WorldWideScience

Sample records for newly forming stars

  1. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  2. Distinguishing Newly Born Strange Stars from Neutron Stars with g-Mode Oscillations

    International Nuclear Information System (INIS)

    Fu Weijie; Wei Haiqing; Liu Yuxin

    2008-01-01

    The gravity-mode (g-mode) eigenfrequencies of newly born strange quark stars (SQSs) and neutron stars (NSs) are studied. It is found that the eigenfrequencies in SQSs are much lower than those in NSs by almost 1 order of magnitude, since the components of a SQS are all extremely relativistic particles while nucleons in a NS are nonrelativistic. We therefore propose that newly born SQSs can be distinguished from the NSs by detecting the eigenfrequencies of the g-mode pulsations of supernovae cores through gravitational radiation by LIGO-class detectors

  3. B- AND A-TYPE STARS IN THE TAURUS-AURIGA STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), τ Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  4. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    Science.gov (United States)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  5. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Padgett, D. L.; Rebull, L. M.; Assef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the 'fireworks hypothesis' since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  6. Star-forming Filament Models

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2017-01-01

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  7. Star-forming Filament Models

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-20

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  8. Protogalaxy interactions in newly formed clusters: Galaxy luminosities, colors, and intergalactic gas

    International Nuclear Information System (INIS)

    Silk, J.

    1978-01-01

    The role of protogalaxy interactions in galactic evolution is studied during the formation of galaxy clusters. In the early stages of the collapse, coalescent encounters of protogalaxies lead to the development of a galactic luminosity function. Once galaxies acquire appreciable random motions, mutual collisions between galaxies in rich clusters will trigger the collapse of interstellar clouds to form stars. This provides both a source for enriched intracluster gas and an interpretation of the correlation between luminosity and color for cluster elliptical galaxies. Other observational consequences that are considered include optical, X-ray, and diffuse nonthermal radio emission from newly formed clusters of galaxies

  9. Do All O Stars Form in Star Clusters?

    Science.gov (United States)

    Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.

  10. YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Kuhn, Michael A. [Millennium Institute of Astrophysics, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Povich, Matthew S., E-mail: edf@astro.psu.edu [Department of Physics and Astronomy, California State Polytechnic University, 3801 West Temple Ave., Pomona, CA 91768 (United States)

    2016-12-20

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.

  11. YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS

    International Nuclear Information System (INIS)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.; Povich, Matthew S.

    2016-01-01

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.

  12. Wide-field Infrared Survey Explorer Observations of the Evolution of Massive Star-forming Regions

    OpenAIRE

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Assef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from th...

  13. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  14. VLBA Changes Picture of Famous Star-Forming Region

    Science.gov (United States)

    2007-10-01

    capable of the measurement we made," he added. "Knowing the accurate distance to this region is vitally important to properly understanding the general characteristics of the star-formation processes there," Sandstrom said. The new distance to the region, determined with the VLBA, is 1270 light-years, compared with the best previous measurement of 1565 light-years. The old measurement had an uncertainty of about 17 percent, while the new VLBA measurement has an uncertainty of 6 percent. Because the newly-measured distance to the region is 20 percent closer than the earlier measurement, the stars in the region are intrinisically fainter by a factor of 1.5. This has a major impact on scientists' understanding of their ages. "These stars are nearly twice as old as previously thought," said Bower. "Getting a more-accurate distance is going to pay off in many ways by improving our understanding of what is one of the most frequently-studied star-forming regions in the Universe," Peek said. "By using the same technique on other stars in the region, it would be possible to build up a three-dimensional picture of the area," he added. The VLBA, a system of 10 radio-telescope antennas stretching from Hawaii to the Caribbean, provides the best ability to see fine detail, called resolving power, of any astronomical tool in the world. The VLBA can routinely produce images hundreds of times more detailed than those produced by the Hubble Space Telescope. The VLBA's tremendous resolving power is what permits the astronomers to make the precise distance determinations. In addition to the new measurement to the Orion star-forming region, the VLBA has made precise distance measurements to star-forming regions in the constellations Taurus and Ophiuchus, to a number of pulsars within our Milky Way Galaxy, and to one of our Galaxy's spiral arms. In 1999, astronomers using the VLBA announced the most precise distance measurement to a galaxy that is not a satellite of the Milky Way. That

  15. FILAMENTARY STRUCTURE OF STAR-FORMING COMPLEXES

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2009-01-01

    The nearest young stellar groups are associated with 'hubs' of column density exceeding 10 22 cm -2 , according to recent observations. These hubs radiate multiple 'filaments' of parsec length, having lower column density and fewer stars. Systems with many filaments tend to have parallel filaments with similar spacing. Such 'hub-filament structure' is associated with all of the nine young stellar groups within 300 pc, forming low-mass stars. Similar properties are seen in infrared dark clouds forming more massive stars. In a new model, an initial clump in a uniform medium is compressed into a self-gravitating, modulated layer. The outer layer resembles the modulated equilibrium of Schmid-Burgk with nearly parallel filaments. The filaments converge onto the compressed clump, which collapses to form stars with high efficiency. The initial medium and condensations have densities similar to those in nearby star-forming clouds and clumps. The predicted structures resemble observed hub-filament systems in their size, shape, and column density, and in the appearance of their filaments. These results suggest that HFS associated with young stellar groups may arise from compression of clumpy gas in molecular clouds.

  16. Gemini Spectroscopic Survey of Young Intermediate-Mass Star-Forming Regions

    Science.gov (United States)

    Lundquist, Michael; Kobulnicky, Henry

    2018-01-01

    The majority of stars form in embedded clusters. Current research into star formation has focused on either high-mass star-forming regions or low-mass star-forming regions. We present the results from a Gemini spectroscopic survey of young intermediate-mass star-forming regions. These are star forming regions selected to produce stars up to but not exceeding 8 solar masses. We obtained spectra of these regions with GNIRS on Gemini North and Flamingos-2 on Gemini South. We also combine this with near-infrared imaging from 2MASS, UKIDSS, and VVV to study the stellar content.

  17. Observation of the bone mineral density of newly formed bone using rabbits. Compared with newly formed bone around implants and cortical bone

    International Nuclear Information System (INIS)

    Nakada, Hiroshi; Numata, Yasuko; Sakae, Toshiro; Tamaki, Hiroyuki; Kato, Takao

    2009-01-01

    There have been many studies reporting that newly formed bone around implants is spongy bone. However, although the morphology is reported as being like spongy bone, it is difficult to discriminate whether the bone quality of newly formed bone appears similar to osteoid or cortical bone; therefore, evaluation of bone quality is required. The aims of this study were to measure the bone mineral density (BMD) values of newly formed bone around implants after 4, 8, 16, 24 and 48 weeks, to represent these values on three-dimensional color mapping (3Dmap), and to evaluate the change in bone quality associated with newly formed bone around implants. The animal experimental protocol of this study was approved by the Ethics Committee for Animal Experiments of our University. This experiment used 20 surface treatment implants (Ti-6Al-4V alloy: 3.1 mm in diameter and 30.0 mm in length) by grit-blasting. They were embedded into surgically created flaws in femurs of 20 New Zealand white rabbits (16 weeks old, male). The rabbits were sacrificed with an ear intravenous overdose of pentobarbital sodium under general anesthesia each period, and the femurs were resected. We measured BMD of newly formed bone around implants and cortical bone using Micro-CT, and the BMD distribution map of 3Dmap (TRI/3D Bon BMD, Ratoc System Engineering). The BMD of cortical bone was 1,026.3±44.3 mg/cm 3 at 4 weeks, 1,023.8±40.9 mg/cm 3 at 8 weeks, 1,048.2±45.6 mg/cm 3 at 16 weeks, 1,067.2±60.2 mg/cm 3 at 24 weeks, and 1,069.3±50.7 mg/cm 3 at 48 weeks after implantation, showing a non-significant increase each period. The BMD of newly formed bone around implants was 296.8±25.6 mg/cm 3 at 4 weeks, 525.0±72.4 mg/cm 3 at 8 weeks, 691.2±26.0 mg/cm 3 at 16 weeks, 776.9±27.7 mg/cm 3 at 24 weeks, and 845.2±23.1 mg/cm 3 at 48 weeks after implantation, showing a significant increase after each period. It was revealed that the color scale of newly formed bone was Low level at 4 weeks, and then it

  18. STAR-FORMING OR STARBURSTING? THE ULTRAVIOLET CONUNDRUM

    International Nuclear Information System (INIS)

    Boquien, M.; Calzetti, D.; Hong, S.; Kennicutt, R.; Dale, D.; Engelbracht, C.; Portouw, J.; Gordon, K. D.; Lee, J. C.

    2009-01-01

    Compared to starburst galaxies, normal star-forming galaxies have been shown to display a much larger dispersion of the dust attenuation at fixed reddening through studies of the IRX-β diagram (the IR/UV ratio 'IRX' versus the UV color 'β'). To investigate the causes of this larger dispersion and attempt to isolate second parameters, we have used GALEX UV, ground-based optical, and Spitzer infrared imaging of eight nearby galaxies, and examined the properties of individual UV and 24 μm selected star-forming regions. We concentrated on star-forming regions, in order to isolate simpler star formation histories than those that characterize whole galaxies. We find that (1) the dispersion is not correlated with the mean age of the stellar populations; (2) a range of dust geometries and dust extinction curves are the most likely causes for the observed dispersion in the IRX-β diagram, (3) together with some potential dilution of the most recent star-forming population by older unrelated bursts, at least in the case of star-forming regions within galaxies; and (4) we also recover some general characteristics of the regions, including a tight positive correlation between the amount of dust attenuation and the metal content. Although generalizing our results to whole galaxies may not be immediate, the possibility of a range of dust extinction laws and geometries should be accounted for in the latter systems as well.

  19. Field O stars: formed in situ or as runaways?

    Science.gov (United States)

    Gvaramadze, V. V.; Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.

    2012-08-01

    A significant fraction of massive stars in the Milky Way and other galaxies are located far from star clusters and star-forming regions. It is known that some of these stars are runaways, i.e. possess high space velocities (determined through the proper motion and/or radial velocity measurements), and therefore most likely were formed in embedded clusters and then ejected into the field because of dynamical few-body interactions or binary-supernova explosions. However, there exists a group of field O stars whose runaway status is difficult to prove via direct proper motion measurements (e.g. in the Magellanic Clouds) or whose (measured) low space velocities and/or young ages appear to be incompatible with their large separation from known star clusters. The existence of this group led some authors to believe that field O stars can form in situ. Since the question of whether or not O stars can form in isolation is of crucial importance for star formation theory, it is important to thoroughly test candidates of such stars in order to improve the theory. In this paper, we examine the runaway status of the best candidates for isolated formation of massive stars in the Milky Way and the Magellanic Clouds by searching for bow shocks around them, by using the new reduction of the Hipparcos data, and by searching for stellar systems from which they could originate within their lifetimes. We show that most of the known O stars thought to have formed in isolation are instead very likely runaways. We show also that the field must contain a population of O stars whose low space velocities and/or young ages are in apparent contradiction to the large separation of these stars from their parent clusters and/or the ages of these clusters. These stars (the descendants of runaway massive binaries) cannot be traced back to their parent clusters and therefore can be mistakenly considered as having formed in situ. We argue also that some field O stars could be detected in optical

  20. Dark matter that can form dark stars

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Huh, Ji-Haeng; Kim, Hyung Do; Scopel, Stefano

    2010-01-01

    The first stars to form in the Universe may be powered by the annihilation of weakly interacting dark matter particles. These so-called dark stars, if observed, may give us a clue about the nature of dark matter. Here we examine which models for particle dark matter satisfy the conditions for the formation of dark stars. We find that in general models with thermal dark matter lead to the formation of dark stars, with few notable exceptions: heavy neutralinos in the presence of coannihilations, annihilations that are resonant at dark matter freeze-out but not in dark stars, some models of neutrinophilic dark matter annihilating into neutrinos only and lighter than about 50 GeV. In particular, we find that a thermal DM candidate in standard Cosmology always forms a dark star as long as its mass is heavier than ≅ 50 GeV and the thermal average of its annihilation cross section is the same at the decoupling temperature and during the dark star formation, as for instance in the case of an annihilation cross section with a non-vanishing s-wave contribution

  1. Stars Form Surprisingly Close to Milky Way's Black Hole

    Science.gov (United States)

    2005-10-01

    The supermassive black hole at the center of the Milky Way has surprisingly helped spawn a new generation of stars, according to observations from NASA's Chandra X-ray Observatory. This novel mode of star formation may solve several mysteries about the supermassive black holes that reside at the centers of nearly all galaxies. "Massive black holes are usually known for violence and destruction," said Sergei Nayakshin of the University of Leicester, United Kingdom, and coauthor of a paper on this research in an upcoming issue of the Monthly Notices of the Royal Astronomical Society. "So it's remarkable that this black hole helped create new stars, not just destroy them." Black holes have earned their fearsome reputation because any material -- including stars -- that falls within the so-called event horizon is never seen again. However, these new results indicate that the immense disks of gas known to orbit many black holes at a "safe" distance from the event horizon can help nurture the formation of new stars. Animation of Stars Forming Around Black Hole Animation of Stars Forming Around Black Hole This conclusion came from new clues that could only be revealed in X-rays. Until the latest Chandra results, astronomers have disagreed about the origin of a mysterious group of massive stars discovered by infrared astronomers to be orbiting less than a light year from the Milky Way's central black hole, a.k.a. Sagittarius A*, or Sgr A*. At such close distances to Sgr A*, the standard model for star formation predicts that gas clouds from which stars form should have been ripped apart by tidal forces from the black hole. Two models to explain this puzzle have been proposed. In the disk model, the gravity of a dense disk of gas around Sgr A* offsets the tidal forces and allows stars to form; in the migration model, the stars formed in a star cluster far away from the black hole and migrated in to form the ring of massive stars. The migration scenario predicts about a

  2. Star Formation Activity Beyond the Outer Arm. I. WISE -selected Candidate Star-forming Regions

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Natsuko; Yasui, Chikako; Saito, Masao [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan); Kobayashi, Naoto; Hamano, Satoshi, E-mail: natsuko.izumi@nao.ac.jp [Laboratory of Infrared High-resolution spectroscopy (LIH), Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)

    2017-10-01

    The outer Galaxy beyond the Outer Arm provides a good opportunity to study star formation in an environment significantly different from that in the solar neighborhood. However, star-forming regions in the outer Galaxy have never been comprehensively studied or cataloged because of the difficulties in detecting them at such large distances. We studied 33 known young star-forming regions associated with 13 molecular clouds at R {sub G} ≥ 13.5 kpc in the outer Galaxy with data from the Wide-field Infrared Survey Explorer ( WISE ) mid-infrared all-sky survey. From their color distribution, we developed a simple identification criterion of star-forming regions in the outer Galaxy with the WISE color. We applied the criterion to all the WISE sources in the molecular clouds in the outer Galaxy at R {sub G} ≥ 13.5 kpc detected with the Five College Radio Astronomy Observatory (FCRAO) {sup 12}CO survey of the outer Galaxy, of which the survey region is 102.°49 ≤  l  ≤ 141.°54, −3.°03 ≤  b  ≤ 5.°41, and successfully identified 711 new candidate star-forming regions in 240 molecular clouds. The large number of samples enables us to perform the statistical study of star formation properties in the outer Galaxy for the first time. This study is crucial to investigate the fundamental star formation properties, including star formation rate, star formation efficiency, and initial mass function, in a primordial environment such as the early phase of the Galaxy formation.

  3. Stellar Feedback in Massive Star-Forming Regions

    Science.gov (United States)

    Baldwin, Jack; Pellegrini, Eric; Ferland, Gary; Murray, Norm; Hanson, Margaret

    2008-02-01

    Star formation rates and chemical evolution are controlled in part by the interaction of stellar radiation and winds with the remnant molecular gas from which the stars have formed. We are carrying out a detailed, panchromatic study in the two nearest giant star-forming regions to nail down the physics that produces the 10-20 parsec bubbles seen to surround young massive clusters in the Milky Way. This will determine if and how the clusters disrupt their natal giant molecular clouds (GMCs). Here we request 4 nights on the Blanco telescope to obtain dense grids of optical long-slit spectra criss-crossing each nebula. These will cover the [S II] doublet (to measure N_e) and also [O III], H(beta), [O I], H(alpha) and [N II] to measure the ionization mechanism and ionization parameter, at ~3000 different spots in each nebula. From this we can determine a number of dynamically important quantities, such as the gas density and temperature, hence pressure in and around these bubbles. These quantities can be compared to the dynamical (gravitationally induced) pressure, and the radiation pressure. All can be employed in dynamical models for the evolution of a GMC under the influence of an embedded massive star cluster. This research will elucidate the detailed workings of the star-forming regions which dominate the star formation rate in the Milky Way, and also will steadily improve our calibration and understanding of more distant, less well-resolved objects such as ULIRGS, Lyman break, and submillimeter galaxies.

  4. Newly-formed emotional memories guide selective attention processes: Evidence from event-related potentials.

    Science.gov (United States)

    Schupp, Harald T; Kirmse, Ursula; Schmälzle, Ralf; Flaisch, Tobias; Renner, Britta

    2016-06-20

    Emotional cues can guide selective attention processes. However, emotional stimuli can both activate long-term memory representations reflecting general world knowledge and engage newly formed memory representations representing specific knowledge from the immediate past. Here, the self-completion feature of associative memory was utilized to assess the regulation of attention processes by newly-formed emotional memory. First, new memory representations were formed by presenting pictures depicting a person either in an erotic pose or as a portrait. Afterwards, to activate newly-built memory traces, edited pictures were presented showing only the head region of the person. ERP recordings revealed the emotional regulation of attention by newly-formed memories. Specifically, edited pictures from the erotic compared to the portrait category elicited an early posterior negativity and late positive potential, similar to the findings observed for the original pictures. A control condition showed that the effect was dependent on newly-formed memory traces. Given the large number of new memories formed each day, they presumably make an important contribution to the regulation of attention in everyday life.

  5. Newly-formed emotional memories guide selective attention processes: Evidence from event-related potentials

    Science.gov (United States)

    Schupp, Harald T.; Kirmse, Ursula; Schmälzle, Ralf; Flaisch, Tobias; Renner, Britta

    2016-01-01

    Emotional cues can guide selective attention processes. However, emotional stimuli can both activate long-term memory representations reflecting general world knowledge and engage newly formed memory representations representing specific knowledge from the immediate past. Here, the self-completion feature of associative memory was utilized to assess the regulation of attention processes by newly-formed emotional memory. First, new memory representations were formed by presenting pictures depicting a person either in an erotic pose or as a portrait. Afterwards, to activate newly-built memory traces, edited pictures were presented showing only the head region of the person. ERP recordings revealed the emotional regulation of attention by newly-formed memories. Specifically, edited pictures from the erotic compared to the portrait category elicited an early posterior negativity and late positive potential, similar to the findings observed for the original pictures. A control condition showed that the effect was dependent on newly-formed memory traces. Given the large number of new memories formed each day, they presumably make an important contribution to the regulation of attention in everyday life. PMID:27321471

  6. Cross-Linking Mast Cell Specific Gangliosides Stimulates the Release of Newly Formed Lipid Mediators and Newly Synthesized Cytokines

    Directory of Open Access Journals (Sweden)

    Edismauro Garcia Freitas Filho

    2016-01-01

    Full Text Available Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides with mAbAA4 released the newly formed lipid mediators, prostaglandins D2 and E2, without release of leukotrienes B4 and C4. The effect of cross-linking these gangliosides on the activation of enzymes in the arachidonate cascade was then investigated. Ganglioside cross-linking resulted in phosphorylation of cytosolic phospholipase A2 and increased expression of cyclooxygenase-2. Translocation of 5-lipoxygenase from the cytosol to the nucleus was not induced by ganglioside cross-linking. Cross-linking of GD1b derived gangliosides also resulted in the release of the newly synthesized mediators, interleukin-4, interleukin-6, and TNF-α. The effect of cross-linking the gangliosides on the MAP kinase pathway was then investigated. Cross-linking the gangliosides induced the phosphorylation of ERK1/2, JNK1/2, and p38 as well as activating both NFκB and NFAT in a Syk-dependent manner. Therefore, cross-linking the mast cell specific GD1b derived gangliosides results in the activation of signaling pathways that culminate with the release of newly formed and newly synthesized mediators.

  7. ASSESSING RADIATION PRESSURE AS A FEEDBACK MECHANISM IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Andrews, Brett H.; Thompson, Todd A.

    2011-01-01

    Radiation pressure from the absorption and scattering of starlight by dust grains may be an important feedback mechanism in regulating star-forming galaxies. We compile data from the literature on star clusters, star-forming subregions, normal star-forming galaxies, and starbursts to assess the importance of radiation pressure on dust as a feedback mechanism, by comparing the luminosity and flux of these systems to their dust Eddington limit. This exercise motivates a novel interpretation of the Schmidt law, the L IR -L' CO correlation, and the L IR -L' HCN correlation. In particular, the linear L IR -L' HCN correlation is a natural prediction of radiation pressure regulated star formation. Overall, we find that the Eddington limit sets a hard upper bound to the luminosity of any star-forming region. Importantly, however, many normal star-forming galaxies have luminosities significantly below the Eddington limit. We explore several explanations for this discrepancy, especially the role of 'intermittency' in normal spirals-the tendency for only a small number of subregions within a galaxy to be actively forming stars at any moment because of the time dependence of the feedback process and the luminosity evolution of the stellar population. If radiation pressure regulates star formation in dense gas, then the gas depletion timescale is 6 Myr, in good agreement with observations of the densest starbursts. Finally, we highlight the importance of observational uncertainties, namely, the dust-to-gas ratio and the CO-to-H 2 and HCN-to-H 2 conversion factors, that must be understood before a definitive assessment of radiation pressure as a feedback mechanism in star-forming galaxies.

  8. MERGER SIGNATURES IN THE DYNAMICS OF STAR-FORMING GAS

    International Nuclear Information System (INIS)

    Hung, Chao-Ling; Sanders, D. B.; Hayward, Christopher C.; Smith, Howard A.; Ashby, Matthew L. N.; Martínez-Galarza, Juan R.; Zezas, Andreas; Lanz, Lauranne

    2016-01-01

    The recent advent of integral field spectrographs and millimeter interferometers has revealed the internal dynamics of many hundreds of star-forming galaxies. Spatially resolved kinematics have been used to determine the dynamical status of star-forming galaxies with ambiguous morphologies, and constrain the importance of galaxy interactions during the assembly of galaxies. However, measuring the importance of interactions or galaxy merger rates requires knowledge of the systematics in kinematic diagnostics and the visible time with merger indicators. We analyze the dynamics of star-forming gas in a set of binary merger hydrodynamic simulations with stellar mass ratios of 1:1 and 1:4. We find that the evolution of kinematic asymmetries traced by star-forming gas mirrors morphological asymmetries derived from mock optical images, in which both merger indicators show the largest deviation from isolated disks during strong interaction phases. Based on a series of simulations with various initial disk orientations, orbital parameters, gas fractions, and mass ratios, we find that the merger signatures are visible for ∼0.2–0.4 Gyr with kinematic merger indicators but can be approximately twice as long for equal-mass mergers of massive gas-rich disk galaxies designed to be analogs of z ∼ 2–3 submillimeter galaxies. Merger signatures are most apparent after the second passage and before the black holes coalescence, but in some cases they persist up to several hundred Myr after coalescence. About 20%–60% of the simulated galaxies are not identified as mergers during the strong interaction phase, implying that galaxies undergoing violent merging process do not necessarily exhibit highly asymmetric kinematics in their star-forming gas. The lack of identifiable merger signatures in this population can lead to an underestimation of merger abundances in star-forming galaxies, and including them in samples of star-forming disks may bias the measurements of disk

  9. Smashing a Jet into a Cloud to Form Stars

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    What happens when the highly energetic jet from the center of an active galaxy rams into surrounding clouds of gas and dust? A new study explores whether this might be a way to form stars.The authors simulations at an intermediate (top) and final (bottom) stage show the compression in the gas cloud as a jet (red) enters from the left. Undisturbed cloud material is shown in blue, whereas green corresponds to cold, compressed gas actively forming stars. [Fragile et al. 2017]Impacts of FeedbackCorrelation between properties of supermassive black holes and their host galaxies suggest that there is some means of communication between them. For this reason, we suspect that feedback from an active galactic nucleus (AGN) in the form of jets, for instance controls the size of the galaxy by influencing star formation. But how does this process work?AGN feedback can be either negative or positive. In negative feedback, the gas necessary for forming stars is heated or dispersed by the jet, curbing or halting star formation. In positive feedback, jets propagate through the surrounding gas with energies high enough to create compression in the gas, but not so high that they heat it. The increased density can cause the gas to collapse, thereby triggering star formation.In a recent study, a team of scientists led by Chris Fragile (College of Charleston) modeled what happens when an enormous AGN jet slams into a dwarf-galaxy-sized, inactive cloud of gas. In particular, the team explored the possibility of star-forming positive feedback with the goal of reproducing recent observations of something called Minkowskis Object, a stellar nursery located at the endpoint of a radio jet emitted from the active galaxy NGC 541.The star formation rate in the simulated cloud increases dramatically as a result of the jets impact, reaching the rate currently observed for Minkowskis Objects within 20 million years. [Fragile et al. 2017]Triggering Stellar BirthFragile and collaborators used a

  10. NGVLA Observations of Dense Gas Filaments in Star-Forming Regions

    Science.gov (United States)

    Di Francesco, James; Chen, Mike; Keown, Jared; GAS Team, KEYSTONE Team

    2018-01-01

    Recent observations of continuum emission from nearby star-forming regions with Herschel and JCMT have revealed that filaments are ubiquitous structures within molecular clouds. Such filaments appear to be intimately connected to star formation, with those having column densities of AV > 8 hosting the majority of prestellar cores and young protostars in clouds. Indeed, this “threshold” can be explained simply as the result of supercritical cylinder fragmentation. How specifically star-forming filaments form in molecular clouds, however, remains unclear, though gravity and turbulence are likely involved. Observations of their kinematics are needed to understand how mass flows both onto and through these filaments. We show here results from two recent surveys, the Green Bank Ammonia Survey (GAS) and the K-band Examinations of Young Stellar Object Natal Environments (KEYSTONE) that have used the Green Bank Telescope’s K-band Focal Plane Array instrument to map NH3 (1,1) emission from dense gas in nearby star-forming regions. Data from both surveys show that NH3 emission traces extremely well the high column density gas across these star-forming regions. In particular, the GAS results for NGC 1333 show NH3-based velocity gradients either predominantly parallel or perpendicular to the filament spines. Though the GAS and KEYSTONE data are vital for probing filaments, higher resolutions than possible with the GBT alone are needed to examine the kinematic patterns on the 0.1-pc scales of star-forming cores within filaments. We describe how the Next Generation Very Large Array (NGVLA) will uniquely provide the key wide-field data of high sensitivity needed to explore how ambient gas in molecular clouds forms filaments that evolve toward star formation.

  11. Dissecting the intensely star-forming clumps in a z ~ 2 Einstein Ring

    Science.gov (United States)

    Rujopakarn, Wiphu

    2013-10-01

    Clumps of star formation spreading widely in galactic disks are common features of star-forming galaxies at 1 test cases to study the mechanism that drives intense star formation at z ~ 2. We propose WFC3 near-IR imaging and spatially-resolved spectroscopy of a gravitationally lensed, kinematically ordered, vigorously star-forming galaxy at z = 1.885 with physical resolutions up to 40 pc. This galaxy contains two luminous clumps that are forming stars at the rates of 100 solar mass/yr/clump. Spatially-resolved map of star formation from HST provides the most critical missing piece to interpret our existing observations of this galaxy in far-IR, CO emission lines, and radio continuum. We will probe the frontier research areas in z ~ 2 star formation, particularly the spatially-resolved star formation laws and dynamics of cold and ionized gases, which have never been probed at this spatial resolution. Our proposed observations will provide a benchmark against which to interpret the structures of vigorous star-forming clumps in general. This object can therefore have a unique impact on our understanding of the star-forming modes that dominate at z ~ 2.

  12. THE COMPACT STAR-FORMING COMPLEX AT THE HEART OF NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Davidge, T. J., E-mail: tim.davidge@nrc.ca [Dominion Astrophysical Observatory, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2016-02-20

    We discuss integral field spectra of the compact star-forming complex that is the brightest near-infrared (NIR) source in the central regions of the starburst galaxy NGC 253. The spectra cover the H and K passbands and were recorded with the Gemini NIR Spectrograph during subarcsecond seeing conditions. Absorption features in the spectrum of the star-forming complex are weaker than in the surroundings. An absorption feature is found near 1.78 μm that coincides with the location of a C{sub 2} bandhead. If this feature is due to C{sub 2} then the star-forming complex has been in place for at least a few hundred Myr. Emission lines of Brγ, [Fe ii], and He i 2.06 μm do not track the NIR continuum light. Pockets of star-forming activity that do not have associated concentrations of red supergiants, and so likely have ages <8 Myr, are found along the western edge of the complex, and there is evidence that one such pocket contains a rich population of Wolf–Rayet stars. Unless the star-forming complex is significantly more metal-poor than the surroundings, then a significant fraction of its total mass is in stars with ages <8 Myr. If the present-day star formation rate is maintained then the timescale to double its stellar mass ranges from a few Myr to a few tens of Myr, depending on the contribution made by stars older than ∼8 Myr. If—as suggested by some studies—the star-forming complex is centered on the galaxy’s nucleus, which presumably contains a large population of old and intermediate-age stars, then the nucleus of NGC 253 is currently experiencing a phase of rapid growth in its stellar mass.

  13. Spatial and kinematic structure of Monoceros star-forming region

    Science.gov (United States)

    Costado, M. T.; Alfaro, E. J.

    2018-05-01

    The principal aim of this work is to study the velocity field in the Monoceros star-forming region using the radial velocity data available in the literature, as well as astrometric data from the Gaia first release. This region is a large star-forming complex formed by two associations named Monoceros OB1 and OB2. We have collected radial velocity data for more than 400 stars in the area of 8 × 12 deg2 and distance for more than 200 objects. We apply a clustering analysis in the subspace of the phase space formed by angular coordinates and radial velocity or distance data using the Spectrum of Kinematic Grouping methodology. We found four and three spatial groupings in radial velocity and distance variables, respectively, corresponding to the Local arm, the central clusters forming the associations and the Perseus arm, respectively.

  14. The Maximum Flux of Star-Forming Galaxies

    Science.gov (United States)

    Crocker, Roland M.; Krumholz, Mark R.; Thompson, Todd A.; Clutterbuck, Julie

    2018-04-01

    The importance of radiation pressure feedback in galaxy formation has been extensively debated over the last decade. The regime of greatest uncertainty is in the most actively star-forming galaxies, where large dust columns can potentially produce a dust-reprocessed infrared radiation field with enough pressure to drive turbulence or eject material. Here we derive the conditions under which a self-gravitating, mixed gas-star disc can remain hydrostatic despite trapped radiation pressure. Consistently taking into account the self-gravity of the medium, the star- and dust-to-gas ratios, and the effects of turbulent motions not driven by radiation, we show that galaxies can achieve a maximum Eddington-limited star formation rate per unit area \\dot{Σ }_*,crit ˜ 10^3 M_{⊙} pc-2 Myr-1, corresponding to a critical flux of F*, crit ˜ 1013L⊙ kpc-2 similar to previous estimates; higher fluxes eject mass in bulk, halting further star formation. Conversely, we show that in galaxies below this limit, our one-dimensional models imply simple vertical hydrostatic equilibrium and that radiation pressure is ineffective at driving turbulence or ejecting matter. Because the vast majority of star-forming galaxies lie below the maximum limit for typical dust-to-gas ratios, we conclude that infrared radiation pressure is likely unimportant for all but the most extreme systems on galaxy-wide scales. Thus, while radiation pressure does not explain the Kennicutt-Schmidt relation, it does impose an upper truncation on it. Our predicted truncation is in good agreement with the highest observed gas and star formation rate surface densities found both locally and at high redshift.

  15. YOUNG, ULTRAVIOLET-BRIGHT STARS DOMINATE DUST HEATING IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, K. A.

    2011-01-01

    In star-forming galaxies, dust plays a significant role in shaping the ultraviolet (UV) through infrared (IR) spectrum. Dust attenuates the radiation from stars, and re-radiates the energy through equilibrium and non-equilibrium emission. Polycyclic aromatic hydrocarbons (PAHs), graphite, and silicates contribute to different features in the spectral energy distribution; however, they are all highly opaque in the same spectral region-the UV. Compared to old stellar populations, young populations release a higher fraction of their total luminosity in the UV, making them a good source of the energetic UV photons that can power dust emission. However, given their relative abundance, the question of whether young or old stellar populations provide most of these photons that power the IR emission is an interesting question. Using three samples of galaxies observed with the Spitzer Space Telescope and our dusty radiative transfer model, we find that young stellar populations (on the order of 100 million years old) dominate the dust heating in star-forming galaxies, and old stellar populations (13 billion years old) generally contribute less than 20% of the far-IR luminosity.

  16. Insights from Synthetic Star-forming Regions. III. Calibration of Measurement and Techniques of Star Formation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    Through an extensive set of realistic synthetic observations (produced in Paper I), we assess in this part of the paper series (Paper III) how the choice of observational techniques affects the measurement of star formation rates (SFRs) in star-forming regions. We test the accuracy of commonly used techniques and construct new methods to extract the SFR, so that these findings can be applied to measure the SFR in real regions throughout the Milky Way. We investigate diffuse infrared SFR tracers such as those using 24 μ m, 70 μ m and total infrared emission, which have been previously calibrated for global galaxy scales. We set up a toy model of a galaxy and show that the infrared emission is consistent with the intrinsic SFR using extra-galactic calibrated laws (although the consistency does not prove their reliability). For local scales, we show that these techniques produce completely unreliable results for single star-forming regions, which are governed by different characteristic timescales. We show how calibration of these techniques can be improved for single star-forming regions by adjusting the characteristic timescale and the scaling factor and give suggestions of new calibrations of the diffuse star formation tracers. We show that star-forming regions that are dominated by high-mass stellar feedback experience a rapid drop in infrared emission once high-mass stellar feedback is turned on, which implies different characteristic timescales. Moreover, we explore the measured SFRs calculated directly from the observed young stellar population. We find that the measured point sources follow the evolutionary pace of star formation more directly than diffuse star formation tracers.

  17. HUBBLE'S PANORAMIC PORTRAIT OF A VAST STAR-FORMING REGION

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has snapped a panoramic portrait of a vast, sculpted landscape of gas and dust where thousands of stars are being born. This fertile star-forming region, called the 30 Doradus Nebula, has a sparkling stellar centerpiece: the most spectacular cluster of massive stars in our cosmic neighborhood of about 25 galaxies. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 [the large blue blob left of center], are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that are incubators for nascent stars. The photo offers an unprecedented, detailed view of the entire inner region of 30 Doradus, measuring 200 light-years wide by 150 light-years high. The nebula resides in the Large Magellanic Cloud (a satellite galaxy of the Milky Way), 170,000 light-years from Earth. Nebulas like 30 Doradus are the 'signposts' of recent star birth. High-energy ultraviolet radiation from the young, hot, massive stars in R136 causes the surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths all formed at the same time about 2 million years ago. The stars in R136 are producing intense 'stellar winds' (streams of material traveling at several million miles an hour), which are wreaking havoc on the gas and dust in the surrounding neighborhood. The winds are pushing the gas away from the cluster and compressing the inner regions of the surrounding gas and dust clouds [the pinkish material]. The intense pressure is triggering the collapse of parts of the clouds, producing a new generation of star formation around the central cluster. The new stellar nursery is about 30 to 50 light-years from R136. Most of the stars in the

  18. THE NEWLY BORN MAGNETARS POWERING GAMMA-RAY BURST INTERNAL-PLATEAU EMISSION: ARE THERE STRANGE STARS?

    International Nuclear Information System (INIS)

    Yu Yunwei; Cao Xiaofeng; Zheng Xiaoping

    2009-01-01

    The internal-plateau X-ray emission of gamma-ray bursts (GRBs) indicates that a newly born magnetar could be the central object of some GRBs. The observed luminosity and duration of the plateaus suggest that, for such a magnetar, a rapid spin with a sub- or millisecond period is sometimes able to last thousands of seconds. In this case, the conventional neutron star (NS) model for the magnetar may be challenged, since the rapid spin of nascent NSs would be remarkably decelerated within hundreds of seconds due to r-mode instability. In contrast, the r-modes can be effectively suppressed in nascent strange stars (SSs). In other words, to a certain extent, only SSs can keep nearly constant extremely rapid spin for a long period of time during the early ages of the stars. We thus propose that the sample of the GRB rapidly spinning magnetars can be used to test the SS hypothesis based on the distinct spin limits of NSs and SSs.

  19. The ionisation parameter of star-forming galaxies evolves with the specific star formation rate

    Science.gov (United States)

    Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan

    2018-04-01

    We investigate the evolution of the ionisation parameter of star-forming galaxies using a high-redshift (z ˜ 1.5) sample from the FMOS-COSMOS survey and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR) and specific star formation rate (sSFR) are matched to the high-redshift sample we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionisation parameter of each sample. We find an evolution in the ionisation parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z physically consistent with the definition of the ionisation parameter, a measure of the hydrogen ionising photon flux relative to the number density of hydrogen atoms.

  20. Studies of Young, Star-forming Circumstellar Disks

    Science.gov (United States)

    Bae, Jaehan

    2017-08-01

    Disks of gas and dust around forming stars - circumstellar disks - last only a few million years. This is a very small fraction of the entire lifetime of Sun-like stars, several billion years. Nevertheless, by the time circumstellar disks dissipate stars complete building up their masses, giant planets finish accreting gas, and terrestrial bodies are nearly fully grown and ready for their final assembly to become planets. Understanding the evolution of circumstellar disks are thus crucial in many contexts. Using numerical simulations as the primary tool, my thesis has focused on the studies of various physical processes that can occur throughout the lifetime of circumstellar disks, from their formation to dispersal. Chapters 2, 3, and 4 emphasize the importance of early evolution, during which time a forming star-disk system obtains mass from its natal cloud: the infall phase. In Chapter 2 and 3, I have modeled episodic outbursts of accretion in protostellar systems resulting from disk instabilities - gravitational instability and magnetorotational instability. I showed that outbursts occur preferentially during the infall phase, because the mass addition provides more favorable conditions for gravitational instability to initiate the outburst cycle, and that forming stars build up a significant fraction of their masses through repeated short-lived, episodic outbursts. The infall phase can also be important for the formation of planets. Recent ALMA observations revealed sets of bright and dark rings in circumstellar disks of young, forming stars, potentially indicating early formation of planets. In Chapter 4, I showed that infall streams can create radial pressure bumps near the outer edge of the mass landing on the disk, from which vortices can form, collecting solid particles very efficiently to make initial seeds of planets. The next three chapters highlight the role of planets in setting the observational appearance and the evolution of circumstellar disks

  1. Newly-formed emotional memories guide selective attention processes: Evidence from event-related potentials

    OpenAIRE

    Harald T. Schupp; Ursula Kirmse; Ralf Schmälzle; Tobias Flaisch; Britta Renner

    2016-01-01

    Emotional cues can guide selective attention processes. However, emotional stimuli can both activate long-term memory representations reflecting general world knowledge and engage newly formed memory representations representing specific knowledge from the immediate past. Here, the self-completion feature of associative memory was utilized to assess the regulation of attention processes by newly-formed emotional memory. First, new memory representations were formed by presenting pictures depi...

  2. C III] EMISSION IN STAR-FORMING GALAXIES NEAR AND FAR

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, J. R. [Astrophysics Science Division, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Bayliss, M. B. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Gladders, M. D. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Sharon, K.; Johnson, T. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wuyts, E. [Max Plank Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany); Dahle, H. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Peña-Guerrero, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-11-20

    We measure [C iii] 1907, C iii] 1909 Å emission lines in 11 gravitationally lensed star-forming galaxies at z ∼ 1.6–3, finding much lower equivalent widths than previously reported for fainter lensed galaxies. While it is not yet clear what causes some galaxies to be strong C iii] emitters, C iii] emission is not a universal property of distant star-forming galaxies. We also examine C iii] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST and IUE. Twenty percent of these local galaxies show strong C iii] emission, with equivalent widths < −5 Å. Three nearby galaxies show C iii] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf–Rayet galaxies. At all redshifts, strong C iii] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C iii] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies.

  3. The Star-forming Main Sequence of Dwarf Low Surface Brightness Galaxies

    Science.gov (United States)

    McGaugh, Stacy S.; Schombert, James M.; Lelli, Federico

    2017-12-01

    We explore the star-forming properties of late-type, low surface brightness (LSB) galaxies. The star-forming main sequence ({SFR}-{M}* ) of LSB dwarfs has a steep slope, indistinguishable from unity (1.04 ± 0.06). They form a distinct sequence from more massive spirals, which exhibit a shallower slope. The break occurs around {M}* ≈ {10}10 {M}⊙ , and can also be seen in the gas mass—stellar mass plane. The global Kennicutt-Schmidt law ({SFR}-{M}g) has a slope of 1.47 ± 0.11 without the break seen in the main sequence. There is an ample supply of gas in LSB galaxies, which have gas depletion times well in excess of a Hubble time, and often tens of Hubble times. Only ˜ 3 % of this cold gas needs be in the form of molecular gas to sustain the observed star formation. In analogy with the faint, long-lived stars of the lower stellar main sequence, it may be appropriate to consider the main sequence of star-forming galaxies to be defined by thriving dwarfs (with {M}* {10}10 {M}⊙ ) are weary giants that constitute more of a turn-off population.

  4. The Maui International Double Star Conference

    Science.gov (United States)

    Genet, Russell

    2013-04-01

    A three-day double star conference in February, 2013, covered double star observations from simple eyepiece astrometry of wide binaries, with orbital periods of centuries, to amplitude interferometry of binaries with periods measured in days or even hours. A wide range of participants, from students and amateurs to professionals shared their perspectives in panel discussions. This was the first conference of the newly-formed International Association of Double Star Observers (IADSO). PDFs of 22 of the talks and YouTube links to 23 of the talks and panels are available at www.IADSO.org.

  5. RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION

    International Nuclear Information System (INIS)

    Leja, Joel; Van Dokkum, Pieter G.; Franx, Marijn; Whitaker, Katherine E.

    2015-01-01

    We examine the connection between the observed star-forming sequence (SFR ∝ M α ) and the observed evolution of the stellar mass function in the range 0.2 < z < 2.5. We find that the star-forming sequence cannot have a slope α ≲ 0.9 at all masses and redshifts because this would result in a much higher number density at 10 < log (M/M ☉ ) < 11 by z = 1 than is observed. We show that a transition in the slope of the star-forming sequence, such that α = 1 at log (M/M ☉ ) < 10.5 and α = 0.7-0.13z (Whitaker et al.) at log (M/M ☉ ) > 10.5, greatly improves agreement with the evolution of the stellar mass function. We then derive a star-forming sequence that reproduces the evolution of the mass function by design. This star-forming sequence is also well described by a broken power law, with a shallow slope at high masses and a steep slope at low masses. At z = 2, it is offset by ∼0.3 dex from the observed star-forming sequence, consistent with the mild disagreement between the cosmic star formation rate (SFR) and recent observations of the growth of the stellar mass density. It is unclear whether this problem stems from errors in stellar mass estimates, errors in SFRs, or other effects. We show that a mass-dependent slope is also seen in other self-consistent models of galaxy evolution, including semianalytical, hydrodynamical, and abundance-matching models. As part of the analysis, we demonstrate that neither mergers nor hidden low-mass quiescent galaxies are likely to reconcile the evolution of the mass function and the star-forming sequence. These results are supported by observations from Whitaker et al

  6. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  7. YOUNG STELLAR OBJECTS IN THE MASSIVE STAR-FORMING REGION W49

    Energy Technology Data Exchange (ETDEWEB)

    Saral, G.; Hora, J. L.; Willis, S. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koenig, X. P. [Yale University, Department of Astronomy, 208101, New Haven, CT 06520-8101 (United States); Gutermuth, R. A. [University of Massachusetts, Department of Astronomy, Amherst, MA 01003 (United States); Saygac, A. T., E-mail: gsaral@cfa.harvard.edu [Istanbul University, Faculty of Science, Astronomy and Space Sciences Department, Istanbul-Turkey (Turkey)

    2015-11-01

    We present the initial results of our investigation of the star-forming complex W49, one of the youngest and most luminous massive star-forming regions in our Galaxy. We used Spitzer/Infrared Array Camera (IRAC) data to investigate massive star formation with the primary objective of locating a representative set of protostars and the clusters of young stars that are forming around them. We present our source catalog with the mosaics from the IRAC data. In this study we used a combination of IRAC, MIPS, Two Micron All Sky Survey, and UKIRT Deep Infrared Sky Survey (UKIDSS) data to identify and classify the young stellar objects (YSOs). We identified 232 Class 0/I YSOs, 907 Class II YSOs, and 74 transition disk candidate objects using color–color and color–magnitude diagrams. In addition, to understand the evolution of star formation in W49, we analyzed the distribution of YSOs in the region to identify clusters using a minimal spanning tree method. The fraction of YSOs that belong to clusters with ≥7 members is found to be 52% for a cutoff distance of 96″, and the ratio of Class II/I objects is 2.1. We compared the W49 region to the G305 and G333 star-forming regions and concluded that W49 has the richest population, with seven subclusters of YSOs.

  8. THE STAR FORMATION LAWS OF EDDINGTON-LIMITED STAR-FORMING DISKS

    International Nuclear Information System (INIS)

    Ballantyne, D. R.; Armour, J. N.; Indergaard, J.

    2013-01-01

    Two important avenues into understanding the formation and evolution of galaxies are the Kennicutt-Schmidt (K-S) and Elmegreen-Silk (E-S) laws. These relations connect the surface densities of gas and star formation (Σ gas and Σ-dot * , respectively) in a galaxy. To elucidate the K-S and E-S laws for disks where Σ gas ∼> 10 4 M ☉ pc –2 , we compute 132 Eddington-limited star-forming disk models with radii spanning tens to hundreds of parsecs. The theoretically expected slopes (≈1 for the K-S law and ≈0.5 for the E-S relation) are relatively robust to spatial averaging over the disks. However, the star formation laws exhibit a strong dependence on opacity that separates the models by the dust-to-gas ratio that may lead to the appearance of a erroneously large slope. The total infrared luminosity (L TIR ) and multiple carbon monoxide (CO) line intensities were computed for each model. While L TIR can yield an estimate of the average Σ-dot * that is correct to within a factor of two, the velocity-integrated CO line intensity is a poor proxy for the average Σ gas for these warm and dense disks, making the CO conversion factor (α CO ) all but useless. Thus, observationally derived K-S and E-S laws at these values of Σ gas that uses any transition of CO will provide a poor measurement of the underlying star formation relation. Studies of the star formation laws of Eddington-limited disks will require a high-J transition of a high density molecular tracer, as well as a sample of galaxies with known metallicity estimates.

  9. Orion star-forming region - far-infrared and radio molecular observations

    International Nuclear Information System (INIS)

    Thronson, H.A. Jr.; Harper, D.A.; Bally, J.; Dragovan, M.; Mozurkewich, D.; Yerkes Observatory, Williams Bay, WI; ATandT Bell Labs., Holmdel, NJ; Chicago Uni., IL; E. O. Hulburt Center for Space Research, Washington, DC)

    1986-01-01

    New J = 1-0 CO and far-infrared maps of the Orion star-forming region are presented and discussed. The total infrared luminosity of the Orion star-forming ridge is 250,000 solar luminosities. The material that is emitting strongly at 60 microns is traced and found to be highly centrally concentrated. However, the majority of the extended emission from this region comes from dust that is ultimately heated by the visible Trapezium cluster stars. The luminosity of IRc 2, the most luminous member of the infrared cluster, is estimated to be 40,000-50,000 solar luminosities. A schematic drawing of the Ori MC 1 region is presented. 30 references

  10. THE EFFECTS OF EPISODIC STAR FORMATION ON THE FUV-NUV COLORS OF STAR FORMING REGIONS IN OUTER DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Kate L.; Van Zee, Liese [Department of Astronomy, Indiana University, Bloomington, IN 47405 (United States); Dowell, Jayce D., E-mail: barneskl@astro.indiana.edu, E-mail: vanzee@astro.indiana.edu, E-mail: jdowell@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2013-09-20

    We run stellar population synthesis models to examine the effects of a recently episodic star formation history (SFH) on UV and Hα colors of star forming regions. Specifically, the SFHs we use are an episodic sampling of an exponentially declining star formation rate (SFR; τ model) and are intended to simulate the SFHs in the outer disks of spiral galaxies. To enable comparison between our models and observational studies of star forming regions in outer disks, we include in our models sensitivity limits that are based on recent deep UV and Hα observations in the literature. We find significant dispersion in the FUV-NUV colors of simulated star forming regions with frequencies of star formation episodes of 1 × 10{sup –8} to 4 × 10{sup –9} yr{sup –1}. The dispersion in UV colors is similar to that found in the outer disk of nearby spiral galaxies. As expected, we also find large variations in L{sub H{sub α}}/L{sub FUV}. We interpret our models within the context of inside-out disk growth, and find that a radially increasing τ and decreasing metallicity with an increasing radius will only produce modest FUV-NUV color gradients, which are significantly smaller than what is found for some nearby spiral galaxies. However, including moderate extinction gradients with our models can better match the observations with steeper UV color gradients. We estimate that the SFR at which the number of stars emitting FUV light becomes stochastic is ∼2 × 10{sup –6} M{sub ☉} yr{sup –1}, which is substantially lower than the SFR of many star forming regions in outer disks. Therefore, we conclude that stochasticity in the upper end of the initial mass function is not likely to be the dominant cause of dispersion in the FUV-NUV colors of star forming regions in outer disks. Finally, we note that if outer disks have had an episodic SFH similar to that used in this study, this should be taken into account when estimating gas depletion timescales and modeling chemical

  11. Cosmic-ray energy densities in star-forming galaxies

    Directory of Open Access Journals (Sweden)

    Persic Massimo

    2017-01-01

    Full Text Available The energy density of cosmic ray protons in star forming galaxies can be estimated from π0-decay γ-ray emission, synchrotron radio emission, and supernova rates. To galaxies for which these methods can be applied, the three methods yield consistent energy densities ranging from Up ~ 0.1 − 1 eV cm−3 to Up ~ 102 − 103 eV cm−3 in galaxies with low to high star-formation rates, respectively.

  12. Accretion Processes in Star Formation

    DEFF Research Database (Denmark)

    Küffmeier, Michael

    for short-lived radionuclides that enrich the cloud as a result of supernova explosions of the massive stars allows us to analyze the distribution of the short-lived radionuclides around young forming stars. In contradiction to results from highly-idealized models, we find that the discrepancy in 26 Al...... that the accretion process of stars is heterogeneous in space, time and among different protostars. In some cases, disks form a few thousand years after stellar birth, whereas in other cases disk formation is suppressed due to efficient removal of angular momentum. Angular momentum is mainly transported outward...... with potentially observable fluctuations in the luminosity profile that are induced by variations in the accretion rate. Considering that gas inside protoplanetary disks is not fully ionized, I implemented a solver that accounts for nonideal MHD effects into a newly developed code framework called dispatch...

  13. THE STAR FORMATION LAWS OF EDDINGTON-LIMITED STAR-FORMING DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, D. R.; Armour, J. N.; Indergaard, J., E-mail: david.ballantyne@physics.gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2013-03-10

    Two important avenues into understanding the formation and evolution of galaxies are the Kennicutt-Schmidt (K-S) and Elmegreen-Silk (E-S) laws. These relations connect the surface densities of gas and star formation ({Sigma}{sub gas} and {Sigma}-dot{sub *}, respectively) in a galaxy. To elucidate the K-S and E-S laws for disks where {Sigma}{sub gas} {approx}> 10{sup 4} M{sub Sun} pc{sup -2}, we compute 132 Eddington-limited star-forming disk models with radii spanning tens to hundreds of parsecs. The theoretically expected slopes ( Almost-Equal-To 1 for the K-S law and Almost-Equal-To 0.5 for the E-S relation) are relatively robust to spatial averaging over the disks. However, the star formation laws exhibit a strong dependence on opacity that separates the models by the dust-to-gas ratio that may lead to the appearance of a erroneously large slope. The total infrared luminosity (L{sub TIR}) and multiple carbon monoxide (CO) line intensities were computed for each model. While L{sub TIR} can yield an estimate of the average {Sigma}-dot{sub *} that is correct to within a factor of two, the velocity-integrated CO line intensity is a poor proxy for the average {Sigma}{sub gas} for these warm and dense disks, making the CO conversion factor ({alpha}{sub CO}) all but useless. Thus, observationally derived K-S and E-S laws at these values of {Sigma}{sub gas} that uses any transition of CO will provide a poor measurement of the underlying star formation relation. Studies of the star formation laws of Eddington-limited disks will require a high-J transition of a high density molecular tracer, as well as a sample of galaxies with known metallicity estimates.

  14. Multimolecular studies of Galactic star-forming regions

    NARCIS (Netherlands)

    Baan, W. A.; Loenen, A. F.; Spaans, M.

    2014-01-01

    Molecular emission-line observations of isolated Galactic star-forming regions are used to model the physical properties of the molecular interstellar medium in these systems. Observed line ratios are compared with the results predicted by models that incorporate gas-phase chemistry and the heating

  15. THE STRUCTURAL EVOLUTION OF FORMING AND EARLY STAGE STAR CLUSTERS

    International Nuclear Information System (INIS)

    Jaehnig, Karl O.; Da Rio, Nicola; Tan, Jonathan C.

    2015-01-01

    We study the degree of angular substructure in the stellar position distribution of young members of Galactic star-forming regions, looking for correlations with distance from cluster center, surface number density of stars, and local dynamical age. To this end we adopt the catalog of members in 18 young (∼1-3 Myr) clusters from the Massive Young Star-Forming Complex Study in Infrared and X-ray Survey and the statistical analysis of the angular dispersion parameter, δ ADP, N . We find statistically significant correlation between δ ADP, N and physical projected distance from the center of the clusters, with the centers appearing smoother than the outskirts, consistent with more rapid dynamical processing on local dynamical, free-fall or orbital timescales. Similarly, smoother distributions are seen in regions of higher surface density, or older dynamical ages. These results indicate that dynamical processing that erases substructure is already well-advanced in young, sometimes still-forming, clusters. Such observations of the dissipation of substructure have the potential to constrain theoretical models of the dynamical evolution of young and forming clusters

  16. THE PRESSURE OF THE STAR-FORMING INTERSTELLAR MEDIUM IN COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Munshi, Ferah; Quinn, Thomas R.; Governato, Fabio; Christensen, Charlotte; Wadsley, James; Loebman, Sarah; Shen, Sijing

    2014-01-01

    We examine the pressure of the star-forming interstellar medium (ISM) of Milky-Way-sized disk galaxies using fully cosmological SPH+N-body, high-resolution simulations. These simulations include explicit treatment of metal-line cooling in addition to dust and self-shielding, H 2 -based star formation. The four simulated halos have masses ranging from a few times 10 10 to nearly 10 12 solar masses. Using a kinematic decomposition of these galaxies into present-day bulge and disk components, we find that the typical pressure of the star-forming ISM in the present-day bulge is higher than that in the present-day disk by an order of magnitude. We also find that the pressure of the star-forming ISM at high redshift is, on average, higher than ISM pressures at low redshift. This explains why the bulge forms at higher pressures: the disk assembles at lower redshift when the ISM exhibits lower pressure and the bulge forms at high redshift when the ISM has higher pressure. If ISM pressure and IMF variation are tied together, these results could indicate a time-dependent IMF in Milky-Way-like systems as well as a different IMF in the bulge and the disk

  17. Extreme Variables in Star Forming Regions

    Science.gov (United States)

    Contreras Peña, Carlos Eduardo

    2015-01-01

    in two multi-epoch infrared surveys: the UKIDSS Galactic Plane Survey (GPS) and the Vista Variables in the Via Lactea (VVV). In order to further investigate the nature of the selected variable stars, we use photometric information arising from public surveys at near- to far-infrared wavelengths. In addition we have performed spectroscopic and photometric follow-up for a large subset of the samples arising from GPS and VVV. We analyse the widely separated two-epoch K-band photometry in the 5th, 7th and 8th data releases of the UKIDSS Galactic Plane Survey. We find 71 stars with ΔK > 1 mag, including 2 previously known OH/IR stars and a Nova. Even though the mid-plane is mostly excluded from the dataset, we find the majority (66%) of our sample to be within known star forming regions (SFRs), with two large concentrations in the Serpens OB2 association (11 stars) and the Cygnus-X complex (27 stars). The analysis of the multi-epoch K-band photometry of 2010-2012 data from VVV covering the Galactic disc at |b| explained as arising from shock-excited emission caused by molecular outflows. Whether these molecular outflows are related to outbursts events cannot be confirmed from our data. Adding the GPS and VVV spectroscopic results, we find that between 6 and 14 objects are new additions to the FUor class from their close resemblance to the near-infrared spectra of FUors, and at least 23 more objects are new additions to the eruptive variable class. For most of these we are unable to classify them into any of the original definitions for this variable class. In any case, we are adding up to 37 new stars to the eruptive variable class which would double the current number of known objects. We note that most objects are found to be deeply embedded optically invisible stars, thus increasing the number of objects belonging to this subclass by a much larger factor. In general, objects in our samples which are found to be likely eruptive variable stars show a mixture of

  18. High resolution spectroscopy of six new extreme helium stars

    Science.gov (United States)

    Heber, U.; Jones, G.; Drilling, J. S.

    1986-01-01

    High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.

  19. Stellar outflow: relative motions of nebulae and Of stars

    International Nuclear Information System (INIS)

    Lynds, B.T.

    1979-01-01

    On the basis of arguments presented by Roberts (1972) and of Shu et al. (1972), Minn and Greenberg (1973) argued that the velocity differences between newly formed hot stars and the surrounding interstellar medium are sufficiently different so that typical H II regions should consist of material which is continually being replaced by the ambient medium and which should therefore possess the velocity of the medium rather than that of the star. The critical test of this hypothesis will be a comparison of nebular velocities with the velocities of the exciting stars. This is performed for Of stars and nebulae. (Auth.)

  20. A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS

    International Nuclear Information System (INIS)

    Zahid, H. J.; Dima, G. I.; Kewley, L. J.; Erb, D. K.; Davé, R.

    2012-01-01

    In this contribution, we present the first census of oxygen in star-forming galaxies in the local universe. We examine three samples of galaxies with metallicities and star formation rates (SFRs) at z = 0.07, 0.8, and 2.26, including the Sloan Digital Sky Survey (SDSS) and DEEP2 survey. We infer the total mass of oxygen produced and mass of oxygen found in the gas-phase from our local SDSS sample. The star formation history is determined by requiring that galaxies evolve along the relation between stellar mass and SFR observed in our three samples. We show that the observed relation between stellar mass and SFR for our three samples is consistent with other samples in the literature. The mass-metallicity relation is well established for our three samples, and from this we empirically determine the chemical evolution of star-forming galaxies. Thus, we are able to simultaneously constrain the SFRs and metallicities of galaxies over cosmic time, allowing us to estimate the mass of oxygen locked up in stars. Combining this work with independent measurements reported in the literature, we conclude that the loss of oxygen from the interstellar medium of local star-forming galaxies is likely to be a ubiquitous process with the oxygen mass loss scaling (almost) linearly with stellar mass. We estimate the total baryonic mass loss and argue that only a small fraction of the baryons inferred from cosmological observations accrete onto galaxies.

  1. THE FRAGMENTATION OF MAGNETIZED, MASSIVE STAR-FORMING CORES WITH RADIATIVE FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Andrew T.; McKee, Christopher F. [Department of Physics, University of California, Berkeley, Berkeley, CA 94720 (United States); Cunningham, Andrew J. [Lawrence Livermore National Laboratory, P.O. Box 808, L-23, Livermore, CA 94550 (United States); Klein, Richard I. [Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R., E-mail: atmyers@berkeley.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-04-01

    We present a set of three-dimensional, radiation-magnetohydrodynamic calculations of the gravitational collapse of massive (300 M{sub Sun }), star-forming molecular cloud cores. We show that the combined effects of magnetic fields and radiative feedback strongly suppress core fragmentation, leading to the production of single-star systems rather than small clusters. We find that the two processes are efficient at suppressing fragmentation in different regimes, with the feedback most effective in the dense, central region and the magnetic field most effective in more diffuse, outer regions. Thus, the combination of the two is much more effective at suppressing fragmentation than either one considered in isolation. Our work suggests that typical massive cores, which have mass-to-flux ratios of about 2 relative to critical, likely form a single-star system, but that cores with weaker fields may form a small star cluster. This result helps us understand why the observed relationship between the core mass function and the stellar initial mass function holds even for {approx}100 M{sub Sun} cores with many thermal Jeans masses of material. We also demonstrate that a {approx}40 AU Keplerian disk is able to form in our simulations, despite the braking effect caused by the strong magnetic field.

  2. New far infrared images of bright, nearby, star-forming regions

    Science.gov (United States)

    Harper, D. AL, Jr.; Cole, David M.; Dowell, C. Darren; Lees, Joanna F.; Lowenstein, Robert F.

    1995-01-01

    Broadband imaging in the far infrared is a vital tool for understanding how young stars form, evolve, and interact with their environment. As the sensitivity and size of detector arrays has increased, a richer and more detailed picture has emerged of the nearest and brightest regions of active star formation. We present data on M 17, M 42, and S 106 taken recently on the Kuiper Airborne Observatory with the Yerkes Observatory 60-channel far infrared camera, which has pixel sizes of 17 in. at 60 microns, 27 in. at 100 microns, and 45 in. at 160 and 200 microns. In addition to providing a clearer view of the complex central cores of the regions, the images reveal new details of the structure and heating of ionization fronts and photodissociation zones where radiation form luminous stars interacts with adjacent molecular clouds.

  3. THE DISK POPULATION OF THE TAURUS STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Luhman, K. L.; Allen, P. R.; Espaillat, C.; Hartmann, L.; Calvet, N.

    2010-01-01

    We have analyzed nearly all images of the Taurus star-forming region at 3.6, 4.5, 5.8, 8.0, and 24 μm that were obtained during the cryogenic mission of the Spitzer Space Telescope (46 deg 2 ) and have measured photometry for all known members of the region that are within these data, corresponding to 348 sources, or 99% of the known stellar population. By combining these measurements with previous observations with the Spitzer Infrared Spectrograph and other facilities, we have classified the members of Taurus according to whether they show evidence of circumstellar disks and envelopes (classes I, II, and III). Through these classifications, we find that the disk fraction in Taurus, N(II)/N(II+III), is ∼75% for solar-mass stars and declines to ∼45% for low-mass stars and brown dwarfs (0.01-0.3 M sun ). This dependence on stellar mass is similar to that measured for Chamaeleon I, although the disk fraction in Taurus is slightly higher overall, probably because of its younger age (1 Myr versus 2-3 Myr). In comparison, the disk fraction for solar-mass stars is much lower (∼20%) in IC 348 and σ Ori, which are denser than Taurus and Chamaeleon I and are roughly coeval with the latter. These data indicate that disk lifetimes for solar-mass stars are longer in star-forming regions that have lower stellar densities. Through an analysis of multiple epochs of Spitzer photometry that are available for ∼200 Taurus members, we find that stars with disks exhibit significantly greater mid-infrared (mid-IR) variability than diskless stars, which agrees with the results of similar variability measurements for a smaller sample of stars in Chamaeleon I. The variability fraction for stars with disks is higher in Taurus than in Chamaeleon I, indicating that the IR variability of disks decreases with age. Finally, we have used our data in Taurus to refine the observational criteria for primordial, evolved, and transitional disks. The ratio of the number of evolved and

  4. A Comparison of Traditional and Newly Emerging Forms of Cooperative Capitalization

    OpenAIRE

    Barton, David G.

    2004-01-01

    This paper compares the traditional forms of capitalization used by American co-ops to newly emerging forms. It is based on an in-depth review of several case co-ops. A broad framework is provided that may be beneficial in more extensive studies of capitalization practices of cooperatives and similar organizations. It is divided into three parts. Part One outlines the alternative capitalization forms being used by cooperatives and their antecedents, where conversions to other structures and f...

  5. Molecular Diagnostics of the Interstellar Medium and Star Forming Regions

    Science.gov (United States)

    Hartquist, T. W.; Dalgarno, A.

    1996-03-01

    Selected examples of the use of observationally inferred molecular level populations and chemical compositions in the diagnosis of interstellar sources and processes important in them (and in other diffuse astrophysical sources) are given. The sources considered include the interclump medium of a giant molecular cloud, dark cores which are the progenitors of star formation, material responding to recent star formation and which may form further stars, and stellar ejecta (including those of supernovae) about to merge with the interstellar medium. The measurement of the microwave background, mixing of material between different nuclear burning zones in evolved stars and turbulent boundary layers (which are present in and influence the structures and evolution of all diffuse astrophysical sources) are treated.

  6. IN-SYNC. II. VIRIAL STARS FROM SUBVIRIAL CORES—THE VELOCITY DISPERSION OF EMBEDDED PRE-MAIN-SEQUENCE STARS IN NGC 1333

    International Nuclear Information System (INIS)

    Foster, Jonathan B.; Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.; Arce, Héctor G.; Nidever, David L.; Stassun, Keivan G.; Tan, Jonathan C.; Da Rio, Nicola; Chojnowski, S. Drew; Majewski, Steven R.; Skrutskie, Michael; Wilson, John C.; Flaherty, Kevin M.; Rebull, Luisa; Frinchaboy, Peter M.; Zasowski, Gail

    2015-01-01

    The initial velocity dispersion of newborn stars is a major unconstrained aspect of star formation theory. Using near-infrared spectra obtained with the APOGEE spectrograph, we show that the velocity dispersion of young (1-2 Myr) stars in NGC 1333 is 0.92 ± 0.12 km s –1 after correcting for measurement uncertainties and the effect of binaries. This velocity dispersion is consistent with the virial velocity of the region and the diffuse gas velocity dispersion, but significantly larger than the velocity dispersion of the dense, star-forming cores, which have a subvirial velocity dispersion of 0.5 km s –1 . Since the NGC 1333 cluster is dynamically young and deeply embedded, this measurement provides a strong constraint on the initial velocity dispersion of newly formed stars. We propose that the difference in velocity dispersion between stars and dense cores may be due to the influence of a 70 μG magnetic field acting on the dense cores or be the signature of a cluster with initial substructure undergoing global collapse

  7. GEOMETRY OF STAR-FORMING GALAXIES FROM SDSS, 3D-HST, AND CANDELS

    International Nuclear Information System (INIS)

    Van der Wel, A.; Chang, Yu-Yen; Rix, H.-W.; Martig, M.; Bell, E. F.; Holden, B. P.; Koo, D. C.; Mozena, M.; Faber, S. M.; Ferguson, H. C.; Brammer, G.; Kassin, S. A.; Giavalisco, M.; Skelton, R.; Whitaker, K.; Momcheva, I.; Van Dokkum, P. G.; Dekel, A.; Ceverino, D.; Franx, M.

    2014-01-01

    We determine the intrinsic, three-dimensional shape distribution of star-forming galaxies at 0 < z < 2.5, as inferred from their observed projected axis ratios. In the present-day universe, star-forming galaxies of all masses 10 9 -10 11 M ☉ are predominantly thin, nearly oblate disks, in line with previous studies. We now extend this to higher redshifts, and find that among massive galaxies (M * > 10 10 M ☉ ) disks are the most common geometric shape at all z ≲ 2. Lower-mass galaxies at z > 1 possess a broad range of geometric shapes: the fraction of elongated (prolate) galaxies increases toward higher redshifts and lower masses. Galaxies with stellar mass 10 9 M ☉ (10 10 M ☉ ) are a mix of roughly equal numbers of elongated and disk galaxies at z ∼ 1 (z ∼ 2). This suggests that galaxies in this mass range do not yet have disks that are sustained over many orbital periods, implying that galaxies with present-day stellar mass comparable to that of the Milky Way typically first formed such sustained stellar disks at redshift z ∼ 1.5-2. Combined with constraints on the evolution of the star formation rate density and the distribution of star formation over galaxies with different masses, our findings imply that, averaged over cosmic time, the majority of stars formed in disks

  8. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    Energy Technology Data Exchange (ETDEWEB)

    Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara, E-mail: petri@saao.ac.za [South African Astronomical Observatory, P.O. Box 9 Observatory, Cape Town (South Africa)

    2014-12-20

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-law distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems.

