WorldWideScience

Sample records for newly developed real-space

  1. Considerations in development of expert systems for real-time space applications

    Science.gov (United States)

    Murugesan, S.

    1988-01-01

    Over the years, demand on space systems has increased tremendously and this trend will continue for the near future. Enhanced capabilities of space systems, however, can only be met with increased complexity and sophistication of onboard and ground systems. Artificial Intelligence and expert system techniques have great potential in space applications. Expert systems could facilitate autonomous decision making, improve in-orbit fault diagnosis and repair, enhance performance and reduce reliance on ground support. However, real-time expert systems, unlike conventional off-line consultative systems, have to satisfy certain special stringent requirements before they could be used for onboard space applications. Challenging and interesting new environments are faced while developing expert system space applications. This paper discusses the special characteristics, requirements and typical life cycle issues for onboard expert systems. Further, it also describes considerations in design, development, and implementation which are particularly important to real-time expert systems for space applications.

  2. The use of newly developed real-time PCR for the rapid identification of bacteria in culture-negative osteomyelitis.

    Science.gov (United States)

    Kobayashi, Naomi; Bauer, Thomas W; Sakai, Hiroshige; Togawa, Daisuke; Lieberman, Isador H; Fujishiro, Takaaki; Procop, Gary W

    2006-12-01

    We report a case of a culture-negative osteomyelitis in which our newly developed real-time polymerase chain reaction (PCR) could differentiate Staphylococcus aureus from Staphylococcus epidermidis. This is the first report that described the application of this novel assay to an orthopedics clinical sample. This assay may be useful for other clinical culture-negative cases in a combination with a broad-spectrum assay as a rapid microorganism identification method.

  3. Development of a prototype real-time automated filter for operational deep space navigation

    Science.gov (United States)

    Masters, W. C.; Pollmeier, V. M.

    1994-01-01

    Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.

  4. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  5. Clinical Practicability of a Newly Developed Real-time Digital Kymographic System.

    Science.gov (United States)

    Lee, Jin-Choon; Wang, Soo-Geun; Sung, Eui-Suk; Bae, In-Ho; Kim, Seong-Tae; Lee, Yeon-Woo

    2017-12-22

    A digital kymogram shows real images of vocal fold vibration. However, DKG is difficult to use in clinical practice because the recorded image cannot be seen instantaneously after examination, as considerable encoding time is required to visualize a digital kymogram. In addition, frame-by frame analysis should be implemented to evaluate high-speed videoendoscopy data, but is time- and labor-intensive. The purpose of the study was to validate the clinical practicability of a real-time multislice digital kymographic system developed by the authors. We analyzed the promptness and accuracy of the examination before and after intracordal injections in patients with unilateral vocal fold paralysis. To assess the clinical applicability of this system, six patients with unilateral vocal fold paralysis were selected. Real-time DKG was performed before and immediately after intracordal injection. We observed changes in the digital kymogram after the intracordal injection. Using this system, 10 scanning lines and up to five vertical pixel row could be obtained in real time, and the maximum acquisition time for the DKG image was 10 seconds. A digital kymogram of the patients could be instantaneously acquired, and whether the intracordal injection was appropriate or not. This article is the first validation study after the development of the real-time multislice digital kymographic system. Our system may be a promising tool in clinical practice for immediate assessment of the vibratory patterns of the vocal cords. More research is necessary for further clinical validation. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Real-time graphics for the Space Station Freedom cupola, developed in the Systems Engineering Simulator

    Science.gov (United States)

    Red, Michael T.; Hess, Philip W.

    1989-01-01

    Among the Lyndon B. Johnson Space Center's responsibilities for Space Station Freedom is the cupola. Attached to the resource node, the cupola is a windowed structure that will serve as the space station's secondary control center. From the cupola, operations involving the mobile service center and orbital maneuvering vehicle will be conducted. The Systems Engineering Simulator (SES), located in building 16, activated a real-time man-in-the-loop cupola simulator in November 1987. The SES cupola is an engineering tool with the flexibility to evolve in both hardware and software as the final cupola design matures. Two workstations are simulated with closed-circuit television monitors, rotational and translational hand controllers, programmable display pushbuttons, and graphics display with trackball and keyboard. The displays and controls of the SES cupola are driven by a Silicon Graphics Integrated Raster Imaging System (IRIS) 4D/70 GT computer. Through the use of an interactive display builder program, SES, cupola display pages consisting of two dimensional and three dimensional graphics are constructed. These display pages interact with the SES via the IRIS real-time graphics interface. The focus is on the real-time graphics interface applications software developed on the IRIS.

  7. Developing Near Real-time Data-assimilative Models and Tools for the Space Environment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The IDA4D and AMIE data assimilation methods are currently of limited use for real-time space weather applications because either they don't run in real-time (IDA4D)...

  8. Real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1993-01-01

    The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication

  9. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems

    Science.gov (United States)

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J. T.; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J.; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.

  10. Bundles over Quantum RealWeighted Projective Spaces

    Directory of Open Access Journals (Sweden)

    Tomasz Brzeziński

    2012-09-01

    Full Text Available The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that generalises the quantum disc, so do the constructed principal bundles. In the negative case the principal bundle is proven to be non-trivial and associated projective modules are described. In the positive case the principal bundles turn out to be trivial, and so all the associated modules are free. It is also shown that the circle (coactions on the quantum Seifert manifold that define quantum real weighted projective spaces are almost free.

  11. Development of a global toroidal gyrokinetic Vlasov code with new real space field solver

    International Nuclear Information System (INIS)

    Obrejan, Kevin; Imadera, Kenji; Li, Ji-Quan; Kishimoto, Yasuaki

    2015-01-01

    This work introduces a new full-f toroidal gyrokinetic (GK) Vlasov simulation code that uses a real space field solver. This solver enables us to compute the gyro-averaging operators in real space to allow proper treatment of finite Larmor radius (FLR) effects without requiring any particular hypothesis and in any magnetic field configuration (X-point, D-shaped etc). The code was well verified through benchmark tests such as toroidal Ion Temperature Gradient (ITG) instability and collisionless damping of zonal flow. (author)

  12. Quantification of Fusarium oxysporum in fumigated soils by a newly developed real-time PCR assay to assess the efficacy of fumigants for Fusarium wilt disease in strawberry plants.

    Science.gov (United States)

    Li, Yuan; Mao, Liangang; Yan, Dongdong; Ma, Taotao; Shen, Jin; Guo, Meixia; Wang, Qiuxia; Ouyang, Canbin; Cao, Aocheng

    2014-11-01

    Two soil fumigants, chloropicrin (CP) and dimethyl disulfide (DMDS), were used to control Fusarium wilt disease (FWD) which caused large economic losses in strawberries. The fumigants were evaluated alone and in combination in a laboratory study and in strawberry greenhouses. Laboratory tests found that combinations of CP and DMDS indicated a positive synergistic activity on Fusarium oxysporum. A newly developed quantitative assay for F. oxysporum involving real-time PCR was used successfully to evaluate F. oxysporum control by the fumigants; it provided similar results to the selective medium but was less time-consuming and less labor intensive. Greenhouse trials revealed that the combination of CP and DMDS successfully suppressed the incidence of FWD and sharply reduced the population density of F. oxysporum, which significantly increased fruit branch number and maintained a good strawberry yield, higher than methyl bromide (MB) treatment. All of the treatments provided significantly better results than the non-treated control. This study confirms that the newly developed real-time PCR quantitative assay for F. oxysporum was suitable for the control efficacy evaluation of soil fumigants and that the novel fumigant combination of CP and DMDS offers a promising effective alternative to MB for the control of F. oxysporum in strawberry greenhouses. © 2013 Society of Chemical Industry.

  13. The real meaning of complex Minkowski-space world-lines

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, T M [University of Oxford, Mathematical Institute, 24-29 St Giles, Oxford, OX1 3LB (United Kingdom); Newman, E T, E-mail: newman@pitt.ed [University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh, PA 15213 (United States)

    2010-04-07

    In connection with the study of shear-free null geodesics in Minkowski space, we investigate the real geometric effects in real Minkowski space that are induced by and associated with complex world-lines in complex Minkowski space. It was already known, in a formal manner, that complex analytic curves in complex Minkowski space induce shear-free null geodesic congruences. Here we look at the direct geometric connections of the complex line and the real structures. Among other items, we show, in particular, how a complex world-line projects into the real Minkowski space in the form of a real shear-free null geodesic congruence.

  14. The real meaning of complex Minkowski-space world-lines

    International Nuclear Information System (INIS)

    Adamo, T M; Newman, E T

    2010-01-01

    In connection with the study of shear-free null geodesics in Minkowski space, we investigate the real geometric effects in real Minkowski space that are induced by and associated with complex world-lines in complex Minkowski space. It was already known, in a formal manner, that complex analytic curves in complex Minkowski space induce shear-free null geodesic congruences. Here we look at the direct geometric connections of the complex line and the real structures. Among other items, we show, in particular, how a complex world-line projects into the real Minkowski space in the form of a real shear-free null geodesic congruence.

  15. Comparative study of standard space and real space analysis of quantitative MR brain data.

    Science.gov (United States)

    Aribisala, Benjamin S; He, Jiabao; Blamire, Andrew M

    2011-06-01

    To compare the robustness of region of interest (ROI) analysis of magnetic resonance imaging (MRI) brain data in real space with analysis in standard space and to test the hypothesis that standard space image analysis introduces more partial volume effect errors compared to analysis of the same dataset in real space. Twenty healthy adults with no history or evidence of neurological diseases were recruited; high-resolution T(1)-weighted, quantitative T(1), and B(0) field-map measurements were collected. Algorithms were implemented to perform analysis in real and standard space and used to apply a simple standard ROI template to quantitative T(1) datasets. Regional relaxation values and histograms for both gray and white matter tissues classes were then extracted and compared. Regional mean T(1) values for both gray and white matter were significantly lower using real space compared to standard space analysis. Additionally, regional T(1) histograms were more compact in real space, with smaller right-sided tails indicating lower partial volume errors compared to standard space analysis. Standard space analysis of quantitative MRI brain data introduces more partial volume effect errors biasing the analysis of quantitative data compared to analysis of the same dataset in real space. Copyright © 2011 Wiley-Liss, Inc.

  16. The homogeneous geometries of real hyperbolic space

    DEFF Research Database (Denmark)

    Castrillón López, Marco; Gadea, Pedro Martínez; Swann, Andrew Francis

    We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use...... our analysis to show that the moduli space of homogeneous structures on real hyperbolic space has two connected components....

  17. Modeling solvation effects in real-space and real-time within density functional approaches

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Alain [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy); Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 # 502, 11300 La Habana (Cuba); Corni, Stefano; Pittalis, Stefano; Rozzi, Carlo Andrea [Istituto Nanoscienze - CNR, Centro S3, via Campi 213/A, 41125 Modena (Italy)

    2015-10-14

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that are close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the OCTOPUS code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.

  18. First-principles real-space tight-binding LMTO calculation of electronic structures for atomic clusters

    International Nuclear Information System (INIS)

    Xie, Z.L.; Dy, K.S.; Wu, S.Y.

    1997-01-01

    A real-space scheme has been developed for a first-principles calculation of electronic structures and total energies of atomic clusters. The scheme is based on the combination of the tight-binding linear muffin-tin orbital (TBLMTO) method and the method of real-space Green close-quote s function. With this approach, the local electronic density of states can be conveniently determined from the real-space Green close-quote s function. Furthermore, the full electron density of a cluster can be directly calculated in real space. The scheme has been shown to be very efficient due to the incorporation of the method of real-space Green close-quote s function and Delley close-quote s method of evaluating multicenter integrals. copyright 1996 The American Physical Society

  19. Development of volume rendering module for real-time visualization system

    International Nuclear Information System (INIS)

    Otani, Takayuki; Muramatsu, Kazuhiro

    2000-03-01

    Volume rendering is a method to visualize the distribution of physical quantities in the three dimensional space from any viewpoint by tracing the ray direction on the ordinary two dimensional monitoring display. It enables to provide the interior information as well as the surfacial one by producing the translucent images. Therefore, it is regarded as a very useful means as well as an important one in the analysis of the computational results of the scientific calculations, although it has, unfortunately, disadvantage to need a large amount of computing time. This report describes algorithm and its performance of the volume rendering soft-ware which was developed as an important functional module in the real-time visualization system PATRAS. This module can directly visualize the computed results on BFC grid. Moreover, it has already realized the speed-up in some parts of the software by the use of a newly developed heuristic technique. This report includes the investigation on the speed-up of the software by parallel processing. (author)

  20. Bose-Einstein condensation in real space

    International Nuclear Information System (INIS)

    Valencia, J.J.; Llano, M. de; Solis, M.A.

    2004-01-01

    We show how Bose-Einstein condensation (BEC) occurs not only in momentum space but also in coordinate (or real) space. Analogies between the isotherms of a van der Waals classical gas of extended (or finite-diameter) identical atoms and the point (or zero-diameter) particles of an ideal BE gas allow concluding that, in contrast with the classical case, the volume per particle vanishes in the pure BE condensate phase precisely because the boson diameters are zero. Thus a BE condensate forms in real space without exhibiting a liquid branch as does the classical gas. (Author)

  1. Real-space formulation of the electrostatic potential and total energy of solids

    International Nuclear Information System (INIS)

    Pask, J E; Sterne, P A

    2004-01-01

    We develop expressions for the electrostatic potential and total energy of crystalline solids which are amenable to direct evaluation in real space. Unlike conventional reciprocal space formulations, no Fourier transforms or reciprocal lattice summations are required, and the formulation is well suited for large-scale, parallel computations. The need for reciprocal space expressions is eliminated by replacing long-range potentials by equivalent localized charge distributions and incorporating long-range interactions into boundary conditions on the unit cell. In so doing, a simplification of the conventional reciprocal space formalism is obtained. The equivalence of the real- and reciprocal space formalisms is demonstrated by direct comparison in self-consistent density-functional calculations

  2. Interactive Space(s) -- the CTSG: bridging the real and virtual

    NARCIS (Netherlands)

    Eliëns, A.P.W.; Mao, W.; Vermeersch, L

    2010-01-01

    In this paper, ideas will be presented how to realize games or playful activities in interactive space(s), having a real (spatial) component as well as a representation in virtual 2D or 3D space, by means of web pages and/or online games. Apart from general design criteria, the paper discusses a

  3. Thermal expansion of an amorphous alloy. Reciprocal-space versus real-space distribution functions

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2007-01-01

    This paper describes the relation between the change in the position of the first X-ray diffraction maximum in reciprocal space and the first maximum of the distribution function in real space for the Ge 50 Al 40 Cr 10 amorphous alloy. It is also shown that the first diffraction maximum of the interference function carries the most significant information about the interatomic distances in real space while the subsequent peaks of the interference function are responsible for the shoulders of the main peak of the real-space distribution function. The results are used to support validity of the method previously used to monitor thermal expansion of the glassy alloys using an X-ray diffraction profile

  4. The Real Time Interactive Display Environment (RTIDE), a display building tool developed by Space Shuttle flight controllers

    Science.gov (United States)

    Kalvelage, Thomas A.

    1989-01-01

    NASA's Mission Control Center, located at Johnson Space Center, is incrementally moving from a centralized architecture to a distributed architecture. Starting with STS-29, some host-driven console screens will be replaced with graphics terminals driven by workstations. These workstations will be supplied realtime data first by the Real Time Data System (RTDS), a system developed inhouse, and then months later (in parallel with RTDS) by interim and subsequently operational versions of the Mission Control Center Upgrade (MCCU) software package. The Real Time Interactive Display Environment (RTIDE) was built by Space Shuttle flight controllers to support the rapid development of multiple new displays to support Shuttle flights. RTIDE is a display building tool that allows non-programmers to define object-oriented, event-driven, mouseable displays. Particular emphasis was placed on upward compatibility between RTIDE versions, ability to acquire data from different data sources, realtime performance, ability to modularly upgrade RTIDE, machine portability, and a clean, powerful user interface. The operational and organizational factors that drove RTIDE to its present form, the actual design itself, simulation and flight performance, and lessons learned in the process are discussed.

  5. Real Space Approach to CMB deboosting

    CERN Document Server

    Yoho, Amanda; Starkman, Glenn D.; Pereira, Thiago S.

    2013-01-01

    The effect of our Galaxy's motion through the Cosmic Microwave Background rest frame, which aberrates and Doppler shifts incoming photons measured by current CMB experiments, has been shown to produce mode-mixing in the multipole space temperature coefficients. However, multipole space determinations are subject to many difficulties, and a real-space analysis can provide a straightforward alternative. In this work we describe a numerical method for removing Lorentz- boost effects from real-space temperature maps. We show that to deboost a map so that one can accurately extract the temperature power spectrum requires calculating the boost kernel at a finer pixelization than one might naively expect. In idealized cases that allow for easy comparison to analytic results, we have confirmed that there is indeed mode mixing among the spherical harmonic coefficients of the temperature. We find that using a boost kernel calculated at Nside=8192 leads to a 1% bias in the binned boosted power spectrum at l~2000, while ...

  6. Real-time estimation of free spaces in regulated on-street parking spaces using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Magaña Suarez, M.

    2016-07-01

    In this paper we will develop a methodology for estimating the percentage of free parking spaces available in the area of the city where a user is interested through a real-time query in a mobile app. The smartphone screen will provide a colour-coded map of the requested area that indicates the saturation state of the parking spaces. (Author)

  7. Real-variable theory of Musielak-Orlicz Hardy spaces

    CERN Document Server

    Yang, Dachun; Ky, Luong Dang

    2017-01-01

    The main purpose of this book is to give a detailed and complete survey of recent progress related to the real-variable theory of Musielak–Orlicz Hardy-type function spaces, and to lay the foundations for further applications. The real-variable theory of function spaces has always been at the core of harmonic analysis. Recently, motivated by certain questions in analysis, some more general Musielak–Orlicz Hardy-type function spaces were introduced. These spaces are defined via growth functions which may vary in both the spatial variable and the growth variable. By selecting special growth functions, the resulting spaces may have subtler and finer structures, which are necessary in order to solve various endpoint or sharp problems. This book is written for graduate students and researchers interested in function spaces and, in particular, Hardy-type spaces.

  8. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center

    Science.gov (United States)

    Mullinix, R.; Maddox, M. M.; Berrios, D.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Zheng, Y.

    2012-12-01

    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions are therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products compels the need for a single access point to such information. The Integrated Space Weather Analysis (iSWA) System provides this single point access along with the capability to collect and catalog a vast range of sources including both observational and model data. NASA Goddard Space Weather Research Center heavily utilizes the iSWA System daily for research, space weather model validation, and forecasting for NASA missions. iSWA provides the capabilities to view and analyze near real-time space weather data from any where in the world. This presentation will describe the technology behind the iSWA system and describe how to use the system for space weather research, forecasting, training, education, and sharing.

  9. Applying MDA to SDR for Space to Model Real-time Issues

    Science.gov (United States)

    Blaser, Tammy M.

    2007-01-01

    NASA space communications systems have the challenge of designing SDRs with highly-constrained Size, Weight and Power (SWaP) resources. A study is being conducted to assess the effectiveness of applying the MDA Platform-Independent Model (PIM) and one or more Platform-Specific Models (PSM) specifically to address NASA space domain real-time issues. This paper will summarize our experiences with applying MDA to SDR for Space to model real-time issues. Real-time issues to be examined, measured, and analyzed are: meeting waveform timing requirements and efficiently applying Real-time Operating System (RTOS) scheduling algorithms, applying safety control measures, and SWaP verification. Real-time waveform algorithms benchmarked with the worst case environment conditions under the heaviest workload will drive the SDR for Space real-time PSM design.

  10. Fertilization and development of eggs of the South African clawed toad, Xenopus laevis, on sounding rockets in space.

    Science.gov (United States)

    Ubbels, G A; Berendsen, W; Kerkvliet, S; Narraway, J

    1992-01-01

    Egg rotation and centrifugation experiments strongly suggest a role for gravity in the determination of the spatial structure of amphibian embryos. Decisive experiments can only be made in Space. Eggs of Xenopus laevis, the South African clawed toad, were the first vertebrate eggs which were successfully fertilized on Sounding Rockets in Space. Unfixed, newly fertilized eggs survived reentry, and a reasonable number showed a seemingly normal gastrulation but died between gastrulation and neurulation. Only a few reached the larval stage, but these developed abnormally. In the future, we intend to test whether this abnormal morphogenesis is due to reentry perturbations, or due to a real microgravity effect, through perturbation of the reinitiation of meiosis and other processes, or started by later sperm penetration.

  11. Tourism in Real and Virtual Space

    Directory of Open Access Journals (Sweden)

    Alireza Dehghan

    2009-07-01

    Full Text Available During these two decades, according to the expansion of communication, there is a deep transformation in individuals’ conception of space. As space plays an important role in tourism, either real or virtual, this transformation happens in the field too. The present study attempts to show how tourism in the contemporary virtualized world, or as some authors name: the dual globalized situation, occurs.

  12. Space Product Development: Bringing the Benefits of Space Down to Earth

    Science.gov (United States)

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  13. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  14. Expanding Horizons in Mitigating Earthquake Related Disasters in Urban Areas: Global Development of Real-Time Seismology

    OpenAIRE

    Utkucu, Murat; Küyük, Hüseyin Serdar; Demir, İsmail Hakkı

    2016-01-01

    Abstract Real-time seismology is a newly developing alternative approach in seismology to mitigate earthquake hazard. It exploits up-to-date advances in seismic instrument technology, data acquisition, digital communications and computer systems for quickly transforming data into earthquake information in real-time to reduce earthquake losses and its impact on social and economic life in the earthquake prone densely populated urban and industrial areas.  Real-time seismology systems are not o...

  15. Real space renormalization tecniques for disordered systems

    International Nuclear Information System (INIS)

    Anda, E.V.

    1984-01-01

    Real space renormalization techniques are applied to study different disordered systems, with an emphasis on the understanding of the electronic properties of amorphous matter, mainly semiconductors. (Authors) [pt

  16. Real space renormalization group for spectra and density of states

    International Nuclear Information System (INIS)

    Wiecko, C.; Roman, E.

    1984-09-01

    We discuss the implementation of the Real Space Renormalization Group Decimation Technique for 1-d tight-binding models with long range interactions with or without disorder and for the 2-d regular square lattice. The procedure follows the ideas developed by Southern et al. Some new explicit formulae are included. The purpose of this study is to calculate spectra and densities of states following the procedure developed in our previous work. (author)

  17. Real-time Control Mediation in Agile Distributed Software Development

    DEFF Research Database (Denmark)

    Persson, John Stouby; Aaen, Ivan; Mathiassen, Lars

    2008-01-01

    Agile distributed environments pose particular challenges related to control of quality and collaboration in software development. Moreover, while face-to-face interaction is fundamental in agile development, distributed environments must rely extensively on mediated interactions. On this backdrop...... control was mediated over distance by technology through real-time exchanges. Contrary to previous research, the analysis suggests that both formal and informal elements of real-time mediated control were used; that evolving goals and adjustment of expectations were two of the main issues in real......-time mediated control exchanges; and, that the actors, despite distances in space and culture, developed a clan-like pattern mediated by technology to help control quality and collaboration in software development....

  18. Real space renormalization techniques for disordered systems

    International Nuclear Information System (INIS)

    Anda, E.V.

    1985-01-01

    Real Space renormalization techniques are applied to study different disordered systems, with an emphasis on the under-standing of the electronic properties of amorphous matter, mainly semiconductors. (author) [pt

  19. Keeping it real: revisiting a real-space approach to running ensembles of cosmological N-body simulations

    International Nuclear Information System (INIS)

    Orban, Chris

    2013-01-01

    In setting up initial conditions for ensembles of cosmological N-body simulations there are, fundamentally, two choices: either maximizing the correspondence of the initial density field to the assumed fourier-space clustering or, instead, matching to real-space statistics and allowing the DC mode (i.e. overdensity) to vary from box to box as it would in the real universe. As a stringent test of both approaches, I perform ensembles of simulations using power law and a ''powerlaw times a bump'' model inspired by baryon acoustic oscillations (BAO), exploiting the self-similarity of these initial conditions to quantify the accuracy of the matter-matter two-point correlation results. The real-space method, which was originally proposed by Pen 1997 [1] and implemented by Sirko 2005 [2], performed well in producing the expected self-similar behavior and corroborated the non-linear evolution of the BAO feature observed in conventional simulations, even in the strongly-clustered regime (σ 8 ∼>1). In revisiting the real-space method championed by [2], it was also noticed that this earlier study overlooked an important integral constraint correction to the correlation function in results from the conventional approach that can be important in ΛCDM simulations with L box ∼ −1 Gpc and on scales r∼>L box /10. Rectifying this issue shows that the fourier space and real space methods are about equally accurate and efficient for modeling the evolution and growth of the correlation function, contrary to previous claims. An appendix provides a useful independent-of-epoch analytic formula for estimating the importance of the integral constraint bias on correlation function measurements in ΛCDM simulations

  20. A real-space stochastic density matrix approach for density functional electronic structure.

    Science.gov (United States)

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  1. EDITORIAL: From reciprocal space to real space in surface science From reciprocal space to real space in surface science

    Science.gov (United States)

    Bartels, Ludwig; Ernst, Karl-Heinz

    2012-09-01

    This issue is dedicated to Karl-Heinz Rieder on the occasion of his 70th birthday. It contains contributions written by his former students and colleagues from all over the world. Experimental techniques based on free electrons, such as photoelectron spectroscopy, electron microscopy and low energy electron diffraction (LEED), were foundational to surface science. While the first revealed the band structures of materials, the second provided nanometer scale imagery and the latter elucidated the atomic scale periodicity of surfaces. All required an (ultra-)high vacuum, and LEED illustrated impressively that adsorbates, such as carbon monoxide, hydrogen or oxygen, can markedly and periodically restructure surfaces from their bulk termination, even at pressures ten orders of magnitude or more below atmospheric. Yet these techniques were not generally able to reveal atomic scale surface defects, nor could they faithfully show adsorption of light atoms such as hydrogen. Although a complete atom, helium can also be regarded as a wave with a de Broglie wavelength that allows the study of surface atomic periodicities at a delicateness and sensitivity exceeding that of electrons-based techniques. In combination, these and other techniques generated insight into the periodicity of surfaces and their vibrational properties, yet were limited to simple and periodic surface setups. All that changed with the advent of scanning tunneling microscopy (STM) roughly 30 years ago, allowing real space access to surface defects and individual adsorbates. Applied at low temperatures, not only can STM establish a height profile of surfaces, but can also perform spectroscopy and serve as an actuator capable of rearranging individual species at atomic scale resolution. The direct and intuitive manner in which STM provided access as a spectator and as an actor to the atomic scale was foundational to today's surface science and to the development of the concepts of nanoscience in general. The

  2. The pairing theory of polarons in real- and impulse spaces

    International Nuclear Information System (INIS)

    Dzhumanov, S.; Abboudy, S.; Baratov, A.A.

    1995-07-01

    A consistent pairing theory of carriers in real- and impulse spaces is developed. The pairing of different free (F), delocalized (D) and self-trapped (S) carriers in real-space, leading to the formation of various bipolaronic states are considered within the continuum model and adiabatic approximation taking into account the combined effect of the short- and long-range components of electron-lattice interaction with and without electron correlation. The formation possibility of D- and S-bipolarons as a function of ε ∞ /ε 0 are shown. The pairing scenarios of carriers in k-space leading to the formation of different bipolarons (including also Cooper pairs dynamic bipolarons) are considered within the generalized BCS-like model taking into account the combined phonon and polaron-bag mediated processes. It is shown that the pure BCS pairing picture is the particular case of the general BCS-like one. The possible relevance of the obtained results to high-T c superconductors is discussed in details in the framework of a novel two-stage Fermi-Bose-liquid scenarios of superconductivity which is caused by single particle and pair condensation of an attracting bipolarons. (author). 51 refs, 6 figs

  3. Development of real-time on-line vibration testing system for seismic experiments

    International Nuclear Information System (INIS)

    Horiuchi, T.; Nakagawa, M.; Kametani, M.

    1993-01-01

    An on-line vibration testing method is being developed for seismic experiments. This method combines computer simulation and an actuator for vibration testing of structures. A real-time, on-line testing system was developed to improve the method. In the system, the timing of the vibration testing and the computer simulation are the same. This allows time-dependent reaction forces, such as damping force, to be immediately considered in the computer simulation. The real-time system has many requirements, such as complicated matrix calculations within a small time step, and communication with outer devices like sensors and actuators through A/D and D/A converters. These functions arc accomplished by using a newly-developed, real-time controller that employs a parallel processing technique. A small structural model is used to demonstrate the system. The reliability and applicability of the system for seismic experiments can be demonstrated by comparing the results of the system and a shaking table, which are in almost agreement. (author)

  4. NUMERICAL MODELLING OF THE SOIL BEHAVIOUR BY USING NEWLY DEVELOPED ADVANCED MATERIAL MODEL

    Directory of Open Access Journals (Sweden)

    Jan Veselý

    2017-02-01

    Full Text Available This paper describes a theoretical background, implementation and validation of the newly developed Jardine plastic hardening-softening model (JPHS model, which can be used for numerical modelling of the soils behaviour. Although the JPHS model is based on the elasto-plastic theory, like the Mohr-Coulomb model that is widely used in geotechnics, it contains some improvements, which removes the main disadvantages of the MC model. The presented model is coupled with an isotopically hardening and softening law, non-linear elastic stress-strain law, non-associated elasto-plastic material description and a cap yield surface. The validation of the model is done by comparing the numerical results with real measured data from the laboratory tests and by testing of the model on the real project of the tunnel excavation. The 3D numerical analysis is performed and the comparison between the JPHS, Mohr-Coulomb, Modified Cam-Clay, Hardening small strain model and monitoring in-situ data is done.

  5. Spaces an introduction to real analysis

    CERN Document Server

    Lindstrøm, Tom L

    2017-01-01

    Spaces is a modern introduction to real analysis at the advanced undergraduate level. It is forward-looking in the sense that it first and foremost aims to provide students with the concepts and techniques they need in order to follow more advanced courses in mathematical analysis and neighboring fields. The only prerequisites are a solid understanding of calculus and linear algebra. Two introductory chapters will help students with the transition from computation-based calculus to theory-based analysis. The main topics covered are metric spaces, spaces of continuous functions, normed spaces, differentiation in normed spaces, measure and integration theory, and Fourier series. Although some of the topics are more advanced than what is usually found in books of this level, care is taken to present the material in a way that is suitable for the intended audience: concepts are carefully introduced and motivated, and proofs are presented in full detail. Applications to differential equations and Fourier analysis ...

  6. Real hypersurfaces of a complex projective space

    Indian Academy of Sciences (India)

    Kaehler manifolds of con- stant holomorphic sectional curvature c) is a very interesting and active area of research. The ambient space ¯M(c), specially in the case c = 0 imposes quite significant restrictions on the geometry of its real hypersurfaces.

  7. Seeing real-space dynamics of liquid water through inelastic x-ray scattering.

    Science.gov (United States)

    Iwashita, Takuya; Wu, Bin; Chen, Wei-Ren; Tsutsui, Satoshi; Baron, Alfred Q R; Egami, Takeshi

    2017-12-01

    Water is ubiquitous on earth, but we know little about the real-space motion of molecules in liquid water. We demonstrate that high-resolution inelastic x-ray scattering measurement over a wide range of momentum and energy transfer makes it possible to probe real-space, real-time dynamics of water molecules through the so-called Van Hove function. Water molecules are found to be strongly correlated in space and time with coupling between the first and second nearest-neighbor molecules. The local dynamic correlation of molecules observed here is crucial to a fundamental understanding of the origin of the physical properties of water, including viscosity. The results also suggest that the quantum-mechanical nature of hydrogen bonds could influence its dynamics. The approach used here offers a powerful experimental method for investigating real-space dynamics of liquids.

  8. Real-space Berry phases: Skyrmion soccer (invited)

    Science.gov (United States)

    Everschor-Sitte, Karin; Sitte, Matthias

    2014-05-01

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  9. Real-space Berry phases: Skyrmion soccer (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Everschor-Sitte, Karin, E-mail: karin@physics.utexas.edu; Sitte, Matthias [The University of Texas at Austin, Department of Physics, 2515 Speedway, Austin, Texas 78712 (United States)

    2014-05-07

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects.

  10. Real-space Berry phases: Skyrmion soccer (invited)

    International Nuclear Information System (INIS)

    Everschor-Sitte, Karin; Sitte, Matthias

    2014-01-01

    Berry phases occur when a system adiabatically evolves along a closed curve in parameter space. This tutorial-like article focuses on Berry phases accumulated in real space. In particular, we consider the situation where an electron traverses a smooth magnetic structure, while its magnetic moment adjusts to the local magnetization direction. Mapping the adiabatic physics to an effective problem in terms of emergent fields reveals that certain magnetic textures, skyrmions, are tailormade to study these Berry phase effects

  11. Real analysis measure theory, integration, and Hilbert spaces

    CERN Document Server

    Stein, Elias M

    2005-01-01

    Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After

  12. Space Network Devices Developed

    Science.gov (United States)

    Jones, Robert E.

    2004-01-01

    The NASA Glenn Research Center through a contract with Spectrum Astro, Inc., has been developing space network hardware as an enabling technology using open systems interconnect (OSI) standards for space-based communications applications. The OSI standard is a well-recognized layered reference model that specifies how data should be sent node to node in a communications network. Because of this research and technology development, a space-qualifiable Ethernet-based network interface card (similar to the type found in a networked personal computer) and the associated four-port hub were designed and developed to flight specifications. During this research and development, there also have been many lessons learned for determining approaches for migrating existing spacecraft architectures to an OSI-network-based platform. Industry has recognized the benefits of targeting hardware developed around OSI standards such as Transmission Control Protocol/Internet Protocol (TCP/IP) or similar protocols for use in future generations of space communication systems. Some of these tangible benefits include overall reductions in mission schedule and cost and in system complexity. This development also brings us a step closer to the realization of a principal investigator on a terrestrial Internet site being able to interact with space platform assets in near real time. To develop this hardware, Spectrum Astro first conducted a technology analysis of alternatives study. For this analysis, they looked at the features of three protocol specifications: Ethernet (IEEE 802.3), Firewire (IEEE 1394), and Spacewire (IEEE 1355). A thorough analysis was performed on the basis of criteria such as current protocol performance and suitability for future space applications. Spectrum Astro also projected future influences such as cost, hardware and software availability, throughput performance, and integration procedures for current and transitive space architectures. After a thorough analysis

  13. Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    International Nuclear Information System (INIS)

    Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A.

    1999-01-01

    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including electronic band structures and details of the convergence of the method. copyright 1999 The American Physical Society

  14. The newly developed Toyota plug-in hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Toshifumi; Ichinose, Hiroki [Toyota Motor Corporation (Japan)

    2010-07-01

    Toyota has been introducing several hybrid vehicles (HV) as a countermeasure to the automobile's concerns, like CO2 reduction, energy security, and emission reduction in urban areas. A next step towards an even more effective solution for these concerns is a plug-in hybrid vehicle (PHV). This vehicle combines the advantages of electric vehicles (EV), which use clean electric energy, and HV, with it's high environmental potential and user- friendliness comparable to conventional vehicles, such as a long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an affordable EV range without sacrificing cabin space. The vehicle achieves a CO2 emission of 59g/km and meets the most stringent emission regulations in the world. The new PHV is a forerunner of the large-scale mass production PHV two years later. PHVs have the potential to become popular as a realistic solution towards sustainable mobility by renewable electricity usage in the future. (orig.)

  15. Using NASA Data in the Classroom: Promoting STEM Learning in Formal Education using Real Space Science Data

    Science.gov (United States)

    Lawton, B.; Hemenway, M. K.; Mendez, B.; Odenwald, S.

    2013-04-01

    Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provides formal educators the opportunity to teach their students real-world applications of the STEM subjects. Combining real space science data with lessons aimed at meeting state and national education standards provides a memorable educational experience that students can build upon throughout their academic careers. Many of our colleagues have adopted the use of real data in their education and public outreach (EPO) programs. There are challenges in creating resources using real data for classroom use that include, but are not limited to, accessibility to computers/Internet and proper instruction. Understanding and sharing these difficulties and best practices with the larger EPO community is critical to the development of future resources. In this session, we highlight three examples of how NASA data is being utilized in the classroom: the Galaxies and Cosmos Explorer Tool (GCET) that utilizes real Hubble Space Telescope data; the computer image-analysis resources utilized by the NASA WISE infrared mission; and the space science derived math applications from SpaceMath@NASA featuring the Chandra and Kepler space telescopes. Challenges and successes are highlighted for these projects. We also facilitate small-group discussions that focus on additional benefits and challenges of using real data in the formal education environment. The report-outs from those discussions are given here.

  16. Optical Real-Time Space Radiation Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time dosimetry is needed to provide immediate feedback, so astronauts can minimize their exposure to ionizing radiation during periods of high solar activity....

  17. Asynchronous communication in real space process algebra

    NARCIS (Netherlands)

    Baeten, J.C.M.; Bergstra, J.A.

    1991-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a

  18. Asynchronous communication in real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1992-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a

  19. Pressure drop performance evaluation for test assemblies with the newly developed top and bottom nozzles

    International Nuclear Information System (INIS)

    Lee, S. K.; Park, N. K.; Su, J. M.; Kim, H. K.; Lee, J. N.; Kim, K. T.

    2003-01-01

    To perform the hydraulic test for the newly developed top and bottom nozzles, two kinds of test assemblies were manufactured i. e. one is the test assembly which has the newly developed top and bottom nozzles and the other is Guardian test assembly which is commercially in mass production now. The test results show that the test assembly with one top nozzle and two bottom nozzles has a greater pressure loss coefficient than Guardian test assembly by 60.9% and 90.4% at the bottom nozzle location. This cause is due to the debris filtering plate for bottom nozzle to improve a filtering efficiency aginst foreign material. In the region of mid grid and top nozzle, there is no difference in pressure loss coefficient between the test assemblies since the componet features in these regions are very similar or same each other. The loss coefficients are 14.2% and 21.9% for model A and B respectively in the scale of test assembly, and the value would be within the 10% in the scale of real fuel assembly. As a result of hydraulic performance evaluation, model A is superior to model B

  20. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    International Nuclear Information System (INIS)

    Jansen, Frank; Behrens, Joerg; Pospisil, Stanislav; Kudela, Karel

    2011-01-01

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  1. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  2. Development of embedded real-time and high-speed vision platform

    Science.gov (United States)

    Ouyang, Zhenxing; Dong, Yimin; Yang, Hua

    2015-12-01

    Currently, high-speed vision platforms are widely used in many applications, such as robotics and automation industry. However, a personal computer (PC) whose over-large size is not suitable and applicable in compact systems is an indispensable component for human-computer interaction in traditional high-speed vision platforms. Therefore, this paper develops an embedded real-time and high-speed vision platform, ER-HVP Vision which is able to work completely out of PC. In this new platform, an embedded CPU-based board is designed as substitution for PC and a DSP and FPGA board is developed for implementing image parallel algorithms in FPGA and image sequential algorithms in DSP. Hence, the capability of ER-HVP Vision with size of 320mm x 250mm x 87mm can be presented in more compact condition. Experimental results are also given to indicate that the real-time detection and counting of the moving target at a frame rate of 200 fps at 512 x 512 pixels under the operation of this newly developed vision platform are feasible.

  3. Space development and space science together, an historic opportunity

    Science.gov (United States)

    Metzger, P. T.

    2016-11-01

    The national space programs have an historic opportunity to help solve the global-scale economic and environmental problems of Earth while becoming more effective at science through the use of space resources. Space programs will be more cost-effective when they work to establish a supply chain in space, mining and manufacturing then replicating the assets of the supply chain so it grows to larger capacity. This has become achievable because of advances in robotics and artificial intelligence. It is roughly estimated that developing a lunar outpost that relies upon and also develops the supply chain will cost about 1/3 or less of the existing annual budgets of the national space programs. It will require a sustained commitment of several decades to complete, during which time science and exploration become increasingly effective. At the end, this space industry will capable of addressing global-scale challenges including limited resources, clean energy, economic development, and preservation of the environment. Other potential solutions, including nuclear fusion and terrestrial renewable energy sources, do not address the root problem of our limited globe and there are real questions whether they will be inadequate or too late. While industry in space likewise cannot provide perfect assurance, it is uniquely able to solve the root problem, and it gives us an important chance that we should grasp. What makes this such an historic opportunity is that the space-based solution is obtainable as a side-benefit of doing space science and exploration within their existing budgets. Thinking pragmatically, it may take some time for policymakers to agree that setting up a complete supply chain is an achievable goal, so this paper describes a strategy of incremental progress. The most crucial part of this strategy is establishing a water economy by mining on the Moon and asteroids to manufacture rocket propellant. Technologies that support a water economy will play an

  4. Argus developer in practice real estate development modeling in the real world

    CERN Document Server

    Havard, Tim M

    2014-01-01

    First ""missing manual"" for Argus Developer--case studies show readers how to analyze a development, something Argus manuals don't do. Argus Developer is by far the leading program for real estate developers worldwide The book is an education in real estate finance as well as the program Author teaches seminars and consults with people using the program--back of room sales likely Author has three other books on real estate development Possibility that Argus gets behind the project The book will contain dozens of screenshots

  5. Sizing Performance of the Newly Developed Eddy Current System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chan Hee; Lee, Hee Jong; Yoo, Hyun Ju; Moon, Gyoon Young; Lee, Tae Hoon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2013-10-15

    This paper describes the comparison results of sizing performance for two systems. The KHNP developed a new eddy current testing system for the inspection of steam generator tubing in domestic nuclear power plants. The equivalency assessment of the newly developed system with the EPRI-qualified system was already carried out. In this paper, the comparisons of depth-sizing performance for the artificial flaws between two systems were performed. The results show that the newly developed system is in good agreement with the qualified system. Therefore, it is expected that the newly developed eddy current system can be used for the inspection of steam generator tubing in nuclear power plants. There are some non-destructive examination (NDE) methods for the inspection of components in nuclear power plants, such as ultrasonic, radiographic, eddy current testing, etc. The eddy current testing is widely used for the inspection of steam generator (SG) tubing because it offers a relatively low cost approach for high speed, large scale testing of metallic materials in high pressure and temperature engineering systems. The Korea Hydro and Nuclear Power Co., Ltd. (KHNP) developed an eddy current testing system for the inspection of steam generator tubing in nuclear power plants. This system includes not only hardware but software such as the frequency generator and data acquisition-analysis program. The foreign eddy current system developed by ZETEC is currently used for the inspection of steam generator tubing in domestic nuclear power plants. The equivalency assessment between two systems was already carried out in accordance with the EPRI steam generator examination guidelines.

  6. Real-space visualization of remnant Mott gap and magnon excitations.

    Science.gov (United States)

    Wang, Y; Jia, C J; Moritz, B; Devereaux, T P

    2014-04-18

    We demonstrate the ability to visualize real-space dynamics of charge gap and magnon excitations in the Mott phase of the single-band Hubbard model and the remnants of these excitations with hole or electron doping. At short times, the character of magnetic and charge excitations is maintained even for large doping away from the Mott and antiferromagnetic phases. Doping influences both the real-space patterns and long timescales of these excitations with a clear carrier asymmetry attributable to particle-hole symmetry breaking in the underlying model. Further, a rapidly oscillating charge-density-wave-like pattern weakens, but persists as a visible demonstration of a subleading instability at half-filling which remains upon doping. The results offer an approach to analyzing the behavior of systems where momentum space is either inaccessible or poorly defined.

  7. An atomic model of brome mosaic virus using direct electron detection and real-space optimization

    Science.gov (United States)

    Wang, Zhao; Hryc, Corey F.; Bammes, Benjamin; Afonine, Pavel V.; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L.; Kao, Cheng; Ludtke, Steven J.; Schmid, Michael F.; Adams, Paul D.; Chiu, Wah

    2014-09-01

    Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.

  8. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    Science.gov (United States)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  9. A symmetrical treatment of bradyons and luxons by means of a non-real space

    International Nuclear Information System (INIS)

    Majernik, V.

    1983-01-01

    From the point of view of symmetry, it is interesting to note that there exist two kinds of physical particles - bradyons and luxons. In this connection the question arises whether it is not possible to treat luxons and bradyons in a symmetric way. The characteristic property of luxons is the fact that they move with the velocity of light. On the other hand, the characteristic property of bradyons is their ability to be localized. The bradyon-luxon symmetry would require such physical conditions in which luxons would behave as bradyons and bradyons as luxons. The author speculates that there exists a non-real space in addition to our real space in which bradyons would move with the velocity of light and luxons would be localized. This non-real, three-dimensional space (s-space), together with our three-dimensional real space (r-space), forms a suitable framework for the postulated bradyon-luxon symmetry. Within this framework he attempts to find the fundamental equations for bosons and fermions both in the s- and r-space, and to suggest a new hierarchy among the particles as well as a simple scheme of the fundamental physical interactions. (Auth.)

  10. A newly developed snack effective for enhancing bone volume

    Directory of Open Access Journals (Sweden)

    Hayashi Hidetaka

    2009-07-01

    Full Text Available Abstract Background The incidence of primary osteoporosis is higher in Japan than in USA and European countries. Recently, the importance of preventive medicine has been gradually recognized in the field of orthopaedic surgery with a concept that peak bone mass should be increased in childhood as much as possible for the prevention of osteoporosis. Under such background, we have developed a new bean snack with an aim to improve bone volume loss. In this study, we examined the effects of a newly developed snack on bone volume and density in osteoporosis model mice. Methods Orchiectomy (ORX and ovariectomy (OVX were performed for C57BL/6J mice of twelve-week-old (Jackson Laboratory, Bar Harbar, ME, USA were used in this experiment. We prepared and given three types of powder diet e.g.: normal calcium diet (NCD, Ca: 0.9%, Clea Japan Co., Tokyo, Japan, low calcium diet (LCD, Ca: 0.63%, Clea Japan Co., and special diet (SCD, Ca: 0.9%. Eighteen weeks after surgery, all the animals were sacrified and prepared for histomorphometric analysis to quantify bone density and bone mineral content. Results As a result of histomorphometric examination, SCD was revealed to enhance bone volume irrespective of age and sex. The bone density was increased significantly in osteoporosis model mice fed the newly developmental snack as compared with the control mice. The bone mineral content was also enhanced significantly. These phenomena were revealed in both sexes. Conclusion It is shown that the newly developed bean snack is highly effective for the improvement of bone volume loss irrespective of sex. We demonstrated that newly developmental snack supplements may be a useful preventive measure for Japanese whose bone mineral density values are less than the ideal condition.

  11. A Real-Time Apple Grading System Using Multicolor Space

    OpenAIRE

    Toylan, Hayrettin; Kuscu, Hilmi

    2014-01-01

    This study was focused on the multicolor space which provides a better specification of the color and size of the apple in an image. In the study, a real-time machine vision system classifying apples into four categories with respect to color and size was designed. In the analysis, different color spaces were used. As a result, 97% identification success for the red fields of the apple was obtained depending on the values of the parameter “a” of CIE L*a*b*color space. Similarly, 94% identific...

  12. Real time animation of space plasma phenomena

    International Nuclear Information System (INIS)

    Jordan, K.F.; Greenstadt, E.W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images

  13. Real-space grid implementation of the projector augmented wave method

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hansen, Lars Bruno; Jacobsen, Karsten Wedel

    2005-01-01

    A grid-based real-space implementation of the projector augmented wave sPAWd method of Blöchl fPhys. Rev. B 50, 17953 s1994dg for density functional theory sDFTd calculations is presented. The use of uniform three-dimensional s3Dd real-space grids for representing wave functions, densities...... valence wave functions that can be represented on relatively coarse grids. We demonstrate the accuracy of the method by calculating the atomization energies of 20 small molecules, and the bulk modulus and lattice constants of bulk aluminum. We show that the approach in terms of computational efficiency...... is comparable to standard plane-wave methods, but the memory requirements are higher....

  14. Near real-time geomagnetic data for space weather applications in the European sector

    Science.gov (United States)

    Johnsen, M. G.; Hansen, T. L.

    2012-12-01

    Tromsø Geophysical Observatory (TGO) is responsible for making and maintaining long time-series of geomagnetic measurements in Norway. TGO is currently operating 3 geomagnetic observatories and 11 variometer stations from southern Norway to Svalbard . Data from these 14 locations are acquired, processed and made available for the user community in near real-time. TGO is participating in several European Union (EU) and European Space Agency (ESA) space weather related projects where both near real-time data and derived products are provided. In addition the petroleum industry is benefiting from our real-time data services for directional drilling. Near real-time data from TGO is freely available for non-commercial purposes. TGO is exchanging data in near real-time with several institutions, enabling the presentation of near real-time geomagnetic data from more than 40 different locations in Fennoscandia and Greenland. The open exchange of non real-time geomagnetic data has been successfully going on for many years through services such as the world data center in Kyoto, SuperMAG, IMAGE and SPIDR. TGO's vision is to take this one step further and make the exchange of near real-time geomagnetic data equally available for the whole community. This presentation contains an overview of TGO, our activities and future aims. We will show how our near real-time data are presented. Our contribution to the space weather forecasting and nowcasting effort in the EU and ESA will be presented with emphasis on our real-time auroral activity index and brand new auroral activity monitor and electrojet tracker.

  15. Asynchronous communication in real space process algebra

    OpenAIRE

    Baeten, JCM Jos; Bergstra, JA Jan

    1990-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a priority mechanism allows to express the broadcasting mechanism. As an application, a protocol is specified in which the receiver moves with respect to the sender.

