting; Fang, Chun-Jen; Yao, Da-Jeng

    2016-01-01

    Highlights: • The waste heat recovery system is modeled by three-dimensional thermal resistance. • This is a time-saving and efficient method to estimate power generation from TEGs. • Relations between power generation and varied factors can be rapidly revealed. • TEGs positions and uniformity of velocity profile should be considered together. • Power generation is more sensitive to either internal or external flow velocity. - Abstract: Three-dimensional (3D) thermal resistance analysis provides a rapid and simple method to estimate the power generated from a waste heat recovery system with thermoelectric generators (TEGs), and facilitates an optimization of the system. Such a system comprises three parts – a waste heat recovery chamber, TEG modules and a cooling system. A fin-structured duct serves as a waste heat recovery chamber, which is attached to the hot sides of the TEGs; the cold sides of the TEGs are attached to a cooling system. The waste heat recovery chamber harvests energy from exhaust heat that the TEGs convert into electricity. The estimation of generated power is an important part of the system design. Methods of Computational Fluid Dynamics (CFD) assist the analysis and improve the performance with great accuracy but great computational duration. The use of this method saves much time relative to such CFD methods. In 3D thermal resistance analysis, a node of unknown temperature is located at the centroid of each cell into which the system is divided. The relations of unknown temperatures at the cells are based on the energy conservation and the definition of thermal resistance. The temperatures of inlet waste hot gas and ambient fluid are known. With these boundary conditions, the unknown temperatures in the system are solved, enabling estimation of the power generated with TEGs. A 3D model of the system was simulated with FloTHERM; its numerical solution matched the solution of the 3D thermal resistance analysis within 6%. The power

  9. The situation of generation, treatment and supervision of common industrial solid wastes in China

    Science.gov (United States)

    Xu, Shumin

    2018-02-01

    From the point of view of location and sources, an analysis is done for the generation, utilization, treatment and storage of common industrial solid wastes in China. Based on the current situations, suggestions are given to the treatment and supervision polices in China for the utilization of common industrial solid wastes.

  10. Development of low grade waste heat thermoelectric power generator

    Directory of Open Access Journals (Sweden)

    Suvit Punnachaiya

    2010-07-01

    Full Text Available This research aimed to develop a 50 watt thermoelectric power generator using low grade waste heat as a heat source,in order to recover and utilize the excess heat in cooling systems of industrial processes and high activity radioisotope sources. Electricity generation was based on the reverse operation of a thermoelectric cooling (TEC device. The TEC devices weremodified and assembled into a set of thermal cell modules operating at a temperature less than 100°C. The developed powergenerator consisted of 4 modules, each generating 15 watts. Two cascade modules were connected in parallel. Each modulecomprised of 96 TEC devices, which were connected in series. The hot side of each module was mounted on an aluminumheat transfer pipe with dimensions 12.212.250 cm. Heat sinks were installed on the cold side with cooling fans to provideforced air cooling.To test electricity generation in the experiment, water steam was used as a heat source instead of low grade waste heat.The open-circuit direct current (DC of 250 V and the short-circuit current of 1.2 A was achieved with the following operatingconditions: a hot side temperature of 96°C and a temperature difference between the hot and cold sides of 25°C. The DC poweroutput was inverted to an AC power source of 220 V with 50 Hz frequency, which can continuously supply more than 50 wattsof power to a resistive load as long as the heat source was applied to the system. The system achieved an electrical conversionefficiency of about 0.47 percent with the capital cost of 70 US$/W.

  11. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation

  12. Development of Thermoelectric Power Generators for high temperature Waste Heat Recovery

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    By converting heat directly into electricity, thermoclectric generators (TEGs) provide a very promising solution for emerging energy saving and environmental issues. These devices could be incorporated in a variety of applications, in particular those making use of waste heat recovery. To expand...

  13. Practices of pharmaceutical waste generation and discarding in households across Portugal.

    Science.gov (United States)

    Dias-Ferreira, Celia; Valente, Susana; Vaz, João

    2016-10-01

    This work is the first nationwide study in Portugal on pharmaceutical waste generated at households, exploring people's attitudes and risk perception. The waste audit was carried out from September to November 2014, targeting pharmaceutical products kept by a sample of families (n = 244). This campaign was an assignment of VALORMED, the non-profit association that manages waste and packaging from expired and unused pharmaceutical products collected by the pharmacies. On average, each household kept at home 1097 g of pharmaceutical products, of which 20% were in use, 72% were not in use, and 8% were mostly expired products ready to discard. Face-to-face interviews with householders showed that 69% of the respondents claimed returning pharmaceutical waste to the local pharmacy. However, this figure is overrated, probably owing to a possible 'good answer' effect. The barriers identified to proper disposal were mainly established routines and lack of close disposal points. This study also provides an insight into the Portuguese awareness and daily practices concerning pharmaceutical waste, which is the cornerstone of any future strategy to reduce the release of active pharmaceutical ingredients into ecosystems. © The Author(s) 2016.

  14. Generation and distribution of PAHs in the process of medical waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: echochen327@163.com [School of Environment, Tsinghua University, Beijing 100084 (China); National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029 (China); Zhao, Rongzhi [Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083 (China); Xue, Jun [National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029 (China); Li, Jinhui, E-mail: jinhui@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China)

    2013-05-15

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between

  15. Generation and distribution of PAHs in the process of medical waste incineration

    International Nuclear Information System (INIS)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-01-01

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10 3 times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total

  16. Regulatory and management requirements for investigation-derived waste generated during environmental investigations and cleanups

    International Nuclear Information System (INIS)

    Clary, M.B.

    1994-01-01

    Environmental cleanup efforts often result in the generation of waste materials, such as soil samples, drill cuttings, decontamination water, drilling muds, personal protective equipment, and disposable sampling equipment. The management of associated with site characterization and remediation issues is a complicated issue at many CERCLA/RCRA facilities throughout the country, primarily because of the federal hazardous waste regulations. The hazardous waste regulations were intended to apply to the active generation of hazardous waste at industrial facilities and do not often make sense when applied to sites con by poor disposal practices of the past. In order to manage investigation derived waste in a more rational, logical manner, EPA issued guidance on the management of investigation-derived waste (IDW) at Superfund sites in January, 1992. The basic intent of the EPA guidance is to provide Superfund Site Managers with options for handling, managing, and disposing of IDW. The second part of this paper provides a detailed analysis of current IDW practices at various Department of Energy (DOE) facilities and Superfund sites across the nation. Some sites, particularly the DOE facilities, with more complicated on-going cleanup efforts have developed site-specific written procedures for managing IDW, often incorporating risk assessment. In come cases, these site-specific policies are going farther than the current EPA and Colorado policies in terms of conservatively managing IDW

  17. An overview of the waste characterization program at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Hardy, D.G.

    1988-01-01

    In the last five years, Chalk River Nuclear Laboratories (CRNL) placed 17,000 m 3 of wastes into storage (excluding contaminated soil and fill). Almost half of the waste was generated off-site. CRNL is now developing IRUS, an Intrusion Resistant Underground Structure, and the IST, an Improved Sand Trench, to replace storage with safe, permanent disposal. IRUS will be used to dispose of wastes with radiologically hazardous lifetimes between 150 and 500 years duration and the IST will be used for wastes with radiologically hazardous lifetimes of less than 150 years. A comprehensive Waste Characterization Program (WCP) is in place to support disposal projects. The WCP is responsible for (1) specifying the manifests for waste shipments; (2) developing and maintaining central databases for waste inventories and analytical data; and (3) developing the technologies and procedures to characterize the radiological and the physical/chemical properties of wastes. WCP work is being performed under the umbrella of a newly developed waste management quality assurance (QA) program. This paper gives an overview of the WCP with an emphasis on the requirements for determining radionuclide inventories in wastes, for implementing record-keeping systems and for maintaining a QA program for disposal operations

  18. Approaches to the final storage of radioactive waste in the Federal Republic of Germany. Will responsibility be shifted to future generations?

    International Nuclear Information System (INIS)

    Thomauske, B.

    2004-01-01

    With respect to the management of high-level radioactive waste in Germany, there is agreement on these premises: - The waste is to be stored permanently in the Federal Republic of Germany. - A repository is to be operational by 2030. - Final storage is to be achieved in geologic formations. Differences of opinion exist about these questions: - Should there be only one repository for all types of radioactive waste, or would a breakdown into waste generating heat and waste generating only negligible amounts of heat in different repositories be useful under aspects of safety and requirement? - Will a new site selection procedure be required in an effort to find a suitable site, and would such a selection procedure be able to meet the deadline of 2030 for an operational repository? - After the end of legal proceedings, should the Konrad repository be revamped for waste generating negligible amounts of heat? The analysis presented shows that an operational repository for waste generating heat can be made available only in connection with continued exploration work at Gorleben and demonstration of the suitability of that site and subsequent construction of the repository. If the search for a repository site were started from scratch, the date of commissioning such a facility would be after 2050. In this way, that approach would miss the purpose of not shifting the waste management issue to future generations. Acting responsibly means to build the Konrad repository speedily after completion of the legal proceedings about a permit and, in this way, avoid the addition of more interim stores for waste generating negligible amounts of heat. Further exploration of Gorleben is the way agreed upon and necessary for the creation of a repository for high-level radioactive waste generating heat by 2030. For this purpose, the 'points of doubt' must be resolved speedily. (orig.) [de

  19. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-07-01

    This report is based on an emplacement techniques review prepared for the Department of the Environment in February 1983, which appeared as Chapter III of the Nuclear Energy Agency, Seabed Working Group's Status Report. The original document (DOE/RW/83.032) has been amended to take account of the results of field trials carried out in March 1983 and to better reflect current UK Government policy on ocean disposal of HGW. In particular Figure 7 has been redrawn using more realistic drag factors for the calculation of the terminal velocity in water. This report reviews the work conducted by the SWG member countries into the different techniques of emplacing heat generating radioactive waste into the deep ocean sediments. It covers the waste handling from the port facilities to final emplacement in the seabed and verification of the integrity of the canister isolation system. The two techniques which are currently being considered in detail are drilled emplacement and the free fall penetrator. The feasibility study work in progress for both techniques as well as the mathematical and physical modelling work for embedment depth and hole closure behind the penetrator are reviewed. (author)

  20. BWIP-RANDOM-SAMPLING, Random Sample Generation for Nuclear Waste Disposal

    International Nuclear Information System (INIS)

    Sagar, B.

    1989-01-01

    1 - Description of program or function: Random samples for different distribution types are generated. Distribution types as required for performance assessment modeling of geologic nuclear waste disposal are provided. These are: - Uniform, - Log-uniform (base 10 or natural), - Normal, - Lognormal (base 10 or natural), - Exponential, - Bernoulli, - User defined continuous distribution. 2 - Method of solution: A linear congruential generator is used for uniform random numbers. A set of functions is used to transform the uniform distribution to the other distributions. Stratified, rather than random, sampling can be chosen. Truncated limits can be specified on many distributions, whose usual definition has an infinite support. 3 - Restrictions on the complexity of the problem: Generation of correlated random variables is not included

  1. Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey

    International Nuclear Information System (INIS)

    Keser, Saniye; Duzgun, Sebnem; Aksoy, Aysegul

    2012-01-01

    Highlights: ► Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. ► Traditional non-spatial regression models may not provide sufficient information for better solid waste management. ► Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. ► Significances of global parameters may diminish at local scale for some provinces. ► GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation data is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to plan waste management activities at local scale including waste minimization, collection, treatment, and disposal. At global

  2. Ethics Beyond Finitude: Responsibility towards Future Generations and Nuclear Waste Management

    International Nuclear Information System (INIS)

    Loefquist, Lars

    2008-01-01

    This dissertation has three aims: 1. To evaluate several ethical theories about responsibility towards future generations. 2. To construct a theory about responsibility towards future generations. 3. To carry out an ethical evaluation of different nuclear waste management methods. Five theories are evaluated with the help of evaluative criteria, primarily: A theory must provide future generations with some independent moral status. A theory should acknowledge moral pluralism. A theory should provide some normative claims about real-world problems. Derek Parfit's theory provides future generations with full moral status. But it is incompatible with moral pluralism, and does not provide reasonable normative claims about real-world problems. Brian Barry's theory provides such claims and a useful idea about risk management, but it does not provide an argument why future generations ought to exist. Avner de-Shalit's theory explains why they ought to exist; however, his theory can not easily explain why we ought to care for other people than those in our own community. Emmanuel Agius' theory gives an ontological explanation for mankind's unity, but reduces conflicts of interests to a common good. Finally, Hans Jonas' theory shifts the focus from the situation of future generations to the preconditions of human life generally. However, his theory presupposes a specific ontology, which might be unable to motivate people to act. The concluding chapters describe a narrative theory of responsibility. It claims that we should comprehend ourselves as parts of the common story of mankind and that we ought to provide future generations with equal opportunities. This implies that we should avoid transferring risks and focus on reducing the long-term risks associated with the nuclear waste

  3. Hydrogen sulfide generation in simulated construction and demolition debris landfills: impact of waste composition.

    Science.gov (United States)

    Yang, Kenton; Xu, Qiyong; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel; Booth, Matthew

    2006-08-01

    Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were debris landfills are suggested.

  4. Reducing hazardous waste generation: an evaluation and a call for action

    National Research Council Canada - National Science Library

    National Research Council Staff; Environmental Studies Board; Commission on Physical Sciences, Mathematics, and Applications; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    1985-01-01

    ... Considerations in Reducing the Generation of Hazardous Industrial Wastes Environmental Studies Board Commission on Physical Sciences, Mathematics, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1985 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typesett...