  9. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    International Nuclear Information System (INIS)

    Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara

    2014-01-01

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-law distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems

  10. Water in low-mass star-forming regions with Herschel

    DEFF Research Database (Denmark)

    Kristensen, L. E.; Visser, R.; Van Dishoeck, E. F.

    2010-01-01

    "Water In Star-forming regions with Herschel" (WISH) is a key programme dedicated to studying the role of water and related species during the star-formation process and constraining the physical and chemical properties of young stellar objects. The Heterodyne Instrument for the Far-Infrared (HIF...

  11. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    Science.gov (United States)

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  12. The difficult births of sunlike stars

    International Nuclear Information System (INIS)

    Stahler, S.; Comins, N.

    1988-01-01

    Over 4.5 billion years ago a small region deep inside an enormous cloud of interstellar gas and dust, located in an outer spiral arm of the Milky Way, gradually contracted until it became gravitationally unstable. When the density in this region of the cloud became great enough to allow gravity to overcome all other forces acting on it, the region collapsed. Materials swirled inward, condensed, heated up, radiated energy, and eventually settled down to form the Sun and our solar system. What properties did that original unstable region have when it began to shrink? Astronomers know it rotated, because its angular momentum manifests itself today mostly in the orbital motions of the planets. But that alone cannot help us answer even the most fundamental questions we have about how stars like the Sun form. To find out more, astronomers are studying similar collapsing regions of interstellar gas and dust in the Milky Way known as cold cores, which are even now in the process of becoming solar-type stars. Astronomers want to answer three specific questions: What qualities do these cold cores have that allow stars like the Sun to form from them? What exactly happens during the collapse process? And how do newly formed stars evolve?

  13. A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, J. D.; Rujopakarn, W. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Daddi, E.; Liu, D. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay (France); Rodighiero, G. [Dipartimento di Fisica e Astronomia, Universita di Padova, vicolo Osservatorio, 3, I-35122 Padova (Italy); Sargent, M. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Renzini, A. [Instituto Nazionale de Astrofisica, Osservatorio Astronomico di Padova, v.co dell’Osservatorio 5, I-35122 Padova (Italy); Feruglio, C. [IRAM—Institut de RadioAstronomie Millimétrique, 300 rue de la Piscine, F-38406 Saint Martin d’Hères (France); Kashino, D. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Sanders, D. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Nagao, T. [Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Arimoto, N. [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI-96720 (United States); Berta, S.; Lutz, D. [Max-Planck-Institut für extraterrestrische Physik, D-84571 Garching (Germany); Béthermin, M. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Koekemoer, A., E-mail: john.silverman@ipmu.jp [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); and others

    2015-10-20

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ∼ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxies having star formation rates (∼300–800 M{sub ⊙} yr{sup −1}) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ∼ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (∼30%–50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.

  14. THE STRUCTURE OF THE STAR-FORMING CLUSTER RCW 38

    Energy Technology Data Exchange (ETDEWEB)

    Winston, E. [ESA-ESTEC (SRE-SA), Keplerlaan 1, 2201 AZ Noordwijk ZH (Netherlands); Wolk, S. J.; Bourke, T. L.; Spitzbart, B. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Megeath, S. T. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Avenue, Toledo, OH 43606 (United States); Gutermuth, R., E-mail: ewinston@rssd.esa.int [Five Colleges Astronomy Department, Smith College, Northampton, MA 01027 (United States)

    2011-12-20

    We present a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 {mu}m) is combined with Two Micron All Sky Survey near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 class II stars, and 74 class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001{sub O}bj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, N{sub H} and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. We posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains.

  15. Characterizing the Interstellar and Circumgalactic Medium in Star-forming Galaxies

    Science.gov (United States)

    Du, Xinnan; Shapley, Alice; Crystal Martin, Alison Coil, Charles Steidel, Tucker Jones, Daniel Stark, Allison Strom

    2018-01-01

    Rest-frame UV and optical spectroscopy provide valuable information on the physical properties of the neutral and ionized interstellar medium (ISM) in star-forming galaxies, including both the systemic interstellar component originating from HII regions, and the multi-phase outflowing component associated with star-formation feedback. My thesis focuses on both the systemic and outflowing ISM in star-forming galaxies at redshift z ~ 1-4. With an unprecedented sample at z~1 with the rest-frame near-UV coverage, we examined how the kinematics of the warm and cool phrases of gas, probed by the interstellar CIV and low-ionization features, respectively, relate to each other. The spectral properties of CIV strongly correlate with the current star-formation rate, indicating a distinct nature of highly-ionized outflowing gas being driven by massive star formation. Additionally, we used the same set of z~1 galaxies to study the properties of the systemic ISM in HII regions by analyzing the nebular CIII] emission. CIII] emission tends to be stronger in lower-mass, bluer, and fainter galaxies with lower metallicity, suggesting that the strong CIII] emitters at lower redshifts can be ideal analogs of young, bursty galaxies at z > 6, which are possibly responsible for reionizing the universe. We are currently investigating the redshift evolution of the neutral, circumgalactic gas in a sample of ~1100 Lyman Break Galaxies at z ~ 2-4. The negative correlation between Lya emission and low-ionization interstellar absorption line strengths appears to be universal across different redshifts, but the fine-structure line emitting regions are found to be more compact for higher-redshift galaxies. With the detailed observational constraints provided by the rest-UV and rest-optical spectroscopy, our study sheds light on how the interstellar and circumgalactic gas components and different phases of gas connect to each other, and therefore provides a comprehensive picture of the overall

  16. On the star-forming ability of Molecular Clouds

    Science.gov (United States)

    Anathpindika, S.; Burkert, A.; Kuiper, R.

    2018-02-01

    The star-forming ability of a molecular cloud depends on the fraction of gas it can cycle into the dense-phase. Consequently, one of the crucial questions in reconciling star formation in clouds is to understand the factors that control this process. While it is widely accepted that the variation in ambient conditions can alter significantly the ability of a cloud to spawn stars, the observed variation in the star-formation rate in nearby clouds that experience similar ambient conditions, presents an interesting question. In this work, we attempted to reconcile this variation within the paradigm of colliding flows. To this end we develop self-gravitating, hydrodynamic realizations of identical flows, but allowed to collide off-centre. Typical observational diagnostics such as the gas-velocity dispersion, the fraction of dense-gas, the column density distribution (N-PDF), the distribution of gas mass as a function of K-band extinction and the strength of compressional/solenoidal modes in the post-collision cloud were deduced for different choices of the impact parameter of collision. We find that a strongly sheared cloud is terribly inefficient in cycling gas into the dense phase and that such a cloud can possibly reconcile the sluggish nature of star formation reported for some clouds. Within the paradigm of cloud formation via colliding flows this is possible in case of flows colliding with a relatively large impact parameter. We conclude that compressional modes - though probably essential - are insufficient to ensure a relatively higher star-formation efficiency in a cloud.

  17. A Hard X-Ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

    DEFF Research Database (Denmark)

    Yukita, M.; Hornschemeier, A. E.; Lehmer, B. D.

    2016-01-01

    We present the results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d = 4.6 Mpc). This is the first investigation to spatially resolve the hard (E > 10 keV) X-ray emission of this galaxy. The nuclear region and similar to 20 off-nuclear point sources......, including a previously discovered ultraluminous X-ray source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most...

  18. Modeling tracers of young stellar population age in star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Emily M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado 389-UCB, Boulder, CO 80309 (United States); Leitherer, Claus, E-mail: Emily.Levesque@colorado.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2013-12-20

    The young stellar population of a star-forming galaxy is the primary engine driving its radiative properties. As a result, the age of a galaxy's youngest generation of stars is critical for a detailed understanding of its star formation history, stellar content, and evolutionary state. Here we present predicted equivalent widths for the Hβ, Hα, and Brγ recombination lines as a function of stellar population age. The equivalent widths are produced by the latest generations of stellar evolutionary tracks and the Starburst99 stellar population synthesis code, and are the first to fully account for the combined effects of both nebular emission and continuum absorption produced by the synthetic stellar population. Our grid of model stellar populations spans six metallicities (0.001 < Z < 0.04), two treatments of star formation history (a 10{sup 6} M {sub ☉} instantaneous burst and a continuous star formation rate of 1 M {sub ☉} yr{sup –1}), and two different treatments of initial rotation rate (v {sub rot} = 0.0v {sub crit} and 0.4v {sub crit}). We also investigate the effects of varying the initial mass function. Given constraints on galaxy metallicity, our predicted equivalent widths can be applied to observations of star-forming galaxies to approximate the age of their young stellar populations.

  19. Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

    Science.gov (United States)

    Vidal-García, A.; Charlot, S.; Bruzual, G.; Hubeny, I.

    2017-09-01

    We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (∼10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.

  20. Not all stars form in clusters - measuring the kinematics of OB associations with Gaia

    Science.gov (United States)

    Ward, Jacob L.; Kruijssen, J. M. Diederik

    2018-04-01

    It is often stated that star clusters are the fundamental units of star formation and that most (if not all) stars form in dense stellar clusters. In this monolithic formation scenario, low-density OB associations are formed from the expansion of gravitationally bound clusters following gas expulsion due to stellar feedback. N-body simulations of this process show that OB associations formed this way retain signs of expansion and elevated radial anisotropy over tens of Myr. However, recent theoretical and observational studies suggest that star formation is a hierarchical process, following the fractal nature of natal molecular clouds and allowing the formation of large-scale associations in situ. We distinguish between these two scenarios by characterizing the kinematics of OB associations using the Tycho-Gaia Astrometric Solution catalogue. To this end, we quantify four key kinematic diagnostics: the number ratio of stars with positive radial velocities to those with negative radial velocities, the median radial velocity, the median radial velocity normalized by the tangential velocity, and the radial anisotropy parameter. Each quantity presents a useful diagnostic of whether the association was more compact in the past. We compare these diagnostics to models representing random motion and the expanding products of monolithic cluster formation. None of these diagnostics show evidence of expansion, either from a single cluster or multiple clusters, and the observed kinematics are better represented by a random velocity distribution. This result favours the hierarchical star formation model in which a minority of stars forms in bound clusters and large-scale, hierarchically structured associations are formed in situ.

  1. Newly formed skeletal muscle fibers are prone to false positive immunostaining by rabbit antibodies

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Kliem, Anette; Schrøder, Henrik Daa

    2011-01-01

    rely on controls that reveal non-specific binding by the secondary antibody and neglect that the primary rabbit antibody itself may cause false positive staining of the muscle. We suggest that reliable immuno-based protein detection in newly formed muscle fibers at least requires a nonsense rabbit......Reports on muscle biology and regeneration often implicate immuno(cyto/histo)chemical protein characterization using rabbit polyclonal antibodies. In this study we demonstrate that newly formed myofibers are especially prone to false positive staining by rabbit antibodies and this unwanted staining...

  2. Star-Forming Clouds Feed, Churn, and Fall

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    Molecular clouds, the birthplaces of stars in galaxies throughout the universe, are complicated and dynamic environments. A new series of simulations has explored how these clouds form, grow, and collapse over their lifetimes.This composite image shows part of the Taurus Molecular Cloud. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey]Stellar BirthplacesMolecular clouds form out of the matter in between stars, evolving through constant interactions with their turbulent environments. These interactions taking the form of accretion flows and surface forces, while gravity, turbulence, and magnetic fields interplay are thought to drive the properties and evolution of the clouds.Our understanding of the details of this process, however, remains fuzzy. How does mass accretion affect these clouds as they evolve? What happens when nearby supernova explosions blast the outsides of the clouds? What makes the clouds churn, producing the motion within them that prevents them from collapsing? The answers to these questions can tellus about the gas distributed throughout galaxies, revealing information about the environments in which stars form.A still from the simulation results showing the broader population of molecular clouds that formed in the authors simulations, as well as zoom-in panels of three low-mass clouds tracked in high resolution. [Ibez-Meja et al. 2017]Models of TurbulenceIn a new study led by Juan Ibez-Meja (MPI Garching and Universities of Heidelberg and Cologne in Germany, and American Museum of Natural History), scientists have now explored these questions using a series of three-dimensional simulations of a population of molecular clouds forming and evolving in the turbulent interstellar medium.The simulations take into account a whole host of physics, including the effects of nearby supernova explosions, self-gravitation, magnetic fields, diffuse heating, and radiative cooling. After looking at the behavior of the broader population of

  3. MASSIVE INFANT STARS ROCK THEIR CRADLE

    Science.gov (United States)

    2002-01-01

    Extremely intense radiation from newly born, ultra-bright stars has blown a glowing spherical bubble in the nebula N83B, also known as NGC 1748. A new NASA Hubble Space Telescope image has helped to decipher the complex interplay of gas and radiation of a star-forming region in a nearby galaxy. The image graphically illustrates just how these massive stars sculpt their environment by generating powerful winds that alter the shape of the parent gaseous nebula. These processes are also seen in our Milky Way in regions like the Orion Nebula. The Hubble telescope is famous for its contribution to our knowledge about star formation in very distant galaxies. Although most of the stars in the Universe were born several billions of years ago, when the Universe was young, star formation still continues today. This new Hubble image shows a very compact star-forming region in a small part of one of our neighboring galaxies - the Large Magellanic Cloud. This galaxy lies only 165,000 light-years from our Milky Way and can easily be seen with the naked eye from the Southern Hemisphere. Young, massive, ultra-bright stars are seen here just as they are born and emerge from the shelter of their pre-natal molecular cloud. Catching these hefty stars at their birthplace is not as easy as it may seem. Their high mass means that the young stars evolve very rapidly and are hard to find at this critical stage. Furthermore, they spend a good fraction of their youth hidden from view, shrouded by large quantities of dust in a molecular cloud. The only chance is to observe them just as they start to emerge from their cocoon - and then only with very high-resolution telescopes. Astronomers from France, the U.S., and Germany have used Hubble to study the fascinating interplay between gas, dust, and radiation from the newly born stars in this nebula. Its peculiar and turbulent structure has been revealed for the first time. This high-resolution study has also uncovered several individual stars

  4. Assessment of the Quality of Newly Formed Bone around Titanium Alloy Implants by Using X-Ray Photoelectron Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hiroshi Nakada

    2012-01-01

    Full Text Available The aim of this study was to evaluate differences in bones quality between newly formed bone and cortical bone formed around titanium alloy implants by using X-ray photoelectron spectroscopy. As a result of narrow scan measurement at 4 weeks, the newly formed bone of C1s, P2p, O1s, and Ca2p were observed at a different peak range and strength compared with a cortical bone. At 8 weeks, the peak range and strength of newly formed bone were similar to those of cortical bone at C1s, P2p, and Ca2p, but not O1s. The results from this analysis indicate that the peaks and quantities of each element of newly formed bone were similar to those of cortical bone at 8 weeks, suggestive of a strong physicochemical resemblance.

  5. Investigation of conspicuous infrared star cluster and star-forming region RCW 38 IR Cluster

    International Nuclear Information System (INIS)

    Gyulbudaghian, A.L.; May, J.

    2008-01-01

    An infrared star cluster RCW 38 IR Cluster, which is also a massive star-forming region, is investigated. The results of observations with SEST (Cerro is Silla, Chile) telescope on 2.6-mm 12 CO spectral line and with SIMBA on 1.2-mm continuum are given. The 12 CO observations revealed the existence of several molecular clouds, two of which (clouds I and 2) are connected with the object RCW 38 IR Cluster. Cloud 1 is a massive cloud, which has a depression in which the investigated object is embedded. It is not excluded that the depression was formed by the wind and/or emission from the young bright stars belonging to the star cluster. Rotation of cloud 2, around the axis having SE-NW direction, with an angular velocity ω 4.6 · 10 -14 s -1 is also found. A red-shifted outflow with velocity ∼+5.6 km/s, in the SE direction and perpendicular to the elongation of cloud 2 has been also found. The investigated cluster is associated with an IR point source IRAS 08573-4718, which has IR colours typical for a, non-evolved embedded (in the cloud) stellar object. The cluster is also connected with a water maser. The SIMBA image shoves the existence of a central bright condensation, coinciding with the cluster itself, and two extensions. One of these extensions (the one with SW-NE direction) coincides, both in place and shape, with cloud 2, so that it is not excluded the possibility that this extension might be also rotating like cloud 2. In the vicinity of these extensions there are condensations resembling HH objects

  6. SEQUENTIAL STAR FORMATION IN RCW 34: A SPECTROSCOPIC CENSUS OF THE STELLAR CONTENT OF HIGH-MASS STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Bik, A.; Henning, Th.; Vasyunina, T.; Beuther, H.; Linz, H.; Puga, E.; Waters, L.B.F.M.; Waelkens, Ch.; Horrobin, M.; Kaper, L.; De Koter, A.; Van den Ancker, M.; Comeron, F.; Lenorzer, A.; Churchwell, E.; Kurtz, S.; Kouwenhoven, M. B. N.; Stolte, A.; Thi, W. F.

    2010-01-01

    In this paper, we present VLT/SINFONI integral field spectroscopy of RCW 34 along with Spitzer/IRAC photometry of the surroundings. RCW 34 consists of three different regions. A large bubble has been detected in the IRAC images in which a cluster of intermediate- and low-mass class II objects is found. At the northern edge of this bubble, an H II region is located, ionized by 3 OB stars, of which the most massive star has spectral type O8.5V. Intermediate-mass stars (2-3 M sun ) are detected of G- and K-spectral type. These stars are still in the pre-main-sequence (PMS) phase. North of the H II region, a photon-dominated region is present, marking the edge of a dense molecular cloud traced by H 2 emission. Several class 0/I objects are associated with this cloud, indicating that star formation is still taking place. The distance to RCW 34 is revised to 2.5 ± 0.2 kpc and an age estimate of 2 ± 1 Myr is derived from the properties of the PMS stars inside the H II region. Between the class II sources in the bubble and the PMS stars in the H II region, no age difference could be detected with the present data. The presence of the class 0/I sources in the molecular cloud, however, suggests that the objects inside the molecular cloud are significantly younger. The most likely scenario for the formation of the three regions is that star formation propagated from south to north. First the bubble is formed, produced by intermediate- and low-mass stars only, after that, the H II region is formed from a dense core at the edge of the molecular cloud, resulting in the expansion similar to a champagne flow. More recently, star formation occurred in the rest of the molecular cloud. Two different formation scenarios are possible. (1) The bubble with the cluster of low- and intermediate-mass stars triggered the formation of the O star at the edge of the molecular cloud, which in its turn induces the current star formation in the molecular cloud. (2) An external triggering is

  7. Binary Star Fractions from the LAMOST DR4

    Science.gov (United States)

    Tian, Zhi-Jia; Liu, Xiao-Wei; Yuan, Hai-Bo; Chen, Bing-Qiu; Xiang, Mao-Sheng; Huang, Yang; Wang, Chun; Zhang, Hua-Wei; Guo, Jin-Cheng; Ren, Juan-Juan; Huo, Zhi-Ying; Yang, Yong; Zhang, Meng; Bi, Shao-Lan; Yang, Wu-Ming; Liu, Kang; Zhang, Xian-Fei; Li, Tan-Da; Wu, Ya-Qian; Zhang, Jing-Hua

    2018-05-01

    Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with T eff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.

  8. THE STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES IN THE NEARBY UNIVERSE

    International Nuclear Information System (INIS)

    Torres-Papaqui, J. P.; Coziol, R.; Ortega-Minakata, R. A.; Neri-Larios, D. M.

    2012-01-01

    We have determined the metallicity (O/H) and nitrogen abundance (N/O) of a sample of 122,751 star-forming galaxies (SFGs) from the Data Release 7 of the Sloan Digital Sky Survey. For all these galaxies we have also determined their morphology and obtained a comprehensive picture of their star formation history (SFH) using the spectral synthesis code STARLIGHT. The comparison of the chemical abundance with the SFH allows us to describe the chemical evolution of the SFGs in the nearby universe (z ≤ 0.25) in a manner consistent with the formation of their stellar populations and morphologies. A high fraction (45%) of the SFGs in our sample show an excess abundance of nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen-rich and nitrogen-poor SFGs. Our analysis suggests that they all form their stars through a succession of bursts of star formation extended over a period of few Gyr. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, and have more massive bulges and earlier morphologies than those showing no excess. Contrary to expectation, we find no evidence that the starburst wind efficiency decreases with the mass of the galaxies. As a possible explanation we propose that the loss of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more

  9. Diagnostics for mechanical heating in star-forming galaxies

    NARCIS (Netherlands)

    Kazandjian, Mher V.

    2015-01-01

    In this thesis the molecular emission of species such as CO, HCN and HNC and HCO+ are used to probe and quantify mechanical heating in star-forming galaxies. In the first part of the thesis photo-dissociation models are used to find a diagnostic of mechanical heating at the level of molecular

  10. Red Misfits in the Sloan Digital Sky Survey: properties of star-forming red galaxies

    Science.gov (United States)

    Evans, Fraser A.; Parker, Laura C.; Roberts, Ian D.

    2018-06-01

    We study Red Misfits, a population of red, star-forming galaxies in the local Universe. We classify galaxies based on inclination-corrected optical colours and specific star formation rates derived from the Sloan Digital Sky Survey Data Release 7. Although the majority of blue galaxies are star-forming and most red galaxies exhibit little to no ongoing star formation, a small but significant population of galaxies (˜11 per cent at all stellar masses) are classified as red in colour yet actively star-forming. We explore a number of properties of these galaxies and demonstrate that Red Misfits are not simply dusty or highly inclined blue cloud galaxies or quiescent red galaxies with poorly constrained star formation. The proportion of Red Misfits is nearly independent of environment, and this population exhibits both intermediate morphologies and an enhanced likelihood of hosting an active galactic nucleus. We conclude that Red Misfits are a transition population, gradually quenching on their way to the red sequence and this quenching is dominated by internal processes rather than environmentally driven processes. We discuss the connection between Red Misfits and other transition galaxy populations, namely S0s, red spirals, and green valley galaxies.

  11. NEAR-INFRARED PERIODIC AND OTHER VARIABLE FIELD STARS IN THE FIELD OF THE CYGNUS OB7 STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, Scott J.; Rice, Thomas S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aspin, Colin A. [Institute for Astronomy, University of Hawaii at Manoa, 640 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-04-15

    We present a subset of the results of a three-season, 124 night, near-infrared monitoring campaign of the dark clouds Lynds 1003 and Lynds 1004 in the Cygnus OB7 star-forming region. In this paper, we focus on the field star population. Using three seasons of UKIRT J, H, and K-band observations spanning 1.5 years, we obtained high-quality photometry on 9200 stars down to J = 17 mag, with photometric uncertainty better than 0.04 mag. After excluding known disk-bearing stars we identify 149 variables-1.6% of the sample. Of these, about 60 are strictly periodic, with periods predominantly <2 days. We conclude this group is dominated by eclipsing binaries. A few stars have long period signals of between 20 and 60 days. About 25 stars have weak modulated signals, but it was not clear if these were periodic. Some of the stars in this group may be diskless young stellar objects with relatively large variability due to cool starspots. The remaining {approx}60 stars showed variations which appear to be purely stochastic.

  12. SPECTRAL CLASSIFICATION AND PROPERTIES OF THE O Vz STARS IN THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS)

    International Nuclear Information System (INIS)

    Arias, Julia I.; Barbá, Rodolfo H.; Sabín-Sanjulián, Carolina; Walborn, Nolan R.; Díaz, Sergio Simón; Apellániz, Jesús Maíz; Gamen, Roberto C.; Morrell, Nidia I.; Sota, Alfredo; Marco, Amparo; Negueruela, Ignacio

    2016-01-01

    On the basis of the Galactic O Star Spectroscopic Survey (GOSSS), we present a detailed systematic investigation of the O Vz stars. The currently used spectral classification criteria are rediscussed, and the Vz phenomenon is recalibrated through the addition of a quantitative criterion based on the equivalent widths of the He i λ 4471, He ii λ 4542, and He ii λ 4686 spectral lines. The GOSSS O Vz and O V populations resulting from the newly adopted spectral classification criteria are comparatively analyzed. The locations of the O Vz stars are probed, showing a concentration of the most extreme cases toward the youngest star-forming regions. The occurrence of the Vz spectral peculiarity in a solar-metallicity environment, as predicted by the fastwind code, is also investigated, confirming the importance of taking into account several processes for the correct interpretation of the phenomenon.

  13. SPECTRAL CLASSIFICATION AND PROPERTIES OF THE O Vz STARS IN THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS)

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Julia I.; Barbá, Rodolfo H.; Sabín-Sanjulián, Carolina [Departamento de Física y Astronomía, Universidad de La Serena, Av. Cisternas 1200 Norte, La Serena (Chile); Walborn, Nolan R. [Space Telescope Science Institute, 3700 San Martin Drive, MD 21218, Baltimore (United States); Díaz, Sergio Simón [Instituto de Astrofísica de Canarias, E-38200, Departamento de Astrofísica, Universidad de La Laguna, E-38205, La Laguna, Tenerife (Spain); Apellániz, Jesús Maíz [Centro de Astrobiología, CSIC-INTA, campus ESAC, Camino Bajo del Castillo s/n, E-28 692 Madrid (Spain); Gamen, Roberto C. [Instituto de Astrofísica de La Plata (CONICET, UNLP), Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata (Argentina); Morrell, Nidia I. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Sota, Alfredo [Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, E-18 008 Granada (Spain); Marco, Amparo; Negueruela, Ignacio, E-mail: jarias@userena.cl [Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Escuela Politécnica Superior, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, E03690, San Vicente del Raspeig (Spain); and others

    2016-08-01

    On the basis of the Galactic O Star Spectroscopic Survey (GOSSS), we present a detailed systematic investigation of the O Vz stars. The currently used spectral classification criteria are rediscussed, and the Vz phenomenon is recalibrated through the addition of a quantitative criterion based on the equivalent widths of the He i λ 4471, He ii λ 4542, and He ii λ 4686 spectral lines. The GOSSS O Vz and O V populations resulting from the newly adopted spectral classification criteria are comparatively analyzed. The locations of the O Vz stars are probed, showing a concentration of the most extreme cases toward the youngest star-forming regions. The occurrence of the Vz spectral peculiarity in a solar-metallicity environment, as predicted by the fastwind code, is also investigated, confirming the importance of taking into account several processes for the correct interpretation of the phenomenon.

  14. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Grasha, K.; Calzetti, D. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Adamo, A.; Messa, M. [Dept. of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Kim, H. [Gemini Observatory, La Serena (Chile); Elmegreen, B. G. [IBM Research Division, T.J. Watson Research Center, Yorktown Hts., NY (United States); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Dale, D. A. [Dept. of Physics and Astronomy, University of Wyoming, Laramie, WY (United States); Fumagalli, M. [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Durham University, Durham (United Kingdom); Grebel, E. K.; Shabani, F. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Johnson, K. E. [Dept. of Astronomy, University of Virginia, Charlottesville, VA (United States); Kahre, L. [Dept. of Astronomy, New Mexico State University, Las Cruces, NM (United States); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Pellerin, A. [Dept. of Physics and Astronomy, State University of New York at Geneseo, Geneseo NY (United States); Ryon, J. E.; Ubeda, L. [Space Telescope Science Institute, Baltimore, MD (United States); Smith, L. J. [European Space Agency/Space Telescope Science Institute, Baltimore, MD (United States); Thilker, D., E-mail: kgrasha@astro.umass.edu [Dept. of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States)

    2017-05-10

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  15. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    Science.gov (United States)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.

    2017-05-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  16. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    International Nuclear Information System (INIS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Messa, M.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Shabani, F.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Pellerin, A.; Ryon, J. E.; Ubeda, L.; Smith, L. J.; Thilker, D.

    2017-01-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  17. One of the most massive stars in the Galaxy may have formed in isolation

    OpenAIRE

    Oskinova, L. M.; Steinke, M.; Hamann, W. -R.; Sander, A.; Todt, H.; Liermann, A.

    2013-01-01

    Very massive stars, 100 times heavier than the sun, are rare. It is not yet known whether such stars can form in isolation or only in star clusters. The answer to this question is of fundamental importance. The central region of our Galaxy is ideal for investigating very massive stars and clusters located in the same environment. We used archival infrared images to investigate the surroundings of apparently isolated massive stars presently known in the Galactic Center. We find that two such i...

  18. Studies of dust shells around stars

    International Nuclear Information System (INIS)

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  19. How Do Multiple-Star Systems Form? VLA Study Reveals "Smoking Gun"

    Science.gov (United States)

    2006-12-01

    Astronomers have used the National Science Foundation's Very Large Array (VLA) radio telescope to image a young, multiple-star system with unprecedented detail, yielding important clues about how such systems are formed. Most Sun-sized or larger stars in the Universe are not single, like our Sun, but are members of multiple-star systems. Astronomers have been divided on how such systems can form, producing competing theoretical models for this process. Multiple Star Formation Graphic Proposed Formation Process for L1551 IRS5 CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for page of graphics and full information The new VLA study produced a "smoking gun" supporting one of the competing models, said Jeremy Lim, of the Institute of Astronomy & Astrophysics, Academia Sinica, in Taipei, Taiwan, whose study, done with Shigehisa Takakuwa of the National Astronomical Observatory of Japan, is published in the December 10 issue of the Astrophysical Journal. Ironically, their discovery of a third, previously-unknown, young star in the system may support a second theoretical model. "There may be more than one way to make a multiple-star system," Lim explained. The astronomers observed an object called L1551 IRS5, young, still-forming protostars enshrouded in a cloud of gas and dust, some 450 light-years from Earth in the direction of the constellation Taurus. Invisible to optical telescopes because of the gas and dust, this object was discovered in 1976 by astronomers using infrared telescopes. A VLA study in 1998 showed two young stars orbiting each other, each surrounded by a disk of dust that may, in time, congeal into a system of planets. Lim and Takakuwa re-examined the system, using improved technical capabilities that greatly boosted the quality of their images. "In the earlier VLA study, only half of the VLA's 27 antennas had receivers that could collect the radio waves, at a frequency of 43 GigaHertz (GHz), coming from the dusty disks. When we re-observed this

  20. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Jabran Zahid, H. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kudritzki, Rolf-Peter; Ho, I-Ting [University of Hawaii at Manoa, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA, 02138 (United States); Andrews, Brett, E-mail: zahid@cfa.harvard.edu [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States)

    2017-09-20

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  1. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    International Nuclear Information System (INIS)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting; Conroy, Charlie; Andrews, Brett

    2017-01-01

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  2. DRIVING TURBULENCE AND TRIGGERING STAR FORMATION BY IONIZING RADIATION

    International Nuclear Information System (INIS)

    Gritschneder, Matthias; Naab, Thorsten; Walch, Stefanie; Burkert, Andreas; Heitsch, Fabian

    2009-01-01

    We present high-resolution simulations on the impact of ionizing radiation of massive O stars on the surrounding turbulent interstellar medium (ISM). The simulations are performed with the newly developed software iVINE which combines ionization with smoothed particle hydrodynamics (SPH) and gravitational forces. We show that radiation from hot stars penetrates the ISM, efficiently heats cold low-density gas and amplifies overdensities seeded by the initial turbulence. The formation of observed pillar-like structures in star-forming regions (e.g. in M16) can be explained by this scenario. At the tip of the pillars gravitational collapse can be induced, eventually leading to the formation of low-mass stars. Detailed analysis of the evolution of the turbulence spectra shows that UV radiation of O stars indeed provides an excellent mechanism to sustain and even drive turbulence in the parental molecular cloud.

  3. Photoionization-regulated star formation and the structure of molecular clouds

    Science.gov (United States)

    Mckee, Christopher F.

    1989-01-01

    A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.

  4. A UKIDSS-based search for low-mass stars and small stellar clumps in off-cloud parts of young star-forming regions* **

    Directory of Open Access Journals (Sweden)

    Barrado y Navascués D.

    2011-07-01

    Full Text Available The form and universality of the mass function of young and nearby star-forming regions is still under debate. Its relation to the stellar density, its mass peak and the dependency on most recent models shows significant differencies for the various regions and remains unclear up to date. We aim to get a more complete census of two of such regions. We investigate yet unexplored areas of Orion and Taurus-Auriga, observed by the UKIDSS survey. In the latter, we search for low-mass stars via photometric and proper motion criteria and signs for variability. In Orion, we search for small stellar clumps via nearest-neighbor methods. Highlights in Taurus would be the finding of the missing low-mass stars and the detection of a young cluster T dwarf. In Orion, we discovered small stellar associations of its OB1b and OB1c populations. Combined with what is known in literature, we will provide by this investigations a general picture of the results of the star-forming processes in large areas of Taurus and Orion and probe the most recent models.

  5. Direct Measurements of Dust Attenuation in z ~ 1.5 Star-forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    Science.gov (United States)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van Dokkum, Pieter G.; Whitaker, Katherine E.; Wuyts, Stijn

    2014-06-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A V, H II ) and the integrated dust content (A V, star). We select a sample of 163 galaxies between 1.36 =5 and measure Balmer decrements from stacked spectra to calculate A V, H II . First, we stack spectra in bins of A V, star, and find that A V, H II = 1.86 A V, star, with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M *). We find that on average A V, H II increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  6. Neutron stars, magnetic fields, and gravitational waves

    International Nuclear Information System (INIS)

    Lamb, F.K.

    2001-01-01

    The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the

  7. The unexpectedly large proportion of high-mass star-forming cores in a Galactic mini-starburst

    Science.gov (United States)

    Motte, F.; Nony, T.; Louvet, F.; Marsh, K. A.; Bontemps, S.; Whitworth, A. P.; Men'shchikov, A.; Nguyáën Luong, Q.; Csengeri, T.; Maury, A. J.; Gusdorf, A.; Chapillon, E.; Könyves, V.; Schilke, P.; Duarte-Cabral, A.; Didelon, P.; Gaudel, M.

    2018-04-01

    Understanding the processes that determine the stellar initial mass function (IMF) is a critical unsolved problem, with profound implications for many areas of astrophysics1. In molecular clouds, stars are formed in cores—gas condensations sufficiently dense that gravitational collapse converts a large fraction of their mass into a star or small clutch of stars. In nearby star-formation regions, the core mass function (CMF) is strikingly similar to the IMF, suggesting that the shape of the IMF may simply be inherited from the CMF2-5. Here, we present 1.3 mm observations, obtained with the Atacama Large Millimeter/submillimeter Array telescope, of the active star-formation region W43-MM1, which may be more representative of the Galactic-arm regions where most stars form6,7. The unprecedented resolution of these observations reveals a statistically robust CMF at high masses, with a slope that is markedly shallower than the IMF. This seriously challenges our understanding of the origin of the IMF.

  8. The unexpectedly large proportion of high-mass star-forming cores in a Galactic mini-starburst

    Science.gov (United States)

    Motte, F.; Nony, T.; Louvet, F.; Marsh, K. A.; Bontemps, S.; Whitworth, A. P.; Men'shchikov, A.; Nguyen Luong, Q.; Csengeri, T.; Maury, A. J.; Gusdorf, A.; Chapillon, E.; Könyves, V.; Schilke, P.; Duarte-Cabral, A.; Didelon, P.; Gaudel, M.

    2018-06-01

    Understanding the processes that determine the stellar initial mass function (IMF) is a critical unsolved problem, with profound implications for many areas of astrophysics1. In molecular clouds, stars are formed in cores—gas condensations sufficiently dense that gravitational collapse converts a large fraction of their mass into a star or small clutch of stars. In nearby star-formation regions, the core mass function (CMF) is strikingly similar to the IMF, suggesting that the shape of the IMF may simply be inherited from the CMF2-5. Here, we present 1.3 mm observations, obtained with the Atacama Large Millimeter/submillimeter Array telescope, of the active star-formation region W43-MM1, which may be more representative of the Galactic-arm regions where most stars form6,7. The unprecedented resolution of these observations reveals a statistically robust CMF at high masses, with a slope that is markedly shallower than the IMF. This seriously challenges our understanding of the origin of the IMF.

  9. Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, C.; Prandoni, I. [INAF-IRA, Via P. Gobetti 101, I-40129 Bologna (Italy); Lapi, A.; Obi, I.; Perrotta, F.; Bressan, A.; Celotti, A.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo, C. Calvo Sotelo s/n, E-33007 Oviedo (Spain)

    2017-06-20

    We investigate the astrophysics of radio-emitting star-forming galaxies and active galactic nuclei (AGNs) and elucidate their statistical properties in the radio band, including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, which will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. to compute the star formation rate functions, the AGN duty cycles, and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated with star formation and nuclear activity, we compute relevant statistics at different radio frequencies and disentangle the relative contribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions and to occupy different loci in the galaxy main-sequence diagrams. These specific predictions are consistent with current data sets but need to be tested with larger statistics via future radio data with multiband coverage on wide areas, as will become routinely achievable with the advent of the Square Kilometre Array and its precursors.

  10. Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies

    Science.gov (United States)

    Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko

    2018-04-01

    Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.

  11. The distribution of warm gas in the G327.3-0.6 star forming region

    NARCIS (Netherlands)

    Leurini, S.; Wyrowski, F.; van der Tak, F.; Herpin, F.; Herschel WISH Team, [Unknown

    Water is a key molecule for determining the physical chemical structure of star forming regions because of its large abundance variations between warm and cold regions. As a part of the HIFI-led Key Program WISH (P.I. E. van Dishoeck), we are mapping six massive star forming region in different H2O

  12. RADIATION-DRIVEN IMPLOSION AND TRIGGERED STAR FORMATION

    International Nuclear Information System (INIS)

    Bisbas, Thomas G.; Wuensch, Richard; Whitworth, Anthony P.; Walch, Stefanie; Hubber, David A.

    2011-01-01

    We present simulations of initially stable isothermal clouds exposed to ionizing radiation from a discrete external source, and identify the conditions that lead to radiatively driven implosion and star formation. We use the smoothed particle hydrodynamics code SEREN and a HEALPix-based photoionization algorithm to simulate the propagation of the ionizing radiation and the resulting dynamical evolution of the cloud. We find that the incident ionizing flux, Φ LyC , is the critical parameter determining the cloud evolution. At moderate fluxes, a large fraction of the cloud mass is converted into stars. As the flux is increased, the fraction of the cloud mass that is converted into stars and the mean masses of the individual stars both decrease. Very high fluxes simply disperse the cloud. Newly formed stars tend to be concentrated along the central axis of the cloud (i.e., the axis pointing in the direction of the incident flux). For given cloud parameters, the time, t * , at which star formation starts is proportional to Φ -1/3 LyC . The pattern of star formation found in the simulations is similar to that observed in bright-rimmed clouds.

  13. The environmental impacts on the star formation main sequence: An Hα study of the newly discovered rich cluster at z = 1.52

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Yusei; Kodama, Tadayuki; Tadaki, Ken-ichi; Hayashi, Masao [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Tanaka, Ichi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Shimakawa, Rhythm, E-mail: koyama.yusei@nao.ac.jp [Department of Astronomical Science, The Graduate University for Advanced Studies, Mitaka, Tokyo 181-8588 (Japan)

    2014-07-01

    We report the discovery of a strong over-density of galaxies in the field of a radio galaxy at z = 1.52 (4C 65.22) based on our broadband and narrow-band (Hα) photometry with the Subaru Telescope. We find that Hα emitters are located in the outskirts of the density peak (cluster core) dominated by passive red-sequence galaxies. This resembles the situation in lower-redshift clusters, suggesting that the newly discovered structure is a well-evolved rich galaxy cluster at z = 1.5. Our data suggest that the color-density and stellar mass-density relations are already in place at z ∼ 1.5, mostly driven by the passive red massive galaxies residing within r{sub c} ≲ 200 kpc from the cluster core. These environmental trends almost disappear when we consider only star-forming (SF) galaxies. We do not find SFR-density or SSFR-density relations amongst SF galaxies, and the location of the SF main sequence does not significantly change with environment. Nevertheless, we find a tentative hint that star-bursting galaxies (up-scattered objects from the main sequence) are preferentially located in a small group at ∼1 Mpc away from the main body of the cluster. We also argue that the scatter of the SF main sequence could be dependent on the distance to the nearest neighboring galaxy.

  14. Neutron Star Science with the NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  15. Star-Formation in Free-Floating Evaporating Gaseous Globules

    Science.gov (United States)

    Sahai, Raghvendra

    2017-08-01

    We propose to study the stellar embryos in select members of a newly recognized class of Free-floating Evaporating Gaseous Globules (frEGGS) embedded in HII regions and having head-tail shapes. We discovered two of these in the Cygnus massive star-forming region (MSFR) with HST, including one of the most prominent members of this class (IRAS20324). Subsequent archival searches of Spitzer imaging of MSFRs has allowed us to build a statistical sample of frEGGs. Our molecular-line observations show the presence of dense molecular cores with total gas masses of (0.5-few) Msun in these objects, and our radio continuum images and Halpha images (from the IPHAS survey) reveal bright photo-ionized peripheries around these objects. We hypothesize that frEGGs are density concentrations originating in giant molecular clouds, that, when subject to the sculpting and compression by strong winds and UV radiation from massive stars, become active star-forming cores. For the 4 frEGGs with HST or near-IR AO images showing young stars and bipolar cavities produced by their jets or collimated outflows, the symmetry axis points roughly toward the external ionizing star or star cluster - exciting new evidence for our overpressure-induced star formation hypothesis. We propose to test this hypothesis by imaging 24 frEGGs in two nearby MSFRs that represent different radiation-dominated environments. Using ACS imaging with filters F606W, F814W, & F658N (Ha+[NII]), we will search for jets and outflow-excavated cavities, investigate the stellar nurseries inside frEGGs, and determine whether the globules are generally forming multiple star systems or small clusters, as in IRAS20324.

  16. SUPERMASSIVE BLACK HOLES IN A STAR-FORMING GASEOUS CIRCUMNUCLEAR DISK

    Energy Technology Data Exchange (ETDEWEB)

    Del Valle, L.; Escala, A.; Molina, J. [Departamento de Astronomía, Universidad de Chile (Chile); Maureira-Fredes, C.; Amaro-Seoane, P. [Max Planck Institut fur Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam (Germany); Cuadra, J., E-mail: ldelvalleb@gmail.com [Instituto de Astrofísica, Pontificia Universidad Catolica de Chile (Chile)

    2015-09-20

    Using N-body/smoothed particle hydrodynamics simulations we study the evolution of the separation of a pair of supermassive black holes (SMBHs) embedded in a star-forming circumnuclear disk (CND). This type of disk is expected to be formed in the central kiloparsec of the remnant of gas-rich galaxy mergers. Our simulations indicate that orbital decay of the SMBHs occurs more quickly when the mean density of the CND is higher, due to increased dynamical friction. However, in simulations where the CND is fragmented in high-density gaseous clumps (clumpy CND), the orbits of the SMBHs are erratically perturbed by the gravitational interaction with these clumps, delaying, in some cases, the orbital decay of the SMBHs. The densities of these gaseous clumps in our simulations and in recent studies of clumpy CNDs are two orders of magnitude higher than the observed density of molecular clouds in isolated galaxies or ultraluminous infrared galaxies (ULIRGs), thus, we expect that SMBH orbits are perturbed less in real CNDs than in the simulated CNDs of this study and other recent studies. We also find that the migration timescale has a weak dependence on the star formation rate of the CND. Furthermore, the migration timescale of an SMBH pair in a star-forming clumpy CND is at most a factor of three longer than the migration timescale of a pair of SMBHs in a CND modeled with more simple gas physics. Therefore, we estimate that the migration timescale of the SMBHs in a clumpy CND is on the order of 10{sup 7} years.

  17. Direct measurements of dust attenuation in z ∼ 1.5 star-forming galaxies from 3D-HST: Implications for dust geometry and star formation rates

    International Nuclear Information System (INIS)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Schreiber, Natascha M. Förster; Wuyts, Stijn; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2014-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A V, H II ) and the integrated dust content (A V, star ). We select a sample of 163 galaxies between 1.36 ≤ z ≤ 1.5 with Hα signal-to-noise ratio ≥5 and measure Balmer decrements from stacked spectra to calculate A V, H II . First, we stack spectra in bins of A V, star , and find that A V, H II = 1.86 A V, star , with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M * ). We find that on average A V, H II increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  18. Water in massive star-forming regions with Herschel Space Observatory

    Science.gov (United States)

    Chavarria, L.; Herpin, F.; Bontemps, S.; Jacq, T.; Baudry, A.; Braine, J.; van der Tak, F.; Wyrowski, F.; van Dishoeck, E. F.

    2011-05-01

    High-mass stars formation process is much less understood than the low-mass case: short timescales, high opacities and long distance to the sources challenge the study of young massive stars. The instruments on board the Heschel Space Observatory permit us to investigate molecular species at high spectral resolution in the sub-milimeter wavelengths. Water, one of the most abundant molecules in the Universe, might elucidate key episodes in the process of stellar birth and it may play a major role in the formation of high-mass stars. This contribution presents the first results of the Heschel Space Observatory key-program WISH (Water In Star forming regions with Herschel) concerning high-mass protostars. The program main purpose is to follow the process of star formation during the various stages using the water molecule as a physical diagnostic throughout the evolution. In general, we aim to adress the following questions: How does protostars interact with their environment ? How and where water is formed ? How is it transported from cloud to disk ? When and where water becomes a dominant cooling or heating agent ? We use the HIFI and PACS instruments to obtain maps and spectra of ~20 water lines in ~20 massive protostars spanning a large range in physical parameters, from pre-stellar cores to UCHII regions. I will review the status of the program and focus specifically on the spectroscopic results. I will show how powerful are the HIFI high-resolution spectral observations to resolve different physical source components such as the dense core, the outflows and the extended cold cloud around the high-mass object. We derive water abundances between 10-7 and 10-9 in the outer envelope. The abundance variations derived from our models suggest that different chemical mechanisms are at work on these scales (e.g. evaporation of water-rich icy grain mantles). The detection and derived abundance ratios for rare isotopologues will be discussed. Finally, a comparison in tems

  19. Direct Measurement of Dust Attenuation in z approx. 1.5 Star-Forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    Science.gov (United States)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.; hide

    2013-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36 or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift

  20. THE MASSIVE STAR-FORMING REGION CYGNUS OB2. II. INTEGRATED STELLAR PROPERTIES AND THE STAR FORMATION HISTORY

    International Nuclear Information System (INIS)

    Wright, N. J.; Drake, J. J.; Drew, J. E.; Vink, J. S.

    2010-01-01

    Cygnus OB2 is the nearest example of a massive star-forming region (SFR), containing over 50 O-type stars and hundreds of B-type stars. We have analyzed the properties of young stars in two fields in Cyg OB2 using the recently published deep catalog of Chandra X-ray point sources with complementary optical and near-IR photometry. Our sample is complete to ∼1 M sun (excluding A- and B-type stars that do not emit X-rays), making this the deepest study of the stellar properties and star formation history in Cyg OB2 to date. From Siess et al. isochrone fits to the near-IR color-magnitude diagram, we derive ages of 3.5 +0.75 -1.0 and 5.25 +1.5 -1.0 Myr for sources in the two fields, both with considerable spreads around the pre-main-sequence isochrones. The presence of a stellar population somewhat older than the present-day O-type stars, also fits in with the low fraction of sources with inner circumstellar disks (as traced by the K-band excess) that we find to be very low, but appropriate for a population of age ∼5 Myr. We also find that the region lacks a population of highly embedded sources that is often observed in young SFRs, suggesting star formation in the vicinity has declined. We measure the stellar mass functions (MFs) in this limit and find a power-law slope of Γ = -1.09 ± 0.13, in good agreement with the global mean value estimated by Kroupa. A steepening of the slope at higher masses is observed and suggested as due to the presence of the previous generation of stars that have lost their most massive members. Finally, combining our MF and an estimate of the radial density profile of the association suggests a total mass of Cyg OB2 of ∼3 x 10 4 M sun , similar to that of many of our Galaxy's most massive SFRs.

  1. SHOCKED SUPERWINDS FROM THE z {approx} 2 CLUMPY STAR-FORMING GALAXY, ZC406690

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Sarah F.; Genzel, Reinhard [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Shapiro Griffin, Kristen [Aerospace Research Laboratories, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Davies, Ric; Foerster-Schreiber, Natascha M.; Tacconi, Linda J.; Kurk, Jaron; Wuyts, Stijn; Genel, Shy; Buschkamp, Peter; Eisenhauer, Frank; Lutz, Dieter [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr.1, D-85748 Garching (Germany); Lilly, Simon J.; Carollo, C. Marcella [Institute of Astronomy, Department of Physics, Eidgenoessische Technische Hochschule, ETH Zuerich CH-8093 (Switzerland); Renzini, Alvio; Mancini, Chiara [Osservatorio Astronomico di Padova, Vicolo dellOsservatorio 5, Padova I-35122 (Italy); Bouche, Nicolas [Department of Physics and Astronomy, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Burkert, Andreas [Department fuer Physik, Universitaets-Sternwarte Ludwig-Maximilians-Universitaet (USM), Scheinerstr. 1, Muenchen, D-81679 (Germany); Cresci, Giovanni [Istituto Nazionale di AstrofisicaOsservatorio Astronomico di Arcetri, Largo Enrico Fermi 5, I 50125 Firenze (Italy); Hicks, Erin, E-mail: sfnewman@berkeley.edu [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); and others

    2012-06-20

    We have obtained high-resolution data of the z {approx} 2 ring-like, clumpy star-forming galaxy (SFG) ZC406690 using the VLT/SINFONI with adaptive optics (in K band) and in seeing-limited mode (in H and J bands). Our data include all of the main strong optical emission lines: [O II], [O III], H{alpha}, H{beta}, [N II], and [S II]. We find broad, blueshifted H{alpha} and [O III] emission line wings in the spectra of the galaxy's massive, star-forming clumps ({sigma} {approx} 85 km s{sup -1}) and even broader wings (up to 70% of the total H{alpha} flux, with {sigma} {approx} 290 km s{sup -1}) in regions spatially offset from the clumps by {approx}2 kpc. The broad emission likely originates from large-scale outflows with mass outflow rates from individual clumps that are 1-8 Multiplication-Sign the star formation rate (SFR) of the clumps. Based on emission line ratio diagnostics ([N II]/H{alpha} and [S II]/H{alpha}) and photoionization and shock models, we find that the emission from the clumps is due to a combination of photoionization from the star-forming regions and shocks generated in the outflowing component, with 5%-30% of the emission deriving from shocks. In terms of the ionization parameter (6 Multiplication-Sign 10{sup 7} to 10{sup 8} cm s{sup -1}, based on both the SFR and the O{sub 32} ratio), density (local electron densities of 300-1800 cm{sup -3} in and around the clumps, and ionized gas column densities of 1200-8000 M{sub Sun }pc{sup -2}), and SFR (10-40 M{sub Sun} yr{sup -1}), these clumps more closely resemble nuclear starburst regions of local ultraluminous infrared galaxies and dwarf irregulars than H II regions in local galaxies. However, the star-forming clumps are not located in the nucleus as in local starburst galaxies but instead are situated in a ring several kpc from the center of their high-redshift host galaxy, and have an overall disk-like morphology. The two brightest clumps are quite different in terms of their internal

  2. Molecular line study of massive star-forming regions from the Red MSX Source survey

    Science.gov (United States)

    Yu, Naiping; Wang, Jun-Jie

    2014-05-01

    In this paper, we have selected a sample of massive star-forming regions from the Red MSX Source survey, in order to study star formation activities (mainly outflow and inflow signatures). We have focused on three molecular lines from the Millimeter Astronomy Legacy Team Survey at 90 GHz: HCO+(1-0), H13CO+(1-0) and SiO(2-1). According to previous observations, our sources can be divided into two groups: nine massive young stellar object candidates (radio-quiet) and 10 H II regions (which have spherical or unresolved radio emissions). Outflow activities have been found in 11 sources, while only three show inflow signatures in all. The high outflow detection rate means that outflows are common in massive star-forming regions. The inflow detection rate was relatively low. We suggest that this was because of the beam dilution of the telescope. All three inflow candidates have outflow(s). The outward radiation and thermal pressure from the central massive star(s) do not seem to be strong enough to halt accretion in G345.0034-00.2240. Our simple model of G318.9480-00.1969 shows that it has an infall velocity of about 1.8 km s-1. The spectral energy distribution analysis agrees our sources are massive and intermediate-massive star formation regions.

  3. Exploring the Dust Content, Metallicity, Star Formation and AGN Activity in Distant Dusty, Star-Forming Galaxies Using Cosmic Telescope

    Science.gov (United States)

    Walth, Gregory; Egami, Eiichi; Clément, Benjamin; Rujopakarn, Wiphu; Rawle, Tim; Richard, Johan; Dessauges, Miroslava; Perez-Gonzalez, Pablo; Ebeling, Harald; Vayner, Andrey; Wright, Shelley; Cosens, Maren; Herschel Lensing Survey

    2018-01-01

    We present our recent ALMA observations of Herschel-detected gravitationally lensed dusty, star-forming galaxies (DSFGs) and how they compliment our near-infrared spectroscopic observations of their rest-frame optical nebular emission. This provides the complete picture of star formation; from the molecular gas that fuels star formation, to the dust emission which are the sites of star formation, and the nebular emission which is the gas excited by the young stars. DSFGs undergo the largest starbursts in the Universe, contributing to the bulk of the cosmic star formation rate density between redshifts z = 1 - 4. Internal processes within high-redshift DSFGs remains largely unexplored; such as feedback from star formation, the role of turbulence, gas surface density of molecular gas, AGN activity, and the rates of metal production. Much that is known about DSFGs star formation properties comes from their CO and dust emission. In order to fully understand the star formation history of DSFGs, it is necessary to observe their optical nebular emission. Unfortunately, UV/optical emission is severely attenuated by dust, making it challenging to detect. With the Herschel Lensing Survey, a survey of the cores of almost 600 massive galaxy clusters, we are able to probe faint dust-attenuated nebular emission. We are currently conducting a new survey using Keck/OSIRIS to resolve a sample of gravitationally lensed DSFGs from the Herschel Lensing Survey (>100 mJy, with SFRs >100 Msun/yr) at redshifts z=1-4 with magnifications >10x all with previously detected nebular emission lines. We present the physical and resolved properties of gravitationally lensed DSFGs at unprecedented spatial scales; such as ionization, metallicity, AGN activity, and dust attenuation.

  4. THE SCHMIDT-KENNICUTT LAW OF MATCHED-AGE STAR-FORMING REGIONS; Paα OBSERVATIONS OF THE EARLY-PHASE INTERACTING GALAXY TAFFY I

    International Nuclear Information System (INIS)

    Komugi, S.; Tateuchi, K.; Motohara, K.; Kato, N.; Konishi, M.; Koshida, S.; Morokuma, T.; Takahashi, H.; Tanabé, T.; Yoshii, Y.; Takagi, T.; Iono, D.; Kaneko, H.; Ueda, J.; Saitoh, T. R.

    2012-01-01

    In order to test a recent hypothesis that the dispersion in the Schmidt-Kennicutt law arises from variations in the evolutionary stage of star-forming molecular clouds, we compared molecular gas and recent star formation in an early-phase merger galaxy pair, Taffy I (UGC 12915/UGC 12914, VV 254) which went through a direct collision 20 Myr ago and whose star-forming regions are expected to have similar ages. Narrowband Paα image is obtained using the ANIR near-infrared camera on the mini-TAO 1 m telescope. The image enables us to derive accurate star formation rates within the galaxy directly. The total star formation rate, 22.2 M ☉ yr –1 , was found to be much higher than previous estimates. Ages of individual star-forming blobs estimated from equivalent widths indicate that most star-forming regions are ∼7 Myr old, except for a giant H II region at the bridge which is much younger. Comparison between star formation rates and molecular gas masses for the regions with the same age exhibits a surprisingly tight correlation, a slope of unity, and star formation efficiencies comparable to those of starburst galaxies. These results suggest that Taffy I has just evolved into a starburst system after the collision, and the star-forming sites are at a similar stage in their evolution from natal molecular clouds except for the bridge region. The tight Schmidt-Kennicutt law supports the scenario that dispersion in the star formation law is in large part due to differences in evolutionary stage of star-forming regions.

  5. Star Formation at the Galactic Center

    Science.gov (United States)

    Kohler, Susanna

    2015-08-01

    Could stars be forming in the inhospitable environment near Sagittarius A* in the heart of the Milky Way? A possible signature of low-mass star formation has recently been found just two light-years from the black hole at the center of our galaxy — a region that was previously thought to be too hostile for such activity. Searching for Signatures: Previous observations of the central few light-years of the Milky Way had focused on a population of about 200 massive, young and very bright stars in tight orbits around Sgr A*. These stars are only a few million years old and prompted scientists to wonder: have they somehow managed to form in situ, in spite of their close proximity to the black hole, or did they form further out and then migrate in? Motivated by this mystery, Farhad Yusef-Zadeh of Northwestern University and collaborators looked for evidence of even younger stars close to Sagittarius A*, which would demonstrate that star formation in the area is an ongoing process. Using the Very Large Array (VLA), the collaboration discovered several small sources in one arm of activity near Sgr A*. This 34-GHz image provides a close-up view of two protoplanetary disk candidates (labeled P26 and P8) located near Sgr A*. These objects are outlined on the right side by a bow shock caused by impacting stellar wind that streams from the young, hot stars closer to the Galactic center. The disks are thought to contain recently-formed, low-mass stars. (Credit: Yusef-Zadeh et al., 2015) Heated Disks: The team identified these sources as candidate photoevaporative protoplanetary disks, or “proplyds” — areas of dense, ionized gas and dust surrounding young, newly formed stars. The proplyd candidates are between 10,000 and 100,000 years old, and they lie along the edge of a large molecular cloud. It is likely that this cloud produced the disks by providing a reservoir of gas to feed the star-formation activity. The region surrounding these proplyds is blasted with harsh

  6. A statistical spectropolarimetric study of Herbig Ae/Be stars

    Science.gov (United States)

    Ababakr, K. M.; Oudmaijer, R. D.; Vink, J. S.

    2017-11-01

    We present H α linear spectropolarimetry of a large sample of Herbig Ae/Be stars. Together with newly obtained data for 17 objects, the sample contains 56 objects, the largest such sample to date. A change in linear polarization across the H α line is detected in 42 (75 per cent) objects, which confirms the previous finding that the circumstellar environment around these stars on small spatial scales has an asymmetric structure, which is typically identified with a disc. A second outcome of this research is that we confirm that Herbig Ae stars are similar to T Tauri stars in displaying a line polarization effect, while depolarization is more common among Herbig Be stars. This finding had been suggested previously to indicate that Herbig Ae stars form in the same manner than T Tauri stars through magnetospheric accretion. It appears that the transition between these two differing polarization line effects occurs around the B7-B8 spectral type. This would in turn not only suggest that Herbig Ae stars accrete in a similar fashion as lower mass stars, but also that this accretion mechanism switches to a different type of accretion for Herbig Be stars. We report that the magnitude of the line effect caused by electron scattering close to the stars does not exceed 2 per cent. Only a very weak correlation is found between the magnitude of the line effect and the spectral type or the strength of the H α line. This indicates that the detection of a line effect only relies on the geometry of the line-forming region and the geometry of the scattering electrons.

  7. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    Energy Technology Data Exchange (ETDEWEB)

    Pannella, M.; Elbaz, D.; Daddi, E.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Cibinel, A.; Juneau, S.; Floc’h, E. Le; Leiton, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Buat, V. [Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR7326, F-13388, Marseille (France); Charmandaris, V.; Magdis, G. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Penteli (Greece); Ivison, R. J. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Borgne, D. Le [Institut d’Astrophysique de Paris, UMR 7095, CNRS, 98bis boulevard Arago, F-75005 Paris (France); Lin, L. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Morrison, G. E. [Institute for Astronomy, University of Hawaii, Honolulu, Hawaii, HI-96822 (United States); and others

    2015-07-10

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.

  8. Orphan Stars Found in Long Galaxy Tail

    Science.gov (United States)

    2007-09-01

    Astronomers have found evidence that stars have been forming in a long tail of gas that extends well outside its parent galaxy. This discovery suggests that such "orphan" stars may be much more prevalent than previously thought. The comet-like tail was observed in X-ray light with NASA's Chandra X-ray Observatory and in optical light with the Southern Astrophysical Research (SOAR) telescope in Chile. The feature extends for more than 200,000 light years and was created as gas was stripped from a galaxy called ESO 137-001 that is plunging toward the center of Abell 3627, a giant cluster of galaxies. "This is one of the longest tails like this we have ever seen," said Ming Sun of Michigan State University, who led the study. "And, it turns out that this is a giant wake of creation, not of destruction." Chandra X-ray Image of ESO 137-001 and Tail in Abell 3627 Chandra X-ray Image of ESO 137-001 and Tail in Abell 3627 The observations indicate that the gas in the tail has formed millions of stars. Because the large amounts of gas and dust needed to form stars are typically found only within galaxies, astronomers have previously thought it unlikely that large numbers of stars would form outside a galaxy. "This isn't the first time that stars have been seen to form between galaxies," said team member Megan Donahue, also of MSU. "But the number of stars forming here is unprecedented." The evidence for star formation in this tail includes 29 regions of ionized hydrogen glowing in optical light, thought to be from newly formed stars. These regions are all downstream of the galaxy, located in or near the tail. Two Chandra X-ray sources are near these regions, another indication of star formation activity. The researchers believe the orphan stars formed within the last 10 million years or so. The stars in the tail of this fast-moving galaxy, which is some 220 million light years away, would be much more isolated than the vast majority of stars in galaxies. H-alpha Image of

  9. LOOKING INTO THE HEARTS OF BOK GLOBULES: MILLIMETER AND SUBMILLIMETER CONTINUUM IMAGES OF ISOLATED STAR-FORMING CORES

    International Nuclear Information System (INIS)

    Launhardt, R.; Henning, Th.; Khanzadyan, T.; Schmalzl, M.; Wolf, S.; Nutter, D.; Ward-Thompson, D.; Bourke, T. L.; Zylka, R.

    2010-01-01

    We present the results of a comprehensive infrared, submillimeter, and millimeter continuum emission study of isolated low-mass star-forming cores in 32 Bok globules, with the aim to investigate the process of star formation in these regions. The submillimeter and millimeter dust continuum emission maps together with the spectral energy distributions are used to model and derive the physical properties of the star-forming cores, such as luminosities, sizes, masses, densities, etc. Comparisons with ground-based near-infrared and space-based mid- and far-infrared images from Spitzer are used to reveal the stellar content of the Bok globules, association of embedded young stellar objects (YSOs) with the submillimeter dust cores, and the evolutionary stages of the individual sources. Submillimeter dust continuum emission was detected in 26 out of the 32 globule cores observed. For 18 globules with detected (sub)millimeter cores, we derive evolutionary stages and physical parameters of the embedded sources. We identify nine starless cores, most of which are presumably prestellar, nine Class 0 protostars, and twelve Class I YSOs. Specific source properties like bolometric temperature, core size, and central densities are discussed as a function of evolutionary stage. We find that at least two thirds (16 out of 24) of the star-forming globules studied here show evidence of forming multiple stars on scales between 1000 and 50,000 AU. However, we also find that most of these small prototstar and star groups are comprised of sources with different evolutionary stages, suggesting a picture of slow and sequential star formation in isolated globules.

  10. Galaxy formation hydrodynamics: From cosmic flows to star-forming clouds

    International Nuclear Information System (INIS)

    Bournaud, F.

    2011-01-01

    Major progress has been made over the last few years in understanding hydrodynamical processes on cosmological scales, in particular how galaxies get their baryons. There is increasing recognition that a large part of the baryons accrete smoothly onto galaxies, and that internal evolution processes play a major role in shaping galaxies mergers are not necessarily the dominant process. However, predictions from the various assembly mechanisms are still in large disagreement with the observed properties of galaxies in the nearby Universe. Small-scale processes have a major impact on the global evolution of galaxies over a Hubble time and the usual sub-grid models account for them in a far too uncertain way. Understanding when, where and at which rate galaxies formed their stars becomes crucial to understand the formation of galaxy populations. I discuss recent improvements and current limitations in 'resolved' modeling of star formation, aiming at explicitly capturing star-foul-ling instabilities, in cosmological and galaxy-sized simulations. Such models need to develop three-dimensional turbulence in the ISM, which requires parsec-scale resolution at redshift zero. (authors)

  11. Water in Star-forming Regions with Herschel (WISH): recent results and trends

    Science.gov (United States)

    van Dishoeck, E. F.

    2012-03-01

    Water is a key molecule in the physics and chemistry of star- and planet-forming regions. In the `Water in Star-forming Regions with Herschel' (WISH) Key Program, we have obtained a comprehensive set of water data toward a large sample of well-characterized protostars, covering a wide range of masses and luminosities --from the lowest to the highest mass protostars--, as well as evolutionary stages --from pre-stellar cores to disks. Lines of both ortho- and para-H_2O and their isotopologues, as well as chemically related hydrides, are observed with the HIFI and PACS instruments. The data elucidate the physical processes responsible for the warm gas, probe dynamical processes associated with forming stars and planets (outflow, infall, expansion), test basic chemical processes and reveal the chemical evolution of water and the oxygen-reservoir into planet-forming disks. In this brief talk a few recent WISH highlights will be presented, including determinations of the water abundance in each of the different physical components (inner and outer envelope, outflow) and constraints on the ortho/para ratio. Special attention will be given to trends found across the sample, especially the similarity in profiles from low to high-mass protostars and the evolution of the gas-phase water abundance from prestellar cores to disks. More details can be found at http://www.strw.leidenuniv.nl/WISH, whereas overviews are given in van Dishoeck et al. (2011, PASP 123, 138), Kristensen & van Dishoeck (2011, Astronomische Nachrichten 332, 475) and Bergin & van Dishoeck (2012, Phil. Trans. Royal Soc. A).

  12. SPITZER IMAGING OF STRONGLY LENSED HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 (Canada); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Da Cunha, E. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn VIC 3122 (Australia); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Michałowski, M. J.; Oteo, I. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo C/ Calvo Sotelo, s/n, E-33007 Oviedo (Spain); Magdis, G. [Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Riechers, D. A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); and others

    2015-11-20

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 10{sup 10}–4 × 10{sup 11} M{sub ⊙} and star formation rates of around 100 M{sub ⊙} yr{sup −1}. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  13. Direct Detection of The Lyman Continuum of Star-forming Galaxies at z~3

    Science.gov (United States)

    Vasei, Kaveh; Siana, Brian; Shapley, Alice; Alavi, Anahita; Rafelski, Marc

    2018-01-01

    Star-forming galaxies are widely believed to be responsible for the reionization of the Universe and much of the ionizing background at z>3. Therefore, there has been much interest in quantifying the escape fraction of the Lyman continuum (LyC) radiation of the star-forming galaxies. Yet direct detection of LyC has proven to be exceptionally challenging. Despite numerous efforts only 7 galaxies at z2 have been robustly confirmed as LyC leakers. To avoid these challenges many studies use indirect methods to infer the LyC escape fraction. We tested these indirect methods by attempting to detect escaping LyC with a 10-orbit Hubble near-UV (F275W) image that is just below the Lyman limit at the redshift of the Cosmic Horseshoe (a lensed galaxy at z=2.4). We concluded that the measured escape fraction is lower, by more than a factor of five, than the expected escape fraction based on the indirect methods. This emphasizes that indirect determinations should only be interpreted as upper-limits. We also investigated the deepest near-UV Hubble images of the SSA22 field to detect LyC leakage from a large sample of candidate star-forming galaxies at z~3.1, whose redshift was obtained by deep Keck/LRIS spectroscopy and for which Keck narrow-band imaging was showing possible LyC leakage. The high spatial resolution of Hubble images is crucial to confirm our detections are clean from foreground contaminating galaxies, and also to ascertain the escape fraction of our final candidates. We identify five clean LyC emitting star-forming galaxies. The follow up investigation of these galaxies will significantly increase our knowledge of the LyC escape fraction and the mechanisms allowing for LyC escape.

  14. TADPOL: A 1.3 mm Survey of Dust Polarization in Star-forming Cores and Regions

    OpenAIRE

    Hull, Charles L. H.; Plambeck, Richard L.; Kwon, Woojin; Bower, Geoffrey C.; Carpenter, John M.; Crutcher, Richard M.; Fiege, Jason D.; Franzmann, Erica; Hakobian, Nicholas S.; Heiles, Carl; Houde, Martin; Hughes, A. Meredith; Lamb, James W.; Looney, Leslie W.; Marrone, Daniel P.

    2014-01-01

    We present λ 1.3 mm Combined Array for Research in Millimeter-wave Astronomy observations of dust polarization toward 30 star-forming cores and eight star-forming regions from the TADPOL survey. We show maps of all sources, and compare the ~2".5 resolution TADPOL maps with ~20" resolution polarization maps from single-dish submillimeter telescopes. Here we do not attempt to interpret the detailed B-field morphology of each object. Rather, we use average B-field orientations to derive conclusi...