  16. Framing the Real: Lefèbvre and NeoRealist Cinematic Space as Practice

    OpenAIRE

    Brancaleone, David

    2014-01-01

    In 1945 Roberto Rossellini's Neo-realist Rome, Open City set in motion an approach to cinema and its representation of real life – and by extension real spaces – that was to have international significance in film theory and practice. However, the re-use of the real spaces of the city, and elsewhere, as film sets in Neo-realist film offered (and offers) more than an influential aesthetic and set of cinematic theories. Through Neo-realism, it can be argued that we gain access to a cinematic re...

  17. Programmering af applikationer med dSPACE real-time værktøjer

    DEFF Research Database (Denmark)

    Voigt, Kristian

    1998-01-01

    real-time direkte på et virkeligt system. Reguleringen af systemet sker vha. et DSP- og I/O-kort. En model af systemet opbygges vha. Matlab/Simulink fra firmaet The Mathworks. Modellen oversættes til C-kode vha. Real-Time Workshop fra firmaet The Mathworks. For at gøre C-koden hardwarespecifik bruges...... software fra hardwareleverandøren - dSPACE. Firmaet dSPACE har desuden levereret software til at monitorere real-time værdier i systemet, og software til at ændre på parametre i modellen i real-time.I brugervejledningens Appendix F findes et eksempel, der gennemgår hele forløbet med opstart af programmer...

  18. Real-time 3-D space numerical shake prediction for earthquake early warning

    Science.gov (United States)

    Wang, Tianyun; Jin, Xing; Huang, Yandan; Wei, Yongxiang

    2017-12-01

    In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake prediction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.

  19. Quantum theory in real Hilbert space: How the complex Hilbert space structure emerges from Poincaré symmetry

    Science.gov (United States)

    Moretti, Valter; Oppio, Marco

    As earlier conjectured by several authors and much later established by Solèr (relying on partial results by Piron, Maeda-Maeda and other authors), from the lattice theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. Stückelberg provided some physical, but not mathematically rigorous, reasons for ruling out the real Hilbert space formulation, assuming that any formulation should encompass a statement of Heisenberg principle. Focusing on this issue from another — in our opinion, deeper — viewpoint, we argue that there is a general fundamental reason why elementary quantum systems are not described in real Hilbert spaces. It is their basic symmetry group. In the first part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a real Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the real one, all selfadjoint operators represent observables in accordance with Solèr’s thesis, and the standard quantum version of Noether theorem may be formulated. In the second part of this work, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the

  20. Towards the development of a 3D digital city model as a real extension of public urban spaces

    DEFF Research Database (Denmark)

    Tournay, Bruno

    ; it only serves as a tool in the analogue world. The model is a passive picture for contemplation.   Another way of looking at a digital 3D model is to see it not as a virtual model of reality but as a real model that must fulfil real functions and to design it as a space of transition between the local...... new approaches to communication and participation. Who controls the Electronic Neighbourhood? Just as in the analogue world, control of central places in the digital world is power.   Finally, based on the experience gained in relation to the project, the paper will outline some guidelines for better...

  1. The ecological and construct validity of a newly developed measure of executive function: the Virtual Library Task.

    Science.gov (United States)

    Renison, Belinda; Ponsford, Jennie; Testa, Renee; Richardson, Barry; Brownfield, Kylie

    2012-05-01

    Virtual reality (VR) assessment paradigms have the potential to address the limited ecological validity of pen and paper measures of executive function (EF) and the pragmatic and reliability issues associated with functional measures. To investigate the ecological validity and construct validity of a newly developed VR measure of EF, the Virtual Library Task (VLT); a real life analogous task--the Real Library Task (RLT); and five neuropsychological measures of EF were administered to 30 patients with traumatic brain injury (TBI) and 30 healthy Controls. Significant others for each participant also completed the Dysexecutive Questionnaire (DEX), which is a behavioral rating scale of everyday EF. Performances on the VLT and the RLT were significantly positively correlated indicating that VR performance is similar to real world performance. The TBI group performed significantly worse than the Control group on the VLT and the Modified Six Elements Test (MSET) but the other four neuropsychological measures of EF failed to differentiate the groups. Both the MSET and the VLT significantly predicted everyday EF suggesting that they are both ecologically valid tools for the assessment of EF. The VLT has the advantage over the MSET of providing objective measurement of individual components of EF.

  2. An approach to developing user interfaces for space systems

    Science.gov (United States)

    Shackelford, Keith; McKinney, Karen

    1993-08-01

    Inherent weakness in the traditional waterfall model of software development has led to the definition of the spiral model. The spiral model software development lifecycle model, however, has not been applied to NASA projects. This paper describes its use in developing real time user interface software for an Environmental Control and Life Support System (ECLSS) Process Control Prototype at NASA's Marshall Space Flight Center.

  3. Clinical Characteristics of Patients with Newly Diagnosed Diabetic Macular Edema in Turkey: A Real-Life Registry Study—TURK-DEM

    Directory of Open Access Journals (Sweden)

    Bora Eldem

    2017-01-01

    Full Text Available Purpose. To evaluate the clinical and diagnostic characteristics of patients with newly diagnosed diabetic macular edema (DME in Turkey in a real-life setting. Methods. A total of 945 consecutive patients (mean (SD age: 61.3 (9.9 years, 55.2% male with newly diagnosed DME were included. Data on patient demographics, comorbidities, ocular history, ophthalmic examination findings including type of DME, central macular thickness (CMT via time domain (TD and spectral domain (SD optical coherence tomography (OCT, and planned treatments were recorded. Results. OCT (98.8% and fundoscopy (92.9% were the two most common diagnostic methods. Diffuse and focal DMEs were detected in 39.2% and 36.9% of cases, respectively. Laser photocoagulation (32.1% and antivascular endothelial growth factors (anti-VEGF; 31.8% were the most commonly planned treatments. The median CMT in the right eye was significantly greater in untreated than in treated patients [376.5 μm (range: 160–840 versus 342 μm (range: 146–999 (p=0.002] and in the left eye [370 μm (range: 201–780 versus 329 μm (range: 148–999 (p<0.001]. Conclusions. This study is the first large-scale real-life registry of DME patients in Turkey. SD-OCT and fundoscopy were the most common diagnostic methods. Laser photocoagulation and anti-VEGF therapy were the most common treatments.

  4. Real-space quasilinear theory of drift waves in a sheared magnetic field

    International Nuclear Information System (INIS)

    1977-02-01

    A real-space quasilinear theory is developed for the collisional and the collisionless drift waves in a plasma with a sheared magnetic field of slab geometry. The equation obtained describes the interaction between many localized modes around different rational surfaces through the density modulation of the energy source region of each mode. The wave amplitudes approach to the stationary values through a relaxation oscillation process. When the width x sub(s) of the energy source region becomes comparable to the spacing Δx of the two adjacent rational surfaces, diffusion coefficient due to the wave is enhanced over the classical value, while the nonlocal heat transport due to the wave propagation is shown to be negligible compared to that associated with the diffusion process. (auth.)

  5. Electric space heating scheduling for real-time explicit power control in active distribution networks

    DEFF Research Database (Denmark)

    Costanzo, Giuseppe Tommaso; Bernstein, Andrey; Chamorro, Lorenzo Reyes

    2015-01-01

    This paper presents a systematic approach for abstracting the flexibility of a building space heating system and using it within a composable framework for real-time explicit power control of microgrids and, more in general, active distribution networks. In particular, the proposed approach...... is developed within the context of a previously defined microgrid control framework, called COMMELEC, conceived for the explicit and real-time control of these specific networks. The designed control algorithm is totally independent from the need of a building model and allows exploiting the intrinsic thermal...... inertia for real-time control. The paper first discusses the general approach, then it proves its validity via dedicated simulations performed on specific case study composed by the CIGRE LV microgrid benchmark proposed by the Cigré TF C6.04.02....

  6. Mapping subsurface in proximity to newly-developed sinkhole along roadway.

    Science.gov (United States)

    2013-02-01

    MS&T acquired electrical resistivity tomography profiles in immediate proximity to a newly-developed sinkhole in Nixa Missouri : The sinkhole has closed a well-traveled municipal roadway and threatens proximal infrastructure. The intent of this inves...

  7. Flying through code/space: the real virtuality of air travel

    OpenAIRE

    Martin Dodge; Rob Kitchin

    2004-01-01

    Commercial air travel is a key global industry facilitating the complex daily movements of planes, people, goods, and services across the world. In this paper we analyse contemporary air travel through the conceptualisation of a culture of real virtuality.We contend that air travel now consists of passage through 'code/space'. Such code/space includes travel websites, check-in, security check- points, flight decks, air-traffic control, immigration, and customs checkpoints, which t...

  8. Effective medium super-cell approximation for interacting disordered systems: an alternative real-space derivation of generalized dynamical cluster approximation

    International Nuclear Information System (INIS)

    Moradian, Rostam

    2006-01-01

    We develop a generalized real-space effective medium super-cell approximation (EMSCA) method to treat the electronic states of interacting disordered systems. This method is general and allows randomness both in the on-site energies and in the hopping integrals. For a non-interacting disordered system, in the special case of randomness in the on-site energies, this method is equivalent to the non-local coherent potential approximation (NLCPA) derived previously. Also, for an interacting system the EMSCA method leads to the real-space derivation of the generalized dynamical cluster approximation (DCA) for a general lattice structure. We found that the original DCA and the NLCPA are two simple cases of this technique, so the EMSCA is equivalent to the generalized DCA where there is included interaction and randomness in the on-site energies and in the hopping integrals. All of the equations of this formalism are derived by using the effective medium theory in real space

  9. Research on Control Method Based on Real-Time Operational Reliability Evaluation for Space Manipulator

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2014-05-01

    Full Text Available A control method based on real-time operational reliability evaluation for space manipulator is presented for improving the success rate of a manipulator during the execution of a task. In this paper, a method for quantitative analysis of operational reliability is given when manipulator is executing a specified task; then a control model which could control the quantitative operational reliability is built. First, the control process is described by using a state space equation. Second, process parameters are estimated in real time using Bayesian method. Third, the expression of the system's real-time operational reliability is deduced based on the state space equation and process parameters which are estimated using Bayesian method. Finally, a control variable regulation strategy which considers the cost of control is given based on the Theory of Statistical Process Control. It is shown via simulations that this method effectively improves the operational reliability of space manipulator control system.

  10. Imaging in real and reciprocal space at the Diamond beamline I13

    International Nuclear Information System (INIS)

    Rau, C.; Wagner, U. H.; Vila-Comamala, J.; Bodey, A.; Parson, A.; García-Fernández, M.; Pešić, Z.; De Fanis, A.

    2016-01-01

    The Diamond Imaging and Coherence beamline I13 consists of two independent branchlines for imaging in real and reciprocal space. Different microscopies are available providing a range of spatial resolution from 5µm to potentially 5nm. The beamline operates in the energy range of 6-35keV covering different scientific areas such as biomedicine, materials science and geophysics. Several original devices have been developed at the beamline, such as the EXCALIBUR photon counting detector and the combined robot arms for coherent X-ray diffraction

  11. Imaging in real and reciprocal space at the Diamond beamline I13

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C., E-mail: Christoph.rau@diamond.ac.uk [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); University of Manchester, School of Materials Grosvenor St., Manchester, M1 7HS (United Kingdom); Northwestern University School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611-3008 (United States); Wagner, U. H.; Vila-Comamala, J.; Bodey, A.; Parson, A.; García-Fernández, M.; Pešić, Z. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); De Fanis, A. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); European XFEL GmbH, Notkestraße 85, 22607 Hamburg (Germany)

    2016-01-28

    The Diamond Imaging and Coherence beamline I13 consists of two independent branchlines for imaging in real and reciprocal space. Different microscopies are available providing a range of spatial resolution from 5µm to potentially 5nm. The beamline operates in the energy range of 6-35keV covering different scientific areas such as biomedicine, materials science and geophysics. Several original devices have been developed at the beamline, such as the EXCALIBUR photon counting detector and the combined robot arms for coherent X-ray diffraction.

  12. Renormalization group in statistical physics - momentum and real spaces

    International Nuclear Information System (INIS)

    Yukalov, V.I.

    1988-01-01

    Two variants of the renormalization group approach in statistical physics are considered, the renormalization group in the momentum and the renormalization group in the real spaces. Common properties of these methods and their differences are cleared up. A simple model for investigating the crossover between different universality classes is suggested. 27 refs

  13. Practicing on Newly Dead

    Directory of Open Access Journals (Sweden)

    Jewel Abraham

    2015-07-01

    Full Text Available A newly dead cadaver simulation is practiced on the physical remains of the dead before the onset of rigor mortis. This technique has potential benefits for providing real-life in-situ experience for novice providers in health care practices. Evolving ethical views in health care brings into question some of the ethical aspects associated with newly dead cadaver simulation in terms of justification for practice, autonomy, consent, and the need of disclosure. A clear statement of policies and procedures on newly dead cadaver simulation has yet to be implemented. Although there are benefits and disadvantages to an in-situ cadaver simulation, such practices should not be carried out in secrecy as there is no compelling evidence that suggests such training as imperative. Secrecy in these practices is a violation of honor code of nursing ethics. As health care providers, practitioners are obliged to be ethically honest and trustworthy to their patients. The author explores the ethical aspects of using newly dead cadaver simulation in training novice nursing providers to gain competency in various lifesaving skills, which otherwise cannot be practiced on a living individual. The author explores multiple views on cadaver simulation in relation to ethical theories and practices such as consent and disclosure to family.

  14. Real-space renormalization group approach to driven diffusive systems

    Energy Technology Data Exchange (ETDEWEB)

    Hanney, T [SUPA and School of Physics, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ (United Kingdom); Stinchcombe, R B [Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2006-11-24

    We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase.

  15. Real-space renormalization group approach to driven diffusive systems

    International Nuclear Information System (INIS)

    Hanney, T; Stinchcombe, R B

    2006-01-01

    We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase

  16. Sorting Real Numbers in $O(n\\sqrt{\\log n})$ Time and Linear Space

    OpenAIRE

    Han, Yijie

    2017-01-01

    We present an $O(n\\sqrt{\\log n})$ time and linear space algorithm for sorting real numbers. This breaks the long time illusion that real numbers have to be sorted by comparison sorting and take $\\Omega (n\\log n)$ time to be sorted.

  17. Center for Real Life Kitchen Design open house to showcase latest in residential kitchens

    OpenAIRE

    Elliott, Jean

    2007-01-01

    Virginia Tech will unveil its newly refurbished Center for Real Life Kitchen Design at an open house set for Monday, April 2. The 1,500-square foot center, located in 247 Wallace Hall, features six fully functional residential kitchen designs that reflect a variety of price levels, lifestyles, and use of space for today's homeowner.

  18. Energy-filtered real- and k-space secondary and energy-loss electron imaging with Dual Emission Electron spectro-Microscope: Cs/Mo(110)

    Energy Technology Data Exchange (ETDEWEB)

    Grzelakowski, Krzysztof P., E-mail: k.grzelakowski@opticon-nanotechnology.com

    2016-05-15

    Since its introduction the importance of complementary k{sub ||}-space (LEED) and real space (LEEM) information in the investigation of surface science phenomena has been widely demonstrated over the last five decades. In this paper we report the application of a novel kind of electron spectromicroscope Dual Emission Electron spectroMicroscope (DEEM) with two independent electron optical channels for reciprocal and real space quasi-simultaneous imaging in investigation of a Cs covered Mo(110) single crystal by using the 800 eV electron beam from an “in-lens” electron gun system developed for the sample illumination. With the DEEM spectromicroscope it is possible to observe dynamic, irreversible processes at surfaces in the energy-filtered real space and in the corresponding energy-filtered k{sub ǁ}-space quasi-simultaneously in two independent imaging columns. The novel concept of the high energy electron beam sample illumination in the cathode lens based microscopes allows chemically selective imaging and analysis under laboratory conditions. - Highlights: • A novel concept of the electron sample illumination with “in-lens” e- gun is realized. • Quasi-simultaneous energy selective observation of the real- and k-space in EELS mode. • Observation of the energy filtered Auger electron diffraction at Cs atoms on Mo(110). • Energy-loss, Auger and secondary electron momentum microscopy is realized.

  19. Real-space imaging of fractional quantum Hall liquids

    Science.gov (United States)

    Hayakawa, Junichiro; Muraki, Koji; Yusa, Go

    2013-01-01

    Electrons in semiconductors usually behave like a gas--as independent particles. However, when confined to two dimensions under a perpendicular magnetic field at low temperatures, they condense into an incompressible quantum liquid. This phenomenon, known as the fractional quantum Hall (FQH) effect, is a quantum-mechanical manifestation of the macroscopic behaviour of correlated electrons that arises when the Landau-level filling factor is a rational fraction. However, the diverse microscopic interactions responsible for its emergence have been hidden by its universality and macroscopic nature. Here, we report real-space imaging of FQH liquids, achieved with polarization-sensitive scanning optical microscopy using trions (charged excitons) as a local probe for electron spin polarization. When the FQH ground state is spin-polarized, the triplet/singlet intensity map exhibits a spatial pattern that mirrors the intrinsic disorder potential, which is interpreted as a mapping of compressible and incompressible electron liquids. In contrast, when FQH ground states with different spin polarization coexist, domain structures with spontaneous quasi-long-range order emerge, which can be reproduced remarkably well from the disorder patterns using a two-dimensional random-field Ising model. Our results constitute the first reported real-space observation of quantum liquids in a class of broken symmetry state known as the quantum Hall ferromagnet.

  20. A brief comparison between grid based real space algorithms and spectrum algorithms for electronic structure calculations

    International Nuclear Information System (INIS)

    Wang, Lin-Wang

    2006-01-01

    Quantum mechanical ab initio calculation constitutes the biggest portion of the computer time in material science and chemical science simulations. As a computer center like NERSC, to better serve these communities, it will be very useful to have a prediction for the future trends of ab initio calculations in these areas. Such prediction can help us to decide what future computer architecture can be most useful for these communities, and what should be emphasized on in future supercomputer procurement. As the size of the computer and the size of the simulated physical systems increase, there is a renewed interest in using the real space grid method in electronic structure calculations. This is fueled by two factors. First, it is generally assumed that the real space grid method is more suitable for parallel computation for its limited communication requirement, compared with spectrum method where a global FFT is required. Second, as the size N of the calculated system increases together with the computer power, O(N) scaling approaches become more favorable than the traditional direct O(N 3 ) scaling methods. These O(N) methods are usually based on localized orbital in real space, which can be described more naturally by the real space basis. In this report, the author compares the real space methods versus the traditional plane wave (PW) spectrum methods, for their technical pros and cons, and the possible of future trends. For the real space method, the author focuses on the regular grid finite different (FD) method and the finite element (FE) method. These are the methods used mostly in material science simulation. As for chemical science, the predominant methods are still Gaussian basis method, and sometime the atomic orbital basis method. These two basis sets are localized in real space, and there is no indication that their roles in quantum chemical simulation will change anytime soon. The author focuses on the density functional theory (DFT), which is the

  1. New Public Space in Urban China

    OpenAIRE

    Gaubatz, Piper

    2011-01-01

    China’s post-reform modernisation and hyper-urbanisation have brought new public spaces to Chinese cities. This article examines the development of a public sphere and five types of new public spaces: newly-open landscapes, squares, commercial spaces, “green” spaces, and transitional spaces. Specific examples are drawn from Beijing, Shanghai, and Xining.

  2. A Real-Time Apple Grading System Using Multicolor Space

    Directory of Open Access Journals (Sweden)

    Hayrettin Toylan

    2014-01-01

    Full Text Available This study was focused on the multicolor space which provides a better specification of the color and size of the apple in an image. In the study, a real-time machine vision system classifying apples into four categories with respect to color and size was designed. In the analysis, different color spaces were used. As a result, 97% identification success for the red fields of the apple was obtained depending on the values of the parameter “a” of CIE L*a*b*color space. Similarly, 94% identification success for the yellow fields was obtained depending on the values of the parameter y of CIE XYZ color space. With the designed system, three kinds of apples (Golden, Starking, and Jonagold were investigated by classifying them into four groups with respect to two parameters, color and size. Finally, 99% success rate was achieved in the analyses conducted for 595 apples.

  3. Metric and topology on a non-standard real line and non-standard space-time

    International Nuclear Information System (INIS)

    Tahir Shah, K.

    1981-04-01

    We study metric and topological properties of extended real line R* and compare it with the non-standard model of real line *R. We show that some properties, like triangular inequality, cannot be carried over R* from R. This confirms F. Wattenberg's result for measure theory on Dedekind completion of *R. Based on conclusions from these results we propose a non-standard model of space-time. This space-time is without undefined objects like singularities. (author)

  4. Real-time maneuver optimization of space-based robots in a dynamic environment: Theory and on-orbit experiments

    Science.gov (United States)

    Chamitoff, Gregory E.; Saenz-Otero, Alvar; Katz, Jacob G.; Ulrich, Steve; Morrell, Benjamin J.; Gibbens, Peter W.

    2018-01-01

    This paper presents the development of a real-time path-planning optimization approach to controlling the motion of space-based robots. The algorithm is capable of planning three dimensional trajectories for a robot to navigate within complex surroundings that include numerous static and dynamic obstacles, path constraints and performance limitations. The methodology employs a unique transformation that enables rapid generation of feasible solutions for complex geometries, making it suitable for application to real-time operations and dynamic environments. This strategy was implemented on the Synchronized Position Hold Engage Reorient Experimental Satellite (SPHERES) test-bed on the International Space Station (ISS), and experimental testing was conducted onboard the ISS during Expedition 17 by the first author. Lessons learned from the on-orbit tests were used to further refine the algorithm for future implementations.

  5. Some Double Sequence Spaces of Fuzzy Real Numbers of Paranormed Type

    Directory of Open Access Journals (Sweden)

    Bipul Sarma

    2013-01-01

    Full Text Available We study different properties of convergent, null, and bounded double sequence spaces of fuzzy real numbers like completeness, solidness, sequence algebra, symmetricity, convergence-free, and so forth. We prove some inclusion results too.

  6. Real Time Space Weather Support for Chandra X-Ray Observatory Operations

    Science.gov (United States)

    O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA s Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data

  7. Using Citizen Science and Crowdsourcing via Aurorasaurus as a Near Real Time Data Source for Space Weather Applications

    Science.gov (United States)

    MacDonald, E.; Heavner, M.; Hall, M.; Tapia, A.; Lalone, N.; Clayon, J.; Case, N.

    2014-12-01

    Aurorasaurus is on the cutting edge of space science, citizen science, and computer science simultaneously with the broad goals to develop a real-time citizen science network, educate the general public about the northern lights, and revolutionize real-time space weather nowcasting of the aurora for the public. We are currently in the first solar maximum with social media, which enables the technological roots to connect users, citizen scientists, and professionals around a shared global, rare interest. We will introduce the project which has been in a prototype mode since 2012 and recently relaunched with a new mobile and web presence and active campaigns. We will showcase the interdisciplinary advancements which include a more educated public, disaster warning system applications, and improved real-time ground truth data including photographs and observations of the Northern Lights. We will preview new data which validates the proof of concept for significant improvements in real-time space weather nowcasting. Our aim is to provide better real-time notifications of the visibility of the Northern Lights to the interested public via the combination of noisy crowd-sourced ground truth with noisy satellite-based predictions. The latter data are available now but are often delivered with significant jargon and uncertainty, thus reliable, timely interpretation of such forecasts by the public are problematic. The former data show real-time characteristic significant rises (in tweets for instance) that correlate with other non-real-time indices of auroral activity (like the Kp index). We will discuss the source of 'noise' in each data source. Using citizen science as a platform to provide a basis for deeper understanding is one goal; secondly we want to improve understanding of and appreciation for the dynamics and beauty of the Northern Lights by the public and scientists alike.

  8. Genetic algorithms for adaptive real-time control in space systems

    Science.gov (United States)

    Vanderzijp, J.; Choudry, A.

    1988-01-01

    Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.

  9. Features of Virchow-Robin spaces in newly diagnosed multiple sclerosis patients

    Energy Technology Data Exchange (ETDEWEB)

    Etemadifar, Masoud [Department of Clinical and Biological Sciences, Division of Neurology, San Luigi Gonzaga School of Medicine, Orbassano (Torino), Turin (Italy); Department of Neurology, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Isfahan Research Committee of Multiple Sclerosis (IRCOMS), Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Hekmatnia, Ali; Tayari, Nazila [Department of Radiology, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Kazemi, Mojtaba [Department of Neurology, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Ghazavi, Amirhossein [Department of Radiology, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Akbari, Mojtaba [Department of Epidemiology and Statistics, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Maghzi, Amir-Hadi, E-mail: maghzi@edc.mui.ac.ir [Isfahan Research Committee of Multiple Sclerosis (IRCOMS), Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Neuroimmunology Unit, Centre for Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, London (United Kingdom); Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of)

    2011-11-15

    Background: Virchow-Robin spaces (VRSs) are perivascular pia-lined extensions of the subarachnoid space around the arteries and veins as they enter the brain parenchyma. These spaces are responsible for inflammatory processes within the brain. Objectives: This study was designed to shed more light on the location, size and shape of VRSs on 3 mm slice thickness, 1.5 Tesla MRI scans of newly diagnosed MS patients in Isfahan, Iran and compare the results with healthy age- and sex-matched controls. Methods: We evaluated MRI scans of 73 MS patients obtained within 3 months of MS onset and compared them with MRI scans from 73 age- and sex-matched healthy volunteers. Three mm section proton density, T2W and FLAIR MR images were obtained for all subjects. The location, size and shape of VRSs were compared between the two groups. Results: The total number of VRSs was significantly more in the MS group (p < 0.001). The distribution of VRSs were significantly more located in the high convexity areas in the MS group (p < 0.001), while there was no significant differences in other regions. The round shaped VRSs were significantly more detected on MRI scans of MS patients, and curvilinear shapes were significantly more frequently observed in healthy volunteers, however there were no significant differences for oval shaped VRSs between the two groups. The number of VRSs with the size over than 2 mm were significantly more observed in the MS groups compared to controls. We also observed some differences in the characteristics of VRSs between the genders in the MS group. Conclusion: The results of this study shed more light on the usefulness of VRSs as an MRI marker for the disease. In addition, according to our results VRSs might also have implication to determine the prognosis of the disease. However, larger studies with more advanced MRI techniques are required to confirm our results.

  10. Features of Virchow-Robin spaces in newly diagnosed multiple sclerosis patients

    International Nuclear Information System (INIS)

    Etemadifar, Masoud; Hekmatnia, Ali; Tayari, Nazila; Kazemi, Mojtaba; Ghazavi, Amirhossein; Akbari, Mojtaba; Maghzi, Amir-Hadi

    2011-01-01

    Background: Virchow-Robin spaces (VRSs) are perivascular pia-lined extensions of the subarachnoid space around the arteries and veins as they enter the brain parenchyma. These spaces are responsible for inflammatory processes within the brain. Objectives: This study was designed to shed more light on the location, size and shape of VRSs on 3 mm slice thickness, 1.5 Tesla MRI scans of newly diagnosed MS patients in Isfahan, Iran and compare the results with healthy age- and sex-matched controls. Methods: We evaluated MRI scans of 73 MS patients obtained within 3 months of MS onset and compared them with MRI scans from 73 age- and sex-matched healthy volunteers. Three mm section proton density, T2W and FLAIR MR images were obtained for all subjects. The location, size and shape of VRSs were compared between the two groups. Results: The total number of VRSs was significantly more in the MS group (p < 0.001). The distribution of VRSs were significantly more located in the high convexity areas in the MS group (p < 0.001), while there was no significant differences in other regions. The round shaped VRSs were significantly more detected on MRI scans of MS patients, and curvilinear shapes were significantly more frequently observed in healthy volunteers, however there were no significant differences for oval shaped VRSs between the two groups. The number of VRSs with the size over than 2 mm were significantly more observed in the MS groups compared to controls. We also observed some differences in the characteristics of VRSs between the genders in the MS group. Conclusion: The results of this study shed more light on the usefulness of VRSs as an MRI marker for the disease. In addition, according to our results VRSs might also have implication to determine the prognosis of the disease. However, larger studies with more advanced MRI techniques are required to confirm our results.

  11. The Production and the Uneven Valorization of Urban Space in Campos Dos Goytacazes-RJ: An Analysis of State and Real Estate Developers Actions

    Directory of Open Access Journals (Sweden)

    Marcos Antônio Silvestre Gomes

    2015-07-01

    Full Text Available This article discusses some aspects of the production of urban space considering the social agents actions. The methodology was based on literature searches, data surveys and interviews in public and private agencies, empirical observations and mapping of the urban area. The methodology was based on literature searches, data surveys and interviews in public and private agencies, empirical observations and mapping of the urban area. The objective is to present an analysis of state and real estate developers actions in the production and uneven valorization of urban space in Campos dos Goytacazes-RJ. The results of work indicate the intensification and complexification of actions of these agents with the advent of the oil economy. In the period 1981-2011 there was an intense valuation of South West-East axis of the city, with a vertiginous process of vertical integration and deployment of a high standard closed allotments, which has

  12. Real space multiple scattering description of alloy phase stability

    International Nuclear Information System (INIS)

    Turchi, P.E.A.; Sluiter, M.

    1992-01-01

    This paper presents a brief overview of the advanced methodology which has been recently developed to study phase stability properties of substitutional alloys, including order-disorder phenomena and structural transformations. The approach is based on the real space version of the Generalized Perturbation Method first introduced by Ducastelle and Gautier, within the Korringa-Kohn-Rostoker multiple scattering formulation of the Coherent Potential Approximation. Temperature effects are taken into account with a generalized meanfield approach, namely the Cluster Variation Method. The viability and the predictive power of such a scheme will be illustrated by a few examples, among them: the ground state properties of alloys, in particular the ordering tendencies for a series of equiatomic bcc-based alloys, the computation of alloy phase diagrams with the case of fcc and bcc-based Ni-Al alloys, the calculation of antiphase boundary energies and interfacial energies, and the stability of artificial ordered superlattices

  13. High acceptability of a newly developed urological practical skills training program.

    NARCIS (Netherlands)

    Vries, A.H. de; Luijk, S.J. van; Scherpbier, A.J.J.A.; Hendrikx, A.J.M.; Koldewijn, E.L.; Wagner, C.; Schout, B.M.A.

    2015-01-01

    Background: Benefits of simulation training are widely recognized, but its structural implementation into urological curricula remains challenging. This study aims to gain insight into current and ideal urological practical skills training and presents the outline of a newly developed skills

  14. High acceptability of a newly developed urological practical skills training program

    NARCIS (Netherlands)

    de Vries, A.H.; van Luijk, S.J.; Scherpbier, A.J.J.A.; Hendrikx, A.J.M.; Koldewijn, E.L.; Wagner, C.; Schout, B.M.A.

    2015-01-01

    Background: Benefits of simulation training are widely recognized, but its structural implementation into urological curricula remains challenging. This study aims to gain insight into current and ideal urological practical skills training and presents the outline of a newly developed skills

  15. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images

    Science.gov (United States)

    Yothers, Mitchell P.; Browder, Aaron E.; Bumm, Lloyd A.

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  16. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images.

    Science.gov (United States)

    Yothers, Mitchell P; Browder, Aaron E; Bumm, Lloyd A

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  17. Development of Real Time Operating System for Safety Grade PLC (POSAFE-Q) for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Son, Han Seong; Hwang, Sung Jae; Lee, Young Joon; Kim, Chang Hwoi; Lee, Dong Young

    2006-01-01

    POSAFE-Q is a newly developed programmable logic controller (PLC) in order to apply to digital safety system of nuclear power plants (NPP) according to Nuclear Power Plant safety requirements. POSAFE-Q hardware and software development process, including design, review, verification and validation, and configuration control and quality assurance, satisfies the requirements imposed by 10CFR50, Appendix B. This article introduces a real time operating system pCOS, which is the core of POSAFE-Q. Section 2 describes the structure of pCOS. Section 3 describes a few important features of pCOS, which are necessary to the application for the digital safety system of NPP

  18. Development of Real Time Operating System for Safety Grade PLC (POSAFE-Q) for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Son, Han Seong [ENESYS, Taejon (Korea, Republic of); Hwang, Sung Jae [POSCON, Seoul (Korea, Republic of); Lee, Young Joon; Kim, Chang Hwoi; Lee, Dong Young [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    POSAFE-Q is a newly developed programmable logic controller (PLC) in order to apply to digital safety system of nuclear power plants (NPP) according to Nuclear Power Plant safety requirements. POSAFE-Q hardware and software development process, including design, review, verification and validation, and configuration control and quality assurance, satisfies the requirements imposed by 10CFR50, Appendix B. This article introduces a real time operating system pCOS, which is the core of POSAFE-Q. Section 2 describes the structure of pCOS. Section 3 describes a few important features of pCOS, which are necessary to the application for the digital safety system of NPP.0.

  19. A real space calculation of absolutely unstable modes for two-plasmon decay in inhomogeneous plasma

    International Nuclear Information System (INIS)

    Powers, L.V.; Berger, R.L.

    1986-01-01

    Growth rates for absolute modes of two-plasmon decay are obtained by solving for eigenmodes of the coupled mode equations for obliquely scattered Langmuir waves in real space. This analysis establishes a connection both to previous analysis in Fourier transform space and to other parametric instabilities, the analysis of which is commonly done in real space. The essential feature of the instability which admits absolute modes in an inhomogeneous plasma is the strong spatial dependence of the coupling coefficients. Landau damping limits the perpendicular wavenumbers of the most unstable modes and raises the instability thresholds for background plasma temperatures above 1 keV. (author)

  20. Using spatiotemporal models and distance sampling to map the space use and abundance of newly metamorphosed Western Toads (Anaxyrus boreas)

    Science.gov (United States)

    Chelgren, Nathan D.; Samora, Barbara; Adams, Michael J.; McCreary, Brome

    2011-01-01

    High variability in abundance, cryptic coloration, and small body size of newly metamorphosed anurans have limited demographic studies of this life-history stage. We used line-transect distance sampling and Bayesian methods to estimate the abundance and spatial distribution of newly metamorphosed Western Toads (Anaxyrus boreas) in terrestrial habitat surrounding a montane lake in central Washington, USA. We completed 154 line-transect surveys from the commencement of metamorphosis (15 September 2009) to the date of first snow accumulation in fall (1 October 2009), and located 543 newly metamorphosed toads. After accounting for variable detection probability associated with the extent of barren habitats, estimates of total surface abundance ranged from a posterior median of 3,880 (95% credible intervals from 2,235 to 12,600) in the first week of sampling to 12,150 (5,543 to 51,670) during the second week of sampling. Numbers of newly metamorphosed toads dropped quickly with increasing distance from the lakeshore in a pattern that differed over the three weeks of the study and contradicted our original hypotheses. Though we hypothesized that the spatial distribution of toads would initially be concentrated near the lake shore and then spread outward from the lake over time, we observed the opposite. Ninety-five percent of individuals occurred within 20, 16, and 15 m of shore during weeks one, two, and three respectively, probably reflecting continued emergence of newly metamorphosed toads from the lake and mortality or burrow use of dispersed individuals. Numbers of toads were highest near the inlet stream of the lake. Distance sampling may provide a useful method for estimating the surface abundance of newly metamorphosed toads and relating their space use to landscape variables despite uncertain and variable probability of detection. We discuss means of improving the precision of estimates of total abundance.

  1. Development of portable phased array UT system for real-time flaw imaging

    International Nuclear Information System (INIS)

    Goto, M.

    1995-01-01

    Many functions and features of phased array UT technology must be useful for NDE in the industrial field. Some phased array UT systems have been developed for the inspection of nuclear pressure vessel and turbine components. However, phased array UT is still a special NDE technique and it has not been used widely in the past. The reasons of that are system size, cost, operator performance, equipment design and others. TOSHIBA has newly developed PC controlled portable phased array system to solve those problems. The portable phased array UT system is very compact and light but it is able to drive up to 32-channel linear array probe, to display real-time linear/sector B-scan, to display accumulated B-scan with an encoder and to display profile overlaid B-scan. The first applications were turbine component inspections for precise flaw investigation and flaw image data recording

  2. Real Time Space Weather Support for Chandra X-ray Observatory Operations

    Science.gov (United States)

    O'Dell, S. L.; Miller, S.; Minow, J. I.; Wolk, S.; Aldcroft, T. L.; Spitzbart, B. D.; Swartz, D. A.

    2012-12-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth's radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector

  3. Devices development and techniques research for space life sciences

    Science.gov (United States)

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  4. Instanton tunneling for de Sitter space with real projective spatial sections

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yen Chin [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Yeom, Dong-han, E-mail: ongyenchin@sjtu.edu.cn, E-mail: innocent.yeom@gmail.com [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)

    2017-04-01

    The physics of tunneling from one spacetime to another is often understood in terms of instantons. For some instantons, it was recently shown in the literature that there are two complementary ''interpretations'' for their analytic continuations. Dubbed ''something-to-something'' and ''nothing-to-something'' interpretations, respectively, the former involves situation in which the initial and final hypersurfaces are connected by a Euclidean manifold, whereas the initial and final hypersurfaces in the latter case are not connected in such a way. We consider a de Sitter space with real projective space RP{sup 3} spatial sections, as was originally understood by de Sitter himself. This original version of de Sitter space has several advantages over the usual de Sitter space with S{sup 3} spatial sections. In particular, the interpretation of the de Sitter entropy as entanglement entropy is much more natural. We discuss the subtleties involved in the tunneling of such a de Sitter space.

  5. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Newly produced airplanes: Fuel tank... Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This... Series 767 Series (b) Any fuel tank meeting all of the criteria stated in paragraphs (b)(1), (b)(2) and...

  6. On Rationality of Moduli Spaces of Vector Bundles on Real ...

    Indian Academy of Sciences (India)

    Let be a real form of a Hirzebruch surface. Let M H ( r , c 1 , c 2 ) be the moduli space of vector bundles on . Under some numerical conditions on r , c 1 and c 2 , we identify those M H ( r , c 1 , c 2 ) that are rational. Author Affiliations. Indranil Biswas1 Ronnie Sebastian2. School of Mathematics, Tata Institute of ...

  7. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.

    Science.gov (United States)

    Lahav, Orly; Gedalevitz, Hadas; Battersby, Steven; Brown, David; Evett, Lindsay; Merritt, Patrick

    2018-05-01

    This paper examines the ability of people who are blind to construct a mental map and perform orientation tasks in real space by using Nintendo Wii technologies to explore virtual environments. The participant explores new spaces through haptic and auditory feedback triggered by pointing or walking in the virtual environments and later constructs a mental map, which can be used to navigate in real space. The study included 10 participants who were congenitally or adventitiously blind, divided into experimental and control groups. The research was implemented by using virtual environments exploration and orientation tasks in real spaces, using both qualitative and quantitative methods in its methodology. The results show that the mode of exploration afforded to the experimental group is radically new in orientation and mobility training; as a result 60% of the experimental participants constructed mental maps that were based on map model, compared with only 30% of the control group participants. Using technology that enabled them to explore and to collect spatial information in a way that does not exist in real space influenced the ability of the experimental group to construct a mental map based on the map model. Implications for rehabilitation The virtual cane system for the first time enables people who are blind to explore and collect spatial information via the look-around mode in addition to the walk-around mode. People who are blind prefer to use look-around mode to explore new spaces, as opposed to the walking mode. Although the look-around mode requires users to establish a complex collecting and processing procedure for the spatial data, people who are blind using this mode are able to construct a mental map as a map model. For people who are blind (as for the sighted) construction of a mental map based on map model offers more flexibility in choosing a walking path in a real space, accounting for changes that occur in the space.

  8. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.

    Science.gov (United States)

    Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz

    2015-11-19

    When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.

  9. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.

    Science.gov (United States)

    Shibata, Mikihiro; Nishimasu, Hiroshi; Kodera, Noriyuki; Hirano, Seiichi; Ando, Toshio; Uchihashi, Takayuki; Nureki, Osamu

    2017-11-10

    The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9-RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9-RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.

  10. Reconstruction of real-space linear matter power spectrum from multipoles of BOSS DR12 results

    Science.gov (United States)

    Lee, Seokcheon

    2018-02-01

    Recently, the power spectrum (PS) multipoles using the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample are analyzed [1]. The based model for the analysis is the so-called TNS quasi-linear model and the analysis provides the multipoles up to the hexadecapole [2]. Thus, one might be able to recover the real-space linear matter PS by using the combinations of multipoles to investigate the cosmology [3]. We provide the analytic form of the ratio of quadrupole (hexadecapole) to monopole moments of the quasi-linear PS including the Fingers-of-God (FoG) effect to recover the real-space PS in the linear regime. One expects that observed values of the ratios of multipoles should be consistent with those of the linear theory at large scales. Thus, we compare the ratios of multipoles of the linear theory, including the FoG effect with the measured values. From these, we recover the linear matter power spectra in real-space. These recovered power spectra are consistent with the linear matter power spectra.

  11. Systems engineering real estate development projects

    Science.gov (United States)

    Gusakova, Elena; Titarenko, Boris; Stepanov, Vitaliy

    2017-10-01

    In recent years, real estate development has accumulated a wealth of experience in implementing major projects, which requires comprehension and systematization. The scientific instrument of system engineering is studied in the article and is substantively interpreted with reference to real estate development projects. The most perspective approaches and models are substantiated, allowing strategically to plan the life cycle of the project as a whole, and also to solve the engineering butt problems of the project. The relevance of further scientific studies of regularities and specifics of the life cycle of real estate development projects conducted at the Moscow State University of Economics and Management at the ISTA department is shown.

  12. Real-space mapping of electronic orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Löffler, Stefan, E-mail: stefan.loeffler@tuwien.ac.at [Department for Materials Science and Engineering, McMaster University, 1280 Main Street West, L8S 4M1 Hamilton, Ontario (Canada); University Service Centre for Transmission Electron Microscopy, TU Vienna, Wiedner Hauptstraße 8-10/E057B, 1040 Wien (Austria); Institute for Solid State Physics, TU Vienna, Wiedner Hauptstraße 8-10/E138, 1040 Wien (Austria); Bugnet, Matthieu; Gauquelin, Nicolas [Department for Materials Science and Engineering, McMaster University, 1280 Main Street West, L8S 4M1 Hamilton, Ontario (Canada); Lazar, Sorin [FEI Electron Optics, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands); Assmann, Elias; Held, Karsten [Institute for Solid State Physics, TU Vienna, Wiedner Hauptstraße 8-10/E138, 1040 Wien (Austria); Botton, Gianluigi A. [Department for Materials Science and Engineering, McMaster University, 1280 Main Street West, L8S 4M1 Hamilton, Ontario (Canada); Schattschneider, Peter [University Service Centre for Transmission Electron Microscopy, TU Vienna, Wiedner Hauptstraße 8-10/E057B, 1040 Wien (Austria); Institute for Solid State Physics, TU Vienna, Wiedner Hauptstraße 8-10/E138, 1040 Wien (Austria)

    2017-06-15

    Highlights: • Electronic orbitals in Rutile are mapped using STEM-EELS. • Inelastic scattering simulations are performed for the experimental conditions. • The experiments and the simulations are found to be in excellent agreement. - Abstract: Electronic states are responsible for most material properties, including chemical bonds, electrical and thermal conductivity, as well as optical and magnetic properties. Experimentally, however, they remain mostly elusive. Here, we report the real-space mapping of selected transitions between p and d states on the Ångström scale in bulk rutile (TiO{sub 2}) using electron energy-loss spectrometry (EELS), revealing information on individual bonds between atoms. On the one hand, this enables the experimental verification of theoretical predictions about electronic states. On the other hand, it paves the way for directly investigating electronic states under conditions that are at the limit of the current capabilities of numerical simulations such as, e.g., the electronic states at defects, interfaces, and quantum dots.

  13. Forecasting Space Weather Hazards for Astronauts in Deep Space

    Science.gov (United States)

    Martens, P. C.

    2018-02-01

    Deep Space Gateway provides a unique platform to develop, calibrate, and test a space weather forecasting system for interplanetary travel in a real life setting. We will discuss requirements and design of such a system.

  14. Real-space decoupling transformation for quantum many-body systems.

    Science.gov (United States)

    Evenbly, G; Vidal, G

    2014-06-06

    We propose a real-space renormalization group method to explicitly decouple into independent components a many-body system that, as in the phenomenon of spin-charge separation, exhibits separation of degrees of freedom at low energies. Our approach produces a branching holographic description of such systems that opens the path to the efficient simulation of the most entangled phases of quantum matter, such as those whose ground state violates a boundary law for entanglement entropy. As in the coarse-graining transformation of Vidal [Phys. Rev. Lett. 99, 220405 (2007).

  15. Robotic Fish Technology and Its Applications to Space Mechatronics

    OpenAIRE

    Yamamoto, Ikuo; Shin, Nobuhiro; Oka, Taishi; Matsui, Miki

    2014-01-01

    The authors have developed a shark ray robotic fish based on biomimetic approaches. The paper describes the newly developed robotic fish technology and its application to mechatronics in the space. It is found that robotic fish technology creates not only new underwater robotics, but also the next generation space mechatronics for geological survey of lunar/planets and dust cleaning in the space station.

  16. Multi-Axis Independent Electromechanical Load Control for Docking System Actuation Development and Verification Using dSPACE

    Science.gov (United States)

    Oesch, Christopher; Dick, Brandon; Rupp, Timothy

    2015-01-01

    The development of highly complex and advanced actuation systems to meet customer demands has accelerated as the use of real-time testing technology expands into multiple markets at Moog. Systems developed for the autonomous docking of human rated spacecraft to the International Space Station (ISS), envelope multi-operational characteristics which place unique constraints on an actuation system. Real-time testing hardware has been used as a platform for incremental testing and development for the linear actuation system which controls initial capture and docking for vehicles visiting the ISS. This presentation will outline the role of dSPACE hardware as a platform for rapid control-algorithm prototyping as well as an Electromechanical Actuator (EMA) system dynamic loading simulator, both conducted at Moog to develop the safety critical Linear Actuator System (LAS) of the NASA Docking System (NDS).

  17. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  18. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission

    Science.gov (United States)

    Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.

    2008-09-01

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plants- or algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stresstolerant strains. Photosystem II D1 protein sitedirected and random mutants of the unicellular green alga Chlamydomonas reinhardtii [1] were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. For this purpose some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls were included in the study [2]. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton- M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence detector, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for several different algae strains (Fig.1). Twelve different C. reinhardti strains were analytically selected and two replications for each strain were brought to space

  19. Space Tourism: Orbital Debris Considerations

    Science.gov (United States)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  20. Automated real-time software development

    Science.gov (United States)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  1. Study on the mapping of dark matter clustering from real space to redshift space

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Song, Yong-Seon, E-mail: yizheng@kasi.re.kr, E-mail: ysong@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of)

    2016-08-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc{sup -1}, considering the resolution of future experiments.

  2. Study on the mapping of dark matter clustering from real space to redshift space

    International Nuclear Information System (INIS)

    Zheng, Yi; Song, Yong-Seon

    2016-01-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc -1 , considering the resolution of future experiments.

  3. How has my learning enabled me to create and share an animated video to assist newly qualified teachers in the creation of a safe critical space for their students?

    OpenAIRE

    Gallagher, Emma

    2011-01-01

    This paper presents my emergent living theory as it developed while I attempted to address my concern “How has my learning enabled me to create and share an animated video to assist Newly Qualified Teachers in the creation of a safe critical space for their students?” I explore how my learning on the Masters in Education and Training Management (e-learning) has affected me both personally and professionally and how my learning has impacted the learning of others. In particular, I look at t...

  4. SignalR real time application development

    CERN Document Server

    Ingebrigtsen, Einar

    2013-01-01

    This step-by-step guide gives you practical advice, tips, and tricks that will have you writing real-time apps quickly and easily.If you are a .NET developer who wants to be at the cutting edge of development, then this book is for you. Real-time application development is made simple in this guide, so as long as you have basic knowledge of .NET, a copy of Visual Studio, and NuGet installed, you are ready to go.

  5. Fiber Laser Component Testing for Space Qualification Protocol Development

    Science.gov (United States)

    Falvey, S.; Buelow, M.; Nelson, B.; Starcher, Y.; Thienel, L.; Rhodes, C.; Tull, Jackson; Drape, T.; Westfall, C.

    A test protocol for the space qualifying of Ytterbium-doped diode-pumped fiber laser (DPFL) components was developed under the Bright Light effort, sponsored by AFRL/VSE. A literature search was performed and summarized in an AMOS 2005 conference paper that formed the building blocks for the development of the test protocol. The test protocol was developed from the experience of the Bright Light team, the information in the literature search, and the results of a study of the Telcordia standards. Based on this protocol developed, test procedures and acceptance criteria for a series of vibration, thermal/vacuum, and radiation exposure tests were developed for selected fiber laser components. Northrop Grumman led the effort in vibration and thermal testing of these components at the Aerospace Engineering Facility on Kirtland Air Force Base, NM. The results of the tests conducted have been evaluated. This paper discusses the vibration and thermal testing that was executed to validate the test protocol. The lessons learned will aid in future assessments and definition of space qualification protocols. Components representative of major items within a Ytterbium-doped diode-pumped fiber laser were selected for testing; including fibers, isolators, combiners, fiber Bragg gratings, and laser diodes. Selection of the components was based on guidelines to test multiple models of typical fiber laser components. A goal of the effort was to test two models (i.e. different manufacturers) of each type of article selected, representing different technologies for the same type of device. The test articles did not include subsystems or systems. These components and parts may not be available commercial-off-the-shelf (COTS), and, in fact, many are custom articles, or newly developed by the manufacturer. The primary goal for this effort is a completed taxonomy that lists all relevant laser components, modules, subsystems, and interfaces, and cites the documentation for space

  6. N-body quantum scattering theory in two Hilbert spaces. VII. Real-energy limits

    International Nuclear Information System (INIS)

    Chandler, C.; Gibson, A.G.