  5. Thermal co-treatment of combustible hazardous waste and waste incineration fly ash in a rotary kiln.

    Science.gov (United States)

    Huber, Florian; Blasenbauer, Dominik; Mallow, Ole; Lederer, Jakob; Winter, Franz; Fellner, Johann

    2016-12-01

    As current disposal practices for municipal solid waste incineration (MSWI) fly ash are either associated with significant costs or negative environmental impacts, an alternative treatment was investigated in a field scale experiment. Thereto, two rotary kilns were fed with hazardous waste, and moistened MSWI fly ash (water content of 23%) was added to the fuel of one kiln with a ratio of 169kg/Mg hazardous waste for 54h and 300kg/Mg hazardous waste for 48h while the other kiln was used as a reference. It was shown that the vast majority (>90%) of the inserted MSWI fly ash was transferred to the bottom ash of the rotary kiln. This bottom ash complied with the legal limits for non-hazardous waste landfills, thereby demonstrating the potential of the investigated method to transfer hazardous waste (MSWI fly ash) into non-hazardous waste (bottom ash). The results of a simple mixing test (MSWI fly ash and rotary kiln bottom ash have been mixed accordingly without thermal treatment) revealed that the observed transformation of hazardous MSWI fly ash into non-hazardous bottom ash during thermal co-treatment cannot be referred to dilution, as the mixture did not comply with legal limits for non-hazardous waste landfills. For the newly generated fly ash of the kiln, an increase in the concentration of Cd, K and Pb by 54%, 57% and 22%, respectively, was observed. In general, the operation of the rotary kiln was not impaired by the MSWI fly ash addition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Medical and biohazardous waste generator`s guide: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This Guide describes the procedures required to comply with all federal and state laws and regulations and Lawrence Berkeley Laboratory (LBL) policy applicable to medical and biohazardous waste. The members of the LBL Biological Safety Subcommittee participated in writing these policies and procedures. The procedures and policies in this Guide apply to LBL personnel who work with infectious agents or potentially infectious agents, publicly perceived infectious items or materials (e.g., medical gloves, culture dishes), and sharps (e.g., needles, syringes, razor blades). If medical or biohazardous waste is contaminated or mixed with a hazardous chemical or material, with a radioactive material, or with both, the waste will be handled in accordance with the applicable federal and State of California laws and regulations for hazardous, radioactive, or mixed waste.

  7. Use of Multiple Innovative Technologies for Retrieval and Handling of Low-Level Radioactive Tank Wastes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Noble-Dial, J.; Riner, G.; Robinson, S.; Lewis, B.; Bolling, D.; Ganapathi, G.; Harper, M.; Billingsley, K.; Burks, B.

    2002-01-01

    The U.S. Department of Energy (DOE) successfully implemented an integrated tank waste management plan at Oak Ridge National Laboratory (ORNL) (1), which resulted in the cleanup, removal, or stabilization of 37 inactive underground storage tanks (USTs) since 1998, and the reduction of risk to human health and the environment. The integrated plan helped accelerate the development and deployment of innovative technologies for the retrieval of radioactive sludge and liquid waste from inactive USTs. It also accelerated the pretreatment of the retrieved waste and newly generated waste from ORNL research and development activities to provide for volume and contamination reduction of the liquid waste. The integrated plan included: retrieval of radioactive sludge, contaminated material, and other debris from USTs at ORNL using a variety of robotic and remotely operated equipment; waste conditioning and transfer of retrieved waste to pretreatment facilities and interim, double contained storage tanks; the development and deployment of technologies for pretreating newly generated and retrieved waste transferred to interim storage tanks; waste treatment and packaging for final off-site disposal; stabilization of the inactive USTs that did not meet the regulatory requirements of the Federal Facilities Agreement between the DOE, the Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC); and the continued monitoring of the active USTs that remain in long-term service. This paper summarizes the successful waste retrieval and tank stabilization operations conducted during two ORNL tank remediation projects (The Gunite Tanks Remediation Project and the Old Hydrofracture Facility Tanks Remediation Project), the sludge retrieval operations from the active Bethel Valley Evaporator Service Tanks, and pretreatment operations conducted for the tank waste. This paper also provides the status of ongoing activities conducted in preparation

  8. Development of a gas-generation model for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Brush, L.H.; Storz, L.J.; Garner, J.W.

    1993-01-01

    Design-basis transuranic (TRU) waste to be emplaced in the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico may generate significant quantities of gas, which may affect the performance of the WIPP with respect to regulations for radioactive and/or chemically hazardous waste constituents. We are developing a model to predict gas generation in WIPP disposal rooms during and after filling and sealing. Currently, the model includes: (1) oxic and anoxic corrosion of steels and other Fe-base alloys, including passivation and depassivation; (2) microbial degradation of cellulosics with O 2 , NO 3 - , FeO(OH), SO 4 2- , or CO 2 as the electron acceptor; (3) α radiolysis of brine; (4) consumption of CO 2 and, perhaps, H 2 S by Ca(OH) 2 (in cementitious materials) and CaO (a potential backfill additive). The code simulates these processes and interactions among them by converting reactants (steels, cellulosics, etc.) to gases and other products at experimentally observed or estimated rates and plotting temporal reaction paths in three-dimensional phase diagrams for solids in the Fe-H 2 O-CO 2 -H 2 -H 2 S system

  9. Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler

    Science.gov (United States)

    Brazdil, Marian; Pospisil, Jiri

    2013-07-01

    The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.

  10. Management of floral waste generated from temples of Jaipur city through vermicomposting

    OpenAIRE

    Priyanka Tiwari; Shelja K Juneja

    2016-01-01

    This paper aims at management of floral waste generated from temples of Jaipur city through vermicomposting. In this study, flower waste consisted of variety of flowers out of which marigold was chosen as it was found in maximum amount. The vermibeds were prepared by mixing the marigold with cow dung in different proportions viz., 50:50, 60:40, 70:30, 80:20 and 90:10 and they were filled in the earthen pots, individually. Simultaneously, a control (without worms) for each of these concentrati...

  11. Standard data report. 1997 annual report on waste generation and waste minimization progress

    International Nuclear Information System (INIS)

    Wilburn, D.

    1998-01-01

    The Laboratory's central mission of Reducing the Global Nuclear Danger supports core competencies that enable the Laboratory to contribute to defense, civilian, and industrial needs. In turn, the intellectual challenges of civilian and industrial problems strengthen and help support the core competencies required for the national security mission. The ability to do great science underpins all of the applied work. There are five core competencies which support this mission: (1) Stockpile Stewardship ensures the US has safe, secure and reliable nuclear weapons; (2) Stockpile Management provides capabilities ranging from dismantling to remanufacturing of the enduring stockpile; (3) Nuclear Materials Management ensures the availability and safe disposition of plutonium, highly enriched uranium, and tritium; (4) Nonproliferation and Counterproliferation help to deter, detect, and respond to the proliferation of weapons of mass destruction; and (5) Environmental Stewardship provides for the remediation and reduction of wastes from the nuclear weapons complex. This report contains data on volumes of waste generated as part of routine and cleanup/stabilization activities of the lab

  12. Disposal and handling of nuclear steam generator chemical cleaning wastes

    International Nuclear Information System (INIS)

    Larrick, A.P.; Schneidmiller, D.

    1978-01-01

    A large number of pressurized water nuclear reactor electrical generating plants have experienced a corrosion-related problem with their steam generators known as denting. Denting is a mechanical deformation of the steam generator tubes that occurs at the tube support plates. Corrosion of the tube support plates occurs within the annuli through which the tubes pass and the resulting corrosion oxides, which are larger in volume than the original metal, compress and deform the tubes. In some cases, the induced stresses have been severe enough to cause tube and/or support cracking. The problem was so severe at the Turkey Point and Surrey plants that the tubing is being replaced. For less severe cases, chemical cleaning of the oxides, and other materials which deposit in the annuli from the water, is being considered. A Department of Energy-sponsored program was conducted by Consolidated Edison Co. of New York which identified several suitable cleaning solvents and led to in-plant chemical cleaning pilot demonstrations in the Indian Point Unit 1 steam generators. Current programs to improve the technology are being conducted by the Electric Power Research Institute, and the three PWR NSSS vendors with the assistance of numerous consultants, vendors, and laboratories. These programs are expected to result in more effective, less corrosive solvents. However, after a chemical cleaning is conducted, a large problem still remains- that of disposing of the spent wastes. The paper summarizes some of the methods currently available for handling and disposal of the wastes

  13. The extent of food waste generation across EU-27: different calculation methods and the reliability of their results.

    Science.gov (United States)

    Bräutigam, Klaus-Rainer; Jörissen, Juliane; Priefer, Carmen

    2014-08-01

    The reduction of food waste is seen as an important societal issue with considerable ethical, ecological and economic implications. The European Commission aims at cutting down food waste to one-half by 2020. However, implementing effective prevention measures requires knowledge of the reasons and the scale of food waste generation along the food supply chain. The available data basis for Europe is very heterogeneous and doubts about its reliability are legitimate. This mini-review gives an overview of available data on food waste generation in EU-27 and discusses their reliability against the results of own model calculations. These calculations are based on a methodology developed on behalf of the Food and Agriculture Organization of the United Nations and provide data on food waste generation for each of the EU-27 member states, broken down to the individual stages of the food chain and differentiated by product groups. The analysis shows that the results differ significantly, depending on the data sources chosen and the assumptions made. Further research is much needed in order to improve the data stock, which builds the basis for the monitoring and management of food waste. © The Author(s) 2014.

  14. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    McGowin, C.R.; Wiltsee, G.A.

    1993-01-01

    Although the environmental and other benefits of using biomass and waste fuel energy to displace fossil fuels are well known, the economic realities are such that these fuels can not compete effectively in the current market without tax credits, subsidies, and other artificial measures. In 1992, EPRI initiated a strategic analysis of biomass and waste fuels and power technologies, both to develop consistent performance and cost data for the leading fuels and technologies and to identify the conditions that favor and create market pull for biomass and waste fuel energy. Using the interim results of the EPRI project, this paper compares the relative performance and cost of power generation from coal, natural gas, and biomass and waste fuels. The range of fuels includes wood, agricultural wastes, municipal solid waste, refuse-derived fuel, scrap tires, and tire-derived fuel, scrap tires, and tire-derived fuel. The power technologies include pulverized coal and natural gas/combined cycle power plants, cofiring with coal in coal-fired utility boilers, and wood gasification/combined cycle power plants. The analysis suggests that, in the near term, the highest-efficiency, lowest-cost, lowest-risk technology is cofiring with coal in industrial and utility boilers. However, this relative to fossil fuel, or the fuel user receives a tipping fee, subsidy, or emissions credit. In order to increase future use of biomass and waste fuels, a joint initiative, involving government, industry, and fuel suppliers, transporters, and users, is needed to develop low-cost and efficient energy crop production and power technology

  15. Generation of electricity and combustible gas by utilization of agricultural waste in Nara canal area water board

    International Nuclear Information System (INIS)

    Joyo, P.; Memon, F.; Sohag, M.A.

    2005-01-01

    Biomass in an important source of energy, however, it is not fully utilized in Sindh. The various types of biomass normally used for the generation of energy are extensively available in the province. These are forest debris and thinning; residue from wood products industry; agricultural waste; fast-growing trees and crops; wood and wood waste; animal manures and non-hazardous organic portion of municipal solid waste. Since agriculture is pre-dominant in Sindh, it has a large amount of agricultural waste available in most of the areas. Agriculture wastes like rice husk, wheat straw, cotton stalks, and sugarcane bagasse can be utilized to produce gas and afterwards electricity. Pakistan Agricultural Research Council (PARC) has found that at most of the locations of Sindh, agricultural waste is available more than the energy requirements of that particular area. Biomass can also generate electricity (or heat) in one of the several processes, can be used in a piston driven engine, high efficiency gas turbine generator or a fuel cell to produce electricity. Biomass gasifies have gained attention for their efficiency, economy and environment-friendly. The Nara Canal Area Water Board is facing acute problem of electricity in the O and M of its drainage network and running of tube wells. The frequent breakdown and irregular supply of power is badly affecting in the management of drainage system and control of rising water-table, however, it is anticipated that the generation of electricity through biomass can address this acute problem and greatly help in controlling water logging and salinity in Sindh. (author)

  16. Gas Generation in Radioactive Wastes - MAGGAS Predictive Life Cycle Model

    International Nuclear Information System (INIS)

    Streatfield, R.E.; Hebditch, D.J.; Swift, B.T.; Hoch, A.R.; Constable, M.

    2006-01-01

    Gases may form from radioactive waste in quantities posing different potential hazards throughout the waste package life cycle. The latter includes surface storage, transport, placing in an operating repository, storage in the repository prior to backfill, closure and the post-closure stage. Potentially hazardous situations involving gas include fire, flood, dropped packages, blocked package vents and disruption to a sealed repository. The MAGGAS (Magnox Gas generation) model was developed to assess gas formation for safety assessments during all stages of the waste package life cycle. This is a requirement of the U.K. regulatory authorities and Nirex and progress in this context is discussed. The processes represented in the model include: Corrosion, microbial degradation, radiolysis, solid-state diffusion, chemico-physical degradation and pressurisation. The calculation was split into three time periods. First the 'aerobic phase' is used to model the periods of surface storage, transport and repository operations including storage in the repository prior to backfill. The second and third periods were designated 'anaerobic phase 1' and 'anaerobic phase 2' and used to model the waste packages in the post-closure phase of the repository. The various significant gas production processes are modeled in each phase. MAGGAS (currently Version 8) is mounted on an Excel spreadsheet for ease of use and speed, has 22 worksheets and is operated routinely for assessing waste packages (e.g. for ventilation of stores and pressurisation of containers). Ten operational and decommissioning generic nuclear power station waste streams were defined as initial inputs, which included ion exchange materials, sludges and concentrates, fuel element debris, graphite debris, activated components, contaminated items, desiccants and catalysts. (authors)

  17. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  18. Toward identifying the next generation of superfund and hazardous waste site contaminants.