  15. Localization of foot-and-mouth disease - RNA synthesis on newly formed cellular smooth membranous vacuoles

    International Nuclear Information System (INIS)

    Polatnick, J.; Wool, S.H.

    1982-01-01

    Viral RNA synthesis in foot-and-mouth disease infected bovine kidney cell cultures was associated throughout the infectious period with newly formed smooth membranous vacuoles. Membrane formation was measured by choline uptake. The site of RNA synthesis was determined by electron microscopic examination of autoradiograms of incorporated [ 3 H] uridine. Both membrane formation and RNA synthesis became signifcant at 2.5 hours postinfection, but membrane formation increased steadily to 4.5 hours while RNA synthesis peaked at 3.5 hours. Percent density distributions of developed silver grains on autoradiograms showed that almost all RNA synthesis was concentrated on the smooth vacuoles of infected cells. Histogram analysis of grain density distributions established that the site of RNA synthesis was the vacuolar membrane. The newly formed smooth membrane-bound vacuoles were not seen to coalesce into the large vacuolated areas typical of poliovirus cytopathogenicity. (Author)

  16. Localization of foot-and-mouth disease - RNA synthesis on newly formed cellular smooth membranous vacuoles

    Energy Technology Data Exchange (ETDEWEB)

    Polatnick, J.; Wool, S.H. (United States Department of Agriculture, Science and Education, Greenport, New York (USA). Agricultural Research, Plum Island Animal Disease Center)

    1982-01-01

    Viral RNA synthesis in foot-and-mouth disease infected bovine kidney cell cultures was associated throughout the infectious period with newly formed smooth membranous vacuoles. Membrane formation was measured by choline uptake. The site of RNA synthesis was determined by electron microscopic examination of autoradiograms of incorporated (/sup 3/H) uridine. Both membrane formation and RNA synthesis became signifcant at 2.5 hours postinfection, but membrane formation increased steadily to 4.5 hours while RNA synthesis peaked at 3.5 hours. Percent density distributions of developed silver grains on autoradiograms showed that almost all RNA synthesis was concentrated on the smooth vacuoles of infected cells. Histogram analysis of grain density distributions established that the site of RNA synthesis was the vacuolar membrane. The newly formed smooth membrane-bound vacuoles were not seen to coalesce into the large vacuolated areas typical of poliovirus cytopathogenicity.

  17. Observations of star-forming regions with the Midcourse Space Experiment

    NARCIS (Netherlands)

    Kraemer, KE; Shipman, RF; Price, SD; Mizuno, DR; Kuchar, T; Carey, SJ

    We have imaged seven nearby star-forming regions, the Rosette Nebula, the Orion Nebula, W3, the Pleiades, G300.2-16.8, S263, and G159.6-18.5, with the Spatial Infrared Imaging Telescope on the Midcourse Space Experiment (MSX) satellite at 1800 resolution at 8.3, 12.1, 14.7, and 21.3 mum. The large

  18. Physical Conditions of the Interstellar Medium in Star-forming Galaxies at z1.5

    Science.gov (United States)

    Hayashi, Masao; Ly, Chun; Shimasaku, Kazuhiro; Motohara, Kentaro; Malkan, Matthew A.; Nagao, Tohru; Kashikawa, Nobunari; Goto, Ryosuke; Naito, Yoshiaki

    2015-01-01

    We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at z approximately equal to 1.5 in the Subaru Deep Field. These galaxies are selected as [O II] lambda 3727 emitters at z approximately equal to 1.47 and 1.62 from narrow-band imaging. We detect H alpha emission line in 115 galaxies, [O III] lambda 5007 emission line in 45 galaxies, and H Beta, [N II] lambda 6584, and [S II]lambda lambda 6716, 6731 in 13, 16, and 6 galaxies, respectively. Including the [O II] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at z approximately equal to 1.5. We find a tight correlation between H alpha and [O II], which suggests that [O II] can be a good star formation rate (SFR) indicator for galaxies at z approximately equal to 1.5. The line ratios of H alpha / [O II] are consistent with those of local galaxies. We also find that [O II] emitters have strong [O III] emission lines. The [O III]/[O II] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [O III]/[O II] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.

  19. EXPERIMENTAL INVESTIGATION OF THE ORTHO/PARA RATIO OF NEWLY FORMED MOLECULAR HYDROGEN ON AMORPHOUS SOLID WATER

    International Nuclear Information System (INIS)

    Gavilan, L.; Lemaire, J. L.; Dulieu, F.; Congiu, E.; Chaabouni, H.; Vidali, G.; Chehrouri, M.; Fillion, J.-H.

    2012-01-01

    Several astronomical observations have shown that the ortho/para ratio (OPR) of H 2 can differ from the expected statistical value of 3 or the local thermodynamic equilibrium (LTE) value at the gas or dust temperature. It is thus important to know the OPR of H 2 newly formed on dust grain surfaces, in order to clarify the dependence of the observed OPR in space on the formation process. Using an experimental setup designed to mimic interstellar medium environments, we measured the OPR of H 2 and D 2 formed on the surface of porous amorphous water ice held at 10 K. We report for the first time the OPR value for newly formed D 2 , consistent with the expected LTE value at the high-temperature limit found by previous theoretical and experimental works on the determination of the OPR upon H 2 formation on surfaces at low temperature.

  20. Simulating Gamma-Ray Emission in Star-forming Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Pfrommer, Christoph [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker, E-mail: cpfrommer@aip.de [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way–like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  1. Simulating Gamma-Ray Emission in Star-forming Galaxies

    Science.gov (United States)

    Pfrommer, Christoph; Pakmor, Rüdiger; Simpson, Christine M.; Springel, Volker

    2017-10-01

    Star-forming galaxies emit GeV and TeV gamma-rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving-mesh code Arepo to perform magnetohydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky Way-like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma-rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is “calorimetrically” lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.

  2. A GLOBAL STAR-FORMING EPISODE IN M31 2–4 GYR AGO

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Weisz, Daniel R.; Lewis, Alexia R., E-mail: ben@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: dweisz@astro.washington.edu [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); and others

    2015-06-10

    We have identified a major global enhancement of star formation in the inner M31 disk that occurred between 2–4 Gyr ago, producing ∼60% of the stellar mass formed in the past 5 Gyr. The presence of this episode in the inner disk was discovered by modeling the optical resolved star color–magnitude diagrams of low extinction regions in the main disk of M31 (3 < R < 20 kpc) as part of the Panchromatic Hubble Andromeda Treasury. This measurement confirms and extends recent measurements of a widespread star formation enhancement of similar age in the outer disk, suggesting that this burst was both massive and global. Following the galaxy-wide burst, the star formation rate of M31 has significantly declined. We briefly discuss possible causes for these features of the M31 evolutionary history, including interactions with M32, M33, and/or a merger.

  3. EXPERIMENTAL INVESTIGATION OF THE ORTHO/PARA RATIO OF NEWLY FORMED MOLECULAR HYDROGEN ON AMORPHOUS SOLID WATER

    Energy Technology Data Exchange (ETDEWEB)

    Gavilan, L.; Lemaire, J. L.; Dulieu, F.; Congiu, E.; Chaabouni, H. [LERMA, UMR 8112 du CNRS, de l' Observatoire de Paris et de l' Universite de Cergy Pontoise, 5 mail Gay Lussac, F-95000 Cergy Pontoise Cedex (France); Vidali, G. [Visiting Professor. Permanent address: Physics Department, Syracuse University, Syracuse, NY 13244-1320 (United States); Chehrouri, M. [Permanent address: LEPC Universite de Saida, BP138, ENSAR, 20002 Saida (Algeria); Fillion, J.-H., E-mail: lisseth.gavilan@obspm.fr [Permanent address: LPMAA, UMR 7092, Universite Pierre et Marie Curie, F-75252 Paris Cedex 05 (France)

    2012-11-20

    Several astronomical observations have shown that the ortho/para ratio (OPR) of H{sub 2} can differ from the expected statistical value of 3 or the local thermodynamic equilibrium (LTE) value at the gas or dust temperature. It is thus important to know the OPR of H{sub 2} newly formed on dust grain surfaces, in order to clarify the dependence of the observed OPR in space on the formation process. Using an experimental setup designed to mimic interstellar medium environments, we measured the OPR of H{sub 2} and D{sub 2} formed on the surface of porous amorphous water ice held at 10 K. We report for the first time the OPR value for newly formed D{sub 2}, consistent with the expected LTE value at the high-temperature limit found by previous theoretical and experimental works on the determination of the OPR upon H{sub 2} formation on surfaces at low temperature.

  4. Diffuse Matter from Star Forming Regions to Active Galaxies A Volume Honouring John Dyson

    CERN Document Server

    Hartquist, T W

    2006-01-01

    John Dyson has contributed to the study of the hydrodynamic processes that govern a wide variety of astrophysical sources which he has helped explain. In this volume dedicated to him, introductory reviews to a number of the key processes and to the sources themselves are given by leading experts. The mechanisms in which the multi-component natures of media affect their dynamics receive particular attention, but the roles of hydromagnetic effects are also highlighted. The importance of cosmic ray moderation and mass transfer between different thermal phases for cosmic ray moderation and mass transfer between different thermal phases for the evolution of flows are amongst the topics treated. The main types of regions considered include those where stars form, the circumstellar environments of evolved stars, the larger scale interstellar structures caused by the mass loss of stars, and those where the lines of AGNs form. The reviews complement one another and together provide a coherent introduction to the astro...

  5. AN INFRARED/X-RAY SURVEY FOR NEW MEMBERS OF THE TAURUS STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Luhman, K. L.; Allen, P. R.; Mamajek, E. E.; Cruz, K. L.

    2009-01-01

    We present the results of a search for new members of the Taurus star-forming region using data from the Spitzer Space Telescope and the XMM-Newton Observatory. We have obtained optical and near-infrared spectra of 44 sources that exhibit red Spitzer colors that are indicative of stars with circumstellar disks and 51 candidate young stars that were identified by Scelsi and coworkers using XMM-Newton. We also performed spectroscopy on four possible companions to members of Taurus that were reported by Kraus and Hillenbrand. Through these spectra, we have demonstrated the youth and membership of 41 sources, 10 of which were independently confirmed as young stars by Scelsi and coworkers. Five of the new Taurus members are likely to be brown dwarfs based on their late spectral types (>M6). One of the brown dwarfs has a spectral type of L0, making it the first known L-type member of Taurus and the least massive known member of the region (M ∼ 4-7 M Jup ). Another brown dwarf exhibits a flat infrared spectral energy distribution, which indicates that it could be in the protostellar class I stage (star+disk+envelope). Upon inspection of archival images from various observatories, we find that one of the new young stars has a large edge-on disk (r = 2.''5 = 350 AU). The scattered light from this disk has undergone significant variability on a timescale of days in optical images from the Canada-France-Hawaii Telescope. Using the updated census of Taurus, we have measured the initial mass function for the fields observed by XMM-Newton. The resulting mass function is similar to previous ones that we have reported for Taurus, showing a surplus of stars at spectral types of K7-M1 (0.6-0.8 M sun ) relative to other nearby star-forming regions, such as IC 348, Chamaeleon I, and the Orion Nebula Cluster.

  6. Where are the stars of the bar of NGC 1530 forming?

    NARCIS (Netherlands)

    Zurita, A.; Perez, I.

    Aims. NGC 1530 has one of the strongest bars ever observed and recent star formation sites are distributed across its bar. Our aim is to study the photometric properties of the bar and its H II regions, to elucidate the conditions under which H II regions form and their spatial relation to the

  7. Rapidly rotating single late-type giants: New FK Comae stars?

    Science.gov (United States)

    Fekel, Francis C.

    1986-01-01

    A group of rapidly rotating single late-type giants was found from surveys of chromospherically active stars. These stars have V sin I's ranging from 6 to 46 km/sec, modest ultraviolet emission line fluxes, and strong H alpha absorption lines. Although certainly chromospherically active, their characteristics are much less extreme than those of FK Com and one or two other similar systems. One possible explanation for the newly identified systems is that they have evolved from stars similar to FK Com. The chromospheric activity and rotation of single giant stars like FK Com would be expected to decrease with time as they do in single dwarfs. Alternatively, this newly identified group may have evolved from single rapidly rotating A, or early F stars.

  8. The Structure of the Nearby Giant Star-Forming Region 30 Doradus

    Science.gov (United States)

    Pellegrini, Eric; Baldwin, Jack; Hanson, Margaret; Ferland, Gary; Troland, Thomas

    2007-08-01

    The rates of star formation and chemical evolution are controlled in part by the interaction of stellar radiation and winds with the remnant molecular gas from which the stars have formed. We are carrying out a detailed, panchromatic study of these processes in the two nearest giant star-forming regions, 30 Doradus and NGC 3603, as an aide in understanding the nature of Giant Extragalactic H II Regions, starbursts, and Ultra-Luminous IR Galaxies. We recently completed our observations of NGC 3603. Here we request 2 nights on the Blanco telescope to obtain a dense grid of optical long-slit spectra criss- crossing 30 Dor. These will cover the [S II] doublet (to measure N_e) and also [O III], H(beta), [O I], H(alpha) and [N II] to measure the ionization mechanism and ionization parameter, at ~3800 different spots in the nebula. We also request 3 nights on SOAR to take K-band long slit spectra covering H^+ Br(gamma) and several H_2 lines across three representative edge-on ionization fronts in 30 Dor. The IR spectra will be taken in locations also covered by the optical spectra, and will tell us about the structure, pressure support and heating mechanisms in the photo-dissociation regions (PDRs) at these points. Either half of this project can stand on its own, but both parts together will permit the PI to complete his PhD thesis.

  9. Spectral Identification of New Galactic cLBV and WR Stars

    Science.gov (United States)

    Stringfellow, G. S.; Gvaramadze, V. V.; Beletsky, Y.; Kniazev, A. Y.

    2012-12-01

    We have undertaken a near-IR spectral survey of stars associated with compact nebulae recently revealed by the Spitzer and WISE imaging surveys. These circumstellar nebulae, produced by massive evolved stars, display a variety of symmetries and shapes and are often only evident at mid-IR wavelengths. Stars associated with ˜50 of these nebulae have been observed. We also obtained recent spectra of previously confirmed (known) luminous blue variables (LBVs) and candidate LBVs (cLBVs). The spectral similarity of the stars observed when compared directly to known LBVs and Wolf-Rayet (WR) stars indicate many are newly identified cLBVs, with a few being newly discovered WR stars, mostly of WN8-9h spectral type. These results suggest that a large population of previously unidentified cLBVs and related transitional stars reside in the Galaxy and confirm that circumstellar nebulae are inherent to most (c)LBVs.

  10. The Evolution of High-Mass Star-Forming Cores in the Nessie Nebula

    Science.gov (United States)

    Jackson, James; Rathborne, Jill; Sanhueza, Patricio; Whitaker, John Scott; Camarata, Matthew

    2013-04-01

    We aim to deduce the evolution of the ensemble properties of high-mass star-forming cores within a cluster-forming molecular clump. Two different theories of high-mass star-formation, "competitive accretion" and "monolithic collapse" make very different predictions for this evolution. In "competitive accretion" the clump will contain only low-mass cores in the early phases, and high-mass cores will be found in the later stages. In "monolithic collapse" high-mass cores are found early on, and the mass distribution of the cores will remain essentially unchanged. Both models predict cores to increase in temperature. We can classify evolutionary stage from Spitzer mid-IR images. We choose to study 6 cores in the Nessie nebula that span the complete range of protostellar evolution. Nessie is an ideal laboratory because all the cores are at the same distance and in the same Galactic environment.

  11. Structure of massive star forming clumps from the Red MSX Source Survey

    Science.gov (United States)

    Figura, Charles C.; Urquhart, J. S.; Morgan, L.

    2014-01-01

    We present ammonia (1,1) and (2,2) emission maps of 61 high-mass star forming regions drawn from the Red MSX Source (RMS) Survey and observed with the Green Bank Telescope's K-Band Focal Plane Array. We use these observations to investigate the spatial distribution of the environmental conditions associated with this sample of embedded massive young stellar objects (MYSOs). Ammonia is an excellent high-density tracer of star-forming regions as its hyperfine structure allows relatively simple characterisation of the molecular environment. These maps are used to measure the column density, kinetic gas temperature distributions and velocity structure across these regions. We compare the distribution of these properties to that of the associated dust and mid-infrared emission traced by the ATLASGAL 870 micron emission maps and the Spitzer GLIMPSE IRAC images. We present a summary of these results and highlight some of more interesting finds.

  12. Spiral structure and star formation. II. Stellar lifetimes and cloud kinematics

    International Nuclear Information System (INIS)

    Hausman, M.A.; Roberts, W.W. Jr.

    1984-01-01

    We present further results of our model, introduced in Paper I, of star formation and star-gas interactions in the cloud-dominated ISMs of spiral density wave galaxies. The global density distribution and velocity field of the gas clouds are virtually independent of stellar parameters and even of mean free path for the wide range of values studied, but local density variations are found which superficially resemble cloud complexes. Increasing the average life span of ''spiral tracer'' stellar associations beyond about 20 Myr washes out the spiral pattern which younger associations show. Allowing clouds to form several successive associations (sequential star formation) slightly increases the frequency of interarm, young-star spurs and substantially increases the average star formation rate. The mean velocity field of clouds shows tipped oval streamlines, similar to both continuum gas dynamical models and stellar-kinematic models of spiral density waves. These streamlines are almost ballistic orbits except close to the spiral arms. Newly formed stellar associations leave the spiral density peak with initial tangential velocitie shigher than ''postshock'' values and do not fall back into the ''preshock'' region. By varying our stellar parametes within physically reasonable limits, we may reproduce spiral galaxies with a wide range of morphological appearaces

  13. STELLAR MASSES AND STAR FORMATION RATES OF LENSED, DUSTY, STAR-FORMING GALAXIES FROM THE SPT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jingzhe; Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Strandet, M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69 D-53121 Bonn (Germany); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Béthermin, M.; Breuck, C. de; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Malkan, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Saliwanchik, B. R., E-mail: jingzhema@ufl.edu [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); and others

    2015-10-10

    To understand cosmic mass assembly in the universe at early epochs, we primarily rely on measurements of the stellar masses and star formation rates (SFRs) of distant galaxies. In this paper, we present stellar masses and SFRs of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from Atacama Large Millimeter/submillimeter Array observations. We have conducted follow-up observations to obtain multi-wavelength imaging data using the Hubble Space Telescope (HST), Spitzer, Herschel, and the Atacama Pathfinder EXperiment. We use the high-resolution HST/Wide Field Camera 3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and SFRs. The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ∼5 ×10{sup 10} M{sub ⊙}. The intrinsic IR luminosities range from 4 × 10{sup 12} L{sub ⊙} to 4 × 10{sup 13} L{sub ⊙}. They all have prodigious intrinsic SFRs of 510–4800 M{sub ⊙} yr{sup −1}. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing ongoing strong starburst events that may be driven by major mergers.

  14. The Origin of the Relation between Metallicity and Size in Star-forming Galaxies

    Science.gov (United States)

    Sánchez Almeida, J.; Dalla Vecchia, C.

    2018-06-01

    For the same stellar mass, physically smaller star-forming galaxies are also metal richer. What causes the relation remains unclear. The central star-forming galaxies in the EAGLE cosmological numerical simulation reproduce the observed trend. We use them to explore the origin of the relation assuming that the physical mechanism responsible for the anticorrelation between size and gas-phase metallicity is the same in the simulated and the observed galaxies. We consider the three most likely causes: (1) metal-poor gas inflows feeding the star formation (SF) process, (2) metal-rich gas outflows particularly efficient in shallow gravitational potentials, and (3) enhanced efficiency of the SF process in compact galaxies. Outflows (cause 2) and enhanced SF efficiency (cause 3) can be discarded. Metal-poor gas inflows (cause 1) produce the correlation in the simulated galaxies. Galaxies grow in size with time, so those that receive gas later are both metal poorer and larger, giving rise to the observed anticorrelation. As expected within this explanation, larger galaxies have younger stellar populations. We explore the variation with redshift of the relation, which is maintained up to, at least, redshift 8.

  15. PREDICTIONS FOR ULTRA-DEEP RADIO COUNTS OF STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Claudia; Lapi, Andrea; De Zotti, Gianfranco; Bressan, Alessandro; Perrotta, Francesca; Danese, Luigi [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Cai, Zhen-Yi [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Negrello, Mattia; Bonato, Matteo, E-mail: cmancuso@sissa.it [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)

    2015-09-01

    We have worked outty predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. Such predictions were obtained by coupling epoch-dependent star formation rate (SFR) functions with relations between SFR and radio (synchrotron and free–free) emission. The SFR functions were derived taking into account both the dust-obscured and the unobscured star formation, by combining far-infrared, ultraviolet, and Hα luminosity functions up to high redshifts. We have also revisited the South Pole Telescope counts of dusty galaxies at 95 GHz, performing a detailed analysis of the Spectral Energy Distributions. Our results show that the deepest SKA1-MID surveys will detect high-z galaxies with SFRs two orders of magnitude lower compared to Herschel surveys. The highest redshift tails of the distributions at the detection limits of planned SKA1-MID surveys comprise a substantial fraction of strongly lensed galaxies. We predict that a survey down to 0.25 μJy at 1.4 GHz will detect about 1200 strongly lensed galaxies per square degree, at redshifts of up to 10. For about 30% of them the SKA1-MID will detect at least 2 images. The SKA1-MID will thus provide a comprehensive view of the star formation history throughout the re-ionization epoch, unaffected by dust extinction. We have also provided specific predictions for the EMU/ASKAP and MIGHTEE/MeerKAT surveys.

  16. OH outflows in star-forming regions

    International Nuclear Information System (INIS)

    Mirabel, I.F.; Ruiz, A.; Rodriguez, L.F.; Canto, J.; Universidad de Puer; Universidad de Puerto Rico, Rio Piedras; Universidad Nacional Autonoma de Mexico, Mexico City)

    1987-01-01

    The results from a survey for high-velocity OH in molecular outflows in star-forming regions are reported. High-velocity OH was detected in absorption in nine of these regions. When the telescope beam can resolve the outflows, they show similar anisotropic angular distribution as the redshifted and blueshifted CO. The OH transitions are markedly subthermal since for several sources it is found that the radiation that is being absorbed is a background continuum constituted by the cosmic component plus a small Galactic contribution. The absorbing OH appears to trace gas with higher velocities and lower densities than does the CO and, in some cases, provides information on the structure of the outflows at larger distances from the central source. At scales of 0.1 pc, the outflows are elongated in the direction of the steepest density gradient of the ambient cloud, suggesting that the large-scale collimation of the outflow is produced by the density structure of the ambient cloud. 29 references

  17. Competition of neutrino and gravitational radiation in neutron star formation

    International Nuclear Information System (INIS)

    Kazanas, D.; Schramm, D.N.

    1976-01-01

    The possibility is explored that neutrino radiation, rather than gravitational radiation, may be the dominant way by which non-radial pulsations are damped out in a collapsing star. If this is so it implies that hopes of detecting gravity waves from supernovae explosions are very optimistic. Neutron stars and black holes are probably the collapsed central remnants of a supernovae explosion. These objects presumably originate from collapse of the cores of sufficiently massive stars, following the cessation of thermonuclear burning. Although there is at present no completely consistent detailed theory as to how collapse of the core and the subsequent supernova explosion take place, a general model exists for the final stages of stellar evolution and supernovae explosions. According to this model the electrons of a sufficiently massive stellar core, due to the high density and temperature, become absorbed by the protons through the reaction p + e - → n + v. Very large numbers of neutrinos, resulting from this and other thermal processes, such as pair annihilation, plasma decay, and Bremsstrahlung, are emitted, taking away most of the gravitational energy of the collapse. These neutrinos possibly drive ejection of the overlying stellar mantle, whilst the neutron-rich core collapses further to a condensed remnant. Gravitational radiation comes into play only at very late stages of the collapse. All of this implies that neutrino radiation might contribute to the decay of the non-radial oscillations of the collapsing core and the newly formed neutron star, possibly damping out these oscillations much faster than gravitational radiation. In order to obtain a more quantitative answer to the question the effects of neutrino radiation on the non-radial oscillations are examined. The implication is that neutrino radiation, by more rapid damping of the non-radial oscillations of a newly formed neutron star in a supernova explosion, would hinder gravitational radiation and

  18. THE CLUSTERED NATURE OF STAR FORMATION. PRE-MAIN-SEQUENCE CLUSTERS IN THE STAR-FORMING REGION NGC 602/N90 IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Gouliermis, Dimitrios A.; Gennaro, Mario; Schmeja, Stefan; Dolphin, Andrew E.; Tognelli, Emanuele; Prada Moroni, Pier Giorgio

    2012-01-01

    Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC 602/N90 is characterized by the H II nebular ring N90 and the young cluster of pre-main-sequence (PMS) and early-type main-sequence stars NGC 602, located in the central area of the ring. We present a thorough cluster analysis of the stellar sample identified with Hubble Space Telescope/Advanced Camera for Surveys in the region. We show that apart from the central cluster low-mass PMS stars are congregated in 13 additional small, compact sub-clusters at the periphery of NGC 602, identified in terms of their higher stellar density with respect to the average background density derived from star counts. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction (∼60%) of the total population being clustered, while the remaining is diffusely distributed in the intercluster area, covering the whole central part of the region. From the corresponding color-magnitude diagrams we disentangle an age difference of ∼2.5 Myr between NGC 602 and the compact sub-clusters, which appear younger, on the basis of comparison of the brighter PMS stars with evolutionary models, which we accurately calculated for the metal abundance of the SMC. The diffuse PMS population appears to host stars as old as those in NGC 602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings, we propose a scenario according to which the region NGC 602/N90 experiences an active clustered star formation for the last ∼5 Myr. The central cluster NGC 602 was formed first

  19. NEAR-INFRARED IMAGING OF THE STAR-FORMING REGIONS SH2-157 AND SH2-152

    International Nuclear Information System (INIS)

    Chen Yafeng; Yang Ji; Zeng Qin; Yao Yongqiang; Sato, Shuji

    2009-01-01

    Near-infrared JHK' and H 2 v = 1-0 S (1) imaging observations of the star-forming regions Sh2-157 and Sh2-152 are presented. The data reveal a cluster of young stars associated with H 2 line emission in each region. Additionally, many IR point sources are found in the dense core of each molecular cloud. Most of these sources exhibit infrared color excesses typical of T Tauri stars, Herbig Ae/Be stars, and protostars. Several display the characteristics of massive stars. We calculate histograms of the K'-magnitude and [H - K'] color for all sources, as well as two-color and color-magnitude diagrams. The stellar populations inside and outside the clusters are similar, suggesting that these systems are rather evolved. Shock-driven H 2 emission knots are also detected, which may be related to evident subclusters in an earlier evolutionary stage.

  20. Extended high circular polarization in the Orion massive star forming region: implications for the origin of homochirality in the solar system.

    Science.gov (United States)

    Fukue, Tsubasa; Tamura, Motohide; Kandori, Ryo; Kusakabe, Nobuhiko; Hough, James H; Bailey, Jeremy; Whittet, Douglas C B; Lucas, Philip W; Nakajima, Yasushi; Hashimoto, Jun

    2010-06-01

    We present a wide-field (approximately 6' x 6') and deep near-infrared (K(s) band: 2.14 mum) circular polarization image in the Orion nebula, where massive stars and many low-mass stars are forming. Our results reveal that a high circular polarization region is spatially extended (approximately 0.4 pc) around the massive star-forming region, the BN/KL nebula. However, other regions, including the linearly polarized Orion bar, show no significant circular polarization. Most of the low-mass young stars do not show detectable extended structure in either linear or circular polarization, in contrast to the BN/KL nebula. If our solar system formed in a massive star-forming region and was irradiated by net circularly polarized radiation, then enantiomeric excesses could have been induced, through asymmetric photochemistry, in the parent bodies of the meteorites and subsequently delivered to Earth. These could then have played a role in the development of biological homochirality on Earth.

  1. DO R CORONAE BOREALIS STARS FORM FROM DOUBLE WHITE DWARF MERGERS?

    Energy Technology Data Exchange (ETDEWEB)

    Staff, Jan. E.; Clayton, Geoffrey C.; Tohline, Joel E. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803-4001 (United States); Menon, Athira; Herwig, Falk [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P5C2 (Canada); Even, Wesley; Fryer, Chris L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Motl, Patrick M. [Department of Science, Mathematics and Informatics, Indiana University Kokomo, Kokomo, IN 46904-9003 (United States); Geballe, Tom [Gemini Observatory, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Pignatari, Marco [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2012-09-20

    A leading formation scenario for R Coronae Borealis (RCB) stars invokes the merger of degenerate He and CO white dwarfs (WDs) in a binary. The observed ratio of {sup 16}O/{sup 18}O for RCB stars is in the range of 0.3-20 much smaller than the solar value of {approx}500. In this paper, we investigate whether such a low ratio can be obtained in simulations of the merger of a CO and a He WD. We present the results of five three-dimensional hydrodynamic simulations of the merger of a double WD system where the total mass is 0.9 M{sub Sun} and the initial mass ratio (q) varies between 0.5 and 0.99. We identify in simulations with q {approx}< 0.7 a feature around the merged stars where the temperatures and densities are suitable for forming {sup 18}O. However, more {sup 16}O is being dredged up from the C- and O-rich accretor during the merger than the amount of {sup 18}O that is produced. Therefore, on the dynamical timescale over which our hydrodynamics simulation runs, an {sup 16}O/{sup 18}O ratio of {approx}2000 in the 'best' case is found. If the conditions found in the hydrodynamic simulations persist for 10{sup 6} s the oxygen ratio drops to 16 in one case studied, while in a hundred years it drops to {approx}4 in another case studied, consistent with the observed values in RCB stars. Therefore, the merger of two WDs remains a strong candidate for the formation of these enigmatic stars.

  2. Star-forming brightest cluster galaxies at 0.25

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Stalder, B.; Bayliss, M.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chiu, I.; Desai, S.; Gonzalez, A. H.; Hlavacek-Larrondo, J.; Holzapfel, W. L.; Marrone, D. P.; Miller, E. D.; Reichardt, C. L.; Saliwanchik, B. R.; Saro, A.; Schrabback, T.; Stanford, S. A.; Stark, A. A.; Vieira, J. D.; Zenteno, A.

    2016-01-22

    We present a multiwavelength study of the 90 brightest cluster galaxies (BCGs) in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by the South Pole Telescope, utilizing data from various ground- and space-based facilities. We infer the star-formation rate (SFR) for the BCG in each cluster—based on the UV and IR continuum luminosity, as well as the [O ii]λλ3726,3729 emission line luminosity in cases where spectroscopy is available—and find seven systems with SFR > 100 M⊙ yr-1. We find that the BCG SFR exceeds 10 M⊙ yr-1 in 31 of 90 (34%) cases at 0.25 < z < 1.25, compared to ~1%–5% at z ~ 0 from the literature. At z gsim 1, this fraction increases to ${92}_{-31}^{+6}$%, implying a steady decrease in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific SFR in BCGs is declining more slowly with time than for field or cluster galaxies, which is most likely due to the replenishing fuel from the cooling ICM in relaxed, cool core clusters. At z gsim 0.6, the correlation between the cluster central entropy and BCG star formation—which is well established at z ~ 0—is not present. Instead, we find that the most star-forming BCGs at high-z are found in the cores of dynamically unrelaxed clusters. We use data from the Hubble Space Telescope to investigate the rest-frame near-UV morphology of a subsample of the most star-forming BCGs, and find complex, highly asymmetric UV morphologies on scales as large as ~50–60 kpc. The high fraction of star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times suggests that the dominant mode of fueling star formation in BCGs may have recently transitioned from galaxy–galaxy interactions to ICM cooling.

  3. Variations of the ISM conditions accross the Main Sequence of star forming galaxies: observations and simulations.

    Science.gov (United States)

    Martinez Galarza, Juan R.; Smith, Howard Alan; Lanz, Lauranne; Hayward, Christopher C.; Zezas, Andreas; Hung, Chao-Ling; Rosenthal, Lee; Weiner, Aaron

    2015-01-01

    A significant amount of evidence has been gathered that leads to the existence of a main sequence (MS) of star formation in galaxies. This MS is expressed in terms of a correlation between the SFR and the stellar mass of the form SFR ∝ M* and spans a few orders of magnitude in both quantities. Several ideas have been suggested to explain fundamental properties of the MS, such as its slope, its dispersion, and its evolution with redshift, but no consensus has been reached regarding its true nature, and whether the membership or not of particular galaxies to this MS underlies the existence of two different modes of star formation. In order to advance in the understanding of the MS, here we use a statistically robust Bayesian SED analysis method (CHIBURST) to consistently analyze the star-forming properties of a set of hydro-dynamical simulations of mergers, as well as observations of real mergers, both local and at intermediate redshift. We find a remarkable, very tight correlation between the specific star formation rate (sSFR) of galaxies, and the typical ISM conditions near their inernal star-forming regions, parametrized via a novel quantity: the compactness parameter (C). The evolution of mergers along this correlation explains the spread of the MS, and implies that the physical conditions of the ISM smoothly evolve between on-MS (secular) conditions and off-MS (coalescence/starburst) conditions. Furthermore, we show that the slope of the correlation can be interpreted in terms of the efficiency in the conversion of gas into stars, and that this efficiency remains unchanged along and across the MS. Finally, we discuss differences in the normalization of the correlation as a function of merger mass and redshift, and conclude that these differences imply the existence of two different modes of star formation, unrelated to the smooth evolution across the MS: a disk-like, low pressure mode and a compact nuclear-starburst mode.

  4. Where are the massive stars of the bar of NGC 1530 forming?

    NARCIS (Netherlands)

    Zurita, A.

    2008-01-01

    NGC 1530 has one of the strongest bars ever observed and recent star formation sites are distributed across its bar. Our aim is to study the photometric properties of the bar and its Hii regions, to elucidate the conditions under which Hii regions form and their spatial relation to the principal

  5. INTRINSIC SHAPE OF STAR-FORMING BzK GALAXIES AT z ∼ 2 IN GOODS-N

    International Nuclear Information System (INIS)

    Yuma, Suraphong; Ohta, Kouji; Yabe, Kiyoto; Kajisawa, Masaru; Ichikawa, Takashi

    2011-01-01

    We study the structure of star-forming galaxies at z ∼ 2 in a Great Observatories Origins Deep Survey North field selected as star-forming BzK (sBzK) galaxies down to K AB B > C, we find that the mean B/A ratio is 0.61 +0.05 -0.08 and disk thickness C/A is 0.28 +0.03 -0.04 . This indicates that the single-component sBzK galaxies at z ∼ 2 have a bar-like or oval shape rather than a round disk shape. The shape seems to resemble a bar/oval structure that forms through bar instability; if this is the case, the intrinsic shape may give us a clue to understand dynamical evolution of baryonic matter in a dark matter halo.

  6. The comparison of physical properties derived from gas and dust in a massive star-forming region

    Energy Technology Data Exchange (ETDEWEB)

    Battersby, Cara; Bally, John; Ginsburg, Adam; Darling, Jeremy [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Dunham, Miranda [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Longmore, Steve [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom)

    2014-05-10

    We explore the relationship between gas and dust in a massive star-forming region by comparing the physical properties derived from each. We compare the temperatures and column densities in a massive star-forming Infrared Dark Cloud (G32.02+0.05), which shows a range of evolutionary states, from quiescent to active. The gas properties were derived using radiative transfer modeling of the (1,1), (2,2), and (4,4) transitions of NH{sub 3} on the Karl G. Jansky Very Large Array, while the dust temperatures and column densities were calculated using cirrus-subtracted, modified blackbody fits to Herschel data. We compare the derived column densities to calculate an NH{sub 3} abundance, χ{sub NH{sub 3}} = 4.6 × 10{sup –8}. In the coldest star-forming region, we find that the measured dust temperatures are lower than the measured gas temperatures (mean and standard deviations T {sub dust,} {sub avg} ∼ 11.6 ± 0.2 K versus T {sub gas,} {sub avg} ∼ 15.2 ± 1.5 K), which may indicate that the gas and dust are not well-coupled in the youngest regions (∼0.5 Myr) or that these observations probe a regime where the dust and/or gas temperature measurements are unreliable. Finally, we calculate millimeter fluxes based on the temperatures and column densities derived from NH{sub 3}, which suggest that millimeter dust continuum observations of massive star-forming regions, such as the Bolocam Galactic Plane Survey or ATLASGAL, can probe hot cores, cold cores, and the dense gas lanes from which they form, and are generally not dominated by the hottest core.

  7. The comparison of physical properties derived from gas and dust in a massive star-forming region

    International Nuclear Information System (INIS)

    Battersby, Cara; Bally, John; Ginsburg, Adam; Darling, Jeremy; Dunham, Miranda; Longmore, Steve

    2014-01-01

    We explore the relationship between gas and dust in a massive star-forming region by comparing the physical properties derived from each. We compare the temperatures and column densities in a massive star-forming Infrared Dark Cloud (G32.02+0.05), which shows a range of evolutionary states, from quiescent to active. The gas properties were derived using radiative transfer modeling of the (1,1), (2,2), and (4,4) transitions of NH 3 on the Karl G. Jansky Very Large Array, while the dust temperatures and column densities were calculated using cirrus-subtracted, modified blackbody fits to Herschel data. We compare the derived column densities to calculate an NH 3 abundance, χ NH 3 = 4.6 × 10 –8 . In the coldest star-forming region, we find that the measured dust temperatures are lower than the measured gas temperatures (mean and standard deviations T dust, avg ∼ 11.6 ± 0.2 K versus T gas, avg ∼ 15.2 ± 1.5 K), which may indicate that the gas and dust are not well-coupled in the youngest regions (∼0.5 Myr) or that these observations probe a regime where the dust and/or gas temperature measurements are unreliable. Finally, we calculate millimeter fluxes based on the temperatures and column densities derived from NH 3 , which suggest that millimeter dust continuum observations of massive star-forming regions, such as the Bolocam Galactic Plane Survey or ATLASGAL, can probe hot cores, cold cores, and the dense gas lanes from which they form, and are generally not dominated by the hottest core.

  8. The luminosity function of star clusters in 20 star-forming galaxies based on Hubble legacy archive photometry

    International Nuclear Information System (INIS)

    Whitmore, Bradley C.; Bowers, Ariel S.; Lindsay, Kevin; Ansari, Asna; Evans, Jessica; Chandar, Rupali; Larsen, Soeren

    2014-01-01

    Luminosity functions (LFs) have been determined for star cluster populations in 20 nearby (4-30 Mpc), star-forming galaxies based on Advanced Camera for Surveys source lists generated by the Hubble Legacy Archive (HLA). These cluster catalogs provide one of the largest sets of uniform, automatically generated cluster candidates available in the literature at present. Comparisons are made with other recently generated cluster catalogs demonstrating that the HLA-generated catalogs are of similar quality, but in general do not go as deep. A typical cluster LF can be approximated by a power law, dN/dL∝L α , with an average value for α of –2.37 and rms scatter = 0.18 when using the F814W ('I') band. A comparison of fitting results based on methods that use binned and unbinned data shows good agreement, although there may be a systematic tendency for the unbinned (maximum likelihood) method to give slightly more negative values of α for galaxies with steeper LFs. We find that galaxies with high rates of star formation (or equivalently, with the brightest or largest numbers of clusters) have a slight tendency to have shallower values of α. In particular, the Antennae galaxy (NGC 4038/39), a merging system with a relatively high star formation rate (SFR), has the second flattest LF in the sample. A tentative correlation may also be present between Hubble type and values of α, in the sense that later type galaxies (i.e., Sd and Sm) appear to have flatter LFs. Hence, while there do appear to be some weak correlations, the relative similarity in the values of α for a large number of star-forming galaxies suggests that, to first order, the LFs are fairly universal. We examine the bright end of the LFs and find evidence for a downturn, although it only pertains to about 1% of the clusters. Our uniform database results in a small scatter (≈0.4 to 0.5 mag) in the correlation between the magnitude of the brightest cluster (M brightest ) and log of the number

  9. Neutral and Ionized Hydrides in Star-forming Regions. Observations with Herschel/HIFI

    DEFF Research Database (Denmark)

    O. Benz, Arnold; Bruderer, Simon; F. van Dishoeck, Ewine

    2013-01-01

    of OH, CH, NH, SH and their ions OH+, CH+, NH+, SH+, H2O+, and H3O+ were observed in star-forming regions by the HIFI spectrometer onboard the Herschel Space Observatory. Molecular column densities are derived from observed ground-state lines, models, or rotational diagrams. We report here on two...

  10. FORMING HABITABLE PLANETS AROUND DWARF STARS: APPLICATION TO OGLE-06-109L

    International Nuclear Information System (INIS)

    Wang Su; Zhou Jilin

    2011-01-01

    Dwarf stars are believed to have a small protostar disk where planets may grow up. During the planet formation stage, embryos undergoing type I migration are expected to be stalled at an inner edge of the magnetically inactive disk (a crit ∼ 0.2-0.3 AU). This mechanism makes the location around a crit a 'sweet spot' for forming planets. In dwarf stars with masses ∼0.5 M sun , a crit is roughly inside the habitable zone of the system. In this paper, we study the formation of habitable planets due to this mechanism using model system OGLE-06-109L, which has a 0.51 M sun dwarf star with two giant planets in 2.3 and 4.6 AU observed by microlensing. We model the embryos undergoing type I migration in the gas disk with a constant disk-accretion rate ( M-dot ). Giant planets in outside orbits affect the formation of habitable planets through secular perturbations at the early stage and secular resonance at the late stage. We find that the existence and the masses of the habitable planets in the OGLE-06-109L system depend on both M-dot and the speed of type I migration. If planets are formed earlier, so that M-dot is larger (∼10 -7 M sun yr -1 ), terrestrial planets cannot survive unless the type I migration rate is an order of magnitude less. If planets are formed later, so that M-dot is smaller (∼10 -8 M sun yr -1 ), single and high-mass terrestrial planets with high water contents (∼5%) will be formed by inward migration of outer planet cores. A slower-speed migration will result in several planets via collisions of embryos, and thus their water contents will be low (∼2%). Mean motion resonances or apsidal resonances among planets may be observed if multiple planets survive in the inner system.

  11. NGC 346: Looking in the Cradle of a Massive Star Cluster

    Science.gov (United States)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these

  12. VARIABILITY AND STAR FORMATION IN LEO T, THE LOWEST LUMINOSITY STAR-FORMING GALAXY KNOWN TODAY

    Energy Technology Data Exchange (ETDEWEB)

    Clementini, Gisella; Cignoni, Michele; Ramos, Rodrigo Contreras; Federici, Luciana; Tosi, Monica [INAF, Osservatorio Astronomico di Bologna, I-40127 Bologna (Italy); Ripepi, Vincenzo; Marconi, Marcella; Musella, Ilaria, E-mail: gisella.clementini@oabo.inaf.it, E-mail: rodrigo.contreras@oabo.inaf.it, E-mail: luciana.federici@oabo.inaf.it, E-mail: monica.tosi@oabo.inaf.it, E-mail: michele.cignoni@unibo.it, E-mail: ripepi@na.astro.it, E-mail: marcella@na.astro.it, E-mail: ilaria@na.astro.it [INAF, Osservatorio Astronomico di Capodimonte, I-80131 Napoli (Italy)

    2012-09-10

    We present results from the first combined study of variable stars and star formation history (SFH) of the Milky Way 'ultra-faint' dwarf (UFD) galaxy Leo T, based on F606W and F814W multi-epoch archive observations obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope. We have detected 14 variable stars in the galaxy. They include one fundamental-mode RR Lyrae star and 11 Anomalous Cepheids with periods shorter than 1 day, thus suggesting the occurrence of multiple star formation episodes in this UFD, of which one about 10 Gyr ago produced the RR Lyrae star. A new estimate of the distance to Leo T of 409{sup +29}{sub -27} kpc (distance modulus of 23.06 {+-} 0.15 mag) was derived from the galaxy's RR Lyrae star. Our V, V - I color-magnitude diagram (CMD) of Leo T reaches V {approx} 29 mag and shows features typical of a galaxy in transition between dwarf irregular and dwarf spheroidal types. A quantitative analysis of the SFH, based on the comparison of the observed V, V - I CMD with the expected distribution of stars for different evolutionary scenarios, confirms that Leo T has a complex SFH dominated by two enhanced periods about 1.5 and 9 Gyr ago, respectively. The distribution of stars and gas shows that the galaxy has a fairly asymmetric structure.

  13. The rest-frame submillimeter spectrum of high-redshift, dusty, star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aravena, M. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001 Vitacura Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Béthermin, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Carlstrom, J. E.; Crawford, T. M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); De Breuck, C.; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Holzapfel, W. L., E-mail: jspilker@as.arizona.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); and others

    2014-04-20

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of {sup 12}CO, [C I], and H{sub 2}O, we also detect several faint transitions of {sup 13}CO, HCN, HNC, HCO{sup +}, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the {sup 13}CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which {sup 13}CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO{sup +}, and CN is consistent with a warm, dense medium with T {sub kin} ∼ 55 K and n{sub H{sub 2}}≳10{sup 5.5} cm{sup –3}. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  14. Molecular Hydrogen Images of Star Forming Regions in the Magellanic Clouds

    Science.gov (United States)

    Probst, Ronald G.; Barba, R.; Bolatto, A.; Chu, Y.; Points, S.; Rubio, M.; Smith, C.

    2011-01-01

    The Large and Small Magellanic Clouds exhibit a variety of star formation physics with multiple phase components in low metallicity, gas rich environments. The 10 K, 100 K, and 104 K regimes are well explored. We are imaging LMC and SMC star forming regions in 2.12 micron H2 emission which arises in the 1000 K transition zone of molecular clouds. This is an NOAO Survey program using the widefield IR camera NEWFIRM on the CTIO 4-m Blanco telescope during its limited southern deployment. The data set will have immediate morphological applications and will provide target selection for followup infrared spectroscopy. We will provide a public archive of fully calibrated images with no proprietary period. NOAO is operated by the Association of Universities for Research in Astronomy, under cooperative agreement with the National Science Foundation.

  15. SUB-STELLAR COMPANIONS AND STELLAR MULTIPLICITY IN THE TAURUS STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Daemgen, Sebastian; Bonavita, Mariangela; Jayawardhana, Ray; Lafrenière, David; Janson, Markus

    2015-01-01

    We present results from a large, high-spatial-resolution near-infrared imaging search for stellar and sub-stellar companions in the Taurus-Auriga star-forming region. The sample covers 64 stars with masses between those of the most massive Taurus members at ∼3 M ☉ and low-mass stars at ∼0.2 M ☉ . We detected 74 companion candidates, 34 of these reported for the first time. Twenty-five companions are likely physically bound, partly confirmed by follow-up observations. Four candidate companions are likely unrelated field stars. Assuming physical association with their host star, estimated companion masses are as low as ∼2 M Jup . The inferred multiplicity frequency within our sensitivity limits between ∼10-1500 AU is 26.3 −4.9 +6.6 %. Applying a completeness correction, 62% ± 14% of all Taurus stars between 0.7 and 1.4 M ☉ appear to be multiple. Higher order multiples were found in 1.8 −1.5 +4.2 % of the cases, in agreement with previous observations of the field. We estimate a sub-stellar companion frequency of ∼3.5%-8.8% within our sensitivity limits from the discovery of two likely bound and three other tentative very low-mass companions. This frequency appears to be in agreement with what is expected from the tail of the stellar companion mass ratio distribution, suggesting that stellar and brown dwarf companions share the same dominant formation mechanism. Further, we find evidence for possible evolution of binary parameters between two identified sub-populations in Taurus with ages of ∼2 Myr and ∼20 Myr, respectively

  16. SUB-STELLAR COMPANIONS AND STELLAR MULTIPLICITY IN THE TAURUS STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Daemgen, Sebastian [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5H 3H4 (Canada); Bonavita, Mariangela [The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Jayawardhana, Ray [Physics and Astronomy, York University, Toronto, Ontario L3T 3R1 (Canada); Lafrenière, David [Department of Physics, University of Montréal, Montréal, QC (Canada); Janson, Markus, E-mail: daemgen@astro.utoronto.ca [Department of Astronomy, Stockholm University, Stockholm (Sweden)

    2015-02-01

    We present results from a large, high-spatial-resolution near-infrared imaging search for stellar and sub-stellar companions in the Taurus-Auriga star-forming region. The sample covers 64 stars with masses between those of the most massive Taurus members at ∼3 M {sub ☉} and low-mass stars at ∼0.2 M {sub ☉}. We detected 74 companion candidates, 34 of these reported for the first time. Twenty-five companions are likely physically bound, partly confirmed by follow-up observations. Four candidate companions are likely unrelated field stars. Assuming physical association with their host star, estimated companion masses are as low as ∼2 M {sub Jup}. The inferred multiplicity frequency within our sensitivity limits between ∼10-1500 AU is 26.3{sub −4.9}{sup +6.6}%. Applying a completeness correction, 62% ± 14% of all Taurus stars between 0.7 and 1.4 M {sub ☉} appear to be multiple. Higher order multiples were found in 1.8{sub −1.5}{sup +4.2}% of the cases, in agreement with previous observations of the field. We estimate a sub-stellar companion frequency of ∼3.5%-8.8% within our sensitivity limits from the discovery of two likely bound and three other tentative very low-mass companions. This frequency appears to be in agreement with what is expected from the tail of the stellar companion mass ratio distribution, suggesting that stellar and brown dwarf companions share the same dominant formation mechanism. Further, we find evidence for possible evolution of binary parameters between two identified sub-populations in Taurus with ages of ∼2 Myr and ∼20 Myr, respectively.

  17. The KMOS Deep Survey: Dynamical Measurements of Star-Forming Galaxies at z 3.5

    Science.gov (United States)

    Turner, Owen; Cirasuolo, Michele; Harrison, Chris; McLure, Ross; Dunlop, James; Swinbank, Mark; Johnson, Helen; Sobral, David; Matthee, Jorryt; Sharples, Ray

    2017-07-01

    This poster present dynamical measurements from the KMOS (K-band Multi-Object Spectrograph) Deep Survey (KDS), which is comprised of 78 typical star-forming galaxies at z = 3.5 in the mass range 9.0 isolated. The results suggest that the rotation-dominated galaxies in the sample are offset to lower velocities at fixed stellar mass and have higher velocity dispersions than star-forming galaxies in the local and intermediate redshift universe. Only 1/3 of the galaxies in the sample are dominated by rotation, which hints that random motions are playing an increasingly significant role in supporting the dynamical mass in the systems. When searching for evolution in scaling relations, such as the stellar mass Tully-Fisher relation, it is important to take these random motions into account.

  18. EVOLUTION OF QUIESCENT AND STAR-FORMING GALAXIES SINCE z ∼ 1.5 AS A FUNCTION OF THEIR VELOCITY DISPERSIONS

    International Nuclear Information System (INIS)

    Bezanson, Rachel; Van Dokkum, Pieter; Franx, Marijn

    2012-01-01

    We measure stellar masses and structural parameters for 5500 quiescent and 20,000 star-forming galaxies at 0.3 < z ≤ 1.5 in the Newfirm Medium Band Survey COSMOS and UKIDSS UDS fields. We combine these measurements to infer velocity dispersions and determine how the number density of galaxies at fixed inferred dispersion, or the velocity dispersion function (VDF), evolves with time for each population. We show that the number of galaxies with high velocity dispersions appears to be surprisingly stable with time, regardless of their star formation history. Furthermore, the overall VDF for star-forming galaxies is constant with redshift, extending down to the lowest velocity dispersions probed by this study. The only galaxy population showing strong evolution are quiescent galaxies with low inferred dispersions, whose number density increases by a factor of ∼4 since z = 1.5. This buildup leads to an evolution in the quiescent fraction of galaxies such that the threshold dispersion above which quiescent galaxies dominate the counts moves to lower velocity dispersion with time. We show that our results are qualitatively consistent with a simple model in which star-forming galaxies quench and are added to the quiescent population. In order to compensate for the migration into the quiescent population, the velocity dispersions of star-forming galaxies must increase, with a rate that increases with dispersion.

  19. THE AVERAGE PHYSICAL PROPERTIES AND STAR FORMATION HISTORIES OF THE UV-BRIGHTEST STAR-FORMING GALAXIES AT z ∼ 3.7

    International Nuclear Information System (INIS)

    Lee, Kyoung-Soo; Glikman, Eilat; Dey, Arjun; Reddy, Naveen; Jannuzi, Buell T.; Brown, Michael J. I.; Gonzalez, Anthony H.; Cooper, Michael C.; Fan Xiaohui; Bian Fuyan; Stern, Daniel; Brodwin, Mark; Cooray, Asantha

    2011-01-01

    We investigate the average physical properties and star formation histories (SFHs) of the most UV-luminous star-forming galaxies at z ∼ 3.7. Our results are based on the average spectral energy distributions (SEDs), constructed from stacked optical-to-infrared photometry, of a sample of the 1913 most UV-luminous star-forming galaxies found in 5.3 deg 2 of the NOAO Deep Wide-Field Survey. We find that the shape of the average SED in the rest optical and infrared is fairly constant with UV luminosity, i.e., more UV-luminous galaxies are, on average, also more luminous at longer wavelengths. In the rest UV, however, the spectral slope β (≡ dlogF λ /dlogλ; measured at 0.13 μm rest UV and thus star formation rates (SFRs) scale closely with stellar mass such that more UV-luminous galaxies are also more massive, (2) the median ages indicate that the stellar populations are relatively young (200-400 Myr) and show little correlation with UV luminosity, and (3) more UV-luminous galaxies are dustier than their less-luminous counterparts, such that L ∼ 4-5L* galaxies are extincted up to A(1600) = 2 mag while L ∼ L* galaxies have A(1600) = 0.7-1.5 mag. We argue that the average SFHs of UV-luminous galaxies are better described by models in which SFR increases with time in order to simultaneously reproduce the tight correlation between the UV-derived SFR and stellar mass and their universally young ages. We demonstrate the potential of measurements of the SFR-M * relation at multiple redshifts to discriminate between simple models of SFHs. Finally, we discuss the fate of these UV-brightest galaxies in the next 1-2 Gyr and their possible connection to the most massive galaxies at z ∼ 2.

  20. Pulsational stability of the SX Phe star AE UMa

    Science.gov (United States)

    Pena, J. H.; Renteria, A.; Villarreal, C.; Pina, D. S.; Soni, A. A.; Guillen, J.; Vargas, K.; Trejo, O.

    2016-11-01

    From newly determined times of maxima of the SX Phe star AE UMa and a compilation of previous times of maxima, we were able to determine the nature of this star. With uv photometry we determined its physical parameters.

  1. Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions

    Science.gov (United States)

    Povich, Matthew Samuel; Binder, Breanna Arlene

    2018-01-01

    We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.

  2. Water in star-forming regions with Herschel (WISH) : IV. A survey of low-J H2O line profiles toward high-mass protostars

    NARCIS (Netherlands)

    van der Tak, F. F. S.; Chavarria, L.; Herpin, F.; Wyrowski, F.; Walmsley, C. M.; van Dishoeck, E. F.; Benz, A. O.; Bergin, E. A.; Caselli, P.; Hogerheijde, M. R.; Johnstone, D.; Kristensen, L. E.; Liseau, R.; Nisini, B.; Tafalla, M.

    Context. Water is a key constituent of star-forming matter, but the origin of its line emission and absorption during high-mass star formation is not well understood. Aims. We study the velocity profiles of low-excitation H2O lines toward 19 high-mass star-forming regions and search for trends with

  3. Star-Forming Galaxies at the Cosmic Dawn = Stervormende sterrenstelsels tijdens het kosmische ochtendgloren

    NARCIS (Netherlands)

    Smit, Renske

    2015-01-01

    The question of how the first stars formed and assembled into galaxies lies at the frontier of modern astrophysics. The study of these first sources of cosmic illumination was transformed by the installation of new instrumentation aboard the Hubble Space Telescope during one of the final Space

  4. General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star

    Science.gov (United States)

    Ciolfi, Riccardo; Kastaun, Wolfgang; Giacomazzo, Bruno; Endrizzi, Andrea; Siegel, Daniel M.; Perna, Rosalba

    2017-03-01

    Merging binary neutron stars (BNSs) represent the ultimate targets for multimessenger astronomy, being among the most promising sources of gravitational waves (GWs), and, at the same time, likely accompanied by a variety of electromagnetic counterparts across the entire spectrum, possibly including short gamma-ray bursts (SGRBs) and kilonova/macronova transients. Numerical relativity simulations play a central role in the study of these events. In particular, given the importance of magnetic fields, various aspects of this investigation require general relativistic magnetohydrodynamics (GRMHD). So far, most GRMHD simulations focused the attention on BNS mergers leading to the formation of a hypermassive neutron star (NS), which, in turn, collapses within few tens of ms into a black hole surrounded by an accretion disk. However, recent observations suggest that a significant fraction of these systems could form a long-lived NS remnant, which will either collapse on much longer time scales or remain indefinitely stable. Despite the profound implications for the evolution and the emission properties of the system, a detailed investigation of this alternative evolution channel is still missing. Here, we follow this direction and present a first detailed GRMHD study of BNS mergers forming a long-lived NS. We consider magnetized binaries with different mass ratios and equations of state and analyze the structure of the NS remnants, the rotation profiles, the accretion disks, the evolution and amplification of magnetic fields, and the ejection of matter. Moreover, we discuss the connection with the central engine of SGRBs and provide order-of-magnitude estimates for the kilonova/macronova signal. Finally, we study the GW emission, with particular attention to the post-merger phase.

  5. The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS

    Science.gov (United States)

    Crowther, Paul A.; Caballero-Nieves, Saida M.; Castro, Norberto; Evans, Christopher J.

    2017-11-01

    We present VLT/MUSE observations of NGC 2070, the dominant ionizing nebula of 30 Doradus in the LMC, plus HST/STIS spectroscopy of its central star cluster R136. Integral Field Spectroscopy (MUSE) and pseudo IFS (STIS) together provides a complete census of all massive stars within the central 30×30 parsec2 of the Tarantula. We discuss the integrated far-UV spectrum of R136, of particular interest for UV studies of young extragalactic star clusters. Strong He iiλ1640 emission at very early ages (1-2 Myr) from very massive stars cannot be reproduced by current population synthesis models, even those incorporating binary evolution and very massive stars. A nebular analysis of the integrated MUSE dataset implies an age of ~4.5 Myr for NGC 2070. Wolf-Rayet features provide alternative age diagnostics, with the primary contribution to the integrated Wolf-Rayet bumps arising from R140 rather than the more numerous H-rich WN stars in R136. Caution should be used when interpreting spatially extended observations of extragalactic star-forming regions.

  6. MSU Contributes to New Research on Star Formation

    Science.gov (United States)

    2010-01-01

    EAST LANSING, Mich. - "Crazy" and "cool" are two of the words Michigan State University astronomer Megan Donahue uses to describe the two distinct "tails" found on a long tail of gas that is believed to be forming stars where few stars have been formed before. Donahue was part of an international team of astronomers that viewed the gas tail with a very long, new observation made by the Chandra X-ray Observatory and detailed it in a paper published this month in the publication Astrophysical Journal. "The double tail is very cool - that is, interesting - and ridiculously hard to explain," said Donahue, a professor in MSU's Department of Physics and Astronomy. "It could be two different sources of gas or something to do with magnetic fields. We just don't know." What is also unusual is the gas tail, which is more than 200,000 light years in length, extends well outside any galaxy. It is within objects such as this that new stars are formed, but usually within the confines of a galaxy. "This system is really crazy because where we're seeing the star formation is well away from any galaxy," Donahue said. "Star formation happens primarily in the disks of galaxies. What we're seeing here is very unexpected." This gas tail was originally spotted by astronomers three years ago using a multitude of telescopes, including NASA's Chandra X-ray Observatory and the SOuthern Astrophysical Research telescope, a Chilean-based observatory in which MSU is one of the partners. The new observations show a second tail, and a fellow galaxy, ESO 137-002, that also has a tail of hot X-ray-emitting gas. How these newly formed stars came to be in this particular place remains a mystery as well. Astronomers theorize this gas tail might have "pulled" star-making material from nearby gases, creating what some have called "orphan stars." "This system continues to surprise us as we get better observations of it," Donahue said. The gas tail is located in the southern hemisphere near a

  7. OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-03-10

    With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and move toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.

  8. Variations in Canonical Star-Forming Laws at Low Metallicity

    Science.gov (United States)

    Monkiewicz, Jacqueline; Bowman, Judd D.; Scowen, Paul

    2018-01-01

    Empirically-determined star formation relations link observed galaxy luminosities to extrapolated star formation rates at almost every observable wavelength range. These laws are a cornerstone of extragalactic astronomy, and will be critically important for interpreting upcoming observations of early high-redshift protogalaxies with JWST and WFIRST. There are indications at a variety of wavelengths that these canonical relations may become unreliable at the lowest metallicities observed. This potentially complicates interpretation of the earliest protogalaxies, which are expected to be pristine and largely unenriched by stellar nucleosynthesis. Using a sample of 15 local dwarf galaxies with 12+[O/H] dwarf galaxies 1 Zw 18 and SBS 0335-052E suggest that the far-IR/radio relation probably deviates at low metallicities, but the low luminosity end of the relation is not well sampled. The upgraded Jansky Very Large Array has the sensitivity to fill in this gap. I have obtained 45 hours of L- and C-band continuum data of my dwarf galaxy sample. I present radio continuum imaging of an initial sub-sample of Local Group dwarfs, some of which have never before been detected in radio continuum. The H-alpha/UV relationship is likewise known to become unreliable for dwarf galaxies, though this has been attributed to dwarf galaxy "bursty-ness" rather than metallicity effects. I have conducted a parallel survey of emission line imaging to study the underlying astrophysics of the H-alpha/UV relation. Using Balmer decrement imaging, I map out the pixel-to-pixel dust distribution and geometry within the nearest galaxies in my sample. I compare this to GALEX UV imaging. I discuss implications for UV escape fraction, and present initial results of the canonical star-forming relations at low galaxy luminosity and metallicity. THIS IS A POSTER AND WILL BE LOCATED IN THE AAS BOOTH.

  9. Degenerate stars. XII - Recognition of hot nondegenerates

    Science.gov (United States)

    Greenstein, J. L.

    1980-12-01

    Fifty-one newly observed degenerate stars and 14 nondegenerates include 13 faint red stars, most of which do not show any lines except DF, Gr 554. Hot subdwarfs and an X-ray source are discussed along with the problem of low-resolution spectroscopic classification of dense hot stars. The multichannel spectrum of the carbon-rich magnetic star LP 790-29 is examined by fitting the undisturbed parts of the spectrum to a black body of 7625 K by the least squares method; the Swan bands absorb 600 A of the spectrum assuming that the blocked radiation is redistributed in the observed region.

  10. H2O masers in star-forming regions

    International Nuclear Information System (INIS)

    Downes, D.

    1985-01-01

    Water vapour near star forming regions was first detected by Cheung et al. (1969) and shortly thereafter was recognised to be maser emission. In spite of this 15 year history of H 2 O observations, the problem of interpreting such strong H 2 O masers as W49 and Orion is still very acute. Not one of the models now available can explain in an unconstrained fashion why a very large maser flux can emanate from clouds of such small size. Whereas some models proposed to explain OH masers have retained their plausibility under the pressure of new observations, H 2 O models have not. The author outlines the background of the H 2 O problem, stating that the strongest of the masers discovered are still not satisfactorily explained today. (Auth.)

  11. J0811+4730: the most metal-poor star-forming dwarf galaxy known

    Science.gov (United States)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.; Liss, S. E.

    2018-01-01

    We report the discovery of the most metal-poor dwarf star-forming galaxy (SFG) known to date, J0811+4730. This galaxy, at a redshift z = 0.04444, has a Sloan Digital Sky Survey (SDSS) g-band absolute magnitude Mg = -15.41 mag. It was selected by inspecting the spectroscopic data base in the Data Release 13 (DR13) of the SDSS. Large Binocular Telescope/Multi-Object Double spectrograph (LBT/MODS) spectroscopic observations reveal its oxygen abundance to be 12 + log O/H = 6.98 ± 0.02, the lowest ever observed for an SFG. J0811+4730 strongly deviates from the main sequence defined by SFGs in the emission line diagnostic diagrams and the metallicity-luminosity diagram. These differences are caused mainly by the extremely low oxygen abundance in J0811+4730, which is ∼10 times lower than that in main-sequence SFGs with similar luminosities. By fitting the spectral energy distributions of the SDSS and LBT spectra, we derive a stellar mass of M⋆ = 106.24-106.29 M⊙, and we find that a considerable fraction of the galaxy stellar mass was formed during the most recent burst of star formation.

  12. Mid-Infrared Observations of Possible Intergalactic Star Forming Regions in the Leo Ring

    Science.gov (United States)

    Giroux, Mark; Smith, B.; Struck, C.

    2011-05-01

    Within the Leo group of galaxies lies a gigantic loop of intergalactic gas known as the Leo Ring. Not clearly associated with any particular galaxy, its origin remains uncertain. It may be a primordial intergalactic cloud alternatively, it may be a collision ring, or have a tidal origin. Combining archival Spitzer images of this structure with published UV and optical data, we investigate the mid-infrared properties of possible knots of star formation in the ring. These sources are very faint in the mid-infrared compared to star forming regions in the tidal features of interacting galaxies. This suggests they are either deficient in dust, or they may not be associated with the ring.

  13. Small scale kinematics of massive star-forming cores

    NARCIS (Netherlands)

    Wang, Kuo-Song

    2013-01-01

    Unlike the formation of Solar-type stars, the formation of massive stars (M>8 Msun) is not yet well understood. For Solar-type protostars, the presence of circumstellar or protoplanetary disks which provide a path for mass accretion onto protostars is well established. However, to date only few

  14. Socket Preservation with d-PTFE Membrane: Histologic Analysis of the Newly Formed Matrix at Membrane Removal.

    Science.gov (United States)

    Laurito, Domenico; Cugnetto, Riccardo; Lollobrigida, Marco; Guerra, Fabrizio; Vestri, Annarita; Gianno, Francesca; Bosco, Sandro; Lamazza, Luca; De Biase, Alberto

    This study aimed to evaluate the efficacy of an exposed high-density polytetrafluoroethylene (d-PTFE) membrane in preventing epithelial migration in postextraction sockets. For this purpose, a histologic description of the newly formed soft tissue underlying the membrane is presented. The periodontal status of the adjacent teeth was also evaluated to assess the gingival response. Ten premolar extraction sockets were treated. After tooth extraction, the sockets were filled with nanocrystalline hydroxyapatite and covered with d-PTFE membranes. Subperiosteal pockets were created to ensure the stability of the membranes. Membranes were left intentionally exposed and were atraumatically removed after 28 days. At that time, a bioptic specimen of the newly formed soft tissue under the membranes was taken. All the histologic samples showed a dense connective tissue without epithelial cells and no signs of foreign body reaction. No significant variation of the periodontal indices was observed on the teeth adjacent to the extraction sites. The study results indicate that exposed d-PTFE membranes can prevent epithelial migration in healing sockets without consequences on the periodontal health.

  15. THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ≤ z ≤ 2.2

    International Nuclear Information System (INIS)

    Brammer, Gabriel B.; Whitaker, K. E.; Van Dokkum, P. G.; Lee, K.-S.; Muzzin, A.; Marchesini, D.; Franx, M.; Kriek, M.; Labbe, I.; Quadri, R. F.; Williams, R.; Rudnick, G.

    2011-01-01

    We study the buildup of the bimodal galaxy population using the NEWFIRM Medium-Band Survey, which provides excellent redshifts and well-sampled spectral energy distributions of ∼27, 000 galaxies with K 3 x 10 10 M sun increases by a factor of ∼10 from z ∼ 2 to the present day, whereas the mass density in star-forming galaxies is flat or decreases over the same time period. Modest mass growth by a factor of ∼2 of individual quiescent galaxies can explain roughly half of the strong density evolution at masses >10 11 M sun , due to the steepness of the exponential tail of the mass function. The rest of the density evolution of massive, quiescent galaxies is likely due to transformation (e.g., quenching) of the massive star-forming population, a conclusion which is consistent with the density evolution we observe for the star-forming galaxies themselves, which is flat or decreasing with cosmic time. Modest mass growth does not explain the evolution of less massive quiescent galaxies (∼10 10.5 M sun ), which show a similarly steep increase in their number densities. The less massive quiescent galaxies are therefore continuously formed by transforming galaxies from the star-forming population.

  16. The new Be-type star HD 147196 in the Rho Ophiuchi dark cloud region

    Science.gov (United States)

    The, P. S.; Perez, M. R.; De Winter, D.; Van Den Ancker, M. E.

    1993-01-01

    The newly discovered hot-emission line star, HD 147196 in the Rho Oph dark cloud region was observed spectroscopically and photometrically and high and low resolution IUE spectra were obtained. The finding of Irvine (1990) that this relatively bright star show its H-alpha-line in emission is confirmed. Previous H-alpha-surveys of the Rho Oph star-forming region did not detect HD 147196 as an H-alpha-emission star, meaning that it must recently be very active and has perhaps transformed itself from a B-type star at shell phase to a Be-phase. The Mg II h + k resonance lines are in absorption and they appear to be interstellar in nature, which means that either the abundance of Mg in the extended atmosphere of the star is low or that the shell is not extended enough to produce emission lines of Mg II. Photometric observations of this B8 V type star do not show any variations during at least the years covered by our monitoring or any excess of NIR radiation in its spectral energy distribution up to the M-passband at 4.8 microns.

  17. FORMING AN O STAR VIA DISK ACCRETION?

    International Nuclear Information System (INIS)

    Qiu Keping; Zhang Qizhou; Beuther, Henrik; Fallscheer, Cassandra

    2012-01-01

    We present a study of outflow, infall, and rotation in a ∼10 5 L ☉ star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ∼80 M ☉ and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 ± 50 K and a mass of ∼13 M ☉ . The outflow has a gas mass of 54 M ☉ and a dynamical timescale of 8 × 10 3 yr. The kinematics of the HMC are probed by high-excitation CH 3 OH and CH 3 CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 × 10 –3 M ☉ yr –1 , is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the 13 CO and C 18 O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass ∼10 M ☉ embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  18. Strange-quark-matter stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-11-01

    We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab

  19. THE JCMT GOULD BELT SURVEY: EVIDENCE FOR DUST GRAIN EVOLUTION IN PERSEUS STAR-FORMING CLUMPS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Michael Chun-Yuan; Francesco, J. Di; Johnstone, D.; Broekhoven-Fiene, H. [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Sadavoy, S. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Hatchell, J. [Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Mottram, J. C.; Hogerheijde, M. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Kirk, H. [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Buckle, J.; Salji, C. [Astrophysics Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Berry, D. S.; Currie, M. J.; Jenness, T. [Joint Astronomy Centre, 660 North A‘ohōkū Place, University Park, Hilo, HI-96720 (United States); Fich, M.; Tisi, S. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Nutter, D.; Quinn, C. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA (United Kingdom); Pattle, K. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancashire, PR1 2HE (United Kingdom); Pineda, J. E. [European Southern Observatory (ESO), Garching (Germany); and others

    2016-07-20

    The dust emissivity spectral index, β , is a critical parameter for deriving the mass and temperature of star-forming structures and, consequently, their gravitational stability. The β value is dependent on various dust grain properties, such as size, porosity, and surface composition, and is expected to vary as dust grains evolve. Here we present β , dust temperature, and optical depth maps of the star-forming clumps in the Perseus Molecular Cloud determined from fitting spectral energy distributions to combined Herschel and JCMT observations in the 160, 250, 350, 500, and 850 μ m bands. Most of the derived β and dust temperature values fall within the ranges of 1.0–2.7 and 8–20 K, respectively. In Perseus, we find the β distribution differs significantly from clump to clump, indicative of grain growth. Furthermore, we also see significant localized β variations within individual clumps and find low- β regions correlate with local temperature peaks, hinting at the possible origins of low- β grains. Throughout Perseus, we also see indications of heating from B stars and embedded protostars, as well evidence of outflows shaping the local landscape.

  20. Age gradients in the stellar populations of massive star forming regions based on a new stellar chronometer

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.; Broos, Patrick S.; Townsley, Leisa K.; Luhman, Kevin L. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Naylor, Tim [School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL (United Kingdom); Povich, Matthew S. [Department of Physics and Astronomy, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768 (United States); Garmire, Gordon P. [Huntingdon Institute for X-ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2014-06-01

    A major impediment to understanding star formation in massive star-forming regions (MSFRs) is the absence of a reliable stellar chronometer to unravel their complex star formation histories. We present a new estimation of stellar ages using a new method that employs near-infrared (NIR) and X-ray photometry, Age {sub JX} . Stellar masses are derived from X-ray luminosities using the L{sub X} -M relation from the Taurus cloud. J-band luminosities are compared to mass-dependent pre-main-sequence (PMS) evolutionary models to estimate ages. Age {sub JX} is sensitive to a wide range of evolutionary stages, from disk-bearing stars embedded in a cloud to widely dispersed older PMS stars. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) project characterizes 20 OB-dominated MSFRs using X-ray, mid-infrared, and NIR catalogs. The Age {sub JX} method has been applied to 5525 out of 31,784 MYStIX Probable Complex Members. We provide a homogeneous set of median ages for over 100 subclusters in 15 MSFRs; median subcluster ages range between 0.5 Myr and 5 Myr. The important science result is the discovery of age gradients across MYStIX regions. The wide MSFR age distribution appears as spatially segregated structures with different ages. The Age {sub JX} ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed populations. The NIR color index J – H, a surrogate measure of extinction, can serve as an approximate age predictor for young embedded clusters.

  1. Simulating the Birth of Massive Star Clusters: Is Destruction Inevitable?

    Science.gov (United States)

    Rosen, Anna

    2013-10-01

    Very early in its operation, the Hubble Space Telescope {HST} opened an entirely new frontier: study of the demographics and properties of star clusters far beyond the Milky Way. However, interpretation of HST's observations has proven difficult, and has led to the development of two conflicting models. One view is that most massive star clusters are disrupted during their infancy by feedback from newly formed stars {i.e., "infant mortality"}, independent of cluster mass or environment. The other model is that most star clusters survive their infancy and are disrupted later by mass-dependent dynamical processes. Since observations at present have failed to discriminate between these views, we propose a theoretical investigation to provide new insight. We will perform radiation-hydrodynamic simulations of the formation of massive star clusters, including for the first time a realistic treatment of the most important stellar feedback processes. These simulations will elucidate the physics of stellar feedback, and allow us to determine whether cluster disruption is mass-dependent or -independent. We will also use our simulations to search for observational diagnostics that can distinguish bound from unbound clusters, and to predict how cluster disruption affects the cluster luminosity function in a variety of galactic environments.

  2. FROM BLUE STAR-FORMING TO RED PASSIVE: GALAXIES IN TRANSITION IN DIFFERENT ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8582 (Japan); Poggianti, Bianca M.; Fasano, Giovanni; Moretti, Alessia [INAF-Astronomical Observatory of Padova, I-35122 Padova (Italy); Fritz, Jacopo [Sterrenkundig Observatorium Vakgroep Fysica en Sterrenkunde Universiteit Gent, Krijgslaan 281, S9 B-9000 Gent (Belgium); Calvi, Rosa; Paccagnella, Angela [Dipartimento di Fisica e Astronomia, Universitá degli Studi di Padova, vicolo Osservatorio 2, I-35122 Padova (Italy)

    2015-01-01

    Exploiting a mass-complete (M {sub *} > 10{sup 10.25} M {sub ☉}) sample at 0.03 star-formation activity and/or morphology: green galaxies, red passive late types, and blue star-forming early types. Color fractions depend on mass and only for M {sub *} < 10{sup 10.7} M {sub ☉} on environment. The incidence of red galaxies increases with increasing mass, and, for M {sub *} < 10{sup 10.7} M {sub ☉}, decreases toward the group outskirts and in binary and single galaxies. The relative abundance of green and blue galaxies is independent of environment and increases monotonically with galaxy mass. We also inspect galaxy structural parameters, star-formation properties, histories, and ages and propose an evolutionary scenario for the different subpopulations. Color transformations are due to a reduction and suppression of the star-formation rate in both bulges and disks that does not noticeably affect galaxy structure. Morphological transitions are linked to an enhanced bulge-to-disk ratio that is due to the removal of the disk, not to an increase of the bulge. Our modeling suggests that green colors might be due to star-formation histories declining with long timescales, as an alternative scenario to the classical ''quenching'' processes. Our results suggest that galaxy transformations in star-formation activity and morphology depend neither on the environment nor on being a satellite or the most massive galaxy of a halo. The only environmental dependence we find is the higher fast quenching efficiency in groups giving origin to poststarburst signatures.

  3. RECENT STAR FORMATION IN THE LEADING ARM OF THE MAGELLANIC STREAM

    Energy Technology Data Exchange (ETDEWEB)

    Casetti-Dinescu, Dana I. [Department of Physics, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515 (United States); Bidin, Christian Moni [Instituto de Astronomía, Universidad Católica del Norte, Avenue Angamos 0610, Antofagasta (Chile); Girard, Terrence M.; Van Altena, William F. [Astronomy Department, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States); Méndez, Réne A. [Departmento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Vieira, Katherine [Centro de Investigaciones de Astronomía, Apartado Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Korchagin, Vladimir I., E-mail: casettid1@southernct.edu, E-mail: dana.casetti@yale.edu, E-mail: terry.girard@yale.edu, E-mail: william.vanaltena@yale.edu, E-mail: chr.moni.bidin@gmail.com, E-mail: ramendez.uchile@gmail.com, E-mail: kvieira@cida.ve, E-mail: vkorchagin@sfedu.ru [Institute of Physics, Southern Federal University, Stachki Street 124, 344090, Rostov-on-Don (Russian Federation)

    2014-04-01

    Strongly interacting galaxies undergo a short-lived but dramatic phase of evolution characterized by enhanced star formation, tidal tails, bridges, and other morphological peculiarities. The nearest example of a pair of interacting galaxies is the Magellanic Clouds, whose dynamical interaction produced the gaseous features known as the Magellanic Stream trailing the pair's orbit about the Galaxy, the bridge between the Clouds, and the leading arm (LA), a wide and irregular feature leading the orbit. Young, newly formed stars in the bridge are known to exist, giving witness to the recent interaction between the Clouds. However, the interaction of the Clouds with the Milky Way (MW) is less well understood. In particular, the LA must have a tidal origin; however, no purely gravitational model is able to reproduce its morphology and kinematics. A hydrodynamical interaction with the gaseous hot halo and disk of the Galaxy is plausible as suggested by some models and supporting neutral hydrogen (H I) observations. Here we show for the first time that young, recently formed stars exist in the LA, indicating that the interaction between the Clouds and our Galaxy is strong enough to trigger star formation in certain regions of the LA—regions in the outskirts of the MW disk (R ∼ 18 kpc), far away from the Clouds and the bridge.

  4. RECENT STAR FORMATION IN THE LEADING ARM OF THE MAGELLANIC STREAM

    International Nuclear Information System (INIS)

    Casetti-Dinescu, Dana I.; Bidin, Christian Moni; Girard, Terrence M.; Van Altena, William F.; Méndez, Réne A.; Vieira, Katherine; Korchagin, Vladimir I.

    2014-01-01

    Strongly interacting galaxies undergo a short-lived but dramatic phase of evolution characterized by enhanced star formation, tidal tails, bridges, and other morphological peculiarities. The nearest example of a pair of interacting galaxies is the Magellanic Clouds, whose dynamical interaction produced the gaseous features known as the Magellanic Stream trailing the pair's orbit about the Galaxy, the bridge between the Clouds, and the leading arm (LA), a wide and irregular feature leading the orbit. Young, newly formed stars in the bridge are known to exist, giving witness to the recent interaction between the Clouds. However, the interaction of the Clouds with the Milky Way (MW) is less well understood. In particular, the LA must have a tidal origin; however, no purely gravitational model is able to reproduce its morphology and kinematics. A hydrodynamical interaction with the gaseous hot halo and disk of the Galaxy is plausible as suggested by some models and supporting neutral hydrogen (H I) observations. Here we show for the first time that young, recently formed stars exist in the LA, indicating that the interaction between the Clouds and our Galaxy is strong enough to trigger star formation in certain regions of the LA—regions in the outskirts of the MW disk (R ∼ 18 kpc), far away from the Clouds and the bridge

  5. A WIDE-FIELD NARROWBAND OPTICAL SURVEY OF THE BRAID NEBULA STAR FORMATION REGION IN CYGNUS OB7

    International Nuclear Information System (INIS)

    Magakian, Tigran Yu.; Nikogossian, Elena H.; Movsessian, Tigran; Aspin, Colin; Pyo, Tae-Soo; Khanzadyan, Tigran; Smith, Michael D.; Mitchison, Sharon; Davis, Chris J.; Beck, Tracy L.; Moriarty-Schieven, Gerald H.

    2010-01-01

    We study the population of Herbig-Haro (HH) flows and jets in an area of Cygnus OB7 designated the Braid Nebula star formation region. This complex forms part of the L 1003 dark cloud, and hosts two FU Orionis (FUor)-like objects as well as several other active young stars. To trace outflow activity and to relate both known and newly discovered flows to young star hosts we intercompare new, deep, narrowband Hα and [S II] optical images taken on the Subaru 8 m Telescope on Mauna Kea, Hawaii. Our images show that there is considerable outflow and jet activity in this region suggesting the presence of an extensive young star population. We confirm that both of the FUor-like objects drive extensive HH flows and document further members of the flows in both objects. The L 1003 star formation complex is a highly kinematically active region with young stars in several different stages of evolution. We trace collimated outflows from numerous young stars although the origin of some HH objects remains elusive.

  6. Black hole variability and the star formation-active galactic nucleus connection: Do all star-forming galaxies host an active galactic nucleus?

    International Nuclear Information System (INIS)

    Hickox, Ryan C.; Chen, Chien-Ting J.; Civano, Francesca M.; Hainline, Kevin N.; Mullaney, James R.; Alexander, David M.; Goulding, Andy D.

    2014-01-01

    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (≳100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ∼100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to 'inactive' galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR.

  7. SALT Spectroscopy of Evolved Massive Stars

    Science.gov (United States)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  8. Variable stars in the field of open cluster NGC 2126

    International Nuclear Information System (INIS)

    Liu Shunfang; Wu Zhenyu; Zhang Xiaobin; Wu Jianghua; Ma Jun; Jiang Zhaoji; Chen Jiansheng; Zhou Xu

    2009-01-01

    We report the results of a time-series CCD photometric survey of variable stars in the field of open cluster NGC 2126. In about a one square degree field covering the cluster, a total of 21 variable candidates are detected during this survey, of which 16 are newly found. The periods, classifications and spectral types of 14 newly discovered variables are discussed, which consist of six eclipsing binary systems, three pulsating variable stars, three long period variables, one RS CVn star, and one W UMa or δ Scuti star. In addition, there are two variable candidates, the properties of which cannot be determined. By a method based on fitting observed spectral energy distributions of stars with theoretical ones, the membership probabilities and the fundamental parameters of this cluster are determined. As a result, five variables are probably members of NGC 2126. The fundamental parameters of this cluster are determined as: metallicity to be 0.008 Z o-dot , age log(t) = 8.95, distance modulus (m - M) 0 = 10.34 and reddening value E (B - V) = 0.55 mag.

  9. The mass-metallicity relations for gas and stars in star-forming galaxies: strong outflow versus variable IMF

    Science.gov (United States)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Comparat, Johan; Gonzalez-Perez, Violeta; Ventura, Paolo

    2018-02-01

    We investigate the mass-metallicity relations for the gaseous (MZRgas) and stellar components (MZRstar) of local star-forming galaxies based on a representative sample from Sloan Digital Sky Survey Data Release 12. The mass-weighted average stellar metallicities are systematically lower than the gas metallicities. This difference in metallicity increases towards galaxies with lower masses and reaches 0.4-0.8 dex at 109 M⊙ (depending on the gas metallicity calibration). As a result, the MZRstar is much steeper than the MZRgas. The much lower metallicities in stars compared to the gas in low-mass galaxies imply dramatic metallicity evolution with suppressed metal enrichment at early times. The aim of this paper is to explain the observed large difference in gas and stellar metallicity and to infer the origin of the mass-metallicity relations. To this end we develop a galactic chemical evolution model accounting for star formation, gas inflow and outflow. By combining the observed mass-metallicity relation for both gas and stellar components to constrain the models, we find that only two scenarios are able to reproduce the observations. Either strong metal outflow or a steep initial mass function (IMF) slope at early epochs of galaxy evolution is needed. Based on these two scenarios, for the first time we successfully reproduce the observed MZRgas and MZRstar simultaneously, together with other independent observational constraints in the local Universe. Our model also naturally reproduces the flattening of the MZRgas at the high-mass end leaving the MZRstar intact, as seen in observational data.

  10. High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data

    Science.gov (United States)

    Sudoh, Takahiro; Totani, Tomonori; Kawanaka, Norita

    2018-04-01

    We present new theoretical modeling to predict the luminosity and spectrum of gamma-ray and neutrino emission of a star-forming galaxy, from the star formation rate (ψ), gas mass (Mgas), stellar mass, and disk size, taking into account production, propagation, and interactions of cosmic rays. The model reproduces the observed gamma-ray luminosities of nearby galaxies detected by Fermi better than the simple power-law models as a function of ψ or ψMgas. This model is then used to predict the cosmic background flux of gamma-rays and neutrinos from star-forming galaxies, by using a semi-analytical model of cosmological galaxy formation that reproduces many observed quantities of local and high-redshift galaxies. Calibration of the model using gamma-ray luminosities of nearby galaxies allows us to make a more reliable prediction than previous studies. In our baseline model, star-forming galaxies produce about 20% of the isotropic gamma-ray background unresolved by Fermi, and only 0.5% of IceCube neutrinos. Even with an extreme model assuming a hard injection cosmic-ray spectral index of 2.0 for all galaxies, at most 22% of IceCube neutrinos can be accounted for. These results indicate that it is difficult to explain most of the IceCube neutrinos by star-forming galaxies, without violating the gamma-ray constraints from nearby galaxies.

  11. Formation of stars and star clusters in colliding galaxies

    International Nuclear Information System (INIS)

    Belles, Pierre-Emmanuel

    2012-01-01

    Mergers are known to be essential in the formation of large-scale structures and to have a significant role in the history of galaxy formation and evolution. Besides a morphological transformation, mergers induce important bursts of star formation. These starburst are characterised by high Star Formation Efficiencies (SFEs) and Specific Star Formation Rates, i.e., high Star Formation Rates (SFR) per unit of gas mass and high SFR per unit of stellar mass, respectively, compared to spiral galaxies. At all redshifts, starburst galaxies are outliers of the sequence of star-forming galaxies defined by spiral galaxies. We have investigated the origin of the starburst-mode of star formation, in three local interacting systems: Arp 245, Arp 105 and NGC 7252. We combined high-resolution JVLA observations of the 21-cm line, tracing the HI diffuse gas, with UV GALEX observations, tracing the young star-forming regions. We probe the local physical conditions of the Inter-Stellar Medium (ISM) for independent star-forming regions and explore the atomic-to-dense gas transformation in different environments. The SFR/HI ratio is found to be much higher in central regions, compared to outer regions, showing a higher dense gas fraction (or lower HI gas fraction) in these regions. In the outer regions of the systems, i.e., the tidal tails, where the gas phase is mostly atomic, we find SFR/HI ratios higher than in standard HI-dominated environments, i.e., outer discs of spiral galaxies and dwarf galaxies. Thus, our analysis reveals that the outer regions of mergers are characterised by high SFEs, compared to the standard mode of star formation. The observation of high dense gas fractions in interacting systems is consistent with the predictions of numerical simulations; it results from the increase of the gas turbulence during a merger. The merger is likely to affect the star-forming properties of the system at all spatial scales, from large scales, with a globally enhanced turbulence

  12. Baseline metal enrichment from Population III star formation in cosmological volume simulations

    Science.gov (United States)

    Jaacks, Jason; Thompson, Robert; Finkelstein, Steven L.; Bromm, Volker

    2018-04-01

    We utilize the hydrodynamic and N-body code GIZMO coupled with our newly developed sub-grid Population III (Pop III) Legacy model, designed specifically for cosmological volume simulations, to study the baseline metal enrichment from Pop III star formation at z > 7. In this idealized numerical experiment, we only consider Pop III star formation. We find that our model Pop III star formation rate density (SFRD), which peaks at ˜ 10- 3 M⊙ yr- 1 Mpc- 1 near z ˜ 10, agrees well with previous numerical studies and is consistent with the observed estimates for Pop II SFRDs. The mean Pop III metallicity rises smoothly from z = 25 to 7, but does not reach the critical metallicity value, Zcrit = 10-4 Z⊙, required for the Pop III to Pop II transition in star formation mode until z ≃ 7. This suggests that, while individual haloes can suppress in situ Pop III star formation, the external enrichment is insufficient to globally terminate Pop III star formation. The maximum enrichment from Pop III star formation in star-forming dark matter haloes is Z ˜ 10-2 Z⊙, whereas the minimum found in externally enriched haloes is Z ≳ 10-7 Z⊙. Finally, mock observations of our simulated IGM enriched with Pop III metals produce equivalent widths similar to observations of an extremely metal-poor damped Lyman alpha system at z = 7.04, which is thought to be enriched by Pop III star formation only.

  13. Subsonic islands within a high-mass star-forming infrared dark cloud

    Science.gov (United States)

    Sokolov, Vlas; Wang, Ke; Pineda, Jaime E.; Caselli, Paola; Henshaw, Jonathan D.; Barnes, Ashley T.; Tan, Jonathan C.; Fontani, Francesco; Jiménez-Serra, Izaskun; Zhang, Qizhou

    2018-03-01

    High-mass star forming regions are typically thought to be dominated by supersonic motions. We present combined Very Large Array and Green Bank Telescope (VLA+GBT) observations of NH3 (1,1) and (2,2) in the infrared dark cloud (IRDC) G035.39-00.33, tracing cold and dense gas down to scales of 0.07 pc. We find that, in contrast to previous, similar studies of IRDCs, more than a third of the fitted ammonia spectra show subsonic non-thermal motions (mean line width of 0.71 km s-1), and sonic Mach number distribution peaks around ℳ = 1. As possible observational and instrumental biases would only broaden the line profiles, our results provide strong upper limits to the actual value of ℳ, further strengthening our findings of narrow line widths. This finding calls for a re-evaluation of the role of turbulent dissipation and subsonic regions in massive-star and cluster formation. Based on our findings in G035.39, we further speculate that the coarser spectral resolution used in the previous VLA NH3 studies may have inhibited the detection of subsonic turbulence in IRDCs. The reduced turbulent support suggests that dynamically important magnetic fields of the 1 mG order would be required to support against possible gravitational collapse. Our results offer valuable input into the theories and simulations that aim to recreate the initial conditions of high-mass star and cluster formation.

  14. Neutron star formation in theoretical supernovae. Low mass stars and white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, K.

    1986-01-01

    The presupernova evolution of stars that form semi-degenerate or strongly degenerate O + Ne + Mg cores is discussed. For the 10 to 13 Msub solar stars, behavior of off-center neon flashes is crucial. The 8 to 10 m/sub solar stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. The conditions for which neutron stars form from accretion-induced collapse of white dwarfs in clsoe binary systems is also examined

  15. PHIBSS: MOLECULAR GAS, EXTINCTION, STAR FORMATION, AND KINEMATICS IN THE z = 1.5 STAR-FORMING GALAXY EGS13011166

    Energy Technology Data Exchange (ETDEWEB)

    Genzel, R.; Tacconi, L. J.; Kurk, J.; Wuyts, S.; Foerster Schreiber, N. M.; Gracia-Carpio, J. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr., D-85748 Garching (Germany); Combes, F.; Freundlich, J. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Cooper, M. C. [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Neri, R. [IRAM, 300 Rue de la Piscine, F-38406 St. Martin d' Heres, Grenoble (France); Nordon, R. [Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Bournaud, F. [Service d' Astrophysique, DAPNIA, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Burkert, A. [Universitaetssternwarte der Ludwig-Maximiliansuniversitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Comerford, J. [Department of Astronomy and McDonald Observatory, 1 University Station, C1402 Austin, TX 78712-0259 (United States); Cox, P. [Department of Physics, Le Conte Hall, University of California, 94720 Berkeley, CA (United States); Davis, M. [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Garcia-Burillo, S. [Observatorio Astronomico Nacional-OAN, Observatorio de Madrid, Alfonso XII, 3, E-28014 Madrid (Spain); Naab, T. [Max-Planck Institut fuer Astrophysik, Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); Lutz, D., E-mail: genzel@mpe.mpg.de, E-mail: linda@mpe.mpg.de; and others

    2013-08-10

    We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the H{alpha} line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the ''Plateau de Bure high-z, blue-sequence survey'' (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similar and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a ''mixed'' extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlog{Sigma}{sub starform}/dlog{Sigma}{sub molgas}, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 {+-} 0.1.

  16. Nitrogen fractionation in high-mass star-forming cores across the Galaxy

    Science.gov (United States)

    Colzi, L.; Fontani, F.; Rivilla, V. M.; Sánchez-Monge, A.; Testi, L.; Beltrán, M. T.; Caselli, P.

    2018-04-01

    The fractionation of nitrogen (N) in star-forming regions is a poorly understood process. To put more stringent observational constraints on the N-fractionation, we have observed with the IRAM-30m telescope a large sample of 66 cores in massive star-forming regions. We targeted the (1-0) rotational transition of HN13C, HC15N, H13CN and HC15N, and derived the 14N/15N ratio for both HCN and HNC. We have completed this sample with that already observed by Colzi et al. (2018), and thus analysed a total sample of 87 sources. The 14N/15N ratios are distributed around the Proto-Solar Nebula value with a lower limit near the terrestrial atmosphere value (˜272). We have also derived the 14N/15N ratio as a function of the Galactocentric distance and deduced a linear trend based on unprecedented statistics. The Galactocentric dependences that we have found are consistent, in the slope, with past works but we have found a new local 14N/15N value of ˜400, i.e. closer to the Prosolar Nebula value. A second analysis was done, and a parabolic Galactocentric trend was found. Comparison with Galactic chemical evolution models shows that the slope until 8 kpc is consistent with the linear analysis, while the flattening trend above 8 kpc is well reproduced by the parabolic analysis.

  17. STAR FORMATION IN THE TAURUS FILAMENT L 1495: FROM DENSE CORES TO STARS

    International Nuclear Information System (INIS)

    Schmalzl, Markus; Kainulainen, Jouni; Henning, Thomas; Launhardt, Ralf; Quanz, Sascha P.; Alves, Joao; Goodman, Alyssa A.; Pineda, Jaime E.; Roman-Zuniga, Carlos G.

    2010-01-01

    We present a study of dense structures in the L 1495 filament in the Taurus Molecular Cloud and examine its star-forming properties. In particular, we construct a dust extinction map of the filament using deep near-infrared observations, exposing its small-scale structure in unprecedented detail. The filament shows highly fragmented substructures and a high mass-per-length value of M line = 17 M sun pc -1 , reflecting star-forming potential in all parts of it. However, a part of the filament, namely B 211, is remarkably devoid of young stellar objects. We argue that in this region the initial filament collapse and fragmentation is still taking place and star formation is yet to occur. In the star-forming part of the filament, we identify 39 cores with masses from 0.4 to 10 M sun and preferred separations in agreement with the local Jeans length. Most of these cores exceed the Bonnor-Ebert critical mass, and are therefore likely to collapse and form stars. The dense core mass function follows a power law with exponent Γ = 1.2 ± 0.2, a form commonly observed in star-forming regions.

  18. A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star.

    Science.gov (United States)

    David, Trevor J; Hillenbrand, Lynne A; Petigura, Erik A; Carpenter, John M; Crossfield, Ian J M; Hinkley, Sasha; Ciardi, David R; Howard, Andrew W; Isaacson, Howard T; Cody, Ann Marie; Schlieder, Joshua E; Beichman, Charles A; Barenfeld, Scott A

    2016-06-30

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation.

  19. Some stars are totally metal: a new mechanism driving dust across star-forming clouds, and consequences for planets, stars, and galaxies

    International Nuclear Information System (INIS)

    Hopkins, Philip F.

    2014-01-01

    Dust grains in neutral gas behave as aerodynamic particles, so they can develop large local density fluctuations entirely independent of gas density fluctuations. Specifically, gas turbulence can drive order-of-magnitude 'resonant' fluctuations in the dust density on scales where the gas stopping/drag timescale is comparable to the turbulent eddy turnover time. Here we show that for large grains (size ≳ 0.1 μm, containing most grain mass) in sufficiently large molecular clouds (radii ≳ 1-10 pc, masses ≳ 10 4 M ☉ ), this scale becomes larger than the characteristic sizes of prestellar cores (the sonic length), so large fluctuations in the dust-to-gas ratio are imprinted on cores. As a result, star clusters and protostellar disks formed in large clouds should exhibit significant abundance spreads in the elements preferentially found in large grains (C, O). This naturally predicts populations of carbon-enhanced stars, certain highly unusual stellar populations observed in nearby open clusters, and may explain the 'UV upturn' in early-type galaxies. It will also dramatically change planet formation in the resulting protostellar disks, by preferentially 'seeding' disks with an enhancement in large carbonaceous or silicate grains. The relevant threshold for this behavior scales simply with cloud densities and temperatures, making straightforward predictions for clusters in starbursts and high-redshift galaxies. Because of the selective sorting by size, this process is not necessarily visible in extinction mapping. We also predict the shape of the abundance distribution—when these fluctuations occur, a small fraction of the cores may actually be seeded with abundances Z ∼ 100 (Z) such that they are almost 'totally metal' (Z ∼ 1)! Assuming the cores collapse, these totally metal stars would be rare (1 in ∼10 4 in clusters where this occurs), but represent a fundamentally new stellar evolution channel.

  20. Comparison of some properties of star forming galaxies and active galactic nuclei between two BOSS galaxy samples from SDSS DR9

    International Nuclear Information System (INIS)

    Deng Xin-Fa

    2014-01-01

    Using the LOWZ and CMASS samples of the ninth data release (DR9) from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), I investigate properties of star forming galaxies and active galactic nuclei (AGNs). The CMASS sample seriously suffers from the radial selection effect, even within the redshift 0.44 ≤ z ≤ 0.6, which will likely lead to statistical conclusions in the CMASS sample being less robust. In the LOWZ sample, the fraction of star-forming galaxies is nearly constant from the least dense regime to the densest regime; the AGN fraction is also insensitive to the local environment. In addition, I note that in the LOWZ sample, the distributions of stellar mass and stellar velocity dispersion for star forming galaxies and AGNs are nearly the same

  1. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. VI. THE ANCIENT STAR-FORMING DISK OF NGC 404

    International Nuclear Information System (INIS)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Stilp, Adrienne; Dolphin, Andrew; Seth, Anil C.; Weisz, Daniel; Skillman, Evan

    2010-01-01

    We present HST/WFPC2 observations across the disk of the nearby isolated dwarf S0 galaxy NGC 404, which hosts an extended gas disk. The locations of our fields contain a roughly equal mixture of bulge and disk stars. All of our resolved stellar photometry reaches m F814W = 26 (M F814W = -1.4), which covers 2.5 mag of the red giant branch and main-sequence stars with ages F814W = 27.2 (M F814W = -0.2), sufficient to resolve the red clump and main-sequence stars with ages 10 Gyr) population. Detailed modeling of the color-magnitude diagram suggests that ∼70% of the stellar mass in the NGC 404 disk formed by z ∼ 2 (10 Gyr ago) and at least ∼90% formed prior to z ∼ 1 (8 Gyr ago). These results indicate that the stellar populations of the NGC 404 disk are on average significantly older than those of other nearby disk galaxies, suggesting that early- and late-type disks may have different long-term evolutionary histories, not simply differences in their recent star formation rates. Comparisons of the spatial distribution of the young stellar mass and FUV emission in Galaxy Evolution Explorer images show that the brightest FUV regions contain the youngest stars, but that some young stars (<160 Myr) lie outside of these regions. FUV luminosity appears to be strongly affected by both age and stellar mass within individual regions. Finally, we use our measurements to infer the relationship between the star formation rate and the gas density of the disk at previous epochs. We find that most of the history of the NGC 404 disk is consistent with star formation that has decreased with the gas density according to the Schmidt law. However, ∼ 0.5-1 Gyr ago, the star formation rate was unusually low for the inferred gas density, consistent with the possibility that there was a gas accretion event that reignited star formation ∼0.5 Gyr ago. Such an event could explain why this S0 galaxy hosts an extended gas disk.

  2. Insights from simulations of star formation

    International Nuclear Information System (INIS)

    Larson, Richard B

    2007-01-01

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604) (key issues review)

  3. Insights from simulations of star formation

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard B [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States)

    2007-03-15

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604) (key issues review)

  4. MAXIMALLY STAR-FORMING GALACTIC DISKS. II. VERTICALLY RESOLVED HYDRODYNAMIC SIMULATIONS OF STARBURST REGULATION

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Rahul [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Ostriker, Eve C., E-mail: R.Shetty@.uni-heidelberg.de, E-mail: ostriker@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-07-20

    We explore the self-regulation of star formation using a large suite of high-resolution hydrodynamic simulations, focusing on molecule-dominated regions (galactic centers and [U]LIRGS) where feedback from star formation drives highly supersonic turbulence. In equilibrium, the total midplane pressure, dominated by turbulence, must balance the vertical weight of the interstellar medium. Under self-regulation, the momentum flux injected by feedback evolves until it matches the vertical weight. We test this flux balance in simulations spanning a wide range of parameters, including surface density {Sigma}, momentum injected per stellar mass formed (p{sub *}/m{sub *}), and angular velocity. The simulations are two-dimensional radial-vertical slices, and include both self-gravity and an external potential that helps to confine gas to the disk midplane. After the simulations reach a steady state in all relevant quantities, including the star formation rate {Sigma}{sub SFR}, there is remarkably good agreement between the vertical weight, the turbulent pressure, and the momentum injection rate from supernovae. Gas velocity dispersions and disk thicknesses increase with p{sub *}/m{sub *}. The efficiency of star formation per free-fall time at the midplane density, {epsilon}{sub ff}(n{sub 0}), is insensitive to the local conditions and to the star formation prescription in very dense gas. We measure {epsilon}{sub ff}(n{sub 0}) {approx} 0.004-0.01, consistent with low and approximately constant efficiencies inferred from observations. For {Sigma} in (100-1000) M{sub Sun} pc{sup -2}, we find {Sigma}{sub SFR} in (0.1-4) M{sub Sun} kpc{sup -2} yr{sup -1}, generally following a {Sigma}{sub SFR} {proportional_to} {Sigma}{sup 2} relationship. The measured relationships agree very well with vertical equilibrium and with turbulent energy replenishment by feedback within a vertical crossing time. These results, along with the observed {Sigma}-{Sigma}{sub SFR} relation in high

  5. GOODS-HERSCHEL: SEPARATING HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES USING INFRARED COLOR DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Allison; Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Charmandaris, Vassilis [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003, Heraklion (Greece); Daddi, Emmanuele; Elbaz, David; Pannella, Maurilio; Aussel, Herve; Dasyra, Kalliopi; Leiton, Roger [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Hwang, Ho Seong [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Scott, Douglas; Magnelli, Benjamin; Popesso, Paola [Max-Planck-Institut fuer Extraterrestrische Physik (MPE), Postfach 1312, D-85741, Garching (Germany); Altieri, Bruno; Coia, Daniela; Valtchanov, Ivan [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Dannerbauer, Helmut [Universitaet Wien, Institut fuer Astrophysik, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Dickinson, Mark; Kartaltepe, Jeyhan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Magdis, Georgios [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2013-02-15

    We have compiled a large sample of 151 high-redshift (z = 0.5-4) galaxies selected at 24 {mu}m (S {sub 24} > 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-infrared spectrum into contributions from star formation and activity in the galactic nuclei. In addition, we have a wealth of photometric data from Spitzer IRAC/MIPS and Herschel PACS/SPIRE. We explore how effective different infrared color combinations are at separating our mid-IR spectroscopically determined active galactic nuclei from our star-forming galaxies. We look in depth at existing IRAC color diagnostics, and we explore new color-color diagnostics combining mid-IR, far-IR, and near-IR photometry, since these combinations provide the most detail about the shape of a source's IR spectrum. An added benefit of using a color that combines far-IR and mid-IR photometry is that it is indicative of the power source driving the IR luminosity. For our data set, the optimal color selections are S {sub 250}/S {sub 24} versus S {sub 8}/S {sub 3.6} and S {sub 100}/S {sub 24} versus S {sub 8}/S {sub 3.6}; both diagnostics have {approx}10% contamination rate in the regions occupied primarily by star-forming galaxies and active galactic nuclei, respectively. Based on the low contamination rate, these two new IR color-color diagnostics are ideal for estimating both the mid-IR power source of a galaxy when spectroscopy is unavailable and the dominant power source contributing to the IR luminosity. In the absence of far-IR data, we present color diagnostics using the Wide-field Infrared Survey Explorer mid-IR bands which can efficiently select out high-z (z {approx} 2) star-forming galaxies.

  6. Halo Histories vs. Galaxy Properties at z=0, III: The Properties of Star-Forming Galaxies

    Science.gov (United States)

    Tinker, Jeremy L.; Hahn, ChangHoon; Mao, Yao-Yuan; Wetzel, Andrew R.

    2018-05-01

    We measure how the properties of star-forming central galaxies correlate with large-scale environment, δ, measured on 10 h-1Mpc scales. We use galaxy group catalogs to isolate a robust sample of central galaxies with high purity and completeness. The galaxy properties we investigate are star formation rate (SFR), exponential disk scale length Rexp, and Sersic index of the galaxy light profile, nS. We find that, at all stellar masses, there is an inverse correlation between SFR and δ, meaning that above-average star forming centrals live in underdense regions. For nS and Rexp, there is no correlation with δ at M_\\ast ≲ 10^{10.5} M⊙, but at higher masses there are positive correlations; a weak correlation with Rexp and a strong correlation with nS. These data are evidence of assembly bias within the star-forming population. The results for SFR are consistent with a model in which SFR correlates with present-day halo accretion rate, \\dot{M}_h. In this model, galaxies are assigned to halos using the abundance matching ansatz, which maps galaxy stellar mass onto halo mass. At fixed halo mass, SFR is then assigned to galaxies using the same approach, but \\dot{M}_h is used to map onto SFR. The best-fit model requires some scatter in the \\dot{M}_h-SFR relation. The Rexp and nS measurements are consistent with a model in which both of these quantities are correlated with the spin parameter of the halo, λ. Halo spin does not correlate with δ at low halo masses, but for higher mass halos, high-spin halos live in higher density environments at fixed Mh. Put together with the earlier installments of this series, these data demonstrate that quenching processes have limited correlation with halo formation history, but the growth of active galaxies, as well as other detailed galaxies properties, are influenced by the details of halo assembly.

  7. General Relativity and Compact Stars

    International Nuclear Information System (INIS)

    Glendenning, Norman K.

    2005-01-01

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10 14 times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed

  8. The impact of galactic disc environment on star-forming clouds

    Science.gov (United States)

    Nguyen, Ngan K.; Pettitt, Alex R.; Tasker, Elizabeth J.; Okamoto, Takashi

    2018-03-01

    We explore the effect of different galactic disc environments on the properties of star-forming clouds through variations in the background potential in a set of isolated galaxy simulations. Rising, falling, and flat rotation curves expected in halo-dominated, disc-dominated, and Milky Way-like galaxies were considered, with and without an additional two-arm spiral potential. The evolution of each disc displayed notable variations that are attributed to different regimes of stability, determined by shear and gravitational collapse. The properties of a typical cloud were largely unaffected by the changes in rotation curve, but the production of small and large cloud associations was strongly dependent on this environment. This suggests that while differing rotation curves can influence where clouds are initially formed, the average bulk properties are effectively independent of the global environment. The addition of a spiral perturbation made the greatest difference to cloud properties, successfully sweeping the gas into larger, seemingly unbound, extended structures and creating large arm-interarm contrasts.

  9. Supernovae, compact stars and nuclear physics

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-01-01

    We briefly review the current understanding of supernova. We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 12 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to plausibly consist of individual hadrons. We conclude that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, cannot be a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation under appropriate conditions. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 39 refs., 8 figs., 2 tabs

  10. A Study of THT Cold Cores Population in the Star-Forming Region in Serpens

    Science.gov (United States)

    Fiorellino, Eleonora

    2017-11-01

    The purpose of this work is to produce the Core Mass Function (CMF) of the Serpens star-forming region and confront it with the Initial Mass Function (IMF), the statistical distribution of initial star mass. As Testi & Sergent (1998) discovered, the power-law index of the slope of the CMF is very close to the one of the Salpeter's IMF (Salpeter, 1955): dN/dM / M2.35. This strongly suggests that the stellar IMF results from the fragmentation process in turbulent cloud cores rather than from stellar accretion mechanisms and gives a huge contribute to undestanding the star formation. For this work, we started from the data delivered by the European satellite Herschel and produced the maps of the Serpens with Unimap code (Piazzo et al, 2015). Hence we obtained a core catalogue with two different softwares getsources (Men'shchikov et al, 2012) and CuTEx (Molinari et al, 2011) and we eliminated from it any source that is not a core. A full discussion of the cores physical propreties as well as the whole region is under preparation.

  11. Evolution of massive stars in very young clusters and associations

    International Nuclear Information System (INIS)

    Stothers, R.B.

    1985-01-01

    The stellar content of very young galactic clusters and associations with well-determined ages has been analyzed statistically to derive information about stellar evolution at high masses. The adopted approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram, together with the stars' apparent magnitudes. Cluster distance moduli are not used. Only the most basic elements of stellar evolution theory are required as input. For stellar aggregates with main-sequence turnups at spectral types between O9 and B2, the following conclusions have emerged: (1) O-type main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most of the O-type blue stragglers are newly formed massive stars, burning core hydrogen; (3) supergiants lying redward of the turnup, as well as most, or all, of the Wolf-Rayet stars, are burning core helium; (4) Wolf-Rayet stars originally had masses greater than 30--40 M/sub sun/, while known M-type supergiants evolved from star less massive than approx.30 M/sub sun/; (5) phases of evolution following core helium burning are unobservably rapid, presumably on account of copious neutrino emission; and (6) formation of stars of high mass continues vigorously in most young clusters and association for approx.8 x 10 6 yr. The important result concerning the evolutionary status of the supergiants depends only on the total number of these stars and not on how they are distributed between blue and red types; the result, however, may be sensitive to the assumed amount of convective core overshooting. Conclusions in the present work refer chiefly to luminous stars in the mass range 10--40 M/sub sun/, belonging to aggregates in the age range (6--25) x 10 6 yr

  12. Anomalou OH emission in galactic star-forming regions - A clue to the megamaser phenomenon?

    International Nuclear Information System (INIS)

    Mirabel, I.F.; Rodriguez, L.F.; Ruiz, A.

    1989-01-01

    The detection of spatially extended, anomalous OH emission in galactic star-forming regions is reported. This OH emission is similar to, although much weaker than, that produced by extragalactic megamasers. This new type of galactic emission may provide clues to elucidate the nature of the extragalactic OH megamaser phenomenon observed in luminous IR galaxies. 10 refs

  13. New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region

    Science.gov (United States)

    van der Marel, Nienke; Williams, Jonathan P.; Ansdell, M.; Manara, Carlo F.; Miotello, Anna; Tazzari, Marco; Testi, Leonardo; Hogerheijde, Michiel; Bruderer, Simon; van Terwisga, Sierk E.; van Dishoeck, Ewine F.

    2018-02-01

    Transition disks with large dust cavities around young stars are promising targets for studying planet formation. Previous studies have revealed the presence of gas cavities inside the dust cavities, hinting at recently formed, giant planets. However, many of these studies are biased toward the brightest disks in the nearby star-forming regions, and it is not possible to derive reliable statistics that can be compared with exoplanet populations. We present the analysis of 11 transition disks with large cavities (≥20 au radius) from a complete disk survey of the Lupus star-forming region, using ALMA Band 7 observations at 0.″3 (22–30 au radius) resolution of the 345 GHz continuum, 13CO and C18O 3–2 observations, and the spectral energy distribution of each source. Gas and dust surface density profiles are derived using the physical–chemical modeling code DALI. This is the first study of transition disks of large cavities within a complete disk survey within a star-forming region. The dust cavity sizes range from 20 to 90 au radius, and in three cases, a gas cavity is resolved as well. The deep drops in gas density and large dust cavity sizes are consistent with clearing by giant planets. The fraction of transition disks with large cavities in Lupus is ≳ 11 % , which is inconsistent with exoplanet population studies of giant planets at wide orbits. Furthermore, we present a hypothesis of an evolutionary path for large massive disks evolving into transition disks with large cavities.

  14. Relationship between the isotopic composition of strontium in newly formed continental clay minerals and their source material

    International Nuclear Information System (INIS)

    Clauer, N.

    1979-01-01

    The 87 Sr/ 86 Sr ratios of recent montmorillonites and kaolinites newly formed in weathering profiles of western and central Africa and of Nosy Be and La Reunion islands near Madagascar are directly related to the composition and age of the parent rocks or minerals. They may, therefore, be used as a genetic tracer. The 87 Sr/ 86 Sr ratios are about 0.704 when these clays crystallise from recent basalts and they are higher than 0.715 when the parent rocks are of sialic composition and old in age. Kaolinites newly formed in situ from feldspars contain small amounts of Sr with abnormally high 87 Sr/ 86 Sr ratios: in this study they are higher than 1.094. When these minerals crystallize from biotites, their 87 Sr/ 86 Sr ratios are much lower and can be close to the value of the primary Sr trapped in the biotites during their crystallization. On the other hand, the 87 Sr/ 86 Sr of continental montmorillonites are less scattered: they range, in this study, between 0.704 and 0.722. These low values, as well as the high adsorption capacities of these minerals in the sedimentary environment, allow the assumption that they frequently have 87 Sr/ 86 Sr ratios close to that of marine Sr during sedimentation. Therefore, montmorillonites are able to form homogeneous authigenic minerals by synsedimentary alterations. (Auth.)

  15. Insights from Synthetic Star-forming Regions. I. Reliable Mock Observations from SPH Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P.; Biscani, Francesco [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    Through synthetic observations of a hydrodynamical simulation of an evolving star-forming region, we assess how the choice of observational techniques affects the measurements of properties that trace star formation. Testing and calibrating observational measurements requires synthetic observations that are as realistic as possible. In this part of the series (Paper I), we explore different techniques for mapping the distributions of densities and temperatures from the particle-based simulations onto a Voronoi mesh suitable for radiative transfer and consequently explore their accuracy. We further test different ways to set up the radiative transfer in order to produce realistic synthetic observations. We give a detailed description of all methods and ultimately recommend techniques. We have found that the flux around 20 μ m is strongly overestimated when blindly coupling the dust radiative transfer temperature with the hydrodynamical gas temperature. We find that when instead assuming a constant background dust temperature in addition to the radiative transfer heating, the recovered flux is consistent with actual observations. We present around 5800 realistic synthetic observations for Spitzer and Herschel bands, at different evolutionary time-steps, distances, and orientations. In the upcoming papers of this series (Papers II, III, and IV), we will test and calibrate measurements of the star formation rate, gas mass, and the star formation efficiency using our realistic synthetic observations.

  16. New Theoretical Estimates of the Contribution of Unresolved Star-Forming Galaxies to the Extragalactic Gamma-Ray Background (EGB) as Measured by EGRET and the Fermi-LAT

    Science.gov (United States)

    Venters, Tonia M.

    2011-01-01

    We present new theoretical estimates of the contribution of unresolved star-forming galaxies to the extragalactic gamma-ray background (EGB) as measured by EGRET and the Fermi-LAT. We employ several methods for determining the star-forming galaxy contribution the the EGB, including a method positing a correlation between the gamma-ray luminosity of a galaxy and its rate of star formation as calculated from the total infrared luminosity, and a method that makes use of a model of the evolution of the galaxy gas mass with cosmic time. We find that depending on the model, unresolved star-forming galaxies could contribute significantly to the EGB as measured by the Fermi-LAT at energies between approx. 300 MeV and approx. few GeV. However, the overall spectrum of unresolved star-forming galaxies can explain neither the EGRET EGB spectrum at energies between 50 and 200 MeV nor the Fermi-LAT EGB spectrum at energies above approx. few GeV.

  17. The Stars behind the Curtain

    Science.gov (United States)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  18. AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Renzini, Alvio [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Peng, Ying-jie, E-mail: alvio.renzini@oapd.inaf.it, E-mail: y.peng@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-03-10

    The main sequence (MS) of star-forming (SF) galaxies plays a fundamental role in driving galaxy evolution and our efforts to understand it. However, different studies find significant differences in the normalization, slope, and shape of the MS. These discrepancies arise mainly from the different selection criteria adopted to isolate SF galaxies, which may include or exclude galaxies with a specific star formation rate (SFR) substantially below the MS value. To obviate this limitation of all current criteria, we propose an objective definition of the MS that does not rely at all on a pre-selection of SF galaxies. Constructing the 3D SFR–mass–number plot, the MS is then defined as the ridge line of the SF peak, as illustrated with various figures. The advantages of such a definition are manifold. If generally adopted, it will facilitate the inter-comparison of results from different groups using the same SFR and stellar mass diagnostics, or it will highlight the relative systematics of different diagnostics. All of this could help to understand MS galaxies as systems in a quasi-steady state equilibrium and would also provide a more objective criterion for identifying quenching galaxies.

  19. AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Renzini, Alvio; Peng, Ying-jie

    2015-01-01

    The main sequence (MS) of star-forming (SF) galaxies plays a fundamental role in driving galaxy evolution and our efforts to understand it. However, different studies find significant differences in the normalization, slope, and shape of the MS. These discrepancies arise mainly from the different selection criteria adopted to isolate SF galaxies, which may include or exclude galaxies with a specific star formation rate (SFR) substantially below the MS value. To obviate this limitation of all current criteria, we propose an objective definition of the MS that does not rely at all on a pre-selection of SF galaxies. Constructing the 3D SFR–mass–number plot, the MS is then defined as the ridge line of the SF peak, as illustrated with various figures. The advantages of such a definition are manifold. If generally adopted, it will facilitate the inter-comparison of results from different groups using the same SFR and stellar mass diagnostics, or it will highlight the relative systematics of different diagnostics. All of this could help to understand MS galaxies as systems in a quasi-steady state equilibrium and would also provide a more objective criterion for identifying quenching galaxies

  20. Characterizing filaments in regions of high-mass star formation: High-resolution submilimeter imaging of the massive star-forming complex NGC 6334 with ArTéMiS

    Science.gov (United States)

    André, Ph.; Revéret, V.; Könyves, V.; Arzoumanian, D.; Tigé, J.; Gallais, P.; Roussel, H.; Le Pennec, J.; Rodriguez, L.; Doumayrou, E.; Dubreuil, D.; Lortholary, M.; Martignac, J.; Talvard, M.; Delisle, C.; Visticot, F.; Dumaye, L.; De Breuck, C.; Shimajiri, Y.; Motte, F.; Bontemps, S.; Hennemann, M.; Zavagno, A.; Russeil, D.; Schneider, N.; Palmeirim, P.; Peretto, N.; Hill, T.; Minier, V.; Roy, A.; Rygl, K. L. J.

    2016-07-01

    Context. Herschel observations of nearby molecular clouds suggest that interstellar filaments and prestellar cores represent two fundamental steps in the star formation process. The observations support a picture of low-mass star formation according to which filaments of ~0.1 pc width form first in the cold interstellar medium, probably as a result of large-scale compression of interstellar matter by supersonic turbulent flows, and then prestellar cores arise from gravitational fragmentation of the densest filaments. Whether this scenario also applies to regions of high-mass star formation is an open question, in part because the resolution of Herschel is insufficient to resolve the inner width of filaments in the nearest regions of massive star formation. Aims: In an effort to characterize the inner width of filaments in high-mass star-forming regions, we imaged the central part of the NGC 6334 complex at a resolution higher by a factor of >3 than Herschel at 350 μm. Methods: We used the large-format bolometer camera ArTéMiS on the APEX telescope and combined the high-resolution ArTéMiS data at 350 μm with Herschel/HOBYS data at 70-500 μm to ensure good sensitivity to a broad range of spatial scales. This allowed us to study the structure of the main narrow filament of the complex with a resolution of 8″ or Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.The final ArTéMiS+SPIRE 350 μm map (Fig. 1b) is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A54

  1. Statistical investigation of flare stars. III. Flare stars in the general galactic star field

    International Nuclear Information System (INIS)

    Mirzoyan, L.V.; Ambaryan, V.V.; Garibdzhanyan, A.T.; Mirzoyan, A.L.

    1989-01-01

    Some questions relating to the existence of a large number of flare stars in the general star field of the Galaxy are discussed. It is shown that only a small proportion of them can be found by photographic observations, and the fraction of field flare stars among such stars found in the regions of star clusters and associations does not exceed 10%. The ratio of the numbers of flare stars of the foreground and the background for a particular system depends on its distance, reaching zero at a distance of about 500 pc. The spatial density of flare stars in the Pleiades is at least two orders of magnitude greater than in the general galactic field. A lower limit for the number of flare stars in the Galaxy is estimated at 4.2 ·10 9 , and the number of nonflare red dwarfs at 2.1·10 10 . There are grounds for believing that they were all formed in star clusters and associations

  2. Large Binocular Telescope and Sptizer Spectroscopy of Star-forming Galaxies at 1 Extinction and Star Formation Rate Indicators

    Science.gov (United States)

    Rujopakarn, W.; Rieke, G. H.; Papovich, C. J.; Weiner, B. J.; Rigby, Jane; Rex, M.; Bian, F.; Kuhn, O. P.; Thompson, D.

    2012-01-01

    We present spectroscopic observations in the rest-frame optical and near- to mid-infrared wavelengths of four gravitationally lensed infrared (IR) luminous star-forming galaxies at redshift 1 extinction, Av, of these systems, as well as testing star formation rate (SFR) indicators against the SFR measured by fitting spectral energy distributions to far-IR photometry. Our galaxies occupy a range of Av from 0 to 5.9 mag, larger than previously known for a similar range of IR luminosities at these redshifts. Thus, estimates of SFR even at z 2 must take careful count of extinction in the most IR luminous galaxies.We also measure extinction by comparing SFR estimates from optical emission lines with those from far- IR measurements. The comparison of results from these two independent methods indicates a large variety of dust distribution scenarios at 1 extinction, the Ha SFR indicator underestimates the SFR; the size of the necessary correction depends on the IR luminosity and dust distribution scenario. Individual SFR estimates based on the 6.2µm polycyclic aromatic hydrocarbon emission line luminosity do not show a systematic discrepancy with extinction, although a considerable, 0.2 dex, scatter is observed.

  3. PHOTOIONIZATION MODELS FOR THE SEMI-FORBIDDEN C iii] 1909 EMISSION IN STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Jaskot, A. E. [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); Ravindranath, S. [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2016-12-20

    The increasing neutrality of the intergalactic medium at z  > 6 suppresses Ly α emission, and spectroscopic confirmation of galaxy redshifts requires the detection of alternative ultraviolet lines. The strong [C iii]  λ 1907+C iii]  λ 1909 doublet frequently observed in low-metallicity, actively star-forming galaxies is a promising emission feature. We present CLOUDY photoionization model predictions for C iii] equivalent widths (EWs) and line ratios as a function of starburst age, metallicity, and ionization parameter. Our models include a range of C/O abundances, dust content, and gas density. We also examine the effects of varying the nebular geometry and optical depth. Only the stellar models that incorporate binary interaction effects reproduce the highest observed C iii] EWs. The spectral energy distributions from the binary stellar population models also generate observable C iii] over a longer timescale relative to single-star models. We show that diagnostics using C iii] and nebular He ii  λ 1640 can separate star-forming regions from shock-ionized gas. We also find that density-bounded systems should exhibit weaker C iii] EWs at a given ionization parameter, and C iii] EWs could, therefore, select candidate Lyman continuum-leaking systems. In almost all models, C iii] is the next strongest line at <2700 Å after Ly α , and C iii] reaches detectable levels for a wide range of conditions at low metallicity. C iii] may therefore serve as an important diagnostic for characterizing galaxies at z  > 6.

  4. PHOTOIONIZATION MODELS FOR THE SEMI-FORBIDDEN C iii] 1909 EMISSION IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Jaskot, A. E.; Ravindranath, S.

    2016-01-01

    The increasing neutrality of the intergalactic medium at z  > 6 suppresses Ly α emission, and spectroscopic confirmation of galaxy redshifts requires the detection of alternative ultraviolet lines. The strong [C iii]  λ 1907+C iii]  λ 1909 doublet frequently observed in low-metallicity, actively star-forming galaxies is a promising emission feature. We present CLOUDY photoionization model predictions for C iii] equivalent widths (EWs) and line ratios as a function of starburst age, metallicity, and ionization parameter. Our models include a range of C/O abundances, dust content, and gas density. We also examine the effects of varying the nebular geometry and optical depth. Only the stellar models that incorporate binary interaction effects reproduce the highest observed C iii] EWs. The spectral energy distributions from the binary stellar population models also generate observable C iii] over a longer timescale relative to single-star models. We show that diagnostics using C iii] and nebular He ii  λ 1640 can separate star-forming regions from shock-ionized gas. We also find that density-bounded systems should exhibit weaker C iii] EWs at a given ionization parameter, and C iii] EWs could, therefore, select candidate Lyman continuum-leaking systems. In almost all models, C iii] is the next strongest line at <2700 Å after Ly α , and C iii] reaches detectable levels for a wide range of conditions at low metallicity. C iii] may therefore serve as an important diagnostic for characterizing galaxies at z  > 6.

  5. The Chemical Abundances of Stars in the Halo (CASH) Project. II. New Extremely Metal-poor Stars

    Science.gov (United States)

    Krugler, Julie A.; Frebel, A.; Roederer, I. U.; Sneden, C.; Shetrone, M.; Beers, T.; Christlieb, N.

    2011-01-01

    We present new abundance results from the Chemical Abundances of Stars in the Halo (CASH) project. The 500 CASH spectra were observed using the Hobby-Eberly Telescope in "snapshot" mode and are analyzed using an automated stellar parameter and abundance pipeline called CASHCODE. For the 20 most metal-poor stars of the CASH sample we have obtained high resolution spectra using the Magellan Telescope in order to test the uncertainties and systematic errors associated with the snapshot quality (i.e., R 15,000 and S/N 65) HET spectra and to calibrate the newly developed CASHCODE by making a detailed comparison between the stellar parameters and abundances determined from the high resolution and snapshot spectra. We find that the CASHCODE stellar parameters (effective temperature, surface gravity, metallicity, and microturbulence) agree well with the results of the manual analysis of the high resolution spectra. We present the abundances of three newly discovered stars with [Fe/H] ratios with alpha-enhancement and Fe-peak depletion and a range of n-capture elements. The full CASH sample will be used to derive statistically robust abundance trends and frequencies (e.g. carbon and n-capture), as well as placing constraints on nucleosynthetic processes that occurred in the early universe.

  6. SUBMILLIMETER ARRAY OBSERVATIONS TOWARD THE MASSIVE STAR-FORMING CORE MM1 OF W75N

    International Nuclear Information System (INIS)

    Minh, Y. C.; Su, Y.-N.; Liu, S.-Y.; Yan, C.-H.; Chen, H.-R.; Kim, S.-J.

    2010-01-01

    The massive star-forming core MM1 of W75N was observed using the Submillimeter Array with ∼1'' and 2'' spatial resolutions at 217 and 347 GHz, respectively. From the 217 GHz continuum we found that the MM1 core consists of two sources, separated by about 1'': MM1a (∼0.6 M sun ) and MM1b (∼1.4 M sun ), located near the radio continuum sources VLA 2/VLA 3 and VLA 1, respectively. Within MM1b, two gas clumps were found to be expanding away from VLA 1 at about ±3 km s -1 , as a result of the most recent star formation activity in the region. Observed molecular lines show emission peaks at two positions, MM1a and MM1b: sulfur-bearing species have emission peaks toward MM1a, but methanol and saturated species at MM1b. We identified high-temperature (∼200 K) gas toward MM1a and the hot core in MM1b. This segregation may result from the evolution of the massive star-forming core. In the very early phase of star formation, the hot core is seen through the evaporation of dust ice-mantle species. As the mantle species are consumed via evaporation the high-temperature gas species (such as the sulfur-bearing molecules) become bright. The SiO molecule is unique in having an emission peak exactly at the VLA 2 position, probably tracing a shock powered by VLA 2. The observed sulfur-bearing species show similar abundances both in MM1a and MM1b, whereas the methanol and saturated species show significant abundance enhancement toward MM1b, by about an order of magnitude, compared to MM1a.

  7. The VANDELS survey: dust attenuation in star-forming galaxies at z = 3-4

    Science.gov (United States)

    Cullen, F.; McLure, R. J.; Khochfar, S.; Dunlop, J. S.; Dalla Vecchia, C.; Carnall, A. C.; Bourne, N.; Castellano, M.; Cimatti, A.; Cirasuolo, M.; Elbaz, D.; Fynbo, J. P. U.; Garilli, B.; Koekemoer, A.; Marchi, F.; Pentericci, L.; Talia, M.; Zamorani, G.

    2018-05-01

    We present the results of a new study of dust attenuation at redshifts 3 Motivated by results from the First Billion Years (FiBY) simulation project, we argue that the intrinsic spectral energy distributions (SEDs) of star-forming galaxies at these redshifts have a self-similar shape across the mass range 8.2 ≤ log (M⋆/M⊙) ≤ 10.6 probed by our sample. Using FiBY data, we construct a set of intrinsic SED templates which incorporate both detailed star formation and chemical abundance histories, and a variety of stellar population synthesis (SPS) model assumptions. With this set of intrinsic SEDs, we present a novel approach for directly recovering the shape and normalization of the dust attenuation curve. We find, across all of the intrinsic templates considered, that the average attenuation curve for star-forming galaxies at z ≃ 3.5 is similar in shape to the commonly adopted Calzetti starburst law, with an average total-to-selective attenuation ratio of RV = 4.18 ± 0.29. In contrast, we find that an average attenuation curve as steep as the SMC extinction law is strongly disfavoured. We show that the optical attenuation (AV) versus stellar mass (M⋆) relation predicted using our method is consistent with recent ALMA observations of galaxies at 2 < z < 3 in the Hubble Ultra Deep Field (HUDF), as well as empirical AV - M⋆ relations predicted by a Calzetti-like law. In fact, our results, combined with other literature data, suggest that the AV-M⋆ relation does not evolve over the redshift range 0 < z < 5, at least for galaxies with log(M⋆/M⊙) ≳ 9.5. Finally, we present tentative evidence which suggests that the attenuation curve may become steeper at lower masses log(M⋆/M⊙) ≲ 9.0.

  8. EXTERNALLY HEATED PROTOSTELLAR CORES IN THE OPHIUCHUS STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Johan E.; Charnley, Steven B.; Cordiner, Martin A. [NASA Goddard Space Flight Center, Astrochemistry Laboratory, Mail Code 691, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Jørgensen, Jes K.; Bjerkeli, Per, E-mail: johan.lindberg@nasa.gov [Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark)

    2017-01-20

    We present APEX 218 GHz observations of molecular emission in a complete sample of embedded protostars in the Ophiuchus star-forming region. To study the physical properties of the cores, we calculate H{sub 2}CO and c -C{sub 3}H{sub 2} rotational temperatures, both of which are good tracers of the kinetic temperature of the molecular gas. We find that the H{sub 2}CO temperatures range between 16 K and 124 K, with the highest H{sub 2}CO temperatures toward the hot corino source IRAS 16293-2422 (69–124 K) and the sources in the ρ Oph A cloud (23–49 K) located close to the luminous Herbig Be star S1, which externally irradiates the ρ Oph A cores. On the other hand, the c -C{sub 3}H{sub 2} rotational temperature is consistently low (7–17 K) in all sources. Our results indicate that the c -C{sub 3}H{sub 2} emission is primarily tracing more shielded parts of the envelope whereas the H{sub 2}CO emission (at the angular scale of the APEX beam; 3600 au in Ophiuchus) mainly traces the outer irradiated envelopes, apart from in IRAS 16293-2422, where the hot corino emission dominates. In some sources, a secondary velocity component is also seen, possibly tracing the molecular outflow.

  9. CONTINUOUS MID-INFRARED STAR FORMATION RATE INDICATORS: DIAGNOSTICS FOR 0 < z < 3 STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Battisti, A. J.; Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Johnson, B. D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Elbaz, D., E-mail: abattist@astro.umass.edu [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu, CNRS, Université Paris Diderot, Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France)

    2015-02-20

    We present continuous, monochromatic star formation rate (SFR) indicators over the mid-infrared wavelength range of 6–70 μm. We use a sample of 58 star-forming galaxies (SFGs) in the Spitzer–SDSS–GALEX Spectroscopic Survey at z < 0.2, for which there is a rich suite of multi-wavelength photometry and spectroscopy from the ultraviolet through to the infrared. The data from the Spitzer Infrared Spectrograph (IRS) of these galaxies, which spans 5–40 μm, is anchored to their photometric counterparts. The spectral region between 40–70 μm is interpolated using dust model fits to the IRS spectrum and Spitzer 70 and 160 μm photometry. Since there are no sharp spectral features in this region, we expect these interpolations to be robust. This spectral range is calibrated as a SFR diagnostic using several reference SFR indicators to mitigate potential bias. Our band-specific continuous SFR indicators are found to be consistent with monochromatic calibrations in the local universe, as derived from Spitzer, WISE, and Herschel photometry. Our local composite template and continuous SFR diagnostics are made available for public use through the NASA/IPAC Infrared Science Archive (IRSA) and have typical dispersions of 30% or less. We discuss the validity and range of applicability for our SFR indicators in the context of unveiling the formation and evolution of galaxies. Additionally, in the era of the James Webb Space Telescope this will become a flexible tool, applicable to any SFG up to z ∼ 3.

  10. A measurement of the turbulence-driven density distribution in a non-star-forming molecular cloud

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, Adam; Darling, Jeremy [CASA, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Federrath, Christoph, E-mail: Adam.G.Ginsburg@gmail.com [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Vic 3800 (Australia)

    2013-12-10

    Molecular clouds are supersonically turbulent. This turbulence governs the initial mass function and the star formation rate. In order to understand the details of star formation, it is therefore essential to understand the properties of turbulence, in particular the probability distribution of density in turbulent clouds. We present H{sub 2}CO volume density measurements of a non-star-forming cloud along the line of sight toward W49A. We use these measurements in conjunction with total mass estimates from {sup 13}CO to infer the shape of the density probability distribution function. This method is complementary to measurements of turbulence via the column density distribution and should be applicable to any molecular cloud with detected CO. We show that turbulence in this cloud is probably compressively driven, with a compressive-to-total Mach number ratio b=M{sub C}/M>0.4. We measure the standard deviation of the density distribution, constraining it to the range 1.5 < σ {sub s} < 1.9, assuming that the density is lognormally distributed. This measurement represents an essential input into star formation laws. The method of averaging over different excitation conditions to produce a model of emission from a turbulent cloud is generally applicable to optically thin line observations.

  11. The Infrared-Radio Correlation of Dusty Star Forming Galaxies at High Redshift

    Science.gov (United States)

    Lower, Sidney; Vieira, Joaquin Daniel; Jarugula, Sreevani

    2018-01-01

    Far-infrared (FIR) and radio continuum emission in galaxies are related by a common origin: massive stars and the processes triggered during their birth, lifetime, and death. FIR emission is produced by cool dust, heated by the absorption of UV emission from massive stars, which is then re-emitted in the FIR. Thermal free-free radiation emitted from HII regions dominates the spectral energy density (SED) of galaxies at roughly 30 GHz, while non-thermal synchrotron radiation dominates at lower frequencies. At low redshift, the infrared radio correlation (IRC, or qIR) holds as a tight empirical relation for many star forming galaxy types, but until recently, there has not been sensitive enough radio observations to extend this relation to higher redshifts. Many selection biases cloud the results of these analyses, leaving the evolution of the IRC with redshift ambiguous. In this poster, I present CIGALE fitted spectral energy distributions (SEDs) for 24 gravitationally-lensed sources selected in the mm-wave from the South Pole Telescope (SPT) survey. I fit the IRC from infrared and submillimeter fluxes obtained with Herschel, Atacama Pathfinder Experiment (APEX), and SPT and radio fluxes obtained with ATCA at 2.1, 5.5, 9, and 30 GHz. This sample of SPT sources has a spectroscopic redshift range of 2.1poster, I will present the results of this study and compare our results to various results in the literature.

  12. Some stars are totally metal: a new mechanism driving dust across star-forming clouds, and consequences for planets, stars, and galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Philip F., E-mail: phopkins@caltech.edu [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-12-10

    Dust grains in neutral gas behave as aerodynamic particles, so they can develop large local density fluctuations entirely independent of gas density fluctuations. Specifically, gas turbulence can drive order-of-magnitude 'resonant' fluctuations in the dust density on scales where the gas stopping/drag timescale is comparable to the turbulent eddy turnover time. Here we show that for large grains (size ≳ 0.1 μm, containing most grain mass) in sufficiently large molecular clouds (radii ≳ 1-10 pc, masses ≳ 10{sup 4} M {sub ☉}), this scale becomes larger than the characteristic sizes of prestellar cores (the sonic length), so large fluctuations in the dust-to-gas ratio are imprinted on cores. As a result, star clusters and protostellar disks formed in large clouds should exhibit significant abundance spreads in the elements preferentially found in large grains (C, O). This naturally predicts populations of carbon-enhanced stars, certain highly unusual stellar populations observed in nearby open clusters, and may explain the 'UV upturn' in early-type galaxies. It will also dramatically change planet formation in the resulting protostellar disks, by preferentially 'seeding' disks with an enhancement in large carbonaceous or silicate grains. The relevant threshold for this behavior scales simply with cloud densities and temperatures, making straightforward predictions for clusters in starbursts and high-redshift galaxies. Because of the selective sorting by size, this process is not necessarily visible in extinction mapping. We also predict the shape of the abundance distribution—when these fluctuations occur, a small fraction of the cores may actually be seeded with abundances Z ∼ 100 (Z) such that they are almost 'totally metal' (Z ∼ 1)! Assuming the cores collapse, these totally metal stars would be rare (1 in ∼10{sup 4} in clusters where this occurs), but represent a fundamentally new stellar evolution channel.

  13. Dust attenuation in 2 < z < 3 star-forming galaxies from deep ALMA observations of the Hubble Ultra Deep Field

    Science.gov (United States)

    McLure, R. J.; Dunlop, J. S.; Cullen, F.; Bourne, N.; Best, P. N.; Khochfar, S.; Bowler, R. A. A.; Biggs, A. D.; Geach, J. E.; Scott, D.; Michałowski, M. J.; Rujopakarn, W.; van Kampen, E.; Kirkpatrick, A.; Pope, A.

    2018-05-01

    We present the results of a new study of the relationship between infrared excess (IRX ≡ LIR/LUV), ultraviolet (UV) spectral slope (β) and stellar mass at redshifts 2 grey attenuation curve, similar to the commonly adopted Calzetti law. Based on a large, mass-complete sample of 2 ≤ z ≤ 3 star-forming galaxies drawn from multiple surveys, we proceed to derive a new empirical relationship between β and stellar mass, making it possible to predict UV attenuation (A1600) and IRX as a function of stellar mass, for any assumed attenuation law. Once again, we find that z ≃ 2.5 star-forming galaxies follow A1600-M* and IRX-M* relations consistent with a relatively grey attenuation law, and find no compelling evidence that star-forming galaxies at this epoch follow a reddening law as steep as the Small Magellanic Cloud (SMC) extinction curve. In fact, we use a simple simulation to demonstrate that previous determinations of the IRX-β relation may have been biased towards low values of IRX at red values of β, mimicking the signature expected for an SMC-like dust law. We show that this provides a plausible mechanism for reconciling apparently contradictory results in the literature and that, based on typical measurement uncertainties, stellar mass provides a cleaner prediction of UV attenuation than β. Although the situation at lower stellar masses remains uncertain, we conclude that for 2 < z < 3 star-forming galaxies with log (M_{\\ast }/M_{⊙}) ≥ 9.75, both the IRX-β and IRX-M* relations are well described by a Calzetti-like attenuation law.

  14. Zeeman effect in sulfur monoxide. A tool to probe magnetic fields in star forming regions

    Science.gov (United States)

    Cazzoli, Gabriele; Lattanzi, Valerio; Coriani, Sonia; Gauss, Jürgen; Codella, Claudio; Ramos, Andrés Asensio; Cernicharo, José; Puzzarini, Cristina

    2017-09-01

    Context. Magnetic fields play a fundamental role in star formation processes and the best method to evaluate their intensity is to measure the Zeeman effect of atomic and molecular lines. However, a direct measurement of the Zeeman spectral pattern from interstellar molecular species is challenging due to the high sensitivity and high spectral resolution required. So far, the Zeeman effect has been detected unambiguously in star forming regions for very few non-masing species, such as OH and CN. Aims: We decided to investigate the suitability of sulfur monoxide (SO), which is one of the most abundant species in star forming regions, for probing the intensity of magnetic fields via the Zeeman effect. Methods: We investigated the Zeeman effect for several rotational transitions of SO in the (sub-)mm spectral regions by using a frequency-modulated, computer-controlled spectrometer, and by applying a magnetic field parallel to the radiation propagation (I.e., perpendicular to the oscillating magnetic field of the radiation). To support the experimental determination of the g factors of SO, a systematic quantum-chemical investigation of these parameters for both SO and O2 has been carried out. Results: An effective experimental-computational strategy for providing accurate g factors as well as for identifying the rotational transitions showing the strongest Zeeman effect has been presented. Revised g factors have been obtained from a large number of SO rotational transitions between 86 and 389 GHz. In particular, the rotational transitions showing the largest Zeeman shifts are: N,J = 2, 2 ← 1, 1 (86.1 GHz), N,J = 4, 3 ← 3, 2 (159.0 GHz), N,J = 1, 1 ← 0, 1 (286.3 GHz), N,J = 2, 2 ← 1, 2 (309.5 GHz), and N,J = 2, 1 ← 1, 0 (329.4 GHz). Our investigation supports SO as a good candidate for probing magnetic fields in high-density star forming regions. The complete list of measured Zeeman components is only available at the CDS via anonymous ftp to http

  15. The dynamics of z = 0.8 Hα-selected star-forming galaxies from KMOS/CF-HiZELS

    International Nuclear Information System (INIS)

    Sobral, D.; Matthee, J.; Swinbank, A. M.; Stott, J. P.; Bower, R. G.; Smail, Ian; Sharples, R. M.; Best, P.; Geach, J. E.

    2013-01-01

    We present the spatially resolved Hα dynamics of 16 star-forming galaxies at z ∼ 0.81 using the new KMOS multi-object integral field spectrograph on the ESO Very Large Telescope. These galaxies, selected using 1.18 μm narrowband imaging from the 10 deg 2 CFHT-HiZELS survey of the SA 22 hr field, are found in a ∼4 Mpc overdensity of Hα emitters and likely reside in a group/intermediate environment, but not a cluster. We confirm and identify a rich group of star-forming galaxies at z = 0.813 ± 0.003, with 13 galaxies within 1000 km s –1 of each other, and seven within a diameter of 3 Mpc. All of our galaxies are 'typical' star-forming galaxies at their redshift, 0.8 ± 0.4 SFR z=0.8 ∗ , spanning a range of specific star formation rates (sSFRs) of 0.2-1.1 Gyr –1 and have a median metallicity very close to solar of 12 + log(O/H) = 8.62 ± 0.06. We measure the spatially resolved Hα dynamics of the galaxies in our sample and show that 13 out of 16 galaxies can be described by rotating disks and use the data to derive inclination corrected rotation speeds of 50-275 km s –1 . The fraction of disks within our sample is 75% ± 8%, consistent with previous results based on Hubble Space Telescope morphologies of Hα-selected galaxies at z ∼ 1 and confirming that disks dominate the SFR density at z ∼ 1. Our Hα galaxies are well fitted by the z ∼ 1-2 Tully-Fisher (TF) relation, confirming the evolution seen in the zero point. Apart from having, on average, higher stellar masses and lower sSFRs, our group galaxies at z = 0.81 present the same mass-metallicity and TF relation as z ∼ 1 field galaxies and are all disk galaxies.

  16. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A.; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  17. Optical polarimetry of star-forming regions

    Energy Technology Data Exchange (ETDEWEB)

    Gledhill, T M

    1987-01-01

    The polarimetric investigation of nebulosity associated with loss-mass pre-main sequence (PMS) stellar objects is detailed. Three regions of on-going star formation are considered, specifically, the Haro 6-5 and the HL/XZ Tau systems - both associated with dark clouds in the Taurus complex - and the PV Cephei nebulosity near NGC7023. In each region the imaging observations suggest bipolarity in the optical structure of the nebulosity, and the polarimetric data are used to determine the locations of the illuminating sources. Evidence is found for the association of circumstellar discs of obscuration with the PMS objects Haro 6-5A (FS Tau), Haro 6-5B, HL Tau, and PV Cephei. In each case the polarimetric data suggest that the local magnetic field has played an important role in the evolution of the star and the circumstellar material. Examination of the source-region polarization maps suggests that at least one of the objects considered is surrounded by a dust grain-aligning magnetic field with a predominantly toroidal geometry in the plane of the circumstellar disc. Implications for current theories of outflow acceleration and cloud evolution are discussed.

  18. ALMA Shows that Gas Reservoirs of Star-forming Disks over the Past 3 Billion Years Are Not Predominantly Molecular

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, Luca; Catinella, Barbara; Janowiecki, Steven, E-mail: luca.cortese@uwa.edu.au [International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2017-10-10

    Cold hydrogen gas is the raw fuel for star formation in galaxies, and its partition into atomic and molecular phases is a key quantity for galaxy evolution. In this Letter, we combine Atacama Large Millimeter/submillimeter Array and Arecibo single-dish observations to estimate the molecular-to-atomic hydrogen mass ratio for massive star-forming galaxies at z ∼ 0.2 extracted from the HIGHz survey, i.e., some of the most massive gas-rich systems currently known. We show that the balance between atomic and molecular hydrogen in these galaxies is similar to that of local main-sequence disks, implying that atomic hydrogen has been dominating the cold gas mass budget of star-forming galaxies for at least the past three billion years. In addition, despite harboring gas reservoirs that are more typical of objects at the cosmic noon, HIGHz galaxies host regular rotating disks with low gas velocity dispersions suggesting that high total gas fractions do not necessarily drive high turbulence in the interstellar medium.

  19. The extent of chemically enriched gas around star-forming dwarf galaxies

    Science.gov (United States)

    Johnson, Sean

    2018-01-01

    Supernovae driven winds are often invoked to remove chemically enriched gas from galaxies to match the low metallicities of dwarf galaxies. In such shallow potential wells, outflows may produce massive amounts of enriched halo gas (circum-galactic medium or CGM) and pollute the intergalactic medium (IGM). I will present a survey of the CGM and IGM around 18 star-forming field dwarf galaxies with stellar masses of log M*/M⊙ ≈ 8 ‑ 9 at z ≈ 0.2. Eight of these have CGM probed by quasar absorption spectra at projected distances, d, less than the host virial radius, Rh. Ten are probed at d/Rh = 1 ‑ 3 to study the surrounding IGM. The absorption measurements include neutral hydrogen (H I), the dominant silicon ions for diffuse cool gas (T ∼ 104 K; Si II, Si III, and Si IV), more highly ionized carbon (C IV), and highly ionized oxygen (O VI). The metal absorption from the CGM of the dwarf galaxies is less common and ≈ 4× weaker compared to massive star-forming galaxies though O VI absorption is still common. None of the dwarfs probed at d/Rh = 1 ‑ 3 have definitive metal-line detections. Combining the available silicon ions, we estimate that the cool CGM accounts for only 2 ‑ 6% of the expected silicon budget. CGM absorption from O VI can account for ≈ 8% of the expected oxygen budget. As O VI traces an ion with expected equilibrium ion fractions of 0.2, this highly ionized phase of the CGM may represent a significant metal reservoir even for dwarf galaxies not expected to maintain gravitationally shock heated hot halos.

  20. Environments of T Tauri stars

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1983-01-01

    The environments of T Tauri stars are probably determined by the interaction of a stellar wind with matter which is falling toward a newly formed star. As shown by Ulrich, the steady infall of cool gas with angular momentum toward the star leads to a density distribution with rhoproportionalr/sup -1/2/ inside a radius r/sub d/ and rhoproportionalr/sup -3/2/ outside r/sub d/. The radius r/sub d/ is determined by the angular momentum of the infalling gas. The expansion of the wind into this medium depends on the parameter α = M/sub w/v/sub w//M/sub in/v/sub in/(r/sub d/), where v/sub in/(r/sub d/) is the free-fall velocity at r/sub d/, M/sub in/ is the mass accretion rate, v/sub w/ is the wind velocity, and M/sub w/ is the mass loss rate. For α 14 cm, v/sub w/ = 150 km s -1 , M/sub in/ = 10 -7 M/sub sun/ yr -1 , and M/sub w/ = 3 x 10 -8 M/sub sun/ yr -1 . The inflow is clumpy. The shocked wind gives the radio emission and nebular emission from T Tauri, and dust within the clumps gives the infrared emission. T Tauri is in a transitory phase in which most of the wind has only recently propagated beyond r/sub d/. The model naturally predicts variable obscuration of T Tauri stars because the infalling clumps move on nonradial trajectories. The infrared emission can vary either because of structural changes in the circumstellar gas or because of variations in the stellar luminosity. Infrared variability should be small at short time scales because of light-travel time effects

  1. CHEMICAL EVOLUTION IN HIGH-MASS STAR-FORMING REGIONS: RESULTS FROM THE MALT90 SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Hoq, Sadia; Jackson, James M.; Foster, Jonathan B.; Sanhueza, Patricio; Claysmith, Christopher [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Guzmán, Andrés [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Whitaker, J. Scott [Physics Department, Boston University, Boston, MA 02215 (United States); Rathborne, Jill M. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, NSW (Australia); Vasyunina, Tatiana; Vasyunin, Anton, E-mail: shoq@bu.edu, E-mail: jackson@bu.edu, E-mail: patricio@bu.edu, E-mail: claysmit@bu.edu, E-mail: jonathan.b.foster@yale.edu, E-mail: aguzmanf@cfa.harvard.edu, E-mail: scott@bu.edu, E-mail: rathborne@csiro.au, E-mail: tv3h@virginia.edu, E-mail: aiv3f@virginia.edu [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States)

    2013-11-10

    The chemical changes of high-mass star-forming regions provide a potential method for classifying their evolutionary stages and, ultimately, ages. In this study, we search for correlations between molecular abundances and the evolutionary stages of dense molecular clumps associated with high-mass star formation. We use the molecular line maps from Year 1 of the Millimetre Astronomy Legacy Team 90 GHz (MALT90) Survey. The survey mapped several hundred individual star-forming clumps chosen from the ATLASGAL survey to span the complete range of evolution, from prestellar to protostellar to H II regions. The evolutionary stage of each clump is classified using the Spitzer GLIMPSE/MIPSGAL mid-IR surveys. Where possible, we determine the dust temperatures and H{sub 2} column densities for each clump from Herschel/Hi-GAL continuum data. From MALT90 data, we measure the integrated intensities of the N{sub 2}H{sup +}, HCO{sup +}, HCN and HNC (1-0) lines, and derive the column densities and abundances of N{sub 2}H{sup +} and HCO{sup +}. The Herschel dust temperatures increase as a function of the IR-based Spitzer evolutionary classification scheme, with the youngest clumps being the coldest, which gives confidence that this classification method provides a reliable way to assign evolutionary stages to clumps. Both N{sub 2}H{sup +} and HCO{sup +} abundances increase as a function of evolutionary stage, whereas the N{sub 2}H{sup +} (1-0) to HCO{sup +} (1-0) integrated intensity ratios show no discernable trend. The HCN (1-0) to HNC(1-0) integrated intensity ratios show marginal evidence of an increase as the clumps evolve.

  2. Reconciling mass functions with the star-forming main sequence via mergers

    Science.gov (United States)

    Steinhardt, Charles L.; Yurk, Dominic; Capak, Peter

    2017-06-01

    We combine star formation along the 'main sequence', quiescence and clustering and merging to produce an empirical model for the evolution of individual galaxies. Main-sequence star formation alone would significantly steepen the stellar mass function towards low redshift, in sharp conflict with observation. However, a combination of star formation and merging produces a consistent result for correct choice of the merger rate function. As a result, we are motivated to propose a model in which hierarchical merging is disconnected from environmentally independent star formation. This model can be tested via correlation functions and would produce new constraints on clustering and merging.

  3. On the Onset of Secondary Stellar Generations in Giant Star-forming Regions and Massive Star Clusters

    Czech Academy of Sciences Publication Activity Database

    Palouš, Jan; Wünsch, Richard; Tenorio-Tagle, G.

    2014-01-01

    Roč. 792, č. 2 (2014), 105/1-105/10 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : galaxies: ISM * star clusters: general * galaxies: star formation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.993, year: 2014

  4. Atomic hydrogen in the Orion star-forming region

    International Nuclear Information System (INIS)

    Chromey, F.R.; Elmegreen, B.G.; Elmegreen, D.M.

    1989-01-01

    A large-scale survey of atomic hydrogen in Orion reveals low-density material with a total mass comparable to that in dense molecular clouds. The atomic gas is sufficiently dense that it can shield the molecular material from photodissociative radiation and provide a pressure link to the low-density intercloud medium. An excess of H I emission comes from photodissociation fronts near the bright stars and from a giant shell in the Orion Belt region. This shell may have caused the apparent bifurcation between the Orion A and B clouds, and the associated pressures may have induced peculiar motions and star formation in NGC 2023 and 2024. 49 refs

  5. Kennicutt-Schmidt Relation Variety and Star-forming Cloud Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Morokuma-Matsui, Kana [Chile Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka-shi, Tokyo 181-8588 (Japan); Muraoka, Kazuyuki, E-mail: kana.matsui@nao.ac.jp [Department of Physical Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan)

    2017-03-10

    The observationally derived Kennicutt-Schmidt (KS) relation slopes differ from study to study, ranging from sublinear to superlinear. We investigate the KS-relation variety (slope and normalization) as a function of integrated intensity ratio, R {sub 31} = CO( J = 3–2)/CO( J = 1–0) using spatially resolved CO( J = 1–0), CO( J = 3–2), H i, H α, and 24 μ m data of three nearby spiral galaxies (NGC 3627, NGC 5055, and M83). We find that (1) the slopes for each subsample with a fixed R {sub 31} are shallower, but the slope for all data sets combined becomes steeper, (2) normalizations for high R {sub 31} subsamples tend to be high, (3) R {sub 31} correlates with star formation efficiency, therefore the KS relation depends on the distribution in R {sub 31}–Σ{sub gas} space of the samples: no Σ{sub gas} dependence of R {sub 31} results in a linear slope of the KS relation, whereas a positive correlation between Σ{sub gas} and R {sub 31} results in a superlinear slope of the KS relation, and (4) R {sub 31}–Σ{sub gas} distributions are different from galaxy to galaxy and within a galaxy: galaxies with prominent galactic structure tend to have large R {sub 31} and Σ{sub gas}. Our results suggest that the formation efficiency of a star-forming cloud from molecular gas is different among galaxies as well as within a galaxy, and it is one of the key factors inducing the variety in galactic KS relation.

  6. Abundances and Excitation of H2, H3+ & CO in Star-Forming Regions

    Science.gov (United States)

    Kulesa, Craig A.

    Although most of the 123 reported interstellar molecules to date have been detected through millimeter-wave emission-line spectroscopy, this technique is inapplicable to non-polar molecules like H2 and H3+, which are central to our understanding of interstellar chemistry. Thus high resolution infrared absorption-line spectroscopy bears an important role in interstellar studies: chemically important non-polar molecules can be observed, and their abundances and excitation conditions can be referred to the same ``pencil beam'' absorbing column. In particular, through a weak quadrupole absorption line spectrum at near-infrared wavelengths, the abundance of cold H2 in dark molecular clouds and star forming regions can now be accurately measured and compared along the same ``pencil beam'' line of sight with the abundance of its most commonly cited surrogate, CO, and its rare isotopomers. Also detected via infrared line absorption is the pivotal molecular ion H3+, whose abundance provides the most direct measurement of the cosmic ray ionization rate in dark molecular clouds, a process that initiates the formation of many other observed molecules there. Our growing sample of H2 and CO detections now includes detailed multi-beam studies of the ρ Ophiuchi molecular cloud and NGC 2024 in Orion. We explore the excitation and degree of ortho- and para-H2 thermalization in dark clouds, variation of the CO abundance over a cloud, and the relation of H2 column density to infrared extinction mapping, far-infrared/submillimeter dust continuum emission, and large scale submillimeter CO, [C I] and HCO+ line emission -- all commonly invoked to indirectly trace H2 during the past 30+ years. For each of the distinct velocity components seen toward some embedded young stellar objects, we are also able to determine the temperature, density, and a CO/H2 abundance ratio, thus unraveling some of the internal structure of a star-forming cloud. H2 and H3+ continue to surprise and delight us

  7. Semi-Analytic Galaxies - I. Synthesis of environmental and star-forming regulation mechanisms

    Science.gov (United States)

    Cora, Sofía A.; Vega-Martínez, Cristian A.; Hough, Tomás; Ruiz, Andrés N.; Orsi, Álvaro; Muñoz Arancibia, Alejandra M.; Gargiulo, Ignacio D.; Collacchioni, Florencia; Padilla, Nelson D.; Gottlöber, Stefan; Yepes, Gustavo

    2018-05-01

    We present results from the semi-analytic model of galaxy formation SAG applied on the MULTIDARK simulation MDPL2. SAG features an updated supernova (SN) feedback scheme and a robust modelling of the environmental effects on satellite galaxies. This incorporates a gradual starvation of the hot gas halo driven by the action of ram pressure stripping (RPS), that can affect the cold gas disc, and tidal stripping (TS), which can act on all baryonic components. Galaxy orbits of orphan satellites are integrated providing adequate positions and velocities for the estimation of RPS and TS. The star formation history and stellar mass assembly of galaxies are sensitive to the redshift dependence implemented in the SN feedback model. We discuss a variant of our model that allows to reconcile the predicted star formation rate density at z ≳ 3 with the observed one, at the expense of an excess in the faint end of the stellar mass function at z = 2. The fractions of passive galaxies as a function of stellar mass, halo mass and the halo-centric distances are consistent with observational measurements. The model also reproduces the evolution of the main sequence of star forming central and satellite galaxies. The similarity between them is a result of the gradual starvation of the hot gas halo suffered by satellites, in which RPS plays a dominant role. RPS of the cold gas does not affect the fraction of quenched satellites but it contributes to reach the right atomic hydrogen gas content for more massive satellites (M⋆ ≳ 1010 M⊙).

  8. Highlights from the heavy-ion program in STAR

    Directory of Open Access Journals (Sweden)

    Chaloupka Petr

    2017-01-01

    STAR collaboration has successfully completed the Beam Energy Scan, program focused on searching for the onset of the QGP signatures and studying the nature of the phase transition, indicating that the region of interests for critical point and the first-order phase transition is within the reach of RHIC experiments. Moreover, with its two newly installed detector upgrades, STAR has launched a comprehensive heavy-flavor program which allows high precision measurements of the properties of the partonic matter.

  9. Colliding clouds and star formation in NGC 1333

    International Nuclear Information System (INIS)

    Loren, R.B.

    1976-01-01

    Ongoing star formation in the NGC 1333 molecular cloud is found to be the result of a cloud-cloud collision. Two velocity components at 6.3 and 8.3 km s -1 are observable in the CO and 13 CO spectra, with strong self-abosorption occurring only in the 8.3 km s -1 component. The cloud-cloud collision provides compression and heating of the back side of the 8.3 km s -1 cloud, while cool, unshocked gas on the front side of this cloud results in the observed self-absorption. With the 6.3 km s -1 cloud on the far side of the collision interface, no self-absorption occurs at this velocity. One result of the collision is the coalescence of the two velocity components into a single, intermediate velocity component observed at 7.5 km s -1 . Associated with this postcollision gas is a chain of newly formed stars which illuminates and heats the nebulosity of NGC 1333.At one end of this chain of stars is a region of enhanced CO line broadening, indicating a nonhomologous gravitational collapse of this portion of the cloud. The infrared stars closest to the part of the cloud which is collapsing are completely obscured at visual wavelengths, and several are associated with Herbig-Haro (HH) objects. With increasing displacement from the region of collapse, the stars become more visible, are probably older, and the CO self-absorption decreases at these positions in the cloud.The observed region in which the cloud-cloud collision is occurring is located at the intersection of an expanding neutral hydrogen shell and lower-velocity background H I

  10. GRAVITATIONAL WAVES FROM MASSIVE MAGNETARS FORMED IN BINARY NEUTRON STAR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Osso, Simone [Theoretical Astrophysics, University of Tübingen, auf der Morgenstelle 10 D-72076 (Germany); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Stella, Luigi, E-mail: simone.dallosso@uni-tuebingen.de [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monteporzio Catone, Roma (Italy)

    2015-01-01

    Binary neutron star (NS) mergers are among the most promising sources of gravitational waves (GWs), as well as candidate progenitors for short gamma-ray bursts (SGRBs). Depending on the total initial mass of the system and the NS equation of state (EOS), the post-merger phase can be characterized by a prompt collapse to a black hole or by the formation of a supramassive NS, or even a stable NS. In the latter cases of post-merger NS (PMNS) formation, magnetic field amplification during the merger will produce a magnetar and induce a mass quadrupole moment in the newly formed NS. If the timescale for orthogonalization of the magnetic symmetry axis with the spin axis is smaller than the spindown time, the NS will radiate its spin down energy primarily via GWs. Here we study this scenario for the various outcomes of NS formation: we generalize the set of equilibrium states for a twisted torus magnetic configuration to include solutions that, for the same external dipolar field, carry a larger magnetic energy reservoir; we hence compute the magnetic ellipticity for such configurations, and the corresponding strength of the expected GW signal as a function of the relative magnitude of the dipolar and toroidal field components. The relative number of GW detections from PMNSs and from binary NSs is a very strong function of the NS EOS, being higher (∼1%) for the stiffest EOSs and negligibly small for the softest ones. For intermediate-stiffness EOSs, such as the n = 4/7 polytrope recently used by Giacomazzo and Perna or the GM1 used by Lasky et al., the relative fraction is ∼0.3%; correspondingly, we estimate a GW detection rate from stable PMNSs of ∼0.1-1 yr{sup –1} with advanced detectors, and of ∼100-1000 yr{sup –1} with detectors of third generation such as the Einstein Telescope. Measurement of such GW signals would provide constraints on the NS EOS and, in connection with an SGRB, on the nature of the binary progenitors giving rise to these events.

  11. Radiative transfer modelling of W33A MM1: 3-D structure and dynamics of a complex massive star forming region

    Science.gov (United States)

    Izquierdo, Andrés F.; Galván-Madrid, Roberto; Maud, Luke T.; Hoare, Melvin G.; Johnston, Katharine G.; Keto, Eric R.; Zhang, Qizhou; de Wit, Willem-Jan

    2018-05-01

    We present a composite model and radiative transfer simulations of the massive star forming core W33A MM1. The model was tailored to reproduce the complex features observed with ALMA at ≈0.2 arcsec resolution in CH3CN and dust emission. The MM1 core is fragmented into six compact sources coexisting within ˜1000 au. In our models, three of these compact sources are better represented as disc-envelope systems around a central (proto)star, two as envelopes with a central object, and one as a pure envelope. The model of the most prominent object (Main) contains the most massive (proto)star (M⋆ ≈ 7 M⊙) and disc+envelope (Mgas ≈ 0.4 M⊙), and is the most luminous (LMain ˜ 104 L⊙). The model discs are small (a few hundred au) for all sources. The composite model shows that the elongated spiral-like feature converging to the MM1 core can be convincingly interpreted as a filamentary accretion flow that feeds the rising stellar system. The kinematics of this filament is reproduced by a parabolic trajectory with focus at the center of mass of the region. Radial collapse and fragmentation within this filament, as well as smaller filamentary flows between pairs of sources are proposed to exist. Our modelling supports an interpretation where what was once considered as a single massive star with a ˜103 au disc and envelope, is instead a forming stellar association which appears to be virialized and to form several low-mass stars per high-mass object.

  12. A MATURE DUSTY STAR-FORMING GALAXY HOSTING GRB 080607 AT z = 3.036

    International Nuclear Information System (INIS)

    Chen, Hsiao-Wen; Perley, Daniel A.; Cenko, S. Bradley; Bloom, Joshua S.; Wilson, Christine D.; Levan, Andrew J.; Prochaska, Jason X.; Tanvir, Nial R.; Dessauges-Zavadsky, Miroslava; Pettini, Max

    2010-01-01

    We report the discovery of the host galaxy of Swift dark burst GRB 080607 at z GRB = 3.036. GRB 080607 is a unique case of a highly extinguished (A V ∼ 3 mag) afterglow that was yet sufficiently bright for high-quality absorption-line spectroscopy. The host galaxy is clearly resolved in deep Hubble Space Telescope (HST) WF3/IR F160W images and well detected in the Spitzer IRAC 3.5 μm and 4.5 μm channels, while displaying little/no fluxes in deep optical images from Keck and Magellan. The extremely red optical-infrared colors are consistent with the large extinction seen in the afterglow light, suggesting that the large amount of dust and gas surface mass density seen along the afterglow sight line is not merely local but likely reflects the global dust content across the entire host galaxy. Adopting the dust properties and metallicity of the host interstellar medium derived from studies of early-time afterglow light and absorption-line spectroscopy, we perform a stellar population synthesis analysis of the observed spectral energy distribution to constrain the intrinsic luminosity and stellar population of this dark burst host. The host galaxy is best described by an exponentially declining star formation rate of e-folding time τ = 2 Gyr and an age of ∼2 Gyr. We also derive an extinction-corrected star formation rate of SFR ∼ 125 h -2 M sun yr -1 and a total stellar mass of M * ∼ 4 x 10 11 h -2 M sun . Our study provides an example of massive, dusty star-forming galaxies contributing to the γ-ray burst (GRB) host galaxy population, supporting the notion that long-duration GRBs trace the bulk of cosmic star formation.

  13. Clustering of Star-forming Galaxies Near a Radio Galaxy at z=5.2

    Science.gov (United States)

    Overzier, Roderik A.; Miley, G. K.; Bouwens, R. J.; Cross, N. J. G.; Zirm, A. W.; Benítez, N.; Blakeslee, J. P.; Clampin, M.; Demarco, R.; Ford, H. C.; Hartig, G. F.; Illingworth, G. D.; Martel, A. R.; Röttgering, H. J. A.; Venemans, B.; Ardila, D. R.; Bartko, F.; Bradley, L. D.; Broadhurst, T. J.; Coe, D.; Feldman, P. D.; Franx, M.; Golimowski, D. A.; Goto, T.; Gronwall, C.; Holden, B.; Homeier, N.; Infante, L.; Kimble, R. A.; Krist, J. E.; Mei, S.; Menanteau, F.; Meurer, G. R.; Motta, V.; Postman, M.; Rosati, P.; Sirianni, M.; Sparks, W. B.; Tran, H. D.; Tsvetanov, Z. I.; White, R. L.; Zheng, W.

    2006-01-01

    We present HST ACS observations of the most distant radio galaxy known, TN J0924-2201 at z=5.2. This radio galaxy has six spectroscopically confirmed Lyα-emitting companion galaxies and appears to lie within an overdense region. The radio galaxy is marginally resolved in i775 and z850, showing continuum emission aligned with the radio axis, similar to what is observed for lower redshift radio galaxies. Both the half-light radius and the UV star formation rate are comparable to the typical values found for Lyman break galaxies at z~4-5. The Lyα emitters are sub-L* galaxies, with deduced star formation rates of 1-10 Msolar yr-1. One of the Lyα emitters is only detected in Lyα. Based on the star formation rate of ~3 Msolar yr-1 calculated from Lyα, the lack of continuum emission could be explained if the galaxy is younger than ~2 Myr and is producing its first stars. Observations in V606i775z850 were used to identify additional Lyman break galaxies associated with this structure. In addition to the radio galaxy, there are 22 V606 break (z~5) galaxies with z850dropouts extracted from GOODS and the UDF parallel fields. We find evidence for an overdensity to very high confidence (>99%), based on a counts-in-cells analysis applied to the control field. The excess suggests that the V606 break objects are associated with a forming cluster around the radio galaxy. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 9291.

  14. Chandra Sees Wealth Of Black Holes In Star-Forming Galaxies

    Science.gov (United States)

    2001-06-01

    NASA's Chandra X-ray Observatory has found new populations of suspected mid-mass black holes in several starburst galaxies, where stars form and explode at an unusually high rate. Although a few of these objects had been found previously, this is the first time they have been detected in such large numbers and could help explain their relationship to star formation and the production of even more massive black holes. At the 198th meeting of the American Astronomical Society in Pasadena, California, three independent teams of scientists reported finding dozens of X-ray sources in galaxies aglow with star formation. These X-ray objects appear point-like and are ten to a thousand times more luminous in X-rays than similar sources found in our Milky Way and the M81 galaxy. "Chandra gives us the ability to study the populations of individual bright X-ray sources in nearby galaxies in extraordinary detail," said Andreas Zezas, lead author from the Harvard-Smithsonian Center for Astrophysics team that observed The Antennae, a pair of colliding galaxies, and M82, a well-known starburst galaxy. "This allows us to build on earlier detections of these objects and better understand their relationship to starburst galaxies." Antennae-True Color Image True Color Image of Antennae Credit: NASA/SAO/G.Fabbiano et al. Press Image and Caption Kimberly Weaver, of NASA's Goddard Space Flight Center in Greenbelt, MD, lead scientist of the team that studied the starburst galaxy NGC 253, discussed the importance of the unusual concentration of these very luminous X-ray sources near the center of that galaxy. Four sources, which are tens to thousands of times more massive than the Sun, are located within 3,000 light years of the galaxy core. "This may imply that these black holes are gravitating toward the center of the galaxy where they could coalesce to form a single supermassive black hole," Weaver suggested. "It could be that this starburst galaxy is transforming itself into a quasar

  15. SUB-KILOPARSEC IMAGING OF COOL MOLECULAR GAS IN TWO STRONGLY LENSED DUSTY, STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Béthermin, M.; Breuck, C. de [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Carlstrom, J. E. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C.; Rotermund, K. M. [Dalhousie University, Halifax, Nova Scotia (Canada); Collier, J. D.; Galvin, T.; Grieve, K.; O’Brien, A. [University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H.; Ma, J. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); González-López, J. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Malkan, M., E-mail: jspilker@as.arizona.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); and others

    2015-10-01

    We present spatially resolved imaging obtained with the Australia Telescope Compact Array (ATCA) of three CO lines in two high-redshift gravitationally lensed dusty star-forming galaxies, discovered by the South Pole Telescope. Strong lensing allows us to probe the structure and dynamics of the molecular gas in these two objects, at z = 2.78 and z = 5.66, with effective source-plane resolution of less than 1 kpc. We model the lensed emission from multiple CO transitions and the dust continuum in a consistent manner, finding that the cold molecular gas as traced by low-J CO always has a larger half-light radius than the 870 μm dust continuum emission. This size difference leads to up to 50% differences in the magnification factor for the cold gas compared to dust. In the z = 2.78 galaxy, these CO observations confirm that the background source is undergoing a major merger, while the velocity field of the other source is more complex. We use the ATCA CO observations and comparable resolution Atacama Large Millimeter/submillimeter Array dust continuum imaging of the same objects to constrain the CO–H{sub 2} conversion factor with three different procedures, finding good agreement between the methods and values consistent with those found for rapidly star-forming systems. We discuss these galaxies in the context of the star formation—gas mass surface density relation, noting that the change in emitting area with observed CO transition must be accounted for when comparing high-redshift galaxies to their lower redshift counterparts.

  16. Complex organic molecules toward low-mass and high-mass star forming regions

    Science.gov (United States)

    Favre, C.; Ceccarelli, C.; Lefloch, B.; Bergin, E.; Carvajal, M.; Brouillet, N.; Despois, D.; Jørgensen, J.; Kleiner, I.

    2016-12-01

    One of the most important questions in molecular astrophysics is how, when, and where complex organic molecules, COMs (≥ 6 atoms) are formed. In the Interstellar-Earth connection context, could this have a bearing on the origin of life on Earth? Formation mechanisms of COMs, which include potentially prebiotic molecules, are still debated and may include grain-mantle and/or gas-phase chemistry. Understanding the mechanisms that lead to the interstellar molecular complexification, along with the involved physicochemical processes, is mandatory to answer the above questions. In that context, active researches are ongoing in theory, laboratory experiment, chemical modeling and observations. Thanks to recent progress in radioastronomy instrumentation for both single-dish and millimeter array (e.g. Herschel, NOEMA, ALMA), new results have been obtained. I will review some notable results on the detection of COMs, including prebiotic molecules, towards star forming regions.

  17. Modeling pulsations in hot stars with winds

    Energy Technology Data Exchange (ETDEWEB)

    Noels, Arlette; Godart, Melanie [Institut d' Astrophysique et de Geophysique, Liege (Belgium); Dupret, Marc-Antoine [Observatoire de Paris-Meudon, LESIA (France)], E-mail: Arlette.Noels@ulg.ac.be, E-mail: ma.dupret@obspm.fr, E-mail: Melanie.Godart@ulg.ac.be

    2008-10-15

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  18. Modeling pulsations in hot stars with winds

    International Nuclear Information System (INIS)

    Noels, Arlette; Godart, Melanie; Dupret, Marc-Antoine

    2008-01-01

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  19. X-RAY AND RADIO OBSERVATIONS OF THE MASSIVE STAR-FORMING REGION IRAS 20126+4104

    Energy Technology Data Exchange (ETDEWEB)

    Montes, V. A.; Hofner, P.; Anderson, C.; Rosero, V. [Physics Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801 (United States)

    2015-08-15

    We present results from Chandra ACIS-I and Karl G. Jansky Very Large Array 6 cm continuum observations of the IRAS 20126+4104 massive star-forming region. We detect 150 X-ray sources within the 17′ × 17′ ACIS-I field, and a total of 13 radio sources within the 9.′2 primary beam at 4.9 GHz. Among these observtions are the first 6 cm detections of the central sources reported by Hofner et al., namely, I20N1, I20S, and I20var. A new variable radio source is also reported. Searching the 2MASS archive, we identified 88 near-infrared (NIR) counterparts to the X-ray sources. Only four of the X-ray sources had 6 cm counterparts. Based on an NIR color–color analysis and on the Besançon simulation of Galactic stellar populations, we estimate that approximately 80 X-ray sources are associated with this massive star-forming region. We detect an increasing surface density of X-ray sources toward the massive protostar and infer the presence of a cluster of at least 43 young stellar objects within a distance of 1.2 pc from the massive protostar.

  20. Hyperon-mixed neutron star matter and neutron stars

    International Nuclear Information System (INIS)

    Nishizaki, Shigeru; Takatsuka, Tatsuyuki; Yamamoto, Yasuo

    2002-01-01

    Effective Σ - n and Σ - Σ - interactions are derived from the G-matrix calculations for {n+Σ - } matter and employed in the investigation of hyperon mixing in neutron star matter. The threshold densities ρ t (Y) at which hyperons start to appear are between 2ρ 0 and 3ρ 0 (where ρ 0 is the normal nuclear density) for both Λ and Σ - , and their fractions increase rapidly with baryon density, reaching 10% already for ρ≅ρ t + ρ 0 . The mechanism of hyperon mixing and single-particle properties, such as the effective mass and the potential depth, are analyzed taking into account the roles of YN and NN interactions. The resulting equation of state is found to be too soft to sustain the observed neutron star mass M obs =1.44(solar mass). We discuss the reason for this and stress the necessity of the ''extra repulsion'' for YN and YY interactions to resolve this crucial problem. It is remarked that ρ t (Y) would be as large as 4ρ 0 for neutron stars compatible with M obs . A comment is given regarding the effects on the Y-mixing problem from a less attractive ΛΛ interaction, newly suggested by the NAGARA event. (author)

  1. UV-luminous, star-forming hosts of z ˜ 2 reddened quasars in the Dark Energy Survey

    Science.gov (United States)

    Wethers, C. F.; Banerji, M.; Hewett, P. C.; Lemon, C. A.; McMahon, R. G.; Reed, S. L.; Shen, Y.; Abdalla, F. B.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Capozzi, D.; Carnero Rosell, A.; CarrascoKind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.

    2018-04-01

    We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity [E(B - V)QSO ≳ 0.5; Lbol > 1046 erg s-1] broad-line quasars at 1.5 VISTA Hemisphere Survey and UKIDSS Large Area Survey data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least 10 quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFRUV < 365 M⊙ yr-1, with an average SFRUV = 130 ± 95 M⊙ yr-1. We find a broad correlation between SFRUV and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.

  2. Star Formation in Irregular Galaxies.

    Science.gov (United States)

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  3. A robust star identification algorithm with star shortlisting

    Science.gov (United States)

    Mehta, Deval Samirbhai; Chen, Shoushun; Low, Kay Soon

    2018-05-01

    A star tracker provides the most accurate attitude solution in terms of arc seconds compared to the other existing attitude sensors. When no prior attitude information is available, it operates in "Lost-In-Space (LIS)" mode. Star pattern recognition, also known as star identification algorithm, forms the most crucial part of a star tracker in the LIS mode. Recognition reliability and speed are the two most important parameters of a star pattern recognition technique. In this paper, a novel star identification algorithm with star ID shortlisting is proposed. Firstly, the star IDs are shortlisted based on worst-case patch mismatch, and later stars are identified in the image by an initial match confirmed with a running sequential angular match technique. The proposed idea is tested on 16,200 simulated star images having magnitude uncertainty, noise stars, positional deviation, and varying size of the field of view. The proposed idea is also benchmarked with the state-of-the-art star pattern recognition techniques. Finally, the real-time performance of the proposed technique is tested on the 3104 real star images captured by a star tracker SST-20S currently mounted on a satellite. The proposed technique can achieve an identification accuracy of 98% and takes only 8.2 ms for identification on real images. Simulation and real-time results depict that the proposed technique is highly robust and achieves a high speed of identification suitable for actual space applications.

  4. GeV Observations of star-forming glaxies with the FERMI Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; /DESY, Zeuthen; Ajello, M.; Allafort, A.; /SLAC /KIPAC, Menlo Park; Baldini, L.; /INFN, Pisa; Ballet, J.; /AIM, Saclay; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /SLAC /KIPAC, Menlo Park; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Bloom, E.D.; /SLAC /KIPAC, Menlo Park; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /SLAC /KIPAC, Menlo Park; Bouvier, A.; /UC, Santa Cruz; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /SLAC /KIPAC, Menlo Park; Buson, S.; /INFN, Padua /Padua U.; Caliandro, G.A.; /CSIC, Catalunya; Cameron, R.A.; /SLAC /KIPAC, Menlo Park; Caraveo, P.A.; /Brera Observ. /AIM, Saclay /INFN, Perugia /Perugia U. /SLAC /KIPAC, Menlo Park /George Mason U. /Artep Inc. /Natl. Res. Coun., Wash., D.C. /Artep Inc. /SLAC /KIPAC, Menlo Park /Buenos Aires, IAFE /NASA, Goddard /Perugia U. /ASDC, Frascati /SLAC /KIPAC, Menlo Park /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Swedish Acad. Sci. /ASDC, Frascati /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /SLAC /KIPAC, Menlo Park /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /Hiroshima U. /SLAC /KIPAC, Menlo Park /Bari Polytechnic /INFN, Bari /INFN, Bari /ASDC, Frascati /INFN, Perugia /Perugia U. /Bari Polytechnic /INFN, Bari /SLAC /KIPAC, Menlo Park /AIM, Saclay /Alabama U., Huntsville /INFN, Padua /CSIC, Catalunya /SLAC /KIPAC, Menlo Park /Kyoto U. /NASA, Goddard /Ohio State U., CCAPP /Iceland U.; /more authors..

    2012-08-07

    Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values lesssim 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙ yr–1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10–6 ph cm–2 s–1 sr–1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.

  5. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  6. NEAR-ULTRAVIOLET SPECTROSCOPY OF STAR-FORMING GALAXIES FROM eBOSS: SIGNATURES OF UBIQUITOUS GALACTIC-SCALE OUTFLOWS

    International Nuclear Information System (INIS)

    Zhu, Guangtun Ben; Comparat, Johan; Kneib, Jean-Paul; Delubac, Timothée; Raichoor, Anand; Yèche, Christophe; Dawson, Kyle S.; Newman, Jeffrey; Zhou, Xu; Schneider, Donald P.

    2015-01-01

    We present rest-frame near-ultraviolet (NUV) spectroscopy of star-forming galaxies (SFGs) at 0.6 < z < 1.2 from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) in SDSS-IV. One of the eBOSS programs is to obtain 2″ (about 15 kpc) fiber spectra of about 200,000 emission-line galaxies (ELGs) at redshift z ≳ 0.6. We use the data from the pilot observations of this program, including 8620 spectra of SFGs at 0.6 < z < 1.2. The median composite spectra of these SFGs at 2200 Å < λ < 4000 Å feature asymmetric, preferentially blueshifted non-resonant emission, Fe ii*, and blueshifted resonant absorption, e.g., Fe ii and Mg ii, indicating ubiquitous outflows driven by star formation at these redshifts. For the absorption lines, we find a variety of velocity profiles with different degrees of blueshift. Comparing our new observations with the literature, we do not observe the non-resonant emission in the small-aperture (<40 pc) spectra of local star-forming regions with the Hubble Space Telescope, and find the observed line ratios in the SFG spectra to be different from those in the spectra of local star-forming regions, as well as those of quasar absorption-line systems in the same redshift range. We introduce an outflow model that can simultaneously explain the multiple observed properties and suggest that the variety of absorption velocity profiles and the line ratio differences are caused by scattered fluorescent emission filling in on top of the absorption in the large-aperture eBOSS spectra. We develop an observation-driven, model-independent method to correct the emission infill to reveal the true absorption profiles. Finally, we show that the strengths of both the non-resonant emission and the emission-corrected resonant absorption increase with [O ii] λλ3727, 3730 rest equivalent width and luminosity, with a slightly larger dependence on the former. Our results show that the eBOSS and future dark-energy surveys (e.g., Dark Energy Spectroscopic

  7. Orbital Decay in Binaries with Evolved Stars

    Science.gov (United States)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  8. OBSERVATIONAL CONSTRAINTS ON FIRST-STAR NUCLEOSYNTHESIS. I. EVIDENCE FOR MULTIPLE PROGENITORS OF CEMP-NO STARS

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jinmi; Beers, Timothy C.; Placco, Vinicius M.; Rasmussen, Kaitlin C.; Carollo, Daniela [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); He, Siyu [Department of Physics, Xi’an Jiaotong University, Shaanxi, 710049 (China); Hansen, Terese T. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Roederer, Ian U. [Joint Institute for Nuclear Astrophysics-Center for the Evolution of the Elements (JINA-CEE) (United States); Zeanah, Jeff, E-mail: jinmi.yoon@nd.edu [Z Solutions, Inc., 9430 Huntcliff Trace, Atlanta, GA 30350 (United States)

    2016-12-10

    We investigate anew the distribution of absolute carbon abundance, A (C) = log ϵ (C), for carbon-enhanced metal-poor (CEMP) stars in the halo of the Milky Way, based on high-resolution spectroscopic data for a total sample of 305 CEMP stars. The sample includes 147 CEMP- s (and CEMP- r / s ) stars, 127 CEMP-no stars, and 31 CEMP stars that are unclassified, based on the currently employed [Ba/Fe] criterion. We confirm previous claims that the distribution of A (C) for CEMP stars is (at least) bimodal, with newly determined peaks centered on A (C) = 7.96 (the high-C region) and A (C) = 6.28 (the low-C region). A very high fraction of CEMP- s (and CEMP- r / s ) stars belongs to the high-C region, while the great majority of CEMP-no stars resides in the low-C region. However, there exists complexity in the morphology of the A (C)-[Fe/H] space for the CEMP-no stars, a first indication that more than one class of first-generation stellar progenitors may be required to account for their observed abundances. The two groups of CEMP-no stars we identify exhibit clearly different locations in the A (Na)- A (C) and A (Mg)- A (C) spaces, also suggesting multiple progenitors. The clear distinction in A (C) between the CEMP- s (and CEMP- r / s ) stars and the CEMP-no stars appears to be as successful, and likely more astrophysically fundamental, for the separation of these sub-classes as the previously recommended criterion based on [Ba/Fe] (and [Ba/Eu]) abundance ratios. This result opens the window for its application to present and future large-scale low- and medium-resolution spectroscopic surveys.

  9. Quark degrees of freedom in compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Marranghello, G.F.; Vasconcellos, C.A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica. Dept. de Fisica; Hadjimichef, D. [Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica. Dept. de Fisica

    2001-07-01

    Nuclear matter may show a phase transition at high densities, where quarks and gluons are set free, forming a so called quark-gluon plasma. At the same range of densities, neutron stars are formed. In this work we have grouped both ideas in the study of the quark-gluon plasma formation inside compact stars, here treated as pure neutron star, hybrid star and pure quark matter star. (author)

  10. Quark degrees of freedom in compact stars

    International Nuclear Information System (INIS)

    Marranghello, G.F.; Vasconcellos, C.A.Z.; Hadjimichef, D.

    2001-01-01

    Nuclear matter may show a phase transition at high densities, where quarks and gluons are set free, forming a so called quark-gluon plasma. At the same range of densities, neutron stars are formed. In this work we have grouped both ideas in the study of the quark-gluon plasma formation inside compact stars, here treated as pure neutron star, hybrid star and pure quark matter star. (author)

  11. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy.

    Science.gov (United States)

    Izotov, Y I; Orlitová, I; Schaerer, D; Thuan, T X; Verhamme, A; Guseva, N G; Worseck, G

    2016-01-14

    One of the key questions in observational cosmology is the identification of the sources responsible for ionization of the Universe after the cosmic 'Dark Ages', when the baryonic matter was neutral. The currently identified distant galaxies are insufficient to fully reionize the Universe by redshift z ≈ 6 (refs 1-3), but low-mass, star-forming galaxies are thought to be responsible for the bulk of the ionizing radiation. As direct observations at high redshift are difficult for a variety of reasons, one solution is to identify local proxies of this galaxy population. Starburst galaxies at low redshifts, however, generally are opaque to Lyman continuum photons. Small escape fractions of about 1 to 3 per cent, insufficient to ionize much surrounding gas, have been detected only in three low-redshift galaxies. Here we report far-ultraviolet observations of the nearby low-mass star-forming galaxy J0925+1403. The galaxy is leaking ionizing radiation with an escape fraction of about 8 per cent. The total number of photons emitted during the starburst phase is sufficient to ionize intergalactic medium material that is about 40 times as massive as the stellar mass of the galaxy.

  12. High-energy emission from star-forming galaxies

    International Nuclear Information System (INIS)

    Persic, M.; Rephaeli, Y.

    2011-01-01

    Adopting the convection-diffusion model for energetic electron and proton propagation, and accounting for al lthe relevant hadronic and leptonic processes, the steady-state energy distributions of these particles in the starburst galaxies M 82 and NGC 253 can be determined with a detailed numerical treatment. The electron distribution is directly normalized by the measured synchrotron radioemission from the central starburst region; a commonly expected theoretical relationis then used to normalize the proton spectrum in thisr egion, and a radial profile is assumed for the magnetic field. The resulting radiative yields of electrons and protons are calculated: thepredicted > 100MeV and > 100GeV fluxes are in agreement with the corresponding quantities measured with the orbiting Fermite lescope and the ground-based VERITAS and HESS Cherenkov telescopes. The cosmic-rayenergy densities in central regions of starburst galaxies, as inferred from the radioand γ-ray measurements of (respectively) non-thermal synchrotron and π 0 -decay emission, are U p = O(100)eVcm -3 , i.e. at least an order of magnitude larger than near the Galactic center and in other non-very-actively star-forming galaxies. These very different energy density levelsr eflect a similar disparity in the respective supernova rates in the two environments. A L γ proper to SFR 1.4 relationship is then predicted, in agreement with preliminary observational evidence.

  13. The Universe's Most Extreme Star-forming Galaxies

    Science.gov (United States)

    Casey, Caitlin

    2017-06-01

    Dusty star-forming galaxies host the most intense stellar nurseries in the Universe. Their unusual characteristics (SFRs=200-2000Msun/yr, Mstar>1010 Msun) pose a unique challenge for cosmological simulations and galaxy formation theory, particularly at early times. Although rare today, they were factors of 1000 times more prevalent at z~2-5, contributing significantly to the buildup of the Universe's stellar mass and the formation of high-mass galaxies. At even earlier times (within 1Gyr post Big Bang) they could have played a pivotal role in enriching the IGM. However, an ongoing debate lingers as to their evolutionary origins at high-redshift, whether or not they are triggered by major mergers of gas-rich disk galaxies, or if they are solitary galaxies continually fed pristine gas from the intergalactic medium. Furthermore, their presence in early protoclusters, only revealed quite recently, pose intriguing questions regarding the collapse of large scale structure. I will discuss some of the latest observational programs dedicated to understanding dust-obscuration in and gas content of the early Universe, their context in the cosmic web, and future long-term observing campaigns that may reveal their relationship to `normal’ galaxies, thus teaching us valuable lessons on the physical mechanisms of galaxy growth and the collapse of large scale structure in an evolving Universe.

  14. The star-forming content of the W3 giant molecular cloud

    Science.gov (United States)

    Moore, T. J. T.; Bretherton, D. E.; Fujiyoshi, T.; Ridge, N. A.; Allsopp, J.; Hoare, M. G.; Lumsden, S. L.; Richer, J. S.

    2007-08-01

    We have surveyed a ˜0.9 square degree area of the W3 giant molecular cloud (GMC) and star-forming region in the 850-μm continuum, using the Submillimetre Common-User Bolometer Array on the James Clerk Maxwell Telescope. A complete sample of 316 dense clumps were detected with a mass range from around 13 to 2500 M⊙. Part of the W3 GMC is subject to an interaction with the H ii region and fast stellar winds generated by the nearby W4 OB association. We find that the fraction of total gas mass in dense, 850-μm traced structures is significantly altered by this interaction, being around 5-13 per cent in the undisturbed cloud but ˜25-37 per cent in the feedback-affected region. The mass distribution in the detected clump sample depends somewhat on assumptions of dust temperature and is not a simple, single power law but contains significant structure at intermediate masses. This structure is likely to be due to crowding of sources near or below the spatial resolution of the observations. There is little evidence of any difference between the index of the high-mass end of the clump mass function in the compressed region and in the unaffected cloud. The consequences of these results are discussed in terms of current models of triggered star formation.

  15. The Dark Side of Neutron Stars

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2013-01-01

    We review severe constraints on asymmetric bosonic dark matter based on observations of old neutron stars. Under certain conditions, dark matter particles in the form of asymmetric bosonic WIMPs can be eectively trapped onto nearby neutron stars, where they can rapidly thermalize and concentrate...... in the core of the star. If some conditions are met, the WIMP population can collapse gravitationally and form a black hole that can eventually destroy the star. Based on the existence of old nearby neutron stars, we can exclude certain classes of dark matter candidates....

  16. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  17. Evolution of massive close binary stars

    International Nuclear Information System (INIS)

    Masevich, A.G.; Tutukov, A.V.

    1982-01-01

    Some problems of the evolution of massive close binary stars are discussed. Most of them are nonevolutionized stars with close masses of components. After filling the Roche cavity and exchange of matter between the components the Wolf-Rayet star is formed. As a result of the supernovae explosion a neutron star or a black hole is formed in the system. The system does not disintegrate but obtains high space velocity owing to the loss of the supernovae envelope. The satellite of the neutron star or black hole - the star of the O or B spectral class loses about 10 -6 of the solar mass for a year. Around the neighbouring component a disc of this matter is formed the incidence of which on a compact star leads to X radiation appearance. The neutron star cannot absorb the whole matter of the widening component and the binary system submerges into the common envelope. As a result of the evolution of massive close binary systems single neutron stars can appear which after the lapse of some time become radiopulsars. Radiopulsars with such high space velocities have been found in our Galaxy [ru

  18. COMPLEX GAS KINEMATICS IN COMPACT, RAPIDLY ASSEMBLING STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Amorin, R.; Vilchez, J. M.; Perez-Montero, E. [Instituto de Astrofisica de Andalucia-CSIC, Glorieta de la Astronomia S/N, E-18008 Granada (Spain); Haegele, G. F.; Firpo, V. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad de la Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Papaderos, P., E-mail: amorin@iaa.es [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-08-01

    Deep, high-resolution spectroscopic observations have been obtained for six compact, strongly star-forming galaxies at redshift z {approx} 0.1-0.3, most of them also known as green peas. Remarkably, these galaxies show complex emission-line profiles in the spectral region including H{alpha}, [N II] {lambda}{lambda}6548, 6584, and [S II] {lambda}{lambda}6717, 6731, consisting of the superposition of different kinematical components on a spatial extent of few kiloparsecs: a very broad line emission underlying more than one narrower component. For at least two of the observed galaxies some of these multiple components are resolved spatially in their two-dimensional spectra, whereas for another one a faint detached H{alpha} blob lacking stellar continuum is detected at the same recessional velocity {approx}7 kpc away from the galaxy. The individual narrower H{alpha} components show high intrinsic velocity dispersion ({sigma} {approx} 30-80 km s{sup -1}), suggesting together with unsharped masking Hubble Space Telescope images that star formation proceeds in an ensemble of several compact and turbulent clumps, with relative velocities of up to {approx}500 km s{sup -1}. The broad underlying H{alpha} components indicate in all cases large expansion velocities (full width zero intensity {>=}1000 km s{sup -1}) and very high luminosities (up to {approx}10{sup 42} erg s{sup -1}), probably showing the imprint of energetic outflows from supernovae. These intriguing results underline the importance of green peas for studying the assembly of low-mass galaxies near and far.

  19. GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Collins, David, E-mail: ben.wu@nao.ac.jp [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-06-01

    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.

  20. Young Stellar Objects in the Massive Star-forming Regions W51 and W43

    Energy Technology Data Exchange (ETDEWEB)

    Saral, G.; Audard, M. [Department of Astronomy, University of Geneva, Ch. d’Ecogia 16, 1290 Versoix (Switzerland); Hora, J. L.; Martínez-Galarza, J. R.; Smith, H. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koenig, X. P. [Yale University, Department of Astronomy, 208101, New Haven, CT 06520-8101 (United States); Motte, F. [Institut de Plantologie et d’Astrophysique de Grenoble, Univ. Grenoble Alpes—CNRS-INSU, BP 53, F-38041 Grenoble Cedex 9 (France); Nguyen-Luong, Q. [National Astronomical Observatory of Japan, Chile Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Saygac, A. T. [Istanbul University, Faculty of Science, Astronomy and Space Sciences Department, Istanbul-Turkey (Turkey)

    2017-04-20

    We present the results of our investigation of the star-forming complexes W51 and W43, two of the brightest in the first Galactic quadrant. In order to determine the young stellar object (YSO) populations in W51 and W43 we used color–magnitude relations based on Spitzer mid-infrared and 2MASS/UKIDSS near-infrared data. We identified 302 Class I YSOs and 1178 Class II/transition disk candidates in W51, and 917 Class I YSOs and 5187 Class II/transition disk candidates in W43. We also identified tens of groups of YSOs in both regions using the Minimal Spanning Tree (MST) method. We found similar cluster densities in both regions, even though Spitzer was not able to probe the densest part of W43. By using the Class II/I ratios, we traced the relative ages within the regions and, based on the morphology of the clusters, we argue that several sites of star formation are independent of one another in terms of their ages and physical conditions. We used spectral energy distribution-fitting to identify the massive YSO (MYSO) candidates since they play a vital role in the star formation process, and then examined them to see if they are related to any massive star formation tracers such as UCH ii regions, masers, or dense fragments. We identified 17 MYSO candidates in W51, and 14 in W43, respectively, and found that groups of YSOs hosting MYSO candidates are positionally associated with H ii regions in W51, though we do not see any MYSO candidates associated with previously identified massive dense fragments in W43.

  1. Neutron Stars and NuSTAR

    Science.gov (United States)

    Bhalerao, Varun

    2012-05-01

    among all classes of neutron star binaries. Intrigued by this diversity - which points to diverse birth masses - we undertook a systematic survey to measure the masses of neutron stars in nine high-mass X-ray binaries. In this thesis, I present results from this ongoing project. While neutron stars formed the primary focus of my work, I also explored other topics in compact objects. Appendix A describes the discovery and complete characterization of a 1RXS J173006.4+033813, a polar cataclysmic variable. Appendix B describes the discovery of a diamond planet orbiting a millisecond pulsar, and our search for its optical counterpart.

  2. CHEMICAL SEGREGATION TOWARD MASSIVE HOT CORES: THE AFGL2591 STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Serra, I.; Zhang, Q. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Viti, S. [Department of Physics and Astronomy, University College London, Gower Place, London WC1E 6BT (United Kingdom); Martin-Pintado, J. [Centro de Astrobiologia (CSIC/INTA), Ctra. de Torrejon a Ajalvir km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); De Wit, W.-J., E-mail: ijimenez-serra@cfa.harvard.edu, E-mail: qzhang@cfa.harvard.edu, E-mail: sv@star.ucl.ac.uk, E-mail: jmartin@cab.inta-csic.es, E-mail: wdewit@eso.org [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile)

    2012-07-01

    We present high angular resolution observations (0.''5 Multiplication-Sign 0.''3) carried out with the Submillimeter Array (SMA) toward the AFGL2591 high-mass star-forming region. Our SMA images reveal a clear chemical segregation within the AFGL2591 VLA 3 hot core, where different molecular species (Types I, II, and III) appear distributed in three concentric shells. This is the first time that such a chemical segregation is ever reported at linear scales {<=}3000 AU within a hot core. While Type I species (H{sub 2}S and {sup 13}CS) peak at the AFGL2591 VLA 3 protostar, Type II molecules (HC{sub 3}N, OCS, SO, and SO{sub 2}) show a double-peaked structure circumventing the continuum peak. Type III species, represented by CH{sub 3}OH, form a ring-like structure surrounding the continuum emission. The excitation temperatures of SO{sub 2}, HC{sub 3}N, and CH{sub 3}OH (185 {+-} 11 K, 150 {+-} 20 K, and 124 {+-} 12 K, respectively) show a temperature gradient within the AFGL2591 VLA 3 envelope, consistent with previous observations and modeling of the source. By combining the H{sub 2}S, SO{sub 2}, and CH{sub 3}OH images, representative of the three concentric shells, we find that the global kinematics of the molecular gas follow Keplerian-like rotation around a 40 M{sub Sun} star. The chemical segregation observed toward AFGL2591 VLA 3 is explained by the combination of molecular UV photodissociation and a high-temperature ({approx}1000 K) gas-phase chemistry within the low extinction innermost region in the AFGL2591 VLA 3 hot core.

  3. How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke-Jung [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Tokyo 181-8588 (Japan); Whalen, Daniel J. [Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth (United Kingdom); Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S., E-mail: ken.chen@nao.ac.jp [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg (Germany)

    2017-08-01

    Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.

  4. Herschel/HIFI observations of high-J CO lines in the NGC 1333 low-mass star-forming region

    DEFF Research Database (Denmark)

    Yildiz, U. A.; van Dishoeck, E. F.; Kristensen, L. E.

    2010-01-01

    Herschel/HIFI observations of high-J lines (up to Ju = 10) of 12CO, 13CO and C18O are presented toward three deeply embedded low-mass protostars, NGC 1333 IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. The spectrally-resolved......Herschel/HIFI observations of high-J lines (up to Ju = 10) of 12CO, 13CO and C18O are presented toward three deeply embedded low-mass protostars, NGC 1333 IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. The spectrally....... Their intensities require a jump in the CO abundance at an evaporation temperature around 25 K, thus providing new direct evidence for a CO ice evaporation zone around low-mass protostars. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia...... and with important participation from NASA.Appendices and acknowledgements (pages 5 to 7) are only available in electronic form at http://www.aanda.org...

  5. SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Wuyts, Stijn; Förster Schreiber, Natascha M.; Genzel, Reinhard; Lutz, Dieter; Guo Yicheng; Giavalisco, Mauro; Barro, Guillermo; Faber, Sandra M.; Kocevski, Dale D.; Koo, David C.; McGrath, Elizabeth; Bell, Eric F.; Dekel, Avishai; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Lotz, Jennifer; Hathi, Nimish P.; Huang, Kuang-Han; Newman, Jeffrey A.

    2012-01-01

    We perform a detailed analysis of the resolved colors and stellar populations of a complete sample of 323 star-forming galaxies (SFGs) at 0.5 10 M ☉ and have specific star formation rates (SFRs) above 1/t H . We model the seven-band optical ACS + near-IR WFC3 spectral energy distributions of individual bins of pixels, accounting simultaneously for the galaxy-integrated photometric constraints available over a longer wavelength range. We analyze variations in rest-frame color, stellar surface mass density, age, and extinction as a function of galactocentric radius and local surface brightness/density, and measure structural parameters on luminosity and stellar mass maps. We find evidence for redder colors, older stellar ages, and increased dust extinction in the nuclei of galaxies. Big star-forming clumps seen in star formation tracers are less prominent or even invisible in the inferred stellar mass distributions. Off-center clumps contribute up to ∼20% to the integrated SFR, but only 7% or less to the integrated mass of all massive SFGs at z ∼ 1 and z ∼ 2, with the fractional contributions being a decreasing function of wavelength used to select the clumps. The stellar mass profiles tend to have smaller sizes and M20 coefficients, and higher concentration and Gini coefficients than the light distribution. Our results are consistent with an inside-out disk growth scenario with brief (100-200 Myr) episodic local enhancements in star formation superposed on the underlying disk. Alternatively, the young ages of off-center clumps may signal inward clump migration, provided this happens efficiently on the order of an orbital timescale.

  6. Chandra and ALMA observations of the nuclear activity in two strongly lensed star-forming galaxies

    Science.gov (United States)

    Massardi, M.; Enia, A. F. M.; Negrello, M.; Mancuso, C.; Lapi, A.; Vignali, C.; Gilli, R.; Burkutean, S.; Danese, L.; Zotti, G. De

    2018-02-01

    -z galaxies with high star formation rates. This is useful to extend the investigation of the relationship between star formation and nuclear activity to two intrinsically less luminous high-z star-forming galaxies than was possible so far. Given our results for only two objects, they alone cannot constrain the evolutionary models, but provide us with interesting hints and set an observational path toward addressing the role of star formation and nuclear activity in forming galaxies. The reduced images and data cubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A53

  7. Are star formation rates of galaxies bimodal?

    Science.gov (United States)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (I) the discrete nature of star formation, (II) the presence of 'dead' galaxies with zero SFRs and (III) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  8. Star formation histories of irregular galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.; Tutukov, A.V.

    1984-01-01

    We explore the star formation histories of a selection of irregular and spiral galaxies by using three parameters that sample the star formation rate (SFR) at different epochs: (1) the mass of a galaxy in the form of stars measures the SFR integrated over a galaxy's lifetime; (2) the blue luminosity is dominated primarily by stars formed over the past few billion years; and (3) Lyman continuum photon fluxes derived from Hα luminosities give the current ( 8 yr) SFR

  9. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tie; Wu Yuefang; Zhang Huawei [Department of Astronomy, Peking University, 100871 Beijing (China); Qin Shengli, E-mail: liutiepku@gmail.com [I. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2012-05-20

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  10. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    International Nuclear Information System (INIS)

    Liu Tie; Wu Yuefang; Zhang Huawei; Qin Shengli

    2012-01-01

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10 3 cm –3 and kinematic temperature ∼20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  11. THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS ,

    International Nuclear Information System (INIS)

    Hollek, Julie K.; Sneden, Christopher; Shetrone, Matthew; Frebel, Anna; Roederer, Ian U.; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-01-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ∼15, 000) and corresponding high-resolution (R ∼35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from –2.9 to –3.9, including four new stars with [Fe/H] < –3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< – 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] ∼< –3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ∼500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.

  12. Jets from Young Stars in Cygnus-X

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    How do you spot very young, newly formed stars? One giveaway is the presence of jets and outflows that interact with the stars environments. In a new study, scientists have now discovered an unprecedented number of these outflows in a nearby star-forming region of our galaxy.Young Stars Hard at WorkCO map of the Cygnus-X region of the galactic plane, with the grid showing the UWISH2 coverage and the black triangles showing the positions of the detected outflows. [Makin Froebrich 2018]The birth and evolution of young stars is a dynamic, energetic process. As new stars form, material falls inward from the accretion disks surrounding young stellar objects, or YSOs. This material can power collimated streams of gas and dust that flow out along the stars rotation axes, plowing through the surrounding material. Where the outflows collide with the outside environment, shocks form that can be spotted in near-infrared hydrogen emission.Though weve learned a lot about these outflows, there remain a number of open questions. What factors govern their properties, such as their lengths, luminosities, and orientations? What is the origin of the emission features we see within the jets, known as knots? What roles do the driving sources and the environments play in the behavior and appearance of the jets?A selection of previously unknown outflows discovered as a result of this survey. Click for a closer look. [Makin Froebrich 2018]To answer these questions, we need to build a large, unbiased statistical sample of YSOs from across the galactic plane. Now, a large infrared survey known as the UKIRT Widefield Infrared Survey for H2 (UWISH2) is working toward that goal.Jackpot in Cygnus-XIn a recent publication, Sally Makin and Dirk Froebrich (University of Kent, UK), present results from UWISH2s latest release: a survey segment targeting a 42-square-degree region in the galactic plane known as the Cygnus-X star-forming region.The teams search for shock-excited emission in Cygnus

  13. ELEVEN NEW HEAVILY REDDENED FIELD WOLF–RAYET STARS

    International Nuclear Information System (INIS)

    Smith, J. D. T.; Cushing, Michael; Barletta, Anthony; McCarthy, Don; Kulesa, Craig; Van Dyk, Schuyler D.

    2012-01-01

    We report the results of a medium-narrowband 2 μm line survey covering 5.8 deg 2 near the Galactic plane. We confirm 11 new field Wolf-Rayet stars along three lines of sight probing the inner Galaxy, demonstrating the capability to uncover distant and highly reddened populations of Galactic wind-borne emission-line stars suffering extinction as high as A V ∼ 40 and as distant as 9 kpc down to modest magnitude limits of K s ∼ 12.5. All stars are of subtype WC7-8, with median distance d = 6 kpc and median extinction A K s = 2.5. Over the fields surveyed, the density of Wolf-Rayet stars to limiting magnitude K s ∼ 12.5 was found to be 1.9 deg –2 . We compare this to models which predict their distribution within the Galaxy and find that, even neglecting survey and subtype incompleteness, they consistently underpredict the number of newly discovered stars along the surveyed lines of sight.

  14. KEY ISSUES REVIEW: Insights from simulations of star formation

    Science.gov (United States)

    Larson, Richard B.

    2007-03-01

    Although the basic physics of star formation is classical, numerical simulations have yielded essential insights into how stars form. They show that star formation is a highly nonuniform runaway process characterized by the emergence of nearly singular peaks in density, followed by the accretional growth of embryo stars that form at these density peaks. Circumstellar discs often form from the gas being accreted by the forming stars, and accretion from these discs may be episodic, driven by gravitational instabilities or by protostellar interactions. Star-forming clouds typically develop filamentary structures, which may, along with the thermal physics, play an important role in the origin of stellar masses because of the sensitivity of filament fragmentation to temperature variations. Simulations of the formation of star clusters show that the most massive stars form by continuing accretion in the dense cluster cores, and this again is a runaway process that couples star formation and cluster formation. Star-forming clouds also tend to develop hierarchical structures, and smaller groups of forming objects tend to merge into progressively larger ones, a generic feature of self-gravitating systems that is common to star formation and galaxy formation. Because of the large range of scales and the complex dynamics involved, analytic models cannot adequately describe many aspects of star formation, and detailed numerical simulations are needed to advance our understanding of the subject. 'The purpose of computing is insight, not numbers.' Richard W Hamming, in Numerical Methods for Scientists and Engineers (1962) 'There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.' William Shakespeare, in Hamlet, Prince of Denmark (1604)

  15. Seizures beget seizures in temporal lobe epilepsies: the boomerang effects of newly formed aberrant kainatergic synapses.

    Science.gov (United States)

    Ben-Ari, Yehezkel; Crepel, Valérie; Represa, Alfonso

    2008-01-01

    Do temporal lobe epilepsy (TLE) seizures in adults promote further seizures? Clinical and experimental data suggest that new synapses are formed after an initial episode of status epilepticus, however their contribution to the transformation of a naive network to an epileptogenic one has been debated. Recent experimental data show that newly formed aberrant excitatory synapses on the granule cells of the fascia dentate operate by means of kainate receptor-operated signals that are not present on naive granule cells. Therefore, genuine epileptic networks rely on signaling cascades that differentiate them from naive networks. Recurrent limbic seizures generated by the activation of kainate receptors and synapses in naive animals lead to the formation of novel synapses that facilitate the emergence of further seizures. This negative, vicious cycle illustrates the central role of reactive plasticity in neurological disorders.

  16. Evolving R Coronae Borealis Stars with MESA

    Science.gov (United States)

    Clayton, Geoffrey C.; Lauer, Amber; Chatzopoulos, Emmanouil; Frank, Juhan

    2018-01-01

    R Coronae Borealis (RCB) stars form a small class of cool, carbon-rich supergiants that have almost no hydrogen. They undergo extreme, irregular declines in brightness of up to 8 magnitudes due to the formation of thick clouds of carbon dust. Two scenarios have been proposed for the origin of an RCB star: the merger of a CO/He white dwarf (WD) binary and a final helium-shell flash. We are using a combination of 3D hydrodynamics codes and the 1D MESA (Modules for Experiments in Stellar Astrophysics) stellar evolution code including nucleosynthesis to construct post-merger spherical models based on realistic merger progenitor models and on our hydrodynamical simulations, and then following the evolution into the region of the HR diagram where RCB stars are located. We are investigating nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed.Our MESA modeling consists of two steps: first mimicking the WD merger event using two different techniques, (a) by choosing a very high mass accretion rate with appropriate abundances and (b) by applying "stellar engineering" to an initial CO WD model to account for the newly merged material by applying an entropy adjusting procedure. Second, we follow the post-merger evolution using a large nuclear reaction network including the effects of convective and rotational instabilities to the mixing of material in order to match the observed RCB abundances. MESA follows the evolution of the merger product as it expands and cools to become an RCB star. We then examine the surface abundances and compare them to the observed RCB abundances. We also investigate how long fusion continues in the He shell near the core and how this processed material is mixed up to the surface of the star. We then model the later evolution of RCB stars to determine their likely lifetimes and endpoints when they have returned to

  17. Search of massive star formation with COMICS

    Science.gov (United States)

    Okamoto, Yoshiko K.

    2004-04-01

    Mid-infrared observations is useful for studies of massive star formation. Especially COMICS offers powerful tools: imaging survey of the circumstellar structures of forming massive stars such as massive disks and cavity structures, mass estimate from spectroscopy of fine structure lines, and high dispersion spectroscopy to census gas motion around formed stars. COMICS will open the next generation infrared studies of massive star formation.

  18. Gamma-ray emission from star-forming complexes observed by MAGIC: The cases of W51 and HESS J1857+026

    Directory of Open Access Journals (Sweden)

    Reichardt I.

    2015-01-01

    Full Text Available Massive star-forming regions assemble a large number of young stars with remnants of stellar evolution and a very dense environment. Therefore, particles accelerated in supernova remnants and pulsar wind nebulae encounter optimal conditions for interacting with target material and photon fields, and thus produce gamma-ray emission. However, observations are challenging because multiple phenomena may appear entangled within the resolution of current gamma-ray telescopes. We report on MAGIC observations aimed to understand the nature of the emission from the star-forming region W51 and the unidentified source HESS J1857+026. While gamma-ray emission from W51 is dominated by the interaction of the supernova remnant W51C with dense molecular clouds, HESS J1857+026 is associated to the pulsar wind nebula from PSR J1856+0245. However, an additional source is resolved north of HESSJ1857+026, with sufficient separation to determine that it cannot be powered by the same pulsar. We search for multiwavelength data to determine the origin of the new source.

  19. Cannibalization and rebirth in the NGC 5387 system. I. The stellar stream and star-forming region

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, Rachael L.; Majewski, Steven R.; Johnson, Kelsey E.; Verbiscer, Anne [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Martínez-Delgado, David [Max Planck Institut fur Astronomie, D-69117 Heidelberg (Germany); D' Onghia, Elena [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Zibetti, Stefano [INAF-Osservatorio Astrofisico di Arcetri, I-50125 Firenze (Italy); Gabany, R. Jay [Black Bird II Observatory, Alder Springs, CA 93602 (United States); Blanton, Michael, E-mail: rbeaton@virginia.edu [Department of Physics, New York University, New York, NY 10003 (United States)

    2014-08-01

    We have identified a low surface brightness stellar stream from visual inspection of Sloan Digital Sky Survey (SDSS) imaging for the edge-on, spiral galaxy NGC 5387. An optically blue overdensity coincident with the stream intersection with the NGC 5387 disk was also identified in SDSS and in the Galaxy Evolution Explorer Deep Imaging Survey contributing 38% of the total far-UV integrated flux from NGC 5387. Deeper optical imaging was acquired with the Vatican Advanced Technology Telescope that confirmed the presence of both features. The stellar stream is red in color, (B – V) = 0.7, has a stellar mass of 6 × 10{sup 8} M{sub ☉}, which implies a 1:50 merger ratio, has a circular radius, R{sub circ} ∼ 11.7 kpc, formed in ∼240 Myr, and the progenitor had a total mass of ∼4 × 10{sup 10} M{sub ☉}. Spectroscopy from LBT+MODS1 was used to determine that the blue overdensity is at the same redshift as NGC 5387, consists of young stellar populations (∼10 Myr), is metal-poor (12 + log (O/H) = 8.03), and is forming stars at an enhanced rate (∼1-3 M{sub ☉} yr{sup –1}). The most likely interpretations are that the blue overdensity is (1) a region of enhanced star formation in the outer disk of NGC 5387 induced by the minor accretion event or (2) the progenitor of the stellar stream experiencing enhanced star formation. Additional exploration of these scenarios is presented in a companion paper.

  20. Cannibalization and rebirth in the NGC 5387 system. I. The stellar stream and star-forming region

    International Nuclear Information System (INIS)

    Beaton, Rachael L.; Majewski, Steven R.; Johnson, Kelsey E.; Verbiscer, Anne; Martínez-Delgado, David; D'Onghia, Elena; Zibetti, Stefano; Gabany, R. Jay; Blanton, Michael

    2014-01-01

    We have identified a low surface brightness stellar stream from visual inspection of Sloan Digital Sky Survey (SDSS) imaging for the edge-on, spiral galaxy NGC 5387. An optically blue overdensity coincident with the stream intersection with the NGC 5387 disk was also identified in SDSS and in the Galaxy Evolution Explorer Deep Imaging Survey contributing 38% of the total far-UV integrated flux from NGC 5387. Deeper optical imaging was acquired with the Vatican Advanced Technology Telescope that confirmed the presence of both features. The stellar stream is red in color, (B – V) = 0.7, has a stellar mass of 6 × 10 8 M ☉ , which implies a 1:50 merger ratio, has a circular radius, R circ ∼ 11.7 kpc, formed in ∼240 Myr, and the progenitor had a total mass of ∼4 × 10 10 M ☉ . Spectroscopy from LBT+MODS1 was used to determine that the blue overdensity is at the same redshift as NGC 5387, consists of young stellar populations (∼10 Myr), is metal-poor (12 + log (O/H) = 8.03), and is forming stars at an enhanced rate (∼1-3 M ☉ yr –1 ). The most likely interpretations are that the blue overdensity is (1) a region of enhanced star formation in the outer disk of NGC 5387 induced by the minor accretion event or (2) the progenitor of the stellar stream experiencing enhanced star formation. Additional exploration of these scenarios is presented in a companion paper.

  1. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Grasha, K.; Calzetti, D. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Elmegreen, B. G. [IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY (United States); Adamo, A.; Messa, M. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Aloisi, A.; Bright, S. N.; Lee, J. C.; Ryon, J. E.; Ubeda, L. [Space Telescope Science Institute, Baltimore, MD (United States); Cook, D. O. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY (United States); Fumagalli, M. [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham (United Kingdom); Gallagher III, J. S. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120, Heidelberg (Germany); Kahre, L. [Department of Astronomy, New Mexico State University, Las Cruces, NM (United States); Kim, H. [Gemini Observatory, La Serena (Chile); Krumholz, M. R., E-mail: kgrasha@astro.umass.edu [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2017-06-10

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  2. Spectral Confirmation of New Galactic LBV and WN Stars Associated With Mid-IR Nebulae

    Science.gov (United States)

    Stringfellow, Guy; Gvaramadze, Vasilii V.

    2014-08-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class and short-lived phase in the lives of very luminous massive stars with high mass loss rates. Extragalactic LBVs are responsible for producing false supernovae (SN), the SN Impostors, and have been directly linked with the progenitors of actual SN, indicating the LBV phase can be a final endpoint for massive star evolution. Yet only a few confirmed LBVs have been identified in the Galaxy. Their stellar evolution is poorly constrained by observations, and the physical reason for their unstable nature, both in terms of moderate spectral and photometric variability of a few magnitudes and the giant eruptions a la η Car that rival SN explosions, remains a mystery. Newly discovered mid-IR shells act as signposts, pointing to the central massive stars (LBV and Wolf-Rayet [WR] stars) that produced them. We have undertaken a spectroscopic survey of possible progenitor stars within these shells and are discovering that many are LBVs and WN-type WR transitional stars. We propose to extend this IR spectral survey to the south to search for new progenitor stars associated with dozens of newly identified shells. This survey should result in a substantial increase of new WRs and candidate LBVs for continued future study. Spectral analysis will yield new insights into the winds and physical properties of these rare and important objects, and lead to a better understanding of the physics driving giant eruptions.

  3. The Origins of [C ii] Emission in Local Star-forming Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Croxall, K. V. [Department of Astronomy, The Ohio State University, 4051 McPherson Laboratory, 140 W. 18th Avenue, Columbus, OH, 43210 (United States); Smith, J. D. [Max-Planck-Institut fur Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pellegrini, E. [Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606 (United States); Groves, B. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bolatto, A.; Wolfire, M. G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Herrera-Camus, R. [Max-Planck-Institut für extraterrestrische Physik, Giessen-bachstr., D-85748 Garching (Germany); Sandstrom, K. M. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Draine, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Boquien, M. [Unidad de Astronomía, Fac. Cs. Básicas, Universidad de Antofagasta, Avda. U. de Antofagasta 02800, Antofagasta (Chile); Brandl, B. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Dale, D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Galametz, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, 91191, Gif-sur-Yvette (France); Hunt, L., E-mail: jd.smith@utoledo.edu [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze (Italy); and others

    2017-08-20

    The [C ii] 158 μ m fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [C ii] emission remains unclear because C{sup +} can be found in multiple phases of the interstellar medium. Here we measure the fractions of [C ii] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [N ii] 205 μ m fine-structure line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [C ii]/[N ii] 122 μ m. Using the FIR [C ii] and [N ii] emission detected by the KINGFISH (Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel ) and Beyond the Peak Herschel programs, we show that 60%–80% of [C ii] emission originates from neutral gas. We find that the fraction of [C ii] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and has a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [C ii] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.

  4. EXTINCTION IN STAR-FORMING DISK GALAXIES FROM INCLINATION-DEPENDENT COMPOSITE SPECTRA

    International Nuclear Information System (INIS)

    Yip, Ching-Wa; Szalay, Alex S.; Wyse, Rosemary F. G.; Budavari, Tamas; Dobos, Laszlo; Csabai, Istvan

    2010-01-01

    Extinction in galaxies affects their observed properties. In scenarios describing the distribution of dust and stars in individual disk galaxies, the amplitude of the extinction can be modulated by the inclination of the galaxies. In this work, we investigate the inclination dependency in composite spectra of star-forming disk galaxies from the Sloan Digital Sky Survey Data Release 5. In a volume-limited sample within a redshift range 0.065-0.075 and a r-band Petrosian absolute magnitude range -19.5 to -22 mag which exhibits a flat distribution of inclination, the inclined relative to face-on extinction in the stellar continuum is found empirically to increase with inclination in the g, r, and i bands. Within the central 0.5 intrinsic half-light radius of the galaxies, the g-band relative extinction in the stellar continuum for the highly inclined objects (axis ratio b/a = 0.1) is 1.2 mag, agreeing with previous studies. The extinction curve of the disk galaxies is given in the rest-frame wavelengths 3700-8000 A, identified with major optical emission and absorption lines in diagnostics. The Balmer decrement, Hα/Hβ, remains constant with inclination, suggesting a different kind of dust configuration and/or reddening mechanism in the H II region from that in the stellar continuum. One factor is shown to be the presence of spatially non-uniform interstellar extinction, presumably caused by clumped dust in the vicinity of the H II region.

  5. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. I. Hα-BASED STAR FORMATION RATES AND DUST EXTINCTION

    Energy Technology Data Exchange (ETDEWEB)

    Kashino, D.; Sugiyama, N. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwanoha, Kashiwa 277-8583 (Japan); Rodighiero, G. [Dipartimento di Astronomia, Università di Padova, vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Renzini, A. [INAF Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Arimoto, N. [National Astronomical Observatory of Japan, Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Daddi, E. [CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Lilly, S. J.; Carollo, C. M. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Sanders, D. B.; Zahid, H. J.; Chu, J.; Hasinger, G.; Kewley, L. J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Nagao, T. [The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302 (Japan); Capak, P. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Ilbert, O. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Kajisawa, M. [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Koekemoer, A. M., E-mail: daichi@nagoya-u.jp [HST and JWST Instruments/Science Division, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2013-11-01

    We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at 1.4 < z < 1.7. The high-resolution mode is implemented to detect Hα in emission between 1.6-1.8 μm with f {sub Hα} ∼> 4 × 10{sup –17} erg cm{sup –2} s{sup –1}. Here, we specifically focus on 271 sBzK-selected galaxies that yield a Hα detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further J-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction (0.6 ∼< A {sub Hα} ∼< 2.5) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission E {sub star}(B – V)/E {sub neb}(B – V) is 0.7-0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an Hα-based main sequence with a slope (0.81 ± 0.04) and normalization similar to previous studies at these redshifts.

  6. STRUCTURES OF LOCAL GALAXIES COMPARED TO HIGH-REDSHIFT STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Petty, Sara M.; De Mello, DuIlia F.; Gallagher, John S.; Gardner, Jonathan P.; Lotz, Jennifer M.; Matt Mountain, C.; Smith, Linda J.

    2009-01-01

    The rest-frame far-ultraviolet morphologies of eight nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 8, NGC 520, NGC 1068, NGC 3079, NGC 3310, and NGC 7673) are compared with 54 galaxies at z ∼ 1.5 and 46 galaxies at z ∼ 4 observed in the Great Observatories Origins Deep Survey (GOODS) taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. The nearby sample is artificially redshifted to z ∼ 1.5 and 4 by applying luminosity and size scaling. We compare the simulated galaxy morphologies to real z ∼ 1.5 and 4 UV-bright galaxy morphologies. We calculate the Gini coefficient (G), the second-order moment of the brightest 20% of the galaxy's flux (M 20 ), and the Sersic index (n). We explore the use of nonparametric methods with two-dimensional profile fitting and find the combination of M 20 with n an efficient method to classify galaxies as having merger, exponential disk, or bulge-like morphologies. When classified according to G and M 20 20/30% of real/simulated galaxies at z ∼ 1.5 and 37/12% at z ∼ 4 have bulge-like morphologies. The rest have merger-like or intermediate distributions. Alternatively, when classified according to the Sersic index, 70% of the z ∼ 1.5 and z ∼ 4 real galaxies are exponential disks or bulge-like with n>0.8, and ∼ 30% of the real galaxies are classified as mergers. The artificially redshifted galaxies have n values with ∼ 35% bulge or exponential at z ∼ 1.5 and 4. Therefore, ∼ 20%-30% of Lyman-break galaxies have structures similar to local starburst mergers, and may be driven by similar processes. We assume merger-like or clumpy star-forming galaxies in the GOODS field have morphological structure with values n 20 > - 1.7. We conclude that Mrk 8, NGC 3079, and NGC 7673 have structures similar to those of merger-like and clumpy star-forming galaxies observed at z ∼ 1.5 and 4.

  7. SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Genzel, Reinhard; Lutz, Dieter [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching (Germany); Guo Yicheng; Giavalisco, Mauro [Astronomy Department, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Barro, Guillermo; Faber, Sandra M.; Kocevski, Dale D.; Koo, David C.; McGrath, Elizabeth [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dekel, Avishai [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Lotz, Jennifer [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hathi, Nimish P. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Huang, Kuang-Han [Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Newman, Jeffrey A. [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); and others

    2012-07-10

    We perform a detailed analysis of the resolved colors and stellar populations of a complete sample of 323 star-forming galaxies (SFGs) at 0.5 < z < 1.5 and 326 SFGs at 1.5 < z < 2.5 in the ERS and CANDELS-Deep region of GOODS-South. Galaxies were selected to be more massive than 10{sup 10} M{sub Sun} and have specific star formation rates (SFRs) above 1/t{sub H} . We model the seven-band optical ACS + near-IR WFC3 spectral energy distributions of individual bins of pixels, accounting simultaneously for the galaxy-integrated photometric constraints available over a longer wavelength range. We analyze variations in rest-frame color, stellar surface mass density, age, and extinction as a function of galactocentric radius and local surface brightness/density, and measure structural parameters on luminosity and stellar mass maps. We find evidence for redder colors, older stellar ages, and increased dust extinction in the nuclei of galaxies. Big star-forming clumps seen in star formation tracers are less prominent or even invisible in the inferred stellar mass distributions. Off-center clumps contribute up to {approx}20% to the integrated SFR, but only 7% or less to the integrated mass of all massive SFGs at z {approx} 1 and z {approx} 2, with the fractional contributions being a decreasing function of wavelength used to select the clumps. The stellar mass profiles tend to have smaller sizes and M20 coefficients, and higher concentration and Gini coefficients than the light distribution. Our results are consistent with an inside-out disk growth scenario with brief (100-200 Myr) episodic local enhancements in star formation superposed on the underlying disk. Alternatively, the young ages of off-center clumps may signal inward clump migration, provided this happens efficiently on the order of an orbital timescale.

  8. Numerical study of rotating relativistic stars

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1975-01-01

    The equations of structure for rotating stars in general relativity are presented and put in a form suitable for computer calculations. The results of equilibrium calculations for supermassive stars, neutron stars, and magnetically supported stars are reported, as are calculations of collapsing, rotating, and magnetized stars in the slowly changing gravitational field approximation. (auth)

  9. The structural evolution of Milky-Way-like star-forming galaxies since z ∼ 1.3

    International Nuclear Information System (INIS)

    Patel, Shannon G.; Fumagalli, Mattia; Franx, Marijn; Labbé, Ivo; Muzzin, Adam; Van Dokkum, Pieter G.; Leja, Joel; Skelton, Rosalind E.; Momcheva, Ivelina; Nelson, Erica June; Van der Wel, Arjen; Rix, Hans-Walter; Brammer, Gabriel; Whitaker, Katherine E.; Lundgren, Britt; Wake, David A.; Quadri, Ryan F.

    2013-01-01

    We follow the structural evolution of star-forming galaxies (SFGs) like the Milky Way by selecting progenitors to z ∼ 1.3 based on the stellar mass growth inferred from the evolution of the star-forming sequence. We select our sample from the 3D-HST survey, which utilizes spectroscopy from the HST/WFC3 G141 near-IR grism and enables precise redshift measurements for our sample of SFGs. Structural properties are obtained from Sérsic profile fits to CANDELS WFC3 imaging. The progenitors of z = 0 SFGs with stellar mass M = 10 10.5 M ☉ are typically half as massive at z ∼ 1. This late-time stellar mass growth is consistent with recent studies that employ abundance matching techniques. The descendant SFGs at z ∼ 0 have grown in half-light radius by a factor of ∼1.4 since z ∼ 1. The half-light radius grows with stellar mass as r e ∝M 0.29 . While most of the stellar mass is clearly assembling at large radii, the mass surface density profiles reveal ongoing mass growth also in the central regions where bulges and pseudobulges are common features in present day late-type galaxies. Some portion of this growth in the central regions is due to star formation as recent observations of Hα maps for SFGs at z ∼ 1 are found to be extended but centrally peaked. Connecting our lookback study with galactic archeology, we find the stellar mass surface density at R = 8 kpc to have increased by a factor of ∼2 since z ∼ 1, in good agreement with measurements derived for the solar neighborhood of the Milky Way.

  10. X-Ray Flare Oscillations Track Plasma Sloshing along Star-disk Magnetic Tubes in the Orion Star-forming Region

    Science.gov (United States)

    Reale, Fabio; Lopez-Santiago, Javier; Flaccomio, Ettore; Petralia, Antonino; Sciortino, Salvatore

    2018-03-01

    Pulsing X-ray emission tracks the plasma “echo” traveling in an extremely long magnetic tube that flares in an Orion pre-main sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting ones typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (∼20%), long-period (∼3 hr) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single long magnetic tube, triggered by a sufficiently short (∼1 hr) heat pulse. These magnetic tubes are ≥20 solar radii long, enough to connect the star with the surrounding disk.

  11. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Hsyu, Tiffany; Prochaska, J. Xavier; Bolte, Michael [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95060 (United States); Cooke, Ryan J. [Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2017-08-20

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O iii] λ 4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way–like galaxy.

  12. The Swift/UVOT catalogue of NGC 4321 star-forming sources: a case against density wave theory

    Science.gov (United States)

    Ferreras, Ignacio; Cropper, Mark; Kawata, Daisuke; Page, Mat; Hoversten, Erik A.

    2012-08-01

    We study the star-forming regions in the spiral galaxy NGC 4321 (M100). We take advantage of the spatial resolution (2.5 arcsec full width at half-maximum) of the Swift/Ultraviolet/Optical Telescope camera and the availability of three ultraviolet (UV) passbands in the region 1600 spiral arms. The Hα luminosities of the sources have a strong decreasing radial trend, suggesting more massive star-forming regions in the central part of the galaxy. When segregated with respect to near-UV (NUV)-optical colour, blue sources have a significant excess of flux in the IR at 8 μm, revealing the contribution from polycyclic aromatic hydrocarbons, although the overall reddening of these sources stays below E(B - V) = 0.2 mag. The distribution of distances to the spiral arms is compared for subsamples selected according to Hα luminosity, NUV-optical colour or ages derived from a population synthesis model. An offset would be expected between these subsamples as a function of radius if the pattern speed of the spiral arm were constant - as predicted by classic density wave theory. No significant offsets are found, favouring instead a mechanism where the pattern speed has a radial dependence.

  13. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    Science.gov (United States)

    Hsyu, Tiffany; Cooke, Ryan J.; Prochaska, J. Xavier; Bolte, Michael

    2017-08-01

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O III] λ4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way-like galaxy.

  14. The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe

    International Nuclear Information System (INIS)

    Hsyu, Tiffany; Prochaska, J. Xavier; Bolte, Michael; Cooke, Ryan J.

    2017-01-01

    We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O iii] λ 4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way–like galaxy.

  15. NEAR-INFRARED VARIABILITY IN YOUNG STARS IN CYGNUS OB7

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Thomas S. [Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Wolk, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aspin, Colin [Institute for Astronomy, University of Hawaii at Manoa, 640 N Aohoku Pl, Hilo, HI 96720 (United States)

    2012-08-10

    We present the first results from a 124 night J, H, K near-infrared monitoring campaign of the dark cloud L 1003 in Cygnus OB7, an active star-forming region. Using three seasons of UKIRT observations spanning 1.5 years, we obtained high-quality photometry on 9200 stars down to J = 17 mag, with photometric uncertainty better than 0.04 mag. On the basis of near-infrared excesses from disks, we identify 30 pre-main-sequence stars, including 24 which are newly discovered. We analyze those stars and find that the NIR excesses are significantly variable. All 9200 stars were monitored for photometric variability; among the field star population, {approx}160 exhibited near-infrared variability (1.7% of the sample). Of the 30 young stellar objects (YSOs), 28 of them (93%) are variable at a significant level. Of the 30 YSOs, twenty-five have near-infrared excess consistent with simple disk-plus-star classical T Tauri models. Nine of these (36%) drift in color space over the course of these observations and/or since Two Micron All Sky Survey observations such that they cross the boundary defining the NIR excess criteria; effectively, they have a transient near-infrared excess. Thus, time-series JHK observations can be used to obtain a more complete sample of disk-bearing stars than single-epoch JHK observations. About half of the YSOs have color-space variations parallel to either the classical T Tauri star locus or a hybrid track which includes the dust reddening trajectory. This indicates that the NIR variability in YSOs that possess accretion disks arises from a combination of variable extinction and changes in the inner accretion disk: either in accretion rate, central hole size, and/or the inclination of the inner disk. While some variability may be due to stellar rotation, the level of variability on the individual stars can exceed a magnitude. This is a strong empirical suggestion that protoplanetary disks are quite dynamic and exhibit more complex activity on short

  16. DOUBLE STARS IN THE USNO CCD ASTROGRAPHIC CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Hartkopf, William I.; Mason, Brian D.; Finch, Charlie T.; Zacharias, Norbert; Wycoff, Gary L.; Hsu, Danley, E-mail: wih@usno.navy.mil, E-mail: bdm@usno.navy.mil, E-mail: finch@usno.navy.mil, E-mail: nz@usno.navy.mil [US Naval Observatory, Washington, DC 20392 (United States)

    2013-10-01

    The newly completed Fourth USNO CCD Astrographic Catalog (UCAC4) has proven to be a rich source of double star astrometry and photometry. Following initial comparisons of UCAC4 results against those obtained by speckle interferometry, the UCAC4 catalog was matched against known double stars in the Washington Double Star Catalog in order to provide additional differential astrometry and photometry for these pairs. Matches to 58,131 pairs yielded 61,895 astrometric and 68,935 photometric measurements. Finally, a search for possible new common proper motion (CPM) pairs was made using new UCAC4 proper motion data; this resulted in 4755 new potential CPM doubles (and an additional 27,718 astrometric and photometric measures from UCAC and other sources)

  17. How astronomers watch the birth of stars

    International Nuclear Information System (INIS)

    Little, L.

    1984-01-01

    The paper describes the recent progress in stellar evolution, due to the new techniques in infrared and radio astronomy. The latter techniques have revealed where the stars are born, and the way the stars actually form. The nature of the molecular clouds where the stars form, star formation regions, collapse in molecular clouds, gas flows within clouds and cores of clouds have also been investigated using the new techniques and new telescopes. (U.K.)

  18. The Drifting Star

    Science.gov (United States)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  19. Playing with Positive Feedback: External Pressure-triggering of a Star-forming Disk Galaxy

    Science.gov (United States)

    Bieri, Rebekka; Dubois, Yohan; Silk, Joseph; Mamon, Gary A.

    2015-10-01

    In massive galaxies, the currently favored method for quenching star formation is via active galactic nuclei (AGN) feedback, which ejects gas from the galaxy using a central supermassive black hole. At high redshifts however, explanation of the huge rates of star formation often found in galaxies containing AGNs may require a more vigorous mode of star formation than is attainable by simply enriching the gas content of galaxies in the usual gravitationally driven mode that is associated with the nearby universe. Using idealized hydrodynamical simulations, we show that AGN-pressure-driven star formation potentially provides the positive feedback that may be required to generate the accelerated star formation rates observed in the distant universe.

  20. On the evolution of stars

    International Nuclear Information System (INIS)

    Kippenhahn, R.

    1989-01-01

    A popular survey is given of the present knowledge on evolution and ageing of stars. Main sequence stars, white dwarf stars, and red giant stars are classified in the Hertzsprung-Russell (HR)-diagram by measurable quantities: surface temperature and luminosity. From the HR-diagram it can be concluded to star mass and age. Star-forming processes in interstellar clouds as well as stellar burning processes are illustrated. The changes occurring in a star due to the depletion of the nuclear energy reserve are described. In this frame the phenomena of planetary nebulae, supernovae, pulsars, neutron stars as well as of black holes are explained

  1. Star formation: Cosmic feast

    Science.gov (United States)

    Scaringi, Simone

    2017-03-01

    Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.

  2. THE QUEST FOR DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFT z ≳ 4

    International Nuclear Information System (INIS)

    Mancuso, C.; Lapi, A.; Shi, J.; Aversa, R.; Danese, L.; Gonzalez-Nuevo, J.

    2016-01-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 10 10 M ⊙ at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 10 2 M ⊙ yr −1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory . We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M ⊙ yr −1 cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC - LABOCA , SCUBA-2 , and ALMA - SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2 , supplemented by photometric data from on-source observations with ALMA , can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  3. Astronomy of binary and multiple stars

    International Nuclear Information System (INIS)

    Tokovinin, A.A.

    1984-01-01

    Various types of binary stars and methods for their observation are described in a popular form. Some models of formation and evolution of binary and multiple star systems are presented. It is concluded that formation of binary and multiple stars is a regular stage in the process of star production

  4. MMT HYPERVELOCITY STAR SURVEY. II. FIVE NEW UNBOUND STARS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-05-20

    We present the discovery of five new unbound hypervelocity stars (HVSs) in the outer Milky Way halo. Using a conservative estimate of Galactic escape velocity, our targeted spectroscopic survey has now identified 16 unbound HVSs as well as a comparable number of HVSs ejected on bound trajectories. A Galactic center origin for the HVSs is supported by their unbound velocities, the observed number of unbound stars, their stellar nature, their ejection time distribution, and their Galactic latitude and longitude distribution. Other proposed origins for the unbound HVSs, such as runaway ejections from the disk or dwarf galaxy tidal debris, cannot be reconciled with the observations. An intriguing result is the spatial anisotropy of HVSs on the sky, which possibly reflects an anisotropic potential in the central 10-100 pc region of the Galaxy. Further progress requires measurement of the spatial distribution of HVSs over the southern sky. Our survey also identifies seven B supergiants associated with known star-forming galaxies; the absence of B supergiants elsewhere in the survey implies there are no new star-forming galaxies in our survey footprint to a depth of 1-2 Mpc.

  5. WO-Type Wolf-Rayet Stars: the Last Hurrah of the Most Massive Stars?

    Science.gov (United States)

    Massey, Philip

    2014-10-01

    WO-type Wolf-Rayet (WR) stars are considered the final evolutionary stage of the highest mass stars, immediate precursors to Type Ic (He-poor) core-collapse supernovae. These WO stars are rare, and until recently only 6 were known. Our knowledge about their physical properties is mostly based on a single object, Sand 2 in the LMC. It was the only non-binary WO star both bright and unreddened enough that its FUV and NUV spectra could be obtained by FUSE and HST/FOS. A non-LTE analysis showed that Sand 2 is very hot and its (C+O)/He abundance ratio is higher than that found in WC-type WRs, suggesting it is indeed highly evolved. However, the O VI resonance doublet in the FUV required a considerably cooler temperature (120,000 K) model than did the optical O VI lines (170,000 K). Further, the enhanced chemical abundances did not match the predictions of stellar evolutionary models. Another non-LTE study found a 3x higher (C+O)/He abundance ratio and a cooler temperature. We have recently discovered two other bright, single, and lightly reddened WOs in the LMC, allowing us to take a fresh look at these important objects. Our newly found WOs span a range in excitation type, from WO1 (the highest) to WO4 (the lowest). Sand 2 is intermediate (WO3). We propose to use COS to obtain FUV and NUV data of all three stars for as comprehensive a study as is currently possible. These UV data will be combined with our optical Magellan spectra for a detailed analysis with CMFGEN with the latest atomic data. Knowing the degree of chemical evolution of these WO stars is crucial to determining their evolutionary status, and thus in understanding the final stages of the most massive stars.

  6. METAL DEFICIENCY IN CLUSTER STAR-FORMING GALAXIES AT Z = 2

    Energy Technology Data Exchange (ETDEWEB)

    Valentino, F.; Daddi, E.; Strazzullo, V.; Gobat, R.; Bournaud, F.; Juneau, S.; Zanella, A. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Onodera, M.; Carollo, M. [Institute for Astronomy, ETH Zürich Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Renzini, A. [INAF-Osservatorio Astronomico di Padova Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Arimoto, N., E-mail: francesco.valentino@cea.fr [Subaru Telescope, National Astronomical Observatory of Japan 650 North A’ohoku Place, Hilo, HI 96720 (United States)

    2015-03-10

    We investigate the environmental effect on the metal enrichment of star-forming galaxies (SFGs) in the farthest spectroscopically confirmed and X-ray-detected cluster, CL J1449+0856 at z = 1.99. We combined Hubble Space Telescope/WFC3 G141 slitless spectroscopic data, our thirteen-band photometry, and a recent Subaru/Multi-object InfraRed Camera and Spectrograph (MOIRCS) near-infrared spectroscopic follow-up to constrain the physical properties of SFGs in CL J1449+0856 and in a mass-matched field sample. After a conservative removal of active galactic nuclei, stacking individual MOIRCS spectra of 6 (31) sources in the cluster (field) in the mass range 10 ≤ log(M/M{sub ⊙}) ≤ 11, we find a ∼4σ lower [N ii]/Hα ratio in the cluster than in the field. Stacking a subsample of 16 field galaxies with Hβ and [O iii] in the observed range, we measure an [O iii]/Hβ ratio fully compatible with the cluster value. Converting these ratios into metallicities, we find that the cluster SFGs are up to 0.25 dex poorer in metals than their field counterparts, depending on the adopted calibration. The low metallicity in cluster sources is confirmed using alternative indicators. Furthermore, we observe a significantly higher Hα luminosity and equivalent width in the average cluster spectrum than in the field. This is likely due to the enhanced specific star formation rate; even if lower dust reddening and/or an uncertain environmental dependence on the continuum-to-nebular emission differential reddening may play a role. Our findings might be explained by the accretion of pristine gas around galaxies at z = 2 and from cluster-scale reservoirs, possibly connected with a phase of rapid halo mass assembly at z > 2 and of a high galaxy merging rate.

  7. Radio synchrotron spectra of star-forming galaxies

    Science.gov (United States)

    Klein, U.; Lisenfeld, U.; Verley, S.

    2018-03-01

    We investigated the radio continuum spectra of 14 star-forming galaxies by fitting nonthermal (synchrotron) and thermal (free-free) radiation laws. The underlying radio continuum measurements cover a frequency range of 325 MHz to 24.5 GHz (32 GHz in case of M 82). It turns out that most of these synchrotron spectra are not simple power-laws, but are best represented by a low-frequency spectrum with a mean slope αnth = 0.59 ± 0.20 (Sν ∝ ν-α), and by a break or an exponential decline in the frequency range of 1-12 GHz. Simple power-laws or mildly curved synchrotron spectra lead to unrealistically low thermal flux densities, and/or to strong deviations from the expected optically thin free-free spectra with slope αth = 0.10 in the fits. The break or cutoff energies are in the range of 1.5-7 GeV. We briefly discuss the possible origin of such a cutoff or break. If the low-frequency spectra obtained here reflect the injection spectrum of cosmic-ray electrons, they comply with the mean spectral index of Galactic supernova remnants. A comparison of the fitted thermal flux densities with the (foreground-corrected) Hα fluxes yields the extinction, which increases with metallicity. The fraction of thermal emission is higher than believed hitherto, especially at high frequencies, and is highest in the dwarf galaxies of our sample, which we interpret in terms of a lack of containment in these low-mass systems, or a time effect caused by a very young starburst.

  8. The emergence of shared leadership in newly-formed teams with an initial structure of vertical leadership: A longitudinal analysis

    OpenAIRE

    Fransen, Katrien; Delvaux, Ellen; Mesquita, Batja; Van Puyenbroeck, Stef

    2018-01-01

    The importance of high-quality leadership for team effectiveness is widely recognized, with recent viewpoints arguing shared leadership to be a more powerful predictor than vertical leadership. To identify changes in leadership structures over time, we longitudinally tracked the leadership structure of 27 newly-formed teams (N = 195), all having an initial structure of vertical leadership. Our findings demonstrated that the average team leadership strengthened over the course of the 24-week p...

  9. THE DYNAMICAL EVOLUTION OF LOW-MASS HYDROGEN-BURNING STARS, BROWN DWARFS, AND PLANETARY-MASS OBJECTS FORMED THROUGH DISK FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun; Kouwenhoven, M. B. N. [Department of Astronomy, School of Physics, Peking University, Yiheyuan Lu 5, Haidian Qu, Beijing 100871 (China); Stamatellos, D. [Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Goodwin, S. P., E-mail: yunli@pku.edu.cn [Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-06-01

    Theory and simulations suggest that it is possible to form low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) via disk fragmentation. As disk fragmentation results in the formation of several bodies at comparable distances to the host star, their orbits are generally unstable. Here, we study the dynamical evolution of these objects. We set up the initial conditions based on the outcomes of the smoothed-particle hydrodynamics simulations of Stamatellos and Whitworth, and for comparison we also study the evolution of systems resulting from lower-mass fragmenting disks. We refer to these two sets of simulations as set 1 and set 2, respectively. At 10 Myr, approximately half of the host stars have one companion left, and approximately 22% (set 1) to 9.8% (set 2) of the host stars are single. Systems with multiple secondaries in relatively stable configurations are common (about 30% and 44%, respectively). The majority of the companions are ejected within 1 Myr with velocities mostly below 5 km s{sup −1}, with some runaway escapers with velocities over 30 km s{sup −1}. Roughly 6% (set 1) and 2% (set 2) of the companions pair up into very low-mass binary systems, resulting in respective binary fractions of 3.2% and 1.2%. The majority of these pairs escape as very low-mass binaries, while others remain bound to the host star in hierarchical configurations (often with retrograde inner orbits). Physical collisions with the host star (0.43 and 0.18 events per host star for set 1 and set 2, respectively) and between companions (0.08 and 0.04 events per host star for set 1 and set 2, respectively) are relatively common and their frequency increases with increasing disk mass. Our study predicts observable properties of very low-mass binaries, low-mass hierarchical systems, the BD desert, and free-floating BDs and PMOs in and near young stellar groupings, which can be used to distinguish between different formation scenarios of very low

  10. Use of newly developed standardized form for interpretation of high-resolution CT in screening for pneumoconiosis

    International Nuclear Information System (INIS)

    Julien, P.J.; Sider, L.; Silverman, J.M.; Dahlgren, J.; Harber, P.; Bunn, W.

    1991-01-01

    This paper reports that although the International Labour Office (ILO) standard for interpretation of the posteroanterior chest radiograph has been available for 10 years, there has been no attempt to standardize the high-resolution CT (HRTC) readings for screening of pneumoconiosis. An integrated respirator surveillance program for 87 workers exposed to inorganic dust was conducted. This program consisted of a detailed occupational exposure history, physical symptoms and signs, spirometry, chest radiography, and HRCT. Two groups of workers with known exposure were studied with HRCT. Group 1 had normal spirometry results and chest radiographs, and group 2 had abnormalities at spirometry or on chest radiographs. The HRCT scans were read independently of the clinical findings and chest radiographs. The HRCT scans were interpreted by using an ILO-based standard form developed by the authors for this project. With the newly developed HRCT form, individual descriptive abnormality localized severity, and overall rating systems have been developed and compared for inter- and intraobserver consistency

  11. Numerical models of protoneutron stars and type-II supernovae - recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Janka, H T [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1996-11-01

    The results of recent multi-dimensional simulations of type-II supernovae are reviewed. They show that convective instabilities in the collapsed stellar core might play an important role already during the first second after the formation of the supernovae shock. Convectively unstable situations occur below and near the neutrinosphere as well as in the neutrino-heated region between the nascent neutron star and the supernova shock after the latter has stalled at a radiums of typically 100-200 km. While convective overturn in the layer of neutrino energy deposition clearly helps the explosion to develop and potentially provides an explanation of strong mantle and envelope mixing, asphericities, and non-uniform {sup 56}Ni distribution observed in supernova SN 1987A, its presence and importance depends on the strength of the neutrino heating and thus on the size of the neutrino fluxes from the neutrino star. Convection in the hot-bubble region can only be developed if the growth timescale of the instabilities and the heating timescale are both shorter than the accretion timescale of the matter advected through the stagnant shock. For too small neutrino luminosities this requirement is not fulfilled and convective activity cannot develop, leading to very weak explosions or even fizzling models, just as in the one-dimensional situations. Convectively enhanced neutrino luminosities from the protoneutron star can therefore provide an essential condition for the explosion of the star. Very recent two-dimensional, self-consistent, general relativistic simulations of the cooling of a newly-formed neutron star demonstrate and confirm the possibility that Ledoux convection, driven by negative lepton number and entropy gradients, may encompass the whole protoneutron star within less than one second and can lead to an increase of the neutrino fluxes by up to a factor of two. (author) 9 figs., refs.

  12. The Star Formation in Radio Survey: Jansky Very Large Array 33 GHz Observations of Nearby Galaxy Nuclei and Extranuclear Star-forming Regions

    Science.gov (United States)

    Murphy, E. J.; Dong, D.; Momjian, E.; Linden, S.; Kennicutt, R. C., Jr.; Meier, D. S.; Schinnerer, E.; Turner, J. L.

    2018-02-01

    We present 33 GHz imaging for 112 pointings toward galaxy nuclei and extranuclear star-forming regions at ≈2″ resolution using the Karl G. Jansky Very Large Array (VLA) as part of the Star Formation in Radio Survey. A comparison with 33 GHz Robert C. Byrd Green Bank Telescope single-dish observations indicates that the interferometric VLA observations recover 78% ± 4% of the total flux density over 25″ regions (≈kpc scales) among all fields. On these scales, the emission being resolved out is most likely diffuse non-thermal synchrotron emission. Consequently, on the ≈30–300 pc scales sampled by our VLA observations, the bulk of the 33 GHz emission is recovered and primarily powered by free–free emission from discrete H II regions, making it an excellent tracer of massive star formation. Of the 225 discrete regions used for aperture photometry, 162 are extranuclear (i.e., having galactocentric radii r G ≥ 250 pc) and detected at >3σ significance at 33 GHz and in Hα. Assuming a typical 33 GHz thermal fraction of 90%, the ratio of optically-thin 33 GHz to uncorrected Hα star formation rates indicates a median extinction value on ≈30–300 pc scales of A Hα ≈ 1.26 ± 0.09 mag, with an associated median absolute deviation of 0.87 mag. We find that 10% of these sources are “highly embedded” (i.e., A Hα ≳ 3.3 mag), suggesting that on average, H II regions remain embedded for ≲1 Myr. Finally, we find the median 33 GHz continuum-to-Hα line flux ratio to be statistically larger within r G < 250 pc relative to the outer disk regions by a factor of 1.82 ± 0.39, while the ratio of 33 GHz to 24 μm flux densities is lower by a factor of 0.45 ± 0.08, which may suggest increased extinction in the central regions.

  13. Supernovae from massive AGB stars

    NARCIS (Netherlands)

    Poelarends, A.J.T.; Izzard, R.G.; Herwig, F.; Langer, N.; Heger, A.

    2006-01-01

    We present new computations of the final fate of massive AGB-stars. These stars form ONeMg cores after a phase of carbon burning and are called Super AGB stars (SAGB). Detailed stellar evolutionary models until the thermally pulsing AGB were computed using three di erent stellar evolution codes. The

  14. The far-ultraviolet spectra of two hot PG 1159 stars

    Science.gov (United States)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2016-09-01

    PG 1159 stars are hot, hydrogen-deficient (pre-) white dwarfs with atmospheres mainly composed of helium, carbon, and oxygen. The unusual surface chemistry is the result of a late helium-shell flash. Observed element abundances enable us to test stellar evolution models quantitatively with respect to their nucleosynthesis products formed near the helium-burning shell of the progenitor asymptotic giant branch stars. Because of the high effective temperatures (Teff), abundance determinations require ultraviolet spectroscopy and non-local thermodynamic equilibrium model atmosphere analyses. Up to now, we have presented results for the prototype of this spectral class and two cooler members (Teff in the range 85 000-140 000 K). Here we report on the results for two even hotter stars (PG 1520+525 and PG 1144+005, both with Teff = 150 000 K) which are the only two objects in this temperature-gravity region for which useful far-ultraviolet spectra are available, and revisit the prototype star. Previous results on the abundances of some species are confirmed, while results on others (Si, P, S) are revised. In particular, a solar abundance of sulphur is measured in contrast to earlier claims of a strong S deficiency that contradicted stellar evolution models. For the first time, we assess the abundances of Na, Al, and Cl with newly constructed non-LTE model atoms. Besides the main constituents (He, C, O), we determine the abundances (or upper limits) of N, F, Ne, Na, Al, Si, P, S, Cl, Ar, and Fe. Generally, good agreement with stellar models is found.

  15. THE 'TRUE' COLUMN DENSITY DISTRIBUTION IN STAR-FORMING MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Goodman, Alyssa A.; Pineda, Jaime E.; Schnee, Scott L.

    2009-01-01

    We use the COMPLETE Survey's observations of the Perseus star-forming region to assess and intercompare the three methods used for measuring column density in molecular clouds: near-infrared (NIR) extinction mapping; thermal emission mapping in the far-IR; and mapping the intensity of CO isotopologues. Overall, the structures shown by all three tracers are morphologically similar, but important differences exist among the tracers. We find that the dust-based measures (NIR extinction and thermal emission) give similar, log-normal, distributions for the full (∼20 pc scale) Perseus region, once careful calibration corrections are made. We also compare dust- and gas-based column density distributions for physically meaningful subregions of Perseus, and we find significant variations in the distributions for those (smaller, ∼few pc scale) regions. Even though we have used 12 CO data to estimate excitation temperatures, and we have corrected for opacity, the 13 CO maps seem unable to give column distributions that consistently resemble those from dust measures. We have edited out the effects of the shell around the B-star HD 278942 from the column density distribution comparisons. In that shell's interior and in the parts where it overlaps the molecular cloud, there appears to be a dearth of 13 CO, which is likely due either to 13 CO not yet having had time to form in this young structure and/or destruction of 13 CO in the molecular cloud by the HD 278942's wind and/or radiation. We conclude that the use of either dust or gas measures of column density without extreme attention to calibration (e.g., of thermal emission zero-levels) and artifacts (e.g., the shell) is more perilous than even experts might normally admit. And, the use of 13 CO data to trace total column density in detail, even after proper calibration, is unavoidably limited in utility due to threshold, depletion, and opacity effects. If one's main aim is to map column density (rather than temperature

  16. X-ray sources in stars formation areas: T Tauri stars and proto-stars in the rho Ophiuchi dark cloud

    International Nuclear Information System (INIS)

    Grosso, Nicolas

    1999-01-01

    This thesis studies from large to small scales, X-ray sources in the rho Ophiuchi dark cloud. After some background on the formation of the low-mass young stars (Chapter 1), Chapter 2 takes an interest in the T Tauri star population. Chapter 3 tackles the search of the magnetic activity at the younger stage of protostar, presenting a powerful X-ray emission from an IR protostar, called YLW15, during a flare, and a quasi-periodic flare of the same source; as well as a new detection of another IR protostar in the ROSAT archives. It ends with a review of protostar detections. Some IR protostar flares show a very long increasing phase. Chapter 4 links this behaviour with a modulation by the central star rotation. The standard model of jet emission assumes that the central star rotates at the same speed that the inner edge of its accretion disk. This chapter shows that the observation of the YLW15 quasi-periodic flare suggests rather that the forming star rotates faster than its accretion disk, at the break up limit. The synchronism with the accretion disk, observed on T Tauri stars, must be reach progressively by magnetic breaking during the IR protostar stage, and more or less rapidly depending on the forming star mass. Recent studies have shown that T Tauri star X-ray emission could ionize the circumstellar disk, and play a role in the instability development, as well as stimulate the accretion. The protostar X-ray emission might be higher than the T Tauri star one, Chapter 5 presents a millimetric interferometric observation dedicated to measure this effect on YLW15. Finally, Chapter 6 reassembles conclusions and perspectives of this work. (author) [fr

  17. Investigating nearby star-forming galaxies in the ultraviolet with HST/COS spectroscopy. I. Spectral analysis and interstellar abundance determinations

    International Nuclear Information System (INIS)

    James, B. L.; Aloisi, A.; Sohn, S. T.; Wolfe, M. A.; Heckman, T.

    2014-01-01

    This is the first in a series of three papers describing a project with the Cosmic Origins Spectrograph on the Hubble Space Telescope to measure abundances of the neutral interstellar medium (ISM) in a sample of nine nearby star-forming galaxies. The goal is to assess the (in)homogeneities of the multiphase ISM in galaxies where the bulk of metals can be hidden in the neutral phase, yet the metallicity is inferred from the ionized gas in the H II regions. The sample, spanning a wide range in physical properties, is to date the best suited to investigate the metallicity behavior of the neutral gas at redshift z = 0. ISM absorption lines were detected against the far-ultraviolet spectra of the brightest star-forming region(s) within each galaxy. Here we report on the observations, data reduction, and analysis of these spectra. Column densities were measured by a multicomponent line-profile fitting technique, and neutral-gas abundances were obtained for a wide range of elements. Several caveats were considered, including line saturation, ionization corrections, and dust depletion. Ionization effects were quantified with ad hoc CLOUDY models reproducing the complex photoionization structure of the ionized and neutral gas surrounding the UV-bright sources. An 'average spectrum of a redshift z = 0 star-forming galaxy' was obtained from the average column densities of unsaturated profiles of neutral-gas species. This template can be used as a powerful tool for studies of the neutral ISM at both low and high redshift.

  18. A dearth of short-period massive binaries in the young massive star forming region M 17. Evidence for a large orbital separation at birth?

    Science.gov (United States)

    Sana, H.; Ramírez-Tannus, M. C.; de Koter, A.; Kaper, L.; Tramper, F.; Bik, A.

    2017-03-01

    Aims: The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we aim to quantitatively investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence stars (σ1D= 5.6 ± 0.2 km s-1) in the very young massive star forming region M 17, in order to obtain first constraints on the multiplicity properties of young massive stellar objects. Methods: We compute the radial-velocity dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the obtained σ1D distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems. Results: Simulated populations with low binary fractions () or with truncated period distributions (Pcutoff > 9 months) are able to reproduce the low σ1D observed within their 68%-confidence intervals. Furthermore, parent populations with fbin > 0.42 or Pcutoff < 47 d can be rejected at the 5%-significance level. Both constraints are in stark contrast with the high binary fraction and plethora of short-period systems in few Myr-old, well characterized OB-type populations. To explain the difference in the context of the first scenario would require a variation of the outcome of the massive star formation process. In the context of the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks. Conclusions: If the obtained constraints for the M 17's massive-star population are representative of the multiplicity properties of massive young stellar objects, our results may provide support to a massive star formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period

  19. Neutron-capture nucleosynthesis in the first stars

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-01-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  20. Star formation

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1978-01-01

    Theoretical models of star formation are discussed beginning with the earliest stages and ending in the formation of rotating, self-gravitating disks or rings. First a model of the implosion of very diffuse gas clouds is presented which relies upon a shock at the edge of a galactic spiral arm to drive the implosion. Second, models are presented for the formation of a second generation of massive stars in such a cloud once a first generation has formed. These models rely on the ionizing radiation from massive stars or on the supernova shocks produced when these stars explode. Finally, calculations of the gravitational collapse of rotating clouds are discussed with special focus on the question of whether rotating disks or rings are the result of such a collapse. 65 references

  1. Star Cluster Structure from Hierarchical Star Formation

    Science.gov (United States)

    Grudic, Michael; Hopkins, Philip; Murray, Norman; Lamberts, Astrid; Guszejnov, David; Schmitz, Denise; Boylan-Kolchin, Michael

    2018-01-01

    Young massive star clusters (YMCs) spanning 104-108 M⊙ in mass generally have similar radial surface density profiles, with an outer power-law index typically between -2 and -3. This similarity suggests that they are shaped by scale-free physics at formation. Recent multi-physics MHD simulations of YMC formation have also produced populations of YMCs with this type of surface density profile, allowing us to narrow down the physics necessary to form a YMC with properties as observed. We show that the shallow density profiles of YMCs are a natural result of phase-space mixing that occurs as they assemble from the clumpy, hierarchically-clustered configuration imprinted by the star formation process. We develop physical intuition for this process via analytic arguments and collisionless N-body experiments, elucidating the connection between star formation physics and star cluster structure. This has implications for the early-time structure and evolution of proto-globular clusters, and prospects for simulating their formation in the FIRE cosmological zoom-in simulations.

  2. The formation of galaxies from pregalactic stars

    International Nuclear Information System (INIS)

    Jones, Janet

    1982-01-01

    A knowledge of how and when the first stars formed is vital for our understanding of the formation and early evolution of galaxies. Evidence is given that the first stars were pregalactic: indeed, that at least two generations of stars had formed before galaxies collapsed. A model is presented describing the effects of pregalactic stars on galaxy evolution. The first generation -primordial stars- were massive and few in number. A brief description is given for the formation of such a star. The second generation included stars of all masses and involved widespread star formation. Gas ejected from these stars on timescales of 6 x 10 7 to 6 x 10 8 years induced a qualitative change into the dynamics of collapsing perturbations, leading to a characteristic mass of galaxies of 10 10 - 10 12 M 0 . Variations in the rate of gas ejection were responsible for different morphological structures - elliptical and spirals. A few comments are made on some other implications of the model

  3. Optical polarization maps of star-forming regions in Perseus, Taurus, and Ophiuchus

    International Nuclear Information System (INIS)

    Goodman, A.A.; Bastien, P.; Menard, F.; Myers, P.C.

    1990-01-01

    New optical linear polarization maps are presented of the star-forming regions near L1506 in Taurus, L1755 in Ophiuchus, and the complex of dark cloud which extends from L1448 in B5 in Perseus. The former two show a well-defined peak magnetic field direction in the plane of the sky with a finite dispersion about that peak which is smaller than would be expected for a random distribution of field distributions. The dispersion in the position angle of filamentary clouds within these complexes implies that clouds which appear elongated on the plane of the sky are not all associated with a pattern of polarization vectors particularly parallel or perpendicular to their geometry. Instead, clouds tend to be oriented at the angle formed by their axis and the mean direction of the local large-scale field. For the dark cloud complex, a bimodal distribution of the polarization vector angle is taken to result from at least two distributions of gas along the line of sight which appear as a complex in projection. 55 refs

  4. SUB-MILLIMETER TELESCOPE CO (2-1) OBSERVATIONS OF NEARBY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xue-Jian; Gu, Qiusheng [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wang, Zhong [Harvard-Smithsonian Center for Astrophysics, MS 66, 60 Garden Street, Cambridge, MA 02138 (United States); Wang, Junzhi [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Zhang, Zhi-Yu, E-mail: xjjiang@nju.edu.cn [The UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom)

    2015-01-20

    We present CO J = 2-1 observations toward 32 nearby gas-rich star-forming galaxies selected from the ALFALFA and Wide-field Infrared Survey Explorer (WISE) catalogs, using the Sub-millimeter Telescope (SMT). Our sample is selected to be dominated by intermediate-M {sub *} galaxies. The scaling relations between molecular gas, atomic gas, and galactic properties (stellar mass, NUV – r, and WISE color W3 – W2) are examined and discussed. Our results show the following. (1) In the galaxies with stellar mass M {sub *} ≤10{sup 10} M {sub ☉}, the H I fraction (f {sub H} {sub I} ≡ M {sub H} {sub I}/M {sub *}) is significantly higher than that of more massive galaxies, while the H{sub 2} gas fraction (f{sub H{sub 2}} ≡ M{sub H{sub 2}}/M {sub *}) remains nearly unchanged. (2) Compared to f{sub H{sub 2}}, f {sub H} {sub I} correlates better with both M {sub *} and NUV – r. (3) A new parameter, WISE color W3 – W2 (12-4.6 μm), is introduced, which is similar to NUV – r in tracing star formation activity, and we find that W3 – W2 has a tighter anti-correlation with log f{sub H{sub 2}} than the anti-correlation of (NUV – r)-f {sub H} {sub I}, (NUV – r)-f{sub H{sub 2}}, and (W3 – W2)-f {sub H} {sub I}. This indicates that W3 – W2 can trace the H{sub 2} fraction in galaxies. For the gas ratio M{sub H{sub 2}}/M {sub H} {sub I} , only in the intermediate-M {sub *} galaxies it appears to depend on M {sub *} and NUV – r. We find a tight correlation between the molecular gas mass M{sub H{sub 2}} and 12 μm (W3) luminosities (L {sub 12} {sub μm}), and the slope is close to unity (1.03 ± 0.06) for the SMT sample. This correlation may reflect that the cold gas and dust are well mixed on a global galactic scale. Using the all-sky 12 μm (W3) data available in WISE, this correlation can be used to estimate CO flux for molecular gas observations and can even predict H{sub 2} mass for star-forming galaxies.

  5. Formation of massive stars in OB associations and giant molecular clouds

    International Nuclear Information System (INIS)

    Lada, C.J.

    1980-01-01

    Certain interesting patterns are being perceived in the morphology of the regions which have recently produced massive OB stars. In particular, current evidence seems to favour the notion that the formation of massive stars takes place at the edges and not the centres of large molecular cloud complexes. It is this aspect of the observations that is discussed in the present paper. The phenomena described here will pertain to massive stars only. Specifically, stars with spectral types earlier than B3 will be considered since it is usually only these stars that produce sufficient havoc (e.g., maser sources, CO bright spots, H II regions) to noticeably affect their early environments. The corresponding phenomena for lower mass stars could be entirely different. A review is first presented of what has been learned about the OB star formation process from studies of the visible OB stars themselves. Then, newly derived information pertaining to the most recent episodes of OB star birth in galactic molecular clouds is discussed. Finally, a short discussion of the significance of the results and their implications for possible star formation mechanisms will be made. (U.K.)

  6. CH+(1-0) and 13CH+(1-0) absorption lines in the direction of massive star-forming regions

    NARCIS (Netherlands)

    Falgarone, E.; Godard, B.; Cernicharo, J.; de Luca, M.; Gerin, M.; Phillips, T. G.; Black, J. H.; Lis, D. C.; Bell, T. A.; Boulanger, F.; Coutens, A.; Dartois, E.; Encrenaz, P.; Giesen, T.; Goicoechea, J. R.; Goldsmith, P. F.; Gupta, H.; Gry, C.; Hennebelle, P.; Herbst, E.; Hily-Blant, P.; Joblin, C.; Kaźmierczak, M.; Kołos, R.; Krełowski, J.; Martin-Pintado, J.; Monje, R.; Mookerjea, B.; Neufeld, D. A.; Perault, M.; Pearson, J. C.; Persson, C.; Plume, R.; Salez, M.; Schmidt, M.; Sonnentrucker, P.; Stutzki, J.; Teyssier, D.; Vastel, C.; Yu, S.; Menten, K.; Geballe, T. R.; Schlemmer, S.; Shipman, R.; Tielens, A. G. G. M.; Philipp, S.; Cros, A.; Zmuidzinas, J.; Samoska, L. A.; Klein, K.; Lorenzani, A.; Szczerba, R.; Péron, I.; Cais, P.; Gaufre, P.; Ravera, L.; Morris, P.; Lord, S.; Planesas, P.

    2010-01-01

    We report the detection of the ground-state rotational transition of the methylidyne cation CH+ and its isotopologue 13CH+ toward the remote massive star-forming regions W33A, W49N, and W51 with the HIFI instrument onboard the Herschel satellite. Both lines are seen only in absorption against the

  7. DISSECTION OF H{alpha} EMITTERS : LOW-z ANALOGS OF z > 4 STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University (Korea, Republic of); Chary, Ranga-Ram, E-mail: hjshim@knu.ac.kr [U.S. Planck Data Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States)

    2013-03-01

    Strong H{alpha} emitters (HAEs) dominate the z {approx} 4 Lyman-break galaxy (LBG) population. We have identified local analogs of these HAEs using the Sloan Digital Sky Survey. At z < 0.4, only 0.04% of the galaxies are classified as HAEs with H{alpha} equivalent widths ({approx}> 500 A) comparable to that of z {approx} 4 HAEs. Local HAEs have lower stellar mass and lower ultraviolet (UV) luminosity than z {approx} 4 HAEs, yet the H{alpha}-to-UV luminosity ratio, as well as their specific star formation rate, is consistent with that of z {approx} 4 HAEs, indicating that they are scaled-down versions of high-z star-forming galaxies. Compared to the previously studied local analogs of LBGs selected using rest-frame UV properties, local HAEs show similar UV luminosity surface density, weaker D{sub n} (4000) break, lower metallicity, and lower stellar mass. This implies that the local HAEs are less evolved galaxies than the traditional Lyman break analogs. In the stacked spectrum, local HAEs show a significant He II {lambda}4686 emission line suggesting a population of hot, massive stars similar to that seen in some Wolf-Rayet galaxies. Low [N II]/[O III] line flux ratios imply that local HAEs are inconsistent with being systems that host bright active galactic nuclei. Instead, it is highly likely that local HAEs are galaxies with an elevated ionization parameter, either due to a high electron density or large escape fraction of hydrogen ionizing photons as in the case of Wolf-Rayet galaxies.

  8. The Kinematics of Multiple-peaked Lyα Emission in Star-forming Galaxies at z ~ 2-3

    Science.gov (United States)

    Kulas, Kristin R.; Shapley, Alice E.; Kollmeier, Juna A.; Zheng, Zheng; Steidel, Charles C.; Hainline, Kevin N.

    2012-01-01

    We present new results on the Lyα emission-line kinematics of 18 z ~ 2-3 star-forming galaxies with multiple-peaked Lyα profiles. With our large spectroscopic database of UV-selected star-forming galaxies at these redshifts, we have determined that ~30% of such objects with detectable Lyα emission display multiple-peaked emission profiles. These profiles provide additional constraints on the escape of Lyα photons due to the rich velocity structure in the emergent line. Despite recent advances in modeling the escape of Lyα from star-forming galaxies at high redshifts, comparisons between models and data are often missing crucial observational information. Using Keck II NIRSPEC spectra of Hα (z ~ 2) and [O III]λ5007 (z ~ 3), we have measured accurate systemic redshifts, rest-frame optical nebular velocity dispersions, and emission-line fluxes for the objects in the sample. In addition, rest-frame UV luminosities and colors provide estimates of star formation rates and the degree of dust extinction. In concert with the profile sub-structure, these measurements provide critical constraints on the geometry and kinematics of interstellar gas in high-redshift galaxies. Accurate systemic redshifts allow us to translate the multiple-peaked Lyα profiles into velocity space, revealing that the majority (11/18) display double-peaked emission straddling the velocity-field zero point with stronger red-side emission. Interstellar absorption-line kinematics suggest the presence of large-scale outflows for the majority of objects in our sample, with an average measured interstellar absorption velocity offset of langΔv absrang = -230 km s-1. A comparison of the interstellar absorption kinematics for objects with multiple- and single-peaked Lyα profiles indicate that the multiple-peaked objects are characterized by significantly narrower absorption line widths. We compare our data with the predictions of simple models for outflowing and infalling gas distributions around

  9. THE QUEST FOR DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFT z ≳ 4

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, C.; Lapi, A.; Shi, J.; Aversa, R.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Gonzalez-Nuevo, J. [Departamento de Física, Universidad de Oviedo, C. Calvo Sotelo s/n, E-33007 Oviedo (Spain)

    2016-06-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 10{sup 10} M {sub ⊙} at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 10{sup 2} M {sub ⊙} yr{sup −1} in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory . We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M {sub ⊙} yr{sup −1} cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC - LABOCA , SCUBA-2 , and ALMA - SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2 , supplemented by photometric data from on-source observations with ALMA , can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  10. A low-temperature companion to a white dwarf star

    Science.gov (United States)

    Becklin, E. E.; Zuckerman, B.

    1988-01-01

    An infrared object located about 120 AU from the white dwarf GD165 has been discovered. With the exception of the possible brown dwarf companion to Giclas 29-38 reported last year, the companion to GD165 is the coolest (2100 K) dwarf star ever reported and, according to some theoretical models, it should be a substellar brown dwarf with a mass between 0.06 and 0.08 solar mass. These results, together with newly discovered low-mass stellar companions to white dwarfs, change the investigation of very low-mass stars from the study of a few chance objects to that of a statistical distribution. In particular, it appears that very low-mass stars and perhaps even brown dwarfs could be quite common in the Galaxy.

  11. Relations between stellar mass and electron temperature-based metallicity for star-forming galaxies in a wide mass range

    International Nuclear Information System (INIS)

    Shi Wei-Bin; Zhao Gang; Ruan Gui-Ping; Zhou Li; Liang Yan-Chun; Shao Xu; Liu Xiao-Wei; Hammer Francois; Flores Hector; Zhang Yong

    2014-01-01

    We select 947 star-forming galaxies from SDSS-DR7 with [O III]λ4363 emission lines detected at a signal-to-noise ratio larger than 5σ. Their electron temperatures and direct oxygen abundances are then determined. We compare the results from different methods. t 2 , the electron temperature in the low ionization region, estimated from t 3 , that in the high ionization region, is compared using three analysis relations between t 2 – t 3 . These show obvious differences, which result in some different ionic oxygen abundances. The results of t 3 , t 2 , O ++ /H + and O + /H + derived by using methods from IRAF and literature are also compared. The ionic abundances O ++ /H + are higher than O + /H + for most cases. The different oxygen abundances derived from T e and the strong-line ratios show a clear discrepancy, which is more obvious following increasing stellar mass and strong-line ratio R 23 . The sample of galaxies from SDSS with detected [O III]λ4363 have lower metallicites and higher star formation rates, so they may not be typical representatives of the whole population of galaxies. Adopting data objects from Andrews and Martini, Liang et al. and Lee et al. data, we derive new relations of stellar mass and metallicity for star-forming galaxies in a much wider stellar mass range: from 10 6 M ⊙ to 10 11 M ⊙ . (research papers)

  12. Multiple star formation : chemistry, physics and coevality

    NARCIS (Netherlands)

    Murillo, Mejias N.M.

    2017-01-01

    Multiple stars, that is two or more stars composing a gravitationally bound system, are common in the universe.They are the cause of many interesting phenomena, from supernovae and planetary nebulae, to binary black hole mergers. Observations of main sequence stars, young stars and forming

  13. New Herbig-Haro objects in star-forming regions

    Science.gov (United States)

    Reipurth, BO; Graham, J. A.

    1988-01-01

    A list of 25 new Herbig-Haro objects, HH 58 to HH 82, in the Orion molecular clouds and in southern molecular cloud complexes has been compiled. CCD images in the S II 6717, 6731 forbidden lines are presented for the objects, together with a few spectra and some IR observations. The individual objects and, when identified, their energy sources are discussed. HH 65 is located in the red lobe of the bipolar outflow associated with the highly variable reflection nebula Re 50. HH 67 is a 22-arcsec long sinusoidal jet. HH 68/69 consists of a long, linear chain of four HH knots. HH 72 emerges from a 120-solar luminosity IRAS source embedded in a Bok globule. HH 79 is the first HH object discovered in the Ophiuchus clouds. HH 80/81 in Sagittarius are among the brightest HH objects known, have complex velocities, high excitation conditions and emerge from a 6000-solar luminosity young B-star. HH 82 is associated with the bright variable star S Coronae Australis.

  14. Nebular excitation in z ∼ 2 star-forming galaxies from the SINS and LUCI surveys: The influence of shocks and active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Sarah F.; Genzel, Reinhard [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Buschkamp, Peter; Förster Schreiber, Natascha M.; Kurk, Jaron; Rosario, David; Davies, Ric; Eisenhauer, Frank; Lutz, Dieter [Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Sternberg, Amiel [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Gnat, Orly [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Mancini, Chiara; Renzini, Alvio [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Lilly, Simon J.; Carollo, C. Marcella [Institute of Astronomy, Department of Physics, Eidgenössische Technische Hochschule, ETH, CH-8093 Zürich (Switzerland); Burkert, Andreas [Universitäts-Sternwarte Ludwig-Maximilians-Universität (USM), Scheinerstr. 1, D-81679 München (Germany); Cresci, Giovanni [Istituto Nazionale di Astrofisica Osservatorio di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Genel, Shy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shapiro Griffin, Kristen [Space Sciences Research Group, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Hicks, Erin K. S., E-mail: sfnewman@berkeley.edu [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); and others

    2014-01-20

    Based on high-resolution, spatially resolved data of 10 z ∼ 2 star-forming galaxies from the SINS/zC-SINF survey and LUCI data for 12 additional galaxies, we probe the excitation properties of high-z galaxies and the impact of active galactic nuclei (AGNs), shocks, and photoionization. We explore how these spatially resolved line ratios can inform our interpretation of integrated emission line ratios obtained at high redshift. Many of our galaxies fall in the 'composite' region of the z ∼ 0 [N II]/Hα versus [O III]/Hβ diagnostic (BPT) diagram, between star-forming galaxies and those with AGNs. Based on our resolved measurements, we find that some of these galaxies likely host an AGN, while others appear to be affected by the presence of shocks possibly caused by an outflow or from an enhanced ionization parameter as compared with H II regions in normal, local star-forming galaxies. We find that the Mass-Excitation (MEx) diagnostic, which separates purely star-forming and AGN hosting local galaxies in the [O III]/Hβ versus stellar mass plane, does not properly separate z ∼ 2 galaxies classified according to the BPT diagram. However, if we shift the galaxies based on the offset between the local and z ∼ 2 mass-metallicity relation (i.e., to the mass they would have at z ∼ 0 with the same metallicity), we find better agreement between the MEx and BPT diagnostics. Finally, we find that metallicity calibrations based on [N II]/Hα are more biased by shocks and AGNs at high-z than the [O III]/Hβ/[N II]/Hα calibration.

  15. A SURVEY FOR NEW MEMBERS OF THE TAURUS STAR-FORMING REGION WITH THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Luhman, K. L.; Mamajek, E. E.; Shukla, S. J.; Loutrel, N. P.

    2017-01-01

    Previous studies have found that ∼1 deg 2 fields surrounding the stellar aggregates in the Taurus star-forming region exhibit a surplus of solar-mass stars relative to denser clusters like IC 348 and the Orion Nebula Cluster. To test whether this difference reflects mass segregation in Taurus or a variation in the initial mass function, we have performed a survey for members of Taurus across a large field (∼40 deg 2 ) that was imaged by the Sloan Digital Sky Survey (SDSS). We obtained optical and near-infrared spectra of candidate members identified with those images and the Two Micron All Sky Survey, as well as miscellaneous candidates that were selected with several other diagnostics of membership. We have classified 22 of the candidates as new members of Taurus, which includes one of the coolest known members (M9.75). Our updated census of members within the SDSS field shows a surplus of solar-mass stars relative to clusters, although it is less pronounced than in the smaller fields toward the stellar aggregates that were surveyed for previously measured mass functions in Taurus. In addition to spectra of our new members, we include in our study near-IR spectra of roughly half of the known members of Taurus, which are used to refine their spectral types and extinctions. We also present an updated set of near-IR standard spectra for classifying young stars and brown dwarfs at M and L types.

  16. A SURVEY FOR NEW MEMBERS OF THE TAURUS STAR-FORMING REGION WITH THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Mamajek, E. E. [Department of Physics and Astronomy, The University of Rochester, Rochester, NY 14627 (United States); Shukla, S. J. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Loutrel, N. P., E-mail: kluhman@astro.psu.edu [eXtreme Gravity Institute, Department of Physics, Montana State University, Bozeman, MT 59715 (United States)

    2017-01-01

    Previous studies have found that ∼1 deg{sup 2} fields surrounding the stellar aggregates in the Taurus star-forming region exhibit a surplus of solar-mass stars relative to denser clusters like IC 348 and the Orion Nebula Cluster. To test whether this difference reflects mass segregation in Taurus or a variation in the initial mass function, we have performed a survey for members of Taurus across a large field (∼40 deg{sup 2}) that was imaged by the Sloan Digital Sky Survey (SDSS). We obtained optical and near-infrared spectra of candidate members identified with those images and the Two Micron All Sky Survey, as well as miscellaneous candidates that were selected with several other diagnostics of membership. We have classified 22 of the candidates as new members of Taurus, which includes one of the coolest known members (M9.75). Our updated census of members within the SDSS field shows a surplus of solar-mass stars relative to clusters, although it is less pronounced than in the smaller fields toward the stellar aggregates that were surveyed for previously measured mass functions in Taurus. In addition to spectra of our new members, we include in our study near-IR spectra of roughly half of the known members of Taurus, which are used to refine their spectral types and extinctions. We also present an updated set of near-IR standard spectra for classifying young stars and brown dwarfs at M and L types.

  17. HerMES: COSMIC INFRARED BACKGROUND ANISOTROPIES AND THE CLUSTERING OF DUSTY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Viero, M. P.; Zemcov, M.; Bock, J.; Cooray, A.; Dowell, C. D. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Wang, L. [Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham, DH1 3LE (United Kingdom); Addison, G. [Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Amblard, A. [NASA, Ames Research Center, Moffett Field, CA 94035 (United States); Arumugam, V. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Aussel, H.; Bethermin, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu - CNRS - Universite Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Boselli, A.; Buat, V.; Burgarella, D. [Laboratoire d' Astrophysique de Marseille - LAM, Universite d' Aix-Marseille and CNRS, UMR7326, 38 rue F. Joliot-Curie, F-13388 Marseille Cedex 13 (France); Casey, C. M. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); Conversi, L. [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); De Zotti, G. [INAF - Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Farrah, D., E-mail: marco.viero@caltech.edu [Astronomy Centre, Dept. of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); and others

    2013-07-20

    We present measurements of the auto- and cross-frequency power spectra of the cosmic infrared background (CIB) at 250, 350, and 500 {mu}m (1200, 860, and 600 GHz) from observations totaling {approx}70 deg{sup 2} made with the SPIRE instrument aboard the Herschel Space Observatory. We measure a fractional anisotropy {delta}I/I = 14% {+-} 4%, detecting signatures arising from the clustering of dusty star-forming galaxies in both the linear (2-halo) and nonlinear (1-halo) regimes; and that the transition from the 2- to 1-halo terms, below which power originates predominantly from multiple galaxies within dark matter halos, occurs at k{sub {theta}} {approx} 0.10-0.12 arcmin{sup -1} (l {approx} 2160-2380), from 250 to 500 {mu}m. New to this paper is clear evidence of a dependence of the Poisson and 1-halo power on the flux-cut level of masked sources-suggesting that some fraction of the more luminous sources occupy more massive halos as satellites, or are possibly close pairs. We measure the cross-correlation power spectra between bands, finding that bands which are farthest apart are the least correlated, as well as hints of a reduction in the correlation between bands when resolved sources are more aggressively masked. In the second part of the paper, we attempt to interpret the measurements in the framework of the halo model. With the aim of fitting simultaneously with one model the power spectra, number counts, and absolute CIB level in all bands, we find that this is achievable by invoking a luminosity-mass relationship, such that the luminosity-to-mass ratio peaks at a particular halo mass scale and declines toward lower and higher mass halos. Our best-fit model finds that the halo mass which is most efficient at hosting star formation in the redshift range of peak star-forming activity, z {approx} 1-3, is log(M{sub peak}/M{sub Sun }) {approx} 12.1 {+-} 0.5, and that the minimum halo mass to host infrared galaxies is log(M{sub min}/M{sub Sun }) {approx} 10

  18. The Light and Dark Face of a Star-Forming Nebula

    Science.gov (United States)

    2010-03-01

    Today, ESO is unveiling an image of the little known Gum 19, a faint nebula that, in the infrared, appears dark on one half and bright on the other. On one side hot hydrogen gas is illuminated by a supergiant blue star called V391 Velorum. New star formation is taking place within the ribbon of luminous and dark material that brackets V391 Velorum's left in this perspective. After many millennia, these fledgling stars, coupled with the explosive demise of V391 Velorum as a supernova, will likely alter Gum 19's present Janus-like appearance. Gum 19 is located in the direction of the constellation Vela (the Sail) at a distance of approximately 22 000 light years. The Gum 19 moniker derives from a 1955 publication by the Australian astrophysicist Colin S. Gum that served as the first significant survey of so-called HII (read "H-two") regions in the southern sky. HII refers to hydrogen gas that is ionised, or energised to the extent that the hydrogen atoms lose their electrons. Such regions emit light at well-defined wavelengths (or colours), thereby giving these cosmic clouds their characteristic glow. And indeed, much like terrestrial clouds, the shapes and textures of these HII regions change as time passes, though over the course of eons rather than before our eyes. For now, Gum 19 has somewhat of a science fiction-esque, "rip in spacetime" look to it in this image, with a narrow, near-vertical bright region slashing across the nebula. Looking at it, you could possibly see a resemblance to a two-toned angelfish or an arrow with a darkened point. This new image of the evocative Gum 19 object was captured by an infrared instrument called SOFI, mounted on ESO's New Technology Telescope (NTT) that operates at the La Silla Observatory in Chile. SOFI stands for Son of ISAAC, after the "father" instrument, ISAAC, that is located at ESO's Very Large Telescope observatory at Paranal to the north of La Silla. Observing this nebula in the infrared allows astronomers to see

  19. EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSION. II. STRUCTURE AND EMISSIONS FROM STAR-FORMING GALAXIES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Yan Changshuo; Wang Jianmin

    2010-01-01

    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the Hα, Hβ, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to ∼1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of ∼10 8 yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as ∼100 km s -1 in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of Hα, Hβ, [O III], and [N II], and Hα brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive

  20. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  1. Dark stars: a new study of the first stars in the Universe

    International Nuclear Information System (INIS)

    Freese, Katherine; Bodenheimer, Peter; Gondolo, Paolo; Spolyar, Douglas

    2009-01-01

    We have proposed that the first phase of stellar evolution in the history of the Universe may be dark stars (DSs), powered by dark matter (DM) heating rather than by nuclear fusion. Weakly interacting massive particles, which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars. A new stellar phase results, a DS, powered by DM annihilation as long as there is DM fuel, with lifetimes from millions to billions of years. We find that the first stars are very bright (∼10 6 L o-dot ) and cool (T surf surf > 50 000 K); hence DS should be observationally distinct from standard Pop III stars. Once the DM fuel is exhausted, the DS becomes a heavy main sequence star; these stars eventually collapse to form massive black holes that may provide seeds for supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate black holes.

  2. Extended Gamma-Ray Emission from the G25.0+0.0 Region: A Star-forming Region Powered by the Newly Found OB Association?

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, J. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Uchiyama, Y. [Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501 (Japan); Funk, S., E-mail: katsuta@hep01.hepl.hiroshima-u.ac.jp [Erlangen Centre for Astroparticle Physics, D-91058 Erlangen (Germany)

    2017-04-20

    We report a study of extended γ -ray emission with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope , which is likely to be the second case of a γ -ray detection from a star-forming region (SFR) in our Galaxy. The LAT source is located in the G25 region, 1.°7 × 2.°1 around ( l , b ) = (25.°0, 0.°0). The γ -ray emission is found to be composed of two extended sources and one pointlike source. The extended sources have similar sizes of about 1.°4 × 0.°6. An ∼0.°4 diameter subregion of one has a photon index of Γ = 1.53 ± 0.15, and is spatially coincident with HESS J1837−069, likely a pulsar wind nebula. The other parts of the extended sources have a photon index of Γ = 2.1 ± 0.2 without significant spectral curvature. Given their spatial and spectral properties, they have no clear associations with sources at other wavelengths. Their γ -ray properties are similar to those of the Cygnus cocoon SFR, the only firmly established γ -ray detection of an SFR in the Galaxy. Indeed, we find bubble-like structures of atomic and molecular gas in G25, which may be created by a putative OB association/cluster. The γ -ray emitting regions appear confined in the bubble-like structure; similar properties are also found in the Cygnus cocoon. In addition, using observations with the XMM-Newton , we find a candidate young massive OB association/cluster G25.18+0.26 in the G25 region. We propose that the extended γ -ray emission in G25 is associated with an SFR driven by G25.18+0.26. Based on this scenario, we discuss possible acceleration processes in the SFR and compare them with the Cygnus cocoon.

  3. THE CHANDRA VARIABLE GUIDE STAR CATALOG

    International Nuclear Information System (INIS)

    Nichols, Joy S.; Lauer, Jennifer L.; Morgan, Douglas L.; Sundheim, Beth A.; Henden, Arne A.; Huenemoerder, David P.; Martin, Eric

    2010-01-01

    Variable stars have been identified among the optical-wavelength light curves of guide stars used for pointing control of the Chandra X-ray Observatory. We present a catalog of these variable stars along with their light curves and ancillary data. Variability was detected to a lower limit of 0.02 mag amplitude in the 4000-10000 A range using the photometrically stable Aspect Camera on board the Chandra spacecraft. The Chandra Variable Guide Star Catalog (VGUIDE) contains 827 stars, of which 586 are classified as definitely variable and 241 are identified as possibly variable. Of the 586 definite variable stars, we believe 319 are new variable star identifications. Types of variables in the catalog include eclipsing binaries, pulsating stars, and rotating stars. The variability was detected during the course of normal verification of each Chandra pointing and results from analysis of over 75,000 guide star light curves from the Chandra mission. The VGUIDE catalog represents data from only about 9 years of the Chandra mission. Future releases of VGUIDE will include newly identified variable guide stars as the mission proceeds. An important advantage of the use of space data to identify and analyze variable stars is the relatively long observations that are available. The Chandra orbit allows for observations up to 2 days in length. Also, guide stars were often used multiple times for Chandra observations, so many of the stars in the VGUIDE catalog have multiple light curves available from various times in the mission. The catalog is presented as both online data associated with this paper and as a public Web interface. Light curves with data at the instrumental time resolution of about 2 s, overplotted with the data binned at 1 ks, can be viewed on the public Web interface and downloaded for further analysis. VGUIDE is a unique project using data collected during the mission that would otherwise be ignored. The stars available for use as Chandra guide stars are

  4. Radio continuum interferometry of dark clouds: A search for newly formed HII regions

    International Nuclear Information System (INIS)

    Gilmore, W.S.

    1978-01-01

    A search for compact HII regions embedded in dark clouds has been carried out in an effort to study local massive star formation. Approximately 20% of the total area of opaque dark cloud material in the sky with Av greater than or equal to 6 mag was surveyed with the NRAO three-element interferometer at 2695 MHz, and at least 5% more was surveyed with the NRAO 300-foot telescope at 4750 MHz. The regions surveyed include the dark cloud complexes in Perseus, Taurus, Orion, and Ophiuchus, as well as several smaller cloud complexes and individual clouds. No hidden compact HII regions embedded inside dark clouds were detected with certainty in the radio continuum. However, eleven HII regions with associated visible emission and eighteen other possible HII regions were detected. Five infrared sources thought to have the luminosities of early B stars were not detected in the radio continuum. These five sources showed high correlation with the presence of CO self-absorption, CO emission over a wide range of velocities, and type I OH masers, but an absence of coincident visible nebulosity and detectable radio continuum emission. Therefore, it is suggested that they represent an earlier evolutionary stage than those HII region detected in the radio continuum. This first evolutionary state marks the presence of ''pre-emergent'' (with respect to the molecular cloud) cocoon stars. HII regions in the second evolutionary state are marked by the presence of detectable radio continuum emission, i.e., they are stronger than 10 mJy at 2695 MHz. They have associated visible nebulosity, are relatively large, and appear to be located at the edges of molecular clouds. These are designated as ''emergent edge'' HII regions. The fact that many young HII regions are edge HII regions implies that massive stars are born near the edges of clouds, a phenomenon previously suggested by several other investigators

  5. Spectrophotometry of Symbiotic Stars (Abstract)

    Science.gov (United States)

    Boyd, D.

    2017-12-01

    (Abstract only) Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionizes the nebula, producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  6. From clouds to stars

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1982-01-01

    At the present time, the theory of star formation must be limited to what we know about the lowest density gas, or about the pre-main sequence stars themselves. We would like to understand two basic processes: 1) how star-forming clouds are created from the ambient interstellar gas in the first place, and 2) how small parts of these clouds condense to form individual stars. We are interested also in knowing what pre-main sequence stars are like, and how they can interact with their environment. These topics are reviewed in what follows. In this series of lectures, what we know about the formation of stars is tentatively described. The lectures begin with a description of the interstellar medium, and then they proceed along the same direction that a young star would follow during its creation, namely from clouds through the collapse phase and onto the proto-stellar phase. The evolution of viscous disks and two models for the formation of the solar system are described in the last lectures. The longest lectures, and the topics that are covered in most detail, are not necessarily the ones for which we have the most information. Physically intuitive explanations for the various processes are emphasized, rather then mathematical explanations. In some cases, the mathematical aspects are developed as well, but only when the equations can be used to give important numerical values for comparison with the observations

  7. Dark matter in and around stars

    International Nuclear Information System (INIS)

    Sivertsson, Sofia

    2009-01-01

    There is by now compelling evidence that most of the matter in the universe is in the form of dark matter, a form of matter quite different from the matter we experience in every day life. The gravitational effects of this dark matter have been observed in many different ways but its true nature is still unknown. In most models dark matter particles can annihilate with each other into standard model particles. The direct or indirect observation of such annihilation products could give important clues for the dark matter puzzle. For signals from dark matter annihilations to be detectable, typically high dark matter densities are required. Massive objects, such as stars, can increase the local dark matter density both via scattering off nucleons and by pulling in dark matter gravitationally as the star forms. Dark matter annihilations outside the star would give rise to gamma rays and this is discussed in the first paper. Furthermore dark matter annihilations inside the star would deposit energy inside the star which, if abundant enough, could alter the stellar evolution. Aspects of this are investigated in the second paper. Finally, local dark matter over densities formed in the early universe could still be around today; prospects of detecting gamma rays from such clumps are discussed in the third paper

  8. On semi star generalized closed sets in bitopological spaces.

    Directory of Open Access Journals (Sweden)

    K. Kannan

    2010-07-01

    Full Text Available K. Chandrasekhara Rao and K. Joseph [5] introduced the concepts of semi star generalized open sets and semi star generalized closed sets in a topological space. The same concept was extended to bitopological spaces by K. Chan-drasekhara Rao and K. Kannan [6,7]. In this paper, we continue the study of τ1τ2-s∗g closed sets inbitopology and we introduced the newly related concept of pairwise s∗g-continuous mappings. Also S∗GO-connectedness and S∗GO-compactness are introduced in bitopological spaces and some of their properties are established.

  9. Astrophysical parameters of ten poorly studied open star clusters

    International Nuclear Information System (INIS)

    Tadross, Ashraf Latif; El-Bendary, Reda; Osman, Anas; Ismail, Nader; Bakry, Abdel Aziz

    2012-01-01

    We present the fundamental parameters of ten open star clusters, nominated from Kronberger et al. who presented some newly discovered stellar groups on the basis of the Two Micron All Sky Survey photometry and Digitized Sky Survey visual images. Star counts and photometric parameters (radius, membership, distance, color excess, age, luminosity function, mass function, total mass, and dynamical relaxation time) have been determined for these ten clusters for the first time. In order to calibrate our procedures, the main parameters (distance, age, and color excess) have been re-estimated for another five clusters, which are also studied by Kronberger et al. (research papers)

  10. Detecting metal-poor gas accretion in the star-forming dwarf galaxies UM 461 and Mrk 600

    Science.gov (United States)

    Lagos, P.; Scott, T. C.; Nigoche-Netro, A.; Demarco, R.; Humphrey, A.; Papaderos, P.

    2018-03-01

    Using VIMOS-IFU observations, we study the interstellar medium (ISM) of two star-forming dwarf galaxies, UM 461 and Mrk 600. Our aim was to search for the existence of metallicity inhomogeneities that might arise from infall of nearly pristine gas feeding ongoing localized star-formation. The IFU data allowed us to study the impact of external gas accretion on the chemical evolution as well as the ionised gas kinematics and morphologies of these galaxies. Both systems show signs of morphological distortions, including cometary-like morphologies. We analysed the spatial variation of 12 + log(O/H) abundances within both galaxies using the direct method (Te), the widely applied HII-CHI-mistry code, as well as by employing different standard calibrations. For UM 461 our results show that the ISM is fairly well mixed, at large scales, however we find an off-centre and low-metallicity region with 12 + log(O/H) ISM in our analysed galaxies are consistent with these systems being at different evolutionary stages.

  11. Forming Spirals From Shadows

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    What causes the large-scale spiral structures found in some protoplanetary disks? Most models assume theyre created by newly-forming planets, but a new study suggests that planets might have nothing to do with it.Perturbations from Planets?In some transition disks protoplanetary disks with gaps in their inner regions weve directly imaged large-scale spiral arms. Many theories currently attribute the formation of these structures to young planets: either the direct perturbations of a planet embedded in the disk cause the spirals, or theyre indirectly caused by the orbit of a planetary body outside of the arms.Another example of spiral arms detected in a protoplanetary disk, MWC 758. [NASA/ESA/ESO/M. Benisty et al.]But what if you could get spirals without any planets? A team of scientists led by Matas Montesinos (University of Chile) have recently published a study in which they examine what happens to a shadowed protoplanetary disk.Casting Shadows with WarpsIn the teams setup, they envision a protoplanetary disk that is warped: the inner region is slightly tilted relative to the outer region. As the central star casts light out over its protoplanetary disk, this disk warping would cause some regions of the disk to be shaded in a way that isnt axially symmetric with potentially interesting implications.Montesinos and collaborators ran 2D hydrodynamics simulations to determine what happens to the motion of particles within the disk when they pass in and out of the shadowed regions. Since the shadowed regions are significantly colder than the illuminated disk, the pressure in these regions is much lower. Particles are therefore accelerated and decelerated as they pass through these regions, and the lack of axial symmetry causes spiral density waves to form in the disk as a result.Initial profile for the stellar heating rate per unit area for one of the authors simulations. The regions shadowed as a result of the disk warp subtend 0.5 radians each (shown on the left

  12. DISK EVOLUTION IN THE THREE NEARBY STAR-FORMING REGIONS OF TAURUS, CHAMAELEON, AND OPHIUCHUS

    International Nuclear Information System (INIS)

    Furlan, E.; Watson, Dan M.; McClure, M. K.

    2009-01-01

    We analyze samples of Spitzer Infrared Spectrograph spectra of T Tauri stars in the Ophiuchus, Taurus, and Chamaeleon I star-forming regions, whose median ages lie in the <1-2 Myr range. The median mid-infrared spectra of objects in these three regions are similar in shape, suggesting, on average, similar disk structures. When normalized to the same stellar luminosity, the medians follow each other closely, implying comparable mid-infrared excess emission from the circumstellar disks. We use the spectral index between 13 and 31 μm and the equivalent width of the 10 μm silicate emission feature to identify objects whose disk configuration departs from that of a continuous, optically thick accretion disk. Transitional disks, whose steep 13-31 μm spectral slope and near-IR flux deficit reveal inner disk clearing, occur with about the same frequency of a few percent in all three regions. Objects with unusually large 10 μm equivalent widths are more common (20%-30%); they could reveal the presence of disk gaps filled with optically thin dust. Based on their medians and fraction of evolved disks, T Tauri stars in Taurus and Chamaeleon I are very alike. Disk evolution sets in early, since already the youngest region, the Ophiuchus core (L1688), has more settled disks with larger grains. Our results indicate that protoplanetary disks show clear signs of dust evolution at an age of a few Myr, even as early as ∼1 Myr, but age is not the only factor determining the degree of evolution during the first few million years of a disk's lifetime.

  13. The Chemical Abundances of Stars in the Halo (CASH) Project. II. A Sample of 14 Extremely Metal-poor Stars

    Science.gov (United States)

    Hollek, Julie K.; Frebel, Anna; Roederer, Ian U.; Sneden, Christopher; Shetrone, Matthew; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-11-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ~15, 000) and corresponding high-resolution (R ~35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ~500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  14. Chemical Soups Around Cool Stars

    Science.gov (United States)

    2009-01-01

    This artist's conception shows a young, hypothetical planet around a cool star. A soupy mix of potentially life-forming chemicals can be seen pooling around the base of the jagged rocks. Observations from NASA's Spitzer Space Telescope hint that planets around cool stars the so-called M-dwarfs and brown dwarfs that are widespread throughout our galaxy might possess a different mix of life-forming, or prebiotic, chemicals than our young Earth. Life on our planet is thought to have arisen out of a pond-scum-like mix of chemicals. Some of these chemicals are thought to have come from a planet-forming disk of gas and dust that swirled around our young sun. Meteorites carrying the chemicals might have crash-landed on Earth. Astronomers don't know if these same life-generating processes are taking place around stars that are cooler than our sun, but the Spitzer observations show their disk chemistry is different. Spitzer detected a prebiotic molecule, called hydrogen cyanide, in the disks around yellow stars like our sun, but found none around cooler, less massive, reddish stars. Hydrogen cyanide is a carbon-containing, or organic compound. Five hydrogen cyanide molecules can join up to make adenine a chemical element of the DNA molecule found in all living organisms on Earth.

  15. Infrared studies of symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1982-01-01

    Infrared photometry and spectroscopy of symbiotic stars is reviewed. It is shown that at wavelengths beyond 1 μm these systems are generally dominated by the cool star's photosphere and, indeed, are indistinguishable from ordinary late-type giants. About 25% of symbiotic stars exhibit additional emission due to circumstellar dust. Most of the dusty systems probably involve Mira variables, the dust forming in the atmospheres of the Miras. In a few cases the dust is much cooler and the cool component hotter; the dust must then form in distant gas shielded from the hot component, perhaps by an accretion disk. Spectroscopy at 2 μm can be used to spectral type the cool components, even in the presence of some dust emission. Distances may thereby be estimated, though with some uncertainty. Spectroscopy at longer wavelengths reveals information about the dust itself. In most cases this dust appears to include silicate grains, which form in the oxygen-rich envelope of an M star. In the case of HD 33036, however, different emission features are found which suggest a carbon-rich environment. (Auth.)

  16. Dynamical evolution of star-forming regions - II. Basic kinematics

    Science.gov (United States)

    Parker, Richard J.; Wright, Nicholas J.

    2016-04-01

    We follow the dynamical evolution of young star-forming regions with a wide range of initial conditions and examine how the radial velocity dispersion, σ, evolves over time. We compare this velocity dispersion to the theoretically expected value for the velocity dispersion if a region were in virial equilibrium, σvir and thus assess the virial state (σ/σvir) of these systems. We find that in regions that are initially subvirial, or in global virial equilibrium but subvirial on local scales, the system relaxes to virial equilibrium within several million years, or roughly 25-50 crossing times, according to the measured virial ratio. However, the measured velocity dispersion, σ, appears to be a bad diagnostic of the current virial state of these systems as it suggests that they become supervirial when compared to the velocity dispersion estimated from the virial mass, σvir. We suggest that this discrepancy is caused by the fact that the regions are never fully relaxed, and that the early non-equilibrium evolution is imprinted in the one-dimensional velocity dispersion at these early epochs. If measured early enough (interquartile range (IQR) dispersion, with measures of spatial structure, places stronger constraints on the dynamical history of a region than using the velocity dispersion in isolation.

  17. Star Formation in Merging Galaxies Using FIRE

    Science.gov (United States)

    Perez, Adrianna; Hung, Chao-Ling; Naiman, Jill; Moreno, Jorge; Hopkins, Philip

    2018-01-01

    Galaxy interactions and mergers are efficient mechanisms to birth stars at rates that are significantly higher than found in our Milky Way galaxy. The Kennicut-Schmidt (KS) relation is an empirical relationship between the star-forming rate and gas surface densities of galaxies (Schmidt 1959; Kennicutt 1998). Although most galaxies follow the KS relation, the high levels of star formation in galaxy mergers places them outside of this otherwise tight relationship. The goal of this research is to analyze the gas content and star formation of simulated merging galaxies. Our work utilizes the Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high-resolution cosmological simulation that resolves star-forming regions and incorporates stellar feedback in a physically realistic way. In this work, we have noticed a significant increase in the star formation rate at first and second passage, when the two black holes of each galaxy approach one other. Next, we will analyze spatially resolved star-forming regions over the course of the interacting system. Then, we can study when and how the rates that gas converts into stars deviate from the standard KS. These analyses will provide important insights into the physical mechanisms that regulate star formation of normal and merging galaxies and valuable theoretical predictions that can be used to compare with current and future observations from ALMA or the James Webb Space Telescope.

  18. Neutron-capture Nucleosynthesis in the First Stars

    Science.gov (United States)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and The McDonald Observatory of The University of Texas at Austin.

  19. Symbiotic stars

    International Nuclear Information System (INIS)

    Kafatos, M.; Michalitsianos, A.G.

    1984-01-01

    Among the several hundred million binary systems estimated to lie within 3000 light years of the solar system, a tiny fraction, no more than a few hundred, belong to a curious subclass whose radiation has a wavelength distribution so peculiar that it long defied explanation. Such systems radiate strongly in the visible region of the spectrum, but some of them do so even more strongly at both shorter and longer wavelengths: in the ultraviolet region and in the infrared and radio regions. This odd distribution of radiation is best explained by the pairing of a cool red giant star and an intensely hot small star that is virtually in contact with its larger companion. Such objects have become known as symbiotic stars. On photographic plate only the giant star can be discerned, but evidence for the existence of the hot companion has been supplied by satellite-born instruments capable of detecting ultraviolet radiation. The spectra of symbiotic stars indicate that the cool red giant is surrounded by a very hot ionized gas. Symbiotic stars also flared up in outbursts indicating the ejection of material in the form of a shell or a ring. Symbiotic stars may therefore represent a transitory phase in the evolution of certain types of binary systems in which there is substantial transfer of matter from the larger partner to the smaller

  20. Variable Stars in the Field of V729 Aql

    Science.gov (United States)

    Cagaš, P.

    2017-04-01

    Wide field instruments can be used to acquire light curves of tens or even hundreds of variable stars per night, which increases the probability of new discoveries of interesting variable stars and generally increases the efficiency of observations. At the same time, wide field instruments produce a large amount of data, which must be processed using advanced software. The traditional approach, typically used by amateur astronomers, requires an unacceptable amount of time needed to process each data set. New functionality, built into SIPS software package, can shorten the time needed to obtain light curves by several orders of magnitude. Also, newly introduced SILICUPS software is intended for post-processing of stored light curves. It can be used to visualize observations from many nights, to find variable star periods, evaluate types of variability, etc. This work provides an overview of tools used to process data from the large field of view around the variable star V729 Aql. and demonstrates the results.

  1. EXPLORING HALO SUBSTRUCTURE WITH GIANT STARS: SUBSTRUCTURE IN THE LOCAL HALO AS SEEN IN THE GRID GIANT STAR SURVEY INCLUDING EXTENDED TIDAL DEBRIS FROM ωCENTAURI

    International Nuclear Information System (INIS)

    Majewski, Steven R.; Nidever, David L.; Damke, Guillermo J.; Patterson, Richard J.; García Pérez, Ana E.; Smith, Verne V.; Kunkel, William E.; Bizyaev, Dmitry

    2012-01-01

    We present the latitude-normalized radial velocity (v b ) distribution of 3318 subsolar metallicity, V ∼ b sequences. One sequence in the fourth Galactic quadrant lies within the l-v b space expected to contain tidal debris from the 'star cluster' ωCentauri. Not only does ωCen lie precisely in this l-v b sequence, but the positions and v b of member stars match those of N-body simulations of tidally disrupting dwarf galaxies on orbits ending with ωCen's current position and space motion. But the ultimate proof that we have very likely found extended parts of the ωCen tidal stream comes from echelle spectroscopy of a subsample of the stars that reveals a very particular chemical abundance signature known to occur only in ωCen. The newly discovered ωCen debris accounts for almost all fourth Galactic quadrant retrograde stars in the southern GGSS, which suggests ωCen is a dominant contributor of retrograde giant stars in the inner Galaxy.

  2. Destruction of a Magnetized Star

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    What happens when a magnetized star is torn apart by the tidal forces of a supermassive black hole, in a violent process known as a tidal disruption event? Two scientists have broken new ground by simulating the disruption of stars with magnetic fields for the first time.The magnetic field configuration during a simulation of the partial disruption of a star. Top left: pre-disruption star. Bottom left: matter begins to re-accrete onto the surviving core after the partial disruption. Right: vortices form in the core as high-angular-momentum debris continues to accrete, winding up and amplifying the field. [Adapted from Guillochon McCourt 2017]What About Magnetic Fields?Magnetic fields are expected to exist in the majority of stars. Though these fields dont dominate the energy budget of a star the magnetic pressure is a million times weaker than the gas pressure in the Suns interior, for example they are the drivers of interesting activity, like the prominences and flares of our Sun.Given this, we can wonder what role stars magnetic fields might play when the stars are torn apart in tidal disruption events. Do the fields change what we observe? Are they dispersed during the disruption, or can they be amplified? Might they even be responsible for launching jets of matter from the black hole after the disruption?Star vs. Black HoleIn a recent study, James Guillochon (Harvard-Smithsonian Center for Astrophysics) and Michael McCourt (Hubble Fellow at UC Santa Barbara) have tackled these questions by performing the first simulations of tidal disruptions of stars that include magnetic fields.In their simulations, Guillochon and McCourt evolve a solar-mass star that passes close to a million-solar-mass black hole. Their simulations explore different magnetic field configurations for the star, and they consider both what happens when the star barely grazes the black hole and is only partially disrupted, as well as what happens when the black hole tears the star apart

  3. YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD STAR-FORMING REGION N206

    International Nuclear Information System (INIS)

    Romita, Krista Alexandra; Meixner, M.; Sewilo, M.; Shiao, B.; Carlson, Lynn Redding; Whitney, B.; Babler, B.; Meade, M.; Indebetouw, R.; Hora, J. L.

    2010-01-01

    We present analysis of the energetic star-forming region Henize 206 (N206) located near the southern edge of the Large Magellanic Cloud (LMC) based on photometric data from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE-LMC; IRAC 3.6, 4.5, 5.8, 8.0 μm and MIPS 24 μm), Infrared Survey Facility near-infrared survey (J, H, K s ), and the Magellanic Clouds Photometric Survey (MCPS UBVI) covering a wavelength range of 0.36-24 μm. Young stellar object (YSO) candidates are identified based upon their location in infrared color-magnitude space and classified by the shapes of their spectral energy distributions in comparison with a pre-computed grid of YSO models. We identify 116 YSO candidates: 102 are well characterized by the YSO models, predominately Stage I, and 14 may be multiple sources or young sources with transition disks. Careful examination of the individual sources and their surrounding environment allows us to identify a factor of ∼14.5 more YSO candidates than have already been identified. The total mass of these well-fit YSO candidates is ∼520 M sun . We calculate a current star formation rate of 0.27 x 10 -1 M sun yr -1 kpc -2 . The distribution of YSO candidates appears to follow shells of neutral material in the interstellar medium.

  4. Kinematic evidence for feedback-driven star formation in NGC 1893

    Science.gov (United States)

    Lim, Beomdu; Sung, Hwankyung; Bessell, Michael S.; Lee, Sangwoo; Lee, Jae Joon; Oh, Heeyoung; Hwang, Narae; Park, Byeong-Gon; Hur, Hyeonoh; Hong, Kyeongsoo; Park, Sunkyung

    2018-06-01

    OB associations are the prevailing star-forming sites in the Galaxy. Up to now, the process of how OB associations were formed remained a mystery. A possible process is self-regulating star formation driven by feedback from massive stars. However, although a number of observational studies uncovered various signposts of feedback-driven star formation, the effectiveness of such feedback has been questioned. Stellar and gas kinematics is a promising tool to capture the relative motion of newborn stars and gas away from ionizing sources. We present high-resolution spectroscopy of stars and gas in the young open cluster NGC 1893. Our findings show that newborn stars and the tadpole nebula Sim 130 are moving away from the central cluster containing two O-type stars, and that the time-scale of sequential star formation is about 1 Myr within a 9 pc distance. The newborn stars formed by feedback from massive stars account for at least 18 per cent of the total stellar population in the cluster, suggesting that this process can play an important role in the formation of OB associations. These results support the self-regulating star formation model.

  5. Spectrophotometry of carbon stars

    Energy Technology Data Exchange (ETDEWEB)

    Oganesyan, R.K.; Karapetyan, M.S.; Nersisyan, S.E.

    1986-01-01

    The results are given of the spectrophotometric investigation of 56 carbon stars in the spectral range from 4000 to 6800 A with resolution 3 A. The observed energy distributions of these stars are determined relative to the flux at the wavelength /sub 0/ = 5556; they are presented in the form of graphs. The energy distributions have been obtained for the first time for 35 stars. Variation in the line Ba II 4554 A has been found in the spectra of St Cam, UU Aur, and RV Mon. Large changes have taken place in the spectra of RT UMa and SS Vir. It is noted that the spectra of carbon stars have a depression, this being situated in different spectral regions for individual groups of stars.

  6. ALMA view of RX J1131-1231: Sub-kpc CO (2-1) mapping of a molecular disk in a lensed star-forming quasar host galaxy

    Science.gov (United States)

    Paraficz, D.; Rybak, M.; McKean, J. P.; Vegetti, S.; Sluse, D.; Courbin, F.; Stacey, H. R.; Suyu, S. H.; Dessauges-Zavadsky, M.; Fassnacht, C. D.; Koopmans, L. V. E.

    2018-05-01

    We present ALMA 2-mm continuum and CO (2-1) spectral line imaging of the gravitationally lensed z = 0.654 star-forming/quasar composite RX J1131-1231 at 240-400 mas angular resolution. The continuum emission is found to be compact and coincident with the optical emission, whereas the molecular gas forms a complete Einstein ring, which shows strong differential magnification. The de-lensed source structure is determined on 400-parsec-scales resolution using a Bayesian pixelated visibility-fitting lens modelling technique. The reconstructed molecular gas velocity-field is consistent with a large rotating disk with a major-axis FWHM 9.4 kpc at an inclination angle of i = 54° and with a maximum rotational velocity of 280 km s-1. From dynamical model fitting we find an enclosed mass within 5 kpc of M(r conversion factor of α = 5.5 ± 2.0 M⊙ (K km s-1 pc2)-1. This suggests that the star-formation efficiency is dependent on the host galaxy morphology as opposed to the nature of the AGN. The far-infrared continuum spectral energy distribution shows evidence for heated dust, equivalent to an obscured star-formation rate of SFR = 69-25+41 × (7.3/μIR) M⊙ yr-1, which demonstrates the composite star-forming and AGN nature of this system.

  7. PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Tacconi, L. J.; Genzel, R.; Wuyts, S.; Förster Schreiber, N. M.; Gracia-Carpio, J.; Lutz, D.; Saintonge, A.; Neri, R.; Cox, P.; Combes, F.; Bolatto, A.; Cooper, M. C.; Bournaud, F.; Burkert, A.; Comerford, J.; Davis, M.; Newman, S.; García-Burillo, S.; Naab, T.; Omont, A.

    2013-01-01

    We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in massive, main-sequence star-forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z ∼ 1.2 and 2.2, with log(M * (M ☉ )) ≥ 10.4 and log(SFR(M ☉ /yr)) ≥ 1.5. Including a correction for the incomplete coverage of the M * -SFR plane, and adopting a ''Galactic'' value for the CO-H 2 conversion factor, we infer average gas fractions of ∼0.33 at z ∼ 1.2 and ∼0.47 at z ∼ 2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z ∼ 1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular-gas-star-formation relation for the z = 1-3 SFGs is near-linear, with a ∼0.7 Gyr gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z ∼ 0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M * , gas fractions correlate strongly with the specific star formation rate (sSFR). The variation of sSFR between z ∼ 0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.

  8. Radio continuum observations of local star-forming galaxies using the Caltech Continuum Backend on the green bank telescope

    International Nuclear Information System (INIS)

    Rabidoux, Katie; Pisano, D. J.; Kepley, Amanda A.; Johnson, Kelsey E.; Balser, Dana S.

    2014-01-01

    We observed radio continuum emission in 27 local (D < 70 Mpc) star-forming galaxies with the Robert C. Byrd Green Bank Telescope between 26 GHz and 40 GHz using the Caltech Continuum Backend. We obtained detections for 22 of these galaxies at all four sub-bands and four more marginal detections by taking the average flux across the entire bandwidth. This is the first detection (full or marginal) at these frequencies for 22 of these galaxies. We fit spectral energy distributions (SEDs) for all of the four sub-band detections. For 14 of the galaxies, SEDs were best fit by a combination of thermal free-free and nonthermal synchrotron components. Eight galaxies with four sub-band detections had steep spectra that were only fit by a single nonthermal component. Using these fits, we calculated supernova rates, total number of equivalent O stars, and star formation rates within each ∼23'' beam. For unresolved galaxies, these physical properties characterize the galaxies' recent star formation on a global scale. We confirm that the radio-far-infrared correlation holds for the unresolved galaxies' total 33 GHz flux regardless of their thermal fractions, though the scatter on this correlation is larger than that at 1.4 GHz. In addition, we found that for the unresolved galaxies, there is an inverse relationship between the ratio of 33 GHz flux to total far-infrared flux and the steepness of the galaxy's spectral index between 1.4 GHz and 33 GHz. This relationship could be an indicator of the timescale of the observed episode of star formation.

  9. Connecting the Cosmic Star Formation Rate with the Local Star Formation

    Science.gov (United States)

    Gribel, Carolina; Miranda, Oswaldo D.; Williams Vilas-Boas, José

    2017-11-01

    We present a model that unifies the cosmic star formation rate (CSFR), obtained through the hierarchical structure formation scenario, with the (Galactic) local star formation rate (SFR). It is possible to use the SFR to generate a CSFR mapping through the density probability distribution functions commonly used to study the role of turbulence in the star-forming regions of the Galaxy. We obtain a consistent mapping from redshift z˜ 20 up to the present (z = 0). Our results show that the turbulence exhibits a dual character, providing high values for the star formation efficiency ( ˜ 0.32) in the redshift interval z˜ 3.5{--}20 and reducing its value to =0.021 at z = 0. The value of the Mach number ({{ M }}{crit}), from which rapidly decreases, is dependent on both the polytropic index (Γ) and the minimum density contrast of the gas. We also derive Larson’s first law associated with the velocity dispersion ( ) in the local star formation regions. Our model shows good agreement with Larson’s law in the ˜ 10{--}50 {pc} range, providing typical temperatures {T}0˜ 10{--}80 {{K}} for the gas associated with star formation. As a consequence, dark matter halos of great mass could contain a number of halos of much smaller mass, and be able to form structures similar to globular clusters. Thus, Larson’s law emerges as a result of the very formation of large-scale structures, which in turn would allow the formation of galactic systems, including our Galaxy.

  10. Statistical investigation of spectroscopic binary stars

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Yungelson, L.R.

    1980-01-01

    A catalog of physical parameters of about 1000 spectroscopic binary stars (SB), based on the Batten catalog, its extensions, and newly published data has been compiled. Masses of stars' components (M 1 and M 2 ), mass ratios of components (q=M 1 /M 2 ) and orbital angular momenta are computed, wherever possible. It is probable that the initial mass function of the primaries is non-monotonic and is described only approximately by a power-law. A number of assumed 'initial' distributions of M 1 , q and the semiaxes of orbits were transformed with the aim of obtaining 'observed' distributions taking into account the observational selection due to the luminosities of the components, their radial velocities, inclinations of the orbits, and the effects of matter exchange between the components. (Auth.)

  11. Mid-infrared spectroscopy of starbursts : from Spitzer-IRS to JWST-MIRI

    NARCIS (Netherlands)

    Martínez-Galarza, Juan Rafael

    2012-01-01

    The Spectral Energy Distributions (SEDs) of star-forming regions and starburst galaxies are unique tracers of the star formation processes in these environments, since they contain information on the escaping and processed photons emitted by newly formed massive stars. Understanding these internal

  12. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements

    Science.gov (United States)

    Höfner, Susanne; Olofsson, Hans

    2018-01-01

    As low- and intermediate-mass stars reach the asymptotic giant branch (AGB), they have developed into intriguing and complex objects that are major players in the cosmic gas/dust cycle. At this stage, their appearance and evolution are strongly affected by a range of dynamical processes. Large-scale convective flows bring newly-formed chemical elements to the stellar surface and, together with pulsations, they trigger shock waves in the extended stellar atmosphere. There, massive outflows of gas and dust have their origin, which enrich the interstellar medium and, eventually, lead to a transformation of the cool luminous giants into white dwarfs. Dust grains forming in the upper atmospheric layers play a critical role in the wind acceleration process, by scattering and absorbing stellar photons and transferring their outward-directed momentum to the surrounding gas through collisions. Recent progress in high-angular-resolution instrumentation, from the visual to the radio regime, is leading to valuable new insights into the complex dynamical atmospheres of AGB stars and their wind-forming regions. Observations are revealing asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months, as well as more long-lived large-scale structures in the circumstellar envelopes. High-angular-resolution observations indicate at what distances from the stars dust condensation occurs, and they give information on the chemical composition and sizes of dust grains in the close vicinity of cool giants. These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models. At present, it is still not fully possible to model all these phenomena from first principles, and to predict the mass-loss rate based on fundamental stellar parameters only. However, much progress has been made

  13. EVOLUTION OF THE MASS-METALLICITY RELATIONS IN PASSIVE AND STAR-FORMING GALAXIES FROM SPH-COSMOLOGICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Romeo Velonà, A. D.; Gavignaud, I.; Meza, A.; Sommer-Larsen, J.; Napolitano, N. R.; Antonuccio-Delogu, V.; Cielo, S.

    2013-01-01

    We present results from SPH-cosmological simulations, including self-consistent modeling of supernova feedback and chemical evolution, of galaxies belonging to two clusters and 12 groups. We reproduce the mass-metallicity (ZM) relation of galaxies classified in two samples according to their star-forming (SF) activity, as parameterized by their specific star formation rate (sSFR), across a redshift range up to z = 2. The overall ZM relation for the composite population evolves according to a redshift-dependent quadratic functional form that is consistent with other empirical estimates, provided that the highest mass bin of the brightest central galaxies is excluded. Its slope shows irrelevant evolution in the passive sample, being steeper in groups than in clusters. However, the subsample of high-mass passive galaxies only is characterized by a steep increase of the slope with redshift, from which it can be inferred that the bulk of the slope evolution of the ZM relation is driven by the more massive passive objects. The scatter of the passive sample is dominated by low-mass galaxies at all redshifts and keeps constant over cosmic times. The mean metallicity is highest in cluster cores and lowest in normal groups, following the same environmental sequence as that previously found in the red sequence building. The ZM relation for the SF sample reveals an increasing scatter with redshift, indicating that it is still being built at early epochs. The SF galaxies make up a tight sequence in the SFR-M * plane at high redshift, whose scatter increases with time alongside the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the SF galaxies, while on the contrary more active galaxies

  14. Low-Metallicity Blue Compact Dwarfs as Templates for Primordial Star Formation

    OpenAIRE

    Hunt, L. K.; Hirashita, H.; Thuan, T. X.; Izotov, Y. I.; Vanzi, L.

    2003-01-01

    Understanding how galaxies formed their first stars is a vital cosmological question, but the study of high-redshift objects, caught in the act of forming their first stars, is difficult. Here we argue that two extremely low-metallicity Blue Compact Dwarf galaxies (BCDs), IZw18 and SBS0335-052, could be local templates for primordial star formation, since both lack evolved ($> $1 Gyr) stellar populations; but they form stars differently.

  15. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    Science.gov (United States)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as

  16. Star formations rates in the Galaxy

    International Nuclear Information System (INIS)

    Smith, L.F.; Mezger, P.G.; Biermann, P.

    1978-01-01

    Data relevant to giant HII regions in the Galaxy are collected. The production rate for Lyman continuum photons by O stars in giant HII regions is 4.7 10 52 s -1 in the whole Galaxy. The corresponding present rate of star formation is M (sun)/yr, of which 74% occurs in main spiral arms, 13% in the interarm region and 13% in the galactic center. The star formation rates, the observed heavy element and deuterium abundances in the solar neighbourhood are compared to model predictions based on star formation proportional to a power (k) of the gas surface density. The mass function is terminated at Msub(u)=100 M (sun) above and M 1 below. Msub(u)=50 M (sun) is also considered. Comparing with data derived from observations a) the star formation rate, b) metal abundances, c) deuterium abundances, and d) colors of the stellar population, we find that models of k=1/2 to 1, and M 1 1 M (sun) are formed together with O and B stars, but under rather special conditions of the interstellar gas, while lower mass stars form wherever dense molecular clouds exist. The high rate of star formation in the galactic center may represent a burst. (orig.) [de

  17. Star formation in N-body simulations .1. The impact of the stellar ultraviolet radiation on star formation

    NARCIS (Netherlands)

    Gerritsen, JPE; Icke, [No Value

    We present numerical simulations of isolated disk galaxies including gas dynamics and star formation. The gas is allowed to cool to 10 K, while heating of the gas is provided by the far-ultraviolet flux of all stars. Stars are allowed to form from the gas according to a Jeans instability criterion:

  18. Introduction to neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Lattimer, James M. [Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  19. The formation of stars by gravitational collapse rather than competitive accretion

    Science.gov (United States)

    Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2005-11-01

    There are two dominant models of how stars form. Under gravitational collapse, star-forming molecular clumps, of typically hundreds to thousands of solar masses (Msolar), fragment into gaseous cores that subsequently collapse to make individual stars or small multiple systems. In contrast, competitive accretion theory suggests that at birth all stars are much smaller than the typical stellar mass (~0.5Msolar), and that final stellar masses are determined by the subsequent accretion of unbound gas from the clump. Competitive accretion models interpret brown dwarfs and free-floating planets as protostars ejected from star-forming clumps before they have accreted much mass; key predictions of this model are that such objects should lack disks, have high velocity dispersions, form more frequently in denser clumps, and that the mean stellar mass should vary within the Galaxy. Here we derive the rate of competitive accretion as a function of the star-forming environment, based partly on simulation, and determine in what types of environments competitive accretion can occur. We show that no observed star-forming region can undergo significant competitive accretion, and that the simulations that show competitive accretion do so because the assumed properties differ from those determined by observation. Our result shows that stars form by gravitational collapse, and explains why observations have failed to confirm predictions of the competitive accretion model.

  20. WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE z ∼ 2 FROM CANDELS

    International Nuclear Information System (INIS)

    Bell, Eric F.; Herrington, Jessica; Van der Wel, Arjen; Papovich, Casey; Kocevski, Dale; Faber, S. M.; Cheung, Edmond; Koo, David C.; McGrath, Elizabeth J.; Lotz, Jennifer; Ferguson, Harry; Koekemoer, Anton; Grogin, Norman; McIntosh, Daniel H.; Kartaltepe, Jeyhan; Wuyts, Stijn; Conselice, Christopher J.; Dekel, Avishai; Dunlop, James S.; Giavalisco, Mauro

    2012-01-01

    We use HST/WFC3 imaging from the CANDELS Multi-Cycle Treasury Survey, in conjunction with the Sloan Digital Sky Survey, to explore the evolution of galactic structure for galaxies with stellar masses >3 × 10 10 M ☉ from z = 2.2 to the present epoch, a time span of 10 Gyr. We explore the relationship between rest-frame optical color, stellar mass, star formation activity, and galaxy structure. We confirm the dramatic increase from z = 2.2 to the present day in the number density of non-star-forming galaxies above 3 × 10 10 M ☉ reported by others. We further find that the vast majority of these quiescent systems have concentrated light profiles, as parameterized by the Sérsic index, and the population of concentrated galaxies grows similarly rapidly. We examine the joint distribution of star formation activity, Sérsic index, stellar mass, inferred velocity dispersion, and stellar surface density. Quiescence correlates poorly with stellar mass at all z 1.3, and somewhat less well at lower redshifts. Yet, there is significant scatter between quiescence and galaxy structure: while the vast majority of quiescent galaxies have prominent bulges, many of them have significant disks, and a number of bulge-dominated galaxies have significant star formation. Noting the rarity of quiescent galaxies without prominent bulges, we argue that a prominent bulge (and perhaps, by association, a supermassive black hole) is an important condition for quenching star formation on galactic scales over the last 10 Gyr, in qualitative agreement with the active galactic nucleus feedback paradigm.

  1. Models of symbiotic stars

    Science.gov (United States)

    Friedjung, Michael

    1993-01-01

    One of the most important features of symbiotic stars is the coexistence of a cool spectral component that is apparently very similar to the spectrum of a cool giant, with at least one hot continuum, and emission lines from very different stages of ionization. The cool component dominates the infrared spectrum of S-type symbiotics; it tends to be veiled in this wavelength range by what appears to be excess emission in D-type symbiotics, this excess usually being attributed to circumstellar dust. The hot continuum (or continua) dominates the ultraviolet. X-rays have sometimes also been observed. Another important feature of symbiotic stars that needs to be explained is the variability. Different forms occur, some variability being periodic. This type of variability can, in a few cases, strongly suggest the presence of eclipses of a binary system. One of the most characteristic forms of variability is that characterizing the active phases. This basic form of variation is traditionally associated in the optical with the veiling of the cool spectrum and the disappearance of high-ionization emission lines, the latter progressively appearing (in classical cases, reappearing) later. Such spectral changes recall those of novae, but spectroscopic signatures of the high-ejection velocities observed for novae are not usually detected in symbiotic stars. However, the light curves of the 'symbiotic nova' subclass recall those of novae. We may also mention in this connection that radio observations (or, in a few cases, optical observations) of nebulae indicate ejection from symbiotic stars, with deviations from spherical symmetry. We shall give a historical overview of the proposed models for symbiotic stars and make a critical analysis in the light of the observations of symbiotic stars. We describe the empirical approach to models and use the observational data to diagnose the physical conditions in the symbiotics stars. Finally, we compare the results of this empirical

  2. Insight into star death

    International Nuclear Information System (INIS)

    Talcott, R.

    1988-01-01

    Nineteen neutrinos, formed in the center of a supernova, became a theorist's dream. They came straight from the heart of supernova 1987A and landed in two big underground tanks of water. Suddenly a new chapter in observational astronomy opened as these two neutrino telescopes gave astronomers their first look ever into the core of a supernova explosion. But the theorists' dream almost turned into a nightmare. Observations of the presupernova star showed conclusively that the star was a blue supergiant, but theorists have long believed only red supergiant stars could explode as supernovae. Do astronomers understand supernovae better now than when supernova 1987A exploded in the Large Magellanic Cloud (LMC) one year ago? Yes. The observations of neutrinos spectacularly confirmed a vital aspect of supernova theory. But the observed differences between 1987A and other supernovae have illuminated and advanced our perception of how supernovae form. By working together, observers and theorists are continuing to hone their ideas about how massive stars die and how the subsequent supernovae behave

  3. The Diversity of Diffuse Ly α Nebulae around Star-forming Galaxies at High Redshift

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Rui; Lee, Kyoung-Soo [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Dey, Arjun; Inami, Hanae [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Reddy, Naveen [Department of Physics and Astronomy, University of California, Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Hong, Sungryong [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Prescott, Moire K. M. [Department of Astronomy, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88001 (United States); Jannuzi, Buell T. [Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States)

    2017-03-10

    We report the detection of diffuse Ly α emission, or Ly α halos (LAHs), around star-forming galaxies at z ≈ 3.78 and 2.66 in the NOAO Deep Wide-Field Survey Boötes field. Our samples consist of a total of ∼1400 galaxies, within two separate regions containing spectroscopically confirmed galaxy overdensities. They provide a unique opportunity to investigate how the LAH characteristics vary with host galaxy large-scale environment and physical properties. We stack Ly α images of different samples defined by these properties and measure their median LAH sizes by decomposing the stacked Ly α radial profile into a compact galaxy-like and an extended halo-like component. We find that the exponential scale-length of LAHs depends on UV continuum and Ly α luminosities, but not on Ly α equivalent widths or galaxy overdensity parameters. The full samples, which are dominated by low UV-continuum luminosity Ly α emitters ( M {sub UV} ≳ −21), exhibit LAH sizes of 5–6 kpc. However, the most UV- or Ly α- luminous galaxies have more extended halos with scale-lengths of 7–9 kpc. The stacked Ly α radial profiles decline more steeply than recent theoretical predictions that include the contributions from gravitational cooling of infalling gas and from low-level star formation in satellites. However, the LAH extent matches what one would expect for photons produced in the galaxy and then resonantly scattered by gas in an outflowing envelope. The observed trends of LAH sizes with host galaxy properties suggest that the physical conditions of the circumgalactic medium (covering fraction, H i column density, and outflow velocity) change with halo mass and/or star formation rates.

  4. Discovery of a New Dusty B[E] Star in the Small Magellanic Cloud

    Science.gov (United States)

    Wisniewski, John P.; Bjorkman, Karen S.; Bjorkman, Jon E.; Clampin, Mark

    2007-01-01

    We present new optical spectroscopic and Spitzer IRAC photometric observations of a B-type star in the SMC cluster NGC 346, NGC 346:KWBBe 200. We detect numerous Fe II, [O I], [Fe II], as well as strong P-Cygni profile H I emission lines in its optical spectrum. The star's near-IR color and optical to IR SED clearly indicate the presence of an infrared excess, consistent with the presence of gas and warm, T -800 K, circumstellar dust. Based on a crude estimate of the star's luminosity and the observed spectroscopic line profile morphologies, we find that the star is likely to be a B-type supergiant. We suggest that NGC 346:KWBBe 200 is a newly discovered B[e] supergiant star, and represents the fifth such object to be identified in the SMC.

  5. Two possible approaches to form sub-millisecond pulsars

    OpenAIRE

    Du, Yuanjie; Xu, R. X.; Qiao, G. J.; Han, J. L.

    2008-01-01

    Pulsars have been recognized as normal neutron stars or quark stars. Sub-millisecond pulsars, if detected, would play an essential and important role in distinguishing quark stars from neutron stars. A key question is how sub-millisecond pulsars could form. Both sub-Keplerian (for neutron and quark stars) and super-Keplerian cases (only for quark stars, which are bound additionally by strong interaction) have been discussed in this paper in order to investigate possible ways of forming sub-mi...

  6. Gas Content and Kinematics in Clumpy, Turbulent Star-forming Disks

    International Nuclear Information System (INIS)

    White, Heidi A.; Abraham, Roberto G.; Fisher, David B.; Glazebrook, Karl; Murray, Norman; Bolatto, Alberto D.; Green, Andrew W.; Mentuch Cooper, Erin; Obreschkow, Danail

    2017-01-01

    We present molecular gas-mass estimates for a sample of 13 local galaxies whose kinematic and star-forming properties closely resemble those observed in z ≈ 1.5 main-sequence galaxies. Plateau de Bure observations of the CO[1-0] emission line and Herschel Space Observatory observations of the dust emission both suggest molecular gas-mass fractions of ∼20%. Moreover, dust emission modeling finds T dust < 30 K, suggesting a cold dust distribution compared to their high infrared luminosity. The gas-mass estimates argue that z ∼ 0.1 DYNAMO galaxies not only share similar kinematic properties with high- z disks, but they are also similarly rich in molecular material. Pairing the gas-mass fractions with existing kinematics reveals a linear relationship between f gas and σ / v c , consistent with predictions from stability theory of a self-gravitating disk. It thus follows that high gas-velocity dispersions are a natural consequence of large gas fractions. We also find that the systems with the lowest t dep (∼0.5 Gyr) have the highest ratios of σ / v c and more pronounced clumps, even at the same high molecular gas fraction.

  7. Gas Content and Kinematics in Clumpy, Turbulent Star-forming Disks

    Energy Technology Data Exchange (ETDEWEB)

    White, Heidi A.; Abraham, Roberto G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H8 (Canada); Fisher, David B.; Glazebrook, Karl [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Murray, Norman [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto ON M5S 3H8 (Canada); Bolatto, Alberto D. [Department of Astronomy and Joint Space Institute, University of Maryland, College Park, MD 20642 (United States); Green, Andrew W. [Australian Astronomical Observatory, P.O. Box 970, North Ryde, NSW 1670 (Australia); Mentuch Cooper, Erin [Astronomy Department, University of Texas at Austin, Austin, TX 78712 (United States); Obreschkow, Danail [International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, M468, Crawley, WA 6009 (Australia)

    2017-09-01

    We present molecular gas-mass estimates for a sample of 13 local galaxies whose kinematic and star-forming properties closely resemble those observed in z ≈ 1.5 main-sequence galaxies. Plateau de Bure observations of the CO[1-0] emission line and Herschel Space Observatory observations of the dust emission both suggest molecular gas-mass fractions of ∼20%. Moreover, dust emission modeling finds T {sub dust} < 30 K, suggesting a cold dust distribution compared to their high infrared luminosity. The gas-mass estimates argue that z ∼ 0.1 DYNAMO galaxies not only share similar kinematic properties with high- z disks, but they are also similarly rich in molecular material. Pairing the gas-mass fractions with existing kinematics reveals a linear relationship between f {sub gas} and σ / v {sub c}, consistent with predictions from stability theory of a self-gravitating disk. It thus follows that high gas-velocity dispersions are a natural consequence of large gas fractions. We also find that the systems with the lowest t {sub dep} (∼0.5 Gyr) have the highest ratios of σ / v{sub c} and more pronounced clumps, even at the same high molecular gas fraction.

  8. STAR FORMATION AT Z = 2.481 IN THE LENSED GALAXY SDSS J1110+6459: STAR FORMATION DOWN TO 30 PARSEC SCALES.

    Science.gov (United States)

    Johnson, Traci L; Rigby, Jane R; Sharon, Keren; Gladders, Michael D; Florian, Michael; Bayliss, Matthew B; Wuyts, Eva; Whitaker, Katherine E; Livermore, Rachael; Murray, Katherine T

    2017-07-10

    We present measurements of the surface density of star formation, the star-forming clump luminosity function, and the clump size distribution function, for the lensed galaxy SGAS J111020.0+645950.8 at a redshift of z =2.481. The physical size scales that we probe, radii r = 30-50 pc, are considerably smaller scales than have yet been studied at these redshifts. The star formation surface density we find within these small clumps is consistent with surface densities measured previously for other lensed galaxies at similar redshift. Twenty-two percent of the rest-frame ultraviolet light in this lensed galaxy arises from small clumps, with r star-forming regions smaller than 100 pc-physical scales not usually resolved at these redshifts by current telescopes-are important locations of star formation in the distant universe. If this galaxy is representative, this may contradict the theoretical picture in which the critical size scale for star formation in the distant universe is of order 1 kiloparsec. Instead, our results suggest that current telescopes have not yet resolved the critical size scales of star-forming activity in galaxies over most of cosmic time.

  9. Late stages of massive star evolution and nucleosynthesis

    International Nuclear Information System (INIS)

    Nomoto, Ken'ichi; Hashimoto, Masa-aki.

    1986-01-01

    The evolution of massive stars in the mass range of 8 to 25 M solar mass is reviewed. The effect of electron degeneracy on the gravothermal nature of stars is discussed. Depending on the stellar mass, the stars form three types of cores, namely, non-degenerate, semi-degenerate, and strongly degenerate cores. The evolution for these cases is quite distinct from each other and leads to the three different types of final fate. It is suggested that our helium star model, which is equivalent to a 25 M solar mass star, will form a relatively small mass iron core despite the faster 12 C(α,γ) 16 O reaction. 50 refs., 21 figs

  10. INTERACTIONS BETWEEN FORMING STARS AND DENSE GAS IN THE SMALL LOW-MASS CLUSTER CEDERBLAD 110

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, E. F. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Wong, T. [Department of Astronomy, University of Illinois, Urbana, IL 61801 (United States); Bourke, T. L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Thompson, K. L., E-mail: ladd@bucknell.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

    2011-12-20

    We present observations of dense gas and outflow activity in the Cederblad 110 region of the Chamaeleon I dark cloud complex. The region contains nine forming low-mass stars in evolutionary stages ranging from Class 0 to Class II/III crowded into a 0.2 pc region with high surface density ({Sigma}{sub YSO} {approx} 150 pc{sup -2}). The analysis of our N{sub 2}H{sup +} (J = 1{yields}0) maps indicates the presence of 13 {+-} 3 solar masses of dense (n {approx} 10{sup 5} cm{sup -3}) gas in this region, much of which is unstable against gravitational collapse. The most unstable material is located near the Class 0 source MMS-1, which is almost certainly actively accreting material from its dense core. Smaller column densities of more stable dense gas are found toward the region's Class I sources, IRS 4, 11, and 6. Little or no dense gas is colocated with the Class II and III sources in the region. The outflow from IRS 4 is interacting with the dense core associated with MMS-1. The molecular component of the outflow, measured in the (J = 1{yields}0) line of {sup 12}CO, appears to be deflected by the densest part of the core, after which it appears to plow through some of the lower column density portions of the core. The working surface between the head of the outflow lobe and the dense core material can be seen in the enhanced velocity dispersion of the dense gas. IRS 2, the Class III source that produces the optical reflection nebula that gives the Cederblad 110 region its name, may also be influencing the dense gas in the region. A dust temperature gradient across the MMS-1 dense core is consistent with warming from IRS 2, and a sharp gradient in dense gas column density may be caused by winds from this source. Taken together, our data indicate that this region has been producing several young stars in the recent past, and that sources which began forming first are interacting with the remaining dense gas in the region, thereby influencing current and future star

  11. Star formation is boosted (and quenched) from the inside-out: radial star formation profiles from MaNGA

    Science.gov (United States)

    Ellison, Sara L.; Sánchez, Sebastian F.; Ibarra-Medel, Hector; Antonio, Braulio; Mendel, J. Trevor; Barrera-Ballesteros, Jorge

    2018-02-01

    The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star-forming main sequence. Using ˜487 000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (ΣSFR) and stellar mass (Σ⋆) on kpc scales, representing a `resolved' main sequence. Using a new metric (ΔΣSFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star-forming main sequence (ΔSFR). For galaxies above the global main sequence (positive ΔSFR) ΔΣSFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (<3 kpc, or 0.5Re). Moreover, galaxies that are at least a factor of 3 above the main sequence show diluted gas phase metallicities out to 2Re, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star-forming main sequence, there is an analogous deficit of star formation throughout the galaxy with the lowest values of ΔΣSFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction' scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.

  12. Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies

    Science.gov (United States)

    Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.

    2018-02-01

    We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.

  13. Infall toward High-Mass Star-forming Clumps and Cores: The [O I] 63 um Line

    Science.gov (United States)

    Jackson, James

    Although the 63 um line has often been used as a diagnostic of photodissociation regions, toward cold, dense infrared dark cloud clumps it is often seen in absorption. We aim to exploit this high optical depth in IRDCs to probe the infall velocities and mass accretion rates of high-mass star-forming clumps and cores. We will use "blue asymmetric" self-absorbed line profiles or redshifted absorption against the protostellar dust continuum to measure infall rates. We will target 8 IRDC clumps in NGC6334 and "Nessie" to probe how the infall rates may change with evolutionary stage.

  14. Clustered star formation and the origin of stellar masses.

    Science.gov (United States)

    Pudritz, Ralph E

    2002-01-04

    Star clusters are ubiquitous in galaxies of all types and at all stages of their evolution. We also observe them to be forming in a wide variety of environments, ranging from nearby giant molecular clouds to the supergiant molecular clouds found in starburst and merging galaxies. The typical star in our galaxy and probably in others formed as a member of a star cluster, so star formation is an intrinsically clustered and not an isolated phenomenon. The greatest challenge regarding clustered star formation is to understand why stars have a mass spectrum that appears to be universal. This review examines the observations and models that have been proposed to explain these fundamental issues in stellar formation.

  15. VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. III. HP TAU/G2 AND THE THREE-DIMENSIONAL STRUCTURE OF TAURUS

    International Nuclear Information System (INIS)

    Torres, Rosa M.; Loinard, Laurent; Rodriguez, Luis F.; Mioduszewski, Amy J.

    2009-01-01

    Using multiepoch Very Long Baseline Array (VLBA) observations, we have measured the trigonometric parallax of the weak-line T Tauri star HP Tau/G2 in Taurus. The best fit yields a distance of 161.2 ± 0.9 pc, suggesting that the eastern portion of Taurus (where HP Tau/G2 is located) corresponds to the far side of the complex. Previous VLBA observations have shown that T Tau, to the south of the complex, is at an intermediate distance of about 147 pc, whereas the region around L1495 corresponds to the near side at roughly 130 pc. Our observations of only four sources are still too coarse to enable a reliable determination of the three-dimensional structure of the entire Taurus star-forming complex. They do demonstrate, however, that VLBA observations of multiple sources in a given star-forming region have the potential not only to provide a very accurate estimate of its mean distance, but also to reveal its internal structure. The proper motion measurements obtained simultaneously with the parallax allowed us to study the kinematics of the young stars in Taurus. Combining the four observations available so far, we estimate the peculiar velocity of Taurus to be about 10.6 km s -1 almost completely in a direction parallel to the Galactic plane. Using our improved distance measurement, we have refined the determination of the position on the H-R diagram of HP Tau/G2, and of two other members of the HP Tau group (HP Tau itself and HP Tau/G3). Most pre-main-sequence evolutionary models predict significantly discrepant ages (by 5 Myr) for those three stars-expected to be coeval. Only in the models of Palla and Stahler do they fall on a single isochrone (at 3 Myr).

  16. SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Sana, H. [European Space Agency/Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Le Bouquin, J.-B.; Duvert, G.; Zins, G. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Lacour, S.; Gauchet, L.; Pickel, D. [LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, Paris Sciences et Lettres, 5 Place Jules Janssen, F-92195 Meudon (France); Berger, J.-P. [European Southern Observatory, Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Norris, B. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Olofsson, J. [Max-Planck-Institut für Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Absil, O. [Département d' Astrophysique, Géophysique et Océanographie, Université de Liège, 17 Allée du Six Août, B-4000 Liège (Belgium); De Koter, A. [Astrophysical Institute Anton Pannekoek, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); Kratter, K. [JILA, 440 UCB, University of Colorado, Boulder, CO 80309-0440 (United States); Schnurr, O. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Zinnecker, H., E-mail: hsana@stsci.edu [Deutsches SOFIA Instituut, SOFIA Science Center, NASA Ames Research Center, Mail Stop N232-12, Moffett Field, CA 94035 (United States)

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio

  17. Galaxies in the act of quenching star formation

    Science.gov (United States)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  18. Demographics of Star-forming Galaxies since z ∼ 2.5. I. The UVJ Diagram in CANDELS

    Science.gov (United States)

    Fang, Jerome J.; Faber, S. M.; Koo, David C.; Rodríguez-Puebla, Aldo; Guo, Yicheng; Barro, Guillermo; Behroozi, Peter; Brammer, Gabriel; Chen, Zhu; Dekel, Avishai; Ferguson, Henry C.; Gawiser, Eric; Giavalisco, Mauro; Kartaltepe, Jeyhan; Kocevski, Dale D.; Koekemoer, Anton M.; McGrath, Elizabeth J.; McIntosh, Daniel; Newman, Jeffrey A.; Pacifici, Camilla; Pandya, Viraj; Pérez-González, Pablo G.; Primack, Joel R.; Salmon, Brett; Trump, Jonathan R.; Weiner, Benjamin; Willner, S. P.; Acquaviva, Viviana; Dahlen, Tomas; Finkelstein, Steven L.; Finlator, Kristian; Fontana, Adriano; Galametz, Audrey; Grogin, Norman A.; Gruetzbauch, Ruth; Johnson, Seth; Mobasher, Bahram; Papovich, Casey J.; Pforr, Janine; Salvato, Mara; Santini, P.; van der Wel, Arjen; Wiklind, Tommy; Wuyts, Stijn

    2018-05-01

    This is the first in a series of papers examining the demographics of star-forming (SF) galaxies at 0.2 MIPS 24 μm agree well overall, but systematic differences of order 0.2 dex exist at high and low redshifts. A novel plotting scheme conveys the evolution of multiple galaxy properties simultaneously, and dust growth, as well as star formation decline and quenching, exhibit “mass-accelerated evolution” (“downsizing”). A population of transition galaxies below the SF main sequence is identified. These objects are located between SF and quiescent galaxies in UVJ space, and have lower A V and smaller radii than galaxies on the main sequence. Their properties are consistent with their being in transit between the two regions. The relative numbers of quenched, transition, and SF galaxies are given as a function of mass and redshift.

  19. Descendants of the first stars: the distinct chemical signature of second generation stars

    Science.gov (United States)

    Hartwig, Tilman; Yoshida, Naoki; Magg, Mattis; Frebel, Anna; Glover, Simon C. O.; Gómez, Facundo A.; Griffen, Brendan; Ishigaki, Miho N.; Ji, Alexander P.; Klessen, Ralf S.; O'Shea, Brian W.; Tominaga, Nozomu

    2018-05-01

    Extremely metal-poor (EMP) stars in the Milky Way (MW) allow us to infer the properties of their progenitors by comparing their chemical composition to the metal yields of the first supernovae. This method is most powerful when applied to mono-enriched stars, i.e. stars that formed from gas that was enriched by only one previous supernova. We present a novel diagnostic to identify this subclass of EMP stars. We model the first generations of star formation semi-analytically, based on dark matter halo merger trees that yield MW-like halos at the present day. Radiative and chemical feedback are included self-consistently and we trace all elements up to zinc. Mono-enriched stars account for only ˜1% of second generation stars in our fiducial model and we provide an analytical formula for this probability. We also present a novel analytical diagnostic to identify mono-enriched stars, based on the metal yields of the first supernovae. This new diagnostic allows us to derive our main results independently from the specific assumptions made regarding Pop III star formation, and we apply it to a set of observed EMP stars to demonstrate its strengths and limitations. Our results may provide selection criteria for current and future surveys and therefore contribute to a deeper understanding of EMP stars and their progenitors.

  20. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    Science.gov (United States)

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  1. A spatially-supported forced-choice recognition test reveals children’s long-term memory for newly learned word forms

    Directory of Open Access Journals (Sweden)

    Katherine R. Gordon

    2014-03-01

    Full Text Available Children’s memories for the link between a newly trained word and its referent have been the focus of extensive past research. However, memory for the word form itself is rarely assessed among preschool-age children. When it is, children are typically asked to verbally recall the forms, and they generally perform at floor on such tests. To better measure children’s memory for word forms, we aimed to design a more sensitive test that required recognition rather than recall, provided spatial cues to off-set the phonological memory demands of the test, and allowed pointing rather than verbal responses. We taught 12 novel word-referent pairs via ostensive naming to sixteen 4-to-6-year-olds and measured their memory for the word forms after a week-long retention interval using the new spatially-supported form recognition test. We also measured their memory for the word-referent links and the generalization of the links to untrained referents with commonly used recognition tests. Children demonstrated memory for word forms at above chance levels; however, their memory for forms was poorer than their memory for trained or generalized word-referent links. When in error, children were no more likely to select a foil that was a close neighbor to the target form than a maximally different foil. Additionally, they more often selected correct forms that were among the first six than the last six to be trained. Overall, these findings suggest that children are able to remember word forms after a limited number of ostensive exposures and a long-term delay. However, word forms remain more difficult to learn than word-referent links and there is an upper limit on the number of forms that can be learned within a given period of time.

  2. What Determines Star Formation Rates?

    Science.gov (United States)

    Evans, Neal John

    2017-06-01

    The relations between star formation and gas have received renewed attention. We combine studies on scales ranging from local (within 0.5 kpc) to distant galaxies to assess what factors contribute to star formation. These include studies of star forming regions in the Milky Way, the LMC, nearby galaxies with spatially resolved star formation, and integrated galaxy studies. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. The star formation ``efficiency," defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas. We suggest ways to further develop the concept of "dense gas" to incorporate other factors, such as turbulence.

  3. THE STAR-FORMATION-RATE-DENSITY RELATION AT 0.6 < z < 0.9 AND THE ROLE OF STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Patel, Shannon G.; Holden, Bradford P.; Illingworth, Garth D.; Kelson, Daniel D.; Franx, Marijn

    2011-01-01

    We study the star formation rates (SFRs) of galaxies as a function of local galaxy density at 0.6 z /(1 + z) ∼ 1% for galaxies with z AB 1.8 x 10 10 M sun (log M/M sun >10.25) to conduct our main analysis. With three different SFR indicators, (1) Spitzer MIPS 24 μm imaging, (2) spectral energy distribution (SED) fitting, and (3) [O II]λ3727 emission, we find the median specific SFR (SSFR) and SFR to decline from the low-density field to the cores of groups and a rich cluster. For the SED- and [O II]-based SFRs, the decline in SSFR is roughly an order of magnitude while for the MIPS-based SFRs, the decline is a factor of ∼4. We find approximately the same magnitude of decline in SSFR even after removing the sample of galaxies near the cluster. Galaxies in groups and a cluster at these redshifts therefore have lower star formation (SF) activity than galaxies in the field, as is the case at z ∼ 0. We investigated whether the decline in SFR with increasing density is caused by a change in the proportion of quiescent and star-forming galaxies (SFGs) or by a decline in the SFRs of SFGs. Using the rest-frame U - V and V - J colors to distinguish quiescent galaxies from SFGs (including both unattenuated blue galaxies and reddened ones), we find that the fraction of quiescent galaxies increases from ∼32% to 79% from low to high density. In addition, we find the SSFRs of SFGs, selected based on U - V and V - J colors, to decline with increasing density by factors of ∼5-6 for the SED- and [O II]-based SFRs. The MIPS-based SSFRs for SFGs decline with a shallower slope. The declining SFRs of SFGs with density are paralleled by a decline in the median A V , providing indirect evidence that the cold gas content that fuels future SF is diminished in higher density environments. The order of magnitude decline in the SSFR-density relation at 0.6 < z < 0.9 is therefore driven by both a combination of declining SFRs of SFGs as well as a changing mix of SFGs and quiescent

  4. Ultra-dense neutron star matter, strange quark stars, and the nuclear equation of state

    International Nuclear Information System (INIS)

    Weber, F.; Meixner, M.; Negreiros, R.P.; Malheiro, M.

    2007-01-01

    With central densities way above the density of atomic nuclei, neutron stars contain matter in one of the densest forms found in the universe. Depending of the density reached in the cores of neutron stars, they may contain stable phases of exotic matter found nowhere else in space. This article gives a brief overview of the phases of ultra-dense matter predicted to exist deep inside neutron stars and discusses the equation of state (EoS) associated with such matter. (author)

  5. TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. II. CEP A AND NGC 7538

    International Nuclear Information System (INIS)

    Moscadelli, L.; Reid, M. J.; Menten, K. M.; Brunthaler, A.; Xu, Y.; Zheng, X. W.

    2009-01-01

    We report trigonometric parallaxes for the sources NGC 7538 and Cep A, corresponding to distances of 2.65 +0.12 -0.11 and 0.70 +0.04 -0.04 kpc, respectively. The distance to NGC 7538 is considerably smaller than its kinematic distance and places it in the Perseus spiral arm. The distance to Cep A is also smaller than its kinematic distance and places it in the L ocalarm or spur. Combining the distance and proper motions with observed radial velocities gives the location and full space motion of the star-forming regions. We find significant deviations from circular galactic orbits for these sources: both sources show large peculiar motions (greater than 10 km s -1 ) counter to galactic rotation and NGC 7538 has a comparable peculiar motion toward the Galactic center.

  6. Spin period evolution of the newly identified ULX pulsar (NGC 300 ULX1) associated with the supernova impostor SN2010da

    Science.gov (United States)

    Vasilopoulos, G.; Haberl, F.; Carpano, S.; Maitra, C.

    2018-01-01

    Following the discovery of the newly discovered ULX pulsar in NGC 300 (ATel #11158) we searched the available X-ray data for the evolution of the spin period of the neutron star and the X-ray luminosity.

  7. POPULATION III STAR FORMATION IN LARGE COSMOLOGICAL VOLUMES. I. HALO TEMPORAL AND PHYSICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Brian D.; O' Shea, Brian W.; Smith, Britton D. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Turk, Matthew J. [Department of Astronomy, Columbia University, New York, NY 10025 (United States); Hahn, Oliver, E-mail: crosbyb1@msu.edu [Institute for Astronomy, ETH Zurich, CH-8093 Zuerich (Switzerland)

    2013-08-20

    We present a semi-analytic, computationally inexpensive model to identify halos capable of forming a Population III star in cosmological simulations across a wide range of times and environments. This allows for a much more complete and representative set of Population III star forming halos to be constructed, which will lead to Population III star formation simulations that more accurately reflect the diversity of Population III stars, both in time and halo mass. This model shows that Population III and chemically enriched stars coexist beyond the formation of the first generation of stars in a cosmological simulation until at least z {approx} 10, and likely beyond, though Population III stars form at rates that are 4-6 orders of magnitude lower than chemically enriched stars by z = 10. A catalog of more than 40,000 candidate Population III forming halos were identified, with formation times temporally ranging from z = 30 to z = 10, and ranging in mass from 2.3 Multiplication-Sign 10{sup 5} M{sub Sun} to 1.2 Multiplication-Sign 10{sup 10} M{sub Sun }. At early times, the environment that Population III stars form in is very similar to that of halos hosting chemically enriched star formation. At later times Population III stars are found to form in low-density regions that are not yet chemically polluted due to a lack of previous star formation in the area. Population III star forming halos become increasingly spatially isolated from one another at later times, and are generally closer to halos hosting chemically enriched star formation than to another halo hosting Population III star formation by z {approx} 10.

  8. A spin-down mechanism for accreting neutron stars

    International Nuclear Information System (INIS)

    Illarionov, A.F.; AN SSSR, Moscow. Fizicheskij Inst.); Kompaneets, D.A.

    1990-01-01

    We propose a new spin-down mechanism for accreting neutron stars that explains the existence of a number of long-period (p≅100-1000 s) X-ray pulsars in wide binaries with OB-stars. The spin-down is a result of efficient angular momentum transfer from the rotating magnetosphere of the accreting star to an outflowing stream of magnetized matter. The outflow is formed within a limited solid angle, and the outflow rate is less than the accretion rate. The outflow formation is connected with the anisotropy and intensity of the hard X-ray emission of the neutron star. X-rays from the pulsar heat through Compton scattering the accreting matter anisotropically. The heated matter has a lower density than the surrounding accreting matter and flows up by the action of the buoyancy force. We find the criterion for the outflow to form deep in the accretion flow (i.e., close to the neutron star magnetosphere). The neutron star loses angular momentum when the outflow forms so deep as to capture the magnetic field lines from the rotating magnetosphere. The balance between angular momentum gain by accreting gas and loss by outflowing matter takes place at a particular value of the period of the spinning neutron star. (orig.)

  9. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion.

    Science.gov (United States)

    Turner, J L; Beck, S C; Benford, D J; Consiglio, S M; Ho, P T P; Kovács, A; Meier, D S; Zhao, J-H

    2015-03-19

    Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.

  10. Formation of the First Star Clusters and Massive Star Binaries by Fragmentation of Filamentary Primordial Gas Clouds

    Science.gov (United States)

    Hirano, Shingo; Yoshida, Naoki; Sakurai, Yuya; Fujii, Michiko S.

    2018-03-01

    We perform a set of cosmological simulations of early structure formation incorporating baryonic streaming motions. We present a case where a significantly elongated gas cloud with ∼104 solar mass (M ⊙) is formed in a pre-galactic (∼107 M ⊙) dark halo. The gas streaming into the halo compresses and heats the massive filamentary cloud to a temperature of ∼10,000 Kelvin. The gas cloud cools rapidly by atomic hydrogen cooling, and then by molecular hydrogen cooling down to ∼400 Kelvin. The rapid decrease of the temperature and hence of the Jeans mass triggers fragmentation of the filament to yield multiple gas clumps with a few hundred solar masses. We estimate the mass of the primordial star formed in each fragment by adopting an analytic model based on a large set of radiation hydrodynamics simulations of protostellar evolution. The resulting stellar masses are in the range of ∼50–120 M ⊙. The massive stars gravitationally attract each other and form a compact star cluster. We follow the dynamics of the star cluster using a hybrid N-body simulation. We show that massive star binaries are formed in a few million years through multi-body interactions at the cluster center. The eventual formation of the remnant black holes will leave a massive black hole binary, which can be a progenitor of strong gravitational wave sources similar to those recently detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

  11. A high spatial resolution X-ray and Hα study of hot gas in the halos of star-forming disk galaxies -- testing feedback models

    Science.gov (United States)

    Strickland, D. K.; Heckman, T. M.; Colbert, E. J. M.; Hoopes, C. G.; Weaver, K. A.

    2002-12-01

    We present arcsecond resolution Chandra X-ray and ground-based optical Hα imaging of a sample of ten edge-on star-forming disk galaxies (seven starburst and three ``normal'' spiral galaxies), a sample which covers the full range of star-formation intensity found in disk galaxies. The X-ray observations make use of the unprecented spatial resolution of the Chandra X-ray observatory to robustly remove X-ray emission from point sources, and hence obtain the X-ray properties of the diffuse thermal emission alone. This data has been combined with existing, comparable-resolution, ground-based Hα imaging. We compare these empirically-derived diffuse X-ray properties with various models for the generation of hot gas in the halos of star-forming galaxies: supernova feedback-based models (starburst-driven winds, galactic fountains), cosmologically-motivated accretion of the IGM and AGN-driven winds. SN feedback models best explain the observed diffuse X-ray emission. We then use the data to test basic, but fundamental, aspects of wind and fountain theories, e.g. the critical energy required for disk "break-out." DKS is supported by NASA through Chandra Postdoctoral Fellowship Award Number PF0-10012.

  12. A deep near-infrared spectroscopic survey of the Scutum-Crux arm for Wolf-Rayet stars

    Science.gov (United States)

    Rosslowe, C. K.; Crowther, Paul A.

    2018-01-01

    We present a New Technology Telescope/Son-of-Isaac spectroscopic survey of infrared selected Wolf-Rayet (WR) candidates in the Scutum-Crux spiral arm (298° ≤ l ≤ 340°, |b| ≤ 0.5°. We obtained near-IR spectra of 127 candidates, revealing 17 WR stars - a ∼13 per cent success rate - of which 16 are newly identified here. The majority of the new WR stars are classified as narrow-lined WN5-7 stars, with two broad-lined WN4-6 stars and three WC6-8 stars. The new stars, with distances estimated from previous absolute magnitude calibrations, have no obvious association with the Scutum-Crux arm. Refined near-infrared (YHJK) classification criteria based on over a hundred Galactic and Magellanic Cloud WR stars, providing diagnostics for hydrogen in WN stars, plus the identification of WO stars and intermediate WN/C stars. Finally, we find that only a quarter of WR stars in the survey region are associated with star clusters and/or H II regions, with similar statistics found for luminous blue variables (LBVs) in the Milky Way. The relative isolation of evolved massive stars is discussed, together with the significance of the co-location of LBVs and WR stars in young star clusters.

  13. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  14. Appearance of newly formed mRNA and rRNA as ribonucleoprotein-particles in the cytoplasmic subribosomal fraction of pea embryos

    International Nuclear Information System (INIS)

    Takahashi, Noribumi; Takaiwa, Fumio; Fukuei, Keisuke; Sakamaki, Tadashi; Tanifuji, Shigeyuki

    1977-01-01

    Incorporation studies with 3 H-uridine or 3 H-adenosine showed that germinating pea embryos synthesize all types of poly A(+) RNA, rRNA and 4-5S RNA at the early stage of germination. After the pulse labeling for 30 min, only heterodisperse RNA and 4-5S RNA appeared in the cytoplasm as labeled RNA species. At this time the radioactivity was associated with cytoplasmic structures heavier than 80S and RNP particles of 68-70S, 52-55S, 36-38S and 20-22S which are presumed to be free mRNP particles in plants. When the pulse-labeled embryos were incubated for a further 60 min in an isotope-free medium, the labeled 17S and 25S rRNA emerged in the cytoplasm, together with labeled heterodisperse and 4-5S RNAs. More radioactivity accumulated in the regions of the polysome, 62-65S and 38-42S particles. The results of analysis of RNAs extracted from the whole cytoplasm, polysome or subribosomal fractions indicated that small subunits of newly formed ribosomes appear more rapidly in the cytoplasm than new large subunits, which accumulate for a while as free particles in the cytoplasm than are incorporated into polysomes. The actinomycin treatment which caused preferential inhibition of rRNA synthesis reduced the accumulation of free, newly formed ribosome subunits and partially permitted detection of the presumed mRNP particles in the subribosomal region even after the chase treatment. (auth.)

  15. KMOS LENsing Survey (KLENS): Morpho-kinematic analysis of star-forming galaxies at z 2

    Science.gov (United States)

    Girard, M.; Dessauges-Zavadsky, M.; Schaerer, D.; Cirasuolo, M.; Turner, O. J.; Cava, A.; Rodríguez-Muñoz, L.; Richard, J.; Pérez-González, P. G.

    2018-06-01

    We present results from the KMOS LENsing Survey (KLENS), which is exploiting gravitational lensing to study the kinematics of 24 star-forming galaxies at 1.4 10). We derive a M⋆ - σ0 relation, using the Tully-Fisher relation, which highlights that a different evolution of the velocity dispersion is expected depending on the stellar mass, with lower velocity dispersions for lower masses, and an increase for higher masses, stronger at higher redshift. The observed velocity dispersions from this work and from comparison samples spanning 0 2), where we observe higher velocity dispersions for low masses (log(M⋆/M⊙) 9.6) and lower velocity dispersions for high masses (log(M⋆/M⊙) 10.9) than expected. This discrepancy could, for instance, suggest that galaxies at high redshift do not satisfy the stability criterion, or that the adopted parametrization of the specific star formation rate and molecular properties fail at high redshift. Based on KMOS observations made with the European Southern Observatory VLT/Antu telescope, Paranal, Chile, collected under the program ID No. 095.A-0962(A)+(B).The reduced datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A72

  16. Outer atmospheres of cool stars. XII - A survey of IUE ultraviolet emission line spectra of cool dwarf stars

    Science.gov (United States)

    Linsky, J. L.; Bornmann, P. L.; Carpenter, K. G.; Hege, E. K.; Wing, R. F.; Giampapa, M. S.; Worden, S. P.

    1982-01-01

    Quantitative information is obtained on the chromospheres and transition regions of M dwarf stars, in order to determine how the outer atmospheres of dMe stars differ from dM stars and how they compare with the outer atmospheres of quiet and active G and K type dwarfs. IUE spectra of six dMe and four dM stars, together with ground-based photometry and spectroscopy of the Balmer and Ca II H and K lines, show no evidence of flares. It is concluded, regarding the quiescent behavior of these stars, that emission-line spectra resemble that of the sun and contain emission lines formed in regions with 4000-20,000 K temperatures that are presumably analogous to the solar chromosphere, as well as regions with temperatures of 20,000-200,000 K that are presumably analogous to the solar transition region. Emission-line surface fluxes are proportional to the emission measure over the range of temperatures at which the lines are formed.

  17. Discovery of a new Wolf-Rayet star and a candidate star cluster in the Large Magellanic Cloud with Spitzer

    Science.gov (United States)

    Gvaramadze, V. V.; Chené, A.-N.; Kniazev, A. Y.; Schnurr, O.; Shenar, T.; Sander, A.; Hainich, R.; Langer, N.; Hamann, W.-R.; Chu, Y.-H.; Gruendl, R. A.

    2014-08-01

    We report the first-ever discovery of a Wolf-Rayet (WR) star in the Large Magellanic Cloud via detection of a circular shell with the Spitzer Space Telescope. Follow-up observations with Gemini-South resolved the central star of the shell into two components separated from each other by ≈2 arcsec (or ≈0.5 pc in projection). One of these components turns out to be a WN3 star with H and He lines both in emission and absorption (we named it BAT99 3a using the numbering system based on extending the Breysacher et al. catalogue). Spectroscopy of the second component showed that it is a B0 V star. Subsequent spectroscopic observations of BAT99 3a with the du Pont 2.5-m telescope and the Southern African Large Telescope revealed that it is a close, eccentric binary system, and that the absorption lines are associated with an O companion star. We analysed the spectrum of the binary system using the non-LTE Potsdam WR (POWR) code, confirming that the WR component is a very hot (≈90 kK) WN star. For this star, we derived a luminosity of log L/ L⊙ = 5.45 and a mass-loss rate of 10- 5.8 M⊙ yr- 1, and found that the stellar wind composition is dominated by helium with 20 per cent of hydrogen. Spectroscopy of the shell revealed an He III region centred on BAT99 3a and having the same angular radius (≈15 arcsec) as the shell. We thereby add a new example to a rare class of high-excitation nebulae photoionized by WR stars. Analysis of the nebular spectrum showed that the shell is composed of unprocessed material, implying that the shell was swept-up from the local interstellar medium. We discuss the physical relationship between the newly identified massive stars and their possible membership of a previously unrecognized star cluster.

  18. Formation of a contact binary star system

    International Nuclear Information System (INIS)

    Mullen, E.F.F.

    1974-01-01

    The process of forming a contact binary star system is investigated in the light of current knowledge of the W Ursae Majoris type eclipsing binaries and the current rotational braking theories for contracting stars. A preliminary stage of mass transfer is proposed and studied through the use of a computer program which calculates evolutionary model sequences. The detailed development of both stars is followed in these calculations, and findings regarding the internal structure of the star which is receiving the mass are presented. Relaxation of the mass-gaining star is also studied; for these stars of low mass and essentially zero age, the star eventually settles to a state very similar to a zero-age main sequence star of the new mass. A contact system was formed through these calculations; it exhibits the general properties of a W Ursae Majoris system. The initial masses selected for the calculation were 1.29 M/sub solar mass/ and 0.56 M/sub solar mass/. An initial mass transfer rate of about 10 -10 solar masses per year gradually increased to about 10 -8 solar masses per year. After about 2.5 x 10 7 years, the less massive star filled its Roche lobe and an initial contact system was obtained. The final masses were 1.01359 M/sub solar mass/ and 0.83641 M/sub solar mass/. The internal structure of the secondary component is considerably different from that of a main sequence star of the same mass

  19. Asteroid 'Bites the Dust' Around Dead Star

    Science.gov (United States)

    2009-01-01

    NASA's Spitzer Space Telescope set its infrared eyes upon the dusty remains of shredded asteroids around several dead stars. This artist's concept illustrates one such dead star, or 'white dwarf,' surrounded by the bits and pieces of a disintegrating asteroid. These observations help astronomers better understand what rocky planets are made of around other stars. Asteroids are leftover scraps of planetary material. They form early on in a star's history when planets are forming out of collisions between rocky bodies. When a star like our sun dies, shrinking down to a skeleton of its former self called a white dwarf, its asteroids get jostled about. If one of these asteroids gets too close to the white dwarf, the white dwarf's gravity will chew the asteroid up, leaving a cloud of dust. Spitzer's infrared detectors can see these dusty clouds and their various constituents. So far, the telescope has identified silicate minerals in the clouds polluting eight white dwarfs. Because silicates are common in our Earth's crust, the results suggest that planets similar to ours might be common around other stars.

  20. VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. IV. A PRELIMINARY DISTANCE TO THE PROTO-HERBIG AeBe STAR EC 95 IN THE SERPENS CORE

    International Nuclear Information System (INIS)

    Dzib, Sergio; Loinard, Laurent; Rodriguez, Luis F.; Mioduszewski, Amy J.; Boden, Andrew F.; Torres, Rosa M.

    2010-01-01

    Using the Very Long Base Array, we observed the young stellar object EC 95 in the Serpens cloud core at eight epochs from 2007 December to 2009 December. Two sources are detected in our field and are shown to form a tight binary system. The primary (EC 95a) is a 4-5 M sun proto-Herbig AeBe object (arguably the youngest such object known), whereas the secondary (EC 95b) is most likely a low-mass T Tauri star. Interestingly, both sources are non-thermal emitters. While T Tauri stars are expected to power a corona because they are convective while they go down the Hayashi track, intermediate-mass stars approach the main sequence on radiative tracks. Thus, they are not expected to have strong superficial magnetic fields, and should not be magnetically active. We review several mechanisms that could produce the non-thermal emission of EC 95a and argue that the observed properties of EC 95a might be most readily interpreted if it possessed a corona powered by a rotation-driven convective layer. Using our observations, we show that the trigonometric parallax of EC 95 is π = 2.41 ± 0.02 mas, corresponding to a distance of 414.9 +4.4 -4.3 pc. We argue that this implies a distance to the Serpens core of 415 ± 5 pc and a mean distance to the Serpens cloud of 415 ± 25 pc. This value is significantly larger than previous estimates (d ∼ 260 pc) based on measurements of the extinction suffered by stars in the direction of Serpens. A possible explanation for this discrepancy is that these previous observations picked out foreground dust clouds associated with the Aquila Rift system rather than Serpens itself.

  1. Millimetre wavelength methanol masers survey towards massive star forming regions

    Science.gov (United States)

    Umemoto, T.; Mochizuki, N.; Shibata, K. M.; Roh, D.-G.; Chung, H.-S.

    2007-03-01

    We present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above -25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.

  2. The evolutionary status of symbiotic stars

    International Nuclear Information System (INIS)

    Rudak, B.

    1982-01-01

    The evolutionary relations between symbiotic stars and cataclysmic variables are presented. The symbiotic stars are assumed to be long period detached binaries containing a carbon-oxygen degenerate primary and a red giant losing its mass through a spherically symmetric wind. Such systems can be obtained in Case C evolution, provided a common envelope during a rapid mass transfer phase was not formed. The same way recurrent novae containing a red giant as a secondary component may be produced. The factors influencing the differences between symbiotic stars and nova-type stars are discussed. (Auth.)

  3. WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE z {approx} 2 FROM CANDELS

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Eric F.; Herrington, Jessica [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Van der Wel, Arjen [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Papovich, Casey [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Kocevski, Dale; Faber, S. M.; Cheung, Edmond; Koo, David C.; McGrath, Elizabeth J. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lotz, Jennifer; Ferguson, Harry; Koekemoer, Anton; Grogin, Norman [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); McIntosh, Daniel H. [Department of Physics, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Kartaltepe, Jeyhan [NOAO-Tucson, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Wuyts, Stijn [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Conselice, Christopher J. [University of Nottingham, School of Physics and Astronomy, Nottingham NG7 2RD (United Kingdom); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Dunlop, James S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Giavalisco, Mauro, E-mail: ericbell@umich.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); and others

    2012-07-10

    We use HST/WFC3 imaging from the CANDELS Multi-Cycle Treasury Survey, in conjunction with the Sloan Digital Sky Survey, to explore the evolution of galactic structure for galaxies with stellar masses >3 Multiplication-Sign 10{sup 10} M{sub Sun} from z = 2.2 to the present epoch, a time span of 10 Gyr. We explore the relationship between rest-frame optical color, stellar mass, star formation activity, and galaxy structure. We confirm the dramatic increase from z = 2.2 to the present day in the number density of non-star-forming galaxies above 3 Multiplication-Sign 10{sup 10} M{sub Sun} reported by others. We further find that the vast majority of these quiescent systems have concentrated light profiles, as parameterized by the Sersic index, and the population of concentrated galaxies grows similarly rapidly. We examine the joint distribution of star formation activity, Sersic index, stellar mass, inferred velocity dispersion, and stellar surface density. Quiescence correlates poorly with stellar mass at all z < 2.2. Quiescence correlates well with Sersic index at all redshifts. Quiescence correlates well with 'velocity dispersion' and stellar surface density at z > 1.3, and somewhat less well at lower redshifts. Yet, there is significant scatter between quiescence and galaxy structure: while the vast majority of quiescent galaxies have prominent bulges, many of them have significant disks, and a number of bulge-dominated galaxies have significant star formation. Noting the rarity of quiescent galaxies without prominent bulges, we argue that a prominent bulge (and perhaps, by association, a supermassive black hole) is an important condition for quenching star formation on galactic scales over the last 10 Gyr, in qualitative agreement with the active galactic nucleus feedback paradigm.

  4. Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes

    International Nuclear Information System (INIS)

    Shibata, Masaru

    2003-01-01

    We report a new implementation for axisymmetric simulation in full general relativity. In this implementation, the Einstein equations are solved using the Nakamura-Shibata formulation with the so-called cartoon method to impose an axisymmetric boundary condition, and the general relativistic hydrodynamic equations are solved using a high-resolution shock-capturing scheme based on an approximate Riemann solver. As tests, we performed the following simulations: (i) long-term evolution of nonrotating and rapidly rotating neutron stars, (ii) long-term evolution of neutron stars of a high-amplitude damping oscillation accompanied with shock formation, (iii) collapse of unstable neutron stars to black holes, and (iv) stellar collapses to neutron stars. Tests (i)-(iii) were carried out with the Γ-law equation of state, and test (iv) with a more realistic parametric equation of state for high-density matter. We found that this new implementation works very well: It is possible to perform the simulations for stable neutron stars for more than 10 dynamical time scales, to capture strong shocks formed at stellar core collapses, and to accurately compute the mass of black holes formed after the collapse and subsequent accretion. In conclusion, this implementation is robust enough to apply to astrophysical problems such as stellar core collapse of massive stars to a neutron star, and black hole, phase transition of a neutron star to a high-density star, and accretion-induced collapse of a neutron star to a black hole. The result for the first simulation of stellar core collapse to a neutron star started from a realistic initial condition is also presented

  5. Opdriftsbaserede modeller for Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten

    Formålet med dette skrift er at få en forhåndsvurdering af mulige effektforøgelser for Wave Star ved anvendelse af aktiv akkumulatordrift. Disse vurderinger baseres på simuleringsmodeller for driften af Wave Star i uregelmæssige bølger. Modellen er udarbejdet i programmeringssproget Delphi og er en...

  6. Pillars of Creation among Destruction: Star Formation in Molecular Clouds near R136 in 30 Doradus

    Science.gov (United States)

    Kalari, Venu M.; Rubio, Mónica; Elmegreen, Bruce G.; Guzmán, Viviana V.; Zinnecker, Hans; Herrera, Cinthya N.

    2018-01-01

    We present new sensitive CO(2–1) observations of the 30 Doradus region in the Large Magellanic Cloud. We identify a chain of three newly discovered molecular clouds that we name KN1, KN2, and KN3 lying within 2–14 pc in projection from the young massive cluster R136 in 30 Doradus. Excited H2 2.12 μm emission is spatially coincident with the molecular clouds, but ionized Brγ emission is not. We interpret these observations as the tails of pillar-like structures whose ionized heads are pointing toward R136. Based on infrared photometry, we identify a new generation of stars forming within this structure.

  7. The FIR-Radio Correlation in Rapidly Star-Forming Galaxies: The Spectral Index Problem and Proton Calorimetry

    Science.gov (United States)

    Thompson, Todd A.; Lacki, Brian C.

    We review the physics of the FIR-radio correlation (FRC) of star-forming galaxies, focusing on "electron calorimetry" as an explanation. We emphasize the importance of the "spectral index problem"—that galaxies have flatter GHz synchrotron spectra than predicted in the strong-cooling calorimeter limit. We argue that these shallow spectra require significant bremsstrahlung and/or ionization losses for the primary and secondary CR electron/positron populations. This then implies that CR protons suffer strong pionic losses before escape in dense starburst galaxies ("proton calorimetry"), and that these systems should be gamma-ray bright, forming a FIR-gamma-ray correlation. Implications for the diffuse non-thermal cosmic gamma-ray and neutrino backgrounds are mentioned. Caveats and uncertainties, as well as other solutions to the "spectral index problem" such as rapid advection of CRs in starburst superwinds, are highlighted.

  8. New illustrated stars and planets

    CERN Document Server

    Cooper, Chris; Nicolson, Iain; Stott, Carole

    2002-01-01

    Stars & Plantes, written by experts and popular science writers, is a comprehensive overview of our Universe - what is it, where it came from and how we discovered it. This intriguing, information-rich new reference book contains over 300 stunning images from the Hubble Telescope and leading observatories from around the world as well as diagrams to explain the finer points of theory. With extensive sections on everything from the Solar System to how stars form Stars & Planets will appeal to beginners and the serious stargazer alike.

  9. MILKY WAY STAR-FORMING COMPLEXES AND THE TURBULENT MOTION OF THE GALAXY'S MOLECULAR GAS

    International Nuclear Information System (INIS)

    Lee, Eve J.; Rahman, Mubdi; Murray, Norman

    2012-01-01

    We analyze Spitzer GLIMPSE, Midcourse Space Experiment (MSX), and Wilkinson Microwave Anisotropy Probe (WMAP) images of the Milky Way to identify 8 μm and free-free sources in the Galaxy. Seventy-two of the 88 WMAP sources have coverage in the GLIMPSE and MSX surveys suitable for identifying massive star-forming complexes (SFCs). We measure the ionizing luminosity functions of the SFCs and study their role in the turbulent motion of the Galaxy's molecular gas. We find a total Galactic free-free flux f ν = 46,177.6 Jy; the 72 WMAP sources with full 8 μm coverage account for 34,263.5 Jy (∼75%), with both measurements made at ν = 94 GHz (W band). We find a total of 280 SFCs, of which 168 have unique kinematic distances and free-free luminosities. We use a simple model for the radial distribution of star formation to estimate the free-free and ionizing luminosity for the sources lacking distance determinations. The total dust-corrected ionizing luminosity is Q = (2.9 ± 0.5) × 10 53 photons s –1 , which implies a Galactic star formation rate of M-dot * = 1.2±0.2 M ☉ yr -1 . We present the (ionizing) luminosity function of the SFCs and show that 24 sources emit half the ionizing luminosity of the Galaxy. The SFCs appear as bubbles in GLIMPSE or MSX images; the radial velocities associated with the bubble walls allow us to infer the expansion velocity of the bubbles. We calculate the kinetic luminosity of the bubble expansion and compare it to the turbulent luminosity of the inner molecular disk. SFCs emitting 80% of the total Galactic free-free luminosity produce a kinetic luminosity equal to 65% of the turbulent luminosity in the inner molecular disk. This suggests that the expansion of the bubbles is a major driver of the turbulent motion of the inner Milky Way molecular gas.

  10. NECESSARY CONDITIONS FOR SHORT GAMMA-RAY BURST PRODUCTION IN BINARY NEUTRON STAR MERGERS

    International Nuclear Information System (INIS)

    Murguia-Berthier, Ariadna; Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Lee, William H.

    2014-01-01

    The central engine of short gamma-ray bursts (sGRBs) is hidden from direct view, operating at a scale much smaller than that probed by the emitted radiation. Thus we must infer its origin not only with respect to the formation of the trigger—the actual astrophysical configuration that is capable of powering an sGRB—but also from the consequences that follow from the various evolutionary pathways that may be involved in producing it. Considering binary neutron star mergers we critically evaluate, analytically and through numerical simulations, whether the neutrino-driven wind produced by the newly formed hyper-massive neutron star can allow the collimated relativistic outflow that follows its collapse to actually produce an sGRB or not. Upon comparison with the observed sGRB duration distribution, we find that collapse cannot be significantly delayed (≤100 ms) before the outflow is choked, thus limiting the possibility that long-lived hyper-massive remnants can account for these events. In the case of successful breakthrough of the jet through the neutrino-driven wind, the energy stored in the cocoon could contribute to the precursor and extended emission observed in sGRBs

  11. COLLISIONAL DEBRIS AS LABORATORIES TO STUDY STAR FORMATION

    International Nuclear Information System (INIS)

    Boquien, M.; Duc, P.-A.; Wu, Y.; Charmandaris, V.; Lisenfeld, U.; Braine, J.; Brinks, E.; Iglesias-Paramo, J.; Xu, C. K.

    2009-01-01

    In this paper we address the question of whether star formation (SF) is driven by local processes or the large-scale environment. To do so, we investigate SF in collisional debris where the gravitational potential well and velocity gradients are shallower and compare our results with previous work on SF in noninteracting spiral and dwarf galaxies. We have performed multiwavelength spectroscopic and imaging observations (from the far-ultraviolet to the mid-infrared) of six interacting systems, identifying a total of 60 star-forming regions in their collision debris. Our analysis indicates that in these regions (1) the emission of the dust is at the expected level for their luminosity and metallicity, (2) the usual tracers of SFR display the typical trend and scatter found in classical star-forming regions, and (3) the extinction and metallicity are not the main parameters governing the scatter in the properties of intergalactic star-forming regions; age effects and variations in the number of stellar populations seem to play an important role. Our work suggests that local properties such as column density and dust content, rather than the large-scale environment seem to drive SF. This means that intergalactic star-forming regions can be used as a reliable tool to study SF.

  12. On the origin of high-velocity runaway stars

    NARCIS (Netherlands)

    Gvaramadze, V.V.; Gualandris, A.; Portegies Zwart, S.

    2009-01-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100 M-circle dot star or a more massive one, formed through runaway mergers of ordinary

  13. Resolved star formation on sub-galactic scales in a merger at z = 1.7

    International Nuclear Information System (INIS)

    Whitaker, Katherine E.; Rigby, Jane R.; Teng, Stacy H.; Brammer, Gabriel B.; Gladders, Michael D.; Sharon, Keren; Wuyts, Eva

    2014-01-01

    We present a detailed analysis of Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) G141 grism spectroscopy for seven star-forming regions of the highly magnified lensed starburst galaxy RCSGA 032727-132609 at z = 1.704. We measure the spatial variations of the extinction in RCS0327 through the observed Hγ/Hβ emission line ratios, finding a constant average extinction of E(B – V) gas = 0.40 ± 0.07. We infer that the star formation is enhanced as a result of an ongoing interaction, with measured star formation rates derived from demagnified, extinction-corrected Hβ line fluxes for the individual star-forming clumps falling >1-2 dex above the star formation sequence. When combining the HST/WFC3 [O III] λ5007/Hβ emission line ratio measurements with [N II]/Hα line ratios from Wuyts et al., we find that the majority of the individual star-forming regions fall along the local 'normal' abundance sequence. With the first detections of the He I λ5876 and He II λ4686 recombination lines in a distant galaxy, we probe the massive-star content of the star-forming regions in RCS0327. The majority of the star-forming regions have a He I λ5876 to Hβ ratio consistent with the saturated maximum value, which is only possible if they still contain hot O-stars. Two regions have lower ratios, implying that their last burst of new star formation ended ∼5 Myr ago. Together, the He I λ5876 and He II λ4686 to Hβ line ratios provide indirect evidence for the order in which star formation is stopping in individual star-forming knots of this high-redshift merger. We place the spatial variations of the extinction, star formation rate and ionization conditions in the context of the star formation history of RCS0327.

  14. Interaction between bosonic dark matter and stars

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos

    2016-02-01

    We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.

  15. STAR FORMATION IN DENSE CLUSTERS

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically ∼1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of ∼2, consistent with models of episodic disk accretion.

  16. TADPOL: A 1.3 mm SURVEY OF DUST POLARIZATION IN STAR-FORMING CORES AND REGIONS

    International Nuclear Information System (INIS)

    Hull, Charles L. H.; Plambeck, Richard L.; Bower, Geoffrey C.; Heiles, Carl; Kwon, Woojin; Carpenter, John M.; Lamb, James W.; Pillai, Thushara; Crutcher, Richard M.; Hakobian, Nicholas S.; Looney, Leslie W.; Fiege, Jason D.; Franzmann, Erica; Houde, Martin; Hughes, A. Meredith; Marrone, Daniel P.; Matthews, Brenda C.; Pound, Marc W.; Rahman, Nurur; Sandell, Göran

    2014-01-01

    We present λ 1.3 mm Combined Array for Research in Millimeter-wave Astronomy observations of dust polarization toward 30 star-forming cores and eight star-forming regions from the TADPOL survey. We show maps of all sources, and compare the ∼2.''5 resolution TADPOL maps with ∼20'' resolution polarization maps from single-dish submillimeter telescopes. Here we do not attempt to interpret the detailed B-field morphology of each object. Rather, we use average B-field orientations to derive conclusions in a statistical sense from the ensemble of sources, bearing in mind that these average orientations can be quite uncertain. We discuss three main findings. (1) A subset of the sources have consistent magnetic field (B-field) orientations between large (∼20'') and small (∼2.''5) scales. Those same sources also tend to have higher fractional polarizations than the sources with inconsistent large-to-small-scale fields. We interpret this to mean that in at least some cases B-fields play a role in regulating the infall of material all the way down to the ∼1000 AU scales of protostellar envelopes. (2) Outflows appear to be randomly aligned with B-fields; although, in sources with low polarization fractions there is a hint that outflows are preferentially perpendicular to small-scale B-fields, which suggests that in these sources the fields have been wrapped up by envelope rotation. (3) Finally, even at ∼2.''5 resolution we see the so-called polarization hole effect, where the fractional polarization drops significantly near the total intensity peak. All data are publicly available in the electronic edition of this article

  17. Far-infrared investigation of the Taurus star-forming region using the IRAS database

    International Nuclear Information System (INIS)

    Hughes, J.D.

    1986-01-01

    The Taurus-Auriga complex was selected as the first molecular cloud to be investigated in this study. The Taurus clouds were defined as lying between 04h and 05h in R.A. and +16 to +31 degrees in Dec., then the IRAS point-source catalogue was searched for sources with good or moderate quality fluxes in all three of the shortest IRAS bands. The sources selected were then classified into subgroups according to their IRAS colors. Taurus is generally believed to be an area of low-mass star formation, having no luminous O-B associations within or near to the cloud complex. Once field stars, galaxies and planetary nebulae had been removed from the sample only the molecular cloud cores, T Tauri stars and a few emission-line A and B stars remained. The great majority of these objects are pre-main sequence in nature and, as stated by Chester (1985), main sequence stars without excess far-infrared emission would only be seen in Taurus if their spectral types were earlier than about A5 and then not 25 microns. By choosing our sample in this way we are naturally selecting the hotter and thus more evolved sources. To counteract this, the molecular cloud core-criterion was applied to soruces with good or moderate quality flux at 25, 60 and 100 microns, increasing the core sample by about one third. The candidate protostar B335 is only detected by IRAS at 60 and 100 microns while Taurus is heavily contaminated by cirrus at 100 microns. This means that detection at 25 microns is also required with those at 60 and 100 microns to avoid confusing a ridge of cirrus with a genuine protostar. The far-infrared luminosity function of these sources is then calculated and converted to the visual band by a standard method to compare with the field star luminosity function of Miller and Scalo

  18. On the phase form of a deformation quantization with separation of variables

    Science.gov (United States)

    Karabegov, Alexander

    2016-06-01

    Given a star product with separation of variables on a pseudo-Kähler manifold, we obtain a new formal (1, 1)-form from its classifying form and call it the phase form of the star product. The cohomology class of a star product with separation of variables equals the class of its phase form. We show that the phase forms can be arbitrary and they bijectively parametrize the star products with separation of variables. We also describe the action of a change of the formal parameter on a star product with separation of variables, its formal Berezin transform, classifying form, phase form, and canonical trace density.

  19. Gravitational waves from rotating proto-neutron stars

    International Nuclear Information System (INIS)

    Ferrari, V; Gualtieri, L; Pons, J A; Stavridis, A

    2004-01-01

    We study the effects of rotation on the quasi-normal modes (QNMs) of a newly born proto-neutron star (PNS) at different evolutionary stages, until it becomes a cold neutron star (NS). We use the Cowling approximation, neglecting spacetime perturbations, and consider different models of evolving PNS. The frequencies of the modes of a PNS are considerably lower than those of a cold NS, and are further lowered by rotation; consequently, if QNMs were excited in a sufficiently energetic process, they would radiate waves that could be more easily detectable by resonant-mass and interferometric detectors than those emitted by a cold NS. We find that for high rotation rates, some of the g-modes become unstable via the CFS instability; however, this instability is likely to be suppressed by competing mechanisms before emitting a significant amount of gravitational waves

  20. Integrated photometry of globular star clusters in the Vilnius system

    International Nuclear Information System (INIS)

    Zdanavichyus, K.V.

    1983-01-01

    Integrated colour indices in the Vilnius photometric system and newly determined colour excesses Esub(B-V) for 39 globular clusters are presented. It is shown that the coincidence of integrated spectral types are not a sufficient criterion for the identity of intrinsic colour indices of globular clusters. Relation of integrated colour indices with the slope of the giant branch S and with the horizontal branch morphological type D is investigated. Integrated colour indices of clusters with a blue horizontal branch show no correlation with either D or S. The increase of colour indices of the clusters of types D >= 4 correlates with the distribution of stars along the horizontal branch. Integrated photometry of globular star clusters in the Vilnius multicoloured photometric system permits to determine their colour excesses from some Q diagrams and normal colour index. Integral normal colour indexes and Q parameters for I globular star clusters of the Mironov group display small changes as compared to clusters of group 2. Colour indexes among star clusters having only red horizontal branches (D=7) change most considerably

  1. On the phase form of a deformation quantization with separation of variables

    OpenAIRE

    Karabegov, Alexander

    2015-01-01

    Given a star product with separation of variables on a pseudo-Kaehler manifold, we obtain a new formal (1,1)-form from its classifying form and call it the phase form of the star product. The cohomology class of a star product with separation of variables equals the class of its phase form. We show that the phase forms can be arbitrary and they bijectively parametrize the star products with separation of variables. We also describe the action of a change of the formal parameter on a star prod...

  2. Circulation of Stars

    Science.gov (United States)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  3. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    Science.gov (United States)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  4. REST-FRAME UV-OPTICALLY SELECTED GALAXIES AT 2.3 ∼< z ∼< 3.5: SEARCHING FOR DUSTY STAR-FORMING AND PASSIVELY EVOLVING GALAXIES

    International Nuclear Information System (INIS)

    Guo Yicheng; Giavalisco, Mauro; Cassata, Paolo; Williams, Christina C.; Salimbeni, Sara; Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman A.; Dickinson, Mark; Chary, Ranga-Ram; Messias, Hugo; Tundo, Elena; Lin Lihwai; Lee, Seong-Kook; Fontana, Adriano; Grazian, Andrea; Kocevski, Dale; Lee, Kyoung-Soo; Villanueva, Edward; Van der Wel, Arjen

    2012-01-01

    A new set of color selection criteria (VJL) analogous with the BzK method is designed to select both star-forming galaxies (SFGs) and passively evolving galaxies (PEGs) at 2.3 ∼ star > 10 10 M ☉ ) galaxies at 2.3 ∼ 0.4) SFGs, which, however, only account for ∼20% of the number density of massive SFGs. We also use the mid-infrared fluxes to clean our PEG sample and find that galaxy size can be used as a secondary criterion to effectively eliminate the contamination of dusty SFGs. The redshift distribution of the cleaned PEG sample peaks at z ∼ 2.5. We find six PEG candidates at z > 3 and discuss possible methods to distinguish them from dusty contamination. We conclude that at least part of our candidates are real PEGs at z ∼ 3, implying that these types of galaxies began to form their stars at z ∼> 5. We measure the integrated stellar mass density (ISMD) of PEGs at z ∼ 2.5 and set constraints on it at z > 3. We find that the ISMD grows by at least about a factor of 10 in 1 Gyr at 3 < z <5 and by another factor of 10 in the next 3.5 Gyr (1 < z < 3).

  5. Wolf-Rayet stars and galactic structure

    International Nuclear Information System (INIS)

    Stenholm, B.

    1975-01-01

    A 15 0 wide strip along the galactic equator between longitudes 250 0 and 360 0 has been searched for Wolf-Rayet stars. Six new WR stars and four new planetary nebulae have been found. Seven stars earlier listed as WR stars have been rejected as such. The new WR stars in the 'Luminous Stars in the Southern Milky Way' are discussed. A sample of 154 WR stars has been treated statistically. For the distribution in longitude, comparisons are made with OB stars and classical cepheids. The differences in distribution are thought to be an age effect. An effort to explain the empty interval towards the anticentre is made. The distribution in latitude is compared with young clusters and long-period cepheids. The physical plane formed by these objects is tilted about one degree to the galactic plane and the tilt is upwards in the Cygnus direction. This result is also received by a least squares solution of the objects when given in rectangular coordinates. The WR star sample is regarded as fairly complete up to a distance of 5 kpc. (orig.) [de

  6. Trigonometric parallaxes of star forming regions in the Scutum spiral arm

    International Nuclear Information System (INIS)

    Sato, M.; Wu, Y. W.; Immer, K.; Zhang, B.; Sanna, A.; Brunthaler, A.; Menten, K. M.; Reid, M. J.; Dame, T. M.

    2014-01-01

    We report measurements of trigonometric parallaxes for six high-mass star-forming regions in the Scutum spiral arm of the Milky Way as part of the BeSSeL Survey. Combining our measurements with 10 previous measurements from the BeSSeL Survey yields a total sample of 16 sources in the Scutum arm with trigonometric parallaxes in the Galactic longitude range from 5° to 32°. Assuming a logarithmic spiral model, we estimate a pitch angle of 19.°8 ± 3.°1 for the Scutum arm, which is larger than pitch angles reported for other spiral arms. The high pitch angle of the arm may be due to the arm's proximity to the Galactic bar. The Scutum arm sources show an average peculiar motion of 4 km s –1 slower than the Galactic rotation and 8 km s –1 toward the Galactic center. While the direction of this non-circular motion has the same sign as determined for sources in other spiral arms, the motion toward the Galactic center is greater for the Scutum arm sources.

  7. VERY LARGE ARRAY OH ZEEMAN OBSERVATIONS OF THE STAR-FORMING REGION S88B

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, A. P.; Eftimova, M. [Physics Department, DePaul University, 2219 N. Kenmore Ave., Byrne Hall 211, Chicago, IL 60614 (United States); Brogan, C. L. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Bourke, T. L. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Troland, T. H., E-mail: asarma@depaul.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

    2013-04-10

    We present observations of the Zeeman effect in OH thermal absorption main lines at 1665 and 1667 MHz taken with the Very Large Array toward the star-forming region S88B. The OH absorption profiles toward this source are complicated, and contain several blended components toward a number of positions. Almost all of the OH absorbing gas is located in the eastern parts of S88B, toward the compact continuum source S88B-2 and the eastern parts of the extended continuum source S88B-1. The ratio of 1665/1667 MHz OH line intensities indicates the gas is likely highly clumped, in agreement with other molecular emission line observations in the literature. S88-B appears to present a similar geometry to the well-known star-forming region M17, in that there is an edge-on eastward progression from ionized to molecular gas. The detected magnetic fields appear to mirror this eastward transition; we detected line-of-sight magnetic fields ranging from 90 to 400 {mu}G, with the lowest values of the field to the southwest of the S88B-1 continuum peak, and the highest values to its northeast. We used the detected fields to assess the importance of the magnetic field in S88B by a number of methods; we calculated the ratio of thermal to magnetic pressures, we calculated the critical field necessary to completely support the cloud against self-gravity and compared it to the observed field, and we calculated the ratio of mass to magnetic flux in terms of the critical value of this parameter. All these methods indicated that the magnetic field in S88B is dynamically significant, and should provide an important source of support against gravity. Moreover, the magnetic energy density is in approximate equipartition with the turbulent energy density, again pointing to the importance of the magnetic field in this region.

  8. VERY LARGE ARRAY OH ZEEMAN OBSERVATIONS OF THE STAR-FORMING REGION S88B

    International Nuclear Information System (INIS)

    Sarma, A. P.; Eftimova, M.; Brogan, C. L.; Bourke, T. L.; Troland, T. H.

    2013-01-01

    We present observations of the Zeeman effect in OH thermal absorption main lines at 1665 and 1667 MHz taken with the Very Large Array toward the star-forming region S88B. The OH absorption profiles toward this source are complicated, and contain several blended components toward a number of positions. Almost all of the OH absorbing gas is located in the eastern parts of S88B, toward the compact continuum source S88B-2 and the eastern parts of the extended continuum source S88B-1. The ratio of 1665/1667 MHz OH line intensities indicates the gas is likely highly clumped, in agreement with other molecular emission line observations in the literature. S88-B appears to present a similar geometry to the well-known star-forming region M17, in that there is an edge-on eastward progression from ionized to molecular gas. The detected magnetic fields appear to mirror this eastward transition; we detected line-of-sight magnetic fields ranging from 90 to 400 μG, with the lowest values of the field to the southwest of the S88B-1 continuum peak, and the highest values to its northeast. We used the detected fields to assess the importance of the magnetic field in S88B by a number of methods; we calculated the ratio of thermal to magnetic pressures, we calculated the critical field necessary to completely support the cloud against self-gravity and compared it to the observed field, and we calculated the ratio of mass to magnetic flux in terms of the critical value of this parameter. All these methods indicated that the magnetic field in S88B is dynamically significant, and should provide an important source of support against gravity. Moreover, the magnetic energy density is in approximate equipartition with the turbulent energy density, again pointing to the importance of the magnetic field in this region.

  9. Delta isobars in neutron stars

    Directory of Open Access Journals (Sweden)

    Pagliara Giuseppe

    2015-01-01

    Full Text Available The appearance of delta isobars in beta-stable matter is regulated by the behavior of the symmetry energy at densities larger than saturation density. We show that by taking into account recent constraints on the density derivative of the symmetry energy and the theoretical and experimental results on the excitations of delta isobars in nuclei, delta isobars are necessary ingredients for the equations of state used for studying neutron stars. We analyze the effect of the appearance of deltas on the structure of neutron stars: as in the case of hyperons, matter containing delta is too soft for allowing the existence of 2M⊙ neutron stars. Quark stars on the other hand, could reach very massive configurations and they could form from a process of conversion of hadronic stars in which an initial seed of strangeness appears through hyperons.

  10. Discriminating strange star mergers from neutron star mergers by gravitational-wave measurements

    International Nuclear Information System (INIS)

    Bauswein, A.; Oechslin, R.; Janka, H.-T.

    2010-01-01

    We perform three-dimensional relativistic hydrodynamical simulations of the coalescence of strange stars and explore the possibility to decide on the strange matter hypothesis by means of gravitational-wave measurements. Self-binding of strange quark matter and the generally more compact stars yield features that clearly distinguish strange star from neutron star mergers, e.g. hampering tidal disruption during the plunge of quark stars. Furthermore, instead of forming dilute halo structures around the remnant as in the case of neutron star mergers, the coalescence of strange stars results in a differentially rotating hypermassive object with a sharp surface layer surrounded by a geometrically thin, clumpy high-density strange quark matter disk. We also investigate the importance of including nonzero temperature equations of state in neutron star and strange star merger simulations. In both cases we find a crucial sensitivity of the dynamics and outcome of the coalescence to thermal effects, e.g. the outer remnant structure and the delay time of the dense remnant core to black hole collapse depend on the inclusion of nonzero temperature effects. For comparing and classifying the gravitational-wave signals, we use a number of characteristic quantities like the maximum frequency during inspiral or the dominant frequency of oscillations of the postmerger remnant. In general, these frequencies are higher for strange star mergers. Only for particular choices of the equation of state the frequencies of neutron star and strange star mergers are similar. In such cases additional features of the gravitational-wave luminosity spectrum like the ratio of energy emitted during the inspiral phase to the energy radiated away in the postmerger stage may help to discriminate coalescence events of the different types. If such characteristic quantities could be extracted from gravitational-wave signals, for instance with the upcoming gravitational-wave detectors, a decision on the

  11. Metal-poor star formation triggered by the feedback effects from Pop III stars

    Science.gov (United States)

    Chiaki, Gen; Susa, Hajime; Hirano, Shingo

    2018-04-01

    Metal enrichment by first-generation (Pop III) stars is the very first step of the matter cycle in structure formation and it is followed by the formation of extremely metal-poor (EMP) stars. To investigate the enrichment process by Pop III stars, we carry out a series of numerical simulations including the feedback effects of photoionization and supernovae (SNe) of Pop III stars with a range of masses of minihaloes (MHs), Mhalo, and Pop III stars, MPopIII. We find that the metal-rich ejecta reach neighbouring haloes and external enrichment (EE) occurs when the H II region expands before the SN explosion. The neighbouring haloes are only superficially enriched, and the metallicity of the clouds is [Fe/H] < -5. Otherwise, the SN ejecta fall back and recollapse to form an enriched cloud, i.e. an internal-enrichment (IE) process takes place. In the case where a Pop III star explodes as a core-collapse SN (CCSN), the MH undergoes IE, and the metallicity in the recollapsing region is -5 ≲ [Fe/H] ≲ -3 in most cases. We conclude that IE from a single CCSN can explain the formation of EMP stars. For pair-instability SNe (PISNe), EE takes place for all relevant mass ranges of MHs, consistent with the lack of observational signs of PISNe among EMP stars.

  12. Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet

    International Nuclear Information System (INIS)

    Abotsi, G.M.K.; Bostick, D.T.; Beck, D.E.

    1996-05-01

    The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere

  13. STAR CLUSTER FORMATION WITH STELLAR FEEDBACK AND LARGE-SCALE INFLOW

    International Nuclear Information System (INIS)

    Matzner, Christopher D.; Jumper, Peter H.

    2015-01-01

    During star cluster formation, ongoing mass accretion is resisted by stellar feedback in the form of protostellar outflows from the low-mass stars and photo-ionization and radiation pressure feedback from the massive stars. We model the evolution of cluster-forming regions during a phase in which both accretion and feedback are present and use these models to investigate how star cluster formation might terminate. Protostellar outflows are the strongest form of feedback in low-mass regions, but these cannot stop cluster formation if matter continues to flow in. In more massive clusters, radiation pressure and photo-ionization rapidly clear the cluster-forming gas when its column density is too small. We assess the rates of dynamical mass ejection and of evaporation, while accounting for the important effect of dust opacity on photo-ionization. Our models are consistent with the census of protostellar outflows in NGC 1333 and Serpens South and with the dust temperatures observed in regions of massive star formation. Comparing observations of massive cluster-forming regions against our model parameter space, and against our expectations for accretion-driven evolution, we infer that massive-star feedback is a likely cause of gas disruption in regions with velocity dispersions less than a few kilometers per second, but that more massive and more turbulent regions are too strongly bound for stellar feedback to be disruptive

  14. Binary pulsars as probes of neutron star birth

    NARCIS (Netherlands)

    Wijers, R.A.M.J.; van Paradijs, J.; van den Heuvel, E.P.J.

    1992-01-01

    We discuss two issues in the physics of neutron stars and their progenitors. The first is whether a neutron star receives a velocity kick when it is formed in the supernova-explosion of a massive star, and if it does, what is the characteristic magnitude, v(0), thereof? The second concerns the fate

  15. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    Science.gov (United States)

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  16. Stability properties of Q-stars

    International Nuclear Information System (INIS)

    Becerril, R.; Bernal, A.; Guzman, F.S.; Nucamendi, U.

    2007-01-01

    We present the evolution of Q-star configurations using numerical methods. We solve the full Einstein-Klein-Gordon system of equations and show that: Q-stars can be stable and unstable. The unstable branch is two fold: configurations with negative binding energy that collapse and form black holes, and others with positive binding energy that explode and release the scalar field

  17. Activation of a remote (1-year old) emotional memory interferes with the retrieval of a newly formed hippocampus-dependent memory in rats.

    Science.gov (United States)

    Zoladz, Phillip R; Woodson, James C; Haynes, Vernon F; Diamond, David M

    2010-01-01

    The persistent intrusion of remote traumatic memories in people with post-traumatic stress disorder (PTSD) may contribute to the impairment of their ongoing hippocampal and prefrontal cortical functioning. In the current work, we have developed a rodent analogue of the intrusive memory phenomenon. We studied the influence of the activation of a remote traumatic memory in rats on their ability to retrieve a newly formed hippocampus-dependent memory. Adult male Sprague-Dawley rats were given inhibitory avoidance (IA) training, and then 24 h or 1, 6 or 12 months later, the same rats were trained to learn, and then remember across a 30-min delay period, the location of a hidden escape platform in the radial-arm water maze (RAWM). When IA-trained rats spent the 30-min delay period in the IA apparatus, they exhibited intact remote (1-year old) memory of the shock experience. More importantly, activation of the rats' memory of the shock experience profoundly impaired their ability to retrieve the newly formed spatial memory of the hidden platform location in the RAWM. Our finding that reactivation of a remote emotional memory exerted an intrusive effect on new spatial memory processing in rats provides a novel approach toward understanding how intrusive memories of traumatic experiences interfere with ongoing cognitive processing in people with PTSD.

  18. Star Formation in low mass galaxies

    Science.gov (United States)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  19. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6.

    Science.gov (United States)

    Decarli, R; Walter, F; Venemans, B P; Bañados, E; Bertoldi, F; Carilli, C; Fan, X; Farina, E P; Mazzucchelli, C; Riechers, D; Rix, H-W; Strauss, M A; Wang, R; Yang, Y

    2017-05-24

    The existence of massive (10 11 solar masses) elliptical galaxies by redshift z ≈ 4 (refs 1, 2, 3; when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star-formation rates exceeding 100 solar masses per year at z > 6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star-formation rates are more than an order of magnitude lower. The only known galaxies with very high star-formation rates at z > 6 are, with one exception, the host galaxies of quasars, but these galaxies also host accreting supermassive (more than 10 9 solar masses) black holes, which probably affect the properties of the galaxies. Here we report observations of an emission line of singly ionized carbon ([C ii] at a wavelength of 158 micrometres) in four galaxies at z > 6 that are companions of quasars, with velocity offsets of less than 600 kilometres per second and linear offsets of less than 100 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. On the basis of the [C ii] measurements, we estimate star-formation rates in the companions of more than 100 solar masses per year. These sources are similar to the host galaxies of the quasars in [C ii] brightness, linewidth and implied dynamical mass, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift. We find such close companions in four out of the twenty-five z > 6 quasars surveyed, a fraction that needs to be accounted for in simulations. If they are representative of the bright end of the [C ii] luminosity function, then they can account for the population of massive elliptical galaxies at z ≈ 4 in terms of the density of cosmic space.

  20. OUTCOMES AND DURATION OF TIDAL EVOLUTION IN A STAR-PLANET-MOON SYSTEM

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Barnes, Jason W.; O'Brien, David P.

    2012-01-01

    We formulated tidal decay lifetimes for hypothetical moons orbiting extrasolar planets with both lunar and stellar tides. Previous works neglected the effect of lunar tides on planet rotation, and are therefore applicable only to systems in which the moon's mass is much less than that of the planet. This work, in contrast, can be applied to the relatively large moons that might be detected around newly discovered Neptune-mass and super-Earth planets. We conclude that moons are more stable when the planet/moon systems are further from the parent star, the planets are heavier, or the parent stars are lighter. Inclusion of lunar tides allows for significantly longer lifetimes for a massive moon relative to prior formulations. We expect that the semimajor axis of the planet hosting the first detected exomoon around a G-type star is 0.4-0.6 AU and is 0.2-0.4 AU for an M-type star.