    1994-01-01

    A study is made of the real-energy limits of approximate solutions of the Chandler--Gibson equations, as well as the real-energy limits of the approximate equations themselves. It is proved that (1) the approximate time-independent transition operator T π (z) and an auxiliary operator M π (z), when restricted to finite energy intervals, are trace class operators and have limits in trace norm for almost all values of the real energy; (2) the basic dynamical equation that determines the operator M π (z), when restricted to the space of trace class operators, has a real-energy limit in trace norm for almost all values of the real energy; (3) the real-energy limit of M π (z) is a solution of the real-energy limit equation; (4) the diagonal (on-shell) elements of the kernels of the real-energy limit of T π (z) and of all solutions of the real-energy limit equation exactly equal the on-shell transition operator, implying that the real-energy limit equation uniquely determines the physical transition amplitude; and (5) a sequence of approximate on-shell transition operators converges strongly to the exact on-shell transition operator. These mathematically rigorous results are believed to be the most general of their type for nonrelativistic N-body quantum scattering theories

  7. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    Science.gov (United States)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  8. Maximum-entropy data restoration using both real- and Fourier-space analysis

    International Nuclear Information System (INIS)

    Anderson, D.M.; Martin, D.C.; Thomas, E.L.

    1989-01-01

    An extension of the maximum-entropy (ME) data-restoration method is presented that is sensitive to periodic correlations in data. The method takes advantage of the higher signal-to-noise ratio for periodic information in Fourier space, thus enhancing statistically significant frequencies in a manner which avoids the user bias inherent in conventional Fourier filtering. This procedure incorporates concepts underlying new approaches in quantum mechanics that consider entropies in both position and momentum spaces, although the emphasis here is on data restoration rather than quantum physics. After a fast Fourier transform of the image, the phases are saved and the array of Fourier moduli are restored using the maximum-entropy criterion. A first-order continuation method is introduced that speeds convergence of the ME computation. The restored moduli together with the original phases are then Fourier inverted to yield a new image; traditional real-space ME restoration is applied to this new image completing one stage in the restoration process. In test cases improvement can be obtained from two to four stages of iteration. It is shown that in traditional Fourier filtering spurious features can be induced by selection or elimination of Fourier components without regard to their statistical significance. With the present approach there is no such freedom for the user to exert personal bias, so that features present in the final image and power spectrum are those which have survived the tests of statistical significance in both real and Fourier space. However, it is still possible for periodicities to 'bleed' across sharp boundaries. An 'uncertainty' relation is derived describing the inverse relationship between the resolution of these boundaries and the level of noise that can be eliminated. (orig./BHO)

  9. Networks In Real Space: Characteristics and Analysis for Biology and Mechanics

    Science.gov (United States)

    Modes, Carl; Magnasco, Marcelo; Katifori, Eleni

    Functional networks embedded in physical space play a crucial role in countless biological and physical systems, from the efficient dissemination of oxygen, blood sugars, and hormonal signals in vascular systems to the complex relaying of informational signals in the brain to the distribution of stress and strain in architecture or static sand piles. Unlike their more-studied abstract cousins, such as the hyperlinked internet, social networks, or economic and financial connections, these networks are both constrained by and intimately connected to the physicality of their real, embedding space. We report on the results of new computational and analytic approaches tailored to these physical networks with particular implications and insights for mammalian organ vasculature.

  10. Sweeping the State Space

    DEFF Research Database (Denmark)

    Mailund, Thomas

    The thesis describes the sweep-line method, a newly developed reduction method for alleviating the state explosion problem inherent in explicit-state state space exploration. The basic idea underlying the sweep-line method is, when calculating the state space, to recognise and delete states...... that are not reachable from the currently unprocessed states. Intuitively we drag a sweep-line through the state space with the invariant that all states behind the sweep-line have been processed and are unreachable from the states in front of the sweep-line. When calculating the state space of a system we iteratively...

  11. A three-dimensional radiation image display on a real space image created via photogrammetry

    Science.gov (United States)

    Sato, Y.; Ozawa, S.; Tanifuji, Y.; Torii, T.

    2018-03-01

    The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the occurrence of a large tsunami caused by the Great East Japan Earthquake of March 11, 2011. The radiation distribution measurements inside the FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a three-dimensional (3D) image reconstruction method for radioactive substances using a compact Compton camera. Moreover, we succeeded in visually recognizing the position of radioactive substances in real space by the integration of 3D radiation images and the 3D photo-model created using photogrammetry.

  12. Improving a newly developed patient-reported outcome for thyroid patients, using cognitive interviewing

    DEFF Research Database (Denmark)

    Watt, Torquil; Rasmussen, Ase Krogh; Groenvold, Mogens

    2008-01-01

    Objective To improve a newly developed patient-reported outcome measure for thyroid patients using cognitive interviewing. Methods Thirty-one interviews using immediate retrospective and expansive probing were conducted among patients with non-toxic goiter (n = 4), nodular toxic goiter (n = 5) Gr...

  13. Newly Developed Ceramic Membranes for Dehydration and Separation of Organic Mixtures by Pervaporation

    NARCIS (Netherlands)

    Gemert, van R.W.; Cuperus, F.P.

    1995-01-01

    Polymeric pervaporation membranes sometimes show great variety in performance when they are alternately used for different solvent mixtures. In addition, membrane stability in time is a problem in case of some solvents. Therefore, newly developed ceramic silica membranes with a 'dense' top layer

  14. Real-time validation of receiver state information in optical space-time block code systems.

    Science.gov (United States)

    Alamia, John; Kurzweg, Timothy

    2014-06-15

    Free space optical interconnect (FSOI) systems are a promising solution to interconnect bottlenecks in high-speed systems. To overcome some sources of diminished FSOI performance caused by close proximity of multiple optical channels, multiple-input multiple-output (MIMO) systems implementing encoding schemes such as space-time block coding (STBC) have been developed. These schemes utilize information pertaining to the optical channel to reconstruct transmitted data. The STBC system is dependent on accurate channel state information (CSI) for optimal system performance. As a result of dynamic changes in optical channels, a system in operation will need to have updated CSI. Therefore, validation of the CSI during operation is a necessary tool to ensure FSOI systems operate efficiently. In this Letter, we demonstrate a method of validating CSI, in real time, through the use of moving averages of the maximum likelihood decoder data, and its capacity to predict the bit error rate (BER) of the system.

  15. Virtual Reality: Developing a VR space for Academic activities

    Science.gov (United States)

    Kaimaris, D.; Stylianidis, E.; Karanikolas, N.

    2014-05-01

    Virtual reality (VR) is extensively used in various applications; in industry, in academia, in business, and is becoming more and more affordable for end users from the financial point of view. At the same time, in academia and higher education more and more applications are developed, like in medicine, engineering, etc. and students are inquiring to be well-prepared for their professional life after their educational life cycle. Moreover, VR is providing the benefits having the possibility to improve skills but also to understand space as well. This paper presents the methodology used during a course, namely "Geoinformatics applications" at the School of Spatial Planning and Development (Eng.), Aristotle University of Thessaloniki, to create a virtual School space. The course design focuses on the methods and techniques to be used in order to develop the virtual environment. In addition the project aspires to become more and more effective for the students and provide a real virtual environment with useful information not only for the students but also for any citizen interested in the academic life at the School.

  16. Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector

    International Nuclear Information System (INIS)

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Ruan, J.

    2011-01-01

    The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R and D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods including multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.

  17. Space Commercialization and the Development of Space Law

    Science.gov (United States)

    Yun, Zhao

    2017-05-01

    Shortly after the launch of the first manmade satellite in 1957, the United Nations (UN) took the lead in formulating international rules governing space activities. The five international conventions (i.e., the 1967 Outer Space Treaty, the 1968 Rescue Agreement, the 1972 Liability Convention, the 1975 Registration Convention, and the 1979 Moon Agreement) within the UN framework constitute the nucleus of space law; laying a solid legal foundation for securing the smooth development of space activities over the next few decades. Outer space was soon found to be a place with abundant opportunities for commercialization: with telecommunications services the first and most successful commercial application followed by remote sensing and global navigation services. In the last decade, the rapid development of space technologies brought space tourism and space mining to the forefront as well. With more and more commercial activities taking place on a daily basis from the 1980s on, existing space law faces severe challenges. The five conventions, which were enacted at a time when space was monopolized by two superpowers—the United States and the former Soviet Union—also failed to take into account the commercial aspect of space activities. Although there are urgent needs for new rules to deal with the ongoing trend of space commercialization, the international society faces difficulties in adopting new rules due to diversified national interests. As a result, it adjusts legislative strategies by enacting soft laws. In view of the difficulty in adopting binding rules at the international level, states are encouraged to enact their own national space legislation providing sufficient guidance for their domestic space commercial activities. It is expected that the development of soft laws and national space legislation will be the mainstream regulatory activities in the space field for the foreseeable future.

  18. The Development Needs of Newly Appointed Senior School Leaders in the Western Cape South Africa: A Case Study

    Directory of Open Access Journals (Sweden)

    Nelius Jansen van Vuuren

    2017-12-01

    Full Text Available The essential role that senior school leaders play in school leadership teams to ensure effective strategic leadership in schools has been the subject of intense discussion for many years. Crucial to this debate is the establishment of professional learning and leadership approaches for newly appointed senior school leaders. Recommendations for policy and practice highlight the importance of appropriate, multifaceted, developmental support initiatives for newly appointed school leaders. In many countries, including South Africa, a teaching qualification and, in most cases, extensive teaching experience is the only requirement for being appointed as a senior school leader in a school. This tends to suggest that no further professional development is required for newly appointed school leaders, the problem addressed in this paper. This paper reports on the main findings of the perceived development needs of newly appointed senior school leaders in the Western Cape, South Africa, and suggests that school leaders occupy a unique and specialist role in education, which requires relevant and specific preparation to support effective leadership. The respondents of this study report a lack of contextualised training and support before and after their appointment in their new roles creating unique development needs. This paper, therefore, employs a mixed-method approach to gather data to understand the perceived needs of twenty newly appointed senior school leaders in the Western Cape, South Africa.

  19. Oscillatory bistability of real-space transfer in semiconductor heterostructures

    Science.gov (United States)

    Do˙ttling, R.; Scho˙ll, E.

    1992-01-01

    Charge transport parallel to the layers of a modulation-doped GaAs/AlxGa1-xAs heterostructure is studied theoretically. The heating of electrons by the applied electric field leads to real-space transfer of electrons from the GaAs into the adjacent AlxGa1-xAs layer. For sufficiently large dc bias, spontaneous periodic 100-GHz current oscillations, and bistability and hysteretic switching transitions between oscillatory and stationary states are predicted. We present a detailed investigation of complex bifurcation scenarios as a function of the bias voltage U0 and the load resistance RL. For large RL subcritical Hopf bifurcations and global bifurcations of limit cycles are displayed.

  20. Use of personal, real time in-cabin dosimetry on space shuttle flights

    International Nuclear Information System (INIS)

    Angelo, J.A. Jr.; Madonna, R.G.; Quam, W.; Warren, J.; Dockter, M.

    1984-01-01

    The use of real time dosimeters onboard the Space Shuttle is described. Data taken during STS-8 with a small gamma ray counter (HRM-III) and a neutron/proton dosimeter (the Pocket Rem Meter [PRM]) are presented. The data agree with NASA predictions for gamma ray background and neutron-proton dosage received for the STS-8 mission. 1 figure, 1 table

  1. Mammalian development in space

    Science.gov (United States)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  2. Peripersonal Space: An Index of Multisensory Body–Environment Interactions in Real, Virtual, and Mixed Realities

    Directory of Open Access Journals (Sweden)

    Andrea Serino

    2018-01-01

    Full Text Available Human–environment interactions normally occur in the physical milieu and thus by medium of the body and within the space immediately adjacent to and surrounding the body, the peripersonal space (PPS. However, human interactions increasingly occur with or within virtual environments, and hence novel approaches and metrics must be developed to index human–environment interactions in virtual reality (VR. Here, we present a multisensory task that measures the spatial extent of human PPS in real, virtual, and augmented realities. We validated it in a mixed reality (MR ecosystem in which real environment and virtual objects are blended together in order to administer and control visual, auditory, and tactile stimuli in ecologically valid conditions. Within this mixed-reality environment, participants are asked to respond as fast as possible to tactile stimuli on their body, while task-irrelevant visual or audiovisual stimuli approach their body. Results demonstrate that, in analogy with observations derived from monkey electrophysiology and in real environmental surroundings, tactile detection is enhanced when visual or auditory stimuli are close to the body, and not when far from it. We then calculate the location where this multisensory facilitation occurs as a proxy of the boundary of PPS. We observe that mapping of PPS via audiovisual, as opposed to visual alone, looming stimuli results in sigmoidal fits—allowing for the bifurcation between near and far space—with greater goodness of fit. In sum, our approach is able to capture the boundaries of PPS on a spatial continuum, at the individual-subject level, and within a fully controlled and previously laboratory-validated setup, while maintaining the richness and ecological validity of real-life events. The task can therefore be applied to study the properties of PPS in humans and to index the features governing human–environment interactions in virtual or MR. We propose PPS as an

  3. Real time evolution at finite temperatures with operator space matrix product states

    International Nuclear Information System (INIS)

    Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine

    2014-01-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)

  4. Real time evolution at finite temperatures with operator space matrix product states

    Science.gov (United States)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  5. Geomagnetic Observatory Data for Real-Time Applications

    Science.gov (United States)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  6. Didactic satellite based on Android platform for space operation demonstration and development

    Science.gov (United States)

    Ben Bahri, Omar; Besbes, Kamel

    2018-03-01

    Space technology plays a pivotal role in society development. It offers new methods for telemetry, monitoring and control. However, this sector requires training, research and skills development but the lack of instruments, materials and budgets affects the ambiguity to understand satellite technology. The objective of this paper is to describe a demonstration prototype of a smart phone device for space operations study. Therefore, the first task was carried out to give a demonstration for spatial imagery and attitude determination missions through a wireless communication. The smart phone's Bluetooth was used to achieve this goal inclusive of a new method to enable real time transmission. In addition, an algorithm around a quaternion based Kalman filter was included in order to detect the reliability of the prototype's orientation. The second task was carried out to provide a demonstration for the attitude control mission using the smart phone's orientation sensor, including a new method for an autonomous guided mode. As a result, the acquisition platform showed real time measurement with good accuracy for orientation detection and image transmission. In addition, the prototype kept the balance during the demonstration based on the attitude control method.

  7. Separate visualization of endolymphatic space, perilymphatic space and bone by a single pulse sequence; 3D-inversion recovery imaging utilizing real reconstruction after intratympanic Gd-DTPA administration at 3 tesla

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Satake, Hiroko; Kawamura, Minako; Fukatsu, Hiroshi; Sone, Michihiko; Nakashima, Tsutomu

    2008-01-01

    Twenty-four hours after intratympanic administration of gadolinium contrast material (Gd), the Gd was distributed mainly in the perilymphatic space. Three-dimensional FLAIR can differentiate endolymphatic space from perilymphatic space, but not from surrounding bone. The purpose of this study was to evaluate whether 3D inversion-recovery turbo spin echo (3D-IR TSE) with real reconstruction could separate the signals of perilymphatic space (positive value), endolymphatic space (negative value) and bone (near zero) by setting the inversion time between the null point of Gd-containing perilymph fluid and that of the endolymph fluid without Gd. Thirteen patients with clinically suspected endolymphatic hydrops underwent intratympanic Gd injection and were scanned at 3 T. A 3D FLAIR and 3D-IR TSE with real reconstruction were obtained. In all patients, low signal of endolymphatic space in the labyrinth on 3D FLAIR was observed in the anatomically appropriate position, and it showed negative signal on 3D-IR TSE. The low signal area of surrounding bone on 3D FLAIR showed near zero signal on 3D-IR TSE. Gd-containing perilymphatic space showed high signal on 3D-IR TSE. In conclusion, by optimizing the inversion time, endolymphatic space, perilymphatic space and surrounding bone can be separately visualized on a single image using a 3D-IR TSE with real reconstruction. (orig.)

  8. Real-Time Engagement Area Development Program (READ-Pro)

    National Research Council Canada - National Science Library

    Burger, Joseph

    2002-01-01

    The Real Time Engagement Area Development Program (READ-Pro) is a PC-based prototype system which provides company-level commanders with real-time operational analysis tools to develop ENGAGEMENT AREAS(EA) for direct fire (DF) systems...

  9. Real-Time Engagement Area Development Program (Read-Pro)

    National Research Council Canada - National Science Library

    Burger, Joseph

    2002-01-01

    The Real-Tine Engagement Area Development Program (READ-Pro) is a PC-based prototype system which provides company-level commanders with real-time operational analysis tools to develop engagement areas (RA) for direct fire (DR) systems...

  10. Validating self-reported mobile phone use in adults using a newly developed smartphone application

    NARCIS (Netherlands)

    Goedhart, Geertje; Kromhout, Hans; Wiart, Joe; Vermeulen, Roel

    2015-01-01

    OBJECTIVE: Interpretation of epidemiological studies on health effects from mobile phone use is hindered by uncertainties in the exposure assessment. We used a newly developed smartphone application (app) to validate self-reported mobile phone use and behaviour among adults. METHODS: 107

  11. Challenge for real-time and real-space resolved spectroscopy of surface chemical reactions. Aiming at trace of irreversible and inhomogeneous reactions

    International Nuclear Information System (INIS)

    Amemiya, Kenta

    2015-01-01

    A novel experimental technique, time-resolved wavelength-dispersive soft X-ray imaging spectroscopy, is proposed in order to achieve real-time and real-space resolved spectroscopy for the observation of irreversible and inhomogeneous surface chemical reactions. By combining the wavelength-dispersed soft X rays, in which the X-ray wavelength (photon energy) changes as a function of position on the sample, with the photoelectron emission microscope, the soft X-ray absorption spectra are separately obtained at different positions on the sample without scanning the X-ray monochromator. Therefore, the real-time resolved measurement of site-selective soft X-ray absorption spectroscopy is realized in one event without repeating the chemical reaction. It is expected that the spatial distribution of different chemical species is traced during the surface chemical reaction, which is essential to understand the reaction mechanism. (author)

  12. Micro-computed tomography newly developed for in vivo small animal imaging

    International Nuclear Information System (INIS)

    Arai, Yoshinori; Ninomiya, Tadashi; Kato, Takafumi; Masuda, Yuji

    2005-01-01

    The aim of this paper is to report a newly developed micro-computed tomography system for in vivo use. The system was composed of a micro-focus X-ray tube and an image intensifier (I.I.), both of which rotated around the object stage. A guinea pig and a rat were examined. The anesthetized animal was set on the secure object stage. Images of the head of the guinea pig and the tibia knee joint of the rat were taken. In addition, an image of the rat's tail was taken. The reconstruction and the image viewing were carried out using I-View software. The voxel matrix was 512 x 512 x 384. The voxel sizes ranged from 10 x 10 x 10 μm to 100 x 100 x 100 μm. The exposure time was 17 s, and the reconstruction time was 150 s. The head of the guinea pig and the tibia/knee joint of the rat were observed clearly under 100-μm and 30μm voxels, respectively. The trabecular bone of the tail was also observed clearly under a 10 μm voxel. The newly developed micro-computed tomography system makes it possible to obtain images of anesthetized animals set on a secure object stage. Clear bone images of the small animals could be obtained within a short time. (author)

  13. 76 FR 72046 - Enhanced-Use Lease (EUL) of Department of Veterans Affairs (VA) Real Property for the Development...

    Science.gov (United States)

    2011-11-21

    ... DEPARTMENT OF VETERANS AFFAIRS Enhanced-Use Lease (EUL) of Department of Veterans Affairs (VA) Real Property for the Development of Space for Community Services and Parking in Memphis, TN AGENCY... property is located. This project meets this requirement. Approved: November 14, 2011. Eric K. Shinseki...

  14. Working with a Real Estate Developer.

    Science.gov (United States)

    Bell, Allen; Henderson, Mark

    2001-01-01

    Discusses outsourcing to an experienced real estate developer as a more efficient means of meeting school development goals on a strict time schedule. Advantages of outsourcing are covered as is advice on selecting the right development firm. (GR)

  15. A massively-parallel electronic-structure calculations based on real-space density functional theory

    International Nuclear Information System (INIS)

    Iwata, Jun-Ichi; Takahashi, Daisuke; Oshiyama, Atsushi; Boku, Taisuke; Shiraishi, Kenji; Okada, Susumu; Yabana, Kazuhiro

    2010-01-01

    Based on the real-space finite-difference method, we have developed a first-principles density functional program that efficiently performs large-scale calculations on massively-parallel computers. In addition to efficient parallel implementation, we also implemented several computational improvements, substantially reducing the computational costs of O(N 3 ) operations such as the Gram-Schmidt procedure and subspace diagonalization. Using the program on a massively-parallel computer cluster with a theoretical peak performance of several TFLOPS, we perform electronic-structure calculations for a system consisting of over 10,000 Si atoms, and obtain a self-consistent electronic-structure in a few hundred hours. We analyze in detail the costs of the program in terms of computation and of inter-node communications to clarify the efficiency, the applicability, and the possibility for further improvements.

  16. Essential real analysis

    CERN Document Server

    Field, Michael

    2017-01-01

    This book provides a rigorous introduction to the techniques and results of real analysis, metric spaces and multivariate differentiation, suitable for undergraduate courses. Starting from the very foundations of analysis, it offers a complete first course in real analysis, including topics rarely found in such detail in an undergraduate textbook such as the construction of non-analytic smooth functions, applications of the Euler-Maclaurin formula to estimates, and fractal geometry.  Drawing on the author’s extensive teaching and research experience, the exposition is guided by carefully chosen examples and counter-examples, with the emphasis placed on the key ideas underlying the theory. Much of the content is informed by its applicability: Fourier analysis is developed to the point where it can be rigorously applied to partial differential equations or computation, and the theory of metric spaces includes applications to ordinary differential equations and fractals. Essential Real Analysis will appeal t...

  17. Screen Space Ambient Occlusion Based Multiple Importance Sampling for Real-Time Rendering

    Science.gov (United States)

    Zerari, Abd El Mouméne; Babahenini, Mohamed Chaouki

    2018-03-01

    We propose a new approximation technique for accelerating the Global Illumination algorithm for real-time rendering. The proposed approach is based on the Screen-Space Ambient Occlusion (SSAO) method, which approximates the global illumination for large, fully dynamic scenes at interactive frame rates. Current algorithms that are based on the SSAO method suffer from difficulties due to the large number of samples that are required. In this paper, we propose an improvement to the SSAO technique by integrating it with a Multiple Importance Sampling technique that combines a stratified sampling method with an importance sampling method, with the objective of reducing the number of samples. Experimental evaluation demonstrates that our technique can produce high-quality images in real time and is significantly faster than traditional techniques.

  18. Validation of a newly developed hexaplex real-time PCR assay for screening for presence of GMOs in food, feed and seed.

    Science.gov (United States)

    Bahrdt, C; Krech, A B; Wurz, A; Wulff, D

    2010-03-01

    For years, an increasing number and diversity of genetically modified plants has been grown on a commercial scale. The need for detection and identification of these genetically modified organisms (GMOs) calls for broad and at the same time flexible high throughput testing methods. Here we describe the development and validation of a hexaplex real-time polymerase chain reaction (PCR) screening assay covering more than 100 approved GMOs containing at least one of the GMO targets of the assay. The assay comprises detection systems for Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens NOS terminator, Figwort Mosaic Virus 34S promoter and two construct-specific sequences present in novel genetically modified soybean and maize that lack common screening elements. Additionally a detection system for an internal positive control (IPC) indicating the presence or absence of PCR inhibiting substances was included. The six real-time PCR systems were allocated to five detection channels showing no significant crosstalk between the detection channels. As part of an extensive validation, a limit of detection (LOD(abs)) GMOs in processed and unprocessed food, feed and seed samples with high efficiency.

  19. Documentation Driven Development for Complex Real-Time Systems

    Science.gov (United States)

    2004-12-01

    This paper presents a novel approach for development of complex real - time systems , called the documentation-driven development (DDD) approach. This... time systems . DDD will also support automated software generation based on a computational model and some relevant techniques. DDD includes two main...stakeholders to be easily involved in development processes and, therefore, significantly improve the agility of software development for complex real

  20. Real space channelization for generic DBT system image quality evaluation with channelized Hotelling observer

    Science.gov (United States)

    Petrov, Dimitar; Cockmartin, Lesley; Marshall, Nicholas; Vancoillie, Liesbeth; Young, Kenneth; Bosmans, Hilde

    2017-03-01

    Digital breast tomosynthesis (DBT) is a relatively new 3D mammography technique that promises better detection of low contrast masses than conventional 2D mammography. The parameter space for DBT is large however and finding an optimal balance between dose and image quality remains challenging. Given the large number of conditions and images required in optimization studies, the use of human observers (HO) is time consuming and certainly not feasible for the tuning of all degrees of freedom. Our goal was to develop a model observer (MO) that could predict human detectability for clinically relevant details embedded within a newly developed structured phantom for DBT applications. DBT series were acquired on GE SenoClaire 3D, Giotto Class, Fujifilm AMULET Innovality and Philips MicroDose systems at different dose levels, Siemens Inspiration DBT acquisitions were reconstructed with different algorithms, while a larger set of DBT series was acquired on Hologic Dimensions system for first reproducibility testing. A channelized Hotelling observer (CHO) with Gabor channels was developed The parameters of the Gabor channels were tuned on all systems at standard scanning conditions and the candidate that produced the best fit for all systems was chosen. After tuning, the MO was applied to all systems and conditions. Linear regression lines between MO and HO scores were calculated, giving correlation coefficients between 0.87 and 0.99 for all tested conditions.

  1. Assessing College Students' Perceptions of a Case Teacher's Pedagogical Content Knowledge Using a Newly Developed Instrument

    Science.gov (United States)

    Jang, Syh-Jong

    2011-01-01

    Ongoing professional development for college teachers has been much emphasized. However, previous research on learning environments has seldom addressed college students' perceptions of teachers' PCK. This study aimed to evaluate college students' perceptions of a physics teacher's PCK development using a newly developed instrument and workshop…

  2. Trial efficacy vs real world effectiveness in first line treatment of multiple myeloma

    NARCIS (Netherlands)

    Liwing, J.; Heeg, B.M.; Karstorp, S.; Postma, M.; Silvennoinen, R.; Putkonen, M.; Anttila, P.; Remes, K.; Abildgaard, N.; Waage, A.; Nahi, H.

    2015-01-01

    Background: Large randomized clinical trials (RCT) are the foundation of the registration of newly developed drugs. A potential problem with RCTs is that the inclusion/exclusion criteria will make the population different from the actual population treated in real life. Hence, it is important to

  3. Aurorasaurus Database of Real-Time, Soft-Sensor Sourced Aurora Data for Space Weather Research

    Science.gov (United States)

    Kosar, B.; MacDonald, E.; Heavner, M.

    2017-12-01

    Aurorasaurus is an innovative citizen science project focused on two fundamental objectives i.e., collecting real-time, ground-based signals of auroral visibility from citizen scientists (soft-sensors) and incorporating this new type of data into scientific investigations pertaining to aurora. The project has been live since the Fall of 2014, and as of Summer 2017, the database compiled approximately 12,000 observations (5295 direct reports and 6413 verified tweets). In this presentation, we will focus on demonstrating the utility of this robust science quality data for space weather research needs. These data scale with the size of the event and are well-suited to capture the largest, rarest events. Emerging state-of-the-art computational methods based on statistical inference such as machine learning frameworks and data-model integration methods can offer new insights that could potentially lead to better real-time assessment and space weather prediction when citizen science data are combined with traditional sources.

  4. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  5. Applicability of newly developed 610MPa class heavy thickness high strength steel to boiler pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Norihiko; Kaihara, Shoichiro; Ishii, Jun [Ishikawajima-Harima Heavy Industries Corp., Yokohama (Japan); Kajigaya, Ichiro [Ishikawajima-Harima Heavy Industries Corp., Tokyo (Japan); Totsuka, Takehiro; Miyazaki, Takashi [Ishikawajima-Harima Heavy Industries Corp., Aioi (Japan)

    1995-11-01

    Construction of a 350 MW Class PFBC (Pressurized Fluidized Bed Combustion) boiler plant is under planning in Japan. Design temperature and pressure of the vessel are maximum 350 C and 1.69 MPa, respectively. As the plate thickness of the vessel exceeds over 100 mm, high strength steel plate of good weldability and less susceptible to reheat cracking was required and developed. The steel was aimed to satisfy the tensile strength over 610 MPa at 350 C after postweld heat treatment (PWHT), with good notch toughness. The authors investigated the welding performances of the newly developed steel by using 150 mm-thick plate welded by pulsed-MAG and SAW methods. It was confirmed that the newly developed steel and its welds possess sufficient strength and toughness after PWHT, and applicable to the actual pressure vessel.

  6. Fundamental Characteristics of the Newly Developed ATA™ Membrane Dialyzer.

    Science.gov (United States)

    Sunohara, Takashi; Masuda, Toshiaki

    2017-01-01

    Dialysis membranes are often made from synthetic polymers, such as polysulfone. However, membranes made from cellulose triacetate have superior biocompatibility and have been used since the 1980s. On-line hemodiafiltration treatment accompanied by massive fluid replacement is increasingly being used in Europe and Japan, but cellulose triacetate is not suitable for this treatment. Our newly developed asymmetric triacetate membrane, the ATA™ membrane, substantially improved the filtration properties and blood compatibility because of the asymmetric structure and smooth surface of this cellulose acetate membrane. Key Message: The ATA membrane maintains its high permeability even after massive filtration and shows less temporal variation in its permeation performance, lower protein adsorption, and superior biocompatibility compared with conventional membranes. © 2017 S. Karger AG, Basel.

  7. Marshall Space Flight Center Ground Systems Development and Integration

    Science.gov (United States)

    Wade, Gina

    2016-01-01

    Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.

  8. Real-time on-line space research laboratory environment monitoring with off-line trend and prediction analysis

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2007-06-01

    With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.

  9. Real time 2 dimensional detector for charged particle and soft X-ray images

    International Nuclear Information System (INIS)

    Ishikawa, M.; Ito, M.; Endo, T.; Oba, K.

    1995-01-01

    The conventional instruments used in experiments for the soft X-ray region such as X-ray diffraction analysis are X-ray films or imaging plates. However, these instruments are not suitable for real time observation. In this paper, newly developed imaging devices will be presented, which have the capability to take X-ray images in real time with a high detection efficiency. Also, another capability, to take elementary particle tracking images, is described. (orig.)

  10. Managerial competences as a strategic element in the decision-making of Real Estate Development

    Directory of Open Access Journals (Sweden)

    Alberto Fecchio

    2012-04-01

    Full Text Available A real estate plan works when is a part of a wider project which regards the society needs in a certain place. To know where to invest and the risk/performance profile, it is necessary to know the profit and loss profile of the building in the future, in addition to building costs. A correct real estate valuation does not exist if upstream a deep knowledge of real estate, financial, statistical, investors’ psychology (science or knowledge cycles, as well as an experience of years do not exist, which allows to acquire sensibility even towards unpredictable events. The dynamic real estate management is the necessary tool to increase the recurring revenue, the capital gain, to improve cash, decrease risks. The real estate manager, consisting in a team with integrated skills, with “on field” experience, with business logical knowledge, with roots on territory, able to share the business risk, with knowledge of public administrations’ procedures and complexity, is able to support the real estate investor in the development procedure. The evolution of the decision process must follow the trend that since 2009 has seen the overcoming of redevelopment projects compared to new building projects, with higher costs and complexity, but more sustainable from the environmental and space rationalization point of view. Redevelopment processes will be framed in complex territorial development projects, with guarantees of transparency of administrative processes and times, in order to attract international funds, that today are prevented to operate due to great uncertainty of the administrative process management in Italy.

  11. New Technologies: Real-time Telepathology Systems-Novel Cost-effective Tools for Real-time Consultation and Data Sharing.

    Science.gov (United States)

    Siegel, Gabriel; Regelman, Dan; Maronpot, Robert; Rosenstock, Moti; Nyska, Abraham

    2017-12-01

    Real-time telepathology for use in investigative and regulated preclinical toxicology studies is now feasible. Newly developed microscope-integrated telepathology systems enable geographically remote stakeholders to view the live histopathology slide as seen by the study pathologist within the microscope. Simultaneous online viewing and dialog between study pathologist and remote colleagues is an efficient and cost-effective means for consultation, pathology working groups, and peer review, facilitating good science and economic benefits by enabling more timely and informed clinical decisions.

  12. Application of a newly developed software program for image quality assessment in cone-beam computed tomography.

    Science.gov (United States)

    de Oliveira, Marcus Vinicius Linhares; Santos, António Carvalho; Paulo, Graciano; Campos, Paulo Sergio Flores; Santos, Joana

    2017-06-01

    The purpose of this study was to apply a newly developed free software program, at low cost and with minimal time, to evaluate the quality of dental and maxillofacial cone-beam computed tomography (CBCT) images. A polymethyl methacrylate (PMMA) phantom, CQP-IFBA, was scanned in 3 CBCT units with 7 protocols. A macro program was developed, using the free software ImageJ, to automatically evaluate the image quality parameters. The image quality evaluation was based on 8 parameters: uniformity, the signal-to-noise ratio (SNR), noise, the contrast-to-noise ratio (CNR), spatial resolution, the artifact index, geometric accuracy, and low-contrast resolution. The image uniformity and noise depended on the protocol that was applied. Regarding the CNR, high-density structures were more sensitive to the effect of scanning parameters. There were no significant differences between SNR and CNR in centered and peripheral objects. The geometric accuracy assessment showed that all the distance measurements were lower than the real values. Low-contrast resolution was influenced by the scanning parameters, and the 1-mm rod present in the phantom was not depicted in any of the 3 CBCT units. Smaller voxel sizes presented higher spatial resolution. There were no significant differences among the protocols regarding artifact presence. This software package provided a fast, low-cost, and feasible method for the evaluation of image quality parameters in CBCT.

  13. Application of a newly developed software program for image quality assessment in cone-beam computed tomography

    International Nuclear Information System (INIS)

    De Oliveira, Marcus Vinicius Linhares; Campos, Paulo Sergio Flores; Paulo, Graciano; Santos, Antonio Carvalho; Santos, Joana

    2017-01-01

    The purpose of this study was to apply a newly developed free software program, at low cost and with minimal time, to evaluate the quality of dental and maxillofacial cone-beam computed tomography (CBCT) images. A polymethyl methacrylate (PMMA) phantom, CQP-IFBA, was scanned in 3 CBCT units with 7 protocols. A macro program was developed, using the free software ImageJ, to automatically evaluate the image quality parameters. The image quality evaluation was based on 8 parameters: uniformity, the signal-to-noise ratio (SNR), noise, the contrast-to-noise ratio (CNR), spatial resolution, the artifact index, geometric accuracy, and low-contrast resolution. The image uniformity and noise depended on the protocol that was applied. Regarding the CNR, high-density structures were more sensitive to the effect of scanning parameters. There were no significant differences between SNR and CNR in centered and peripheral objects. The geometric accuracy assessment showed that all the distance measurements were lower than the real values. Low-contrast resolution was influenced by the scanning parameters, and the 1-mm rod present in the phantom was not depicted in any of the 3 CBCT units. Smaller voxel sizes presented higher spatial resolution. There were no significant differences among the protocols regarding artifact presence. This software package provided a fast, low-cost, and feasible method for the evaluation of image quality parameters in CBCT

  14. Application of a newly developed software program for image quality assessment in cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, Marcus Vinicius Linhares; Campos, Paulo Sergio Flores [Federal Institute of Bahia, Salvador (Brazil); Paulo, Graciano; Santos, Antonio Carvalho; Santos, Joana [Coimbra Health School, Polytechnic Institute of Coimbra, Coimbra (Portugal)

    2017-06-15

    The purpose of this study was to apply a newly developed free software program, at low cost and with minimal time, to evaluate the quality of dental and maxillofacial cone-beam computed tomography (CBCT) images. A polymethyl methacrylate (PMMA) phantom, CQP-IFBA, was scanned in 3 CBCT units with 7 protocols. A macro program was developed, using the free software ImageJ, to automatically evaluate the image quality parameters. The image quality evaluation was based on 8 parameters: uniformity, the signal-to-noise ratio (SNR), noise, the contrast-to-noise ratio (CNR), spatial resolution, the artifact index, geometric accuracy, and low-contrast resolution. The image uniformity and noise depended on the protocol that was applied. Regarding the CNR, high-density structures were more sensitive to the effect of scanning parameters. There were no significant differences between SNR and CNR in centered and peripheral objects. The geometric accuracy assessment showed that all the distance measurements were lower than the real values. Low-contrast resolution was influenced by the scanning parameters, and the 1-mm rod present in the phantom was not depicted in any of the 3 CBCT units. Smaller voxel sizes presented higher spatial resolution. There were no significant differences among the protocols regarding artifact presence. This software package provided a fast, low-cost, and feasible method for the evaluation of image quality parameters in CBCT.

  15. Verification of gamma knife based fractionated radiosurgery with newly developed head-thorax phantom

    International Nuclear Information System (INIS)

    Bisht, Raj Kishor; Kale, Shashank Sharad; Natanasabapathi, Gopishankar; Singh, Manmohan Jit; Agarwal, Deepak; Garg, Ajay; Rath, Goura Kishore; Julka, Pramod Kumar; Kumar, Pratik; Thulkar, Sanjay; Sharma, Bhawani Shankar

    2016-01-01

    Objective: Purpose of the study is to verify the Gamma Knife Extend™ system (ES) based fractionated stereotactic radiosurgery with newly developed head-thorax phantom. Methods: Phantoms are extensively used to measure radiation dose and verify treatment plan in radiotherapy. A human upper body shaped phantom with thorax was designed to simulate fractionated stereotactic radiosurgery using Extend™ system of Gamma Knife. The central component of the phantom aids in performing radiological precision test, dosimetric evaluation and treatment verification. A hollow right circular cylindrical space of diameter 7.0 cm was created at the centre of this component to place various dosimetric devices using suitable adaptors. The phantom is made of poly methyl methacrylate (PMMA), a transparent thermoplastic material. Two sets of disk assemblies were designed to place dosimetric films in (1) horizontal (xy) and (2) vertical (xz) planes. Specific cylindrical adaptors were designed to place thimble ionization chamber inside phantom for point dose recording along xz axis. EBT3 Gafchromic films were used to analyze and map radiation field. The focal precision test was performed using 4 mm collimator shot in phantom to check radiological accuracy of treatment. The phantom head position within the Extend™ frame was estimated using encoded aperture measurement of repositioning check tool (RCT). For treatment verification, the phantom with inserts for film and ion chamber was scanned in reference treatment position using X-ray computed tomography (CT) machine and acquired stereotactic images were transferred into Leksell Gammaplan (LGP). A patient treatment plan with hypo-fractionated regimen was delivered and identical fractions were compared using EBT3 films and in-house MATLAB codes. Results: RCT measurement showed an overall positional accuracy of 0.265 mm (range 0.223 mm–0.343 mm). Gamma index analysis across fractions exhibited close agreement between LGP and film

  16. Strategic Roadmap for the Development of an Interstellar Space Program

    Science.gov (United States)

    Gifra, M.; Peeters, W.

    Recent technological advances and scientific discoveries, particularly in astronomy and space technology, are opening our minds into the deepest realms of the universe, and also they are bringing a new era of space exploration and development. This sense of entering into a new era of space exploration is being boosted by the permanent discovery of new planets - to date, there are 684 confirmed extrasolar planets [1] - outside our solar system. The possibility that astronomers may soon find a habitable extrasolar planet near Earth and the recent advances in space propulsion that could reduce travel times have stimulated the space community to consider the development of an interstellar manned mission. But this scenario of entering into a new era of space development is ultimately contingent on the outcome of the actual world's economic crisis. The current financial crisis, on top of recent national and sovereign debts problems, could have serious consequences for space exploration and development as the national budgets for space activities are to freeze [2].This paper proposes a multi-decade space program for an interstellar manned mission. It designs a roadmap for the achievement of interstellar flight capability within a timeframe of 40 years, and also considers different scenarios where various technological and economical constraints are taken into account in order to know if such a space endeavour could be viable. It combines macro-level scenarios with a strategic roadmap to provide a framework for condensing all information in one map and timeframe, thus linking decision-making with plausible scenarios. The paper also explores the state of the art of space technologies 20 to 40 years in the future and its potential economic impact. It estimates the funding requirements, possible sources of funds, and the potential returns.The Interstellar Space Program proposed in this paper has the potential to help solve the global crisis by bringing a new landscape of

  17. Development of automation and robotics for space via computer graphic simulation methods

    Science.gov (United States)

    Fernandez, Ken

    1988-01-01

    A robot simulation system, has been developed to perform automation and robotics system design studies. The system uses a procedure-oriented solid modeling language to produce a model of the robotic mechanism. The simulator generates the kinematics, inverse kinematics, dynamics, control, and real-time graphic simulations needed to evaluate the performance of the model. Simulation examples are presented, including simulation of the Space Station and the design of telerobotics for the Orbital Maneuvering Vehicle.

  18. Promoting space research and applications in developing countries through small satellite missions

    Science.gov (United States)

    Sweeting, M.

    The high vantage-point of space offers very direct and tangible benefits to developing countries when carefully focused upon their real and particular communications and Earth observation needs. However, until recently, access to space has been effectively restricted to only those countries prepared to invest enormous sums in complex facilities and expensive satellites and launchers: this has placed individual participation in space beyond the sensible grasp of developing countries. However, during the last decade, highly capable and yet inexpensive small satellites have been developed which provide an opportunity for developing countries realistically to acquire and operate their own independent space assets - customized to their particular national needs. Over the last 22 years, the Surrey Space Centre has pioneered, developed and launched 23 nano-micro-minisatellite missions, and has worked in partnership with 12 developing countries to enable them to take their first independent steps into space. Surrey has developed a comprehensive and in-depth space technology know-how transfer and 'hands-on' training programme that uses a collaborative project comprising the design, construction, launch and operation of a microsatellite to acquire an indigenous space capability and create the nucleus of a national space agency and space industry. Using low cost small satellite projects as a focus, developing countries are able to initiate a long term, affordable and sustainable national space programme specifically tailored to their requirements, that is able to access the benefits derived from Earth observation for land use and national security; improved communications services; catalyzing scientific research and indigenous high-technology supporting industries. Perhaps even more important is the long-term benefit to the country provided by stimulating educational and career opportunities for your scientists and engineers and retaining them inside the country rather the

  19. Real-space and reciprocal-space Berry phases in the Hall effect of Mn(1-x)Fe(x)Si.

    Science.gov (United States)

    Franz, C; Freimuth, F; Bauer, A; Ritz, R; Schnarr, C; Duvinage, C; Adams, T; Blügel, S; Rosch, A; Mokrousov, Y; Pfleiderer, C

    2014-05-09

    We report an experimental and computational study of the Hall effect in Mn(1-x)Fe(x)Si, as complemented by measurements in Mn(1-x)Co(x)Si, when helimagnetic order is suppressed under substitutional doping. For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.

  20. Orbital tomography: Molecular band maps, momentum maps and the imaging of real space orbitals of adsorbed molecules

    Energy Technology Data Exchange (ETDEWEB)

    Offenbacher, Hannes; Lüftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg, E-mail: georg.koller@uni-graz.at; Puschnig, Peter; Ramsey, Michael G., E-mail: michael.ramsey@uni-graz.at

    2015-10-01

    Highlights: • Orbital tomography within the plane wave final state approximation. • One electron orbital predictions versus angle resolved photoemission experiment. • Geometric and electronic structure of organic thin films elucidated by ARUPS. • Influence of molecular conformation and orientation on ARUPS. • Retrieval of sexiphenyl and pentacene orbitals in real space. - Abstract: The frontier orbitals of molecules are the prime determinants of their chemical, optical and electronic properties. Arguably, the most direct method of addressing the (filled) frontier orbitals is ultra-violet photoemission spectroscopy (UPS). Although UPS is a mature technique from the early 1970s on, the angular distribution of the photoemitted electrons was thought to be too complex to be analysed quantitatively. Recently angle resolved UPS (ARUPS) work on conjugated molecules both, in ordered thick films and chemisorbed monolayers, has shown that the angular (momentum) distribution of the photocurrent from orbital emissions can be simply understood. The approach, based on the assumption of a plane wave final state is becoming known as orbital tomography. Here we will demonstrate, with selected examples of pentacene (5A) and sexiphenyl (6P), the potential of orbital tomography. First it will be shown how the full angular distribution of the photocurrent (momentum map) from a specific orbital is related to the real space orbital by a Fourier transform. Examples of the reconstruction of 5A orbitals will be given and the procedure for recovering the lost phase information will be outlined. We then move to examples of sexiphenyl where we interrogate the original band maps of thick sexiphenyl in the light of our understanding of orbital tomography that has developed since then. With comparison to theoretical simulations of the molecular band maps, the molecular conformation and orientation will be concluded. New results for the sexiphenyl monolayer on Al(1 1 0) will then be

  1. Development and verification of a compact TDC-based data acquisition system for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany); Gaisbauer, Dominic; Konorov, Igor; Paul, Stephan; Poeschl, Thomas [Physics Department E18, Technische Universitaet Muenchen (Germany)

    2015-07-01

    The advances of solid-state detectors and in particular those for the detection of photons have made their application in space systems increasingly attractive in recent years. The use of, for example, silicon photomultipliers (SiPM) paired with a suitable scintillating material allows the development of compact and lightweight particle detectors. The Antiproton Flux in Space experiment (AFIS) intends to measure the flux of antiprotons trapped in Earth's magnetosphere aboard a nanosatellite using an active target tracking detector, consisting of plastic scintillating fibers read out by SiPMs. In order to implement a large number of detector channels while adhering to the given space, mass and power constraints, the development of a compact TDC-based data acquisition system was proposed. This talk presents a current prototype featuring 900 channels, real-time multi-channel temperature measurement and bias regulation. Possible alternative applications as well as the next steps in the development are also discussed.

  2. OpportunitiesandPerceptionofSpaceProgramsintheDevelopingCountries

    Science.gov (United States)

    Abubakar, B.

    2007-05-01

    Although the space program as a whole is a true reflection of the level of achievement in human history in the field of Science and Technology, but it is also important to note that there are numbers of communities and societies on this earth that are ignorant about this great achievement, hence leading to the continuous diverting of Potential Astronomers, Aerospace Engineers and Astrologist to other disciplines, thereby undermining the development of the space program over time. It was in view of the above that this research was conducted and came up with the under listed Suggestions/Recommendations:- (1) The European Space Agency (ESA), National Aeronautic Space Agency (NASA) and the Russian Space Agency, should be organising and sponsoring public enlightenment conferences, seminars and workshops towards creating awareness and attracting Potential Astronomers and other Space Scientist mostly in the developing countries into the space program. (2) Esteemed organisations in space programs like NASA, ESA and others should be awarding scholarships to potential space scientist that lacks the financial capability to pursue studies in the field of space science from the developing countries. (3) The European Space Agency, National Aeronautic Space Agency and the Russian Space Agency, should open their offices for the development of the space program in the third world countries. I believe that if the above suggestions/recommendations are adopted and implemented it will lead to the development of the space program in general, otherwise the rate at which potential Astronomers, Aerospace Engineers and Astrologists will be diverting into other disciplines will ever remain on the increase. Thanks for listening.

  3. Rapid testing and identification of actuator using dSPACE real-time emulator

    Science.gov (United States)

    Xie, Daocheng; Wang, Zhongwei; Zeng, Qinghua

    2011-10-01

    To solve the problem of model identification of actuator in control system design of aerocraft, testing system based on dSPACE emulator is established, sending testing signal and receiving feedback voltage are realized using dSPACE interactive cards, communication between signal generating equipment and feedback voltage acquisition equipment is synchronized. This paper introduces the hardware architecture and key technologies of the simulation system. Constructing, downloading and calculating of the testing model is finished using dSPACE emulator, D/A transfer of testing signal is realized using DS2103 card, DS2002 card transfer the feedback voltage to digital value. Filtering module is added to the signal acquisition, for reduction of noise interference in the A/D channel. Precision of time and voltage is improved by setting acquisition period 1ms. The data gathered is recorded and displayed with Controldesk tools. The response of four actuators under different frequency are tested, frequency-domain analysis is done using least square method, the model of actuator is identified, simulation data fits well with real response of the actuator. The testing system created with dSPACE emulator satisfies the rapid testing and identification of actuator.

  4. Real-space multiple-scattering theory and the electronic structure of systems with full or reduced symmetry

    International Nuclear Information System (INIS)

    Zhang, X.; Gonis, A.; MacLaren, J.M.