    Science.gov (United States)

    Ela, Wendell P; Sedlak, David L; Barlaz, Morton A; Henry, Heather F; Muir, Derek C G; Swackhamer, Deborah L; Weber, Eric J; Arnold, Robert G; Ferguson, P Lee; Field, Jennifer A; Furlong, Edward T; Giesy, John P; Halden, Rolf U; Henry, Tala; Hites, Ronald A; Hornbuckle, Keri C; Howard, Philip H; Luthy, Richard G; Meyer, Anita K; Sáez, A Eduardo; Vom Saal, Frederick S; Vulpe, Chris D; Wiesner, Mark R

    2011-01-01

    This commentary evolved from a workshop sponsored by the National Institute of Environmental Health Sciences titled "Superfund Contaminants: The Next Generation" held in Tucson, Arizona, in August 2009. All the authors were workshop participants. Our aim was to initiate a dynamic, adaptable process for identifying contaminants of emerging concern (CECs) that are likely to be found in future hazardous waste sites, and to identify the gaps in primary research that cause uncertainty in determining future hazardous waste site contaminants. Superfund-relevant CECs can be characterized by specific attributes: They are persistent, bioaccumulative, toxic, occur in large quantities, and have localized accumulation with a likelihood of exposure. Although still under development and incompletely applied, methods to quantify these attributes can assist in winnowing down the list of candidates from the universe of potential CECs. Unfortunately, significant research gaps exist in detection and quantification, environmental fate and transport, health and risk assessment, and site exploration and remediation for CECs. Addressing these gaps is prerequisite to a preventive approach to generating and managing hazardous waste sites. A need exists for a carefully considered and orchestrated expansion of programmatic and research efforts to identify, evaluate, and manage CECs of hazardous waste site relevance, including developing an evolving list of priority CECs, intensifying the identification and monitoring of likely sites of present or future accumulation of CECs, and implementing efforts that focus on a holistic approach to prevention.

  19. Generation of Electricity from Abattoir Waste Water with the Aid of a ...

    African Journals Online (AJOL)

    Michael Horsfall

    Generation of Electricity from Abattoir Waste Water with the Aid of a Relatively Cheap. Source of Catholyte ... in recent times is the microbial fuel cell technology. This technology ..... fuel cell in the presence and absence of a proton exchange.

  20. MANAGEMENT OF SOLID WASTE GENERATED BY THE INTEGRATED STEELWORKS ACTIVITY AND SOLUTIONS TO REDUCE THE ENVIRONMENTAL IMPACT

    Directory of Open Access Journals (Sweden)

    Anişoara CIOCAN

    2010-05-01

    Full Text Available The development of steel industry is subject to solve major problems arising from industry-nature relationship, strictly targeted on pollution control and protection of natural resources and energy. In this paper we discussed about the management of solid waste generated by an integrated steelwork located near a major urban area and the adopted solutions for the reduction of environmental impact. There are summarized technical solutions that are currently applied and were proposed some solutions that can be applied in accordance with the environmental legislations. The new solutions are proposed for integrated management of solid wastes in accordance with: the exact quantification (quantitative, qualitative and the generation sources of emissions and solid wastes; controlled storage; minimization of the wastes and its harmfulness; transformation of the wastes into valuable by-products used directly by the company in a subsequent process, or by external down-stream user.

  1. Technical and economic assessment of power generation from municipal solid waste incineration on steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Romero Luna, Carlos Manuel; Carrocci, Luiz Roberto; Ferrufino, Gretta Larisa Aurora Arce; Balestieri, Jose Antonio Perrella [Dept. of Energy. UNESP, Sao Paulo State University, Guaratingueta, SP (Brazil)], e-mails: carrocci@feg.unesp.br, perrella@feg.unesp.br

    2010-07-01

    Nowadays, there is a concern in development of environmentally friendly methods for a municipal solid waste (MSW) management and demand for renewable energy sources. The source of waste is increasing, and the capacity and availability Landfill treatment and disposal are coming to be insufficient. In Sao Paulo City, the 10 million inhabitants produce 10,000 t of residential solid waste daily, being that 76% this quantity goes to landfill sites. In order to adopt a new treatment technology for MSW that will promote a solution minimizing this problem, within the order of priorities regarding waste management, the MSW incineration with energy recovery shown as the leading choice on the point of view of efficiency in converting energy. MSW incineration with energy recovery received wide acceptance from various countries including European Union members and the rest of the world in the past 15 years. Incineration has the ability decrease 90 % the volume of waste to be used in landfills, increasing the useful life of existing as well as a reduction in the emission of greenhouse gases. MSW incineration systems have a low global warming potential (GWP). now has become a less important source of dioxins and furans due to the current available technology. MSW incineration with energy recovery could contribute considerably in the energy matrix, thus promote the conservation of non-renewable resources. This paper proposes the assessment the technical and economic feasibility of a steam cycle with conventional steam generator for MSW incineration with energy recovery for power generation in Sao Paulo City. Will be developed a thermoeconomic analysis aiming at the total power generation product of MSW incineration, and the assessment investment cost regarding the total sale of power generated. The study shows that Sao Paulo City has potential for power generation from the MSW incineration, although it has a high cost investment this technology shown as a suitable alternative for

  2. Free Moisture in GT-73 Resin Waste Generated from the Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Kaplan, D.I.

    2002-01-01

    Solid Waste Division is presently evaluating whether to transfer spent resin generated from the Effluent Treatment Facility (ETF) to the Nevada Test Site (NTS). One of the criteria for the waste to be accepted at the NTS is that the waste must not contain more than 1 vol-percent free liquid. This criterion reduces the amount of liquid, a primary vector for subsurface contaminant migration (along with colloids), introduced into the repository. This criterion also serves to reduce the chance of an accidental spill during transport of the waste to the NTS. On December 15, 1997, a shipment from Fernald to the NTS leaked some liquid waste onto a highway in Kingman, Arizona, resulting in a Type B Accident Investigation. The direct cause of the leak was attributed to broken welds related to the use of substandard containers. The overall objective of this study was to provide guidance as to whether the spent GT-73 resin would meet the free moisture WAC set by the NTS

  3. Gasification of waste from furniture industries for generation of sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.L.; Silva, J.N.; Pereira, E.G.; Machado, C.S.; Da Conceicao, M.; Bezerra, T. [Federal Univ. of Vicosa, Minas Gerais State (Brazil)

    2010-07-01

    The global interest in renewable energy is attributed to the decline in fossil fuel sources and the need for technical, economic, social and environmental sustainability. This study focused on the new techniques that have been developed for the use of biomass for energy from wood wastes from the forest-based industry. As an energy source, wood waste contributes positively to the environment by reducing environmental problems related to contamination of soil, air and water through improper disposal of waste. Biomass gasification has the advantage of converting biomass into a combustible gas that can be used for heat generation, electricity and synthesis of chemicals. Syngas produced from gasification of eucalyptus residues has significant potential, with an average High Heating Value of 6.60 MJ/m{sup 3}, and regular composition during the process, with predominance of carbon monoxide, followed by hydrogen, carbon dioxide and methane.

  4. NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE: STATUS AND DIRECTION

    International Nuclear Information System (INIS)

    Ramsey, W.G.; Gray, M.F.; Calmus, R.B.; Edge, J.A.; Garrett, B.G.

    2011-01-01

    Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.

  5. Ethics Beyond Finitude: Responsibility towards Future Generations and Nuclear Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Loefquist, Lars

    2008-05-15

    This dissertation has three aims: 1. To evaluate several ethical theories about responsibility towards future generations. 2. To construct a theory about responsibility towards future generations. 3. To carry out an ethical evaluation of different nuclear waste management methods. Five theories are evaluated with the help of evaluative criteria, primarily: A theory must provide future generations with some independent moral status. A theory should acknowledge moral pluralism. A theory should provide some normative claims about real-world problems. Derek Parfit's theory provides future generations with full moral status. But it is incompatible with moral pluralism, and does not provide reasonable normative claims about real-world problems. Brian Barry's theory provides such claims and a useful idea about risk management, but it does not provide an argument why future generations ought to exist. Avner de-Shalit's theory explains why they ought to exist; however, his theory can not easily explain why we ought to care for other people than those in our own community. Emmanuel Agius' theory gives an ontological explanation for mankind's unity, but reduces conflicts of interests to a common good. Finally, Hans Jonas' theory shifts the focus from the situation of future generations to the preconditions of human life generally. However, his theory presupposes a specific ontology, which might be unable to motivate people to act. The concluding chapters describe a narrative theory of responsibility. It claims that we should comprehend ourselves as parts of the common story of mankind and that we ought to provide future generations with equal opportunities. This implies that we should avoid transferring risks and focus on reducing the long-term risks associated with the nuclear waste

  6. Strategic analysis of biomass and waste fuels for electric power generation

    International Nuclear Information System (INIS)

    McGowin, C.R.; Wiltsee, G.A.

    1996-01-01

    Although the environmental and other benefits of using biomass and waste fuel energy to displace fossil fuels are well known, the economic realities are such that these fuels cannot compete effectively in the current market without tax credits, subsidies and other artificial measures. In 1992, EPRI initiated a strategic analysis of biomass and waste fuels and power technologies, both to develop consistent performance and cost data for the leading fuels and technologies and to identify the conditions which favor and create market pull for biomass and waste fuel energy. Using the final results of the EPRI project, this paper compares the relative performance and cost of power generation from coal, natural gas, and biomass and waste fuels. The range of fuels includes wood, agricultural wastes, municipal solid waste, refuse-derived fuel, scrap tires and tire-derived fuel. The power technologies include pulverized coal and natural gas/combined cycle power plants, cofiring with coal in coal-fired utility boilers, direct combustion in dedicated mass burn, stoker and fluidized bed boilers, and wood gasification/combined cycle-power plants. The analysis suggests that, in the near term, the highest-efficiency, lowest-cost, lowest-risk technology is cofiring with coal in industrial and utility boilers. However, this approach is economically feasible only when the fuel is delivered at a deep discount relative to fossil fuel, or the fuel user receives a tipping fee, subsidy, or emissions credit. (author)

  7. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives. (DMC)

  8. Final environmental impact statement. Management of commercially generated radioactive waste. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1980-10-01

    This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deep hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains appendices of supplementary data on waste management systems, geologic disposal, radiological standards, radiation dose calculation models, related health effects, baseline ecology, socio-economic conditions, hazard indices, comparison of defense and commercial wastes, design considerations, and wastes from thorium-based fuel cycle alternatives

  9. Reduction of waste solution volume generated on electrokinetic remediation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye-Nam; Koo, Dae-Seo; Kim, Seung-Soo; Jeong, Jung-Whan; Han, Gyu-Seong; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this study, for the reduction of volume of metal oxides generated in cathode chamber, the optimum pH of waste electrolyte in cathode chamber were drawn out through several experiments with the manufactured electrokinetic decontamination equipment. Also, the required time to reach to below the clearance concentration level for self- disposal was estimated through experiments using the manufactured electrokinetic decontamination equipment. A diagram of soil decontamination process for the removal of uranium from contaminated soil was drawn out. The optimum pH of waste electrolyte in cathode chamber for the reduction of volume of metal oxides was below 2.35. Also, when the initial uranium concentration of the soils were 7-20 Bq/g, the required times to reach to below the clearance concentration level for self- disposal were 25-40 days. A diagram of soil decontamination process for the removal of uranium from contaminated soil was drawn out.

  10. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico

    International Nuclear Information System (INIS)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E.; Monroy G, F.; Lizcano C, D.

    2014-10-01

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  11. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Low-level radioactive waste (LLW) streams which have a clear, defined pathway to disposal are becoming less common as U.S. Department of Energy accelerated cleanup sites enters their closure phase. These commonly disposed LLW waste streams are rapidly being disposed and the LLW inventory awaiting disposal is dwindling. However, more complex waste streams that have no path for disposal are now requiring attention. The U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NSO) Environmental Management Program is charged with the responsibility of carrying out the disposal of onsite and off-site defense-generated and research-related LLW at the Nevada. Test Site (NTS). The NSO and its generator community are constantly pursuing new LLW disposal techniques while meeting the core mission of safe and cost-effective disposal that protects the worker, the public and the environment. From trenches to present-day super-cells, the NTS disposal techniques must change to meet the LLW generator's disposal needs. One of the many ways the NTS is addressing complex waste streams is by designing waste specific pits and trenches. This ensures unusual waste streams with high-activity or large packaging have a disposal path. Another option the NTS offers is disposal of classified low-level radioactive-contaminated material. In order to perform this function, the NTS has a safety plan in place as well as a secure facility. By doing this, the NTS can accept DOE generated classified low-level radioactive-contaminated material that would be equivalent to U.S. Nuclear Regulatory Commission Class B, C, and Greater than Class C waste. In fiscal year 2006, the NTS will be the only federal disposal facility that will be able to dispose mixed low-level radioactive waste (MLLW) streams. This is an activity that is highly anticipated by waste generators. In order for the NTS to accept MLLW, generators will have to meet the stringent requirements of the NTS

  12. Hazardous waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Antonopoulos, A.A.; Esposito, M.P.; Policastro, A.J.

    1996-12-01

    This report focuses on the generation of hazardous waste (HW) and the treatment of HW being generated by routine US Department of Energy (DOE) facility operations. The wastes to be considered are managed by the DOE Waste Management (WM) Division (WM HW). The waste streams are to be sent to WM operations throughout the DOE complex under four management alternatives: No Action, Decentralization, Regionalized 1, and Regionalized 2. On-site and off-site capabilities for treatment are examined for each alternative. This report (1) summarizes the HW inventories and generated amounts resulting from WM activities, focusing on the largest DOE HW generators; (2) presents estimates of the annual amounts shipped off-site, as well as the amounts treated by various treatment technology groups; (3) describes the existing and planned treatment and storage capabilities of the largest HW-generating DOE installations, as well as the use of commercial treatment facilities by DOE sites; (4) presents applicable technologies (destruction of organics, deactivation/neutralization of waste, removal/recovery of organics, and aqueous liquid treatment); and (5) describes the four alternatives for consideration for future HW management, and for each alternative provides the HW loads and the approach used to estimate the source term for routine treatment operations. In addition, potential air emissions, liquid effluents, and solid residuals associated with each alternative are presented. This report is supplemented with an addendum that includes detailed information related to HW inventory, characteristics, generation, and facility assessment for the treatment alternatives. The addendum also presents source terms, emission rates, and throughput totals by alternative and treatment installation

  13. Methodological aspects of modeling household solid waste generation in Japan: Evidence from Okayama and Otsu cities.

    Science.gov (United States)

    Gu, Binxian; Fujiwara, Takeshi; Jia, Renfu; Duan, Ruiyang; Gu, Aijun

    2017-12-01

    This paper presents a quantitative methodology and two empirical case studies in Japan on modeling household solid waste (HSW) generation based on individual consumption expenditure (ICE) and local waste policy effects by using the coupled estimation model systems. Results indicate that ICE on food, miscellaneous commodities and services, as well as education, cultural, and recreation services are mainly associated with the changes of HSW generation and its components in Okayama and Otsu from 1980 to 2014. The effects of waste policy measures were also identified. HSW generation in Okayama will increase from 11.60 million tons (mt) in 1980 to 25.02 mt in 2025, and the corresponding figures are 6.82 mt (in 1980) and 14.00 mt (in 2025) in Otsu. To better manage local HSW, several possible and appropriate implications such as promoting a green lifestyle, extending producer responsibility, intensifying recycling and source separation, generalizing composting, and establishing flexible measures and sustainable policies should be adopted. Results of this study would facilitate consumer management of low waste generation and support an effective HSW policy design in the two case cities. Success could lead to emulation by other Japanese cities seeking to build and maintain a sustainable, eco-friendly society. Moreover, the methodologies of establishing coupled estimation model systems could be extended to China and other global cities.

  14. Technical approach for the management of UMTRA ground water investigation-derived wastes

    International Nuclear Information System (INIS)

    1994-02-01

    During characterization, remediation, or monitoring activities of the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project, ground water samples are collected to assess the extent and amount of waterborne contamination that might have come from the mill tailings. This sampling sometimes occurs in contaminated areas where ground water quality has been degraded. Ground water sampling activities may result in field-generated wastes that must be disposed of in a manner protective of human health and the environment. During ground water sampling, appropriate measures must be taken to dispose of presampling purge water and well development water that is pumped to flush out any newly constructed wells. Additionally, pumping tests may produce thousands of gallons of potentially contaminated ground water that must be properly managed. In addition to the liquid wastes, there is the potential for bringing contaminated soils to the ground surface during the drilling and installation of water wells in areas where the subsurface soils may be contaminated. These soils must be properly managed as well. This paper addresses the general technical approach that the UMTRA Project will follow in managing field-generated wastes from well drilling, development, sampling, and testing. It will provide guidance for the preparation of Technical Assistance Contractor (TAC) Standard Operating Procedures (SOP) for the management and disposal of field-generated wastes from ground water monitoring and remediation activities

  15. Techno-economic assessment of anaerobic digestion systems for agri-food wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lau, A.; Baldwin, S.; Wang, M. [British Colombia Univ., Vancouver, BC (Canada)

    2010-07-01

    Activities in British Columbia's Fraser Valley generate an estimated 3 million tones of agriculture and food wastes annually, of which 85 per cent are readily available for anaerobic digestion. The potential for energy generation from biogas through anaerobic digestion is approximately 30 MW. On-farm manure-based systems represent the most likely scenario for the development of anaerobic digestion in British Columbia in the near future. Off-farm food processing wastes may be an alternative option to large centralized industrial complexes. Odour control, pathogen reduction, improved water quality, reduced greenhouse gas emissions and reduced landfill usage are among the environmental benefits of anaerobic digestion. The economical benefits include power and heat generation, biogas upgrading, and further processing of the residues to produce compost or animal bedding. This paper described a newly developed anaerobic digestion (AD) calculator that helps users regarding their investment decision in AD facilities. The calculator classifies various technology options into several major types of AD systems. It also constructs kinetic and economic models for these systems and provides a fair estimation on biogas yield, digester volume, capital cost and annual income. The calculator takes into consideration factors such as the degradability of wastes with different compositions and different operating parameters.

  16. Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant.

    Science.gov (United States)

    Boxall, N J; Adamek, N; Cheng, K Y; Haque, N; Bruckard, W; Kaksonen, A H

    2018-04-01

    Lithium ion battery (LIB) waste contains significant valuable resources that could be recovered and reused to manufacture new products. This study aimed to develop an alternative process for extracting metals from LIB waste using acidic solutions generated by electrolysis for leaching. Results showed that solutions generated by electrolysis of 0.5 M NaCl at 8 V with graphite or mixed metal oxide (MMO) electrodes were weakly acidic and leach yields obtained under single stage (batch) leaching were poor (leaching with the graphite electrolyte solution improved leach yields overall, but the electrodes corroded over time. Though yields obtained with both electrolyte leach solutions were low when compared to the 4 M HCl control, there still remains potential to optimise the conditions for the generation of the acidic anolyte solution and the solubilisation of valuable metals from the LIB waste. A preliminary value proposition indicated that the process has the potential to be economically feasible if leach yields can be improved, especially based on the value of recoverable cobalt and lithium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Situation of the radioactive waste management and the employee radiation exposure in commercial power generation reactor facilities in fiscal 1980

    International Nuclear Information System (INIS)

    1981-01-01

    (1) Situation of the radioactive waste management in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the target dose around the sites by law in the radioactive waste management. The release of radioactive gaseous and liquid wastes and the storage of radioactive solid wastes in respective reactor facilities in fiscal 1980 are presented in tables (for the former, the data since 1971 are also given). The release control values were satisfied in all the facilities. (2) Situation of employe radiation exposure in commercial power generating reactor facilities: The owners of power generation reactor facilities are obligated not to exceed the permissible exposure doses by law. The Employe exposure doses in respective reactor facilities in fiscal 1980 are given in tables. All exposure doses were below the permissible levels. (J.P.N.)

  18. Radioactive solid waste management study of generated in the source production laboratory for brachytherapy

    International Nuclear Information System (INIS)

    Barbosa, Nayane K.O.; Carvalho, Vitória S.; Marques, José R.O.; Costa, Osvaldo L.; Baptista, Tatyana S.; Vicente, Roberto; Rostelato, M.E.C.M.; Zeituni, Carlos A.; Souza, Daiane C.B.

    2017-01-01

    A management system for radioactive solid wastes generated during seed production in the Laboratório de Produção de Fontes para Radioterapia (LPFRT) was developed. For this, the volume and the mass of each item of solid wastes generated in Glove box were estimated. It is possible to estimate, per week, how much reject will enter the warehouse, what space it will occupy and also its weight. In the final step of the characterization, the decay calculation is applied to define the time the reject will be stored for later disposal in the collection system. After the characterization process, it is noticed that the rate of volume and radioactivity decreases as the retention time of the rejects increases due to the release of the materials, and also, there is the decay of the radioactivity present in the reservoir. It is also observed that the rate of entry and exit of the wastes is proportional

  19. Methodology to design a municipal solid waste generation and composition map: A case study

    International Nuclear Information System (INIS)

    Gallardo, A.; Carlos, M.; Peris, M.; Colomer, F.J.

    2014-01-01

    Highlights: • To draw a waste generation and composition map of a town a lot of factors must be taken into account. • The methodology proposed offers two different depending on the available data combined with geographical information systems. • The methodology has been applied to a Spanish city with success. • The methodology will be a useful tool to organize the municipal solid waste management. - Abstract: The municipal solid waste (MSW) management is an important task that local governments as well as private companies must take into account to protect human health, the environment and to preserve natural resources. To design an adequate MSW management plan the first step consist in defining the waste generation and composition patterns of the town. As these patterns depend on several socio-economic factors it is advisable to organize them previously. Moreover, the waste generation and composition patterns may vary around the town and over the time. Generally, the data are not homogeneous around the city as the number of inhabitants is not constant nor it is the economic activity. Therefore, if all the information is showed in thematic maps, the final waste management decisions can be made more efficiently. The main aim of this paper is to present a structured methodology that allows local authorities or private companies who deal with MSW to design its own MSW management plan depending on the available data. According to these data, this paper proposes two ways of action: a direct way when detailed data are available and an indirect way when there is a lack of data and it is necessary to take into account bibliographic data. In any case, the amount of information needed is considerable. This paper combines the planning methodology with the Geographic Information Systems to present the final results in thematic maps that make easier to interpret them. The proposed methodology is a previous useful tool to organize the MSW collection routes including the

  20. Healthcare waste management in Uganda: management and generation rates in public and private hospitals in Kampala

    NARCIS (Netherlands)

    Mugambe, R.K.; Ssempebwa, J.C.; Tumwesigye, N.M.; Vliet, van B.J.M.; Adedimeji, A.

    2012-01-01

    Aim The aim of this study was to assess the management, characteristics and generation of healthcare waste (HCW) in public and private hospitals in Kampala City, Uganda. Methods We employed mainly qualitative methods through the use of a waste inventory, observations, document review and key

  1. Municipal Solid Waste to Energy Generation in Bangladesh: Possible Scenarios to Generate Renewable Electricity in Dhaka and Chittagong City

    Directory of Open Access Journals (Sweden)

    K. M. Nazmul Islam

    2016-01-01

    Full Text Available Increased generation of methane (CH4 from municipal solid wastes (MSW alarms the world to take proper initiative for the sustainable management of MSW, because it is 34 times stronger than carbon dioxide (CO2. Mounting land scarcity issue around the world brands the waste to energy (WtE strategy for MSW management in urban areas as a promising option, because WtE not only reduces the land pressure problem, but also generates electricity, heat, and green jobs. The goal of this study is to evaluate the renewable electricity generation potential and associated carbon reduction of MSW management in Bangladesh using WtE strategies. The study is conducted in two major cities of Bangladesh: Dhaka and Chittagong. Six different WtE scenarios are evaluated consisting of mixed MSW incineration and landfill gas (LFG recovery system. Energy potential of different WtE strategy is assessed using standard energy conversion model and subsequent GHGs emissions models. Scenario A1 results in highest economic and energy potential and net negative GHGs emission. Sensitivity analysis by varying MSW moisture content reveals higher energy potential and less GHGs emissions from MSW possessing low moisture content. The study proposes mixed MSW incineration that could be a potential WtE strategy for renewable electricity generation in Bangladesh.

  2. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  3. Incineration as a low-level radioactive waste disposal alternative for the very low level (approx. 200 mCi/yr) institutional waste generator

    International Nuclear Information System (INIS)

    Miller, S.D.

    1982-01-01

    As a result of increased shipping costs and decreased land availability, serious questions have arisen regarding the continued use of shallow land burial for disposal of institutional radioactive wastes. These factors are of special significance to very low-level waste generators such as Arizona State University whose most recent waste shipment averaged approximately 2 mCi per shipped barrel at an effective cost of over $100 per mCi disposed - a total cost of over $14,000. Recent studies have shown incineration to be an attractive waste disposal alternative both in terms of volume reduction of waste, and in its expected insignificant radiological and environmental impact. Arizona State University has purchased an incinerator and has initiated a program to incinerate radioactive wastes. Licensing restrictions involving stack monitoring for a variety of possibly hazardous effluents and 10CFR20 restrictions affecting incineration of certain isotopes could render the change to incineration completely inefficient unless accompanied by a rigorous program of waste segregation designed to ease licensing restrictions. This paper reviews incinerator technology as it applies to radioactive waste management and presents the analysis performed during the licensing phase, along with some of the difficulties inherent in the development process

  4. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  5. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  6. TRU Waste Sampling Program: Volume I. Waste characterization

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Kudera, D.E.

    1985-09-01

    Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies

  7. Green Nanotechnology from Waste Carbon-Polyaniline Composite: Generation of Wavelength-Independent Multiband Photoluminescence for Sensitive Ion Detection

    KAUST Repository

    Goswami, Sumita; Nandy, Suman; Deuermeier, Jonas; Marques, Ana C.; Nunes, Daniela; Patole, Shashikant P.; Da Costa, Pedro M. F. J.; Martins, Rodrigo; Fortunato, Elvira

    2017-01-01

    This study reports on the qualitative analysis of photoluminescence effect generated from waste carbon of cooking oven by facile cost-effective material engineering. The waste carbon product as a form of carbon nanoparticles (CNPs) is incorporated

  8. Pyrolysis of wastes generated through saccharification of oak tree by using CO2 as reaction medium

    International Nuclear Information System (INIS)

    Kim, Jieun; Lee, Jechan; Kim, Ki-Hyun; Ok, Yong Sik; Jeon, Young Jae; Kwon, Eilhann E.

    2017-01-01

    Highlights: • Potential utilization of biomass waste generated from bioethanol production. • Enhanced generation of syngas from pyrolysis of oak tree waste by using CO 2 . • Reduction of tar formation in pyrolysis of oak tree waste. • Modification of morphology of oak tree waste biochar by using CO 2 in pyrolysis. - Abstract: In this study, the production of bioethanol was evaluated through a series of saccharification and fermentation of lignocellulosic biomass (e.g., oak tree) pre-treated with H 2 SO 4 , NH 3 , or NaOH using a yeast (Pichia stipitis). In addition, it was investigated the effects of CO 2 on pyrolysis of the biomass wastes remaining after saccharification of the three pre-treated oak tree (BWs: BW-H 2 SO 4 , BW-NH 3 , and BW-NaOH). Thus, this work emphasizes the mechanistic understanding of CO 2 in pyrolysis of BWs. The effect of CO 2 was most noticeable in syngas, as the ratio of CO and H 2 exhibited a 20 to 30-fold increase at >550 °C. The CO/H 2 ratio of pyrolysis of the waste in CO 2 is ∼1100% of that of pyrolysis of the waste in N 2 at 720 °C. Such proliferation of syngas led to the subsequent reduction of tar since the substantial amount of tar was consumed as a precursor of syngas: CO 2 not only expedited the thermal cracking of volatile organic compounds (VOCs), but also reacted with those VOCs. The morphologic modification of biochars also occurred in the presence of CO 2 via heterogeneous reaction between CO 2 and surface of BWs. In summary, this study shows a utilization of an oak tree waste generated from saccharification for bioethanol production as a pyrolysis feedstock to recover energy (i.e., syngas production). The use of CO 2 as pyrolysis medium not only enhanced syngas production from oak tree waste but also reduced tar formation by thermal decomposition of VOCs and reaction between VOCs and CO 2 . The process shown in this study can be used as a potential high energy recovery from a biomass waste by utilizing potent

  9. Generation and distribution of PAHs in the process of medical waste incineration.

    Science.gov (United States)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-01

    After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8×10(3) times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Incineration of hazardous and low-level radioactive waste by a small generator. Final report

    International Nuclear Information System (INIS)

    Dwight, C.C.