    1989-01-01

    We present a new real-space multiple-scattering-theory method for the solution of the Schroedinger equation and the calculation of the electronic structure of solid materials with full or reduced symmetry. The method is based on the concept of semi-infinite periodicity (SIP), rather than translational invariance, and on the property of removal invariance of the scattering matrix of systems with SIP. This latter property allows one to replace the usual Brillouin-zone integrals in reciprocal space by a self-consistency equation for the t matrix, which is sufficient for the determination of the Green function and related properties. Because it is developed entirely in direct space, the method provides a unified treatment of the electronic structure of bulk materials, surfaces, interfaces and grain boundaries (coherent or incoherent), impurities of interstitial or substitutional kinds, and can be easily extended to treat concentrated, substitutionally disordered alloys. One of its advantages over methods based on Bloch's theorem and reciprocal space is the great simplicity of setting up and running the associated computer codes even for complex structures, and structures with reduced or no symmetry that lie outside the realm of applicability of conventional methods. We present the results of model calculations for one-dimensional and three-dimensional model systems as well as for three-dimensional realistic materials. Where appropriate, these results are compared with those obtained through conventional techniques, and give an indication of the method's flexibility and reliability. Our applications of this method to this point are discussed, and our plans for future development are presented

  5. PHL10/460: Cancerfacts.com - Vertical Portal with Newly Developed Health Profiler

    OpenAIRE

    Lenz, C; Brucksch, M

    1999-01-01

    Introduction Unlike general health portals such as WebMD and Drkoop.com that cover everything from the flu to heart disease, Silicon Valley-based cancerfacts.com is a so-called vertical portal. It covers only one small vertical niche of health care: cancer, and in particular, prostate cancer. As a value-added proprietary technology, the company offers its newly developed profile engine to health information retrievers. Methods Users are enabled to insert their specific medical information - r...

  6. Development and Provision of Functional Foods to Promote Health on Long-Duration Space Missions

    Science.gov (United States)

    Bermudez-Aguirre, D.; Cooper, M. R.; Douglas, G.; Smith, S.

    2016-01-01

    During long-duration NASA space missions, such as proposed missions to Mars, astronauts may experience negative physiological effects such as bone loss. Functional foods such as high-lycopene, high-flavonoids and high-omega-3 products and fruits and vegetables may mitigate the negative effects of spaceflight on physiological factors including the bone health of crewmembers. Previous studies showed that current ISS provisions provide high-lycopene and high-omega-3 food items but the variety is limited, which could promote menu fatigue. Bioactive compounds can degrade like other chemical compounds and lose functionality. The native concentrations and stability of bioactive compounds have never been determined in spaceflight foods, and adequate information is not available for commercial products for the storage durations required for space exploration (5 years). The purpose of this task is to develop new spaceflight foods that are high in omega-3 fatty acids, lycopene, or flavonoids, identify commercial products with these bioactive compounds that meet spaceflight requirements, and define the stability of these nutrients in storage to enable purposeful functional food incorporation into the space food system. The impact of storage temperature on the stability of lutein, lycopene, beta-carotene, omega-3 fatty acids, phenolics, anthocyanins and sterols is being studied in 12 ISS menu items stored at three different temperatures (4, 21, 35 degree C) over 2 years. Additionally, nutrient and quality stability are being assessed on a larger food set stored at 21 degree C over 2 years that contains twelve newly developed foods, 10 commercial products repackaged to spaceflight requirements, and another 5 current ISS menu items expected to be good sources of omega-3 fatty acids, lycopene, or flavonoids. All items were shipped overnight to the Linus Pauling Institute at Oregon State University (Corvalis, OR) after processing and 1-year of storage and analyzed for bioactive

  7. Real-Time Inhibitor Recession Measurements in Two Space Shuttle Reusable Solid Rocket Motors

    Science.gov (United States)

    McWhorter, B. B.; Ewing, M. E.; Bolton, D. E.; Albrechtsen, K. U.; Earnest, T. E.; Noble, T. C.; Longaker, M.

    2003-01-01

    Real-time internal motor insulation char line recession measurements have been evaluated for two full-scale static tests of the Space Shuttle Reusable Solid Rocket Motor (RSRM). These char line recession measurements were recorded on the forward facing propellant grain inhibitors to better understand the thermal performance of these inhibitors. The RSRM propellant grain inhibitors are designed to erode away during motor operation, thus making it difficult to use post-fire observations to determine inhibitor thermal performance. Therefore, this new internal motor instrumentation is invaluable in establishing an accurate understanding of inhibitor recession versus motor operation time. The data for the first test was presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (AIAA 2001-3280) in July 2001. Since that time, a second full scale static test has delivered additional real-time data on inhibitor thermal performance. The evaluation of this data is presented in this paper. The second static test, in contrast to the first test, used a slightly different arrangement of instrumentation in the inhibitors. This instrumentation has yielded a better understanding of the inhibitor time dependent inboard tip recession. Graphs of inhibitor recession profiles with time are presented. Inhibitor thermal ablation models have been created from theoretical principals. The model predictions compare favorably with data from both tests. This verified modeling effort is important to support new inhibitor designs for a five segment Space Shuttle solid rocket motor. The internal instrumentation project on RSRM static tests is providing unique opportunities for other real-time internal motor measurements that could not otherwise be directly quantified.

  8. Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.

    2014-01-01

    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low Earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond low Earth orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.

  9. Nonclassicality indicator for the real phase-space distribution functions

    International Nuclear Information System (INIS)

    Sadeghi, Parvin; Khademi, Siamak; Nasiri, Sadollah

    2010-01-01

    Benedict et al. and Kenfack et al. advocated nonclassicality indicators based on the measurement of negativity of the Wigner distribution functions. These indicators have some applications in quantum mechanics and quantum optics. In this paper we define a nonclassicality indicator in terms of the interference in phase space, which is applicable to some real distribution functions including those of Wigner. As a special case one may reproduce the previous results using our indicator for the Wigner distribution functions. This indicator is examined for cases of the Schroedinger cat state and the thermal states and the results are compared with those obtained by previous methods. It seems that the physical behavior of nonclassicality indicators originates in the uncertainty principle. This is shown by an onto correspondence between these indicators and the uncertainty principle.

  10. Real and complex analysis

    CERN Document Server

    Apelian, Christopher; Taft, Earl; Nashed, Zuhair

    2009-01-01

    The Spaces R, Rk, and CThe Real Numbers RThe Real Spaces RkThe Complex Numbers CPoint-Set Topology Bounded SetsClassification of Points Open and Closed SetsNested Intervals and the Bolzano-Weierstrass Theorem Compactness and Connectedness Limits and Convergence Definitions and First Properties Convergence Results for SequencesTopological Results for Sequences Properties of Infinite SeriesManipulations of Series in RFunctions: Definitions and Limits DefinitionsFunctions as MappingsSome Elementary Complex FunctionsLimits of FunctionsFunctions: Continuity and Convergence Continuity Uniform Continuity Sequences and Series of FunctionsThe DerivativeThe Derivative for f: D1 → RThe Derivative for f: Dk → RThe Derivative for f: Dk → RpThe Derivative for f: D → CThe Inverse and Implicit Function TheoremsReal IntegrationThe Integral of f: [a, b] → RProperties of the Riemann Integral Further Development of Integration TheoryVector-Valued and Line IntegralsComplex IntegrationIntroduction to Complex Integrals Fu...

  11. Space tourism risks: A space insurance perspective

    Science.gov (United States)

    Bensoussan, Denis

    2010-06-01

    Space transportation is inherently risky to humans, whether they are trained astronauts or paying tourists, given that spaceflight is still in its relative infancy. However, this is easy to forget when subjected to the hype often associated with space tourism and the ventures seeking to enter that market. The development of commercial spaceflight constitutes a challenge as much as a great opportunity to the insurance industry as new risks emerge and standards, policies and procedures to minimise/mitigate and cover them still to be engineered. Therefore the creation of a viable and affordable insurance regime for future space tourists is a critical step in the development of a real space tourism market to address burning risk management issues that may otherwise ultimately hamper this nascent industry before it has a chance to prove itself.

  12. Integrating data mining technique and AHP in market analysis to propose new product development in real estate

    Science.gov (United States)

    Yunita; Galinium, M.; Lukas

    2017-01-01

    New product development in real estate industry is a challenging process since it is related to long term concept and high cost. A newly proposed product development should meet customer need and their preferences which appropriate with customer buying power and company value. This research use data mining for profiling customer transaction and Analytic Hierarchy Process (AHP) method for product selection in new product development. This research utilizes Weka as data mining open source software to profiling data customers. The analysis correlated product preferences and profiling demography such as city, age, gender and occupation. Demography profiles gives description buying power and product preferences. The products proposed are based on customer profiles and rank of the product by AHP method. The product with the highest score will be proposed as new product development. Case studies of this research are real estate projects in Serang, Makassar, and Balikpapan. Makassar and Balikpapan are the project that already gained success and Serang is new project which new products development will be proposed to launch. Based on profiling and product preference of customer in Balikpapan, Makassar, and prospectus of Serang markets, new products development that will be proposed are house type of 120/200 m2 with price around Rp1.300.000.000 and house type of 71/120 m2 with price around Rp800.000.000. The markets of Serang and Balikpapan have similarities in profiles as urban city so the new products development will adopt the succeed story of Balikpapan project.

  13. Development of a component centered fault monitoring and diagnosis knowledge based system for space power system

    Science.gov (United States)

    Lee, S. C.; Lollar, Louis F.

    1988-01-01

    The overall approach currently being taken in the development of AMPERES (Autonomously Managed Power System Extendable Real-time Expert System), a knowledge-based expert system for fault monitoring and diagnosis of space power systems, is discussed. The system architecture, knowledge representation, and fault monitoring and diagnosis strategy are examined. A 'component-centered' approach developed in this project is described. Critical issues requiring further study are identified.

  14. Modular Hamiltonians for deformed half-spaces and the averaged null energy condition

    Science.gov (United States)

    Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar; Wang, Huajia

    2016-09-01

    We study modular Hamiltonians corresponding to the vacuum state for deformed half-spaces in relativistic quantum field theories on {{R}}^{1,d-1} . We show that in addition to the usual boost generator, there is a contribution to the modular Hamiltonian at first order in the shape deformation, proportional to the integral of the null components of the stress tensor along the Rindler horizon. We use this fact along with monotonicity of relative entropy to prove the averaged null energy condition in Minkowski space-time. This subsequently gives a new proof of the Hofman-Maldacena bounds on the parameters appearing in CFT three-point functions. Our main technical advance involves adapting newly developed perturbative methods for calculating entanglement entropy to the problem at hand. These methods were recently used to prove certain results on the shape dependence of entanglement in CFTs and here we generalize these results to excited states and real time dynamics. We also discuss the AdS/CFT counterpart of this result, making connection with the recently proposed gravitational dual for modular Hamiltonians in holographic theories.

  15. QERx- A Faster than Real-Time Emulator for Space Processors

    Science.gov (United States)

    Carvalho, B.; Pidgeon, A.; Robinson, P.

    2012-08-01

    Developing software for space systems is challenging. Especially because, in order to be sure it can cope with the harshness of the environment and the imperative requirements and constrains imposed by the platform were it will run, it needs to be tested exhaustively. Software Validation Facilities (SVF) are known to the industry and developers, and provide the means to run the On-Board Software (OBSW) in a realistic environment, allowing the development team to debug and test the software.But the challenge is to be able to keep up with the performance of the new processors (LEON2 and LEON3), which need to be emulated within the SVF. Such processor emulators are also used in Operational Simulators, used to support mission preparation and train mission operators. These simulators mimic the satellite and its behaviour, as realistically as possible. For test/operational efficiency reasons and because they will need to interact with external systems, both these uses cases require the processor emulators to provide real-time, or faster, performance.It is known to the industry that the performance of previously available emulators is not enough to cope with the performance of the new processors available in the market. SciSys approached this problem with dynamic translation technology trying to keep costs down by avoiding a hardware solution and keeping the integration flexibility of full software emulation.SciSys presented “QERx: A High Performance Emulator for Software Validation and Simulations” [1], in a previous DASIA event. Since then that idea has evolved and QERx has been successfully validated. SciSys is now presenting QERx as a product that can be tailored to fit different emulation needs. This paper will present QERx latest developments and current status.

  16. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    Science.gov (United States)

    Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; hide

    2009-01-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  17. Newly developed semi-empirical formulas for (p, α) at 17.9 MeV and ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 74; Issue 6. Newly developed semi-empirical formulas for (, ) at 17.9 MeV and (, ) at 22.3 MeV reaction cross-sections. Eyyup Tel Abdullah Aydin E Gamze Aydin Abdullah Kaplan Ömer Yavaş İskender A Reyhancan. Research Articles Volume 74 Issue 6 June ...

  18. LabVIEW A Developer's Guide to Real World Integration

    CERN Document Server

    Fairweather, Ian

    2011-01-01

    LabVIEW(t) has become one of the preeminent platforms for the development of data acquisition and data analysis programs. LabVIEW(t): A Developer's Guide to Real World Integration explains how to integrate LabVIEW into real-life applications. Written by experienced LabVIEW developers and engineers, the book describes how LabVIEW has been pivotal in solving real-world challenges. Each chapter is self-contained and demonstrates the power and simplicity of LabVIEW in various applications, from image processing to solar tracking systems. Many of the chapters explore how exciting new technologies c

  19. Quantum theory in complex Hilbert space

    International Nuclear Information System (INIS)

    Sharma, C.S.

    1988-01-01

    The theory of complexification of a real Hilbert space as developed by the author is scrutinized with the aim of explaining why quantum theory should be done in a complex Hilbert space in preference to real Hilbert space. It is suggested that, in order to describe periodic motions in stationary states of a quantum system, the mathematical object modelling a state of a system should have enough points in it to be able to describe explicit time dependence of a periodic motion without affecting the probability distributions of observables. Heuristic evidence for such an assumption comes from Dirac's theory of interaction between radiation and matter. If the assumption is adopted as a requirement on the mathematical model for a quantum system, then a real Hilbert space is ruled out in favour of a complex Hilbert space for a possible model for such a system

  20. From real to complex analysis

    CERN Document Server

    Dyer, R H

    2014-01-01

    The purpose of this book is to provide an integrated course in real and complex analysis for those who have already taken a preliminary course in real analysis. It particularly emphasises the interplay between analysis and topology. Beginning with the theory of the Riemann integral (and its improper extension) on the real line, the fundamentals of metric spaces are then developed, with special attention being paid to connectedness, simple connectedness and various forms of homotopy. The final chapter develops the theory of complex analysis, in which emphasis is placed on the argument, the winding number, and a general (homology) version of Cauchy's theorem which is proved using the approach due to Dixon. Special features are the inclusion of proofs of Montel's theorem, the Riemann mapping theorem and the Jordan curve theorem that arise naturally from the earlier development. Extensive exercises are included in each of the chapters, detailed solutions of the majority of which are given at the end. From Real to...

  1. How Schools Can Promote Healthy Development for Newly Arrived Immigrant and Refugee Adolescents: Research Priorities

    Science.gov (United States)

    McNeely, Clea A.; Morland, Lyn; Doty, S. Benjamin; Meschke, Laurie L.; Awad, Summer; Husain, Altaf; Nashwan, Ayat

    2017-01-01

    Background: The US education system must find creative and effective ways to foster the healthy development of the approximately 2 million newly arrived immigrant and refugee adolescents, many of whom contend with language barriers, limited prior education, trauma, and discrimination. We identify research priorities for promoting the school…

  2. Development of Harpoon System for Capturing Space Debris

    Science.gov (United States)

    Reed, Jame; Barraclough, Simon

    2013-08-01

    Active removal of large space debris has been identified as a key activity to control the growth in the debris population and to limit the risk to active satellites. Astrium is developing technologies to enable such a mission, including a harpoon capture system. The harpoon is simple, compact and lightweight. Since the capture is fast (typically barbs to robustly hold the target, a crushable section to absorb excess impact energy, and a tether to connect to the chaser vehicle. The baseline firing system uses compressed gas, although a simpler one-shot system has also been designed. To understand how a harpoon could be applicable to active debris removal an on-ground prototype and test-rig has been developed for trials with real structural elements of satellites and rocket bodies. Testing has demonstrated the feasibility of the concept and this paper describes the results as well as the next steps. A number of design variants are also proposed which could simplify the system design of an ADR mission.

  3. A computer literacy scale for newly enrolled nursing college students: development and validation.

    Science.gov (United States)

    Lin, Tung-Cheng

    2011-12-01

    Increasing application and use of information systems and mobile technologies in the healthcare industry require increasing nurse competency in computer use. Computer literacy is defined as basic computer skills, whereas computer competency is defined as the computer skills necessary to accomplish job tasks. Inadequate attention has been paid to computer literacy and computer competency scale validity. This study developed a computer literacy scale with good reliability and validity and investigated the current computer literacy of newly enrolled students to develop computer courses appropriate to students' skill levels and needs. This study referenced Hinkin's process to develop a computer literacy scale. Participants were newly enrolled first-year undergraduate students, with nursing or nursing-related backgrounds, currently attending a course entitled Information Literacy and Internet Applications. Researchers examined reliability and validity using confirmatory factor analysis. The final version of the developed computer literacy scale included six constructs (software, hardware, multimedia, networks, information ethics, and information security) and 22 measurement items. Confirmatory factor analysis showed that the scale possessed good content validity, reliability, convergent validity, and discriminant validity. This study also found that participants earned the highest scores for the network domain and the lowest score for the hardware domain. With increasing use of information technology applications, courses related to hardware topic should be increased to improve nurse problem-solving abilities. This study recommends that emphases on word processing and network-related topics may be reduced in favor of an increased emphasis on database, statistical software, hospital information systems, and information ethics.

  4. Newly developed chitosan-silver hybrid nanoparticles: biosafety and apoptosis induction in HepG2 cells

    International Nuclear Information System (INIS)

    El-Sherbiny, Ibrahim M.; Salih, Ehab; Yassin, Abdelrahman M.; Hafez, Elsayed E.

    2016-01-01

    The present study reports the biosafety assessment, the exact molecular effects, and apoptosis induction of newly developed chitosan-silver hybrid nanoparticles (Cs–Ag NPs) in HepG2 cells. The investigated hybrid NPs were green synthesized using Cs/grape leaves aqueous extract (Cs/GLE) or Cs/GLE NPs as reducing and stabilizing agents. The successful formation of Cs/GLE NPs and Cs–Ag hybrid NPs has been confirmed by UV–Vis spectrophotometry, FTIR spectroscopy, XRD, and HRTEM. From the TEM analysis, the prepared Cs/GLE NPs are uniform and spherical with an average size of 150 nm, and the AgNPs (5–10 nm) were formed mainly on their surface. The UV–Vis spectra of Cs–Ag NPs showed a surface plasmon resonance (SPR) peak at about 450 nm confirming their formation. The synthesized Cs–Ag NPs were found to be crystalline as shown by XRD patterns with fcc phase oriented along the (111), (200), (220), and (311) planes. The cytotoxicity patterns, the antiproliferative activities, and the possible mechanisms of anticancer activity at molecular level of the newly developed Cs–Ag hybrid NPs were investigated. Cytotoxicity patterns of all the preparations demonstrated that the nontoxic treatment concentrations are ranged from 0.39 to 50 %, and many of the newly prepared Cs–Ag hybrid NPs showed high anticancer activities against HpG2 cells, and induced cellular apoptosis by downregulating BCL2 gene and upregulating P53.Graphical Abstract

  5. Newly developed chitosan-silver hybrid nanoparticles: biosafety and apoptosis induction in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Sherbiny, Ibrahim M., E-mail: ielsherbiny@Zewailcity.edu.eg; Salih, Ehab [Zewail City of Science and Technology, Center for Materials Science (Egypt); Yassin, Abdelrahman M. [Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, Biopharmaceutical Product Research Department (Egypt); Hafez, Elsayed E. [City of Scientific Research and Technology Applications, Plant Protection and Biomolecular Diagnosis Department (Egypt)

    2016-07-15

    The present study reports the biosafety assessment, the exact molecular effects, and apoptosis induction of newly developed chitosan-silver hybrid nanoparticles (Cs–Ag NPs) in HepG2 cells. The investigated hybrid NPs were green synthesized using Cs/grape leaves aqueous extract (Cs/GLE) or Cs/GLE NPs as reducing and stabilizing agents. The successful formation of Cs/GLE NPs and Cs–Ag hybrid NPs has been confirmed by UV–Vis spectrophotometry, FTIR spectroscopy, XRD, and HRTEM. From the TEM analysis, the prepared Cs/GLE NPs are uniform and spherical with an average size of 150 nm, and the AgNPs (5–10 nm) were formed mainly on their surface. The UV–Vis spectra of Cs–Ag NPs showed a surface plasmon resonance (SPR) peak at about 450 nm confirming their formation. The synthesized Cs–Ag NPs were found to be crystalline as shown by XRD patterns with fcc phase oriented along the (111), (200), (220), and (311) planes. The cytotoxicity patterns, the antiproliferative activities, and the possible mechanisms of anticancer activity at molecular level of the newly developed Cs–Ag hybrid NPs were investigated. Cytotoxicity patterns of all the preparations demonstrated that the nontoxic treatment concentrations are ranged from 0.39 to 50 %, and many of the newly prepared Cs–Ag hybrid NPs showed high anticancer activities against HpG2 cells, and induced cellular apoptosis by downregulating BCL2 gene and upregulating P53.Graphical Abstract.

  6. Hiding and Searching Strategies of Adult Humans in a Virtual and a Real-Space Room

    Science.gov (United States)

    Talbot, Katherine J.; Legge, Eric L. G.; Bulitko, Vadim; Spetch, Marcia L.

    2009-01-01

    Adults searched for or cached three objects in nine hiding locations in a virtual room or a real-space room. In both rooms, the locations selected by participants differed systematically between searching and hiding. Specifically, participants moved farther from origin and dispersed their choices more when hiding objects than when searching for…

  7. Environmental Development Plan (EDP): space applications

    International Nuclear Information System (INIS)

    1978-04-01

    This Environmental Development Plan (EDP) identifies and examines the environmental, safety, health, and socioeconomic (ES and H) issues associated with the ongoing DOE Space Applications Program and the associated research, development, and demonstration programs. The EDP presents an ES and H research and development (R/D) program and strategy for timely resolutions of the issues and satisfaction of the associated requirements necessary for precluding impediments to the space nuclear systems technology. The EDP has been limited to the consideration of: (1) space nuclear power system nuclear fuel fabrication; (2) space nuclear power system heat source fabrication; (3) testing of subsystems and assembled systems; (4) R and D in support of space nuclear system development; (5) nuclear system responses to launch and reentry accidents; and (6) nuclear system environmental behavior and recovery

  8. The Development of a Course Sequence in Real-Time Systems Design

    Science.gov (United States)

    1993-08-01

    This project deals with the development of a senior level course sequence in software intensive real - time systems . The sequence consists of a course...for an engineering industrial career in real - time systems development. The course sequence emphasizes practical standards, techniques, and tools for...system development. Few universities include real - time systems development in their undergraduate Computer Engineering or Computer Science curriculum

  9. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer

    Science.gov (United States)

    Gross, I.; Akhtar, W.; Garcia, V.; Martínez, L. J.; Chouaieb, S.; Garcia, K.; Carrétéro, C.; Barthélémy, A.; Appel, P.; Maletinsky, P.; Kim, J.-V.; Chauleau, J. Y.; Jaouen, N.; Viret, M.; Bibes, M.; Fusil, S.; Jacques, V.

    2017-09-01

    Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

  10. The characteristics to consider in municipal shared spaces

    DEFF Research Database (Denmark)

    Brinkoe, Rikke; Nielsen, Susanne Balslev

    2017-01-01

    Purpose The purpose of this study is through collaboration with practitioners to identify key characteristics of municipal shared spaces and, based on these, developing a guide for establishing a shared space in a municipal real-estate portfolio. Design/methodology/approach This paper builds...... to establishing a shared space in a municipal real-estate portfolio, created in collaboration between researchers and practitioners. It provides an introduction to the topic and outlines a number of tasks that must be completed in different parts of a project, thereby providing a tool which practitioners can use...... in a municipal real-estate portfolio....

  11. A Strategy for Thailand's Space Technology Development: National Space Program (NSP)

    Science.gov (United States)

    Pimnoo, Ammarin; Purivigraipong, Somphop

    2016-07-01

    The Royal Thai Government has established the National Space Policy Committee (NSPC) with mandates for setting policy and strategy. The NSPC is considering plans and budget allocation for Thai space development. NSPC's goal is to promote the utilization of space technology in a manner that is congruent with the current situation and useful for the economy, society, science, technology, educational development and national security. The first proposed initiative of the National Space Program (NSP) is co-development of THEOS-2, a next-generation satellite system that includes Thailand's second and third earth observation satellite (THAICHOTE-2 and THAICHOTE-3). THEOS-1 or THAICHOTE-1 was the first Earth Observation Satellite of Thailand launched in 2008. At present, the THAICHOTE-1 is over the lifetime, therefore the THEOS-2 project has been established. THEOS-2 is a complete Earth Observation System comprising THAICHOTE-2&3 as well as ground control segment and capacity building. Thus, NSPC has considered that Thailand should manage the space system. Geo-Informatics and Space Technology Development Agency (GISTDA) has been assigned to propose the initiative National Space Program (NSP). This paper describes the strategy of Thailand's National Space Program (NSP) which will be driven by GISTDA. First, NSP focuses on different aspects of the utilization of space on the basis of technology, innovation, knowledge and manpower. It contains driving mechanisms related to policy, implementation and use in order to promote further development. The Program aims to increase economic competitiveness, reduce social disparity, and improve social security, natural resource management and environmental sustainability. The NSP conceptual framework includes five aspects: communications satellites, earth observation satellite systems, space economy, space exploration and research, and NSP administration. THEOS-2 is considered a part of NSP with relevance to the earth observation

  12. Unfolding and effective bandstructure calculations as discrete real- and reciprocal-space operations

    Energy Technology Data Exchange (ETDEWEB)

    Boykin, Timothy B., E-mail: boykin@ece.uah.edu [Department of Electrical and Computer Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Ajoy, Arvind [School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853 (United States); Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard [Network for Computational Nanotechnology, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2016-06-15

    In recent years, alloy electronic structure calculations based on supercell Brillouin zone unfolding have become popular. There are a number of formulations of the method which on the surface might appear different. Here we show that a discrete real-space description, based on discrete Fourier transforms, is fully general. Furthermore, such an approach can more easily show the effects of alloy scattering. We present such a method for treating the random alloy problem. This treatment features straightforward mathematics and a transparent physical interpretation of the calculated effective (i.e., approximate) energy bands.

  13. Rapid detection of Lactobacillus kefiranofaciens in kefir grain and kefir milk using newly developed real-time PCR.

    Science.gov (United States)

    Kim, Dong-Hyeon; Chon, Jung-Whan; Kim, Hong-Seok; Yim, Jin-Hyeok; Kim, Hyunsook; Seo, Kun-Ho

    2015-04-01

    Lactobacillus kefiranofaciens is an indicator microorganism for kefir and a key factor in kefir grain formation and kefiran production. We designed a novel real-time PCR primer and probe set, LKF_KU504, for the rapid detection of L. kefiranofaciens. In inclusivity and exclusivity tests, only 14 L. kefiranofaciens strains were positive among 61 microorganisms, indicating 100 % sensitivity and specificity. The LKF_KU504 set also differentiated kefir milk from 30 commercial nonkefir yogurts. The levels of L. kefiranofaciens in kefir grain and kefir milk were significantly different, indicating L. kefiranofaciens was more concentrated in kefir grain than in kefir milk.

  14. Equivalences of real submanifolds in complex space.

    OpenAIRE

    ZAITSEV, DMITRI

    2001-01-01

    PUBLISHED We show that for any real-analytic submanifold M in CN there is a proper real-analytic subvariety V contained in M such that for any p ? M \\ V , any real-analytic submanifold M? in CN, and any p? ? M?, the germs of the submanifolds M and M? at p and p? respectively are formally equivalent if and only if they are biholomorphically equivalent. More general results for k-equivalences are also stated and proved.

  15. Newly blind persons using virtual environment system in a traditional orientation and mobility rehabilitation program: a case study.

    Science.gov (United States)

    Lahav, Orly; Schloerb, David W; Srinivasan, Mandayam A

    2012-09-01

    This paper presents a virtual reality system (the BlindAid) developed for orientation and mobility training of people who are newly blind. The BlindAid allows users to interact with different virtual structures and objects via auditory and haptic feedback. This case study aims to examine if and how the BlindAid, in conjunction with a traditional rehabilitation programme, can help people who are newly blind develop new orientation and mobility methods. Follow-up research based on this study, with a large experiment and control group, could contribute to the area of orientation and mobility rehabilitation training for the newly blind. The case study research focused on A., a woman who is newly blind, for 17 virtual sessions spanning ten weeks, during the 12 weeks of her traditional orientation and mobility rehabilitation programme. The research was implemented by using virtual environment (VE) exploration and orientation tasks in VE and physical spaces. The research methodology used both qualitative and quantitative methods, including interviews, questionnaire, videotape recording, and user computer logs. The results of this study helped elucidate several issues concerning the contribution of the BlindAid system to the exploration strategies and learning processes experienced by the participant in her encounters with familiar and unfamiliar physical surroundings. [Box: see text].

  16. Delivering the diabetes education and self management for ongoing and newly diagnosed (DESMOND) programme for people with newly diagnosed type 2 diabetes

    DEFF Research Database (Denmark)

    Gillett, M.; Dallosso, H. M.; Dixon, S.

    2010-01-01

    intervention is £82 (-£831 to £1010) and the mean incremental cost per QALY gained is £2092. A probabilistic sensitivity analysis indicated that the likelihood that the DESMOND programme is cost effective at a threshold of £20 000 per QALY is 66% using trial based intervention costs and 70% using "real world......Objectives: To assess the long term clinical and cost effectiveness of the diabetes education and self management for ongoing and newly diagnosed (DESMOND) intervention compared with usual care in people with newly diagnosed type 2 diabetes. Design: We undertook a cost-utility analysis that used...... data from a 12 month, multicentre, cluster randomised controlled trial and, using the Sheffield type 2 diabetes model, modelled long term outcomes in terms of use of therapies, incidence of complications, mortality, and associated effect on costs and health related quality of life. A further cost...

  17. A newly development RIA for thyroid hormone autoantibodies (THAAb)

    International Nuclear Information System (INIS)

    Li Fengying; Gu Liqiong; Chen Xiayin; Jin Yan; Chen Shuxian; Zhang Qun; Qiu Hongxia; Yang Jingren; Zhao Yongju; Chen Mingdao

    2004-01-01

    Objective: To report a newly developed RIA for THAAb from this laboratory. Methods: The tested serum samples were cultured with labelled thyroid hormone analogous ( 125 I T 3 , 125 I T 4 ) for 16 hours. Antigen-antibody complex was precipitated with anti-human IgG (immune precipitation method) and radio-activity determined. Results: The mean positive rate of THAAb in healthy euthyroid controls (n=186) was only 1.07%. The mean positive rate in patients with thyroid disorders was 14.4% (mean rate 13.5% in hyperthyroid subjects, n=118 and mean rate 15.2% in hypothyroid subjects, n=72). The serum THAAb titer could be markedly lowered after adding non-labelled thyroid hormones (P 3 and FT 4 would be significantly lowered (P 3 , FT 4 levels. In patients with positive THAAb (about 14.4% in patients with all thyroid disorders), the FT 3 , FT 4 levels were best determined after PEG precipitation. (authors)

  18. Comparing long-term projections of the space debris environment to real world data - Looking back to 1990

    Science.gov (United States)

    Radtke, Jonas; Stoll, Enrico

    2016-10-01

    Long-term projections of the space debris environment are commonly used to assess the trends within different scenarios for the assumed future development of spacefaring. General scenarios investigated include business-as-usual cases in which spaceflight is performed as today and mitigation scenarios, assuming the implementation of Space Debris Mitigation Guidelines at different advances or the effectiveness of more drastic measures, such as active debris removal. One problem that always goes along with the projection of a system's behaviour in the future is that affecting parameters, such as the launch rate, are unpredictable. It is common to look backwards and re-model the past in other fields of research. This is a rather difficult task for spaceflight as it is still quite young, and furthermore mostly influenced by drastic politic changes, as the break-down of the Soviet Union in the end of the 1980s. Furthermore, one major driver of the evolution of the number of on-orbit objects turn out to be collisions between objects. As of today, these collisions are, fortunately, very rare and therefore, a real-world-data modelling approach is difficult. Nevertheless, since the end of the cold war more than 20 years of a comparably stable evolution of spaceflight activities have passed. For this study, this period is used in a comparison between the real evolution of the space debris environment and that one projected using the Institute of Space System's in-house tool for long-term assessment LUCA (Long-Term Utility for Collision Analysis). Four different scenarios are investigated in this comparison; all of them have the common starting point of using an initial population for 1st May 1989. The first scenario, which serves as reference, is simply taken from MASTER-2009. All launch and mission related objects from the Two Line Elements (TLE) catalogue and other available sources are included. All events such as explosion and collision events have been re-modelled as

  19. In-Space Manufacturing Baseline Property Development

    Science.gov (United States)

    Stockman, Tom; Schneider, Judith; Prater, Tracie; Bean, Quincy; Werkheiser, Nicki

    2016-01-01

    The In-Space Manufacturing (ISM) project at NASA Marshall Space Flight Center currently operates a 3D FDM (fused deposition modeling) printer onboard the International Space Station. In order to enable utilization of this capability by designer, the project needs to establish characteristic material properties for materials produced using the process. This is difficult for additive manufacturing since standards and specifications do not yet exist for these technologies. Due to availability of crew time, there are limitations to the sample size which in turn limits the application of the traditional design allowables approaches to develop a materials property database for designers. In this study, various approaches to development of material databases were evaluated for use by designers of space systems who wish to leverage in-space manufacturing capabilities. This study focuses on alternative statistical techniques for baseline property development to support in-space manufacturing.

  20. Developments in architecture for real-time data systems

    International Nuclear Information System (INIS)

    Heath, R.L.; Myers, W.R.

    1975-01-01

    Real-time data systems typically operate at two levels: a fast-response instrument-oriented level for data acquisition and control, and a slow human-oriented level for interaction and computation. Traditional minicomputer data systems support real-time applications by implementation of background/foreground software. Recent developments in computer technology including microprocessors enable the functional organization of hardware in distributed or hierarchical form to provide new system structures for real-time requirements. Examples of systems with distributed architecture will be discussed in detail

  1. A real-space renormalization approach to the Kubo-Greenwood formula in mirror Fibonacci systems

    International Nuclear Information System (INIS)

    Sanchez, Vicenta; Wang Chumin

    2006-01-01

    An exact real-space renormalization method is developed to address the electronic transport in mirror Fibonacci chains at a macroscopic scale by means of the Kubo-Greenwood formula. The results show that the mirror symmetry induces a large number of transparent states in the dc conductivity spectra, contrary to the simple Fibonacci case. A length scaling analysis over ten orders of magnitude reveals the existence of critically localized states and their ac conduction spectra show a highly oscillating behaviour. For multidimensional quasiperiodic systems, a novel renormalization plus convolution method is proposed. This combined renormalization + convolution method has shown an extremely elevated computing efficiency, being able to calculate electrical conductance of a three-dimensional non-crystalline solid with 10 30 atoms. Finally, the dc and ac conductances of mirror Fibonacci nanowires are also investigated, where a quantized dc-conductance variation with the Fermi energy is found, as observed in gold nanowires

  2. Muscle Attenuation Is Associated With Newly Developed Hypertension in Men of African Ancestry.

    Science.gov (United States)

    Zhao, Qian; Zmuda, Joseph M; Kuipers, Allison L; Bunker, Clareann H; Patrick, Alan L; Youk, Ada O; Miljkovic, Iva

    2017-05-01

    Increased ectopic adipose tissue infiltration in skeletal muscle is associated with insulin resistance and diabetes mellitus. We evaluated whether change in skeletal muscle adiposity predicts subsequent development of hypertension in men of African ancestry, a population sample understudied in previous studies. In the Tobago Health Study, a prospective longitudinal study among men of African ancestry (age range 40-91 years), calf intermuscular adipose tissue, and skeletal muscle attenuation were measured with computed tomography. Hypertension was defined as a systolic blood pressure ≥140 mm Hg, or a diastolic blood pressure ≥90 mm Hg, or receiving antihypertensive medications. Logistic regression was performed with adjustment for age, insulin resistance, baseline and 6-year change in body mass index, baseline and 6-year change in waist circumference, and other potential confounding factors. Among 746 normotensive men at baseline, 321 (43%) developed hypertension during the mean 6.2 years of follow-up. Decreased skeletal muscle attenuation was associated with newly developed hypertension after adjustment for baseline and 6-year change of body mass index (odds ratio [95% confidence interval] per SD, 1.3 [1.0-1.6]) or baseline and 6-year change of waist circumference (odds ratio [95% confidence interval] per SD, 1.3 [1.0-1.6]). No association was observed between increased intermuscular adipose tissue and hypertension. Our novel findings show that decreased muscle attenuation is associated with newly developed hypertension among men of African ancestry, independent of general and central adiposity and insulin resistance. Further studies are needed to adjust for inflammation, visceral and other ectopic adipose tissue depots, and to confirm our findings in other population samples. © 2017 American Heart Association, Inc.

  3. Real-Time Inhibitor Recession Measurements in the Space Shuttle Reusable Solid Rocket Motors

    Science.gov (United States)

    McWhorter, Bruce B.; Ewing, Mark E.; McCool, Alex (Technical Monitor)

    2001-01-01

    Real-time char line recession measurements were made on propellant inhibitors of the Space Shuttle Reusable Solid Rocket Motor (RSRM). The RSRM FSM-8 static test motor propellant inhibitors (composed of a rubber insulation material) were successfully instrumented with eroding potentiometers and thermocouples. The data was used to establish inhibitor recession versus time relationships. Normally, pre-fire and post-fire insulation thickness measurements establish the thermal performance of an ablating insulation material. However, post-fire inhibitor decomposition and recession measurements are complicated by the fact that most of the inhibitor is back during motor operation. It is therefore a difficult task to evaluate the thermal protection offered by the inhibitor material. Real-time measurements would help this task. The instrumentation program for this static test motor marks the first time that real-time inhibitors. This report presents that data for the center and aft field joint forward facing inhibitors. The data was primarily used to measure char line recession of the forward face of the inhibitors which provides inhibitor thickness reduction versus time data. The data was also used to estimate the inhibitor height versus time relationship during motor operation.

  4. An Embeddable Virtual Machine for State Space Generation

    NARCIS (Netherlands)

    Weber, M.; Bosnacki, D.; Edelkamp, S.

    2007-01-01

    The semantics of modelling languages are not always specified in a precise and formal way, and their rather complex underlying models make it a non-trivial exercise to reuse them in newly developed tools. We report on experiments with a virtual machine-based approach for state space generation. The

  5. Numerical simulation of a cabin ventilation subsystem in a space station oriented real-time system

    Directory of Open Access Journals (Sweden)

    Zezheng QIU

    2017-12-01

    Full Text Available An environment control and life support system (ECLSS is an important system in a space station. The ECLSS is a typical complex system, and the real-time simulation technology can help to accelerate its research process by using distributed hardware in a loop simulation system. An implicit fixed time step numerical integration method is recommended for a real-time simulation system with time-varying parameters. However, its computational efficiency is too low to satisfy the real-time data interaction, especially for the complex ECLSS system running on a PC cluster. The instability problem of an explicit method strongly limits its application in the ECLSS real-time simulation although it has a high computational efficiency. This paper proposes an improved numerical simulation method to overcome the instability problem based on the explicit Euler method. A temperature and humidity control subsystem (THCS is firstly established, and its numerical stability is analyzed by using the eigenvalue estimation theory. Furthermore, an adaptive operator is proposed to avoid the potential instability problem. The stability and accuracy of the proposed method are investigated carefully. Simulation results show that this proposed method can provide a good way for some complex time-variant systems to run their real-time simulation on a PC cluster. Keywords: Numerical integration method, Real-time simulation, Stability, THCS, Time-variant system

  6. Space biology research development

    Science.gov (United States)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  7. VERSE - Virtual Equivalent Real-time Simulation

    Science.gov (United States)

    Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel

    2005-01-01

    Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.

  8. Linux real-time framework for fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Andre [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)], E-mail: andre.neto@cfn.ist.utl.pt; Sartori, Filippo; Piccolo, Fabio [Euratom-UKAEA, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Barbalace, Antonio [Euratom-ENEA Association, Consorzio RFX, 35127 Padova (Italy); Vitelli, Riccardo [Dipartimento di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1-00133, Roma (Italy); Fernandes, Horacio [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2009-06-15

    A new framework for the development and execution of real-time codes is currently being developed and commissioned at JET. The foundations of the system are Linux, the Real Time Application Interface (RTAI) and a wise exploitation of the new i386 multi-core processors technology. The driving motivation was the need to find a real-time operating system for the i386 platform able to satisfy JET Vertical Stabilisation Enhancement project requirements: 50 {mu}s cycle time. Even if the initial choice was the VxWorks operating system, it was decided to explore an open source alternative, mostly because of the costs involved in the commercial product. The work started with the definition of a precise set of requirements and milestones to achieve: Linux distribution and kernel versions to be used for the real-time operating system; complete characterization of the Linux/RTAI real-time capabilities; exploitation of the multi-core technology; implementation of all the required and missing features; commissioning of the system. Latency and jitter measurements were compared for Linux and RTAI in both user and kernel-space. The best results were attained using the RTAI kernel solution where the time to reschedule a real-time task after an external interrupt is of 2.35 {+-} 0.35 {mu}s. In order to run the real-time codes in the kernel-space, a solution to provide user-space functionalities to the kernel modules had to be designed. This novel work provided the most common functions from the standard C library and transparent interaction with files and sockets to the kernel real-time modules. Kernel C++ support was also tested, further developed and integrated in the framework. The work has produced very convincing results so far: complete isolation of the processors assigned to real-time from the Linux non real-time activities, high level of stability over several days of benchmarking operations and values well below 3 {mu}s for task rescheduling after external interrupt. From

  9. Linux real-time framework for fusion devices

    International Nuclear Information System (INIS)

    Neto, Andre; Sartori, Filippo; Piccolo, Fabio; Barbalace, Antonio; Vitelli, Riccardo; Fernandes, Horacio

    2009-01-01

    A new framework for the development and execution of real-time codes is currently being developed and commissioned at JET. The foundations of the system are Linux, the Real Time Application Interface (RTAI) and a wise exploitation of the new i386 multi-core processors technology. The driving motivation was the need to find a real-time operating system for the i386 platform able to satisfy JET Vertical Stabilisation Enhancement project requirements: 50 μs cycle time. Even if the initial choice was the VxWorks operating system, it was decided to explore an open source alternative, mostly because of the costs involved in the commercial product. The work started with the definition of a precise set of requirements and milestones to achieve: Linux distribution and kernel versions to be used for the real-time operating system; complete characterization of the Linux/RTAI real-time capabilities; exploitation of the multi-core technology; implementation of all the required and missing features; commissioning of the system. Latency and jitter measurements were compared for Linux and RTAI in both user and kernel-space. The best results were attained using the RTAI kernel solution where the time to reschedule a real-time task after an external interrupt is of 2.35 ± 0.35 μs. In order to run the real-time codes in the kernel-space, a solution to provide user-space functionalities to the kernel modules had to be designed. This novel work provided the most common functions from the standard C library and transparent interaction with files and sockets to the kernel real-time modules. Kernel C++ support was also tested, further developed and integrated in the framework. The work has produced very convincing results so far: complete isolation of the processors assigned to real-time from the Linux non real-time activities, high level of stability over several days of benchmarking operations and values well below 3 μs for task rescheduling after external interrupt. From being the

  10. Using mathematics to solve real world problems: the role of enablers

    Science.gov (United States)

    Geiger, Vincent; Stillman, Gloria; Brown, Jill; Galbriath, Peter; Niss, Mogens

    2018-03-01

    The purpose of this article is to report on a newly funded research project in which we will investigate how secondary students apply mathematical modelling to effectively address real world situations. Through this study, we will identify factors, mathematical, cognitive, social and environmental that "enable" year 10/11 students to successfully begin the modelling process, that is, formulate and mathematise a real world problem. The 3-year study will take a design research approach in working intensively with six schools across two educational jurisdictions. It is anticipated that this research will generate new theoretical and practical insights into the role of "enablers" within the process of mathematisation, leading to the development of principles for the design and implementation for tasks that support students' development as modellers.

  11. Contribution to the analysis of the Czech real-estate development market

    Directory of Open Access Journals (Sweden)

    Martina Procházková

    2008-01-01

    Full Text Available Czech economy went through a substantial transformation in last two decades affecting business environments of all fields. This paper presents partial results of the Czech development market ana­ly­sis. It explains the characteristics of real-estate development, real-estate development market and the complexity of the real-estate development process, including market research, site selection (using feasibility analysis, due diligence, property acquisition, project design, obtaining entitlements, financing, construction, lease-up or sale or operation, if the project is retained as and asset.The significant growth in last decade of the analyzed market is slowing down due to current greater circumspection of banks when providing credits for new development projects, drop of real pro­per­ty prices in Western Europe and at the same time greater revenues from real properties in Eastern Europe. The inhibition of the investment in commercial real property (both what number of transactions concerns, and total volume of investment is influenced by so-called mortgage crisis on the U. S. and British real estate market. In Czech market, the factors are reflected in a number of respects.The paper suggests future steps of the intended research, focus on identification of factors affecting decision-making process when preparing real-estate development project, finding interrelationships among these factors, quantification and setting weight of the factors, creation of a decision-making process model and its test on a real case. The model should contribute to decrease waste of time and money investment in these feasibility calculations by providing a tool which helps pre-select projects with higher chance of success in earlier phase.

  12. All ASD complex and real 4-dimensional Einstein spaces with Λ≠0 admitting a nonnull Killing vector

    Science.gov (United States)

    Chudecki, Adam

    2016-12-01

    Anti-self-dual (ASD) 4-dimensional complex Einstein spaces with nonzero cosmological constant Λ equipped with a nonnull Killing vector are considered. It is shown that any conformally nonflat metric of such spaces can be always brought to a special form and the Einstein field equations can be reduced to the Boyer-Finley-Plebański equation (Toda field equation). Some alternative forms of the metric are discussed. All possible real slices (neutral, Euclidean and Lorentzian) of ASD complex Einstein spaces with Λ≠0 admitting a nonnull Killing vector are found.

  13. Metaspace: Financial plan for development in space

    Science.gov (United States)

    Odonnell, Declan Joseph

    There are no sources for private development monies in space. There are no laws to regulate development in space and protect private investment. In order to cure these basic business problems, we may create a new nation in space, called the Metanation, to provide political focus and financial capacity. It will assume jurisdiction in outer space after a convention in the year 2000 A.D. It would offer to combine with space agencies of earth nations to form a relevant governance and policy entity for mankind and help develop our common heritage aloft.

  14. Discontinuation risk comparison among 'real-world' newly anticoagulated atrial fibrillation patients

    DEFF Research Database (Denmark)

    Lip, Gregory Y H; Pan, Xianying; Kamble, Shital

    2018-01-01

    Discontinuation of oral anticoagulants may expose non-valvular atrial fibrillation (NVAF) patients to an increased risk of stroke. This study describes the real-world discontinuation rates and compared the risk of drug discontinuation among NVAF patients initiating apixaban, warfarin, dabigatran,...

  15. CONTROLLING VIRTUAL CLOUDS AND MAKING IT RAIN PARTICLE SYSTEMS IN REAL SPACES USING SITUATED AUGMENTED SIMULATION AND PORTABLE VIRTUAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    N. Hedley

    2012-07-01

    Full Text Available The research described in this paper reports on the design, rationale, development and implementation of a set of new geospatial interfaces that combine multi-touch interaction, portable virtual environments, 'geosimulation gaming', and mobile augmented reality. The result is a set of new ways for us to combine the capabilities of geospatial virtual environments, augmented realitiy and geosimulation. These new hybrid interfaces deliver new geospatial information experiences – new ways of connecting spatial data, simulations, and abstract concepts to real spaces. Their potential to enhance environmental perception and learning must be explored.

  16. Clausewitz on Space: Developing Military Space Theory Through a Comparative Analysis

    National Research Council Canada - National Science Library

    Streland, Arnold

    1999-01-01

    .... Our commercial space industry has become a huge economic center of gravity for our nation. Our enemies are discovering the benefits of space by developing their own systems and purchasing commercial space services...

  17. Lattice dynamics calculations based on density-functional perturbation theory in real space

    Science.gov (United States)

    Shang, Honghui; Carbogno, Christian; Rinke, Patrick; Scheffler, Matthias

    2017-06-01

    A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.

  18. Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants*

    International Nuclear Information System (INIS)

    Li Chang-Sheng; Ma Lei; Guo Jie-Rong

    2017-01-01

    We adopt a self-consistent real space Kerker method to prevent the divergence from charge sloshing in the simulating transistors with realistic discrete dopants in the source and drain regions. The method achieves efficient convergence by avoiding unrealistic long range charge sloshing but keeping effects from short range charge sloshing. Numerical results show that discrete dopants in the source and drain regions could have a bigger influence on the electrical variability than the usual continuous doping without considering charge sloshing. Few discrete dopants and the narrow geometry create a situation with short range Coulomb screening and oscillations of charge density in real space. The dopants induced quasi-localized defect modes in the source region experience short range oscillations in order to reach the drain end of the device. The charging of the defect modes and the oscillations of the charge density are identified by the simulation of the electron density. (paper)

  19. Decision-making in real estate development : application of game theory

    NARCIS (Netherlands)

    Clumac, B.; Blokhuis, E.G.J.; Han, Q.

    2011-01-01

    Decision making in real estate development projects has generally undergone a number of important changes over the last decades. This transition represented a shift from governmentally dominated top-down spatial planning to bottom-up, public-private engagement schemes in real estate development (Tam

  20. A real-time MTFC algorithm of space remote-sensing camera based on FPGA

    Science.gov (United States)

    Zhao, Liting; Huang, Gang; Lin, Zhe

    2018-01-01

    A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.

  1. Obstacles to developing sustainable cities: the real estate rigidity trap

    Directory of Open Access Journals (Sweden)

    V. Kelly Turner

    2017-06-01

    Full Text Available Sprawl patterns of urbanization have large environmental consequences, and sustainable alternatives to conventional urban patterns of development have been promoted by a subset of planners, design professionals, and municipalities. These alternatives have not been widely adopted among real estate developers, actors with large influence over urban form and function. Existing explanations for this failure enumerate market and regulatory barriers but do not sufficiently describe the institutional structures that allow conventional approaches to prevail. A failure of real estate developers to adopt alternative forms of development can best be described in terms of a rigidity trap. Specifically, norms of practice within the real estate development industry combine with market and regulatory factors to favor existing practices and limit innovation. Moreover, these institutional factors also buffer the real estate development industry from feedback mechanisms and external signals that might otherwise trigger adaptation. Addressing the environmental consequences of urbanization not only requires novel approaches to urban design, but will also necessitate addressing systemic pathologies in the design implementation process.

  2. Real-space imaging of interfacial water with submolecular resolution

    Science.gov (United States)

    Jiang, Ying; Peking University Team

    2014-03-01

    Water/solid interfaces are vital to our daily lives and also a central theme across an incredibly wide range of scientific disciplines. Resolving the internal structure, i.e. the O-H directionality, of water molecules adsorbed on solid surfaces has been one of the key issues of water science yet remains challenging. Using a low-temperature scanning tunneling microscope (STM), we report the submolecular-resolution imaging of individual water monomers and tetramers on NaCl(001) films supported by a Au(111) substrate at 5 K. The frontier molecular orbitals of adsorbed water were directly visualized, which allowed discriminating the orientation of the monomers and the H-bond directionality of the tetramers in real space. Comparison with ab initio density functional theory calculations reveals that the ability to access the orbital structures of water stems from the electronic decoupling effect provided by the NaCl films and the precisely tunable tip-water coupling. Supported by National Basic Research Programs of China and National Science Foundation of China.

  3. Compact and Light-Weight Solar Spaceflight Instrument Designs Utilizing Newly Developed Miniature Free-Standing Zone Plates: EUV Radiometer and Limb-Scanning Monochromator

    Science.gov (United States)

    Seely, J. F.; McMullin, D. R.; Bremer, J.; Chang, C.; Sakdinawat, A.; Jones, A. R.; Vest, R.

    2014-12-01

    Two solar instrument designs are presented that utilize newly developed miniature free-standing zone plates having interconnected Au opaque bars and no support membrane resulting in excellent long-term stability in space. Both instruments are based on a zone plate having 4 mm outer diameter and 1 to 2 degree field of view. The zone plate collects EUV radiation and focuses a narrow bandpass through a pinhole aperture and onto a silicon photodiode detector. As a miniature radiometer, EUV irradiance is accurately determined from the zone plate efficiency and the photodiode responsivity that are calibrated at the NIST SURF synchrotron facility. The EUV radiometer is pointed to the Sun and measures the absolute solar EUV irradiance in high time cadence suitable for solar physics and space weather applications. As a limb-scanning instrument in low earth orbit, a miniature zone-plate monochromator measures the extinction of solar EUV radiation by scattering through the upper atmosphere which is a measure of the variability of the ionosphere. Both instruments are compact and light-weight and are attractive for CubeSats and other missions where resources are extremely limited.

  4. Real analysis

    CERN Document Server

    Loeb, Peter A

    2016-01-01

    This textbook is designed for a year-long course in real analysis taken by beginning graduate and advanced undergraduate students in mathematics and other areas such as statistics, engineering, and economics. Written by one of the leading scholars in the field, it elegantly explores the core concepts in real analysis and introduces new, accessible methods for both students and instructors. The first half of the book develops both Lebesgue measure and, with essentially no additional work for the student, general Borel measures for the real line. Notation indicates when a result holds only for Lebesgue measure. Differentiation and absolute continuity are presented using a local maximal function, resulting in an exposition that is both simpler and more general than the traditional approach. The second half deals with general measures and functional analysis, including Hilbert spaces, Fourier series, and the Riesz representation theorem for positive linear functionals on continuous functions with compact support....

  5. An advanced real time energy management system for microgrids

    International Nuclear Information System (INIS)

    Elsied, Moataz; Oukaour, Amrane; Youssef, Tarek; Gualous, Hamid; Mohammed, Osama

    2016-01-01

    This paper presents an advanced Real-Time Energy Management System (RT-EMS) for Microgrid (MG) systems. The proposed strategy of RT-EMS capitalizes on the power of Genetic Algorithms (GAs) to minimize the energy cost and carbon dioxide emissions while maximizing the power of the available renewable energy resources. MATLAB-dSPACE Real-Time Interface Libraries (MLIB/MTRACE) are used as new tools to run the optimization code in Real-Time Operation (RTO). The communication system is developed based on ZigBee communication network which is designed to work in harsh radio environment where the control system is developed based on Advanced Lead-Lag Compensator (ALLC) which its parameters are tuned online to achieve fast convergence and good tracking response. The proposed RT-EMS along with its control and communication systems is experimentally tested to validate the results obtained from the optimization algorithm in a real MG testbed. The simulation and experimental results using real-world data highlight the effectiveness of the proposed RT-EMS for MGs applications. - Highlights: • Real-time energy management system of a typical MG is developed, and analyzed. • RT-EMS considered the nonlinear cost function and emission constraints. • MLIB/MTRACE libraries in dSPACE are used as new tools to run the optimization code. • The communication system is developed based on a Zigbee communication network. • Control system parameters are tuned online to achieve good tracking response.

  6. New technologies for supporting real-time on-board software development

    Science.gov (United States)

    Kerridge, D.

    1995-03-01

    The next generation of on-board data management systems will be significantly more complex than current designs, and will be required to perform more complex and demanding tasks in software. Improved hardware technology, in the form of the MA31750 radiation hard processor, is one key component in addressing the needs of future embedded systems. However, to complement these hardware advances, improved support for the design and implementation of real-time data management software is now needed. This will help to control the cost and risk assoicated with developing data management software development as it becomes an increasingly significant element within embedded systems. One particular problem with developing embedded software is managing the non-functional requirements in a systematic way. This paper identifies how Logica has exploited recent developments in hard real-time theory to address this problem through the use of new hard real-time analysis and design methods which can be supported by specialized tools. The first stage in transferring this technology from the research domain to industrial application has already been completed. The MA37150 Hard Real-Time Embedded Software Support Environment (HESSE) is a loosely integrated set of hardware and software tools which directly support the process of hard real-time analysis for software targeting the MA31750 processor. With further development, this HESSE promises to provide embedded system developers with software tools which can reduce the risks associated with developing complex hard real-time software. Supported in this way by more sophisticated software methods and tools, it is foreseen that MA31750 based embedded systems can meet the processing needs for the next generation of on-board data management systems.

  7. Global, real-time ionosphere specification for end-user communication and navigation products

    Science.gov (United States)

    Tobiska, W.; Carlson, H. C.; Schunk, R. W.; Thompson, D. C.; Sojka, J. J.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2010-12-01

    Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is a developer and producer of commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Using a Kalman filter, the background output from the physics-based Ionosphere Forecast Model (IFM) is adjusted to more accurately represent the actual ionosphere. An improved ionosphere leads to more useful derivative products. For example, SWC runs operational code, using GAIM, to calculate and report the global radio high frequency (HF) signal strengths for 24 world cities. This product is updated every 15 minutes at http://spaceweather.usu.edu and used by amateur radio operators. SWC also developed and provides through Apple iTunes the widely used real-time space weather iPhone app called SpaceWx for public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example. This smart phone app is tip of the “iceberg” of automated systems that provide space weather data; it permits instant understanding of the environment surrounding Earth as it dynamically changes. SpaceWx depends upon a distributed network that connects satellite and ground-based data streams with algorithms to quickly process the measurements into geophysical data, incorporate those

  8. Compactness of the automorphism group of a topological parallelism on real projective 3-space: The disconnected case

    OpenAIRE

    Rainer, Löwen

    2017-01-01

    We prove that the automorphism group of a topological parallelism on real projective 3-space is compact. In a preceding article it was proved that at least the connected component of the identity is compact. The present proof does not depend on that earlier result.

  9. The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements

    Science.gov (United States)

    Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray

    2012-01-01

    In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.

  10. SCA Waveform Development for Space Telemetry

    Science.gov (United States)

    Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.

    2004-01-01

    The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.

  11. Research on the Sustainable Development of Green-Space in Beijing Using the Dynamic Systems Model

    Directory of Open Access Journals (Sweden)

    Fangzheng Li

    2016-09-01

    Full Text Available Greater contradiction and conflict among urban green space, the development of social economy and the environment have occurred in Beijing. However, few studies have been conducted that consider the three subsystems as a whole. In this study, we defined sustainable development of green space (SDGS as the coordinated development of the urban green system, social economy, and environment. Based on the datasets from 2000 to 2015, we forecast the SDGS in Beijing under multiple scenarios based on real-world policies using a system dynamics model. We found that the historical SDGS value increased to its highest level in 2012, but declined slightly by 2015. Second, the forecasted SDGS values declined over time in all scenarios, but the decline was greater in scenarios placing a high priority on economic development. In these scenarios, the performance of the indices only improved in certain subsystems. The simulation shows the implementation of the four policies proposed by the government failed to improve the overall level of SDGS in Beijing. This study could provide support for decision-making designed to improve the overall condition of urban green space in Beijing through integrated forecast and scenario simulation.

  12. Informal Settlements in Jamaica’s Tourism Space: Urban Spatial Development in a Small Island Developing State

    Directory of Open Access Journals (Sweden)

    Sheere

    2016-12-01

    Full Text Available This paper reviews the compatibility of government programmes for regularising or relocating informal settlements situated in a growing tourism space in Jamaica, a small island developing state (SIDS. The case study of Ocho Rios involves mapping, charting, and defining this resort town’s island tourism space. The paper questions the effectiveness of broad government programmes aimed at addressing informal settlements at a time when governance actors and Jamaica’s tourism policy agenda prioritise land use that accommodates a diversified and spatially growing tourism industry. Findings show that government programmes have been insufficiently responsive to informal settlements located in the Ocho Rios tourism space for a number of reasons and that attempts to address the informal settlements are often beset by corruption and a lack of trust between residents and the government. Under the current tourism policy agenda, regularisation of existing informal settlements is not feasible in light of the high real estate value of lands surrounding tourist resort towns. A more targeted approach to addressing informal settlements based on the location of an informal settlement in the vicinity of island tourism regions is required.

  13. Big earth-observation data analytics for modelling pan-tropical land-use change trajectories for newly deforested areas

    Science.gov (United States)

    Coca Castro, Alejandro; Reymondin, Louis; Rebetez, Julien; Fabio Satizabal Mejia, Hector; Perez-Uribe, Andres; Mulligan, Mark; Smith, Thomas; Hyman, Glenn

    2017-04-01

    Global land use monitoring is important to the the Sustainable Development Goals (SDGs). The latest advances in storage and manipulation of big earth-observation data have been key to developing multiple operational forest monitoring initiatives such as FORMA, Terra-i and Global Forest Change. Although the data provided by these systems are useful for identifying and estimating newly deforested areas (from 2000), they do not provide details about the land use to which these deforested areas are transitioned. This information is critical to understand the biodiversity and ecosystem services impact of deforestation and the resulting impacts on human wellbeing, locally and downstream. With the aim of contributing to current forest monitoring initiatives, this research presents a set of experimental case studies in Latin America which integrate existing land-change information derived from remote sensing image and aerial photography/ground datasets, high-temporal resolution MODIS data, advanced machine learning (i.e deep learning) and big data technologies (i.e. Hadoop and Spark) to assess land-use change trajectories in newly deforested areas in near real time.

  14. Web Design for Space Operations: An Overview of the Challenges and New Technologies Used in Developing and Operating Web-Based Applications in Real-Time Operational Support Onboard the International Space Station, in Astronaut Mission Planning and Mission Control Operations

    Science.gov (United States)

    Khan, Ahmed

    2010-01-01

    The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX

  15. NASA Space Environments Technical Discipline Team Space Weather Activities

    Science.gov (United States)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  16. Role of the Space Station in Private Development of Space

    Science.gov (United States)

    Uhran, M. L.

    2002-01-01

    The International Space Station (ISS) is well underway in the assembly process and progressing toward completion. In February 2001, the United States laboratory "Destiny" was successfully deployed and the course of space utilization, for laboratory-based research and development (R&D) purposes, entered a new era - continuous on-orbit operations. By completion, the ISS complex will include pressurized laboratory elements from Europe, Japan, Russia and the U.S., as well as external platforms which can serve as observatories and technology development test beds serviced by a Canadian robotic manipulator. The international vision for a continuously operating, full service R&D complex in the unique environment of low-Earth orbit is becoming increasingly focused. This R&D complex will offer great opportunities for economic return as the basic research program proceeds on a global scale and the competitive advantages of the microgravity and ultravacuum environments are elucidated through empirical studies. In parallel, the ISS offers a new vantage point, both as a source for viewing of Earth and the Cosmos and as the subject of view for a global population that has grown during the dawning of the space age. In this regard, the ISS is both a working laboratory and a powerful symbol for human achievement in science and technology. Each of these aspects bears consideration as we seek to develop the beneficial attributes of space and pursue innovative approaches to expanding this space complex through private investment. Ultimately, the success of the ISS will be measured by the outcome at the end of its design lifetime. Will this incredible complex be de-orbited in a fiery finale, as have previous space platforms? Will another, perhaps still larger, space station be built through global government funding? Will the ISS ownership be transferred to a global, non-government organization for refurbishment and continuation of the mission on a privately financed basis? Steps taken

  17. Personal attitudes toward time: The relationship between temporal focus, space-time mappings and real life experiences.

    Science.gov (United States)

    Li, Heng; Cao, Yu

    2017-06-01

    What influences how people implicitly associate "past" and "future" with "front" and "back?" Whereas previous research has shown that cultural attitudes toward time play a role in modulating space-time mappings in people's mental models (de la Fuente, Santiago, Román, Dumitrache & Casasanto, 2014), we investigated real life experiences as potential additional influences on these implicit associations. Participants within the same single culture, who are engaged in different intermediate-term educational experiences (Study 1), long-term living experiences (Study 2), and short-term visiting experiences (Study 3), showed their distinct differences in temporal focus, thereby influencing their implicit spatializations of time. Results across samples suggest that personal attitudes toward time related to real life experiences may influence people's space-time mappings. The findings we report on shed further light on the high flexibility of human conceptualization system. While culture may exert an important influence on temporal focus, a person's conceptualization of time may be attributed to a culmination of factors. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  18. Predictive score for the development or progression of Graves' orbitopathy in patients with newly diagnosed Graves' hyperthyroidism

    DEFF Research Database (Denmark)

    Wiersinga, Wilmar; Žarković, Miloš; Bartalena, Luigi

    2018-01-01

    OBJECTIVE: To construct a predictive score for the development or progression of Graves' orbitopathy (GO) in Graves' hyperthyroidism (GH). DESIGN: Prospective observational study in patients with newly diagnosed GH, treated with antithyroid drugs (ATD) for 18 months at ten participating centers f...

  19. Development of the compact proton beam therapy system dedicated to spot scanning with real-time tumor-tracking technology

    Science.gov (United States)

    Umezawa, Masumi; Fujimoto, Rintaro; Umekawa, Tooru; Fujii, Yuusuke; Takayanagi, Taisuke; Ebina, Futaro; Aoki, Takamichi; Nagamine, Yoshihiko; Matsuda, Koji; Hiramoto, Kazuo; Matsuura, Taeko; Miyamoto, Naoki; Nihongi, Hideaki; Umegaki, Kikuo; Shirato, Hiroki

    2013-04-01

    Hokkaido University and Hitachi Ltd. have started joint development of the Gated Spot Scanning Proton Therapy with Real-Time Tumor-Tracking System by integrating real-time tumor tracking technology (RTRT) and the proton therapy system dedicated to discrete spot scanning techniques under the "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)". In this development, we have designed the synchrotron-based accelerator system by using the advantages of the spot scanning technique in order to realize a more compact and lower cost proton therapy system than the conventional system. In the gated irradiation, we have focused on the issues to maximize irradiation efficiency and minimize the dose errors caused by organ motion. In order to understand the interplay effect between scanning beam delivery and target motion, we conducted a simulation study. The newly designed system consists of the synchrotron, beam transport system, one compact rotating gantry treatment room with robotic couch, and one experimental room for future research. To improve the irradiation efficiency, the new control function which enables multiple gated irradiations per synchrotron cycle has been applied and its efficacy was confirmed by the irradiation time estimation. As for the interplay effect, we confirmed that the selection of a strict gating width and scan direction enables formation of the uniform dose distribution.

  20. How Schools Can Promote Healthy Development for Newly Arrived Immigrant and Refugee Adolescents: Research Priorities.

    Science.gov (United States)

    McNeely, Clea A; Morland, Lyn; Doty, S Benjamin; Meschke, Laurie L; Awad, Summer; Husain, Altaf; Nashwan, Ayat

    2017-02-01

    The US education system must find creative and effective ways to foster the healthy development of the approximately 2 million newly arrived immigrant and refugee adolescents, many of whom contend with language barriers, limited prior education, trauma, and discrimination. We identify research priorities for promoting the school success of these youth. The study used the 4-phase priority-setting method of the Child Health and Nutrition Research Initiative. In the final stage, 132 researchers, service providers, educators, and policymakers based in the United States were asked to rate the importance of 36 research options. The highest priority research options (range 1 to 5) were: evaluating newcomer programs (mean = 4.44, SD = 0.55), identifying how family and community stressors affect newly arrived immigrant and refugee adolescents' functioning in school (mean = 4.40, SD = 0.56), identifying teachers' major stressors in working with this population (mean = 4.36, SD = 0.72), and identifying how to engage immigrant and refugee families in their children's education (mean = 4.35, SD = 0.62). These research priorities emphasize the generation of practical knowledge that could translate to immediate, tangible benefits for schools. Funders, schools, and researchers can use these research priorities to guide research for the highest benefit of schools and the newly arrived immigrant and refugee adolescents they serve. © 2017, American School Health Association.

  1. A multi-method approach to curriculum development for in-service training in China's newly established health emergency response offices.

    Directory of Open Access Journals (Sweden)

    Yadong Wang

    Full Text Available To describe an innovative approach for developing and implementing an in-service curriculum in China for staff of the newly established health emergency response offices (HEROs, and that is generalisable to other settings.The multi-method training needs assessment included reviews of the competency domains needed to implement the International Health Regulations (2005 as well as China's policies and emergency regulations. The review, iterative interviews and workshops with experts in government, academia, the military, and with HERO staff were reviewed critically by an expert technical advisory panel.Over 1600 participants contributed to curriculum development. Of the 18 competency domains identified as essential for HERO staff, nine were developed into priority in-service training modules to be conducted over 2.5 weeks. Experts from academia and experienced practitioners prepared and delivered each module through lectures followed by interactive problem-solving exercises and desktop simulations to help trainees apply, experiment with, and consolidate newly acquired knowledge and skills.This study adds to the emerging literature on China's enduring efforts to strengthen its emergency response capabilities since the outbreak of SARS in 2003. The multi-method approach to curriculum development in partnership with senior policy-makers, researchers, and experienced practitioners can be applied in other settings to ensure training is responsive and customized to local needs, resources and priorities. Ongoing curriculum development should reflect international standards and be coupled with the development of appropriate performance support systems at the workplace for motivating staff to apply their newly acquired knowledge and skills effectively and creatively.

  2. A multi-method approach to curriculum development for in-service training in China's newly established health emergency response offices.

    Science.gov (United States)

    Wang, Yadong; Li, Xiangrui; Yuan, Yiwen; Patel, Mahomed S

    2014-01-01

    To describe an innovative approach for developing and implementing an in-service curriculum in China for staff of the newly established health emergency response offices (HEROs), and that is generalisable to other settings. The multi-method training needs assessment included reviews of the competency domains needed to implement the International Health Regulations (2005) as well as China's policies and emergency regulations. The review, iterative interviews and workshops with experts in government, academia, the military, and with HERO staff were reviewed critically by an expert technical advisory panel. Over 1600 participants contributed to curriculum development. Of the 18 competency domains identified as essential for HERO staff, nine were developed into priority in-service training modules to be conducted over 2.5 weeks. Experts from academia and experienced practitioners prepared and delivered each module through lectures followed by interactive problem-solving exercises and desktop simulations to help trainees apply, experiment with, and consolidate newly acquired knowledge and skills. This study adds to the emerging literature on China's enduring efforts to strengthen its emergency response capabilities since the outbreak of SARS in 2003. The multi-method approach to curriculum development in partnership with senior policy-makers, researchers, and experienced practitioners can be applied in other settings to ensure training is responsive and customized to local needs, resources and priorities. Ongoing curriculum development should reflect international standards and be coupled with the development of appropriate performance support systems at the workplace for motivating staff to apply their newly acquired knowledge and skills effectively and creatively.

  3. Development and evaluation of a real-time one step Reverse-Transcriptase PCR for quantitation of Chandipura Virus

    Directory of Open Access Journals (Sweden)

    Tandale Babasaheb V

    2008-12-01

    Full Text Available Abstract Background Chandipura virus (CHPV, a member of family Rhabdoviridae was attributed to an explosive outbreak of acute encephalitis in children in Andhra Pradesh, India in 2003 and a small outbreak among tribal children from Gujarat, Western India in 2004. The case-fatality rate ranged from 55–75%. Considering the rapid progression of the disease and high mortality, a highly sensitive method for quantifying CHPV RNA by real-time one step reverse transcriptase PCR (real-time one step RT-PCR using TaqMan technology was developed for rapid diagnosis. Methods Primers and probe for P gene were designed and used to standardize real-time one step RT-PCR assay for CHPV RNA quantitation. Standard RNA was prepared by PCR amplification, TA cloning and run off transcription. The optimized real-time one step RT-PCR assay was compared with the diagnostic nested RT-PCR and different virus isolation systems [in vivo (mice in ovo (eggs, in vitro (Vero E6, PS, RD and Sand fly cell line] for the detection of CHPV. Sensitivity and specificity of real-time one step RT-PCR assay was evaluated with diagnostic nested RT-PCR, which is considered as a gold standard. Results Real-time one step RT-PCR was optimized using in vitro transcribed (IVT RNA. Standard curve showed linear relationship for wide range of 102-1010 (r2 = 0.99 with maximum Coefficient of variation (CV = 5.91% for IVT RNA. The newly developed real-time RT-PCR was at par with nested RT-PCR in sensitivity and superior to cell lines and other living systems (embryonated eggs and infant mice used for the isolation of the virus. Detection limit of real-time one step RT-PCR and nested RT-PCR was found to be 1.2 × 100 PFU/ml. RD cells, sand fly cells, infant mice, and embryonated eggs showed almost equal sensitivity (1.2 × 102 PFU/ml. Vero and PS cell-lines (1.2 × 103 PFU/ml were least sensitive to CHPV infection. Specificity of the assay was found to be 100% when RNA from other viruses or healthy

  4. Development and upgrade of new real time processor in JT-60 data processing system

    International Nuclear Information System (INIS)

    Sakata, Shinya; Koiwa, Motonao; Matsuda, Toshiaki; Aoyagi, Tetsuo

    2000-07-01

    At the beginning of JT-60 experiments, the real time processor (RTP) in the data processing system was mainly constructed by PANAFACOM U-1500. As the computer became superannuated, however, it gradually became difficult to maintain both hardware and software. A performance of a recent UNIX workstation has been remarkably progressed. The UNIX workstation has a large flexibility for user application programs, an easiness for maintenance of the hardware and an ability of expansion to peripheral devices. Therefore, the RTP system is newly reconstructed by using the UNIX workstation. This report describes the overview, the basic design and the recent upgrade on the RTP in the data processing system. (author)

  5. Real space in situ bond energies: toward a consistent energetic definition of bond strength.

    Science.gov (United States)

    Menéndez-Crespo, Daniel; Costales, Aurora; Francisco, Evelio; Martin Pendas, Angel

    2018-04-14

    A rigorous definition of intrinsic bond strength based on the partitioning of a molecule into real space fragments is presented. Using the domains provided by the quantum theory of atoms in molecules (QTAIM) together with the interacting quantum atoms (IQA) energetic decomposition, we show how an in situ bond strength, matching all the requirements of an intrinsic bond energy, can be defined between each pair of fragments. Total atomization or fragmentation energies are shown to be equal to the sum of these in situ bond energies (ISBEs) if the energies of the fragments are measured with respect to their in-the-molecule state. These energies usually lie above the ground state of the isolated fragments by quantities identified with the standard fragment relaxation or deformation energies, which are also provided by the protocol. Deformation energies bridge dissociation energies with ISBEs, and can be dissected using well-known tools of real space theories of chemical bonding. Similarly, ISBEs can be partitioned into ionic and covalent contributions, and this feature adds to the chemical appeal of the procedure. All the energetic quantities examined are observable and amenable, in principle, to experimental determination. Several systems, exemplifying the role of each energetic term herein presented are used to show the power of the approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  7. Configuring the development space for conceptualization

    DEFF Research Database (Denmark)

    Brønnum, Louise; Clausen, Christian

    2013-01-01

    This paper addresses issues of conceptualization in the early stages of concept development noted as the Front End of Innovation [FEI]. We examine this particular development space as a socio technical space where a diversity of technological knowledge, user perspectives and organizational agendas...... meet and interact. Based on a case study from an industrial medical company, the paper addresses and analyses the configuration of the development space in a number of projects aiming to take up user oriented perspectives in their activities. It presents insights on how the FEI was orchestrated...... and staged and how different elements and objects contributed to the configuration of the space in order to make it perform in a certain way. The analysis points at the importance of the configuration processes and indicate how these configurations often may act as more or less hidden limitations on concept...

  8. Numerical and analytical investigation towards performance enhancement of a newly developed rockfall protective cable-net structure

    Directory of Open Access Journals (Sweden)

    S. Dhakal

    2012-04-01

    Full Text Available In a previous companion paper, we presented a three-tier modelling of a particular type of rockfall protective cable-net structure (barrier, developed newly in Japan. Therein, we developed a three-dimensional, Finite Element based, nonlinear numerical model having been calibrated/back-calculated and verified with the element- and structure-level physical tests. Moreover, using a very simple, lumped-mass, single-degree-of-freedom, equivalently linear analytical model, a global-displacement-predictive correlation was devised by modifying the basic equation – obtained by combining the principles of conservation of linear momentum and energy – based on the back-analysis of the tests on the numerical model. In this paper, we use the developed models to explore the performance enhancement potential of the structure in terms of (a the control of global displacement – possibly the major performance criterion for the proposed structure owing to a narrow space available in the targeted site, and (b the increase in energy dissipation by the existing U-bolt-type Friction-brake Devices – which are identified to have performed weakly when integrated into the structure. A set of parametric investigations have revealed correlations to achieve the first objective in terms of the structure's mass, particularly by manipulating the wire-net's characteristics, and has additionally disclosed the effects of the impacting-block's parameters. Towards achieving the second objective, another set of parametric investigations have led to a proposal of a few innovative improvements in the constitutive behaviour (model of the studied brake device (dissipator, in addition to an important recommendation of careful handling of the device based on the identified potential flaw.

  9. Developing Reusable and Reconfigurable Real-Time Software using Aspects and Components

    OpenAIRE

    Tešanović, Aleksandra

    2006-01-01

    Our main focus in this thesis is on providing guidelines, methods, and tools for design, configuration, and analysis of configurable and reusable real-time software, developed using a combination of aspect-oriented and component-based software development. Specifically, we define a reconfigurable real-time component model (RTCOM) that describes how a real-time component, supporting aspects and enforcing information hiding, could efficiently be designed and implemented. In this context, we out...

  10. Real options and volume uncertainty by field development projects

    International Nuclear Information System (INIS)

    Ekern, S.; Stensland, G.

    1993-12-01

    The report concerns a study on the use of option methodology in field development projects. The report shows how the value of flexibility in the different decision processes is to be found by means of real option methodology. Particular attention is laid on the uncertainty concerning the volume of reserves and production capacity. The results from the study were based on the research project dubbed ''Use of real options in field development projects''. The project is partially connected to another project dubbed ''Decisive behaviour and alternative action under uncertainty in the petroleum sector''. Main topics cover as follow: Example with volume uncertainty; real options and volume uncertainty; gradual disclosure of uncertainty in the production; value of flexible production equipment. 33 refs., 19 figs., 17 tabs

  11. Case for real-time systems development - Quo vadis?

    Science.gov (United States)

    Erb, Dona M.

    1991-01-01

    The paper focuses on the distinctive issues of computer-aided software engineering (CASE) products for the development of real-time systems. CASE technologies and associated standardization efforts are evolving from sets of conflicting interests. The majority of case products are intended for use in the development of management information systems. CASE products to support the development of large, complex real-time systems must provide additional capabilities. Generic concerns include the quality of the implementation of the required method for the phase of the system's development and whether the vendor is stable and committed to evolving the products in parallel with nonproprietary standards. The CASE market is undergoing considerable consolidation. The paper describes the major forces, cooperating entities, and remaining uncertainties that need to be weighed in near-term CASE procurements to limit risk of loss of investment in project time, trianing, and money.

  12. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    International Nuclear Information System (INIS)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-01-01

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  13. Does trade openness affect CO2 emissions: evidence from ten newly industrialized countries?

    Science.gov (United States)

    Zhang, Shun; Liu, Xuyi; Bae, Junghan

    2017-07-01

    This paper examines whether the hypothetical environmental Kuznet curve (EKC) exists or not and investigates how trade openness affects CO 2 emissions, together with real GDP and total primary energy consumption. The study sample comprises ten newly industrialized countries (NICs-10) from 1971 to 2013. The results support the existence of hypothetical EKC and indicate that trade openness negatively and significantly affects emissions, while real GDP and energy do positive effects of emissions. Moreover, the empirical results of short-run causalities indicate feedback hypothetical linkage of real GDP and trade, unidirectional linkages from energy to emissions, and from trade to energy. The error correction terms (ECTs) reveal in the long run, feedback linkages of emissions, real GDP, and trade openness, while energy Granger causes emissions, real GDP, and trade, respectively. The study recommendations are that our policymakers should encourage and expand the trade openness in these countries, not only to restrain CO 2 emissions but also to boost their growth.

  14. Space Weather Models at the CCMC And Their Capabilities

    Science.gov (United States)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2007-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. In this presentation, we will provide an overview of the community-provided, space weather-relevant, model suite, which resides at CCMC. We will discuss current capabilities, and analyze expected future developments of space weather related modeling.

  15. Plasma density control in real-time on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Janky, F., E-mail: filip.janky.work@gmail.com [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8 (Czech Republic); Hron, M. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Havlicek, J. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8 (Czech Republic); Varavin, M.; Zacek, F.; Seidl, J.; Panek, R. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic)

    2015-10-15

    Highlights: • We fitted length of the chord of the interferometry crossing plasma in the different plasma scenarios. • We add correction to the actual length of the chord of the interferometry according to plasma shape and position in real-time code. • We used this correction to control plasma density in real-time. - Abstract: The electron density on COMPASS is measured using 2 mm microwave interferometer. Interferometer signal is used as an input for the feedback control loop, running under the MARTe real-time framework. Two different threads are used to calculate (fast 50 μs thread) and to control (slow 500 μs thread) the electron density. The interferometer measures a line averaged density along a measurement chord. This paper describes an approach to control the line-averaged electron density in a real-time loop, using a correction to the real plasma shape, the plasma position, and non-linear effects of the electron density measurement at high densities. Newly developed real-time electron density control give COMPASS the chance to control the electron density more accurately which is essential for parametric scans for diagnosticians, for physics experiments and also for achieving plasma scenarios with H-mode.

  16. NASA Electronic Parts and Packaging (NEPP): Space Qualification Guidelines of Optoelectronic and Photonic Devices for Optical Communication Systems

    Science.gov (United States)

    Kim, Quiesup

    2001-01-01

    Key elements of space qualification of opto-electric and photonic optical devices were overviewed. Efforts were concentrated on the reliability concerns of the devices needed for potential applications in space environments. The ultimate goal for this effort is to gradually establish enough data to develop a space qualification plan of newly developed specific photonic parts using empirical and numerical models to assess the life-time and degradation of the devices for potential long term space missions.

  17. Applying the system engineering approach to devise a master’s degree program in space technology in developing countries

    Science.gov (United States)

    Jazebizadeh, Hooman; Tabeshian, Maryam; Taheran Vernoosfaderani, Mahsa

    2010-11-01

    Although more than half a century is passed since space technology was first developed, developing countries are just beginning to enter the arena, focusing mainly on educating professionals. Space technology by itself is an interdisciplinary science, is costly, and developing at a fast pace. Moreover, a fruitful education system needs to remain dynamic if the quality of education is the main concern, making it a complicated system. This paper makes use of the System Engineering Approach and the experiences of developed countries in this area while incorporating the needs of the developing countries to devise a comprehensive program in space engineering at the Master's level. The needs of the developing countries as regards space technology education may broadly be put into two categories: to raise their knowledge of space technology which requires hard work and teamwork skills, and to transfer and domesticate space technology while minimizing the costs and maximizing its effectiveness. The requirements of such space education system, which include research facilities, courses, and student projects are then defined using a model drawn from the space education systems in universities in North America and Europe that has been modified to include the above-mentioned needs. Three design concepts have been considered and synthesized through functional analysis. The first one is Modular and Detail Study which helps students specialize in a particular area in space technology. Second is referred to as Integrated and Interdisciplinary Study which focuses on understanding and development of space systems. Finally, the third concept which has been chosen for the purpose of this study, is a combination of the other two, categorizing the required curriculum into seven modules, setting aside space applications. This helps students to not only specialize in one of these modules but also to get hands-on experience in a real space project through participation in summer group

  18. Space Structure Development

    Science.gov (United States)

    Smith, Thomas

    2015-01-01

    The duration of my Summer 2015 Internship Tour at NASA's Johnson Space Center was spent working in the Structural Engineering Division's Structures Branch. One of the two main roles of the Structures Branch, ES2, is to ensure the structural integrity of spacecraft vehicles and the structural subsystems needed to support those vehicles. The other main objective of this branch is to develop the lightweight structures that are necessary to take humans beyond Low-Earth Orbit. Within ES2, my four projects involved inflatable space structure air bladder material testing; thermal and impact material testing for spacecraft windows; structural analysis on a joint used in the Boeing CST-100 airbag system; and an additive manufacturing design project.

  19. Deriving Tools from Real-time Runs: A New CCMC Support for SEC and AFWA

    Science.gov (United States)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2008-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions. the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models. and on the transition of appropriate models to space weather forecast centers. As part of the latter activity. the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.

  20. NEWLY-PACKAGED BALI TOURIST PERFORMING ARTS IN THE PERSPECTIVE OF CULTURAL STUDIES

    Directory of Open Access Journals (Sweden)

    Ni Made Ruastiti

    2012-11-01

    Full Text Available This research is focused on the newly packaged tourist performing arts; they are anew concept and seem to be different from the general tourist performing arts. They arepackaged from various components of Balinese arts and managed as large scale-touristperforming arts in terms of materials, space, and time of their performances. The researchercalls them new types of Bali tourist performing arts because how they are presented isnew and different from the traditional tourist performing arts which are simply performed.In this research, the newly-packaged performing arts are analyzed in the perspective ofcultural studies.The research was carried out at three palaces in Bali; they are Mengwi Palace inBadung regency, Anyar Palace at Kerambitan, Tabanan regency, and Banyuning Palace atBongkasa, Badung regency. There are three main problems to be discussed: firstly, how dothe tourist performing arts emerge in all the palaces? Secondly, are they related to thetourist industry developed in the palaces?, thirdly, what is the impact and meaning of themfor the sake of the palaces, society, and Balinese culture? The researcher uses a qualitativemethod and an interdisciplinary approach as characteristics of cultural studies. The theoriesused are hegemony, deconstruction, and structuration.The result shows that the tourism development at all the palaces has made the localsociety become more critical. The money-oriented economy based on the spirit of gettingbenefit has made the emergence of comodification in all sectors of life. The emergence oftourist industry at the palaces has led to the idea of showing all of the useful art and culturalpotentials which at the palaces and their surroundings. Theoretically, the palaces can bestated to have deconstructed the concept of presenting the Bali tourist performing arts into anew one, that is, “the newly packaged Bali tourist performing arts”.It has been observed that all the palaces have developed t “Newly

  1. Complementary views on electron spectra: From fluctuation diagnostics to real-space correlations

    Science.gov (United States)

    Gunnarsson, O.; Merino, J.; Schäfer, T.; Sangiovanni, G.; Rohringer, G.; Toschi, A.

    2018-03-01

    We study the relation between the microscopic properties of a many-body system and the electron spectra, experimentally accessible by photoemission. In a recent paper [O. Gunnarsson et al., Phys. Rev. Lett. 114, 236402 (2015), 10.1103/PhysRevLett.114.236402], we introduced the "fluctuation diagnostics" approach to extract the dominant wave-vector-dependent bosonic fluctuations from the electronic self-energy. Here, we first reformulate the theory in terms of fermionic modes to render its connection with resonance valence bond (RVB) fluctuations more transparent. Second, by using a large-U expansion, where U is the Coulomb interaction, we relate the fluctuations to real-space correlations. Therefore, it becomes possible to study how electron spectra are related to charge, spin, superconductivity, and RVB-like real-space correlations, broadening the analysis of an earlier work [J. Merino and O. Gunnarsson, Phys. Rev. B 89, 245130 (2014), 10.1103/PhysRevB.89.245130]. This formalism is applied to the pseudogap physics of the two-dimensional Hubbard model, studied in the dynamical cluster approximation. We perform calculations for embedded clusters with up to 32 sites, having three inequivalent K points at the Fermi surface. We find that as U is increased, correlation functions gradually attain values consistent with an RVB state. This first happens for correlation functions involving the antinodal point and gradually spreads to the nodal point along the Fermi surface. Simultaneously, a pseudogap opens up along the Fermi surface. We relate this to a crossover from a Kondo-type state to an RVB-like localized cluster state and to the presence of RVB and spin fluctuations. These changes are caused by a strong momentum dependence in the cluster bath couplings along the Fermi surface. We also show, from a more algorithmic perspective, how the time-consuming calculations in fluctuation diagnostics can be drastically simplified.

  2. Periodically driven random quantum spin chains: real-space renormalization for Floquet localized phases

    Science.gov (United States)

    Monthus, Cécile

    2017-07-01

    When random quantum spin chains are submitted to some periodic Floquet driving, the eigenstates of the time-evolution operator over one period can be localized in real space. For the case of periodic quenches between two Hamiltonians (or periodic kicks), where the time-evolution operator over one period reduces to the product of two simple transfer matrices, we propose a block-self-dual renormalization procedure to construct the localized eigenstates of the Floquet dynamics. We also discuss the corresponding strong disorder renormalization procedure, that generalizes the RSRG-X procedure to construct the localized eigenstates of time-independent Hamiltonians.

  3. Association Between Manual Loading and Newly Developed Carpal Tunnel Syndrome in Subjects With Physical Disabilities: A Follow-Up Study.

    Science.gov (United States)

    Lin, Yen-Nung; Chiu, Chun-Chieh; Huang, Shih-Wei; Hsu, Wen-Yen; Liou, Tsan-Hon; Chen, Yi-Wen; Chang, Kwang-Hwa

    2017-10-01

    To identify the association between body composition and newly developed carpal tunnel syndrome (CTS) and to search for the best probabilistic cutoff value of associated factors to predict subjects with physical disabilities developing new CTS. Longitudinal. University-affiliated medical center. Subjects with physical disabilities (N=47; mean age ± SD, 42.1±7.7y). Not applicable. Median and ulnar sensory nerve conduction velocity (SNCV) were measured at the initial and follow-up tests (interval >2y). Total and regional body composition were measured with dual-energy x-ray absorptiometry at the initial test. Leg lean tissue percentage was calculated to delineate each participant's manual loading degree during locomotion. Leg lean tissue percentage is the lean tissue mass of both legs divided by body weight. Based on median SNCV changes, we divided all participants into 3 groups: subjects with bilateral CTS (median SNCV value normative ulnar SNCV value >37.8m/s) in the initial test (n=10), subjects with newly developed CTS in the follow-up test (n=8), and subjects without additional CTS in the follow-up test (n=27). Eight of 35 subjects not having bilateral CTS initially developed new CTS (8.8% per year; mean follow-up period, 2.6y). Leg lean tissue percentage was associated with the probability of newly developed CTS (adjusted odds ratio, .64; P12% were less likely to have developed new CTS at the follow-up test (sensitivity, .75; specificity, .85; area under the curve, .88; Pphysical disabilities. Therefore, a preventive program for those subjects at risk can start early. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Real-space renormalization group; application to site percolation in square lattice

    International Nuclear Information System (INIS)

    Tsallis, C.; Schwachheim, G.

    1978-05-01

    The real-space renormalization group proposed by Reynolds, Klein and Stanley 1977 to treat the site percolation is analysed and extended . The best among 3 possible definitions of 'percolating' configurations and among 5 possible methods to weight these configurations, are established for percolation in square lattices. The use of n xn square clusters leads, for n = 2 (RKS), n = 3 and n = 4, to √ sub (p) approximately equal to 1.635, √ sub(p) approximately equal to 1.533 and √ sub(p) approximately equal to 1.498, and also to P sub(c) approximately equal to 0.382, P sub(c) approximately equal to 0.388 and P sub(c) approximately equal to 0.398, exhibiting in this way the correct (but slow) tendency towards the best up to date values [pt

  5. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    Science.gov (United States)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars

  6. Development of SPIES (Space Intelligent Eyeing System) for smart vehicle tracing and tracking

    Science.gov (United States)

    Abdullah, Suzanah; Ariffin Osoman, Muhammad; Guan Liyong, Chua; Zulfadhli Mohd Noor, Mohd; Mohamed, Ikhwan

    2016-06-01

    SPIES or Space-based Intelligent Eyeing System is an intelligent technology which can be utilized for various applications such as gathering spatial information of features on Earth, tracking system for the movement of an object, tracing system to trace the history information, monitoring driving behavior, security and alarm system as an observer in real time and many more. SPIES as will be developed and supplied modularly will encourage the usage based on needs and affordability of users. SPIES are a complete system with camera, GSM, GPS/GNSS and G-Sensor modules with intelligent function and capabilities. Mainly the camera is used to capture pictures and video and sometimes with audio of an event. Its usage is not limited to normal use for nostalgic purpose but can be used as a reference for security and material of evidence when an undesirable event such as crime occurs. When integrated with space based technology of the Global Navigational Satellite System (GNSS), photos and videos can be recorded together with positioning information. A product of the integration of these technologies when integrated with Information, Communication and Technology (ICT) and Geographic Information System (GIS) will produce innovation in the form of information gathering methods in still picture or video with positioning information that can be conveyed in real time via the web to display location on the map hence creating an intelligent eyeing system based on space technology. The importance of providing global positioning information is a challenge but overcome by SPIES even in areas without GNSS signal reception for the purpose of continuous tracking and tracing capability

  7. Creating the Public Connection: Interactive Experiences with Real-Time Earth and Space Science Data

    Science.gov (United States)

    Reiff, Patricia H.; Ledley, Tamara S.; Sumners, Carolyn; Wyatt, Ryan

    1995-01-01

    The Houston Museum of Natural Sciences is less than two miles from Rice University, a major hub on the Internet. This project links these two institutions so that NASA real-time data and imagery can flow via Rice to the Museum where it reaches the public in the form of planetarium programs, computer based interactive kiosks, and space and Earth science problem solving simulation. Through this program at least 200,000 visitors annually (including every 4th and 7th grader in the Houston Independent School District) will have direct exposure to the Earth and space research being conducted by NASA and available over the Internet. Each information conduit established between Rice University and the Houston Museum of Natural Science will become a model for public information dissemination that can be replicated nationally in museums, planetariums, Challenger Centers, and schools.

  8. Mechatronic modeling of real-time wheel-rail contact

    CERN Document Server

    Bosso, Nicola; Gugliotta, Antonio; Somà, Aurelio

    2013-01-01

    Real-time simulations of the behaviour of a rail vehicle require realistic solutions of the wheel-rail contact problem which can work in a real-time mode. Examples of such solutions for the online mode have been well known and are implemented within standard and commercial tools for the simulation codes for rail vehicle dynamics. This book is the result of the research activities carried out by the Railway Technology Lab of the Department of Mechanical and Aerospace Engineering at Politecnico di Torino. This book presents work on the project for the development of a real-time wheel-rail contact model and provides the simulation results obtained with dSpace real-time hardware. Besides this, the implementation of the contact model for the development of a real-time model for the complex mechatronic system of a scaled test rig is presented in this book and may be useful for the further validation of the real-time contact model with experiments on a full scale test rig.

  9. Real Estate Development at Landslides

    Directory of Open Access Journals (Sweden)

    Hakan Kaya

    2015-03-01

    Full Text Available The desire to grow and develop at a fast pace without regard for scientific conditions is an obsession, particularly of developing countries like Turkey. However, any development achieved in ignorance of the scientific process and sustainability leads to higher costs as well as serious losses in terms of human and other life. Our area of study is one of the best examples of the negative effects of this type of development. The area under study covers the landslide sites located on the southwest of Istanbul (the Büyükçekmece, Beylikdüzü, Avcılar and Esenyurt districts which is the largest city in Turkey. In this study, we tried to probe into the real estate development process of the landslide sites, the measures taken or failed to be taken in this process, the humanitarian and economic conditions involved and the things required to be done.

  10. Activities of NICT space weather project

    Science.gov (United States)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    -wind, magnetosphere and ionosphere. The three simulations are directly or indirectly connected each other based on real-time observa-tion data to reproduce a virtual geo-space region on the super-computer. Informatics is a new methodology to make precise forecast of space weather. Based on new information and communication technologies (ICT), it provides more information in both quality and quantity. At NICT, we have been developing a cloud-computing system named "space weather cloud" based on a high-speed network system (JGN2+). Huge-scale distributed storage (1PB), clus-ter computers, visualization systems and other resources are expected to derive new findings and services of space weather forecasting. The final goal of NICT space weather service is to predict near-future space weather conditions and disturbances which will be causes of satellite malfunctions, tele-communication problems, and error of GPS navigations. In the present talk, we introduce our recent activities on the space weather services and discuss how we are going to develop the services from the view points of space science and practical uses.

  11. Multidimensional Space-Time Methodology for Development of Planetary and Space Sciences, S-T Data Management and S-T Computational Tomography

    Science.gov (United States)

    Andonov, Zdravko

    This R&D represent innovative multidimensional 6D-N(6n)D Space-Time (S-T) Methodology, 6D-6nD Coordinate Systems, 6D Equations, new 6D strategy and technology for development of Planetary Space Sciences, S-T Data Management and S-T Computational To-mography. . . The Methodology is actual for brain new RS Microwaves' Satellites and Compu-tational Tomography Systems development, aimed to defense sustainable Earth, Moon, & Sun System evolution. Especially, extremely important are innovations for monitoring and protec-tion of strategic threelateral system H-OH-H2O Hydrogen, Hydroxyl and Water), correspond-ing to RS VHRS (Very High Resolution Systems) of 1.420-1.657-22.089GHz microwaves. . . One of the Greatest Paradox and Challenge of World Science is the "transformation" of J. L. Lagrange 4D Space-Time (S-T) System to H. Minkovski 4D S-T System (O-X,Y,Z,icT) for Einstein's "Theory of Relativity". As a global result: -In contemporary Advanced Space Sciences there is not real adequate 4D-6D Space-Time Coordinate System and 6D Advanced Cosmos Strategy & Methodology for Multidimensional and Multitemporal Space-Time Data Management and Tomography. . . That's one of the top actual S-T Problems. Simple and optimal nD S-T Methodology discovery is extremely important for all Universities' Space Sci-ences' Education Programs, for advances in space research and especially -for all young Space Scientists R&D!... The top ten 21-Century Challenges ahead of Planetary and Space Sciences, Space Data Management and Computational Space Tomography, important for successfully de-velopment of Young Scientist Generations, are following: 1. R&D of W. R. Hamilton General Idea for transformation all Space Sciences to Time Sciences, beginning with 6D Eukonal for 6D anisotropic mediums & velocities. Development of IERS Earth & Space Systems (VLBI; LLR; GPS; SLR; DORIS Etc.) for Planetary-Space Data Management & Computational Planetary & Space Tomography. 2. R&D of S. W. Hawking Paradigm for 2D

  12. CMS Space Monitoring

    Science.gov (United States)

    Ratnikova, N.; Huang, C.-H.; Sanchez-Hernandez, A.; Wildish, T.; Zhang, X.