    1984-10-01

    The results from Arizona State University's study of the feasibility of a small generator incinerating low-level radioactive waste in a pathological incinerator are reported. The research included various aspects of environmental impact, public relations, cost versus benefit, and licensing procedures. Three years of work resulted in a license amendment authorizing the University to incinerate certain hazardous and low-level radioactive wastes. 13 references, 6 figures, 16 tables

  11. Hazardous waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Antonopoulos, A.A.; Policastro, A.J.

    1995-04-01

    This report focuses on the generation of hazardous waste (HW) and the treatment, storage, and disposal (TSD) of HW being generated by routine US Department of Energy (DOE) facility operations. The wastes to be considered are managed by the DOE Waste Management (WM) Division (WM HW). The waste streams are to be sent to WM operations throughout the DOE complex under four management alternatives: No Action, Decentralization, Regionalized 1, and Regionalized 2. On-site and off-site capabilities for TSD are examined for each alternative. This report (1) summarizes the HW inventories and generated amounts resulting from WM activities, focusing on the largest DOE HW generators; (2) presents estimates of the annual amounts shipped off-site, as well as the amounts treated by various treatment technology groups; (3) describes the existing and planned treatment and storage capabilities of the largest HW-generating DOE installations, as well as the use of commercial TSD facilities by DOE sites; (4) presents applicable technologies (destruction of organics, deactivation/neutralization of waste, removal/recovery of organics, and aqueous liquid treatment); and (5) describes the four alternatives for consideration for future HW management, and for each alternative provides the HW loads and the approach used to estimate the source term for routine TSD operations. In addition, potential air emissions, liquid effluents, and solid residuals associated with each alternative are presented. Furthermore, this report is supplemented with an addendum that includes detailed information related to HW inventory, characteristics, generation, and facility assessment for the TSD alternatives. The addendum also presents source terms, emission rates, and throughput totals by alternative and treatment installation

  12. Healthcare Waste Generation Worldwide and Its Dependence on Socio-Economic and Environmental Factors

    Directory of Open Access Journals (Sweden)

    Minas Minoglou

    2017-02-01

    Full Text Available This paper examines the dependence of the healthcare waste (HCW generation rate on several social-economic and environmental parameters. Correlations were calculated between the quantities of healthcare waste generated (expressed in kg/bed/day versus economic indices (GDP, healthcare expenditure per capita, social indices (HDI, IHDI, MPI, life expectancy, mean years of schooling, HIV prevalence, deaths due to tuberculosis and malaria, and under five mortality rate, and an environmental sustainability index (total CO2 emissions from 42 countries worldwide. The statistical analysis included the examination of the normality of the data and the formation of linear multiple regression models to further investigate the correlation between those indices and HCW generation rates. Pearson and Spearman correlation coefficients were also calculated for all pairwise comparisons. Results showed that the life expectancy, the HDI, the mean years of schooling and the CO2 emissions positively affect the HCW generation rates and can be used as statistical predictors of those rates. The resulting best reduced regression model included the life expectancy and the CO2 emissions and explained 85% of the variability of the response.

  13. 1994 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1

    International Nuclear Information System (INIS)

    Irwin, E.F.; Poligone, S.E.

    1995-01-01

    The Y-12 Plant serves as a key manufacturing technology center for the development and demonstration of unique materials, components, and services of importance to the Department of Energy (DOE) and the nation. This is accomplished through the reclamation and storage of nuclear materials, manufacture of nuclear materials, manufacture of components for the nation's defense capabilities, support to national security programs, and services provided to other customers as approved by DOE. We are recognized by our people, the community, and our customers as innovative, responsive, and responsible. We are a leader in worker health and safety, environmental protection, and stewardship of our national resources. As a DOE facility, Y-12 also supports DOE's waste minimization mission. Data contained in this report represents waste generation in Tennessee

  14. Second-generation bioethanol from industrial wood waste of South American species

    Directory of Open Access Journals (Sweden)

    María E. Vallejos

    2017-09-01

    Full Text Available There is a global interest in replacing fossil fuels with renewable sources of energy. The present review evaluates the significance of South-American wood industrial wastes for bioethanol production. Four countries have been chosen for this review, i.e., Argentina, Brazil, Chile, and Uruguay, based on their current or potential forestry industry. It should be noted that although Brazil has a global bioethanol market share of 25%, its production is mainly first-generation bioethanol from sugarcane. The situation in the other countries is even worse, in spite of the fact that they have regulatory frameworks in place already allowing the substitution of a percentage of gasoline by ethanol. Pines and eucalyptus are the usually forested plants in these countries, and their industrial wastes, as chips and sawdust, could serve as promising raw materials to produce second-generation bioethanol in the context of a forest biorefinery. The process to convert woody biomass involves three stages: pretreatment, enzymatic saccharification, and fermentation. The operational conditions of the pretreatment method used are generally defined according to the physical and chemical characteristics of the raw materials and subsequently determine the characteristics of the treated substrates. This article also reviews and discusses the available pretreatment technologies for eucalyptus and pines applicable to South-American industrial wood wastes, their enzymatic hydrolysis yields, and the feasibility of implementing such processes in the mentioned countries in the frame of a biorefinery.

  15. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choate, William T. [BCS, Inc., Laurel, MD (United States)

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  16. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  17. Recycling of concrete waste generated from nuclear power plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nagase, Takahiro; Tanaka, Hiroaki; Nawa, Toyoharu

    2012-01-01

    Non-radioactive concrete waste generated from dismantling of a standard large nuclear power plant is estimated to be about 500,000 tons in weight. Using such waste as recycled aggregate within the enclosure of the plant requires a new manufacturing technology that generates a minimal amount of by-product powder. Recycled aggregate has brittle parts with defects such as cracks, pores, and voids in residual paste from original concrete. This study presents a method of selectively removing the defective parts during manufacture to improve the quality of the recycled fine aggregate. With this selective removal method used, the amount of by-product powder can be reduced by half as compared to that by a conventional method. The influences of the characteristics of the recycled fine aggregate on the flowability and strength of the mortar using recycled fine aggregate were evaluated by multiple linear regression analysis. The results clearly showed that the flowability was primarily affected by the filling fraction of recycled fine aggregate, while the compressive strength of mortar was primarily affected by the fraction of defects in the aggregate. It was also found that grains produced by a granulator have more irregularities in the surfaces than those produced by a ball mill, providing an increased mortar strength. Using these findings from this study, efforts are also being made to develop a mechanical technology that enables simultaneous processing of decontamination and recycling. The granulator under consideration is capable of grinding the surfaces of irregularly shaped particles and may be used successfully, under optimal conditions, for the surface decontamination of concrete waste contaminated with radioactive materials. (author)

  18. Strategies, technologies, and economics for managing greater-than-class C waste

    International Nuclear Information System (INIS)

    Danna, J.G.; Baird, R.D.; Chau, T.K.

    1994-01-01

    The Low-Level Radioactive Waste Policy Amendments Act 0f 1985, Public Law 99-240, transferred responsibility for disposing of Greater-Than-Class C (GTCC) low-level radioactive waste (LLW) generated by commercial licensees from the states to the U.S. Department of Energy (DOE). Development of permanent disposal capacity for GTCC LLW requires the evaluation of potential disposal concepts in terms of technical feasibility, economics, and institutional concerns. Previous studies have identified 13 potential GTCC LLW disposal concepts and have characterized volumes and types of GTCC LLW. Data from these studies, along with newly developed data pertaining to concept designs and hypothetical sites, were used to evaluate each concept's technical feasibility. An evaluation of the cost effectiveness of the technically feasible disposal concepts was also conducted

  19. Sizing Performance of the Newly Developed Eddy Current System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chan Hee; Lee, Hee Jong; Yoo, Hyun Ju; Moon, Gyoon Young; Lee, Tae Hoon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2013-10-15

    This paper describes the comparison results of sizing performance for two systems. The KHNP developed a new eddy current testing system for the inspection of steam generator tubing in domestic nuclear power plants. The equivalency assessment of the newly developed system with the EPRI-qualified system was already carried out. In this paper, the comparisons of depth-sizing performance for the artificial flaws between two systems were performed. The results show that the newly developed system is in good agreement with the qualified system. Therefore, it is expected that the newly developed eddy current system can be used for the inspection of steam generator tubing in nuclear power plants. There are some non-destructive examination (NDE) methods for the inspection of components in nuclear power plants, such as ultrasonic, radiographic, eddy current testing, etc. The eddy current testing is widely used for the inspection of steam generator (SG) tubing because it offers a relatively low cost approach for high speed, large scale testing of metallic materials in high pressure and temperature engineering systems. The Korea Hydro and Nuclear Power Co., Ltd. (KHNP) developed an eddy current testing system for the inspection of steam generator tubing in nuclear power plants. This system includes not only hardware but software such as the frequency generator and data acquisition-analysis program. The foreign eddy current system developed by ZETEC is currently used for the inspection of steam generator tubing in domestic nuclear power plants. The equivalency assessment between two systems was already carried out in accordance with the EPRI steam generator examination guidelines.

  20. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-12-01

    The feasibility of safe ocean disposal options for heat-generating radioactive waste relies on the existence of suitable disposal sites. This review considers the status of the development of site selection criteria and the results of the study area investigations carried out under various national and international research programmes. In particular, the usefulness of the results obtained is related to the data needed for environmental and emplacement modelling. Preliminary investigations have identified fifteen potential deep ocean study areas in the North Atlantic. From these Great Meteor East (GME), Southern Nares Abyssal Plan (SNAP) and Kings Trough Flank (KTF) were selected for further investigation. The review includes appraisals of regional geology, geophysical studies, sedimentology, geotechnical studies, geochemical studies and oceanography. (author)

  1. Accelerator driven systems: Energy generation and transmutation of nuclear waste. Status report

    International Nuclear Information System (INIS)

    1997-11-01

    The report includes 31 individual contributions by experts from six countries and two international organizations in different areas of the accelerator driven transmutation technology intended to be applied for the treatment of highly radioactive waste and power generation. A separate abstract was prepared for each paper

  2. Way of thinking and method of promotion of disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Toyota, Masatoshi

    1993-01-01

    It is decided that the high level waste separated from spent fuel is solidified with glass, stored for 30-50 years to cool it down, and the final disposal is done under the responsibility of the government. As to the final disposal of high level waste, the method of enclosing glass-solidified waste in robust containers and burying them in deep stable strata to isolate from human environment is considered to be the safest. The significance of fuel reprocessing is the proper and safe separation and control of high level waste besides the reuse of unburned uranium and newly formed plutonium in spent fuel. The features of the high level waste solids are that their amount to be generated is little, the radioactivity attenuates with the lapse of time, the heat generation decreases with the lapse of time, and they are hard to elute and move. In order to prevent radioactive substances from appearing in human environment by being dissolved in groundwater, those are isolated with the combination of natural and artificial barriers. The requirements for the barriers are discussed. The research and development are in progress on the establishment of stratum disposal technology, the evaluation of suitability of geological environment and the selection of expected disposal grounds. (K.I.)

  3. Investigation on the characteristics of liquid wastes depending on their generation sources and study on optimum treatment method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Guk; Kim, Dong Chan; Shin, Dae Hyun; Son, Seung Geun; Roh, Nam Sun; Woo, Je Kyung [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The major research contents conducted this year are as follows: (1) environmental regulation with respect to the treatment of the liquid waste in the U.S.A., (2) the present status of the generation and treatment of liquid wastes for large producers(>1,000 ton/year), (3) analysis for heating value element, heavy metal content, halogenated species on collected samples, (4) investigation on estimation method of energy recovery rate from liquid waste, (5) design of a lab. scale reactor which could be capable of conducting thermal decomposition test with small quantity of sample. In this study, present status of liquid waste generation and treatment is investigated, and thermal decomposition characteristics are studied using a lab. scale thermal reactor. The purpose of this research is to divide liquid waste into groups and to present best treatment method for their each group. (author). 24 refs., 21 figs., 23 tabs.

  4. Developments in, and environmental impacts of, electricity generation from municipal solid waste and landfill gas combustion

    International Nuclear Information System (INIS)

    Porteous, A.

    1993-01-01

    The 1991 NFFO allocations for renewable energy generation are reviewed with emphasis on electricity from municipal solid waste (MSW) and landfill gas (LFG) combustion tranches. The implications of materials recovery on the calorific value of MSW are considered, as are the environmental impacts of both MSW and LFG combustion with special reference to air pollutant emissions. The performance and economics of state of the art incineration and LFG power generating plants are examined. It is shown that energy recovery from these wastes can be both cost effective and environmentally desirable. (Author)

  5. Mobile/Modular Deployment Project-Enhancing Efficiencies within the National Transuranic Waste Program

    International Nuclear Information System (INIS)

    Triay, I.R.; Basabilvazo, G.B.; Countiss, S.; Moody, D.C.; Behrens, R.G.; Lott, S.A.

    2002-01-01

    In 1999, the National Transuranic (TRU) Waste Program (NTP) achieved two significant milestones. First, the Waste Isolation Plant (WIPP) opened in March for the permanent disposal of TRU waste generated by, and temporarily stored at, various sites supporting the nation's defense programs. Second, the Hazardous Waste Facility Permit, issued by the New Mexico Environment Department, for WIPP became effective in November. While the opening of WIPP brought to closure a number of scientific, engineering, regulatory, and political challenges, achieving this major milestone led to a new set of challenges-how to achieve the Department of Energy's (DOE's) NTP end-state vision: All TRU waste from DOE sites scheduled for closure is removed All legacy TRU waste from DOE sites with an ongoing nuclear mission is disposed 0 All newly generated TRU waste is disposed as it is generated The goal is to operate the national TRU waste program safely, cost effectively, in compliance with applicable regulations and agreements, and at full capacity in a fully integrated mode. The existing schedule for TRU waste disposition would achieve the NTP vision in 2034 at an estimated life-cycle cost of $16B. The DOE's Carlsbad Field Office (CBFO) seeks to achieve this vision early-by at least 10 years- while saving the nation an estimated $48 to $6B. CBFO's approach is to optimize, or to make as functional as possible, TRU waste disposition. That is, to remove barriers that impede waste disposition, and increase the rate and cost efficiency of waste disposal at WIPP, while maintaining safety. The Mobile/Modular Deployment Project (MMDP) is the principal vehicle for implementing DOE's new commercial model of using best business practices of national authorization basis, standardization, and economies of scale to accelerate the completion of WIPP's mission. The MMDP is one of the cornerstones of the National TRU Waste System Optimization Project (1). The objective of the MMDP is to increase TRU

  6. Greening MSW management systems by saving footprint: The contribution of the waste transportation.

    Science.gov (United States)

    Peri, G; Ferrante, P; La Gennusa, M; Pianello, C; Rizzo, G

    2018-05-03

    Municipal solid waste (MSW) management constitutes a highly challenging issue to cope with in order of moving towards more sustainable urban policies. Despite new Standards call for recycling and reusing materials contained in the urban waste, several municipalities still use landfilling as a waste disposal method. Other than the environmental pressure exerted by these plants, waste transportation from the collection points to the landfill needs a specific attention to correctly assess the whole burden of the waste management systems. In this paper, the Ecological Footprint (EF) indicator is applied to the actual MSW of the city of Palermo (Sicily). Results show that the effects produced by the involved transportation vehicles are not negligible, compared to those generated by the other segments of the waste management system. This issue is further deepened by analysing the role of transportation in an upgraded waste management system that is represented by the newly designed waste management plan of Palermo. The computed saved ecological footprint is used here for suitably comparing the environmental performances of the MSW system in both scenarios. Finally, the suitability of the EF method to address not only complete waste management plans but also single segments of the waste management system, is also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Development of disposal technologies for radioactive waste generated from radioisotope users and research institutes

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Yoshimori, Michiro

    2001-01-01

    In order to safely dispose of a radioactive waste, which is generated from radioisotope users and research institutes, investigation of characteristics of the waste and conceptual design of disposal facility were carried out. As a result of investigating JAERI that the waste has mainly been stored, it became clear that radioactivities of 19 nuclides are important from the viewpoint of the safety of the disposal. And the result of the conceptual design of disposal facilities on the assumption of 3 kinds of sites, the differences on the safety could not be recognized in either case, though the installation depth to construct the facilities influenced the economical efficiency. (author)

  8. Accelerator driven systems: Energy generation and transmutation of nuclear waste. Status report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The report includes 31 individual contributions by experts from six countries and two international organizations in different areas of the accelerator driven transmutation technology intended to be applied for the treatment of highly radioactive waste and power generation. A separate abstract was prepared for each paper. Refs, figs, tabs.

  9. Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report

    International Nuclear Information System (INIS)

    Gillow, J.B.; Francis, A.

    2011-01-01

    Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid (∼70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO 2 ) and methane (CH 4 ) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

  10. Pattern of medical waste management: existing scenario in Dhaka City, Bangladesh

    Directory of Open Access Journals (Sweden)

    Rahman K Anisur

    2008-01-01

    Full Text Available Abstract Background Medical waste is infectious and hazardous. It poses serious threats to environmental health and requires specific treatment and management prior to its final disposal. The problem is growing with an ever-increasing number of hospitals, clinics, and diagnostic laboratories in Dhaka City, Bangladesh. However, research on this critical issue has been very limited, and there is a serious dearth of information for planning. This paper seeks to document the handling practice of waste (e.g. collection, storage, transportation and disposal along with the types and amount of wastes generated by Health Care Establishments (HCE. A total of 60 out of the existing 68 HCE in the study areas provided us with relevant information. Methods The methodology for this paper includes empirical field observation and field-level data collection through inventory, questionnaire survey and formal and informal interviews. A structured questionnaire was designed to collect information addressing the generation of different medical wastes according to amount and sources from different HCE. A number of in-depth interviews were arranged to enhance our understanding of previous and existing management practice of medical wastes. A number of specific questions were asked of nurses, hospital managers, doctors, and cleaners to elicit their knowledge. The collected data with the questionnaire survey were analysed, mainly with simple descriptive statistics; while the qualitative mode of analysis is mainly in narrative form. Results The paper shows that the surveyed HCE generate a total of 5,562 kg/day of wastes, of which about 77.4 per cent are non-hazardous and about 22.6 per cent are hazardous. The average waste generation rate for the surveyed HCE is 1.9 kg/bed/day or 0.5 kg/patient/day. The study reveals that there is no proper, systematic management of medical waste except in a few private HCE that segregate their infectious wastes. Some cleaners were found

  11. Radiolytic generation of chloro-organic compounds in transuranic and low-level radioactive waste

    International Nuclear Information System (INIS)

    Reed, D.T.; Armstrong, S.C.; Krause, T.R.

    1993-01-01

    The radiolytic degradation of chloro-plastics is being investigated to evaluate the formation of chlorinated volatile organic compounds in radioactive waste. These chlorinated VOCs, when their subsequent migration in the geosphere is considered, are potential sources of ground-water contamination. This contamination is an important consideration for transuranic waste repositories being proposed for the Waste Isolation Pilot Plant project and the several additional low-level radioactive waste sites being considered throughout the United States. The production of chlorinated volatile organic compounds due to the interaction of ionizing radiation with chloro-plastic materials has been well-established in both this work and past studies. This occurs as a result of gamma, beta, and alpha particle interactions with the plastic material. The assemblage of organic compounds generated depends on the type of plastic material, the type of ionizing radiation, the gaseous environment present and the irradiation temperature. In the authors' experiments, gas generation data were obtained by mounting representative plastics near (3 mm) an alpha particle source (Am-241 foil). This assembly was placed in an irradiation vessel which contained air, nitrogen, or a hydrogen/carbon dioxide mixture, at near-atmospheric pressures, to simulate the range of atmospheres likely to be encountered in the subsurface. The gas phase in the vessels are periodically sampled for net gas production. The gas phase concentrations are monitored over time to determine trends and calculate the radiolytic yield for the various gaseous products

  12. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  13. Removal of actinides from high-level wastes generated in the reprocessing of commercial fuels

    International Nuclear Information System (INIS)

    Bond, W.D.; Leuze, R.E.

    1975-09-01

    Progress is reported on a technical feasibility study of removing the very long-lived actinides (uranium, neptunium, plutonium, americium, and curium) from high-level wastes generated in the commercial reprocessing of spent nuclear fuels. The study was directed primarily at wastes from the reprocessing of light water reactor (LWR) fuels and specifically to developing satisfactory methods for reducing the actinide content of these wastes to values that would make 1000-year-decayed waste comparable in radiological toxicity to natural uranium ore deposits. Although studies are not complete, results thus far indicate the most promising concept for actinide removal includes both improved recovery of actinides in conventional fuel reprocessing and secondary processing of the high-level wastes. Secondary processing will be necessary for the removal of americium and curium and perhaps some residual plutonium. Laboratory-scale studies of separations methods that appear most promising are reported and conceptual flowsheets are discussed. (U.S.)

  14. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    International Nuclear Information System (INIS)

    Kollikkathara, Naushad; Feng Huan; Yu Danlin

    2010-01-01

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.

  15. Management of waste generation in the oil refining industry. The PETROBRAS - Henrique Lage Refinery experience

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, J I; Machado, J B; Linhares, C A; Mazarino, P R [PETROBRAS, Sao Jose dos Campos, SP (Brazil). REVAP. Refinaria Henrique Lage

    1994-12-31

    The PETROBRAS - Henrique Lages Refinery - located in Sao Paulo State (Southeast Brazil), has been developing for many years a systematic program for solid, liquid and gaseous wastes generation reduction. The waste minimization management program success has been built due to the structure behavioural modifications due to the new environment protection and quality politics; the training and equipment investments, and operational procedures changes. (author). 7 figs., 3 tabs.

  16. Management of waste generation in the oil refining industry. The PETROBRAS - Henrique Lage Refinery experience

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, J.I.; Machado, J.B.; Linhares, C.A.; Mazarino, P.R. [PETROBRAS, Sao Jose dos Campos, SP (Brazil). REVAP. Refinaria Henrique Lage

    1993-12-31

    The PETROBRAS - Henrique Lages Refinery - located in Sao Paulo State (Southeast Brazil), has been developing for many years a systematic program for solid, liquid and gaseous wastes generation reduction. The waste minimization management program success has been built due to the structure behavioural modifications due to the new environment protection and quality politics; the training and equipment investments, and operational procedures changes. (author). 7 figs., 3 tabs.

  17. Understanding low-level radioactive waste. National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1983-10-01

    Chapters are devoted to: background and policymaking for low-level waste management; commercial low-level waste generation; Department of Energy low-level waste generation; low-level waste treatment; packaging and transportation; commercial low-level waste disposal; Department of Energy low-level waste disposal; Department of Energy low-level waste management program; and laws and regulations

  18. Simultaneous Hydrogen Generation and Waste Acid Neutralization in a Reverse Electrodialysis System

    KAUST Repository

    Hatzell, Marta C.

    2014-09-02

    Waste acid streams produced at industrial sites are often co-located with large sources of waste heat (e.g., industrial exhaust gases, cooling water, and heated equipment). Reverse electrodialysis (RED) systems can be used to generate electrical power and hydrogen gas using waste heat-derived solutions, but high electrode overpotentials limit system performance. We show here that an ammonium bicarbonate (AmB) RED system can achieve simultaneous waste acid neutralization and in situ hydrogen production, while capturing energy from excess waste heat. The rate of acid neutralization was dependent on stack flow rate and increased 50× (from 0.06 ± 0.04 to 3.0 ± 0.32 pH units min -1 m-2 membrane), as the flow rate increased 6× (from 100 to 600 mL min-1). Acid neutralization primarily took place due to ammonium electromigration (37 ± 4%) and proton diffusion (60 ± 5%). The use of a synthetic waste acid stream as a catholyte (pH ≈ 2) also increased hydrogen production rates by 65% (from 5.3 ± 0.5 to 8.7 ± 0.1 m3 H2 m-3 catholyte day -1) compared to an AmB electrolyte (pH ≈ 8.5). These findings highlight the potential use of dissimilar electrolytes (e.g., basic anolyte and acidic catholyte) for enhanced power and hydrogen production in RED stacks. © 2014 American Chemical Society.

  19. Advanced power generation using biomass wastes from palm oil mills

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Kurniawan, Tedi; Oda, Takuya; Kashiwagi, Takao

    2017-01-01

    This study focuses on the energy-efficient utilization of both solid and liquid wastes from palm oil mills, particularly their use for power generation. It includes the integration of a power generation system using empty fruit bunch (EFB) and palm oil mill effluent (POME). The proposed system mainly consists of three modules: EFB gasification, POME digestion, and additional organic Rankine cycle (ORC). EFBs are dried and converted into a syngas fuel with high calorific value through integrated drying and gasification processes. In addition, POME is converted into a biogas fuel for power generation. Biogas engine-based cogenerators are used for generating both electricity and heat. The remaining unused heat is recovered by ORC module to generate electricity. The influences of three EFB gasification temperatures (800, 900 and 1000 °C) in EFB gasification module; and working fluids and pressure in ORC module are evaluated. Higher EFB gasification leads to higher generated electricity and remaining heat for ORC module. Power generation efficiency increases from 11.2 to 24.6% in case of gasification temperature is increased from 800 to 1000 °C. In addition, cyclohexane shows highest energy efficiency compared to toluene and n-heptane in ORC module. Higher pressure in ORC module also leads to higher energy efficiency. Finally, the highest total generated power and power generation efficiency obtained by the system are 8.3 MW and 30.4%, respectively.

  20. Information related to low-level mixed waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Wilkins, B.D.; Dolak, D.A.; Wang, Y.Y.; Meshkov, N.K.

    1996-12-01

    This report was prepared to support the analysis of risks and costs associated with the proposed treatment of low-level mixed waste (LLMW) under management of the US Department of Energy (DOE). The various waste management alternatives for treatment of LLMW have been defined in the DOE's Office of Waste Management Programmatic Environmental Impact Statement. This technical memorandum estimates the waste material throughput expected at each proposed LLMW treatment facility and analyzes potential radiological and chemical releases at each DOE site resulting from treatment of these wastes. Models have been developed to generate site-dependent radiological profiles and waste-stream-dependent chemical profiles for these wastes. Current site-dependent inventories and estimates for future generation of LLMW have been obtained from DOE's 1994 Mixed Waste Inventory Report (MWIR-2). Using treatment procedures developed by the Mixed Waste Treatment Project, the MWIR-2 database was analyzed to provide waste throughput and emission estimates for each of the different waste types assessed in this report. Uncertainties in the estimates at each site are discussed for waste material throughputs and radiological and chemical releases

  1. Information related to low-level mixed waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Wilkins, B.D.; Dolak, D.A.; Wang, Y.Y.; Meshkov, N.K.