    2014-06-01

    During the first LHC run, CMS stored about one hundred petabytes of data. Storage accounting and monitoring help to meet the challenges of storage management, such as efficient space utilization, fair share between users and groups and resource planning. We present a newly developed CMS space monitoring system based on the storage metadata dumps produced at the sites. The information extracted from the storage dumps is aggregated and uploaded to a central database. A web based data service is provided to retrieve the information for a given time interval and a range of sites, so it can be further aggregated and presented in the desired format. The system has been designed based on the analysis of CMS monitoring requirements and experiences of the other LHC experiments. In this paper, we demonstrate how the existing software components of the CMS data placement system, PhEDEx, have been re-used, dramatically reducing the development effort.

  13. CMS Space Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ratnikova, N. [Fermilab; Huang, C.-H. [Fermilab; Sanchez-Hernandez, A. [CINVESTAV, IPN; Wildish, T. [Princeton U.; Zhang, X. [Beijing, Inst. High Energy Phys.

    2014-01-01

    During the first LHC run, CMS stored about one hundred petabytes of data. Storage accounting and monitoring help to meet the challenges of storage management, such as efficient space utilization, fair share between users and groups and resource planning. We present a newly developed CMS space monitoring system based on the storage metadata dumps produced at the sites. The information extracted from the storage dumps is aggregated and uploaded to a central database. A web based data service is provided to retrieve the information for a given time interval and a range of sites, so it can be further aggregated and presented in the desired format. The system has been designed based on the analysis of CMS monitoring requirements and experiences of the other LHC experiments. In this paper, we demonstrate how the existing software components of the CMS data placement system, PhEDEx, have been re-used, dramatically reducing the development effort.

  14. Space - the essential dimension of sustainable development

    DEFF Research Database (Denmark)

    Buch-Hansen, Mogens

    , economic and social development and their impact on development of space. The structure of space or the territorial structure hereby plays an essential role in the options of further economic and social development and its sustainability. The focus is on support of livelihoods and enhancing human welfare...

  15. MARTe framework; a middle-ware for real-time applications development

    International Nuclear Information System (INIS)

    Neto, A.; Alves, D.; Carvalho, B.B.; Carvalho, P.J.; Fernandes, H.; Valcarcel, D.F.; Sartori, F.; Barbalace, A.; Manduchi, G.; Boncagni, L.; Tommasi, G. de; McCullen, P.; Stephen, A.; Vitelli, R.; Zabeo, L.

    2012-01-01

    The Multi-threaded Application Real-Time executor (MARTe) is a C++ framework that provides a development environment for the design and deployment of real-time applications, e.g. control systems. The kernel of MARTe comprises a set of data-driven independent blocks, connected using a shared bus. This modular design enforces a clear boundary between algorithms, hardware interaction and system configuration. The architecture, being multi-platform, facilitates the test and commissioning of new systems, enabling the execution of plant models in offline environments and with the hardware-in-the-loop, whilst also providing a set of non-intrusive introspection and logging facilities. Furthermore, applications can be developed in non real-time environments and deployed in a real-time operating system, using exactly the same code and configuration data. The framework is already being used in several fusion experiments, with control cycles ranging from 50 microseconds to 10 milliseconds exhibiting jitters of less than 2%, using VxWorks R , RTAI or Linux. Codes can also be developed and executed in Microsoft Windows R and Solaris R . This paper discusses the main design concepts of MARTe, in particular the architectural choices which enabled the combination of real-time accuracy, performance and robustness with complex and modular data driven applications. (authors)

  16. MODELS OF AND APPROACHES TO MANAGEMENT OF REAL ESTATE DEVELOPMENT PROJECTS

    Directory of Open Access Journals (Sweden)

    Gusakova Elena Aleksandrovna

    2012-12-01

    Full Text Available The authors argue that globalization and the system-wide crisis jointly produce a strong impact onto real estate (RE development projects. As a result, intensive alterations in RE project development patterns have converted into a new trend of the present-day investment and construction industry. Therefore, alterations in the area of real estate management cause numerous problems. By virtue of this article, the authors make an attempt to provide their answer to the question whether it is possible to achieve such a sophisticated level of project management in the real estate development industry, so that project-related decisions encompassed supplementary potential opportunities in terms of social, economic and public development. Towards this end, the new concept of real estate development is proposed and the system of priorities has been developed. This concept is believed to enable all players of the construction market to make higher quality decisions at early stages of RE development projects. Besides, a lot of attention is driven to the term "potential of a construction facility", that is regarded as a set of yet unimplemented opportunities for improvements of the construction facility performance as a commercial and social vehicle.

  17. Integration of Space Weather Forecasts into Space Protection

    Science.gov (United States)

    Reeves, G.

    2012-09-01

    How would the US respond to a clandestine attack that disabled one of our satellites? How would we know that it was an attack, not a natural failure? The goal of space weather programs as applied to space protection are simple: Provide a rapid and reliable assessment of the probability that satellite or system failure was caused by the space environment. Achieving that goal is not as simple. However, great strides are being made on a number of fronts. We will report on recent successes in providing rapid, automated anomaly/attack assessment for the penetrating radiation environment in the Earth's radiation belts. We have previously reported on the Dynamic Radiation Environment Assimilation Model (DREAM) that was developed at Los Alamos National Laboratory to assess hazards posed by the natural and by nuclear radiation belts. This year we will report on recent developments that are moving this program from the research, test, and evaluation phases to real-time implementation and application. We will discuss the challenges of leveraging space environment data sets for applications that are beyond the scope of mission requirements, the challenges of moving data from where they exist to where they are needed, the challenges of turning data into actionable information, and how those challenges were overcome. We will discuss the state-of-the-art as it exists in 2012 including the new capabilities that have been enabled and the limitations that still exist. We will also discuss how currently untapped data resources could advance the state-of-the-art and the future steps for implementing automatic real-time anomaly forensics.

  18. $L$-Topological Spaces

    Directory of Open Access Journals (Sweden)

    Ali Bajravani

    2018-04-01

    Full Text Available ‎By substituting the usual notion of open sets in a topological space $X$ with a suitable collection of maps from $X$ to a frame $L$, we introduce the notion of L-topological spaces. Then, we proceed to study the classical notions and properties of usual topological spaces to the newly defined mathematical notion. Our emphasis would be concentrated on the well understood classical connectedness, quotient and compactness notions, where we prove the Thychonoff's theorem and connectedness property for ultra product of $L$-compact and $L$-connected topological spaces, respectively.

  19. Space Elevators: Building a Permanent Bridge for Space Exploration and Economic Development

    Science.gov (United States)

    Smitherman, David V., Jr.; Howell, Joe T. (Technical Monitor)

    2000-01-01

    A space elevator is a physical connection from the surface of the Earth to a geo-stationary orbit above the Earth approximately 35,786 km in altitude. Its center of mass is at the geo-stationary point such that it has a 24-hour orbit, and stays over the same point above the equator as the Earth rotates on its axis. The structure is utilized as a transportation and utility system for moving payloads, power, and gases between the surface of the Earth and space. It makes the physical connection from Earth to space in the same way a bridge connects two cities across a body of' water. The space elevator may be an important concept for the future development of space in the latter part of the 21th century. It has the potential to provide mass-transportation to space in the same way highways, railroads, power lines, and pipelines provide mass-transportation across the Earth's surface. The low energy requirements for moving payloads up and down the elevator make it one of only a few concepts that has the potential of lowering the cost to orbit to less than $10 per kilogram. This paper will summarize the findings from a 1999 NASA workshop on Space Elevators held at the NASA Marshall Space Flight Center (MSFC). The workshop was sponsored by the Advanced Projects Office in the Flight Projects Directorate at MSFC, and was organized in cooperation with the Advanced Space Transportation Program at MSFC and the Advanced Concepts Office in the Office of Space Flight at NASA Headquarters. New concepts will be examined for space elevator construction and a number of issues will be discussed that has helped to bring the space elevator concept out of the realm of science fiction and into the realm of possibility. In conclusion, it appears that the space elevator concept may well he possible in the latter part of the 21st century if proper planning and technology development is emphasized to resolve key issues in the development of this advanced space infrastructure concept.

  20. Enabling Sustainable Exploration through the Commercial Development of Space

    Science.gov (United States)

    Nall, Mark; Casas, Joseph

    2003-01-01

    The commercial development of space offers enabling benefits to space exploration. This paper examines how those benefits can be realized, and how the Space Product Development Office of the National Aeronautics and Space Administration is taking the first steps towards opening the space frontier through vital and sustainable industrial development. The Space Product Development Office manages 15 Commercial Space Centers that partner with US industry to develop opportunities for commerce in space. This partnership directly benefits NASA exploration in four primary ways. First, by actively involving traditional and non-traditional companies in commercial space activities, it seeks and encourages to the maximum extent possible the fullest commercial use of space, as directed by NASA's charter. Second, the commercial research and technologies pursued and developed in the program often have direct applicability to NASA priority mission areas. This dual use strategy for research and technology has the potential to greatly expand what the NASA scientific community can do. Third, the commercial experiment hardware developed by the Commercial Space Centers and their industrial partners is available for use by NASA researchers in support of priority NASA research. By utilizing low cost and existing commercial hardware, essential NASA research can be more readily accomplished. Fourth, by assisting industry in understanding the use of the environment of space and in helping industry enhance the tools and technologies for NASA and commercial space systems, the market for commercial space utilization and the capability for meeting the future growing market needs is being developed. These two activities taken together form the beginning of a new space economy that will enable sustainable NASA exploration of the universe.

  1. Accumulation of operational history through emulation test to meet proven technology requirement for newly developed I and C technology

    International Nuclear Information System (INIS)

    Yeong Cheol, Shin; Sung Kon, Kang; Han Seong, Son

    2006-01-01

    As new advanced digital I and C technology with potential benefits of higher functionality and better cost effectiveness is available in the market, NPP (Nuclear Power Plant) operators are inclined to use the new technology for the construction of new plant and the upgrade of existing plants. However, this new technology poses risks to the NPP operators at the same time. These risks are mainly due to the poor reliability of newly developed technology. KHNP's past experiences with the new equipment shows many cases of reliability problems. And their consequences include unintended plant trips, lowered acceptance of the new digital technology by the plant I and C maintenance crew, and increased licensing burden in answering for questions from the nuclear regulatory body. Considering the fact that the risk of these failures in the nuclear plant operation is far greater than those in other industry, nuclear power plant operators want proven technology for I and C systems. This paper presents an approach for the emulation of operational history through which a newly developed technology becomes a proven technology. One of the essential elements of this approach is the feedback scheme of running the new equipment in emulated environment, gathering equipment failure, and correcting the design(and test bed). The emulation of environment includes normal and abnormal events of the new equipment such as reconfiguration of control system due to power failure, plant operation including full spectrum of credible scenarios in an NPP. Emulation of I and C equipment execution mode includes normal operation, initialization and termination, abnormal operation, hardware maintenance and maintenance of algorithm/software. Plant specific simulator is used to create complete profile of plant operational conditions that I and C equipment is to experience in the real plant. Virtual operating crew technology is developed to run the simulator scenarios without involvement of actual operators

  2. Real variables with basic metric space topology

    CERN Document Server

    Ash, Robert B

    2009-01-01

    Designed for a first course in real variables, this text presents the fundamentals for more advanced mathematical work, particularly in the areas of complex variables, measure theory, differential equations, functional analysis, and probability. Geared toward advanced undergraduate and graduate students of mathematics, it is also appropriate for students of engineering, physics, and economics who seek an understanding of real analysis.The author encourages an intuitive approach to problem solving and offers concrete examples, diagrams, and geometric or physical interpretations of results. Deta

  3. Real-Space x-ray tomographic reconstruction of randomly oriented objects with sparse data frames.

    Science.gov (United States)

    Ayyer, Kartik; Philipp, Hugh T; Tate, Mark W; Elser, Veit; Gruner, Sol M

    2014-02-10

    Schemes for X-ray imaging single protein molecules using new x-ray sources, like x-ray free electron lasers (XFELs), require processing many frames of data that are obtained by taking temporally short snapshots of identical molecules, each with a random and unknown orientation. Due to the small size of the molecules and short exposure times, average signal levels of much less than 1 photon/pixel/frame are expected, much too low to be processed using standard methods. One approach to process the data is to use statistical methods developed in the EMC algorithm (Loh & Elser, Phys. Rev. E, 2009) which processes the data set as a whole. In this paper we apply this method to a real-space tomographic reconstruction using sparse frames of data (below 10(-2) photons/pixel/frame) obtained by performing x-ray transmission measurements of a low-contrast, randomly-oriented object. This extends the work by Philipp et al. (Optics Express, 2012) to three dimensions and is one step closer to the single molecule reconstruction problem.

  4. A comparison of CLIPS- and LISP-based approaches to the development of a real-time expert system

    Science.gov (United States)

    Frainier, R.; Groleau, N.; Bhatnagar, R.; Lam, C.; Compton, M.; Colombano, S.; Lai, S.; Szolovits, P.; Manahan, M.; Statler, I.

    1990-01-01

    This paper describes an ongoing expert system development effort started in 1988 which is evaluating both CLIPS- and LISP- based approaches. The expert system is being developed to a project schedule and is planned for flight on Space Shuttle Mission SLS-2 in 1992. The expert system will help astronauts do the best possible science for a vestibular physiology experiment already scheduled for that mission. The system gathers and reduces data from the experiment, flags 'interesting' results, and proposes changes in the experiment both to exploit the in-flight observations and to stay within the time allowed by Mission Control for the experiment. These tasks must all be performed in real time. Two Apple Macintosh computers are used. The CLIPS- and LISP- based environments are layered above the Macintosh computer Operating System. The 'CLIPS-based' environment includes CLIPS and HyperCard. The LlSP-based environment includes Common LISP, Parmenides (a frame system), and FRuleKit (a rule system). Important evaluation factors include ease of programming, performance against real-time requirements, usability by an astronaut, robustness, and ease of maintenance. Current results on the factors of ease of programming, performance against real-time requirements, and ease of maintenance are discussed.

  5. A Novel Chaotic Particle Swarm Optimization Algorithm for Parking Space Guidance

    Directory of Open Access Journals (Sweden)

    Na Dong

    2016-01-01

    Full Text Available An evolutionary approach of parking space guidance based upon a novel Chaotic Particle Swarm Optimization (CPSO algorithm is proposed. In the newly proposed CPSO algorithm, the chaotic dynamics is combined into the position updating rules of Particle Swarm Optimization to improve the diversity of solutions and to avoid being trapped in the local optima. This novel approach, that combines the strengths of Particle Swarm Optimization and chaotic dynamics, is then applied into the route optimization (RO problem of parking lots, which is an important issue in the management systems of large-scale parking lots. It is used to find out the optimized paths between any source and destination nodes in the route network. Route optimization problems based on real parking lots are introduced for analyzing and the effectiveness and practicability of this novel optimization algorithm for parking space guidance have been verified through the application results.

  6. Real-Time Risk and Fault Management in the Mission Evaluation Room for the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.; Novack, S.D.

    2003-05-30

    Effective anomaly resolution in the Mission Evaluation Room (MER) of the International Space Station (ISS) requires consideration of risk in the process of identifying faults and developing corrective actions. Risk models such as fault trees from the ISS Probabilistic Risk Assessment (PRA) can be used to support anomaly resolution, but the functionality required goes significantly beyond what the PRA could provide. Methods and tools are needed that can systematically guide the identification of root causes for on-orbit anomalies, and to develop effective corrective actions that address the event and its consequences without undue risk to the crew or the mission. In addition, an overall information management framework is needed so that risk can be systematically incorporated in the process, and effectively communicated across all the disciplines and levels of management within the space station program. The commercial nuclear power industry developed such a decision making framework, known as the critical safety function approach, to guide emergency response following the accident at Three Mile Island in 1979. This report identifies new methods, tools, and decision processes that can be used to enhance anomaly resolution in the ISS Mission Evaluation Room. Current anomaly resolution processes were reviewed to identify requirements for effective real-time risk and fault management. Experience gained in other domains, especially the commercial nuclear power industry, was reviewed to identify applicable methods and tools. Recommendations were developed for next-generation tools to support MER anomaly resolution, and a plan for implementing the recommendations was formulated. The foundation of the proposed tool set will be a ''Mission Success Framework'' designed to integrate and guide the anomaly resolution process, and to facilitate consistent communication across disciplines while focusing on the overriding importance of mission success.

  7. Real-Time Risk and Fault Management in the Mission Evaluation Room of the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    William R. Nelson; Steven D. Novack

    2003-05-01

    Effective anomaly resolution in the Mission Evaluation Room (MER) of the International Space Station (ISS) requires consideration of risk in the process of identifying faults and developing corrective actions. Risk models such as fault trees from the ISS Probablistic Risk Assessment (PRA) can be used to support anomaly resolution, but the functionality required goes significantly beyond what the PRA could provide. Methods and tools are needed that can systematically guide the identification of root causes for on-orbit anomalies, and to develop effective corrective actions that address the event and its consequences without undue risk to the crew or the mission. In addition, an overall information management framework is needed so that risk can be systematically incorporated in the process, and effectively communicated across all the disciplines and levels of management within the space station program. The commercial nuclear power industry developed such a decision making framework, known as the critical safety function approach, to guide emergency response following the accident at Three Mile Island in 1979. This report identifies new methods, tools, and decision processes that can be used to enhance anomaly resolution in the ISS Mission Evaluation Room. Current anomaly resolution processes were reviewed to identify requirements for effective real-time risk and fault management. Experience gained in other domains, especially the commercial nuclear power industry, was reviewed to identify applicable methods and tools. Recommendations were developed for next-generation tools to support MER anomaly resolution, and a plan for implementing the recommendations was formulated. The foundation of the proposed toolset will be a "Mission Success Framework" designed to integrate and guide the anomaly resolution process, and to facilitate consistent communication across disciplines while focusing on the overriding importance of mission success.

  8. Wooden Spaceships: Human-Centered Vehicle Design for Space

    Science.gov (United States)

    Twyford, Evan

    2009-01-01

    Presentation will focus on creative human centered design solutions in relation to manned space vehicle design and development in the NASA culture. We will talk about design process, iterative prototyping, mockup building and user testing and evaluation. We will take an inside look at how new space vehicle concepts are developed and designed for real life exploration scenarios.

  9. Exploiting Auto-Collimation for Real-Time Onboard Monitoring of Space Optical Camera Geometric Parameters

    Science.gov (United States)

    Liu, W.; Wang, H.; Liu, D.; Miu, Y.

    2018-05-01

    Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.

  10. The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1

    Science.gov (United States)

    Lee, S. C.

    1989-01-01

    The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.

  11. Draft Forecasts from Real-Time Runs of Physics-Based Models - A Road to the Future

    Science.gov (United States)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2008-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOAA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.

  12. Multiple Connections in RealXtend Architecture

    OpenAIRE

    Vatjus-Anttila, Jukka

    2012-01-01

    RealXtend is an open source virtual space platform implementing both client and server functionality. In the default implementation of realXtend, the client could only log in to one virtual space server at any given time. In this research an ability to make multiple simultaneous connections to virtual spaces was experimented. Focus of the research was on how to control multiple virtual spaces within the same client window from a technical point of view. This bachelor thesis presents metho...

  13. Status of SPACE Safety Analysis Code Development

    International Nuclear Information System (INIS)

    Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun

    2009-01-01

    In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development

  14. Modification of medium-range order in silica glass by ball-milling: real- and reciprocal-space structural correlations for the first sharp diffraction peak

    International Nuclear Information System (INIS)

    Mukai, Akira; Kohara, Shinji; Uchino, Takashi

    2007-01-01

    We have carried out high-energy x-ray diffraction measurements on mechanically milled silica glass. It has been found that the first sharp diffraction peak (FSDP) in the structure factor S(Q) of silica glass appreciably decreases in intensity as a result of mechanical milling, whereas the observed features of the other peaks in S(Q) almost remain unchanged. The corresponding real-space correlation function of the milled samples shows a marked decrease in intensity at r∼5 A. This gives an experimental manifestation that the dominant real-space structural correlation pertaining to the FSDP occurs at r∼5 A

  15. Modification of medium-range order in silica glass by ball-milling: real- and reciprocal-space structural correlations for the first sharp diffraction peak

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Akira [Department of Chemistry, Kobe University, Kobe 657-8501 (Japan); Kohara, Shinji [SPring-8, Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Uchino, Takashi [Department of Chemistry, Kobe University, Kobe 657-8501 (Japan)

    2007-11-14

    We have carried out high-energy x-ray diffraction measurements on mechanically milled silica glass. It has been found that the first sharp diffraction peak (FSDP) in the structure factor S(Q) of silica glass appreciably decreases in intensity as a result of mechanical milling, whereas the observed features of the other peaks in S(Q) almost remain unchanged. The corresponding real-space correlation function of the milled samples shows a marked decrease in intensity at r{approx}5 A. This gives an experimental manifestation that the dominant real-space structural correlation pertaining to the FSDP occurs at r{approx}5 A.

  16. Prognostic factors of nasopharynx tumors investigated by MR imaging and the value of MR imaging in the newly published TNM staging

    International Nuclear Information System (INIS)

    Sakata, Koh-ichi; Hareyama, Masato; Tamakawa, Mituharu; Oouchi, Atushi; Sido, Mitsuo; Nagakura, Hisayasu; Akiba, Hidenari; Koito, Kazumitsu; Himi, Tetsuo; Asakura, Kohji

    1999-01-01

    Purpose: To examine the usefulness of MR imaging for predicting local control of nasopharyngeal carcinoma (NPC) and the value of MR imaging in the newly published fifth edition of the TNM classification. Methods and Materials: We studied 29 patients with NPC with MR imaging and CT before and after treatment. Staging was done according to the fourth and newly published fifth editions of the International Union Against Cancer (UICC) staging system. The radiotherapy protocol was designed to deliver 66 to 68 Gy to the primary tumor and clinically involved nodes. Results: MR proved better than CT at identifying obliteration of the pharyngobasilar fascia, invasion of the sinus of Morgagni, through which the cartilaginous portion of the eustachian tube and the levator veli palatini muscle pass, invasion of the skull base, and metastases to lymph nodes in the carotid and retropharyngeal spaces. All seven patients without invasion of the pharyngobasilar fascia had local control. The local control rates of patients with invasion of the skull base were not good (60 to 73%). There was no apparent relationship between tumor volume determined by T1-weighted MR images and local control when the tumor volume was more than 20 cc. The newly published N staging system appears to successfully identify the high-risk group for distant metastasis as N3. In our series, four of five patients with N3 disease developed distant metastases. Conclusion: Deep infiltration of the tumor is a more important prognostic factor in NPC than tumor volume. Since the newly published T staging system requires a search for tumor invasion into soft tissue such as parapharyngeal space and bony structures, MR imaging may be indispensable for the newly published NPC staging system

  17. Development of an imaging system for in vivo real-time monitoring of neuronal activity in deep brain of free-moving rats.

    Science.gov (United States)

    Iijima, Norio; Miyamoto, Shinji; Matsumoto, Keisuke; Takumi, Ken; Ueta, Yoichi; Ozawa, Hitoshi

    2017-09-01

    We have newly developed a system that allows monitoring of the intensity of fluorescent signals from deep brains of rats transgenically modified to express enhanced green fluorescent protein (eGFP) via an optical fiber. One terminal of the optical fiber was connected to a blue semiconductor laser oscillator/green fluorescence detector. The other terminal was inserted into the vicinity of the eGFP-expressing neurons. Since the optical fiber was vulnerable to twisting stresses caused by animal movement, we also developed a cage in which the floor automatically turns, in response to the turning of the rat's head. This relieved the twisting stress on the optical fiber. The system then enabled real-time monitoring of fluorescence in awake and unrestrained rats over many hours. Using this system, we could continuously monitor eGFP-expression in arginine vasopressin-eGFP transgenic rats. Moreover, we observed an increase of eGFP-expression in the paraventricular nucleus under salt-loading conditions. We then performed in vivo imaging of eGFP-expressing GnRH neurons in the hypothalamus, via a bundle consisting of 3000 thin optical fibers. With the combination of the optical fiber bundle connection to the fluorescence microscope, and the special cage system, we were able to capture and retain images of eGFP-expressing neurons from free-moving rats. We believe that our newly developed method for monitoring and imaging eGFP-expression in deep brain neurons will be useful for analysis of neuronal functions in awake and unrestrained animals for long durations.

  18. Definition of a near real-time microbiological monitor for application in space vehicles

    Science.gov (United States)

    Kilgore, Melvin V., Jr.; Zahorchak, Robert J.; Arendale, William F.; Woodward, Samuel S.; Pierson, Duane L.

    1989-01-01

    The concepts and methodologies for microbiological monitoring in space are examined, focusing on the determination of the requirements of a near real-time microbiological monitor. Results are presented from the technical evaluation of five microbiological monitor concepts, including cultural methods, single cell detection, biomolecular detection, specific product detection, and general molecular composition. Within these concepts, twenty-eight specific methodolgies were assessed and the five candidate methodologies with the highest engineering and feasibility scores were selected for further evaluations. The candidate methodologies are laser light scattering, primary fluorescence, secondary fluorescence, volatile product detection, and electronic particle detection. The advantages and disadvantages of these five candidate methodologies are discussed.

  19. The risk of newly developed visual impairment in treated normal-tension glaucoma: 10-year follow-up.

    Science.gov (United States)

    Choi, Yun Jeong; Kim, Martha; Park, Ki Ho; Kim, Dong Myung; Kim, Seok Hwan

    2014-12-01

    To investigate the risk and risk factors for newly developed visual impairment in treated patients with normal-tension glaucoma (NTG) followed up on for 10 years. Patients with NTG, who did not have visual impairment at the initial diagnosis and had undergone intraocular pressure (IOP)-lowering treatment for more than 7 years, were included on the basis of a retrospective chart review. Visual impairment was defined as either low vision (0.05 [20/400] ≤ visual acuity (VA) visual field (VF) visual impairment, Kaplan-Meier survival analysis and generalized linear mixed effects models were utilized. During the 10.8 years mean follow-up period, 20 eyes of 16 patients were diagnosed as visual impairment (12 eyes as low vision, 8 as blindness) among 623 eyes of 411 patients. The cumulative risk of visual impairment in at least one eye was 2.8% at 10 years and 8.7% at 15 years. The risk factors for visual impairment from treated NTG were worse VF mean deviation (MD) at diagnosis and longer follow-up period. The risk of newly developed visual impairment in the treated patients with NTG was relatively low. Worse VF MD at diagnosis and longer follow-up period were associated with development of visual impairment. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  20. Value of a newly sequenced bacterial genome

    DEFF Research Database (Denmark)

    Barbosa, Eudes; Aburjaile, Flavia F; Ramos, Rommel Tj

    2014-01-01

    and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses...... heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting...

  1. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces

    NARCIS (Netherlands)

    Braak, ter C.J.F.

    2006-01-01

    Differential Evolution (DE) is a simple genetic algorithm for numerical optimization in real parameter spaces. In a statistical context one would not just want the optimum but also its uncertainty. The uncertainty distribution can be obtained by a Bayesian analysis (after specifying prior and

  2. Underground trials on a newly developed EDW 150-2 L unit

    Energy Technology Data Exchange (ETDEWEB)

    Wille, G.; Klimek, K.H.

    1982-01-01

    Coal-getting from medium thick coalbeds (> 1.7 m) requires high-performance shearer-loaders. Machine length and adjustability have to be such as to permit smooth cutting through geological faults. Furthermore they should be suitable to cut out niches for the AFC drives so that gateroads can be driven along with the face line. The newly developed EDW 150-2 L shearer-loader meets these expectations after various mechanical and electrical improvements. The unit proved its usefulness from the beginning and in the most difficult geological conditions where other shearer-loaders normally available for the range of coalbed thickness would mostly have failed. The multiple requirements and disturbances have led to a number of separate improvements and disturbances have led to a number of separate improvements which together contribute to a basic improvement of the machine concept as far as applications, operational flexibility and safety are concerned.

  3. A Newly Improved Modified Method Development and Validation of Bromofenac Sodium Sesquihydrate in Bulk Drug Manufacturing

    OpenAIRE

    Sunil Kumar Yelamanchi V; Useni Reddy Mallu; I. V Kasi Viswanath; D. Balasubramanyam; G. Narshima Murthy

    2016-01-01

    The main objective of this study was to develop a simple, efficient, specific, precise and accurate newly improved modified Reverse Phase High Performance Liquid Chromatographic Purity (or) Related substance method for bromofenac sodium sesquihydrate active pharmaceuticals ingredient dosage form. Validation of analytical method is the confirmation by examination and the provision of objective evidence that the particular requirements for a specific intended use are fulfilled as per ICH, USP...

  4. Commercial space development needs cheap launchers

    Science.gov (United States)

    Benson, James William

    1998-01-01

    SpaceDev is in the market for a deep space launch, and we are not going to pay $50 million for it. There is an ongoing debate about the elasticity of demand related to launch costs. On the one hand there are the ``big iron'' NASA and DoD contractors who say that there is no market for small or inexpensive launchers, that lowering launch costs will not result in significantly more launches, and that the current uncompetitive pricing scheme is appropriate. On the other hand are commercial companies which compete in the real world, and who say that there would be innumerable new launches if prices were to drop dramatically. I participated directly in the microcomputer revolution, and saw first hand what happened to the big iron computer companies who failed to see or heed the handwriting on the wall. We are at the same stage in the space access revolution that personal computers were in the late '70s and early '80s. The global economy is about to be changed in ways that are just as unpredictable as those changes wrought after the introduction of the personal computer. Companies which fail to innovate and keep producing only big iron will suffer the same fate as IBM and all the now-extinct mainframe and minicomputer companies. A few will remain, but with a small share of the market, never again to be in a position to dominate.

  5. Real-time web application development with Vert.x 2.0

    CERN Document Server

    Parviainen, Tero

    2013-01-01

    A quick, clear, and concise tutorial-guide-based approach that helps you to develop a web application based on Vert.x.Real-time Web Application Development with Vert.x is written for web developers who want to take the next step and dive into real-time web application development.This book uses JavaScript (and some Java) to introduce the Vert.x platform, so basic JavaScript knowledge is expected. If you're planning to write your applications using some of the other Vert.x languages, all the techniques and concepts will translate to them directly. All you need to do is refer to the Vert.x API r

  6. Development of real-time x-ray microtomography system

    International Nuclear Information System (INIS)

    Takano, H; Morikawa, M; Konishi, S; Azuma, H; Shimomura, S; Tsusaka, Y; Kagoshima, Y; Nakano, S; Kosaka, N; Yamamoto, K

    2013-01-01

    We have developed a four-dimensional (4D) x-ray microcomputed tomography (CT) system that can obtain time-lapse CT volumes in real time. The system consists of a high-speed sample rotation system and a high-frame-rate x-ray imager, which are installed at a synchrotron radiation x-ray beamline. As a result of system optimization and introduction of a 'zoom resolution' procedure, a real-time 4D CT movie with a frame rate of 30 was obtained with a voxel size of 2.5 μm using 10 keV x-rays

  7. Technology Development and Demonstration Concepts for the Space Elevator

    Science.gov (United States)

    Smitherman, David V., Jr.

    2004-01-01

    During the 1990s several discoveries and advances in the development of carbon nano-tube (CNT) materials indicated that material strengths many times greater than common high-strength composite materials might be possible. Progress in the development of this material led to renewed interest in the space elevator concept for construction of a tether structure from the surface of the Earth through a geostationary orbit (GEO) and thus creating a new approach to Earth-to-orbit transportation infrastructures. To investigate this possibility the author, in 1999, managed for NASA a space elevator work:hop at the Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21 century, and to identify the critical technologies and demonstration missions needed to make development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study of the Space Elevator proposed a concept for a simpler first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to GEO space elevator. Critical technologies include CNT composite materials, wireless power transmission, orbital object avoidance, and large-scale tether deployment and control systems. Numerous paths for technology demonstrations have been proposed utilizing ground experiments, air structures. LEO missions, the space shuttle, the international Space Station, GEO demonstration missions, demonstrations at the lunar L1 or L2 points, and other locations. In conclusion, this paper finds that the most critical technologies for an Earth to GEO space elevator include CNT composite materials development and object avoidance technologies; that lack of successful development of these technologies need not preclude continued development of

  8. Development and demonstration of near-real-time accounting systems for reprocessing plants

    International Nuclear Information System (INIS)

    Cobb, D.D.; Hakkila, E.A.; Dayem, H.A.; Shipley, J.P.; Baker, A.L.

    1981-01-01

    A program to develop and demonstrate near-real-time accounting systems for reprocessing plants has been active at Los Alamos since 1976. The technology has been developed through modeling and simulation of process operation and measurement systems and evaluation of these data using decision analysis techniques. Aspects of near-real-time systems have been demonstrated successfully at the AGNS reprocessng plant as part of a joint study of near-real-time accounting

  9. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  10. Elements of linear space

    CERN Document Server

    Amir-Moez, A R; Sneddon, I N

    1962-01-01

    Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given.Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices a

  11. Design of Urban Public Spaces: Intent vs. Reality

    DEFF Research Database (Denmark)

    Hjort, Mikkel; Martin, W Mike; Stewart, Tom

    2018-01-01

    knowledge, and that expert knowledge was chosen randomly. These findings point to a systematic lack of evidence-based practice when designing sport and recreational facilities. This article has implications for landscape architects and urban planners; a new method must be developed to embed......This study investigated how two public spaces for sport and recreation were utilized by different user groups, and how this aligned with the initial design objectives for these spaces. Two newly built urban spaces situated in Copenhagen, Denmark, provided the context for this investigation...... interdisciplinary knowledge in the planning process of future sport and recreation projects. This must be done in a systematic way to make the design process transparent....

  12. Quantization vial real polarization of the moduli space of flat connections and Chern-Simons gauge theory in genus one

    International Nuclear Information System (INIS)

    Weitsman, J.; Harvard Univ., Cambridge, MA

    1991-01-01

    We study the quantization of the moduli space of flat connections on a surface of genus one, using the real polarization of this space. The quantum wave functions in this formalism are exponential functions supported along the integral fibres of the polarization. The space of wave functions obtained in this way is isomorphic to a space of theta functions. We use our construction to cunstruct part of what may be a topological field theory in genus one, and to compute the associated invariants of some three manifolds. These computations agree with those of Witten, but the invariants are expressed as sums of quantities computed at a discrete set of connections with curvature concentrated on a link in the three manifold. A similar prescription is used to produce knot invariants. (orig.)

  13. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission and ground irradiation experiment

    Science.gov (United States)

    Lambreva, Maya; Rea, Giuseppina; Antonacci, Amina; Serafini, Agnese; Damasso, Mario; Margonelli, Andrea; Johanningmeier, Udo; Bertalan, Ivo; Pezzotti, Gianni; Giardi, Maria Teresa

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plantsor algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stress-tolerant strains. Site-directed and random mutants of the unicellular green alga Chlamydomonas reinhardtii of Photosystem II D1 protein were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. Metabolite profiling by quantitative HPLC methods revealed the organisms and the stress conditions capable to accumulate the highest pigment levels. In order to develop a project for a rationale metabolic engineering of algal secondary metabolites overproduction, we are performing expression analyses on the carotenoid biosynthetic pathway under physiological and mimicked space conditions. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton-M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence biosensor, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device

  14. Development of in-plant real-time materials control: the DYMAC program

    International Nuclear Information System (INIS)

    Augustson, R.H.

    1976-01-01

    LASL is in the process of developing a dynamic materials control program, called DYMAC, to provide the technology for stringent real-time nuclear materials control. The DYMAC program combines hardware and software into four component subsystems: nondestructive assay (NDA), instrumentation, data acquisition, data base management, and real-time accountability. To demonstrate the feasibility of DYMAC, a working real-time materials control system will be installed at the new plutonium facility presently under construction at LASL. Program emphasis is on developing practical solutions to generic problems and communicating those solutions to other installations for use throughout the nuclear fuel cycle

  15. Hot electron and real space transfer in double-quantum-well structures

    International Nuclear Information System (INIS)

    Okuno, Eiichi; Sawaki, Nobuhiko; Akasaki, Isamu; Kano, Hiroyuki; Hashimoto, Masafumi.

    1991-01-01

    The hot electron phenomena and real space transfer (RST) effect are studied in GaAs/AlGaAs double-quantum-well (DQW) structures, in which we have two kind of quantum wells with different widths. The drift velocity and the electron temperature at liquid helium temperature are investigated as a function of the external electric field applied parallel to the heterointerface. By increasing the field, the electron temperature rises and reaches a plateau in the intermediate region, followed by further rise in the high-field region. The appearance of the plateau is attributed to the RST effect between the two quantum wells. The threshold field for the appearance of the plateau is determined by the difference energy between the quantized levels in two wells. The energy loss rate as a function of the electron temperature indicates that the RST is assisted by LO phonon scattering. (author)

  16. Developing hybrid near-space technologies for affordable access to suborbital space

    Science.gov (United States)

    Badders, Brian David

    High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The

  17. Ab initio nonequilibrium quantum transport and forces with the real-space projector augmented wave method

    DEFF Research Database (Denmark)

    Chen, Jingzhe; Thygesen, Kristian S.; Jacobsen, Karsten W.

    2012-01-01

    We present an efficient implementation of a nonequilibrium Green's function method for self-consistent calculations of electron transport and forces in nanostructured materials. The electronic structure is described at the level of density functional theory using the projector augmented wave method...... over k points and real space makes the code highly efficient and applicable to systems containing several hundreds of atoms. The method is applied to a number of different systems, demonstrating the effects of bias and gate voltages, multiterminal setups, nonequilibrium forces, and spin transport....

  18. Rt-Space: A Real-Time Stochastically-Provisioned Adaptive Container Environment

    Science.gov (United States)

    2017-08-04

    Real-Time Systems (ECRTS) Conference Location: Toulouse, France Paper Title: Multiprocessor Real-Time Locking Protocols for Replicated Resources...Conference Location: Lille, France Paper Title: A Contention-Sensitive Fine-Grained Locking Protocol for Multiprocessor Real-Time Systems Publication...On the Soft Real-Time Optimality of Global EDF on Multiprocessors: From Identical to Uniform Heterogeneous Publication Type: Conference Paper or

  19. Green Schoolyards in Low-Income Urban Neighborhoods: Natural Spaces for Positive Youth Development Outcomes

    Directory of Open Access Journals (Sweden)

    Carolyn R. Bates

    2018-05-01

    Full Text Available Children from low-income families are increasingly growing up in urban areas with limited access to nature. In these environments, strategies that promote access to natural outdoor spaces, such as green schoolyards, may enhance positive youth development outcomes by promoting physical activity (PA and prosocial behavior, as well as increasing perceptions of safety. The current study examines children’s PA and social interactions, as well as caregiver and teacher perceptions of safety, injuries, teasing/bullying, and gang activity on three newly renovated green schoolyards in low-income urban neighborhoods. A multi-method strategy, including behavioral mapping and caregiver- and teacher-reported surveys, was utilized at three time points to examine positive youth development outcomes and maintenance of effects over time. Analyses revealed that children evidenced a range of PA on the green schoolyards and demonstrated significant decreases in sedentary activity over time. The majority of children were engaged in social interactions with peers on the green schoolyards when observed. Less than 3% of interactions were negative and follow-up analyses found significant increases in positive interactions on the green schoolyards up to 24 months post-renovation. Caregivers and teachers reported increased perceptions of safety, fewer injuries, less teasing/bullying, and less gang-related activity on the renovated green schoolyards in comparison to the pre-renovation schoolyards, and these effects were maintained up to 32 months post-renovation. Overall, the study suggests that green schoolyards may promote positive development outcomes among youth living in urban, low-income neighborhoods by providing natural and safe spaces for PA and prosocial behavior.

  20. Space botanic research

    International Nuclear Information System (INIS)

    Sitnik, K.M.; Kordyum, Se.L.

    1980-01-01

    The basic results of investigations in the field of space botanics are considered, starting with the effect of cosmic radiation on quiet spores and seeds and ending with the modern stage of complex study of lower plants, growing and developing within various periods of time under conditions of a real space flight in special chambers and growing systems. The possibility of using different investigation methods such as luminooptic, electronomicroscopic, biochemical, biophysical, physiological and others to estimate the effect of factors of an orbital flight on plants, are discussed [ru

  1. A framework for building real-time expert systems

    Science.gov (United States)

    Lee, S. Daniel

    1991-01-01

    The Space Station Freedom is an example of complex systems that require both traditional and artificial intelligence (AI) real-time methodologies. It was mandated that Ada should be used for all new software development projects. The station also requires distributed processing. Catastrophic failures on the station can cause the transmission system to malfunction for a long period of time, during which ground-based expert systems cannot provide any assistance to the crisis situation on the station. This is even more critical for other NASA projects that would have longer transmission delays (e.g., the lunar base, Mars missions, etc.). To address these issues, a distributed agent architecture (DAA) is proposed that can support a variety of paradigms based on both traditional real-time computing and AI. The proposed testbed for DAA is an autonomous power expert (APEX) which is a real-time monitoring and diagnosis expert system for the electrical power distribution system of the space station.

  2. The algebraic approach to space-time geometry

    International Nuclear Information System (INIS)

    Heller, M.; Multarzynski, P.; Sasin, W.

    1989-01-01

    A differential manifold can be defined in terms of smooth real functions carried by it. By rejecting the postulate, in such a definition, demanding the local diffeomorphism of a manifold to the Euclidean space, one obtains the so-called differential space concept. Every subset of R n turns out to be a differential space. Extensive parts of differential geometry on differential spaces, developed by Sikorski, are reviewed and adapted to relativistic purposes. Differential space as a new model of space-time is proposed. The Lorentz structure and Einstein's field equations on differential spaces are discussed. 20 refs. (author)

  3. Real Exchange Rate Variability: An Empirical Analysis of the Developing Countries Case

    OpenAIRE

    Sebastian Edwards

    1986-01-01

    The purpose of this paper is to investigate the potential role of monetary and real factors in explaining real exchange rate variability in developing countries. For this purpose two indexes of real effective exchange rate variability that measure short-term and long-term variability were constructed for 30 countries. The results obtained, using a generalized least squares procedures on cross section data, indicate that real exchange rate variability has been affected both by real and monetar...

  4. Space Shuttle GN and C Development History and Evolution

    Science.gov (United States)

    Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

    2011-01-01

    Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

  5. Networked simulation for team training of Space Station astronauts, ground controllers, and scientists - A training and development environment

    Science.gov (United States)

    Hajare, Ankur R.; Wick, Daniel T.; Bovenzi, James J.

    1991-01-01

    The purpose of this paper is to describe plans for the Space Station Training Facility (SSTF) which has been designed to meet the envisioned training needs for Space Station Freedom. To meet these needs, the SSTF will integrate networked simulators with real-world systems in five training modes: Stand-Alone, Combined, Joint-Combined, Integrated, and Joint-Integrated. This paper describes the five training modes within the context of three training scenaries. In addition, this paper describes an authoring system which will support the rapid integration of new real-world system changes in the Space Station Freedom Program.

  6. A Newly Developed Nested PCR Assay for the Detection of Helicobacter pylori in the Oral Cavity.

    Science.gov (United States)

    Ismail, Hawazen; Morgan, Claire; Griffiths, Paul; Williams, John; Jenkins, Gareth

    2016-01-01

    To develop a new nested polymerase chain reaction (PCR) assay for identifying Helicobacter pylori DNA from dental plaque. H. pylori is one of the most common chronic bacterial pathogens in humans. The accurate detection of this organism is essential for proper patient management and for the eradication of the bacteria following treatment. Forty-nine patients (24 males and 25 females; mean age: 51; range, 19 to 94 y) were investigated for the presence of H. pylori in dental plaque by single-step PCR and nested PCR and in the stomach by single-step PCR, nested PCR, and histologic examination. The newly developed nested PCR assay identified H. pylori DNA in gastric biopsies of 18 patients who were histologically classified as H. pylori-positive and 2 additional biopsies of patients who were H. pylori-negative by histologic examination (20/49; 40.8%). Dental plaque samples collected before and after endoscopy from the 49 patients revealed that single-step PCR did not detect H. pylori but nested PCR was able to detect H. pylori DNA in 40.8% (20/49) patients. Nested PCR gave a higher detection rate (40.8%, 20/49) than that of histology (36.7%, 18/49) and single-step PCR. When nested PCR results were compared with histology results there was no significant difference between the 2 methods. Our newly developed nested PCR assay is at least as sensitive as histology and may be useful for H. pylori detection in patients unfit for endoscopic examination.

  7. Characteristics of bread prepared from wheat flours blended with various kinds of newly developed rice flours.

    Science.gov (United States)

    Nakamura, S; Suzuki, K; Ohtsubo, K

    2009-04-01

    Characteristics of the bread prepared from wheat flour blended with the flour of various kinds of newly developed rice cultivars were investigated. Qualities of the bread made from wheat flour blended with rice flour have been reported to be inferior to those from 100% wheat flour bread. To improve its qualities, we searched for the new-characteristic rice flours among the various kinds of newly developed rice cultivars to blend with the wheat flour for the bread preparation. The most suitable new characteristic rices are combination of purple waxy rice, high-amylose rice, and sugary rice. Specific volume of the bread from the combination of wheat and these 3 kinds of rice flours showed higher specific volume (3.93) compared with the traditional wheat/rice bread (3.58). We adopted the novel method, continuous progressive compression test, to measure the physical properties of the dough and the bread in addition to the sensory evaluation. As a result of the selection of the most suitable rice cultivars and blending ratio with the wheat flour, we could develop the novel wheat/rice bread, of which loaf volume, physical properties, and tastes are acceptable and resistant to firming on even 4 d after the bread preparation. To increase the ratio of rice to wheat, we tried to add a part of rice as cooked rice grains. The specific volume and qualities of the bread were maintained well although the rice content of total flour increased from 30% to 40%.

  8. Commercialization is Required for Sustainable Space Exploration and Development

    Science.gov (United States)

    Martin, Gary L.; Olson, John M.

    2009-01-01

    The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government

  9. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    Science.gov (United States)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  10. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  11. Girls InSpace project: A new space physics outreach initiative.

    Science.gov (United States)

    Abe Pacini, A.; Tegbaru, D.; Max, A., Sr.

    2017-12-01

    We present here the concept and state-of-art of the new space physics youth education and outreach initiative called "Girls InSpace project". The project goal is to spread quality scientific information to underrepresented groups, motivate girls in STEM and promote gender equality in the Space Physics area. Initially, the "Girls InSpace project" will be available in two languages (Portuguese and English) aiming to reach out to the youth of Brazil, United States, Nigeria, South Africa, Ethiopia and Angola. Eventually, the material will be translated to French and Spanish, focusing on French-speaking countries in Africa and Latin America. The project spans a collection of four books about a group of young girls and their adventures (always related to the sky and simultaneously introducing earth and space science concepts). Ancillary content such as a webpage, mobile applications and lesson plans are also in development. The books were written by a Space Physicist PhD woman, illustrated by a Brazilian young artist and commented by senior female scientists, creating positive role models for the next generation of girls in STEM. The story lines were drawn around the selected topics of astronomy and space physics, introducing scientific information to the target readers (girls from 8-13 years old) and enhancing their curiosity and critical thinking. The books instill the readers to explore the available extra web-content (with images, videos, interviews with scientists, real space data, coding and deeper scientific information) and game apps (with Virtual Reality components and real space images). Moreover, for teachers K-12, a collection of lesson plans will be made available, aiming to facilitate scientific content discussed in the books and inside classroom environments. Gender bias in STEM reported earlier this year in Nature and based on a study of the American Geophysical Union's member database showed a competitive disadvantage for women in the Earth and Space

  12. Wireless sensor and mobile ad-hoc networks vehicular and space applications

    CERN Document Server

    Al-Fuqaha, Ala

    2015-01-01

    This book describes the practical perspectives in using wireless sensor networks (WSN) to develop real world applications that can be used for space exploration. These applications include sensor interfaces, remote wireless vehicles, space crew health monitoring and instrumentation. The material discusses how applications of WSN originally developed for space travel and exploration are being applied and used in multiple real world applications, allowing for the development of smart systems that have characteristics such as self-healing, self-diagnosis, and emergency healthcare notification. This book also: ·         Discusses how multidisciplinary fields can be implemented in a single application ·         Reviews exhaustively the state-of-the-art research in WSN for space and vehicular applications ·         Covers smart systems that have self-healing, self-diagnosis, and emergency healthcare notification

  13. Establishment probability in newly founded populations

    Directory of Open Access Journals (Sweden)

    Gusset Markus

    2012-06-01

    Full Text Available Abstract Background Establishment success in newly founded populations relies on reaching the established phase, which is defined by characteristic fluctuations of the population’s state variables. Stochastic population models can be used to quantify the establishment probability of newly founded populations; however, so far no simple but robust method for doing so existed. To determine a critical initial number of individuals that need to be released to reach the established phase, we used a novel application of the “Wissel plot”, where –ln(1 – P0(t is plotted against time t. This plot is based on the equation P0t=1–c1e–ω1t, which relates the probability of extinction by time t, P0(t, to two constants: c1 describes the probability of a newly founded population to reach the established phase, whereas ω1 describes the population’s probability of extinction per short time interval once established. Results For illustration, we applied the method to a previously developed stochastic population model of the endangered African wild dog (Lycaon pictus. A newly founded population reaches the established phase if the intercept of the (extrapolated linear parts of the “Wissel plot” with the y-axis, which is –ln(c1, is negative. For wild dogs in our model, this is the case if a critical initial number of four packs, consisting of eight individuals each, are released. Conclusions The method we present to quantify the establishment probability of newly founded populations is generic and inferences thus are transferable to other systems across the field of conservation biology. In contrast to other methods, our approach disaggregates the components of a population’s viability by distinguishing establishment from persistence.

  14. Real-space mapping of a disordered two-dimensional electron system in the quantum Hall regime

    International Nuclear Information System (INIS)

    Hashimoto, K; Hirayama, Y; Wiebe, J; Wiesendanger, R; Inaoka, T; Morgenstern, M

    2011-01-01

    By using scanning tunnelling spectroscopy, we study the influence of potential disorder on an adsorbate-induced two-dimensional electron system in the integer quantum Hall regime. The real-space imaged local density of states exhibits transition from localized drift states encircling the potential minima to another type of localized drift states encircling the potential maxima. While the former states show regular round shapes, the latter have irregular-shaped patterns. This difference is induced by different sources for the potential minima and maxima, i.e., substrate donors and an inhomogeneous distribution of the adsorbates, respectively.

  15. Introductory real analysis

    CERN Document Server

    Kolmogorov, A N; Silverman, Richard A

    1975-01-01

    Self-contained and comprehensive, this elementary introduction to real and functional analysis is readily accessible to those with background in advanced calculus. It covers basic concepts and introductory principles in set theory, metric spaces, topological and linear spaces, linear functionals and linear operators, and much more. 350 problems. 1970 edition.

  16. Legal considerations for urban underground space development in Malaysia

    Directory of Open Access Journals (Sweden)

    F. Zaini

    2017-12-01

    Full Text Available In 2008, the Malaysia land code, named the National Land Code 1965 (NLC 1965, was amended to add Part Five (A to deal with the disposal of underground space. In addition, the Circular of the Director General of Lands and Mines No. 1/2008 was issued to assist the application of Part Five (A of the NLC 1965. However, the legislation is still questionable and has instigated many arguments among numerous actors. Therefore, this research was undertaken to examine legal considerations for the development of underground space. The focus is on four legal considerations, namely underground space ownership, the bundle of rights, depth, and underground space utilization. Rooted in qualitative methods, interviews were conducted with respondents involved in the development of underground space in Malaysia. The obtained data were then analyzed descriptively. The findings differentiated the rights of landowners for surface land and underground space, and their liability for damages and the depth. It was indicated that the current legislation in Malaysia, namely Part Five (A of the NLC 1965 and the Circular of the Director General of Lands and Mines No. 1/2008, is adequate to facilitate the development of underground space in terms of legal considerations. However, to further facilitate the development of underground land in the future, based on the research, four enhancements are recommended for legal considerations pertaining to the development of underground space in Malaysia. Keywords: Underground space, Legal consideration, Land right, Urban development

  17. Analysis in Euclidean space

    CERN Document Server

    Hoffman, Kenneth

    2007-01-01

    Developed for an introductory course in mathematical analysis at MIT, this text focuses on concepts, principles, and methods. Its introductions to real and complex analysis are closely formulated, and they constitute a natural introduction to complex function theory.Starting with an overview of the real number system, the text presents results for subsets and functions related to Euclidean space of n dimensions. It offers a rigorous review of the fundamentals of calculus, emphasizing power series expansions and introducing the theory of complex-analytic functions. Subsequent chapters cover seq

  18. Progress in space weather predictions and applications

    Science.gov (United States)

    Lundstedt, H.

    The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.

  19. Development of real-time multitask OSS based on cognitive task analysis

    International Nuclear Information System (INIS)

    Wang He; Cheng Shouyu

    2010-01-01

    A Real-time Multi-task Operator Support System (RMOSS) has been developed to support the operator's decision making process in the control room of NPP. VxWorks, one embedded real-time operation system, is used for RMOSS software development. According to the SRK modeling analysis result of the operator' decision making process, RMOSS is divided into five system subtasks, including Data Collection and Validation Task (DCVT), Operation Monitor Task (OMT), Fault Diagnostic Task (FDT), Operation Guideline Task (OGT) and Human Machine Interface Task (HMIT). The task test of RMOSS has been done in a real-time full scope simulator. The results showed that each task of RMOSS is capable of accomplishing their functions. (authors)

  20. The effectiveness of newly developed written asthma action plan in improvement of asthma outcome in children.

    Science.gov (United States)

    Lakupoch, Kingthong; Manuyakorn, Wiparat; Preutthipan, Aroonwan; Kamalaporn, Harutai

    2017-09-17

    Providing asthma education about controller medication use and appropriate management of asthma exacerbation are the keys to improving the disease outcome. Many asthma guidelines recommend that physicians provide written asthma action plan (WAAP) to all of their asthmatic patients. However, the benefit of WAAP is unclear. Thus, we have created a new WAAP which is simplified in Thai and more user friendly. To determine the effectiveness of the newly developed asthma action plan in management of children with asthma. Asthmatic children who meet inclusion criteria all received the WAAP and they were followed up for 6 months with measurement of outcome variables, such as asthma exacerbation that required emergency room visit, unscheduled OPD visit, admission and school absence in order to compare with the past 6 months before receiving the WAAP. The analyzed outcomes of forty-nine children show significantly reduced emergency room visit (P-value 0.005), unscheduled OPD visit (P-value 0.046), admission days (P-value 0.026) and school absence days (P-value 0.022). Well controlled group and mild severity group were not the factors that contribute to decreased emergency room visit but step up therapy may be the co-factor to decreased ER visit. The results of this study suggest that the provision of newly developed WAAP is useful for improving self-care of asthma patients and reducing asthma exacerbation.

  1. Understanding newly discovered oscillation modes in magnetically shielded Hall thrusters utilizing state of the art high speed diagnostics.

    Data.gov (United States)

    National Aeronautics and Space Administration — I propose to investigate the newly discovered oscillation modes specific to Magnetically Shied (MS) Hall Effect Thrusters (HET). Although HETs are classified as a...

  2. Rocket experiment METS - Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  3. Rocket experiment METS Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  4. Real analysis

    CERN Document Server

    McShane, Edward James

    2013-01-01

    This text surveys practical elements of real function theory, general topology, and functional analysis. Discusses the maximality principle, the notion of convergence, the Lebesgue-Stieltjes integral, function spaces and harmonic analysis. Includes exercises. 1959 edition.

  5. Next-to-leading resummation of cosmological perturbations via the Lagrangian picture: 2-loop correction in real and redshift spaces

    International Nuclear Information System (INIS)

    Okamura, Tomohiro; Taruya, Atsushi; Matsubara, Takahiko

    2011-01-01

    We present an improved prediction of Lagrangian resummation theory (LRT), the nonlinear perturbation theory (PT) via the Lagrangian picture originally proposed by Matsubara (2008). Based on the relations between the power spectrum in standard PT and that in LRT, we derive analytic expressions for the power spectrum in LRT up to 2-loop order in both real and redshift spaces. Comparing the improved prediction of LRT with N-body simulations in real space, we find that the 2-loop corrections can extend the valid range of wave numbers where we can predict the power spectrum within 1% accuracy by a factor of 1.0 (z = 0.5), 1.3 (1), 1.6 (2) and 1.8 (3) vied with 1-loop LRT results. On the other hand, in all redshift ranges, the higher-order corrections are shown to be less significant on the two-point correlation functions around the baryon acoustic peak, because the 1-loop LRT is already accurate enough to explain the nonlinearity on those scales in N-body simulations

  6. Real-Time Integrated Navigation System for Planetary Exploration (RT-INSPEX), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For supporting NASA's efforts in enhancing robotic autonomy and off-loading work from operators and astronauts, American GNC Corporation has developed the "Real-Time...

  7. Real Time Conference 2016 Overview

    Science.gov (United States)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  8. Mobius invariant QK spaces

    CERN Document Server

    Wulan, Hasi

    2017-01-01

    This monograph summarizes the recent major achievements in Möbius invariant QK spaces. First introduced by Hasi Wulan and his collaborators, the theory of QK spaces has developed immensely in the last two decades, and the topics covered in this book will be helpful to graduate students and new researchers interested in the field. Featuring a wide range of subjects, including an overview of QK spaces, QK-Teichmüller spaces, K-Carleson measures and analysis of weight functions, this book serves as an important resource for analysts interested in this area of complex analysis. Notes, numerous exercises, and a comprehensive up-to-date bibliography provide an accessible entry to anyone with a standard graduate background in real and complex analysis.

  9. Factory Virtual Environment Development for Augmented and Virtual Reality

    OpenAIRE

    M. Gregor; J. Polcar; P. Horejsi; M. Simon

    2015-01-01

    Machine visualization is an area of interest with fast and progressive development. We present a method of machine visualization which will be applicable in real industrial conditions according to current needs and demands. Real factory data were obtained in a newly built research plant. Methods described in this paper were validated on a case study. Input data were processed and the virtual environment was created. The environment contains information about dimensions, s...

  10. Lessons Learned to Date in Developing the Virtual Space Physics Observatory

    Science.gov (United States)

    Cornwell, C.; Roberts, D. A.; King, J.; Smith, A.

    2005-12-01

    We now have an operational Virtual Space Physics Observatory that provides users the ability to search for and retrieve data from hundreds of space and solar physics data products based on specific terms or a Google-like interface. Lessons learned in building VSPO include: (a) A very close and highly interactive collaboration between scientists and information technologists in the definition and development of services is essential. (b) Constructing a Data Model acceptable to a broad community is very important but very difficult. Variations in usage are inevitable and must be dealt with through translations; this is especially true for the description of variables within data products. (c) Higher-order queries (searches based on events, positions, comparisons of measurements, etc.) are possible, and have been implemented in various systems; currently we see these as being separate from the basic data finding and retrieval services. (d) Building a Virtual Observatory is often more a matter of the tedious details of product descriptions than an exercise in implementing fancy middleware. Paying a knowledgeable third party to build registries can be more efficient than working directly with providers, and automated tools can help but do not solve all the problems. (e) The success of the VO effort in space and solar physics, as elsewhere, will depend on whether the scientific communities involved use and critique the services so that they will come to meet a real need for the integration of resources to solve new scientific problems of perceived importance.

  11. EXPERIMENTAL STUDIES ON DIFFICULTY OF EVACUATION FROM UNDERGROUND SPACES UNDER INUNDATED SITUATIONS USING REAL SCALE MODELS

    Science.gov (United States)

    Baba, Yasuyuki; Ishigaki, Taisuke; Toda, Keiichi; Nakagawa, Hajime

    Many urbanized cities in Japan are located in alluvial plains, and the vulnerability of urbanized areas to flood disaster is highlighted by flood attacks due to heavy rain fall or typhoons. Underground spaces located in the urbanized area are flood-prone areas, and the intrusion of flood watar into underground space inflicted severe damages on urban functions and infrastructures. In a similar way, low-lying areas like "bowl-shaped" depression and underpasses under highway and railroad bridges are also prone to floods. The underpasses are common sites of accidents of submerged vehicles, and severe damage including human damage occasionally occurs under flooding conditions. To reduce the damage due to inundation in underground space, needless to say, early evacuation is one of the most important countermeasures. This paper shows some experimental results of evacuation tests from underground spaces under inundated situations. The difficulities of the evacuation from underground space has been investigated by using real scale models (door, staircase and vehicle), and the limit for safety evacuation is discussed. From the results, it is found that water depth of 0.3 - 0.4m would be a critical situation for the evacuation from underground space through staircases and door and that 0.7 - 0.8m deep on the ground would be also a critical situation for safety evacuation though the doors of the vehicle. These criteria have some possibility to vary according to different inundated situations, and they are also influenced by the individual variation like the difference of physical strength. This means that these criteria requires cautious stance to use although they show a sort of an index of the limitation for saftty evacuation from underground space.

  12. Real-space description of semiconducting band gaps in substitutional systems

    International Nuclear Information System (INIS)

    Magri, R.; Zunger, A.

    1991-01-01

    The goal of ''band-gap engineering'' in substitutional lattices is to identify atomic configurations that would give rise to a desired value of the band gap. Yet, current theoretical approaches to the problems, based largely on compilations of band structures for various latice configurations, have not yielded simple rules relating structural motifs to band gaps. We show that the band gap of substitutional AlAs/GaAs lattices can be usefully expanded in terms of a hierarchy of contributions from real-space ''atomic figures'' (pairs, triplets, quadruplets) detemined from first-principles band-structure calculations. Pair figures (up to fourth neighbors) and three-body figures are dominant. In analogy with similar cluster expansions of the total energy, this permits a systematic search among all lattice configurations for those having ''special'' band gaps. This approach enables the design of substitutional systems with certain band-gap properties by assembling atomic figures. As an illustration, we predict that the [0 bar 12]-oriented (AlAs) 1 /(GaAs) 4 /(AlAs) 1 /(GaAs) 2 superlattice has the largest band gap among all Al 0.25 Ga 0.75 As lattices with a maximum of ten cations per unit cell

  13. Real-space mapping of topological invariants using artificial neural networks

    Science.gov (United States)

    Carvalho, D.; García-Martínez, N. A.; Lado, J. L.; Fernández-Rossier, J.

    2018-03-01

    Topological invariants allow one to characterize Hamiltonians, predicting the existence of topologically protected in-gap modes. Those invariants can be computed by tracing the evolution of the occupied wave functions under twisted boundary conditions. However, those procedures do not allow one to calculate a topological invariant by evaluating the system locally, and thus require information about the wave functions in the whole system. Here we show that artificial neural networks can be trained to identify the topological order by evaluating a local projection of the density matrix. We demonstrate this for two different models, a one-dimensional topological superconductor and a two-dimensional quantum anomalous Hall state, both with spatially modulated parameters. Our neural network correctly identifies the different topological domains in real space, predicting the location of in-gap states. By combining a neural network with a calculation of the electronic states that uses the kernel polynomial method, we show that the local evaluation of the invariant can be carried out by evaluating a local quantity, in particular for systems without translational symmetry consisting of tens of thousands of atoms. Our results show that supervised learning is an efficient methodology to characterize the local topology of a system.

  14. Canadian space agency discipline working group for space dosimetry and radiation science

    International Nuclear Information System (INIS)

    Waker, Anthony; Waller, Edward; Lewis, Brent; Bennett, Leslie; Conroy, Thomas

    2008-01-01

    Full text: One of the great technical challenges in the human and robotic exploration of space is the deleterious effect of radiation on humans and physical systems. The magnitude of this challenge is broadly understood in terms of the sources of radiation, however, a great deal remains to be done in the development of instrumentation, suitable for the space environment, which can provide real-time monitoring of the complex radiation fields encountered in space and a quantitative measure of potential biological risk. In order to meet these research requirements collaboration is needed between experimental nuclear instrumentation scientists, theoretical scientists working on numerical modeling techniques and radiation biologists. Under the auspices of the Canadian Space Agency such a collaborative body has been established as one of a number of Discipline Working Groups. Members of the Space Dosimetry and Radiation Science working group form a collaborative network across Canada including universities, government laboratories and the industrial sector. Three central activities form the core of the Space Dosimetry and Radiation Science DWG. An instrument sub-group is engaged in the development of instruments capable of gamma ray, energetic charged particle and neutron dosimetry including the ability to provide dosimetric information in real-time. A second sub-group is focused on computer modeling of space radiation fields in order to assess the performance of conceptual designs of detectors and dosimeters or the impact of radiation on cellular and sub-cellular biological targets and a third sub-group is engaged in the study of the biological effects of space radiation and the potential of biomarkers as a method of assessing radiation impact on humans. Many working group members are active in more than one sub-group facilitating communication throughout the whole network. A summary progress-report will be given of the activities of the Discipline Working Group and the

  15. Technology transfer of military space microprocessor developments

    Science.gov (United States)

    Gorden, C.; King, D.; Byington, L.; Lanza, D.

    1999-01-01

    Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.

  16. DEALed : A tool suite for distributed real-time systems development

    NARCIS (Netherlands)

    Bolshakov, K.; Karpov, Y.; Sintotski, A.; Malyshkin, V.

    1999-01-01

    DEALed is a tool suite for development of distributed systems using DEAL language. DEAL is being developed at Eindhoven University of Technology as a part of DEDOS project. Area of application of the DEALed is the development of the distributed real- time safety-critical control systems.

  17. Self-consistent DFT +U method for real-space time-dependent density functional theory calculations

    Science.gov (United States)

    Tancogne-Dejean, Nicolas; Oliveira, Micael J. T.; Rubio, Angel

    2017-12-01

    We implemented various DFT+U schemes, including the Agapito, Curtarolo, and Buongiorno Nardelli functional (ACBN0) self-consistent density-functional version of the DFT +U method [Phys. Rev. X 5, 011006 (2015), 10.1103/PhysRevX.5.011006] within the massively parallel real-space time-dependent density functional theory (TDDFT) code octopus. We further extended the method to the case of the calculation of response functions with real-time TDDFT+U and to the description of noncollinear spin systems. The implementation is tested by investigating the ground-state and optical properties of various transition-metal oxides, bulk topological insulators, and molecules. Our results are found to be in good agreement with previously published results for both the electronic band structure and structural properties. The self-consistent calculated values of U and J are also in good agreement with the values commonly used in the literature. We found that the time-dependent extension of the self-consistent DFT+U method yields improved optical properties when compared to the empirical TDDFT+U scheme. This work thus opens a different theoretical framework to address the nonequilibrium properties of correlated systems.

  18. Conventional and improved cytotoxicity test methods of newly developed biodegradable magnesium alloys

    Science.gov (United States)

    Han, Hyung-Seop; Kim, Hee-Kyoung; Kim, Yu-Chan; Seok, Hyun-Kwang; Kim, Young-Yul

    2015-11-01

    Unique biodegradable property of magnesium has spawned countless studies to develop ideal biodegradable orthopedic implant materials in the last decade. However, due to the rapid pH change and extensive amount of hydrogen gas generated during biocorrosion, it is extremely difficult to determine the accurate cytotoxicity of newly developed magnesium alloys using the existing methods. Herein, we report a new method to accurately determine the cytotoxicity of magnesium alloys with varying corrosion rate while taking in-vivo condition into the consideration. For conventional method, extract quantities of each metal ion were determined using ICP-MS and the result showed that the cytotoxicity due to pH change caused by corrosion affected the cell viability rather than the intrinsic cytotoxicity of magnesium alloy. In physiological environment, pH is regulated and adjusted within normal pH (˜7.4) range by homeostasis. Two new methods using pH buffered extracts were proposed and performed to show that environmental buffering effect of pH, dilution of the extract, and the regulation of eluate surface area must be taken into consideration for accurate cytotoxicity measurement of biodegradable magnesium alloys.

  19. Developing infrared array controller with software real time operating system

    Science.gov (United States)

    Sako, Shigeyuki; Miyata, Takashi; Nakamura, Tomohiko; Motohara, Kentaro; Uchimoto, Yuka Katsuno; Onaka, Takashi; Kataza, Hirokazu

    2008-07-01

    Real-time capabilities are required for a controller of a large format array to reduce a dead-time attributed by readout and data transfer. The real-time processing has been achieved by dedicated processors including DSP, CPLD, and FPGA devices. However, the dedicated processors have problems with memory resources, inflexibility, and high cost. Meanwhile, a recent PC has sufficient resources of CPUs and memories to control the infrared array and to process a large amount of frame data in real-time. In this study, we have developed an infrared array controller with a software real-time operating system (RTOS) instead of the dedicated processors. A Linux PC equipped with a RTAI extension and a dual-core CPU is used as a main computer, and one of the CPU cores is allocated to the real-time processing. A digital I/O board with DMA functions is used for an I/O interface. The signal-processing cores are integrated in the OS kernel as a real-time driver module, which is composed of two virtual devices of the clock processor and the frame processor tasks. The array controller with the RTOS realizes complicated operations easily, flexibly, and at a low cost.

  20. Development of real-time software environments for NASA's modern telemetry systems

    Science.gov (United States)

    Horner, Ward; Sabia, Steve

    1989-01-01

    An effort has been made to maintain maximum performance and flexibility for NASA-Goddard's VLSI telemetry system elements through the development of two real-time systems: (1) the Base System Environment, which supports generic system integration and furnishes the basic porting of various manufacturers' cards, and (2) the Modular Environment for Data Systems, which supports application-specific developments and furnishes designers with a set of tested generic library functions that can be employed to speed up the development of such application-specific real-time codes. The performance goals and design rationale for these two systems are discussed.

  1. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S., E-mail: nishioka@ppl.appi.keio.ac.jp; Goto, I.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [School of Natural and Living Sciences Education, Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Fukano, A. [Toshiba, 33 Isogo-chou, Isogo-ku, Yokohama-shi, Kanagawa 235-001 (Japan)

    2014-02-15

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.

  2. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    International Nuclear Information System (INIS)

    Nishioka, S.; Goto, I.; Hatayama, A.; Miyamoto, K.; Okuda, S.; Fukano, A.

    2014-01-01

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result

  3. Evaluation of Shielding Performance for Newly Developed Composite Materials

    Science.gov (United States)

    Evans, Beren Richard

    This work details an investigation into the contributing factors behind the success of newly developed composite neutron shield materials. Monte Carlo simulation methods were utilized to assess the neutron shielding capabilities and secondary radiation production characteristics of aluminum boron carbide, tungsten boron carbide, bismuth borosilicate glass, and Metathene within various neutron energy spectra. Shielding performance and secondary radiation data suggested that tungsten boron carbide was the most effective composite material. An analysis of the macroscopic cross-section contributions from constituent materials and interaction mechanisms was then performed in an attempt to determine the reasons for tungsten boron carbide's success over the other investigated materials. This analysis determined that there was a positive correlation between a non-elastic interaction contribution towards a material's total cross-section and shielding performance within the thermal and epi-thermal energy regimes. This finding was assumed to be a result of the boron-10 absorption reaction. The analysis also determined that within the faster energy regions, materials featuring higher non-elastic interaction contributions were comparable to those exhibiting primarily elastic scattering via low Z elements. This allowed for the conclusion that composite shield success within higher energy neutron spectra does not necessitate the use elastic scattering via low Z elements. These findings suggest that the inclusion of materials featuring high thermal absorption properties is more critical to composite neutron shield performance than the presence of constituent materials more inclined to maximize elastic scattering energy loss.

  4. Development of a Refined Space Vehicle Rollout Forcing Function

    Science.gov (United States)

    James, George; Tucker, Jon-Michael; Valle, Gerard; Grady, Robert; Schliesing, John; Fahling, James; Emory, Benjamin; Armand, Sasan

    2016-01-01

    For several decades, American manned spaceflight vehicles and the associated launch platforms have been transported from final assembly to the launch pad via a pre-launch phase called rollout. The rollout environment is rich with forced harmonics and higher order effects can be used for extracting structural dynamics information. To enable this utilization, processing tools are needed to move from measured and analytical data to dynamic metrics such as transfer functions, mode shapes, modal frequencies, and damping. This paper covers the range of systems and tests that are available to estimate rollout forcing functions for the Space Launch System (SLS). The specific information covered in this paper includes: the different definitions of rollout forcing functions; the operational and developmental data sets that are available; the suite of analytical processes that are currently in-place or in-development; and the plans and future work underway to solve two immediate problems related to rollout forcing functions. Problem 1 involves estimating enforced accelerations to drive finite element models for developing design requirements for the SLS class of launch vehicles. Problem 2 involves processing rollout measured data in near real time to understand structural dynamics properties of a specific vehicle and the class to which it belongs.

  5. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  6. Algorithm Development for a Real-Time Military Noise Monitor

    National Research Council Canada - National Science Library

    Vipperman, Jeffrey S; Bucci, Brian

    2006-01-01

    The long-range goal of this 1-year SERDP Exploratory Development (SEED) project was to create an improved real-time, high-energy military impulse noise monitoring system that can detect events with peak levels (Lpk...

  7. Time-Space Trade-Offs

    DEFF Research Database (Denmark)

    Pagter, Jakob Illeborg

    . The area of time-space trade-offs deals with both upper and lower bounds and both are interesting, theoretically as well as practically. The viewpoint of this dissertation is theoretical, but we believe that some of our results can find applications in practice as well. The last four years has witnessed...... perspective hierarchical memory layout models are the most interesting. Such models are called external memory models, in contrast to the internal memory models discussed above. Despite the fact that space might be of great relevance when solving practical problems on real computers, no theoretical model...... capturing space (and time simultaneously) has been defined. We introduce such a model and use it to prove so-called IOspace trade-offs for Sorting. Building on the abovementioned techniques for time-space efficient internal memory Sorting, we develop the first IO-space efficient external memory Sorting...

  8. An expert systems application to space base data processing

    Science.gov (United States)

    Babb, Stephen M.

    1988-01-01

    The advent of space vehicles with their increased data requirements are reflected in the complexity of future telemetry systems. Space based operations with its immense operating costs will shift the burden of data processing and routine analysis from the space station to the Orbital Transfer Vehicle (OTV). A research and development project is described which addresses the real time onboard data processing tasks associated with a space based vehicle, specifically focusing on an implementation of an expert system.

  9. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya

    2016-05-26

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  10. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya; Bera, Ashok; Parida, Manas R.; Adhikari, Aniruddha; Shaheen, Basamat; Alarousu, Erkki; Sun, Jingya; Wu, Tao; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  11. Real-time variables dictionary (RTVD), and expert system for development of real-time applications in nuclear power plants

    International Nuclear Information System (INIS)

    Senra Martinez, A.; Schirru, R.; Dutra Thome Filho, Z.

    1990-01-01

    It is presented in this paper a computerized methodology based on a data dictionary managed by an expert system called Real-Time Variables Dictionary (RTVD). This system is very usefull for development of real-time applications in nuclear power plants. It is described in details the RTVD functions and its implantation in a VAX 8600 computer. It is also pointed out the concepts of artificial intelligence used in teh RTVD

  12. Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State

    Science.gov (United States)

    2018-01-01

    We introduce a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density-functional theory (QEDFT).1−5 Our construction employs the optimized-effective potential (OEP) approach by means of the Sternheimer equation to avoid the explicit calculation of unoccupied states. We demonstrate the efficiency of the scheme by applying it to an exactly solvable GaAs quantum ring model system, a single azulene molecule, and chains of sodium dimers, all located in optical cavities and described in full real space. While the first example is a two-dimensional system and allows to benchmark the employed approximations, the latter two examples demonstrate that the correlated electron-photon interaction appreciably distorts the ground-state electronic structure of a real molecule. By using this scheme, we not only construct typical electronic observables, such as the electronic ground-state density, but also illustrate how photon observables, such as the photon number, and mixed electron-photon observables, for example, electron–photon correlation functions, become accessible in a density-functional theory (DFT) framework. This work constitutes the first three-dimensional ab initio calculation within the new QEDFT formalism and thus opens up a new computational route for the ab initio study of correlated electron–photon systems in quantum cavities. PMID:29594185

  13. A New Generation of Real-Time Systems in the JET Tokamak

    Science.gov (United States)

    Alves, Diogo; Neto, Andre C.; Valcarcel, Daniel F.; Felton, Robert; Lopez, Juan M.; Barbalace, Antonio; Boncagni, Luca; Card, Peter; De Tommasi, Gianmaria; Goodyear, Alex; Jachmich, Stefan; Lomas, Peter J.; Maviglia, Francesco; McCullen, Paul; Murari, Andrea; Rainford, Mark; Reux, Cedric; Rimini, Fernanda; Sartori, Filippo; Stephen, Adam V.; Vega, Jesus; Vitelli, Riccardo; Zabeo, Luca; Zastrow, Klaus-Dieter

    2014-04-01

    Recently, a new recipe for developing and deploying real-time systems has become increasingly adopted in the JET tokamak. Powered by the advent of x86 multi-core technology and the reliability of JET's well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide real-time performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests' (IRQs) affinities together with the kernel's CPU isolation mechanism allows one to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded Application Real-Time executor (MARTe) framework is used for building applications particularly optimised for exploring multi-core architectures. In the past year, four new systems based on this philosophy have been installed and are now part of JET's routine operation. The focus of the present work is on the configuration aspects that enable these new systems' real-time capability. Details are given about the common real-time configuration of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronizing over a network is also presented. The goal is to compare its deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel.

  14. Measure and integral an introduction to real analysis

    CERN Document Server

    Wheeden, Richard L

    2015-01-01

    Now considered a classic text on the topic, Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis by first developing the theory of measure and integration in the simple setting of Euclidean space, and then presenting a more general treatment based on abstract notions characterized by axioms and with less geometric content.Published nearly forty years after the first edition, this long-awaited Second Edition also:Studies the Fourier transform of functions in the spaces L1, L2, and Lp, 1 p Shows the Hilbert transform to be a bounded operator on L2, as an application of the L2 theory of the Fourier transform in the one-dimensional caseCovers fractional integration and some topics related to mean oscillation properties of functions, such as the classes of Hölder continuous functions and the space of functions of bounded mean oscillationDerives a subrepresentation formula, which in higher dimensions plays a role roughly similar to the one played by the fundamental theor...

  15. Space-based societal applications—Relevance in developing countries

    Science.gov (United States)

    Bhaskaranarayana, A.; Varadarajan, C.; Hegde, V. S.

    2009-11-01

    Space technology has the vast potential for addressing a variety of societal problems of the developing countries, particularly in the areas of communication, education and health sectors, land and water resources management, disaster management and weather forecasting. Both remote sensing and communication technologies can be used to achieve this goal. With its primary emphasis on application of space technology, on an end-to-end basis, towards national development, the Indian Space Programme has distinguished itself as one of the most cost-effective and development-oriented space programmes in the world. Developing nations are faced with the enormous task of carrying development-oriented education to the masses at the lower strata of their societies. One important feature of these populations is their large number and the spread over vast and remote areas of these nations, making the reaching out to them a difficult task. Satellite communication (Satcom) technology offers the unique capability of simultaneously reaching out to very large numbers, spread over vast areas, including the remote corners of the country. It is a strong tool to support development education. India has been amongst the first few nations to explore and put to use the Satcom technology for education and development-oriented services to the rural masses. Most of the developing countries have inadequate infrastructure to provide proper medical care to the rural population. Availability of specialist doctors in rural areas is a major bottleneck. Use of Satcom and information technology to connect rural clinics to urban hospitals through telemedicine systems is one of the solutions; and India has embarked upon an effective satellite-based telemedicine programme. Space technology is also useful in disaster warning and management related applications. Use of satellite systems and beacons for locating the distressed units on land, sea or air is well known to us. Indian Space Research Organisation

  16. Tianshuishi space breeding current situation and developing trend

    International Nuclear Information System (INIS)

    Wang Fuquan; Song Jianrong; Zhang Zhongping; Guo Zhenfang

    2012-01-01

    Tianshuishi is located in Xi'an to lanzhou among two big cities, the five space launch, has vegetables, food, grasses, flowers, rape, melon and fruit, Chinese traditional medicine, amount of 8 categories of crops, such as the 22 new material after carrying the ground breeding work. Only vegetables on identified 23 aerospace new varieties. After ten years of space breeding, summarizes the present situation of Tianshuishi space breeding, development experience, characteristic, trends, and puts forward the development space breeding Tianshuishi organization and breeding of talent from the matching policy and grow up incentive mechanism, strengthen the cooperation and all over the country, establishing fiscal policy support from the aspects such as advice. (authors)

  17. The AMERE project: Enabling real-time detection of radiation effects in individual cells in deep space

    Science.gov (United States)

    De Vos, Winnok H.; Meesen, Geert; Szpirer, Cedric; Scohy, Sophie; Cherukuri, Chaitanya; Evrard, Olivier; Hutsebaut, Xavier; Beghuin, Didier

    2012-12-01

    A major concern for long-term deep space missions is the detrimental impact of cosmic radiation on human health. Especially the presence of high-energy particles of high atomic mass (HZE) represents a serious threat. To contribute to a fundamental understanding of space radiation effects and to help improving risk assessment for humans on the Moon, the ESA Lunar Lander mission model payload includes a package dedicated to cell-based radiobiology experiments in the form of an Autonomous Microscope for Examination of Radiation Effects (AMERE). The purpose of this setup is to enable real-time visualization of DNA damage repair in living cells after traversal of HZE particles on the Moon. To assess the feasibility of this challenging experiment, we have analysed the biological and technological demands. In this article, we discuss the experimental concept, the biological considerations and describe the implications for system design.

  18. Motivating and Facilitating Advancements in Space Weather Real-Time Data Availability: Factors, Data, and Access Methods

    Science.gov (United States)

    Pankratz, C. K.; Baker, D. N.; Jaynes, A. N.; Elkington, S. R.; Baltzer, T.; Sanchez, F.

    2017-12-01

    Society's growing reliance on complex and highly interconnected technological systems makes us increasingly vulnerable to the effects of space weather events - maybe more than for any other natural hazard. An extreme solar storm today could conceivably impact hundreds of the more than 1400 operating Earth satellites. Such an extreme storm could cause collapse of the electrical grid on continental scales. The effects on navigation, communication, and remote sensing of our home planet could be devastating to our social functioning. Thus, it is imperative that the scientific community address the question of just how severe events might become. At least as importantly, it is crucial that policy makers and public safety officials be informed by the facts on what might happen during extreme conditions. This requires essentially real-time alerts, warnings, and also forecasts of severe space weather events, which in turn demands measurements, models, and associated data products to be available via the most effective data discovery and access methods possible. Similarly, advancement in the fundamental scientific understanding of space weather processes is also vital, requiring that researchers have convenient and effective access to a wide variety of data sets and models from multiple sources. The space weather research community, as with many scientific communities, must access data from dispersed and often uncoordinated data repositories to acquire the data necessary for the analysis and modeling efforts that advance our understanding of solar influences and space physics on the Earth's environment. The Laboratory for Atmospheric and Space Physics (LASP), as a leading institution in both producing data products and advancing the state of scientific understanding of space weather processes, is well positioned to address many of these issues. In this presentation, we will outline the motivating factors for effective space weather data access, summarize the various data

  19. International and Domestic Development Trends of Electromagnetic Transient Analysis Programs for Power Systems

    Science.gov (United States)

    Noda, Taku

    Nowadays, there is quite high demand for electromagnetic transient (EMT) analysis programs and real-time simulators for power systems. In addition to the conventional demand such as overvoltage, over-current and oscillation simulations, the new demand that includes simulations of power-electronics circuits and power quality is increasing. With this background, development groups of EMT programs and real-time simulators have made progress in terms of computational performance and user experience. In Japan, Central Research Institute of Electric Power Industry has newly developed an EMT analysis program called XTAP (eXpandable Transient Analysis Program). This article overviews these international and domestic development trends of EMT analysis programs and real-time simulators.

  20. Real-Time Kennedy Space Center and Cape Canaveral Air Force Station High-Resolution Model Implementation and Verification

    Science.gov (United States)

    Shafer, Jaclyn A.; Watson, Leela R.

    2015-01-01

    Customer: NASA's Launch Services Program (LSP), Ground Systems Development and Operations (GSDO), and Space Launch System (SLS) programs. NASA's LSP, GSDO, SLS and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). For example, to determine if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 kilometer Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the AMU high-resolution WRF Environmental Modeling System (EMS) model (Watson 2013) in real-time. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The model was set up with a triple-nested grid configuration over KSC/CCAFS based on previous AMU work (Watson 2013). The outer domain (D01) has 12-kilometer grid spacing, the middle domain (D02) has 4-kilometer grid spacing, and the inner domain (D03) has 1.33-kilometer grid spacing. The model runs a 12-hour forecast every hour, D01 and D02 domain outputs are available once an hour and D03 is every 15 minutes during the forecast period. The AMU assessed the WRF-EMS 1

  1. The Sustainable Development of Space: Astro-environmental and dynamical considerations

    Science.gov (United States)

    Boley, Aaron; Byers, Michael; Russell, Sara

    2018-04-01

    The sustainable development of space is a global (and exo-global) challenge that is not limited by borders or research disciplines. Sustainable development is "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". While the development of space brings new economic and scientific possibilities, it also carries significant political, legal, and technical uncertainties. For example, the rapidly increasing accessibility of space is motivating states to unilaterally adopt legislation for the new era of space use, which may have significant unintended consequences, such as increased risks to space assets, disputes among state as well as non-state actors, and changes to unique astro-environments. Any policy or legal position must be informed by the dynamical and astrophysical realities of space use, creating complex and interwoven challenges. Here, we explore several of these potential challenges related to astro-environmentalism, space minining operations, and the associated dynamics.

  2. Combustion, performance and emissions characteristics of a newly ...

    Indian Academy of Sciences (India)

    of a newly developed CRDI single cylinder diesel engine. AVINASH ... In case of unit injector and unit pump systems, fuel injection pressure depends on ... nozzle hole diameters were effective in reducing smoke and PM emissions. However ...

  3. Green space development in shrinking cities – opportunities and constraints

    Directory of Open Access Journals (Sweden)

    Stefanie Rößler

    2008-01-01

    Full Text Available Green space development means both a strategy and a need to cope with the spatial transformation of cities as a consequence of socio-demographic change. This paper focuses on the opportunities and challenges of planning and implementing green spaces in shrinking cities. Based on a doctoral thesis, empirical results regarding the relevance of green spaces and strategies in the process of urban restructuring will be discussed. Concerned cities develop specific framework concepts to face spatial transformation. It is assumed that in shrinking cities the influence of green spaces and as well as their significance for urban form will change. Results of case studies in shrinking cities of Eastern Germany will be discussed with regard to their strategies and the instruments facing the challenges of green space development. The presented findings might be also relevant for urban development in (partially growing cities, enhancing green space development as a part of sustainable cities.

  4. Simple derivation of magnetic space groups

    International Nuclear Information System (INIS)

    Bertaut, E.F.; CEA Centre d'Etudes Nucleaires de Grenoble, 38

    1975-01-01

    The magnetic translation lattices can be described by invariant wave vectors k. Advantages of the wave vector notation over the notations used by Belov et al. and Opechowski et al. are pointed out. In a one-dimensional real representation a space group element (α/tau(1)) has either the character +1 (symmetry element) or -1 (antisymmetry element). Thus the square of any space group operation must have the character +1 in a one-dimensional real representation. This simple ''square criterion'' is used to limit the admissible k-vectors and to derive the family of magnetic space groups, i.e. the set of all possible magnetic space groups, belonging to the same crystallographic space group. In the discussion some useful side results are obtained. Not only the real one-dimensional representations of point groups are connected to real one-dimensional representations of space groups, but a direct connection is shown to exist between one-dimensional complex representations of the point groups 3, 4 and 6 and one-dimensional real representations, belonging to P[001/2]=Psub(2c)(Psub(c))-lattices with screw axes 3 1 , 3 2 , 4 2 , 6 2 and 6 4 . Rules are derived for finding the Belov symbol when the Opechowski-Guccione symbol of the magnetic space group is known and this opportunity is used for correcting errors in the Opechowski-Guccione tables [fr

  5. KRITIK TERHADAP PENYEDIAAN RUANG BAGI WANITA DALAM PERUMAHAN REAL-ESTATE

    Directory of Open Access Journals (Sweden)

    Bharoto Bharoto

    2012-02-01

    Full Text Available One of gender issues in architecture is domesticity, space in a home. According to feminist perspectivehome spatial design must be consider women’s spatial use for housework activities. Preliminaryresearch shows that mothers of a household tend to use kitchen, living room, and master bedroom intheir everyday activities so there must be connectedness appearance among those spaces. In fact, homedesign in Indonesia pays less attention to it. This research aimed to find out how far real-estatedeveloper accommodates the women’s spatial use for housework activities on their products. Data isobtained from 81 real estate advertisements on newspaper. The data is treated by content analysis tofind the offering items on the advertisement. The result show that 19% real- estate developers use facilityof housing and environment as superiority on their products and only 3.5% of them use householdspatial needs. It can be concluded that home design in Indonesia pay less attention to women’s spatialuse for housework activities

  6. Validation of highly accelerated real-time cardiac cine MRI with radial k-space sampling and compressed sensing in patients at 1.5T and 3T.

    Science.gov (United States)

    Haji-Valizadeh, Hassan; Rahsepar, Amir A; Collins, Jeremy D; Bassett, Elwin; Isakova, Tamara; Block, Tobias; Adluru, Ganesh; DiBella, Edward V R; Lee, Daniel C; Carr, James C; Kim, Daniel

    2018-05-01

    To validate an optimal 12-fold accelerated real-time cine MRI pulse sequence with radial k-space sampling and compressed sensing (CS) in patients at 1.5T and 3T. We used two strategies to reduce image artifacts arising from gradient delays and eddy currents in radial k-space sampling with balanced steady-state free precession readout. We validated this pulse sequence against a standard breath-hold cine sequence in two patient cohorts: a myocardial infarction (n = 16) group at 1.5T and chronic kidney disease group (n = 18) at 3T. Two readers independently performed visual analysis of 68 cine sets in four categories (myocardial definition, temporal fidelity, artifact, noise) on a 5-point Likert scale (1 = nondiagnostic, 2 = poor, 3 = adequate or moderate, 4 = good, 5 = excellent). Another reader calculated left ventricular (LV) functional parameters, including ejection fraction. Compared with standard cine, real-time cine produced nonsignificantly different visually assessed scores, except for the following categories: 1) temporal fidelity scores were significantly lower (P = 0.013) for real-time cine at both field strengths, 2) artifacts scores were significantly higher (P = 0.013) for real-time cine at both field strengths, and 3) noise scores were significantly (P = 0.013) higher for real-time cine at 1.5T. Standard and real-time cine pulse sequences produced LV functional parameters that were in good agreement (e.g., absolute mean difference in ejection fraction cine MRI pulse sequence using radial k-space sampling and CS produces good to excellent visual scores and relatively accurate LV functional parameters in patients at 1.5T and 3T. Magn Reson Med 79:2745-2751, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Designing informal learning spaces using student perspectives

    Directory of Open Access Journals (Sweden)

    Matthew David Riddle

    2012-06-01

    Full Text Available This article describes the design of informal learning spaces at an Australian university that support students in the generation of knowledge. Recent learning space design projects at La Trobe have been informed by a number of pre-existing projects, including a small research project on student use of technologies, a national project on learning space design, and a significant curriculum renewal process at the university. It demonstrates the ways in which evidence based on student perspectives and principles developed through applied research in teaching and learning can inform real world learning space design projects in a higher education context.

  8. Analysis of Free-Space Optics Development

    Directory of Open Access Journals (Sweden)

    Mikołajczyk Janusz

    2017-12-01

    Full Text Available The article presents state of work in technology of free-space optical communications (Free Space Optics − FSO. Both commercially available optical data links and their further development are described. The main elements and operation limiting factors of FSO systems have been identified. Additionally, analyses of FSO/RF hybrid systems application are included. The main aspects of LasBITer project related to such hybrid technology for security and defence applications are presented.

  9. Embedded and real time system development a software engineering perspective concepts, methods and principles

    CERN Document Server

    Saeed, Saqib; Darwish, Ashraf; Abraham, Ajith

    2014-01-01

    Nowadays embedded and real-time systems contain complex software. The complexity of embedded systems is increasing, and the amount and variety of software in the embedded products are growing. This creates a big challenge for embedded and real-time software development processes and there is a need to develop separate metrics and benchmarks. “Embedded and Real Time System Development: A Software Engineering Perspective: Concepts, Methods and Principles” presents practical as well as conceptual knowledge of the latest tools, techniques and methodologies of embedded software engineering and real-time systems. Each chapter includes an in-depth investigation regarding the actual or potential role of software engineering tools in the context of the embedded system and real-time system. The book presents state-of-the art and future perspectives with industry experts, researchers, and academicians sharing ideas and experiences including surrounding frontier technologies, breakthroughs, innovative solutions and...

  10. Computer-Aided Software Engineering - An approach to real-time software development

    Science.gov (United States)

    Walker, Carrie K.; Turkovich, John J.

    1989-01-01

    A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.

  11. X-LUNA: Extending Free/Open Source Real Time Executive for On-Board Space Applications

    Science.gov (United States)

    Braga, P.; Henriques, L.; Zulianello, M.

    2008-08-01

    In this paper we present xLuna, a system based on the RTEMS [1] Real-Time Operating System that is able to run on demand a GNU/Linux Operating System [2] as RTEMS' lowest priority task. Linux runs in user-mode and in a different memory partition. This allows running Hard Real-Time tasks and Linux applications on the same system sharing the Hardware resources while keeping a safe isolation and the Real-Time characteristics of RTEMS. Communication between both Systems is possible through a loose coupled mechanism based on message queues. Currently only SPARC LEON2 processor with Memory Management Unit (MMU) is supported. The advantage in having two isolated systems is that non critical components are quickly developed or simply ported reducing time-to-market and budget.

  12. Strong disorder real-space renormalization for the many-body-localized phase of random Majorana models

    Science.gov (United States)

    Monthus, Cécile

    2018-03-01

    For the many-body-localized phase of random Majorana models, a general strong disorder real-space renormalization procedure known as RSRG-X (Pekker et al 2014 Phys. Rev. X 4 011052) is described to produce the whole set of excited states, via the iterative construction of the local integrals of motion (LIOMs). The RG rules are then explicitly derived for arbitrary quadratic Hamiltonians (free-fermions models) and for the Kitaev chain with local interactions involving even numbers of consecutive Majorana fermions. The emphasis is put on the advantages of the Majorana language over the usual quantum spin language to formulate unified RSRG-X rules.

  13. Strategy of Commercial Real Estate Market Development and Interests of the Region: Rostov Region

    Directory of Open Access Journals (Sweden)

    Kosarev Roman, V.

    2016-07-01

    Full Text Available The author discusses the features of the development of commercial real estate market in the Rostov region on the assumption of a relationship between the vector of entrepreneurial activity and the dynamics of supply and demand of real estate in the context of the public interest. The urgency of the problem is due to the institutional nature of commercial real estate in business development, which is neglected in the practice of public exposure due to lack of methodological support and instrumentality. Based on the self-organization of these dynamic models related economic systems in the economy of the region, a logical assessment of the trends of development of business in the consumer market in the context of the real estate needs as infrastructure is given. It allows to identify the main patterns of development and its specific regional features. Statistical evaluation of the cost of renting and buying commercial real estate in Rostov-on-Don city has helped to identify new strategies for business development, requiring the transformation of commercial property types, proposed in the framework of regional program with a focus on five trends of Global Power of Retailing 2015.

  14. Perceptions of the clinical competence of newly registered nurses in the North West province

    Directory of Open Access Journals (Sweden)

    M.R. Moeti

    2004-09-01

    Full Text Available The clinical competence of newly registered nurses relating to the care of individual Clients, depends on their ability to correlate theoretical knowledge learned in the classroom with practice and the development of clinical skills. Its foundation lies in the ability to identify and solve problems that emanate from critical thinking, analytical reasoning and reflective practice. It is clear that the quality of clinical exposure plays a leading role in the development of nursing professionals. Nursing skills alone cannot ensure quality care of clients without the application of theory. Facilitation of this theory to practice therefore remains an essential component of nursing education. This study was aimed at identifying areas of incompetence of newly registered nurses (1998- 2001 in the clinical area by determining the newly registered nurses1 and professional nurses1 perceptions of the competence of the newly registered nurses. A quantitative, non-experimental, descriptive survey was used to collect the data regarding the clinical competence of newly registered nurses (1998-2001.

  15. Plasma contactor development for Space Station

    Science.gov (United States)

    Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy

    1993-01-01

    Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.

  16. Observation of dynamic atom-atom correlation in liquid helium in real space.

    Science.gov (United States)

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T

    2017-05-04

    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  17. Stochastic, real-space, imaginary-time evaluation of third-order Feynman–Goldstone diagrams

    International Nuclear Information System (INIS)

    Willow, Soohaeng Yoo; Hirata, So

    2014-01-01

    A new, alternative set of interpretation rules of Feynman–Goldstone diagrams for many-body perturbation theory is proposed, which translates diagrams into algebraic expressions suitable for direct Monte Carlo integrations. A vertex of a diagram is associated with a Coulomb interaction (rather than a two-electron integral) and an edge with the trace of a Green's function in real space and imaginary time. With these, 12 diagrams of third-order many-body perturbation (MP3) theory are converted into 20-dimensional integrals, which are then evaluated by a Monte Carlo method. It uses redundant walkers for convergence acceleration and a weight function for importance sampling in conjunction with the Metropolis algorithm. The resulting Monte Carlo MP3 method has low-rank polynomial size dependence of the operation cost, a negligible memory cost, and a naturally parallel computational kernel, while reproducing the correct correlation energies of small molecules within a few mE h after 10 6 Monte Carlo steps

  18. Stochastic, real-space, imaginary-time evaluation of third-order Feynman–Goldstone diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Willow, Soohaeng Yoo [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784 (Korea, Republic of); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, Saitama 332-0012 (Japan)

    2014-01-14

    A new, alternative set of interpretation rules of Feynman–Goldstone diagrams for many-body perturbation theory is proposed, which translates diagrams into algebraic expressions suitable for direct Monte Carlo integrations. A vertex of a diagram is associated with a Coulomb interaction (rather than a two-electron integral) and an edge with the trace of a Green's function in real space and imaginary time. With these, 12 diagrams of third-order many-body perturbation (MP3) theory are converted into 20-dimensional integrals, which are then evaluated by a Monte Carlo method. It uses redundant walkers for convergence acceleration and a weight function for importance sampling in conjunction with the Metropolis algorithm. The resulting Monte Carlo MP3 method has low-rank polynomial size dependence of the operation cost, a negligible memory cost, and a naturally parallel computational kernel, while reproducing the correct correlation energies of small molecules within a few mE{sub h} after 10{sup 6} Monte Carlo steps.

  19. Real-space observation of nanojet-induced modes in a chain of microspheres

    International Nuclear Information System (INIS)

    Liu, Cheng-Yang; Wang, Po-Kai

    2014-01-01

    The three-dimensional real-space observation of photonic nanojet-induced modes in a chain of microspheres with different diameters is reported. The optical transmission properties of a chain of microspheres are studied by using high resolution finite-difference time-domain calculation. The photonic nanojet-induced modes in different chains of microspheres are measured by using a scanning optical microscope system with an optical-fiber probe. We observe the photonic nanojet-induced modes from optical microscope images for chains of 3 μm, 5 μm, and 8 μm microspheres deposited on a patterned silicon substrate. The incident beam can be periodically reproduced in chains of dielectric microspheres giving rise to lossless periodically optical focusing with period of two diameters. Detailed theoretical and experimental data on the transmission, scattering loss, and field-of-view are presented. This waveguide technique can be used in biomedical microscopy, ultra-precise laser process, microfluidics, and nanophotonic circuits.

  20. Real-space observation of nanojet-induced modes in a chain of microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Yang, E-mail: cyliu@mail.tku.edu.tw; Wang, Po-Kai

    2014-04-01

    The three-dimensional real-space observation of photonic nanojet-induced modes in a chain of microspheres with different diameters is reported. The optical transmission properties of a chain of microspheres are studied by using high resolution finite-difference time-domain calculation. The photonic nanojet-induced modes in different chains of microspheres are measured by using a scanning optical microscope system with an optical-fiber probe. We observe the photonic nanojet-induced modes from optical microscope images for chains of 3 μm, 5 μm, and 8 μm microspheres deposited on a patterned silicon substrate. The incident beam can be periodically reproduced in chains of dielectric microspheres giving rise to lossless periodically optical focusing with period of two diameters. Detailed theoretical and experimental data on the transmission, scattering loss, and field-of-view are presented. This waveguide technique can be used in biomedical microscopy, ultra-precise laser process, microfluidics, and nanophotonic circuits.

  1. Developing and Testing SpaceWire Devices and Networks

    Science.gov (United States)

    Parkes, Steve; Mills, Stuart

    2014-08-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass- memory, processors, downlink telemetry, and other on- board sub-systems [1]. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi- directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches.Since the SpaceWire standard was published in January 2003, it has been adopted by ESA, NASA, JAXA and RosCosmos for many missions and is being widely used on scientific, Earth observation, commercial and other spacecraft. High-profile missions using SpaceWire include: Gaia, ExoMars rover, Bepi- Colombo, James Webb Space Telescope, GOES-R, Lunar Reconnaissance Orbiter and Astro-H.The development and testing of the SpaceWire links and networks used on these and many other spacecraft currently under development, requires a comprehensive array of test equipment. In this paper the requirements for test equipment fulfilling key test functions are outlined and then equipment that meets these requirements is described. Finally the all-important software that operates with the test equipment is introduced.

  2. Using mathematics to solve real world problems: the role of enablers

    DEFF Research Database (Denmark)

    Niss, Mogens Allan; Geiger, Vincent; Stillman, Gloria

    2018-01-01

    The purpose of this article is to report on a newly funded research project in which we will investigate how secondary students apply mathematical modelling to effectively address real world situations. Through this study, we will identify factors, mathematical, cognitive, social and environmenta...

  3. Development of a support software system for real-time HAL/S applications

    Science.gov (United States)

    Smith, R. S.

    1984-01-01

    Methodologies employed in defining and implementing a software support system for the HAL/S computer language for real-time operations on the Shuttle are detailed. Attention is also given to the management and validation techniques used during software development and software maintenance. Utilities developed to support the real-time operating conditions are described. With the support system being produced on Cyber computers and executable code then processed through Cyber or PDP machines, the support system has a production level status and can serve as a model for other software development projects.

  4. SpaceTech—Postgraduate space education

    Science.gov (United States)

    de Bruijn, Ferdi J.; Ashford, Edward W.; Larson, Wiley J.

    2008-07-01

    , Interpersonal Skills, Telecommunications, Earth Observation and Navigation. A group CCP, a major asset of this unique program, is a focused project, aimed at the formation of a credible virtual commercial space-related business. Participants exercise space systems engineering fundamentals as well as marketing and business engineering tools, with the goal of creating a financially viable business opportunity. They then present the result, in the form of an unsolicited proposal to potential investors, as well as a varied group of engineers, managers and executives from the space community. During the CCP, participants learn the ties between mission and system design and the potential return to investors. They develop an instinct for the technical concepts and which of the parameters to adjust to make their newly conceived business more effective and profitable.

  5. Measurement equivalence of the newly developed Quality of Life in Childhood Epilepsy Questionnaire (QOLCE-55).

    Science.gov (United States)

    Ferro, Mark A; Goodwin, Shane W; Sabaz, Mark; Speechley, Kathy N

    2016-03-01

    The aim of this study was to examine measurement equivalence of the newly developed Quality of Life in Childhood Epilepsy Questionnaire (QOLCE-55) across age, sex, and time in a representative sample of children with newly diagnosed epilepsy. Data come from 373 children enrolled in the Health-related Quality of Life in Children with Epilepsy Study (HERQULES), a multisite prospective cohort study. Measurement equivalence was examined using a multiple-group confirmatory factor analysis framework, whereby increasingly stringent parameter constraints are imposed on the model. Comparison groups were stratified based on age (4-7 years vs. 8-12 years), sex (male vs. female), and time (measurement of health-related quality of life at diagnosis vs. 24 months later). The QOLCE-55 demonstrated measurement equivalence at the level of strict invariance for each model tested--age: χ(2) (3,123) = 4,097.3, p QOLCE-55 are perceived similarly among groups stratified by age, sex, and time and provide further evidence supporting the validity of the scale in children with epilepsy. Health professionals and researchers should be confident that group comparisons made using the QOLCE-55 are unbiased and that any group differences detected are meaningful; that is, not related to differences in the interpretation of items by informants. Future research replicating these findings is encouraged. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  6. Nanotechnology Concepts at Marshall Space Flight Center: Engineering Directorate

    Science.gov (United States)

    Bhat, B.; Kaul, R.; Shah, S.; Smithers, G.; Watson, M. D.

    2001-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has need for miniaturization of components, minimization of weight, and maximization of performance, and nanotechnology will help us get there. Marshall Space Flight Center's (MSFC's) Engineering Directorate is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science, and space optics manufacturing. MSFC has a dedicated group of technologists who are currently developing high-payoff nanotechnology concepts. This poster presentation will outline some of the concepts being developed including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors, and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  7. Newly qualified teachers´ possibilities to get foothold in a lifelong career course

    DEFF Research Database (Denmark)

    Krøjgaard, Frede; Frederiksen, Lisbeth Angela Lunde

    Keyword: Induction program, newly qualified teachers, NQT, retention, professional development In Contrary to many other countries in Europe Denmark does not have any kind of national program regarding teacher induction program (TIP) or support in general to newly qualified teachers what so ever...

  8. Virtual reality myringotomy simulation with real-time deformation: development and validity testing.

    Science.gov (United States)

    Ho, Andrew K; Alsaffar, Hussain; Doyle, Philip C; Ladak, Hanif M; Agrawal, Sumit K

    2012-08-01

    Surgical simulation is becoming an increasingly common training tool in residency programs. The first objective was to implement real-time soft-tissue deformation and cutting into a virtual reality myringotomy simulator. The second objective was to test the various implemented incision algorithms to determine which most accurately represents the tympanic membrane during myringotomy. Descriptive and face-validity testing. A deformable tympanic membrane was developed, and three soft-tissue cutting algorithms were successfully implemented into the virtual reality myringotomy simulator. The algorithms included element removal, direction prediction, and Delaunay cutting. The simulator was stable and capable of running in real time on inexpensive hardware. A face-validity study was then carried out using a validated questionnaire given to eight otolaryngologists and four senior otolaryngology residents. Each participant was given an adaptation period on the simulator, was blinded to the algorithm being used, and was presented the three algorithms in a randomized order. A virtual reality myringotomy simulator with real-time soft-tissue deformation and cutting was successfully developed. The simulator was stable, ran in real time on inexpensive hardware, and incorporated haptic feedback and stereoscopic vision. The Delaunay cutting algorithm was found to be the most realistic algorithm representing the incision during myringotomy (P virtual reality myringotomy simulator is being developed and now integrates a real-time deformable tympanic membrane that appears to have face validity. Further development and validation studies are necessary before the simulator can be studied with respect to training efficacy and clinical impact. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  9. Pineapple Fruit Collapse: Newly Emerging Disease of Pineapple Fruit in Lampung, Indonesia

    OpenAIRE

    Joko Prasetyo; Titik Nur Aeny

    2014-01-01

    ABSTRACT Pineapple fruit collapse: newly emerging disease of pineapple fruit in Lampung, Indonesia Recently, a new disease on pineapple fruit has occurred in Lampung. Symptoms of the disease are complex. Fruits rotted and exuded copious liquid from the inter- fruitlet tissues accompanied by gas bubbles. Open spaces were formed inside the rotten fruit. Dissection of diseased fruit showed many cavities within its sceletal fibres and bad odour was exerted from the rotten tissues. A bacterial...

  10. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station.

    Directory of Open Access Journals (Sweden)

    Macarena Parra

    Full Text Available The International Space Station (ISS National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for

  11. STM Studies of Spin-­Orbit Coupled Phases in Real-­ and Momentum-­Space

    Energy Technology Data Exchange (ETDEWEB)

    Madhavan, Vidya [Univ. of Illinois, Urbana, IL (United States)

    2016-10-17

    The recently discovered class of spin-orbit coupled materials with interesting topological character are fascinating both from fundamental as well as application point of view. Two striking examples are 3D topological insulators (TIs) and topological crystalline insulators (TCIs). These materials host linearly dispersing (Dirac like) surface states with an odd number of Dirac nodes and are predicted to carry a quantized half-integer value of the axion field. The non-trivial topological properties of TIs and TCIs arise from strong spin-orbit coupling leading to an inverted band structure; which also leads to the chiral spin texture in momentum space. In this project we used low temperature scanning tunneling microscopy (STM) and spectroscopy (STS) to study materials with topological phases in real- and momentum-space. We studied both single crystals and thin films of topological materials which are susceptible to being tuned by doping, strain or gating, allowing us to explore their physical properties in the most interesting regimes and set the stage for future technological applications. .

  12. Transformational Technologies to Expedite Space Access and Development

    International Nuclear Information System (INIS)

    Rather, John D. G.

    2010-01-01

    Throughout history the emergence of new technologies has enabled unforeseen breakthrough capabilities that rapidly transformed the world. Some global examples from the twentieth century include AC electric power, nuclear energy, and turbojet engines. At the systems level, success of both Apollo and the Space Shuttle programs depended upon taming hydrogen propulsion and developing high-temperature atmospheric reentry materials. Human space development now is stymied because of a great need for breakthrough technologies and strategies. It is believed that new capabilities exist within the present states-of-the-art of superconducting technology that can be implemented to transform the future of human space development. This paper is an overview of three other papers presented within this forum, which summarizes the principles and consequences of StarTram, showing how the resulting breakthrough advantages can lead directly to safe space tourism and massive development of the moon, Mars and the outer solar system. StarTram can implement cost-effective solar power from space, simple utilization of asteroid material to protect humans from ionizing radiation, and effective defense of the Earth from devastating cosmic impacts. Synergistically, StarTram technologies will revolutionize ground transportation on the Earth, leading to enormous reduction in energy consumption and creation of millions of jobs. High energy lasers will also be discussed because of their importance to power beaming applications.

  13. Reliability modeling of a hard real-time system using the path-space approach

    International Nuclear Information System (INIS)

    Kim, Hagbae

    2000-01-01

    A hard real-time system, such as a fly-by-wire system, fails catastrophically (e.g. losing stability) if its control inputs are not updated by its digital controller computer within a certain timing constraint called the hard deadline. To assess and validate those systems' reliabilities by using a semi-Markov model that explicitly contains the deadline information, we propose a path-space approach deriving the upper and lower bounds of the probability of system failure. These bounds are derived by using only simple parameters, and they are especially suitable for highly reliable systems which should recover quickly. Analytical bounds are derived for both exponential and Wobble failure distributions encountered commonly, which have proven effective through numerical examples, while considering three repair strategies: repair-as-good-as-new, repair-as-good-as-old, and repair-better-than-old

  14. The practical skills of newly qualified nurses.

    Science.gov (United States)

    Danbjørg, Dorthe Boe; Birkelund, Regner

    2011-02-01

    This paper reports the findings from a study of newly qualified nurses and which subjects the nurses regarded as the most important in order to be able to live up to the requirements of clinical practice, and how they experience their potential for developing practical and moral skills, after the decrease in practical training. A qualitative approach guided the research process and the analysis of the data. The data was collected by participant observation and qualitative interviews with four nurses as informants. The conclusions made in this study are based on the statements and the observations of the newly qualified nurses. Our findings are discussed in relation to the Aristotelian concept and other relevant literature. The main message is that the newly qualified nurses did not feel equipped when they finished their training. This could be interpreted as a direct consequence of the decrease in practical training. Our study also underlines that the way nursing theory is perceived and taught is problematic. The interviews revealed that the nurses think that nursing theories should be applied directly in practice. This misunderstanding is probably also applicable to the teachers of the theories. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Optimal SSN Tasking to Enhance Real-time Space Situational Awareness

    Science.gov (United States)

    Ferreira, J., III; Hussein, I.; Gerber, J.; Sivilli, R.

    2016-09-01

    Space Situational Awareness (SSA) is currently constrained by an overwhelming number of resident space objects (RSOs) that need to be tracked and the amount of data these observations produce. The Joint Centralized Autonomous Tasking System (JCATS) is an autonomous, net-centric tool that approaches these SSA concerns from an agile, information-based stance. Finite set statistics and stochastic optimization are used to maintain an RSO catalog and develop sensor tasking schedules based on operator configured, state information-gain metrics to determine observation priorities. This improves the efficiency of sensors to target objects as awareness changes and new information is needed, not at predefined frequencies solely. A net-centric, service-oriented architecture (SOA) allows for JCATS integration into existing SSA systems. Testing has shown operationally-relevant performance improvements and scalability across multiple types of scenarios and against current sensor tasking tools.

  16. Comparison of newly developed anti-bone morphogenetic protein 4 llama-derived antibodies with commercially available BMP4 inhibitors.

    Science.gov (United States)

    Calpe, Silvia; Correia, Ana C P; Sancho-Serra, Maria Del Carmen; Krishnadath, Kausilia K

    2016-01-01

    Due to improved understanding of the role of bone morphogenetic protein 4 (BMP4) in an increasing number of diseases, the development of selective inhibitors of BMP4 is an attractive therapeutic option. The currently available BMP4 inhibitors are not suitable as therapeutics because of their low specificity and low effectiveness. Here, we compared newly generated anti-BMP4 llama-derived antibodies (VHHs) with 3 different types of commercially available BMP4 inhibitors, natural antagonists, small molecule BMPR inhibitors and conventional anti-BMP4 monoclonal antibodies. We found that the anti-BMP4 VHHs were as effective as the natural antagonist or small molecule inhibitors, but had higher specificity. We also showed that commercial anti-BMP4 antibodies were inferior in terms of both specificity and effectiveness. These findings might result from the fact that the VHHs C4C4 and C8C8 target a small region within the BMPR1 epitope of BMP4, whereas the commercial antibodies target other areas of the BMP4 molecule. Our results show that the newly developed anti-BMP4 VHHs are promising antibodies with better specificity and effectivity for inhibition of BMP4, making them an attractive tool for research and for therapeutic applications.

  17. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  18. Real analysis and applications

    CERN Document Server

    Botelho, Fabio Silva

    2018-01-01

    This textbook introduces readers to real analysis in one and n dimensions. It is divided into two parts: Part I explores real analysis in one variable, starting with key concepts such as the construction of the real number system, metric spaces, and real sequences and series. In turn, Part II addresses the multi-variable aspects of real analysis. Further, the book presents detailed, rigorous proofs of the implicit theorem for the vectorial case by applying the Banach fixed-point theorem and the differential forms concept to surfaces in Rn. It also provides a brief introduction to Riemannian geometry. With its rigorous, elegant proofs, this self-contained work is easy to read, making it suitable for undergraduate and beginning graduate students seeking a deeper understanding of real analysis and applications, and for all those looking for a well-founded, detailed approach to real analysis.

  19. Space Weather in Operation

    Data.gov (United States)

    National Aeronautics and Space Administration — The “Space Weather in Operations” effort will provide on-demand and near-real time space weather event information to the Data Access Toolkit (DAT), which is the...

  20. Evaluation issues on real-time operating system in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S. [Regulatory Research Div., Korea Inst. of Nuclear Safety (Korea, Republic of)

    2006-07-01

    In the recent few years, using the hard real-time operating system (RTOS) of safety-critical applications has gained increased acceptance in the nuclear safety system. Failure of this software could cause catastrophic consequences for human life. The digital I and C systems of nuclear power plants also have used hard RTOSs which are executing a required mission completely within its deadline. Because the nuclear power plants have to maintain a very high level of safety, the hard RTOS software should be reliable and safe. The RTOS used in safety-critical I and C systems is the base software used for the purpose of satisfying the real-time constraints, So, careful evaluation of its safety and functionality is very important, So far, the nuclear power plants of Korea have adopted commercial off-the-shelf (COTS) RTOS software. But, these days the RTOS embedded in safety grade PLC has been developed by KNICS project controlled by Ministry of Commerce, Industry and Energy of Korea. Whether COTS RTOS or newly developed RTOS, it must be evaluated its safety and reliability. (authors)

  1. Evaluation issues on real-time operating system in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S.

    2006-01-01

    In the recent few years, using the hard real-time operating system (RTOS) of safety-critical applications has gained increased acceptance in the nuclear safety system. Failure of this software could cause catastrophic consequences for human life. The digital I and C systems of nuclear power plants also have used hard RTOSs which are executing a required mission completely within its deadline. Because the nuclear power plants have to maintain a very high level of safety, the hard RTOS software should be reliable and safe. The RTOS used in safety-critical I and C systems is the base software used for the purpose of satisfying the real-time constraints, So, careful evaluation of its safety and functionality is very important, So far, the nuclear power plants of Korea have adopted commercial off-the-shelf (COTS) RTOS software. But, these days the RTOS embedded in safety grade PLC has been developed by KNICS project controlled by Ministry of Commerce, Industry and Energy of Korea. Whether COTS RTOS or newly developed RTOS, it must be evaluated its safety and reliability. (authors)

  2. Options for development of space fission propulsion systems

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission systems have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed

  3. Novel Advancements in Internet-Based Real-Time Data Technologies

    Science.gov (United States)

    Myers, Gerry; Welch, Clara L. (Technical Monitor)

    2002-01-01

    AZ Technology has been working with NASA MSFC (Marshall Space Flight Center) to find ways to make it easier for remote experimenters (RPI's) to monitor their International Space Station (ISS) payloads in real-time from anywhere using standard/familiar devices. That effort resulted in a product called 'EZStream' which is in use on several ISS-related projects. Although the initial implementation is geared toward ISS, the architecture and lessons learned are applicable to other space-related programs. This paper begins with a brief history on why Internet-based real-time data is important and where EZStream or products like it fit in the flow of data from orbit to experimenter/researcher. A high-level architecture is then presented along with explanations of the components used. A combination of commercial-off-the-shelf (COTS), Open Source, and custom components are discussed. The use of standard protocols is shown along with some details on how data flows between server and client. Some examples are presented to illustrate how a system like EZStream can be used in real world applications and how care was taken to make the end-user experience as painless as possible. A system such as EZStream has potential in the commercial (non-ISS) arena and some possibilities are presented. During the development and fielding of EZStream, a lot was learned. Good and not so good decisions were made. Some of the major lessons learned will be shared. The development of EZStream is continuing and the future of EZStream will be discussed to shed some light over the technological horizon.

  4. Space Flight Software Development Software for Intelligent System Health Management

    Science.gov (United States)

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  5. Development of a framework for identification of political environmental issues faced by multinational hotel chains in newly industrialized countries in Asia

    OpenAIRE

    Kim, Chol Yong

    1992-01-01

    The primary/objective of this study was to develop a framework for identification of political environmental issues faced by multinational hotel chains in newly industrialized countries in Asia. To accomplish the objective, key factors having an impact upon these hotel chains were identified using the Delphi Technique.

  6. Design and development of a highly sensitive, field portable plasma source instrument for on-line liquid stream monitoring and real-time sample analysis

    International Nuclear Information System (INIS)

    Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.

    2000-01-01

    The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring. (c)

  7. CORPORATE BOND MARKET OF REAL ESTATE DEVELOPMENT COMPANIES IN POLAND

    Directory of Open Access Journals (Sweden)

    Magdalena Gostkowska-Drzewicka

    2014-06-01

    Full Text Available The aim of the article examines the features that determine the attractivenessof bonds as a financing instrument for real estate development projects in Poland, and the share of debt securities and bonds in the financing structure of real estate development companies. The implementation of such a formulated purpose required the application of methods of statistical description. Research was conducted on the basis of data from the statistics made by Fitch Ratings Polska, Catalyst, Narodowy Bank Polski, Związek Banków Polskich and the financial statements of bond issuers. The basic research period covers the years 1998-2012. However, due to the lack of published data about the structure of financing of development companies, interest rates, the nominal value, the bond structure by the buyers, the type, the purpose of issuance and the form of security, long-term studies were reduced to shorter periods. Results of the research indicate that the corporate bond market of development companies was in the phase of intensive growth in 2004-2012. Availability of funds obtained through the issuance of bonds increased by the establishment of appropriate infrastructure in 2009. The downturn in the real estate market initiated a series of structural changes in the financing of development companies in 2008- 2009. High margins and restrictive creditworthiness assessment brought on a search for alternative sources of financing. Due to restrictions imposed by the Act of 29th April 2012on the protection of the buyer of a dwelling or a single-family-house, it became important to provide flexible funding sources for development projects, including bond issuances.

  8. Real time test bed development for power system operation, control and cyber security

    Science.gov (United States)

    Reddi, Ram Mohan

    The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.

  9. New real space correlated-basis-functions approach for the electron correlations of the semiconductor inversion layer

    International Nuclear Information System (INIS)

    Feng Weiguo; Wang Hongwei; Wu Xiang

    1989-12-01

    Based on the real space Correlated-Basis-Functions theory and the collective oscillation behaviour of the electron gas with effective Coulomb interaction, the many body wave function is obtained for the quasi-two-dimensional electron system in the semiconductor inversion layer. The pair-correlation function and the correlation energy of the system have been calculated by the integro-differential method in this paper. The comparison with the other previous theoretical results is also made. The new theoretical approach and its numerical results show that the pair-correlation functions are definitely positive and satisfy the normalization condition. (author). 10 refs, 2 figs

  10. Development of space simulation / net-laboratory system

    Science.gov (United States)

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  11. NCU-SWIP Space Weather Instrumentation Payload - Intelligent Sensors On Efficient Real-Time Distributed LUTOS

    Science.gov (United States)

    Yeh, Tse-Liang; Dmitriev, Alexei; Chu, Yen-Hsyang; Jiang, Shyh-Biau; Chen, Li-Wu

    The NCU-SWIP - Space Weather Instrumentation Payload is developed for simultaneous in-situ and remote measurement of space weather parameters for cross verifications. The measurements include in-situ electron density, electron temperature, magnetic field, the deceleration of satellite due to neutral wind, and remotely the linear cumulative intensities of oxygen ion air-glows at 135.6nm and 630.0nm along the flight path in forward, nader, and backward directions for tomographic reconstruction of the electron density distribution underneath. This instrument package is suitable for micro satellite constellation to establish nominal space weather profiles and, thus, to detect abnormal variations as the signs of ionospheric disturbances induced by severe atmospheric weather, or earth quake - mantle movement through their Lithosphere-Atmosphere-Ionosphere Coupling Mechanism. NCU-SWIP is constructed with intelligent sensor modules connected by common bus with their functionalities managed by an efficient distributed real-time system LUTOS. The same hierarchy can be applied to the level of satellite constellation. For example SWIP's in a constellation in coordination with the GNSS Occultation Experiment TriG planned for the Formosa-7 constellation, data can be cross correlated for verification and refinement for real-time, stable and reliable measurements. A SWIP will be contributed to the construction of a MAI Micro Satellite for verification. The SWIP consists of two separate modules: the SWIP main control module and the SWIP-PMTomo sensor module. They are respectively a 1.5kg W120xL120xH100 (in mm) box with forward facing 120mmPhi circular disk probe on a boom top edged at 470mm height and a 7.2kg W126xL590x372H (in mm) slab containing 3 legs looking downwards along the flight path, while consuming the maximum electricity of 10W and 12W. The sensors are 1) ETPEDP measuring 16bits floating potentials for electron temperature range of 1000K to 3000K and 24bits electron

  12. Supporting Development of Energy-Optimised Java Real-Time Systems using TetaSARTS

    DEFF Research Database (Denmark)

    Luckow, Kasper Søe; Bøgholm, Thomas; Thomsen, Bent

    2013-01-01

    This paper presents how the tool TetaSARTS can be used to support the development of embedded hard real-time systems written in Java using the emerging Safety Critical Java (SCJ) profile. TetaSARTS facilitates control-flow sensitive schedulability analysis of a set of real-time tasks, and features...

  13. Automated Predicate Abstraction for Real-Time Models

    Directory of Open Access Journals (Sweden)

    Bahareh Badban

    2009-11-01

    Full Text Available We present a technique designed to automatically compute predicate abstractions for dense real-timed models represented as networks of timed automata. We use the CIPM algorithm in our previous work which computes new invariants for timed automata control locations and prunes the model, to compute a predicate abstraction of the model. We do so by taking information regarding control locations and their newly computed invariants into account.

  14. Space Shuttle dosimetry measurements with RME-III

    International Nuclear Information System (INIS)

    Hardy, K.A.; Golightly, M.J.; Hardy, A.C.; Atwell, W.; Quam, W.

    1991-10-01

    A description of the radiation monitoring equipment (RME-III) dosimetry instrument and the results obtained from six Space Shuttle flights are presented. The RME-III is a self-contained, active (real-time), portable dosimeter system developed for the USAF and adapted for utilization in measuring the ionizing radiation environment on the Space Shuttle. This instrument was developed to incorporate the capabilities of two earlier radiation instruments into a single unit and to minimize crew interaction times with longer battery life and expanded memory capacity. Flight data has demonstrated that the RME-III can be used to accurately assess dose from various sources of exposure, such as that encountered in the complex radiation environment of space

  15. Molecular detection of HIV-1 subtype B, CRF01_AE, CRF33_01B, and newly emerging recombinant lineages in Malaysia.

    Science.gov (United States)

    Chook, Jack Bee; Ong, Lai Yee; Takebe, Yutaka; Chan, Kok Gan; Choo, Martin; Kamarulzaman, Adeeba; Tee, Kok Keng

    2015-03-01

    A molecular genotyping assay for human immunodeficiency virus type 1 (HIV-1) circulating in Southeast Asia is difficult to design because of the high level of genetic diversity. We developed a multiplex real-time polymerase chain reaction (PCR) assay to detect subtype B, CRF01_AE, CRF33_01B, and three newly described circulating recombinant forms, (CRFs) (CRF53_01B, CRF54_01B, and CRF58_01B). A total of 785 reference genomes were used for subtype-specific primers and TaqMan probes design targeting the gag, pol, and env genes. The performance of this assay was compared and evaluated with direct sequencing and phylogenetic analysis. A total of 180 HIV-infected subjects from Kuala Lumpur, Malaysia were screened and 171 samples were successfully genotyped, in agreement with the phylogenetic data. The HIV-1 genotype distribution was as follows: subtype B (16.7%); CRF01_AE (52.8%); CRF33_01B (24.4%); CRF53_01B (1.1%); CRF54_01B (0.6%); and CRF01_AE/B unique recombinant forms (4.4%). The overall accuracy of the genotyping assay was over 95.0%, in which the sensitivities for subtype B, CRF01_AE, and CRF33_01B detection were 100%, 100%, and 97.7%, respectively. The specificity of genotyping was 100%, inter-subtype specificities were > 95% and the limit of detection of 10(3) copies/mL for plasma. The newly developed real-time PCR assay offers a rapid and cost-effective alternative for large-scale molecular epidemiological surveillance for HIV-1. © The American Society of Tropical Medicine and Hygiene.

  16. Space Launch System Development Status

    Science.gov (United States)

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  17. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    Science.gov (United States)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    This paper describes the development as well as the on-ground and the in-flight evaluation of a low cost Global Positioning System (GPS) system for real-time tracking of sounding rockets. The flight unit comprises a modified ORION GPS receiver and a newly designed switchable antenna system composed of a helical antenna in the rocket tip and a dual-blade antenna combination attached to the body of the service module. Aside from the flight hardware a PC based terminal program has been developed to monitor the GPS data and graphically displays the rocket's path during the flight. In addition an Instantaneous Impact Point (IIP) prediction is performed based on the received position and velocity information. In preparation for ESA's Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, Kiruna, on 19 Feb. 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. In addition to the ORION receiver, an Ashtech G12 HDMA receiver and a BAE (Canadian Marconi) Allstar receiver, both connected to a wrap-around antenna, have been flown on the same rocket as part of an independent experiment provided by the Goddard Space Flight Center. This allows an in-depth verification and trade-off of different receiver and antenna concepts.

  18. Real EPC. A method to assess the energy efficiency of newly built houses in practice; Reele EPC. Een methode voor de beoordeling van de energieprestatie van nieuwbouwwoningen in de praktijk

    Energy Technology Data Exchange (ETDEWEB)

    Menkveld, M.; Sipma, J.M. [ECN Beleidsstudies, Petten (Netherlands); Cozijnsen, E.; Leidelmeijer, K. [RIGO research en Advies, Amsterdam (Netherlands)

    2013-12-15

    In this report we describe a method to compare the energy performance in use with the energy performance calculation of newly build houses. We put the average real energy use of a project in the calculation method of the energy performance of new houses. In that way we could compare the energy performance of the building permit with the real performance in practice. Because the calculation method normalizes the energy use of a house by its user surface and surface of building shell, the energy performance of different projects could be compared also when the projects exist of different dwelling types. Also the energy performance of different energy concepts could be compared such as all-electric houses with a heat pump or houses with a gas fired condensing boiler [Dutch] Agentschap NL is betrokken bij veel nieuwbouwprojecten. Een grote vraag is altijd of in de praktijk ook de prestaties worden gehaald die van te voren werden verwacht. Agentschap NL heeft voorgesteld hiervoor een maat te ontwikkelen, namelijk de Reele EPC. ECN heeft deze methodiek uitgewerkt om van woningbouwprojecten de energieprestatie in de praktijk te vergelijken met de geplande EPC. Het idee is dat de energieprestatie in de praktijk wordt uitgedrukt in een reële EPC (de R-EPC)

  19. Scientific, statistical, practical, and regulatory considerations in design space development.

    Science.gov (United States)

    Debevec, Veronika; Srčič, Stanko; Horvat, Matej

    2018-03-01

    The quality by design (QbD) paradigm guides the pharmaceutical industry towards improved understanding of products and processes, and at the same time facilitates a high degree of manufacturing and regulatory flexibility throughout the establishment of the design space. This review article presents scientific, statistical and regulatory considerations in design space development. All key development milestones, starting with planning, selection of factors, experimental execution, data analysis, model development and assessment, verification, and validation, and ending with design space submission, are presented and discussed. The focus is especially on frequently ignored topics, like management of factors and CQAs that will not be included in experimental design, evaluation of risk of failure on design space edges, or modeling scale-up strategy. Moreover, development of a design space that is independent of manufacturing scale is proposed as the preferred approach.

  20. Development of mobile radiological assessment laboratory

    International Nuclear Information System (INIS)

    Pujari, R.N.; Saindane, Shashank S.; Jain, Amit; Parmar, Jayesh; Narsaiah, M.V.R.; Pote, M.B.; Murali, S.; Chaudhury, Probal

    2018-01-01

    During any emergency situations real-time radiation measurements and the fast analysis of the measured radiological data are of crucial importance. The newly developed mobile vehicle based laboratory known as 'Radiological Assessment Laboratory' (RAL) can be used for real time measurements in different radiation emergency scenarios, such as the release of radioactive materials from a radiological/nuclear incident, during search of an orphan source or during radioisotope transportation. RAL is equipped with several high sensitive detectors/systems such as NaI(Tl) gamma spectrometers, large size plastic scintillators and air-sampler, along with GPS and data transfer capability through GSM modem

  1. Space technology, sustainable development and community applications: Internet as a facilitator

    Science.gov (United States)

    Peter, Nicolas; Afrin, Nadia; Goh, Gérardine; Chester, Ed

    2006-07-01

    Among other approaches, space technologies are currently being deployed for disaster management, environmental monitoring, urban planning, health applications, communications, etc. Although space-based applications have tremendous potential for socioeconomic development, they are primarily technology driven and the requirements from the end-users (i.e. the development community) are rarely taken into consideration during the initial development stages. This communication gap between the "space" and "development" communities can be bridged with the help of the web-based knowledge sharing portal focused on space applications for development. This online community uses the development gateway foundation's sophisticated content management system. It is modeled after the development gateway's knowledge sharing portals ( http://topics.developmentgateway.org) and draws from their expertise in knowledge management, partnership building and marketing. These types of portal are known to facilitate broad-based partnerships across sectors, regions and the various stakeholders but also to facilitate North-South and South-South cooperation. This paper describes the initiative "Space for Development" ( http://topics.developmentgateway.org/space) started in 2004 which aims to demonstrate how such a web-based portal can be structured to facilitate knowledge sharing in order to bridge the gap between the "space" and "development" communities in an innovative and global manner.

  2. Approach to developing reliable space reactor power systems

    International Nuclear Information System (INIS)

    Mondt, J.F.; Shinbrot, C.H.

    1991-01-01

    The Space Reactor Power System Project is in the engineering development phase of a three-phase program. During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described in this paper along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top down systems approach which includes a point design based on a detailed technical specification of a 100 kW power system

  3. SpaceWire: IP, Components, Development Support and Test Equipment

    Science.gov (United States)

    Parkes, S.; McClements, C.; Mills, S.; Martin, I.

    SpaceWire is a communications network for use onboard spacecraft. It is designed to connect high data-rate sensors, large solid-state memories, processing units and the downlink telemetry subsystem providing an integrated data-handling network. SpaceWire links are serial, high-speed (2 Mbits/sec to 400 Mbits/sec), bi-directional, full-duplex, pointto- point data links which connect together SpaceWire equipment. Application information is sent along a SpaceWire link in discrete packets. Control and time information can also be sent along SpaceWire links. SpaceWire is defined in the ECSS-E50-12A standard [1]. With the adoption of SpaceWire on many space missions the ready availability of intellectual property (IP) cores, components, software drivers, development support, and test equipment becomes a major issue for those developing satellites and their electronic subsystems. This paper describes the work being done at the University of Dundee and STAR-Dundee Ltd with ESA, BNSC and internal funding to make these essential items available. STAR-Dundee is a spin-out company of the University of Dundee set up specifically to support users of SpaceWire.

  4. Fast development of real-time applications using MDSplus and MARTe frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Manduchi, G., E-mail: gabriele.manduchi@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padova (Italy); Fredian, T.W.; Stillerman, J.A. [Massachusetts Institute of Technology, 175 Albany Street, Cambridge, MA 02139 (United States); Neto, A.; Sartori, F. [Fusion for Energy, Barcelona (Spain)

    2016-11-15

    Highlights: • The paper describes the integration of two different frameworks for control and data acquisition. • It describes the way the two frameworks have been integrated. • It describes the advantages of this combined approach. • It presents a case study of the utilization of the two integrated frameworks. - Abstract: The recent long lasting fusion experiments introduced a change in paradigm for control and data acquisition. While formerly implemented by different systems, using different software and hardware solutions, new requirements, such as the need of handling a sustained data stream, the availability of powerful general-purpose computers and the evolution of Linux towards real-time responsiveness make an integrated solution nowadays feasible. In the fusion community several frameworks have been developed for control and data acquisition and some of them are shared among different experiments. In particular, MDSplus represents the most used framework for data acquisition and management and MARTe is a framework for real-time applications originally developed at JET, but then adopted in several other experiments. Neither system can be used alone to provide integrated real-time control and data acquisition but, since their functionality complements, they can be used in conjunction. To achieve this, an additional layer has been developed so that data handled in real-time by MARTe components can be redirected to pulse file for storage. At the same time, configuration data, typically defined in the MDSplus experiment model, can be seamlessly transferred to MARTe GAMs during system configuration.

  5. Redundant and fault-tolerant algorithms for real-time measurement and control systems for weapon equipment.

    Science.gov (United States)

    Li, Dan; Hu, Xiaoguang

    2017-03-01

    Because of the high availability requirements from weapon equipment, an in-depth study has been conducted on the real-time fault-tolerance of the widely applied Compact PCI (CPCI) bus measurement and control system. A redundancy design method that uses heartbeat detection to connect the primary and alternate devices has been developed. To address the low successful execution rate and relatively large waste of time slices in the primary version of the task software, an improved algorithm for real-time fault-tolerant scheduling is proposed based on the Basic Checking available time Elimination idle time (BCE) algorithm, applying a single-neuron self-adaptive proportion sum differential (PSD) controller. The experimental validation results indicate that this system has excellent redundancy and fault-tolerance, and the newly developed method can effectively improve the system availability. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Vision-based overlay of a virtual object into real scene for designing room interior

    Science.gov (United States)

    Harasaki, Shunsuke; Saito, Hideo

    2001-10-01

    In this paper, we introduce a geometric registration method for augmented reality (AR) and an application system, interior simulator, in which a virtual (CG) object can be overlaid into a real world space. Interior simulator is developed as an example of an AR application of the proposed method. Using interior simulator, users can visually simulate the location of virtual furniture and articles in the living room so that they can easily design the living room interior without placing real furniture and articles, by viewing from many different locations and orientations in real-time. In our system, two base images of a real world space are captured from two different views for defining a projective coordinate of object 3D space. Then each projective view of a virtual object in the base images are registered interactively. After such coordinate determination, an image sequence of a real world space is captured by hand-held camera with tracking non-metric measured feature points for overlaying a virtual object. Virtual objects can be overlaid onto the image sequence by taking each relationship between the images. With the proposed system, 3D position tracking device, such as magnetic trackers, are not required for the overlay of virtual objects. Experimental results demonstrate that 3D virtual furniture can be overlaid into an image sequence of the scene of a living room nearly at video rate (20 frames per second).

  7. Space Ethics and Protection of the Space Environment

    Science.gov (United States)

    Williamson, Mark

    2002-01-01

    The construction of the International Space Station in low Earth orbit and the formulation of plans to search for life on Mars - one day by means of manned missions - indicate that mankind is intent on making the space environment part of its domain. Publicity surrounding space tourism, in-space `burials' and the sale of lunar `real estate' suggests that, some time in the 21st century, the space environment will become an extraterrestrial extension of our current business and domestic environment. This prompts the question of our collective attitude towards the space environment and the degree to which we should regulate its use and protect it for future generations. What, indeed, are the ethical considerations of space exploration and development? Ethics can be defined as "the philosophical study of the moral value of human conduct, and of the rules or principles that ought to govern it". More practically, it represents "an approved code of behaviour" adopted, for example, by a group or profession. If a set of ethics is to be developed for space, it is important that what we refer to as the `space community', or `space profession', is intimately involved. Indeed, if it is not, the profession risks having the job done for it, for example by politicians and members of the general public, who for their own reasons may wish to place restrictions on space development, or ban it altogether. The terrestrial nuclear power industry, for example, has already suffered this fate, while widespread ignorance of the subject has led to a moratorium on the use of RTGs in spacecraft. However, there is a danger in the discussion of ethics that consideration is confined to the philosophical aspects, thus excusing those involved from providing practical solutions to the problems that emerge. The fact that mankind has already affected, and arguably damaged, the space environment transports the discussion beyond the philosophical realm. This paper offers a pragmatic analysis of one

  8. Real-Time Single-Frequency GPS/MEMS-IMU Attitude Determination of Lightweight UAVs

    Science.gov (United States)

    Eling, Christian; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-01-01

    In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5∘) in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems) inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05∘ for the roll and the pitch angle and 0.2∘ for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases. PMID:26501281

  9. Space Launch System Accelerated Booster Development Cycle

    Science.gov (United States)

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  10. Nuclear energy; real problems of the long term development

    International Nuclear Information System (INIS)

    Knapp, V.

    1996-01-01

    Whilst general public accepts the operation of western designed nuclear power stations as safe, waste management and decommission still figure as open problems, although such views are not in agreement with technical and economic status of these operations. A concern with imagined problems can have the effect of neglecting the real ones. In considering the long term development of nuclear energy the real problems can be associated with the wide use of plutonium and multiplication of national reprocessing and enrichment installations. Nuclear proliferation safety could be retained and developed through establishment of international nuclear fuel centres. Their operation would be particularly beneficial for small or medium nuclear countries. Several arguments are given why it is not premature to initiate a study which would identify and analyze the problems of establishing an international nuclear fuel centre. Central Europe could be a region which could be served by one of such nuclear fuel centres. (author)

  11. Simulated non-contact atomic force microscopy for GaAs surfaces based on real-space pseudopotentials

    International Nuclear Information System (INIS)

    Kim, Minjung; Chelikowsky, James R.

    2014-01-01

    We simulate non-contact atomic force microscopy (AFM) with a GaAs(1 1 0) surface using a real-space ab initio pseudopotential method. While most ab initio simulations include an explicit model for the AFM tip, our method does not introduce the tip modeling step. This approach results in a considerable reduction of computational work, and also provides complete AFM images, which can be directly compared to experiment. By analyzing tip-surface interaction forces in both our results and previous ab initio simulations, we find that our method provides very similar force profile to the pure Si tip results. We conclude that our method works well for systems in which the tip is not chemically active.

  12. Newly graduated nurses' use of knowledge sources

    DEFF Research Database (Denmark)

    Voldbjerg, Siri Lygum; Grønkjaer, Mette; Sørensen, Erik Elgaard

    2016-01-01

    AIM: To advance evidence on newly graduated nurses' use of knowledge sources. BACKGROUND: Clinical decisions need to be evidence-based and understanding the knowledge sources that newly graduated nurses use will inform both education and practice. Qualitative studies on newly graduated nurses' use...... underscoring progression in knowledge use and perception of competence and confidence among newly graduated nurses. CONCLUSION: The transition phase, feeling of confidence and ability to use critical thinking and reflection, has a great impact on knowledge sources incorporated in clinical decisions....... The synthesis accentuates that for use of newly graduated nurses' qualifications and skills in evidence-based practice, clinical practice needs to provide a supportive environment which nurtures critical thinking and questions and articulates use of multiple knowledge sources....

  13. Artificial Neural Networks and the Mass Appraisal of Real Estate

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2018-03-01

    Full Text Available With the rapid development of computer, artificial intelligence and big data technology, artificial neural networks have become one of the most powerful machine learning algorithms. In the practice, most of the applications of artificial neural networks use back propagation neural network and its variation. Besides the back propagation neural network, various neural networks have been developing in order to improve the performance of standard models. Though neural networks are well known method in the research of real estate, there is enormous space for future research in order to enhance their function. Some scholars combine genetic algorithm, geospatial information, support vector machine model, particle swarm optimization with artificial neural networks to appraise the real estate, which is helpful for the existing appraisal technology. The mass appraisal of real estate in this paper includes the real estate valuation in the transaction and the tax base valuation in the real estate holding. In this study we focus on the theoretical development of artificial neural networks and mass appraisal of real estate, artificial neural networks model evolution and algorithm improvement, artificial neural networks practice and application, and review the existing literature about artificial neural networks and mass appraisal of real estate. Finally, we provide some suggestions for the mass appraisal of China's real estate.

  14. Systems Analyze Water Quality in Real Time

    Science.gov (United States)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  15. Development of Transient-Reactor Analysis Code (TRAC) for real-time applications

    International Nuclear Information System (INIS)

    Niederauer, G.F.; Giguere, P.T.; Lime, J.F.; Knight, T.D.; Ashy, O.; Fakory, R.

    1997-01-01

    This is the final report of a six-month, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Nuclear-plant training simulators employ simplified one-dimensional thermal-hydraulics codes because of the demands to run in real time and with limited computing power. The objective of this project was to investigate the feasibility of using the advanced Transient-Reactor Analysis Code (TRAC) in a simulator to increase the fidelity of a simulator. Many issues need to be addressed to take such a complex code from a batch engineering environment to a real-time environment. Working with simulator vendor, GSE, the authors investigated the technical issues relating to integrating TRAC into a real-time environment. They also modified a nuclear power plant model for simulator purposes and investigated its performance in real time

  16. Being a team leader: newly registered nurses relate their experiences.

    Science.gov (United States)

    Ekström, Louise; Idvall, Ewa

    2015-01-01

    This paper presents a study that explores how newly qualified registered nurses experience their leadership role in the ward-based nursing care team. A nurse's clinical leadership affects the quality of care provided. Newly qualified nurses experience difficulties during the transition period from student to qualified professional and find it challenging to lead nursing care. Twelve nurses were interviewed and the transcribed texts analysed using qualitative content analysis to assess both manifest and latent content. Five themes were identified: feeling stranded; forming well-functioning teams; learning to lead; having the courage, strength, and desire to lead; and ensuring appropriate care. The findings indicate that many factors limit nurses' leadership but some circumstances are supportive. The leadership prerequisites for newly registered nurses need to improve, emphasizing different ways to create a supportive atmosphere that promotes professional development and job satisfaction. To increase nurse retention and promote quality of care, nurse managers need to clarify expectations and guide and support newly qualified nurses in a planned way. © 2013 John Wiley & Sons Ltd.

  17. Meals in orbit. [Space Shuttle food service planning

    Science.gov (United States)

    1980-01-01

    Space foods which will be available to the Space Shuttle crew are discussed in view of the research and development of proper nutrition in space that began with the pastelike tube meals of the Mercury and Gemini astronauts. The variety of food types proposed for the Space Shuttle crew which include thermostabilized, intermediate moisture, rehydratable, irradiated, freeze-dried and natural forms are shown to be a result of the successive improvements in the Apollo, Skylab and Apollo Soyuz test project flights. The Space Shuttle crew will also benefit from an increase of caloric content (3,000 cal./day), the convenience of a real oven and a comfortable dining and kitchen area.

  18. Accessibility of Real Estate by Transportation as a Determinant of the Development of Suburban Real Estate Markets – Case Study

    Directory of Open Access Journals (Sweden)

    Wolny Ada

    2016-03-01

    Full Text Available The aim of this article is to show the accessibility of real estate by transportation as a factor that significantly determines the decision to acquire it. Direct access to a public road, or access to an internal road that provides communication with the public road, are a factor affecting the value of real estate. In addition, this factor is taken into account in the process of changing the function of the area, especially in determining zoning and land use. The decision of purchasing real estate often depends on transportation accessibility, because it has an impact on developing the selected plot.

  19. The Status of Development of Electromagnetic Pumps for Space Application

    International Nuclear Information System (INIS)

    Kwak, J. S.; Kim, K. H.; Jeong, J. S.; Kim, Hee Reyoung

    2013-01-01

    Korea lunched this research as a part of the small nuclear power generation technology development for space. In this study, investigated are the basic principle and types of electromagnetic pump and the trend of electromagnetic pump technology development in foreign nations. The survey and analysis give the understanding of the suitability and prospect of electromagnetic pumps as space application technology in Korea. The analysis on the status of the development of electromagnetic pumps was carried out for the application to space environment. It was found that USA was approaching the research and development of electromagnetic pumps for space application. Most electromagnetic pumps surveyed have the efficiency between 35% and 50% where that of AC conduction pump is less than 6%. Further study was thought to have to be given for the mechanical and material characteristics, and the applicability of electromagnetic pumps for space nuclear reactor

  20. Real Time Grouting Control Method. Development and application using Aespoe HRL data

    International Nuclear Information System (INIS)

    Kobayashi, Shinji; Stille, Haakan; Gustafson, Gunnar; Stille, Bjoern

    2008-10-01

    The spread of grout is governed by a number of complex relations. The desired results, such as grout penetration and sealing of fractures, cannot be directly measured during the grouting process. This means that the issue of how or when the injection of grout should be stopped cannot be answered by simple rules of thumb. This is also the background to the great variety of empirical rules used in the grouting sector worldwide. The research during recent years has given a better understanding of the water-bearing structures of the rock mass as well as analytical solutions. In this report the methodology has been further studied and a method for design and control of rock grouting has been proposed. The concept of what we call the 'Real Time Grouting Control Method' is to calculate the grout penetration and control grouting in real time by applying the development of the theories for grout spread. Our intention is to combine our method with a computerized logging tool to acquire an active tool in order to be able to govern the grout spread in real time during the grouting operation. The objectives of this report are: to further develop the theory concerning the relationship between grout penetration and grouting time to describe the real course of grouting, to establish the concept of 'Real Time Grouting Control Method' for design and control for rock grouting based on the developed theory, and to verify the concept by using the field data from the grouting experiment at the 450 m level in the Aespoe HRL. In this report, the approximations and analysis of dimensionality have been checked and further developments of the theory with respect to varying grouting pressure, time-dependent grout properties, changing grout mixes, and changing the flow dimension of the fracture have been carried out. The concept of 'Real Time Grouting Control Method' has been described in order to calculate the grout penetration and to control grouting in real time by applying developed