    1995-04-01

    This report was prepared to support the analysis of risks and costs associated with the proposed treatment of low-level mixed waste (LLMW) under management of the U.S. Department of Energy (DOE). The various waste management alternatives for treatment of LLMW have been defined in the DOE's Office of Waste Management Programmatic Environmental Impact Statement. This technical memorandum estimates the waste material throughput expected at each proposed LLMW treatment facility and analyzes potential radiological and chemical releases at each DOE site resulting from treatment of these wastes. Models have been developed to generate site-dependent radiological profiles and waste-stream-dependent chemical profiles for these wastes. Current site-dependent inventories and estimates for future generation of LLMW have been obtained from DOE's 1994 Mixed Waste Inventory Report (MWIR-2). Using treatment procedures developed by the Mixed Waste Treatment Project, the MWIR-2 database was analyzed to provide waste throughput and emission estimates for each of the different waste types assessed in this report. Uncertainties in the estimates at each site are discussed for waste material throughputs and radiological and chemical releases

  2. Cementation of secondary wastes generated from carbonisation of spent organic ion exchange resins from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2004-07-01

    The spent IX resins containing radioactive fission and activation products from power reactors are highly active solid wastes generated during operations of nuclear reactors. Process for carbonization of IX resins to achieve weight and volume reduction has been optimized on 50 dm 3 /batch pilot test rig. The process generates carbonaceous residue, organic liquid condensates (predominantly styrene) and aqueous alkaline scrubber solutions as secondary wastes. The report discusses laboratory tests on leaching of 137 Cs from cement matrix incorporating carbonaceous residues and extrapolation of results to 200 liter matrix block. The cumulative fraction of 137 Cs leached from 200 liter cement matrix was estimated to be 0.0021 in 200 days and 0.0418 over a period of 30 years. Incorporation of organic liquid condensates into cement matrix has been tried out successfully. Thus two types of secondary wastes generated during carbonization of spent IX resins can be immobilized in cement matrix. (author)

  3. Sensitivity Analysis of Population in The Generation of Hazardous and Non-Harzardous Wastes, and Gas from Dumpsites of Ogbomosoland in Nigeria

    Directory of Open Access Journals (Sweden)

    Samson O. Ojoawo

    2013-01-01

    Full Text Available This paper applies the principles of system dynamics modeling in studying the pattern of population changes and the corresponding non-hazardous wastes and gas being generated from the dumpsites of Ogbomosoland, Nigeria. The five (5 Local government Areas (LGAs of Ogbomosoland were categorized as Urban (Ogbomoso North and Ogbomoso South and Rural (Oriire, Ogo Oluwa and Suurulere based on the size, population of residents, consumption pattern and socio-economic activities of the area. A sensitivity analysis of the simulated variables i.e the population, wastes and gas, was performed by employing the developed model results. Findings showed that the wastes and gas increased with the increased population in the 1000 years period. Also, gas production exceeds wastes generation rates for the rural LGAs in all cases. After a 25 years benchmark, when the simulated population of the urban and rural LGAs are respectively 303,411 and 344,735, the rates of waste generation are 3.33x106 and 6.22 x106 m 3 , while the corresponding rates of gas production is 2.44x103 and 6.47x103 m 3 in same order. The study concludes that wastes and gas generation from dumpsites are highly sensitive to population growth. It also concluded that the rate of gas generation is higher in organic wastes of the rural LGAs. The maximum population permissible in the model is 300,000 thus design of full-fledge landfills is recommended to replace the existing dumpsites in the study area.

  4. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  5. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  6. Waste to wealth

    International Nuclear Information System (INIS)

    Sivapalan Kathiravale; Muhd Noor Muhd Yunus

    2010-01-01

    We currently live in a world where depletion of resources is beyond control. The call for sustainable development both environmentally and economically is spelt out loud and clear. Hence, the current and future generations must ensure that all resources shall be preserved, fully utilized and well managed. Waste generation has been part and parcel of man kinds pursuit for development, be it in social or economic activities. Municipal Solid Waste (MSW) is an example of socio-economic activities that entails with waste generation. Generation rates of MSW vary according to the economic and social standing of a country. This in return will also affect the management style of the MSW generated. Generally, the higher income countries generated more waste, recycle more and have the money to employ new technology to treat their waste. As for the lower income countries, the waste generated is more organic in nature, which calls for lesser recycling, whereas disposal is by open dumping. The effects of this naturally would mean that in the lower income countries pollution to the water and air is huge as compare to the more developed countries. However on the other hand, does waste alone generate harmful gasses that pollute the world or does manufacturing, transportation and power production, which is rampant in the more industrialized countries contributing more towards pollution? This subject is argumentative and could be discussed at length. However, the environment cannot wait for the population to debate on the above matter. Action needs to be taken in a world where economic power determines the treatment method. Hence, the idea of recovering all 'wealth' in the waste is essential to ensure that even the poorest countries could benefit from all waste management technologies. For this to work, recycling, reuse and recovery of energy is essential in an integrated approach towards waste management. This would also mean that many environmental disasters could be avoided

  7. Decontamination possibilities of high-toxic wastes by means of dense plasma generators

    International Nuclear Information System (INIS)

    Rutberg, P.G.; Kolikov, V.A.; Bogomaz, A.A.; Budin, A.V.

    1997-01-01

    In present time the idea of plasma generators application for the high-toxic agents and wastes decontamination has become very urgent. It is known that chemical bonds energy of some molecules being part of these substances is so high that it is impossible to destroy them using traditional methods. Taking into account the fact that the temperature of plasma generator's arc column may be of tens eV, and its energy of hundreds kJ, one may state that any known chemical substances taken in quite large amount, may be dissociated to the atoms. In this paper simplified construction of plasma generator and technological scheme of plasmachemical installation are presented. (author)

  8. Waste generated by the future decommissioning of the Magurele VVR-S Research Reactor

    International Nuclear Information System (INIS)

    Dragolici, F.; Turcanu, C.N.; Dragolici, A.C.

    2001-01-01

    Nuclear Research Reactor WWR-S from the National Institute of Research and Development for Physics and Nuclear Engineering 'Horia Hulubei', Bucharest-Magurele, was commissioned in July 1957 and it was shut down in December 1997. At the moment the reactor is in conservation state. During its operation this reactor worked at an average power of 2MW, almost 3216 h/year, producing a total thermal power of 230 x 10 3 MWh. No major modifications or improvements were made during the 40 years of operation to the essential parts of the reactor, respective to the primary cooling system, reactor vessel, active core and electronic devices. So, all components of the measure, control and protection systems are old, generally at the technical level of the 1950s, therefore a reason why in December 1997 the operation was ceased. At present, the reactor can be considered, by IAEA definition in the first stage (reactor shut down, but the vital functions are maintained and monitored). The survey is related to the second stage - restrictive use of the area. To develop a real decommissioning project, it was first necessary to evaluate the volume and the characteristics of the radioactive waste which will be generated. Radioactive waste generated during the decommissioning of Magurele WR-S research reactor may be classified as: Activated wastes (internal structures, horizontal channels and thermal column, biological shield); Contaminated wastes (primary circuit non-activated components, hot cells, some technological rooms as main hall, pumps room, radioactive material transfer areas, ventilation building and stack); Possibly contaminated materials from any area of reactor building and ventilation building. After 40 years of nuclear research activities, all such areas are suspected of contamination. The volume of wastes that will result from WWR-S Research Reactor decommissioning is summarized

  9. Certification Plan, low-level waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met

  10. The Effects of Data Collection Method and Monitoring of Workers’ Behavior on the Generation of Demolition Waste

    Directory of Open Access Journals (Sweden)

    Gi-Wook Cha

    2017-10-01

    Full Text Available The roles of both the data collection method (including proper classification and the behavior of workers on the generation of demolition waste (DW are important. By analyzing the effect of the data collection method used to estimate DW, and by investigating how workers’ behavior can affect the total amount of DW generated during an actual demolition process, it was possible to identify strategies that could improve the prediction of DW. Therefore, this study surveyed demolition waste generation rates (DWGRs for different types of building by conducting on-site surveys immediately before demolition in order to collect adequate and reliable data. In addition, the effects of DW management strategies and of monitoring the behavior of workers on the actual generation of DW were analyzed. The results showed that when monitoring was implemented, the estimates of DW obtained from the DWGRs that were surveyed immediately before demolition and the actual quantities of DW reported by the demolition contractors had an error rate of 0.63% when the results were compared. Therefore, this study has shown that the proper data collection method (i.e., data were collected immediately before demolition applied in this paper and monitoring on the demolition site have a significant impact on waste generation.

  11. Calculation of external exposure during transport and disposal of radioactive waste arisen from dismantling of steam generator

    International Nuclear Information System (INIS)

    Hornacek, M.; Necas, V.

    2014-01-01

    The dismantling of large components (reactor pressure vessel, reactor internals, steam generator) represents complex of processes involving preparation, dismantling, waste treatment and conditioning, transport and final disposal. To optimise all of these activities in accordance with the ALARA principle the prediction of the exposure of workers is an essential prerequisite. The paper deals with the calculation of external exposure of workers during transport and final disposal of heat exchange tubes of steam generator used in Slovak nuclear power plant V1 in Jaslovske Bohunice. The type of waste packages, the calculation models of truck and National Radioactive Waste Repository in Mochovce are presented. The detailed methodology of radioactive waste disposal is showed and the degree of influence of time decay (0, 5 and 10 years) on the radiological conditions during transport and disposal is studied. All of the results do not exceed the limits given in Slovak and international regulatory documents. (authors)

  12. Harmful Waste Process

    International Nuclear Information System (INIS)

    Ki, Mun Bong; Lee, Shi Jin; Park, Jun Seok; Yoon, Seok Pyo; Lee, Jae Hyo; Jo, Byeong Ryeol

    2008-08-01

    This book gives descriptions of processing harmful waste, including concerned law and definition of harmful waste, current conditions and generation of harmful waste in Korea, international condition of harmful waste, minimizing of generation of harmful waste, treatment and storage. It also tells of basic science for harmful waste disposal with physics, chemistry, combustion engineering, microbiology and technique of disposal such as physical, chemical, biological process, stabilizing and solidification, incineration and waste in landfill.

  13. Audit Report on 'Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site'

    International Nuclear Information System (INIS)

    2010-01-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  14. Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.

    2011-07-01

    Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

  15. China's Scientific Investigation for Liquid Waste Treatment Solutions

    International Nuclear Information System (INIS)

    Liangjin, B.; Meiqiong, L.; Kelley, D.

    2006-01-01

    Post World War II created the nuclear age with several countries developing nuclear technology for power, defense, space and medical applications. China began its nuclear research and development programs in 1950 with the establishment of the China Institute of Atomic Energy (CIAE) located near Beijing. CIAE has been China's leader in nuclear science and technical development with its efforts to create advanced reactor technology and upgrade reprocessing technology. In addition, with China's new emphasis on environmental safety, CIAE is focusing on waste treatment options and new technologies that may provide solutions to legacy waste and newly generated waste from the full nuclear cycle. Radioactive liquid waste can pose significant challenges for clean up with various treatment options including encapsulation (cement), vitrification, solidification and incineration. Most, if not all, nuclear nations have found the treatment of liquids to be difficult, due in large part to the high economic costs associated with treatment and disposal and the failure of some methods to safely contain or eliminate the liquid. With new environmental regulations in place, Chinese nuclear institutes and waste generators are beginning to seek new technologies that can be used to treat the more complex liquid waste streams in a form that is safe for transport and for long-term storage or final disposal. [1] In 2004, CIAE and Pacific Nuclear Solutions, a division of Pacific World Trade, USA, began discussions about absorbent technology and applications for its use. Preliminary tests were conducted at CIAE's Department of Radiochemistry using generic solutions, such as lubricating oil, with absorbent polymers for solidification. Based on further discussions between both parties, it was decided to proceed with a more formal test program in April, 2005, and additional tests in October, 2005. The overall objective of the test program was to apply absorbent polymers to various waste streams

  16. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-01-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  17. Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report

    International Nuclear Information System (INIS)

    Luke, D.E.; Hamp, S.

    2002-01-01

    Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities

  18. Transportation risk assessment of radioactive wastes generated by the N-Reactor stabilization program at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Wheeler, T.

    1994-12-01

    The potential radiological and nonradiological risks associated with specific radioactive waste shipping campaigns at the Hanford Site are estimated. The shipping campaigns analyzed are associated with the transportation of wastes from the N-Reactor site at the 200-W Area, both within the Hanford Reservation, for disposal. The analysis is based on waste that would be generated from the N-Reactor stabilization program

  19. Development of high-efficiency wastes-burning electric power generating technology. Volume 2. Report for fiscal 1999; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu 1999 nendo hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In high-efficiency power generation using general wastes and combustible industrial wastes as fuel, development has been performed on a wastes gasifying and melting power generation technology. This technology is capable of suppressing generation of dioxines, recovering slag that can be utilized effectively, and reducing ash volume, by thermally decomposing the wastes and melting combustion ash at elevated temperatures by using thermally decomposed gases. With regard to the evaluation on high temperature corrosiveness of SH materials and the development of a high temperature dust removing system, a steam heater was designed, fabricated, and installed in a model plant, wherein the operation test has been performed for about 1,620 hours. For the technology of dechlorination during a thermal decomposition process, dechlorination rate of 90% was confirmed at 425 degrees C or higher in a demonstration plant. In addition, developments were made on a low temperature denitration device to avoid re-heating of waste gases, a stable wastes supply system to reduce quantity of self-heated melt limiting heat generation, and a waste plastics blowing technology to reduce external fuel charge quantity. Furthermore, a survey was carried out on the trends in wastes electric power generation technologies. (NEDO)

  20. Estimation of generation and gravimetric composition of solid wastes at Federal University of Campina Grande, Pombal, Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Elisângela Maria da Silva

    2018-01-01

    Full Text Available The objective was to present the estimation of the per capita generation and gravimetric composition of the solid residues of the Center of Sciences and Agri-food technology of the Federal University of Campina Grande. These two characteristics are of fundamental importance in the solid waste management process. The methodological procedure was carried out by field survey to identify the number of sectors in the University Campus, as well as the quantification of the daily population that attends the institution. As a result, the daily per capita generation of the Science Center and Environmental Technology was 49.28 g. In relation to the gravimetric composition, it was verified that the organic matter had the highest percentage, representing a total of 66%, followed by 13% of plastics, 9% of paper / cardboard and 8% of composites. It is concluded that the largest part of the total solid waste generated is putrescible organic matter, which was already expected, since solid waste generated in the university campus presents characteristics of household waste.

  1. Waste management, energy generation, material recycling

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The concept of process pyrolysis according to the system of low-temperature pyrolysis (up to 450 Cel) for the purpose of waste processing is described. This system not only uses the material value (raw materials) but also the processing value (energetic utilization of organic components). Three product groups are mentioned where process pyrolysis can be applied: 1. rubber-metall connecting, coated and non-coated components, 2. Compound materials like pc boards, used electronic devices, films, used cables and batteries, 3. organic waste and residues like foils, insulating material, lubricating, oil and grease, flooring. Importance of waste management is emphasized, economic aspects are illustrated.

  2. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay.

    Science.gov (United States)

    Oribe-Garcia, Iraia; Kamara-Esteban, Oihane; Martin, Cristina; Macarulla-Arenaza, Ana M; Alonso-Vicario, Ainhoa

    2015-05-01

    The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The present works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Waste incineration

    International Nuclear Information System (INIS)

    Rumplmayr, A.; Sammer, G.

    2001-01-01

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NO x ). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  4. The impact of tourism on municipal solid waste generation: the case of Menorca Island (Spain).

    Science.gov (United States)

    Mateu-Sbert, Josep; Ricci-Cabello, Ignacio; Villalonga-Olives, Ester; Cabeza-Irigoyen, Elena

    2013-12-01

    Tourism can sustain high levels of employment and income, but the sector is a source of environmental and health impacts. One of the most important is the generation of municipal solid waste (MSW). However, there is a lack of studies which quantify how much the tourist population engages in total MSW and separately collected recyclables. The aim of this paper is to estimate the impact of the tourist population on MSW, both total and separately collected, for the period 1998-2010, for the Mediterranean island of Menorca (Spain). We use dynamic regressions models, including data for monthly stocks of tourists. The results show that, on average, a 1% increase in the tourist population in Menorca causes an overall MSW increase of 0.282% and one more tourist in Menorca generates 1.31 kg day(-1) (while one more resident generates 1.48 kg day(-1)). This result could be useful to better estimate the seasonal population of different regions, since intrannual fluctuation of MSW is used as a proxy measure of actual population (the sum of residents and tourists). Moreover, an increase of 1% in the tourist population causes an increase of 0.232% in separately collected recyclables and an additional tourist generates 0.160 kg day(-1). One resident selectively collects on average 47.3% more than one tourist. These results can help in the planning of waste infrastructure and waste collection services in tourist areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Assessment of the Regenerative Potential of Organic Waste Streams in Lagos Mega-City

    Science.gov (United States)

    Opejin, Adenike Kafayat

    There is never a better time for this study than now when Nigeria as a country is going through the worst time in power supply. In Lagos city about 12,000 tons of waste is generated daily, and is expected to increase as the city adds more population. The management of these waste has generated great concern among professionals, academia and government agencies. This study examined the regenerative management of organic waste, which accounts for about 45% of the total waste generated in Lagos. To do this, two management scenarios were developed: landfill methane to electricity and compost; and analyzed using data collected during field work and from government reports. While it is understood that landfilling waste is the least sustainable option, this study argued that it could be a viable method for developing countries. Using U.S EPA LandGEM and the IPCC model, estimates of capturable landfill methane gas was derived for three landfills studied. Furthermore, a 35-year projection of waste and landfill methane was done for three newly proposed landfills. Assumptions were made that these new landfills will be sanitary. It was established that an average of 919,480,928m3 methane gas could be captured to generate an average of 9,687,176 MW of electricity annually. This makes it a significant source of power supply to a city that suffers from incessant power outages. Analysis of composting organics in Lagos was also done using descriptive method. Although, it could be argued that composting is the most regenerative way of managing organics, but it has some problems associated with it. Earthcare Compost Company processes an average of 600 tons of organics on a daily basis. The fraction of waste processed is infinitesimal compared to the rate of waste generated. One major issue identified in this study as an obstacle to extensive use of this method is the marketability of compost. The study therefore suggests that government should focus on getting the best out of the

  6. Project to support promotion of forming an environmentally friendly energy community. Survey report on 'a survey on introduction of an RDF electric power generation system utilizing general wastes in the Noto area'; Kankyo chowagata energy community keisei sokushin hojo jigyo. 'Noto chiiki ni okeru ippan haikibutsu riyo RDF hatsuden no donyu ni kansuru chosa' chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A business feasibility survey was performed on introduction of an RDF electric power generation system utilizing general wastes in the Noto area. Wastes quantity was estimated by accounting for large-sized wastes to be generated newly as a result of enforcement of the container package recycling law, and transfer of non-combustible wastes to incineration. The quantity was estimated to be 84,000 tons annually. Quantities of RDF and heat were calculated from this estimation to be 103 tons per day and 400 lkcal/kg respectively. According to the result of discussing the RDF transportation systems, time-based freight was found advantageous for short distance, and distance freight system for long distance in terms of cost. Discussions for RDF power systems were carried out on an RDF circulation fluid bed furnace plus ash melting furnace, a fluid bed gasification melting furnace, and shaft furnace type gasification melting furnace. In a comprehensive view, it is difficult to distinguish them in terms of merit and demerit. Molten slag was assumed to be re-utilized, but cost for the re-utilization should be considered. According to the result of discussing the business feasibility, it was found difficult to make it profitable by operating the RDF power generation business alone, and wastes incineration charge should be collected. (NEDO)

  7. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christopher P., E-mail: cj0810@bristol.ac.uk [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Brenner, Ceri M. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Stitt, Camilla A. [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Armstrong, Chris; Rusby, Dean R. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Mirfayzi, Seyed R. [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wilson, Lucy A. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Alejo, Aarón; Ahmed, Hamad [Centre for Plasma Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Allott, Ric [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Butler, Nicholas M.H. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Clarke, Robert J.; Haddock, David; Hernandez-Gomez, Cristina [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Higginson, Adam [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Murphy, Christopher [Department of Physics, University of York, York YO10 5DD (United Kingdom); Notley, Margaret [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Paraskevoulakos, Charilaos [Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Jowsey, John [Ground Floor North B582, Sellafield Ltd, Seascale, Cumbria CA20 1PG (United Kingdom); and others

    2016-11-15

    Highlights: • X-ray generation was achieved via laser interaction with a tantalum thin foil target. • Picosecond X-ray pulse from a sub-mm spot generated high resolution images. • MeV X-ray emission is possible, permitting analysis of full scale waste containers. • In parallel neutron emission of 10{sup 7}–10{sup 9} neutrons per steradian per pulse was attained. • Development of a 10 Hz diode pumped laser system for waste monitoring is envisioned. - Abstract: A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm{sup 2} scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  8. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages

    International Nuclear Information System (INIS)

    Jones, Christopher P.; Brenner, Ceri M.; Stitt, Camilla A.; Armstrong, Chris; Rusby, Dean R.; Mirfayzi, Seyed R.; Wilson, Lucy A.; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M.H.; Clarke, Robert J.; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John

    2016-01-01

    Highlights: • X-ray generation was achieved via laser interaction with a tantalum thin foil target. • Picosecond X-ray pulse from a sub-mm spot generated high resolution images. • MeV X-ray emission is possible, permitting analysis of full scale waste containers. • In parallel neutron emission of 10"7–10"9 neutrons per steradian per pulse was attained. • Development of a 10 Hz diode pumped laser system for waste monitoring is envisioned. - Abstract: A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm"2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  9. Quantity & quality analysis and associated management practices of solid waste generated in the general dentistry offices in the city of Arak, 2015

    Directory of Open Access Journals (Sweden)

    Ali Koolivand

    2016-10-01

    Full Text Available Abstract Background: As dental solid waste are among the most important environmental pollutants due to its high contents of toxic and hazardous agents, suitable treatment and management of it are of great importance. The objective of this study was to quantity & quality analyses of dental solid waste and associated management practices in the general dentistry offices in the city of Arak. Materials and Methods: 15 samples of solid waste were taken from the 5 selected general dentistry offices, classified into 66 components and 4 fractions, and then the quantity & quality characteristics were evaluated. Management practices of the solid waste were also investigated by using a questionnaire. Results: According to the results, per capita and the average generation rate of each dentistry office were 66.71 g/day-patient and 1340.45 g/day, respectively. Potential infectious, domestic-type, chemical & pharmaceutical, and toxic wastes consisted of 54.25%, 35.14%, 8.19%, and 2.14% of the waste generated, respectively. 10 components including latex gloves, nylon & plastic, saliva & blood-contaminated kleenex, paper & cardboard, used ampoules, saliva ejector tubes, gypsum, food waste, saliva & blood-contaminated dental rolls, and nylon gloves were responsible for more than 80% of the total waste generated, respectively. Conclusion: Each fraction of dental solid waste (toxic, chemical & pharmaceutical, potential infectious and domestic-type wastes should be separately collected and disposed of according to the related criteria.

  10. Generation of domestic waste electrical and electronic equipment on Fernando de Noronha Island: qualitative and quantitative aspects.

    Science.gov (United States)

    Araujo, Dhiego Raphael Rodrigues; de Oliveira, José Diego; Selva, Vanice Fragoso; Silva, Maisa Mendonça; Santos, Simone Machado

    2017-08-01

    The accelerated growth trajectory of waste electrical and electronic equipment (WEEE) is a matter of concern for governments worldwide. In developing countries, the problem is more complex because municipal waste management is still a challenge for municipalities. Fernando de Noronha Island, an environmentally protected area, has a transfer station for solid waste before it is sent to the final destination abroad, which is different waste management model to most urban areas. In order to check the specifics of management of WEEE, this study aimed to qualitatively and quantitatively evaluate the generation of this type of waste on the main island of Fernando de Noronha, taking into consideration aspects related to consumption habits and handling of waste. During the in situ research, a questionnaire was applied to a sample of 83 households. The results provide a picture of the generation of WEEE for a period of 1 year, when a production of 1.3 tons of WEEE was estimated. Relationships between education level and monthly income and between education level and number of plasma/LCD TVs and washing machines were confirmed. Another important result is that only two socioeconomic variables (monthly income and education level) are related to two recycling behavior variables. In addition, the population and government treat WEEE as ordinary waste, ignoring its contaminant potential. Despite the existence of relevant legislation concerning the treatment and disposal of WEEE, additional efforts will be required by the government in order to properly manage this type of waste on the island.

  11. Evaluation of alternatives for a second-generation transportation system for Department of Energy transuranic waste

    International Nuclear Information System (INIS)

    1984-01-01

    Department of Energy (DOE) waste storage sites will ship their contact-handled (CH) and remote-handled (RH) transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) beginning FY 1989. The CH-TRU waste will be shipped in the Transuranic Package Transported (TRUPACT-I), a new packaging being developed by Sandia National Laboratories, Albuquerque/Transportation Technology Center. Some of the DOE TRU waste, however, might be unsuitable for shipment in TRUPACT-I, and is designated special-shipped (SS) TRU waste. The purposes of this study were to: (1) identify the quantity and characteristics of SS-TRU waste stored and generated at DOE facilities; (2) identify alternatives for managing the SS-TRU waste; and (3) make overall recommendations for managing the SS-TRU waste. Data on quantity and characteristics were gathered through coordinating visits to the sites and extracting information from each site's records. Representatives of DOE organizations and contractors set objectives for managing the SS-TRU waste. Alternative shipping systems were then identified for CH SS-TRU waste and RH SS-TRU waste. Evaluations of these alternatives considered how well they would satisfy each objective, and associated potential problems. The study recommends delaying the decision on how best to transport the CH SS-TRU waste to WIPP until the amount of SS-TRU processed waste in heavy drums is known. These conditions and choices are presented: a relatively small number of processed, heavy drums could be shipped most economically via TRUPACT-I, mixed with lighter drums of unprocessed waste. If a large number of heavy drums is to be shipped, a shorter and narrower version of TRUPACT-I would be preferred alternative. The Defense High-Level Waste cask is the recommended alternative system for shipping RH SS-TRU waste. 12 references, 15 figures, 22 tables

  12. Rural Solid Waste Management in China: Status, Problems and Challenges

    Directory of Open Access Journals (Sweden)

    Aiqin Wang

    2017-03-01

    Full Text Available This paper seeks to describe the overall state of Rural Solid Waste Management (RSWM in China in three main areas: waste collection services, waste transportation services and waste disposal services. Given China’s urbanization, industrialization, and the subsequent improvement of household living standards, the amount of solid waste generated in rural China has increased rapidly. Based on primary data collected in 2016 from 100 villages across five provinces in China, we find that the proportion of villages with waste collection, waste transportation, and waste disposal services in 2015 is 80%, 55% and 22%, respectively. The differences in shares of villages with these services across provinces are statistically significant. Using descriptive and econometric analyses, the authors show that richer villages are more likely to provide rural solid waste (RSW collection and transportation services. Villages with new (newly elected or appointed village leaders are more likely to supply RSW disposal services. While the majority of villages report that they offer waste collection services (installing waste collection facilities and employing waste collection workers, the vast majority of villages do not transport their waste to treatment plants. Even fewer villages report using centralized disposal methods to dispose of waste, as required by law or regulation. This study represents the first effort to describe the state and determinants of waste management services in rural China in the wake of increased investment in and new policies regarding RSWM released in 2015. Additionally, we provide evidence-based suggestions that might be useful for policy makers interested in improving RSWM in China. These suggestions include increasing investments in waste collection facilities and worker services; encouraging local residents to classify and recycle waste; designing optimal waste transportation networks and routes; and improving on-site waste disposal

  13. Influence of Planetary Protection Guidelines on Waste Management Operations

    Science.gov (United States)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  14. Acceptable knowledge document for INEEL stored transuranic waste - Rocky Flats Plant waste. Revision 2

    International Nuclear Information System (INIS)

    1998-01-01

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems

  15. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

  16. Effect of liquid waste discharges from steam generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, H.E. Jr.

    1977-09-01

    This report contains a summary of the effects of liquid waste discharges from steam electric generating facilities on the environment. Also included is a simplified model for use in approximately determining the effects of these discharges. Four basic fuels are used in steam electric power plants: three fossil fuels--coal, natural gas, and oil; and uranium--presently the basic fuel of nuclear power. Coal and uranium are expected to be the major fuels in future years. The following power plant effluents are considered: heat, chlorine, copper, total dissolved solids, suspended solids, pH, oil and grease, iron, zinc, chrome, phosphorus, and trace radionuclides.

  17. Effect of liquid waste discharges from steam generating facilities

    International Nuclear Information System (INIS)

    McGuire, H.E. Jr.

    1977-09-01

    This report contains a summary of the effects of liquid waste discharges from steam electric generating facilities on the environment. Also included is a simplified model for use in approximately determining the effects of these discharges. Four basic fuels are used in steam electric power plants: three fossil fuels--coal, natural gas, and oil; and uranium--presently the basic fuel of nuclear power. Coal and uranium are expected to be the major fuels in future years. The following power plant effluents are considered: heat, chlorine, copper, total dissolved solids, suspended solids, pH, oil and grease, iron, zinc, chrome, phosphorus, and trace radionuclides

  18. Waste Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-02

    This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream’s generation, characterization, and management; and not merely a list of information sources.

  19. Waste Characterization Methods

    International Nuclear Information System (INIS)

    Vigil-Holterman, Luciana R.; Naranjo, Felicia Danielle

    2016-01-01

    This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream's generation, characterization, and management; and not merely a list of information sources.

  20. Solid waste

    International Nuclear Information System (INIS)

    1995-01-01

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized