WorldWideScience

Sample records for nevada potential repository

  1. Nevada potential repository preliminary transportation strategy Study 2. Volume 1

    International Nuclear Information System (INIS)

    1996-02-01

    The objectives of this study were to build on the findings of the Nevada Potential Repository Preliminary Transportation Strategy Study 1 (CRWMS M ampersand O 1995b), and to provide additional information for input to the repository environmental impact statement (EIS) process. In addition, this study supported the future selection of a preferred rail corridor and/or heavy haul route based on defensible data, methods, and analyses. Study research did not consider proposed legislation. Planning was conducted according to the Civilian Radioactive Waste Management Program Plan (DOE 1994a). The specific objectives of Study 2 were to: eliminate or reduce data gaps, inconsistencies, and uncertainties, and strengthen the analysis performed in Study 1; develop a preliminary list of rail route evaluation criteria that could be used to solicit input from stakeholders during scoping meetings. The evaluation criteria will be revised based on comments received during scoping; restrict and refine the width of the four rail corridors identified in Study 1 to five miles or less, based on land use constraints and engineering criteria identified and established in Study 2; evaluate national-level effects of routing spent nuclear fuel and high-level waste to the four identified branch lines, including the effects of routing through or avoiding Las Vegas; continue to gather published land use information and environmental data to support the repository EIS; continue to evaluate heavy haul truck transport over three existing routes as an alternative to rail and provide sufficient information to support the repository EIS process; and evaluate secondary uses for rail (passenger use, repository construction, shared use)

  2. Nevada potential repository preliminary transportation strategy: Study 1

    International Nuclear Information System (INIS)

    1995-04-01

    Limited feasible options exist when considering the shipment of spent nuclear fuel and high-level radioactive waste. These options are rail or truck; because of the weight associated with transportation casks (68.0 to 113.4 tonnes/75 to 125 tons), heavy-haul trucks are also considered. Yucca Mountain currently lacks rail service or an existing right-of-way for rail; it also lacks a dedicated highway suitable for heavy-haul trucks. Approximately 11,230 shipments by rail are planned from waste producer sites to Nevada, with an additional 1,041 shipments by legal-weight truck from four reactor sites not capable of upgrading for rail shipment. This study identifies the reasonable alternatives for waste transport to the potential repository site, describes the evaluation process performed to identify those alternatives, and discusses the reasons for elimination of transportation routes deemed to be not reasonable. The study concluded that heavy haul truck transportation is feasible-cost is very favorable when compared to rail-but route restrictions must be further evaluated. In addition to restrictions due to seasonal weather conditions, specific routes have additional restrictions, including no travel on holidays or weekends, and travel during daylight hours only. Further restrictions will be imposed by the U.S. Department of Transportation based on routing of radioactive materials by highway. Operation and maintenance costs for heavy-haul over a 24-year period, based on preliminary information, were calculated on an estimated operational cost of $15,000 per trip, with an estimated 468 trips per year average (11,230 total trips), for an estimated cost of $171 million to $173 million, depending on the route used. Because the initial costs and the total system life cycle costs of heavy-haul are approximately 50 percent lower than the lowest rail cost, this option will continue to be evaluated

  3. Nevada potential repository preliminary transportation strategy: Study 1

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1995-04-01

    Limited feasible options exist when considering the shipment of spent nuclear fuel and high-level radioactive waste. These options are rail or truck; because of the weight associated with transportation casks (68.0 to 113.4 tonnes/75 to 125 tons), heavy-haul trucks are also considered. Yucca Mountain currently lacks rail service or an existing right-of-way for rail; it also lacks a dedicated highway suitable for heavy-haul trucks. Approximately 11,230 shipments by rail are planned from waste producer sites to Nevada, with an additional 1,041 shipments by legal-weight truck from four reactor sites not capable of upgrading for rail shipment. This study identifies the reasonable alternatives for waste transport to the potential repository site, describes the evaluation process performed to identify those alternatives, and discusses the reasons for elimination of transportation routes deemed to be not reasonable. The study concluded that heavy haul truck transportation is feasible-cost is very favorable when compared to rail-but route restrictions must be further evaluated. In addition to restrictions due to seasonal weather conditions, specific routes have additional restrictions, including no travel on holidays or weekends, and travel during daylight hours only. Further restrictions will be imposed by the U.S. Department of Transportation based on routing of radioactive materials by highway. Operation and maintenance costs for heavy-haul over a 24-year period, based on preliminary information, were calculated on an estimated operational cost of $15,000 per trip, with an estimated 468 trips per year average (11,230 total trips), for an estimated cost of $171 million to $173 million, depending on the route used. Because the initial costs and the total system life cycle costs of heavy-haul are approximately 50 percent lower than the lowest rail cost, this option will continue to be evaluated.

  4. Some geochemical considerations for a potential repository site in tuff at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Erdal, B.R.; Bish, D.L.; Crowe, B.M.; Daniels, W.R.; Ogard, A.E.; Rundberg, R.S.; Vaniman, D.T.; Wolfsberg, K.

    1982-01-01

    The Nevada Nuclear Waste Storage Investigations, which is evaluating potential locations for a high-level waste repository at the Nevada Test Site and environs, is currently focusing its investigations on tuff, principally in Yucca Mountain, as a host rock. This paper discusses some of the geochemical investigations. Particular emphasis is placed on definition of some basic elements and necessary technical approaches for the geochemistry data acquisition and modeling program. Some site-specific tuff geochemical information that is important for site selection and repository performance will be identified and the current status of knowledge will then be discussed

  5. Plans for characterization of the potential geologic repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dobson, D.C.; Blanchard, M.B.; Voegele, M.D.; Younker, J.L.

    1990-01-01

    Site investigations in the vicinity of the potential repository site at Yucca Mountain, Nevada, have occurred for many years. Although information from previous site investigations was adequate to support preliminary evaluations by the US Department of Energy (DOE) in the Environmental Assessment and to develop conceptual repository and waste package designs, this information is insufficient to proceed to the advanced designs and performance assessments required for the license application to the US Nuclear Regulatory Commission (NRC). Therefore, intensive site characterization is planned, as described in the December 1988 Site Characterization Plan (SCP). The data acquisition activities described in the SCP are focused on obtaining information to allow evaluations of the natural and engineered barriers considered potentially relevant to repository performance. The site data base must be adequate to allow predictions of the range of expected variation in geologic conditions over the next 10,000 years, as well as predictions of the probabilities for catastrophic geologic events that could affect repository performance. 4 refs., 4 figs

  6. Geochemical homogeneity of tuffs at the potential repository level, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, Zell E.; Cloke, Paul

    2001-01-01

    In a potential high-level radioactive waste repository at Yucca Mountain, Nevada, radioactive waste and canisters, drip shields protecting the waste from seepage and from rock falls, the backfill and invert material of crushed rock, the host rock, and water and gases contained within pores and fractures in the host rock together would form a complex system commonly referred to as the near-field geochemical environment. Materials introduced into the rock mass with the waste that are designed to prolong containment collectively are referred to as the Engineered Barrier System, and the host rock and its contained water and gases compose the natural system. The interaction of these component parts under highly perturbed conditions including temperatures well above natural ambient temperatures will need to be understood to assess the performance of the potential repository for long-term containment of nuclear waste. The geochemistry and mineralogy of the rock mass hosting the emplacement drifts must be known in order to assess the role of the natural system in the near-field environment. Emplacement drifts in a potential repository at Yucca Mountain would be constructed in the phenocryst-poor member of the Topopah Spring Tuff which is composed of both lithophysal and nonlithophysal zones. The chemical composition of the phenocryst-poor member has been characterized by numerous chemical analyses of outcrop samples and of core samples obtained by surface-based drilling. Those analyses have shown that the phenocryst-poor member of the Topopah Spring Tuff is remarkably uniform in composition both vertically and laterally. To verify this geochemical uniformity and to provide rock analyses of samples obtained directly from the potential repository block, major and trace elements were analyzed in core samples obtained from drill holes in the cross drift, which was driven to provide direct access to the rock mass where emplacement drifts would be constructed

  7. Ground-water travel time calculations for the potential nuclear repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Wilson, W.E.; Sinnock, S.

    1986-01-01

    In support of the US Department of Energy Nevada Nuclear Waste Storage Investigations Project, ground-water travel times were calculated for flow paths in both the saturated and unsaturated zones at Yucca Mountain, a potential site for a high-level radioactive waste repository in southern Nevada. The calculations were made through a combined effort by Science Applications International Corporation, Sandia National Laboratories, and the US Geological Survey. Travel times in the unsaturated zone were estimated by dividing the flow path length by the ground-water velocity, where velocities were obtained by dividing the vertical flux by the effective porosity of the rock types along assumed vertical flow paths. Saturated zone velocities were obtained by dividing the product of the bulk hydraulic conductivity and hydraulic gradient by the effective porosity. Total travel time over an EPA-established 5-km flow path was then calculated to be the sum of the travel times in the two parts of the flow path. Estimates of ground water fluxes and travel times are critical for evaluating the favorability of the Yucca Mountain site because they provide the basis for estimating the potential for radionuclides to reach the accessible environment within certain time limits

  8. Chemical variability of zeolites at a potential nuclear waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.E.

    1985-01-01

    The compositions of clinoptilolites and their host tuffs have been examined by electron microprobe and x-ray fluorescence, respectively, to determine their variability at a potential nuclear waste repository, Yucca Mountain, Nevada. Because of their sorptive properties, these zeolites could provide important geologic barriers to radionuclide migration. Variations in clinoptilolite composition can strongly affect the mineral's thermal and ion-exchange properties, thus influencing its behavior in the repository environment. Clinoptilolites and heulandites closest to the proposed repository have calcium-rich compositions (60 to 90 mol. % Ca) and silica-to-aluminum ratios that concentrate between 4.0 and 4.6. In contrast, clinoptilolites and their host tuffs deeper in the volcanic sequence have highly variable compositions that vary vertically and laterally. Deeper-occurring clinoptilolites in the eastern part of Yucca Mountain are characterized by calcic-potassic compositions and tend to become more calcium-rich with depth. Clinoptilolites at equivalent stratigraphic levels on the western side of Yucca Mountain have sodic-potassic compositions and tend to become more sodium-rich with depth. Despite their differences in exchangeable cation compositions these two deeper-occurring compositional suites have similar silica-to-aluminum ratios, concentrating between 4.4 and 5.0. The chemical variability of clinoptilolites and their host tuffs at Yucca Mountain suggest that their physical and chemical properties will also vary. Compositionally-dependent clinoptilolite properties important for repository performance assessment include expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties

  9. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C.; Ballou, L.B.; Revelli, M.A.; Ducharme, A.R.; Shephard, L.E.; Dudley, W.W.; Hoxie, D.T.; Herbst, R.J.; Patera, E.A.; Judd, B.R.; Docka, J.A.; Rickertsen, L.D.

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE's Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ''current information'' or ''available evidence.''

  10. Vacuum drilling of unsaturated tuffs at a potential radioactive-waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S.

    1985-01-01

    A vacuum reverse-air circulation drilling method was used to drill two 17-1/2-inch (44.5-centimeter) diameter test holes to depths of 1269 feet (387 meters) and 1887 feet (575 meters) at Yucca Mountain near the Nevada Test Site. The site is being considered by the US Department of Energy for construction of a high-level radioactive-waste repository. One of these two test holes (USW UZ-1) has been equipped with instrumentation to obtain a long-term record of pressure and moisture potential data; the other test hole (USW UZ-6) will be similarly instrumented in the near future. These investigations are being conducted as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. The test holes were drilled using a 5-1/2-inch (14-centimeter) by 8-5/8-inch (22-centimeter) dual-string reverse-vacuum assembly. A vacuum, induced at the land surface, removed the drill cuttings through the inner string. Compressed air was injected into the dual-string annulus to cool the bit and to keep the bit and inner string clean. A tracer gas, sulfur hexafluoride (SF 6 ), was added to the compressed air for a later determination of atmospheric contamination that might have occurred during the drilling. After reaching the surface, the drill cuttings were routed to a dry separator for sample collection. Then return air and dust from the cuttings were routed to a wet separator where the dust was removed by a water spray, and the remaining air was exhausted through the vacuum unit (blower) to the atmosphere. 6 refs., 4 figs

  11. GEOCHEMISTRY OF ROCK UNITS AT THE POTENTIAL REPOSITORY LEVEL, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Peterman, Z.E.; Cloke, P.L.

    2000-01-01

    The compositional variability of the phenocryst-poor member of the 12.8-million-year Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults, The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in weight percent or grams per hundred grams is: SiO 2 , 76.29; Al 2 O 3 , 12.55; FeO, 0.14; Fe 2 O 3 , 0.97; MgO, 0.13; CaO, 0.50; Na 2 O, 3.52; K 2 O, 4.83; TiO 2 , 0.11; and MnO, 0.07

  12. Geoengineering properties of potential repository units at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Tillerson, J.R.; Nimick, F.B.

    1984-12-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is currently evaluating volcanic tuffs at the Yucca Mountain site, located on and adjacent to the Nevada Test Site, for possible use as a host rock for a radioactive waste repository. The behavior of tuff as an engineering material must be understood to design, license, construct, and operate a repository. Geoengineering evaluations and measurements are being made to develop confidence in both the analysis techniques for thermal, mechanical, and hydrothermal effects and the supporting data base of rock properties. The analysis techniques and the data base are currently used for repository design, waste package design, and performance assessment analyses. This report documents the data base of geoengineering properties used in the analyses that aided the selection of the waste emplacement horizon and in analyses synopsized in the Environmental Assessment Report prepared for the Yucca Mountain site. The strategy used for the development of the data base relies primarily on data obtained in laboratory tests that are then confirmed in field tests. Average thermal and mechanical properties (and their anticipated variations) are presented. Based upon these data, analyses completed to date, and previous excavation experience in tuff, it is anticipated that existing mining technology can be used to develop stable underground openings and that repository operations can be carried out safely

  13. Perceived risk, stigma, and potential economic impacts of a high-level nuclear waste repository in Nevada

    International Nuclear Information System (INIS)

    Slovic, P.; Layman, M.; Kraus, N.N.; Chalmers, J.; Gesel, G.; Flynn, J.

    1989-07-01

    This paper describes a program of research designed to assess the potential impacts of a high-level nuclear waste repository at Yucca Mountain, Nevada, upon tourism, retirement and job-related migration, and business development in Las Vegas and the state. Adverse economic impacts may be expected to result from two related social processes. One has to do with perceptions of risk and socially amplified reactions to ''unfortunate events'' associated with the repository (major and minor accidents, discoveries of radiation releases, evidence of mismanagement, attempts to sabotage or disrupt the facility, etc.). The second process that may trigger significant adverse impacts is that of stigmatization. The conceptual underpinnings of risk perception, social amplification, and stigmatization are discussed in this paper and empirical data are presented to demonstrate how nuclear images associated with Las Vegas and the State of Nevada might trigger adverse effects on tourism, migration, and business development

  14. Perceived risk, stigma, and potential economic impacts of a high-level nuclear waste repository in Nevada

    International Nuclear Information System (INIS)

    Slovic, P.

    1989-01-01

    This paper addresses the potential for the proposed Yucca Mountain repository to have serious adverse economic impacts on the city of Las Vegas and the State of Nevada. Adverse economic impacts may be expected to result from two related social processes. One has to do with perceptions of risk and socially amplified reactions to unfortunate events associated with the repository (major and minor accidents, discoveries of radiation releases, evidence of mismanagement, attempts to sabotage or disrupt the facility, etc.). The second process that may trigger significant adverse impacts is that of stigmatization. The conceptual underpinnings of risk perception, social amplification, and stigma are discussed in this paper and empirical data are presented to demonstrate how nuclear images associated with Las Vegas and the State of Nevada might trigger adverse effects on tourism, migration, and business development

  15. Perceived risk, stigma, and potential economic impacts of a high-level nuclear waste repository in Nevada

    International Nuclear Information System (INIS)

    Slovic, P.; Layman, M.; Kraus, N.; Flynn, J.; Chalmers, J.; Gesell, G.

    1991-01-01

    This study investigates the potential impacts of the proposed nuclear waste repository at Yucca Mountain, Nevada, upon tourism, retirement and job-related migration, and business development in Las Vegas and the state. Adverse impacts may be expected to result from perceptions of risk, stigmatization, and socially amplified reactions to 'unfortunate events' associated with the repository (major and minor accidents, discoveries of radiation releases, evidence of mismanagement, attempts to sabotage or disrupt the facility, etc.). The conceptual underpinnings of risk perception, stigmatization, and social amplification are discussed and empirical data are presented to demonstrate how nuclear images associated with Las Vegas and the State of Nevada might trigger adverse economic effects. The possibility that intense negative imagery associated with the repository may cause significant harm to Nevada's economy can no longer be ignored by serious attempts to assess the risks and impacts of this unique facility. The behavioral processes described here appear relevant as well to the social impact assessment of any proposed facility that produces, uses, transports, or disposes of hazardous materials

  16. Perceived risk, stigma, and potential economic impacts of a high-level nuclear waste repository in Nevada.

    Science.gov (United States)

    Slovic, P; Layman, M; Kraus, N; Flynn, J; Chalmers, J; Gesell, G

    1991-12-01

    This study investigates the potential impacts of the proposed nuclear waste repository at Yucca Mountain, Nevada, upon tourism, retirement and job-related migration, and business development in Las Vegas and the state. Adverse impacts may be expected to result from perceptions of risk, stigmatization, and socially amplified reactions to "unfortunate events" associated with the repository (major and minor accidents, discoveries of radiation releases, evidence of mismanagement, attempts to sabotage or disrupt the facility, etc.). The conceptual underpinnings of risk perception, stigmatization, and social amplification are discussed and empirical data are presented to demonstrate how nuclear images associated with Las Vegas and the State of Nevada might trigger adverse economic effects. The possibility that intense negative imagery associated with the repository may cause significant harm to Nevada's economy can no longer be ignored by serious attempts to assess the risks and impacts of this unique facility. The behavioral processes described here appear relevant as well to the social impact assessment of any proposed facility that produces, uses, transports, or disposes of hazardous materials.

  17. Evaluation Of Groundwater Pathways And Travel Times From The Nevada Test Site To The Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    K.F. Pohlman; J. Zhu; M. Ye; J. Chapman; C. Russell; D.S. Shafer

    2006-01-01

    Yucca Mountain (YM), Nevada, has been recommended as a deep geological repository for the disposal of spent fuel and high-level radioactive waste. If YM is licensed as a repository by the Nuclear Regulatory Commission, it will be important to identify the potential for radionuclides to migrate from underground nuclear testing areas located on the Nevada Test Site (NTS) to the hydraulically downgradient repository area to ensure that monitoring does not incorrectly attribute repository failure to radionuclides originating from other sources. In this study, we use the Death Valley Regional Flow System (DVRFS) model developed by the U.S. Geological Survey to investigate potential groundwater migration pathways and associated travel times from the NTS to the proposed YM repository area. Using results from the calibrated DVRFS model and the particle tracking post-processing package MODPATH, we modeled three-dimensional groundwater advective pathways in the NTS and YM region. Our study focuses on evaluating the potential for groundwater pathways between the NTS and YM withdrawal area and whether travel times for advective flow along these pathways coincide with the prospective monitoring timeframe at the proposed repository. We include uncertainty in effective porosity, as this is a critical variable in the determination of time for radionuclides to travel from the NTS region to the YM withdrawal area. Uncertainty in porosity is quantified through evaluation of existing site data and expert judgment and is incorporated in the model through Monte Carlo simulation. Since porosity information is limited for this region, the uncertainty is quite large and this is reflected in the results as a large range in simulated groundwater travel times

  18. The convention planning process: Potential impact of a high-level Nuclear Waste Repository in Nevada

    International Nuclear Information System (INIS)

    Kunreuther, H.; Easterling, D.; Kleindorfer, P.

    1988-09-01

    This report presents results from two studies that test whether a high level nuclear waste repository sites at Yucca Mountain, Nevada will diminish the willingness of meeting planners to schedule conventions, trade shows, and other meetings in Las Vegas. The first study, a focus group interview with nine meeting planners from the Philadelphia area, found little evidence that planners' selection decisions would be influenced by environmental hazards (e.g., earthquakes, pollution), unless planners were led to believe that these hazards would have a direct impact on convention delegates and the planner could conceivably be held personally responsible for any such impacts. Participants did point out that they would be sensitive to continued media coverage of a negative event, as this might stigmatize the city in the eyes of delegates. The results from the focus group guided the development of a larger and more formal questionnaire survey of meeting planners who were known to have selected Las Vegas for a meeting. Of the 153 planners recruited, 114 had a future meeting scheduled and 39 had arranged a meeting that was recently held in the city. Subjects first answered a number of questions that described the process by which they chose Las Vegas among the possible convention cities. They were then instructed to reconsider their decision in light of seven different scenarios pertaining to the repository at Yucca Mountain

  19. Aspects of potential magmatic disruption of a high-level radioactive waste repository in southern Nevada

    International Nuclear Information System (INIS)

    Crowe, B.; Self, S.; Vaniman, D.; Amos, R.; Perry, F.

    1983-01-01

    Volcanic hazard studies, combining standard techniques of hazard appraisal and risk assessment are being undertaken with respect to storage of high-level, radioactive waste in southern Nevada. Consequence studies, the emphasis of this work, are evaluated by tracing the steps of ascent of basaltic magma including intersection and disruption of a repository followed by surface eruption. Theoretical considerations suggest basalt magma ascends rapidly from mantle depth (10's of cm/sec in the bubble-free regime) but may be trapped temporarily and fractionate at the mantle/crust interface. Basalt centers are fed from narrow linear dikes. Local sheet-like intrusions formed at depths of 200 to 300 m probably due to a combination of extensional faulting during emplacement and trapping within low-density tuff country rock, aided in part by a low magma-volatile content. Incorporation of radioactive waste in basalt magma is controlled by the dimensions of basalt dikes at repository depths and the depth of magma fragmentation. Dispersal pathways of waste should follow the pyroclastic component of a Strombolian eruption. The maximum volume of waste deposited with basaltic tephra can be traced approximately by assuming waste material is dispersed in the same patterns as country rock lithic fragments. Based on a basalt magma cycle that is similar to typical Strombolian centers, 180 m 3 of a repository inventory will be deposited in a scoria cone (of which approx. 1 m 3 will be exposed to the surface in a 10,000-year period), 320 to 900 m 3 will be deposited in a scoria-fall sheet (up to 12-km dispersal), and 21 m 3 will be dispersed regionally with a fine-grained particle component. 62 references, 8 figures, 2 tables

  20. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  1. Hydrologic investigations to evaluate a potential site for a nuclear-waste repository, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1985-01-01

    Yucca Mountain, Nevada Test Site, is being evaluated by the U.S. Department of Energy for its suitability as a site for a mined geologic respository for high-level nuclear wastes. The repository facility would be constructed in densely welded tuffs in the unsaturated zone. In support of the evaluation, the U.S. Geological Survey is conducting hydrologic investigations of both the saturated and unsaturated zones, as well as paleohydrologic studies. Investigation in saturated-zone hydrology will help define one component of ground-water flow paths and travel times to the accessible environment. A two-dimensional, steady-state, finite-element model was developed to describe the regional hydrogeologic framework. The unsaturated zone is 450 to 700 meters thick at Yucca Mountain; precipitation averages about 150 millimeters per year. A conceptual hydrologic model of the unsaturated zone incorporates the following features: minimal net infiltration, variable distribution of flux, lateral flow, potential for perched-water zones, fracture and matrix flow, and flow along faults. The conceptual model is being tested primarily by specialized test drilling; plans also are being developed for in-situ testing in a proposed exploratory shaft. Quaternary climatic and hydrologic conditions are being evaluated to develop estimates of the hydrologic effects of potential climatic changes during the next 10,000 years. Evaluation approaches include analysis of plant macrofossils in packrat middens, evaluation of lake and playa sediments, infiltration tests, and modeling effects of potential increased recharge on the potentiometric surface

  2. Acceptance of waste for disposal in the potential United States repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Svinicki, K.

    1996-01-01

    This paper addresses the process for the acceptance of waste into the waste management system (WMS) with a focus on the detailed requirements identified from the Waste Acceptance System Requirements Document. Also described is the recent dialogue between OCRWM and the Office of Environmental Management to resolve issues, including the appropriate interpretation and application of regulatory and system requirements to DOE-owned spent fuel. Some information is provided on the design of the repository system to aid the reader in understanding how waste that is accepted into the WMS is received and emplaced in the repository

  3. Thermal modeling for a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1994-03-01

    Repository performance models based on numerical simulation of fluid and heat flows have recently been developed by several different groups. Model conceptualizations generally focus on large-scale average behavior. This comparison finds that current performance assessment (PA) models use generally similar approximations and parameters. Certain differences exist in some performance-relevant parameters, especially absolute permeabilities, characteristic curves, and thermal conductivities. These reflect present uncertainties about the most appropriate parameters applicable to Yucca Mountain and must be resolved through future field observations and laboratory measurements. For a highly heterogeneous fractured-porous hydrogeologic system such as Yucca Mountain, water infiltration through the unsaturated zone is expected to be dominated by highly localized phenomena. These include fast channelized flow along preferential paths in fractures, and frequent local ponding. The extended dry repository concept proposed by the Livermore group is reviewed. Predictions of large-scale drying around the repository on the average for large thermal loads cannot be taken to indicate that waste packages will not be contacted by liquid water, and that aqueous-phase transport of contaminants is not possible. Specifically, the authors find that modest water infiltration, on the order of a few millimeters per year, would be sufficient to overwhelm the vaporization capacity of the repository heat and inundate the waste packages within a time frame of a few thousand years. A preliminary analysis indicates that channelized flow of water may persist over large vertical distances. The vaporization-condensation cycle has a capacity for generating huge amounts of ponded water. A small fraction of the total condensate, if ponded and then episodically released, would be sufficient to cause liquid phase to make contact with the waste packages

  4. Clinoptilolite compositions in diagenetically-altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.E.

    1987-01-01

    The compositions of Yucca Mountain clinoptilolites and their host tuffs are highly variable. Clinoptilolites and heulandites in fractures near the repository and in a thin, altered zone at the top of the Topopah Spring basal vitrophyre have consistent calcium-rich compositions. Below this level, clinoptilolites in thick zones of diagenetic alteration on the east side of Yucca Mountain have calcic-potassic compositions and become more calcium rich with depth. Clinoptilolites in stratigraphically equivalent tuffs to the west have sodic-potassic compositions and become more sodic with depth. Clinoptilolite properties important for repository performance assessment include thermal expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties. These properties can be significantly affected by clinoptilolite compositions. The compositional variations for clinoptilolites found by this study suggest that the properties will vary vertically and laterally at Yucca Mountain. Used in conjunction with experimental data, the clinoptilolite compositions presented here can be used to model the behavior of clinoptilolites in the repository environment and along transport pathways

  5. Sequential evaluation of the potential geologic repository site at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Bjerstedt, T.W.

    1996-01-01

    This paper discusses the changes that are planned for the characterization program at Yucca Mountain due to budget changes. Yucca Mountain is the only site being studied in the US for a geologic repository. Funding for the site characterization program at Yucca Mountain program was cut by roughly one half from the 1994 projected budget to complete three major milestones. These project milestones included: (1) a time-phased determination of site suitability, and if a positive finding, (2) completion of an Environmental Impact Statement, and (3) preparation of a License Application to the US NRC to authorize repository construction. In reaction, Yucca Mountain Site Characterization Project has shifted from parallel development of these milestones to a sequenced approach with the site suitability evaluation being replaced with a management assessment. Changes to the regulatory structure for the disposal program are under consideration by DOE and the NRC. The possibility for NRC and Doe to develop a site-specific regulatory structure follows from the National Energy Policy Act of 1992 that authorized the US EPA to develop a site specific environmental standard for Yucca Mountain

  6. Use of an analog site near Raymond, California, to develop equipment and methods for characterizing a potential high-level, nuclear waste repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Umari, A.M.J.; Geldon, A.; Patterson, G.; Gemmell, J.; Earle, J.; Darnell, J.

    1994-01-01

    Yucca Mountain, Nevada, currently is being investigated by the U.S. Geological Survey as a potential site for a high-level nuclear waste repository. Planned hydraulic-stress and tracer tests in fractured, tuffaceous rocks below the water table at Yucca Mountain will require work at depths in excess of 1,300 feet. To facilitate prototype testing of equipment and methods to be used in aquifer tests at Yucca Mountain, an analog site was selected in the foothills of the Sierra Nevada near Raymond, California. Two of nine 250- to 300-feet deep wells drilled into fractured, granitic rocks at the Raymond site have been instrumented with packers, pressure transducers, and other equipment that will be used at Yucca Mountain. Aquifer tests conducted at the Raymond site to date have demonstrated a need to modify some of the equipment and methods conceived for use at Yucca Mountain

  7. Pre-construction geologic section along the cross drift through the potential high-level radioactive waste repository, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Potter, C.J.; Day, W.C.; Sweetkind, D.S.; Juan, C.S.; Drake, R.M. II

    1998-01-01

    As part of the Site Characterization effort for the US Department of Energy's Yucca Mountain Project, tunnels excavated by tunnel boring machines provide access to the volume of rock that is under consideration for possible underground storage of high-level nuclear waste beneath Yucca Mountain, Nevada. The Exploratory Studies Facility, a 7.8-km-long, 7.6-m-diameter tunnel, has been excavated, and a 2.8-km-long, 5-m-diameter Cross Drift will be excavated in 1998 as part of the geologic, hydrologic and geotechnical evaluation of the potential repository. The southwest-trending Cross Drift branches off of the north ramp of the horseshoe-shaped Exploratory Studies Facility. This report summarizes an interpretive geologic section that was prepared for the Yucca Mountain Project as a tool for use in the design and construction of the Cross Drift

  8. A review of the available technologies for sealing a potential underground nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.

    1994-11-01

    The purpose of this report is to assess the availability of technologies to seal underground openings. The technologies are needed to seal the potential high-level radioactive waste repository at Yucca Mountain. Technologies are evaluated for three basic categories of seal components: backfill (general fill and graded fill), bulkheads, and grout curtains. Not only is placement of seal components assessed, but also preconditioning of the placement area and seal component durability. The approach taken was: First, review selected sealing case histories (literature searches and site visits) from the mining, civil, and defense industries; second, determine whether reasonably available technologies to seal the potential repository exist; and finally, identify deficiencies in existing technologies. It is concluded that reasonably available technologies do exist to place backfill, bulkheads, and grout curtains. Technologies also exist to precondition areas where seal components are to be placed. However, if final performance requirements are stringent for these engineered structures, some existing technologies may need to be developed. Deficiencies currently do exist in technologies that demonstrate the long-term durability and performance of seal components. Case histories do not currently exist that demonstrate the placement of seal components in greatly elevated thermal and high-radiation environments and in areas where ground support (rock bolts and concrete liners) has been removed. The as-placed, in situ material properties for sealing materials appropriate to Yucca Mountain are not available

  9. Mineralogy and clinoptilolite K/Ar results from Yucca Mountain, Nevada, USA: A potential high-level radioactive waste repository site

    International Nuclear Information System (INIS)

    WoldeGabriel, G.; Broxton, D.E.; Bish, D.L.; Chipera, S.J.

    1993-11-01

    The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada, as a potential site for a high-level nuclear waste repository. An important aspect of this evaluation is to understand the geologic history of the site including the diagenetic processes that are largely responsible for the present-day chemical and physical properties of the altered tuffs. This study evaluates the use of K/Ar geochronology in determining the alteration history of the zeolitized portions of Miocene tuffs at Yucca Mountain. Clinoptilolite is not generally regarded as suitable for dating because of its open structure and large ion-exchange capacity. However, it is the most abundant zeolite at Yucca Mountain and was selected for this study to assess the feasibility of dating the zeolitization process and/or subsequent processes that may have affected the zeolites. In this study we examine the ability of this mineral to retain all or part of its K and radiogenic Ar during diagenesis and evaluate the usefulness of the clinoptilolite K/Ar dates for determining the history of alteration

  10. Achieving transparency in the total system performance assessment of a potential high level radioactive waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bailey, J.; Rickertsen, L.; Cotton, T.

    1999-01-01

    This paper has presented an approach to quantitative assessment of the degree of postclosure defense-in-depth provided by the reference system of the VA (Viability Assessment). This approach identifies principal barriers, assesses barriers for common uncertainty and failure mode, conducts barrier neutralization analyses, and evaluates overall defense-in-depth. The neutralization approach of step 3 is particularly useful in untangling the contributions of various barriers to the results calculated by performance assessments. In fact, it provides the only way of assessing the contribution of barriers that are fully redundant with one another. The approach has been applied to the VA reference system. It shows how the natural transport barriers contribute to performance of the system. Since their individual contributions are redundant, uncertainties in those individual contributions are reduced in importance. The analyses also suggest uncertainties common to both of these barriers are important to the safety assessment. Thus, the approach appears to be capable of determining the contribution of the principal barriers to system performance. The ability to use performance assessment to show not only how the repository system is expected to perform, but also how it achieves that performance, should contribute substantially towards providing needed transparency to the safety case for a geologic repository. It is also a valuable tool during the development of the repository design and associated safety case, by identifying areas in which performance would be enhanced by increased redundancy

  11. METHODOLOGY, ASSUMPTIONS, AND BASELINE DATA FOR THE REPOSITORY DESIGN AND OPERATION, RAIL CORRIDORS, AND HEAVY TRUCK ROUTES, CLARK COUNTY, NEVADA, LINCOLN COUNTY, NEVADA, NYE COUNTY, NEVADA, ''REST OF NEVADA'', STATE OF NEVADA

    International Nuclear Information System (INIS)

    2002-01-01

    This document was prepared in support of the ''Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain; Nye County, Nevada''. Specifically, the document evaluates potential socioeconomic impacts resulting from the various rail corridor and heavy haul truck route implementing alternatives, one of which would be selected to transport the nation's commercial and defense spent nuclear fuel and high-level radioactive waste to the proposed repository

  12. Preliminary results of trench mapping at the site of prospective surface facilities for the potential Yucca Mountain repository, Nevada

    International Nuclear Information System (INIS)

    Wesling, J.R.; Swan, F.H.; Thomas, A.P.; Angell, M.M.

    1993-01-01

    Mapping and trenching studies are yielding data needed to evaluate the surface faulting potential within Midway Valley, a half graben bounded by west-dipping normal faults on the northeast margin of Yucca Mountain. These studies document the presence of two north-trending zones of fractures within Quaternary deposits along the west-central part of the Midway Valley half-graben block. The westernmost zone of fractures, located along the eastern base of Exile Hill, overlies a complex zone of bedrock faulting and may be related to an apparent down-on-the-east step in the contact between bedrock and colluvium. Fractures striking ∼N15E extend upwards from this apparent bedrock step through early (?) to middle (?) Pleistocene colluvium. The fractures do not extend into the overlying late Pleistocene colluvium. No vertical or lateral separation of the probably middle to late Pleistocene colluvium across fractures can be detected with a resolution of 5 cm or less in most cases. The Quaternary deposits are much thicker along the eastern zone of fractures and bedrock was not exposed. The presence of continuous thin layers within the alluvial strata demonstrate the absence of any detectable vertical or lateral separation of the middle (?) Pleistocene deposits across the fractures within the eastern zone with a high degree of confidence. The results of the authors studies indicate that faults within the west-central part of the Midway Valley structural block have had little or no displacement since at least the mid Quaternary. Therefore, potential for surface fault rupture in this area is extremely low

  13. Interaction of nuclear waste panels with shafts and access ramps for a potential repository at Yucca Mountain: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    St John, C.M.

    1987-09-01

    A series of two-dimensional and three-dimensional analyses of a potential nuclear waste repository at Yucca Mountain were performed to estimate the thermal stresses that would be experienced at the possible locations of shafts or ramps providing access to the repository horizon. Two alternative assumptions were made for the initial state of stress, and calculations were performed to investigate behavior at repository scale. The computed states of stress were also used as boundary conditions for a series of analyses of the access ramps and vertical shafts. The results of the repository scale analyses indicated that there is a region above the repository horizon where the horizontal stresses are reduced as a consequence of the thermal loads imposed by waste emplacement. If the initial state of stress is relatively low then the total horizontal stresses near the ground surface above the repository may be tensile. An evaluation of the total stress state relative to the strength of the rock matrix and vertical and near vertical joints indicates that there is no potential for development of new fractures in the matrix, but joints near the surface could be activated if the initial stress state is low. 13 refs., 24 figs., 4 tabs

  14. Preliminary postclosure risk assessment: Yucca Mountain, Nevada, candidate repository site

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Elwood, D.M.; Freshley, M.D.; Reimus, P.W.; Tanner, J.E.; Doctor, P.G.; Engel, D.W.; Liebetrau, A.M.; Strenge, D.L.; Van Luik, A.E.

    1989-10-01

    A study was conducted by the Pacific Northwest Laboratory for the US Department of Energy, Office of Civilian Radioactive Waste Management, to estimate the postclosure risk, in terms of population health effects, of a proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The risk estimates cover a time span of 1 million years following repository closure. Representative disruptive and intrusive events were selected and evaluated in addition to expected conditions. The estimates were generated assuming spent fuel as the waste form and included all important nuclides from inventory, half-life and dose perspectives. The base case results yield an estimate of 36 health effects over the first million years of repository operation. The doses attributed to the repository corresponds to about 0.1 percent of the doses received from natural background radiation. 16 refs., 1 fig

  15. Report to Congress on the potential use of lead in the waste packages for a geologic repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-01

    In the Report of the Senate Committee on Appropriations accompanying the Energy and Water Appropriation Act for 1989, the Committee directed the Department of Energy (DOE) to evaluate the use of lead in the waste packages to be used in geologic repositories for spent nuclear fuel and high-level waste. The evaluation that was performed in response to this directive is presented in this report. This evaluation was based largely on a review of the technical literature on the behavior of lead, reports of work conducted in other countries, and work performed for the waste-management program being conducted by the DOE. The initial evaluation was limited to the potential use of lead in the packages to be used in the repository. Also, the focus of this report is post closure performance and not on retrievability and handling aspects of the waste package. 100 refs., 8 figs., 15 tabs.

  16. Report to Congress on the potential use of lead in the waste packages for a geologic repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1989-12-01

    In the Report of the Senate Committee on Appropriations accompanying the Energy and Water Appropriation Act for 1989, the Committee directed the Department of Energy (DOE) to evaluate the use of lead in the waste packages to be used in geologic repositories for spent nuclear fuel and high-level waste. The evaluation that was performed in response to this directive is presented in this report. This evaluation was based largely on a review of the technical literature on the behavior of lead, reports of work conducted in other countries, and work performed for the waste-management program being conducted by the DOE. The initial evaluation was limited to the potential use of lead in the packages to be used in the repository. Also, the focus of this report is post closure performance and not on retrievability and handling aspects of the waste package. 100 refs., 8 figs., 15 tabs

  17. Proposed nomination of Yucca Mountain as a potential high-level radioactive waste repository. Registration and transcript of proceedings of US Department of Energy public hearings, Las Vegas, Nevada, March 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The purpose of this public hearing were: (1) to solicit comments on the nomination of Yucca Mountain for site characterization as a potential high-level radioactive waste repository; (2) to solicit issues to be included in an Environmental Assessment supporting the Department's formal nomination of that site; and (3) to solicit issues to be addressed in the Site Characterization Plan which would subsequently be issued prior to proceeding with site characterization. The public hearing utilized a panel comprising of three persons, including a chairperson, who were not employees of the Department of Energy, and who had not participated in the preparation of the proposed nomination of Yucca Mountain. This volume contains statements from 29 participants, beginning with those of the Governor of Nevada

  18. Method for screening the Nevada Test Site and contiguous areas for nuclear waste repository locations

    International Nuclear Information System (INIS)

    Sinnock, S.; Fernandez, J.A.; Neal, J.T.; Stephens, H.P.; Hartway, B.L.; Los Alamos Technical Associates, Inc., NM)

    1982-01-01

    This paper outlines the general concepts of a technical method for systematic screening of the Nevada Test Site (NTS), Nye County, Nevada, for potentially suitable nuclear waste repository locations. After a general discussion of the organization and the purpose of the current screening activity, the paper addresses the steps of the screening method. These steps include: hierarchically organizing technical objectives for repository performance (an objectives tree); identifying and mapping pertinent physical characteristics of a site and its setting (physical attributes); relating the physical conditions to the objectives (favorability curves); identifying alternative locations and numerically evaluating their relative merits; investigating the effects of subjective judgments on the evaluations (sensitivity analyses); documenting the assumptions, logic, and results of the method. 19 references, 10 figures

  19. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.

  20. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1992-01-01

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T ampersand MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document

  1. Repository sealing concepts for the Nevada nuclear waste storage Investigations Project

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Freshley, M.D.

    1984-08-01

    This report describes concepts for sealing a nuclear waste repository in an unsaturated tuff environment. The repository site under consideration is Yucca Mountain, which is on and adjacent to the Nevada Test Site. The hydrogeology of Yucca Mountain, preliminary repository concepts, functional requirements and performance criteria for sealing, federal and state regulations, and hydrological calculations are considered in developing the sealing concepts. Water flow through the unsaturated zone is expected to be small and generally vertically downward with some potential to occur through discrete fault and fracture zones. These assumptions are used in developing sealing concepts for shafts, ramps, and boreholes. Sealing of discrete, water-producing faults and fracture zones encountered in horizontal emplacement holes and in access and emplacement drifts is also described. 49 references, 21 figures, 6 tables

  2. Photogeologic study of small-scale linear features near a potential nuclear-waste repository site at Yucca Mountain, southern Nye County, Nevada

    International Nuclear Information System (INIS)

    Throckmorton, C.K.

    1987-01-01

    Linear features were mapped from 1:2400-scale aerial photographs of the northern half of the potential underground nuclear-waste repository site at Yucca Mountain by means of a Kern PG 2 stereoplotter. These features were thought to be the expression of fractures at the ground surface (fracture traces), and were mapped in the caprock, upper lithophysal, undifferentiated lower lithophysal and hackly units of the Tiva Canyon Member of the Miocene Paintbrush Tuff. To determine if the linear features corresponded to fracture traces observed in the field, stations (areas) were selected on the map where the traces were both abundant and located solely within one unit. These areas were visited in the field, where fracture-trace bearings and fracture-trace lengths were recorded. Additional data on fracture-trace length and fracture abundance, obtained from ground-based studies of cleared pavements located within the study area were used to help evaluate data collected for this study. 16 refs., 4 figs., 2 tabs

  3. An evaluation of environmental effects of the DOE HLW repository siting and characterization program at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Winsor, M.F.; Ulland, L.M.

    1989-01-01

    This paper presents highlights of the Nevada Nuclear Waste Project Office (NWPO) environmental investigations in progress on the environmental effects of past and proposed activities of the Department of Energy (DOE) at the Yucca Mountain repository. The environmental investigations refer to those studies specifically related to resource evaluation, impact assessment and mitigation planning for the repository program; it is defined to exclude consideration of technical suitability determinations, socioeconomics and transportation. This paper addresses the question of what are the disturbances created by past and proposed DOE activities related to repository siting and characterization at Yucca Mountain. It discusses considerations in linking disturbance to the potential for significant adverse environmental impacts

  4. Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Meike, A.

    1995-02-01

    The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs

  5. Aspects of igneous activity significant to a repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Krier, D.J.; Perry, F.V.

    2004-01-01

    Location, timing, volume, and eruptive style of post-Miocene volcanoes have defined the volcanic hazard significant to a proposed high-level radioactive waste (HLW) and spent nuclear fuel (SNF) repository at Yucca Mountain, Nevada, as a low-probability, high-consequence event. Examination of eruptive centers in the region that may be analogueues to possible future volcanic activity at Yucca Mountain have aided in defining and evaluating the consequence scenarios for intrusion into and eruption above a repository. The probability of a future event intersecting a repository at Yucca Mountain has a mean value of 1.7 x 10 -8 per year. This probability comes from the Probabilistic Volcanic Hazard Assessment (PVHA) completed in 1996 and updated to reflect change in repository layout. Since that time, magnetic anomalies representing potential buried volcanic centers have been identified fiom magnetic surveys; however these potential buried centers only slightly increase the probability of an event intersecting the repository. The proposed repository will be located in its central portion of Yucca Mountain at approximately 300m depth. The process for assessing performance of a repository at Yucca Mountain has identified two scenarios for igneous activity that, although having a very low probability of occurrence, could have a significant consequence should an igneous event occur. Either a dike swarm intersecting repository drifts containing waste packages, or a volcanic eruption through the repository could result in release of radioactive material to the accessible environment. Ongoing investigations are assessing the mechanisms and significance of the consequence scenarios. Lathrop Wells Cone (∼80,000 yrs), a key analogue for estimating potential future volcanic activity, is the youngest surface expression of apparent waning basaltic volcanism in the region. Cone internal structure, lavas, and ash-fall tephra have been examined to estimate eruptive volume, eruption

  6. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  7. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  8. Waste package/engineered barrier system design concepts for the direct disposal of spent fuel in the potential United States' repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Harrison, D.J.

    1993-01-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package development program is to design a waste package and associated engineered barrier system (EBS) that meets the applicable regulatory requirements for safe disposal of spent nuclear fuel and solidified high-level waste (HLW) in a geologic repository. Attainment of this goal relies on a multi-barrier approach, the unsaturated nature of the Yucca Mountain site, consideration of technical alternatives, and sufficient resolution of technical and regulatory uncertainties. To accomplish this, an iterative system engineering approach will be used. The NWPA of 1982 limits the content of the first US repository to 70,000 metric tons of heavy metal (MTHM). The DOE Mission Plan describes the implementation of the provisions of the NWPA for the waste management system. The Draft 1988 approach will involve selecting candidate designs, evaluating them against performance requirements, and then selecting one or two preferred designs for further detailed evaluation and final design. The reference design of the waste package described in the YMP Site Characterization Plan is a thin-walled, vertical borehole-emplaced waste package with an air gap between the package and the rock wall. The reference design appeared to meet the design requirement. However, the degree of uncertainty was large. This uncertainty led to considering several more-robust design concepts during the Advanced Conceptual Design phase of the program that include small, drift-emplaced packages and higher capacity, drift-emplaced packages, both partially and totally self-shielded. Metallic as well as ceramic materials are being considered

  9. Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1993-01-01

    Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs. fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed

  10. Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1993-01-01

    Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs, fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed

  11. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    Notz, K.J.

    1989-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the spent fuels and other wastes that will be disposed of in a geologic repository. The two major sources of these materials are commercial light-water reactor (LWR) spent fuel and immobilized high-level waste (HLW). Other wastes that may require long-term isolation include non-LWR spent fuels and miscellaneous sources such as activated metals. Detailed characterizations are required for all of these potential repository wastes. These characterizations include physical, chemical, and radiological properties. The latter must take into account decay as a function of time. This information has been extracted from primary data sources, evaluated, and assembled in a Characteristics Data Base which provides data in four formats: hard copy standard reports, menu-driven personal computer (PC) data bases, program-level PC data bases, and mainframe computer files. The Characteristics Data Base provides a standard set of self-consistent data to the various areas of responsibility including systems integration and waste stream analysis, storage, transportation, and geologic disposal. The data will be used for design studies, evaluation of alternatives, and system optimization by OCRWM and supporting contractors. 7 refs., 5 figs., 7 tabs

  12. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    Cowart, C.G.; Notz, K.J.

    1992-10-01

    This report presents the results of a fully documented peer review of DOE/RW-0184, Rev. 1, ''Characteristics of Potential Repository Wastes''. The peer review was chaired and administered by oak Ridge National Laboratory (ORNL) for the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) and was conducted in accordance with OCRWM QA procedure QAAP 3.3 ''Peer Review'' for the purpose of quailing the document for use in OCRWM quality-affecting work. The peer reviewers selected represent a wide range of experience and knowledge particularly suitable for evaluating the subject matter. A total of 596 formal comments were documented by the seven peer review panels, and all were successfully resolved. The peers reached the conclusion that DOE/RW-0184, Rev. 1, is quality determined and suitable for use in quality-affecting work

  13. Aspects of possible magmatic disruption of a high-level radioactive waste repository in southern Nevada

    International Nuclear Information System (INIS)

    Crowe, B.; Amos, R.; Perry, F.; Self, S.; Vaniman, D.

    1982-10-01

    The Nevada Test Site (NTS) region is located within the central section of a north-northeast-trending basaltic volcanic belt of late Cenozoic age, a part of the Quaternary volcanic province of the Great Basin. Future volcanism within the belt represents a potential hazard to storage of high-level radioactive waste within a buried repository located in the southwestern NTS. The hazards of future volcanism in the region are being characterized through a combination of volcanic hazards studies, probability determinations, and consequence analyses. Basaltic activity within the NTS regions is divided into two age groups consisting of relatively large-volume silicic cycle basalts (8 to 10 Myr) and rift basalts (< 8 to 0.3 Myr). This paper describes the processes of basaltic magmatism ranging from derivation of basalt melts at depth, through ascent through the upper mantle and crust, to surface eruption. Each stage in the evolution and dispersal of basaltic magma is described, and the disruption and potential dispersal of stored radioactive waste is evaluated. These data document areas of knowns and unknowns in the processes of basaltic volcanisms and provide background data necessary to assist calculations of radiation release levels due to disruption of a repository. 9 figures, 11 tables

  14. Residential Energy Efficiency Potential: Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Nevada single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The Proposed Action addressed in this EIS is to construct, operate and monitor, and eventually close a geologic repository at Yucca Mountain in southern Nevada for the disposal of spent nuclear fuel and high-level radioactive waste currently in storage at 72 commercial and 5 DOE sites across the United States. The EIS evaluates (1) projected impacts on the Yucca Mountain environment of the construction, operation and monitoring, and eventual closure of the geologic repository; (2) the potential long-term impacts of repository disposal of spent nuclear fuel and high-level radioactive waste; (3) the potential impacts of transporting these materials nationally and in the State of Nevada; and (4) the potential impacts of not proceeding with the Proposed Action

  16. Geology and hydrogeology of the proposed nuclear waste repository at Yucca Mountain, Nevada and the surrounding area

    International Nuclear Information System (INIS)

    Mattson, S.R.; Broxton, D.E.; Buono, A.; Crowe, B.M.; Orkild, P.P.

    1989-01-01

    In late 1987 Congress issued an amendment to the Nuclear Waste Policy Act of 1982 which directed the characterization of Yucca Mountain, Nevada as the only remaining potential site for the Nation's first underground high-level radioactive waste repository. The evaluation of a potential underground repository is guided and regulated by policy established by the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA), Department of Transportation (DOT), and the US Congress. The Yucca Mountain Project is the responsibility of the DOE. The purpose of this field trip is to introduce the present state of geologic and hydrologic knowledge concerning this site. This report describes the field trip. 108 refs., 6 figs., 1 tab

  17. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    1992-07-01

    The LWR spent fuels discussed in Volume 1 of this report comprise about 99% of all domestic non-reprocessed spent fuel. In this report we discuss other types of spent fuels which, although small in relative quantity, consist of a number of diverse types, sizes, and compositions. Many of these fuels are candidates for repository disposal. Some non-LWR spent fuels are currently reprocessed or are scheduled for reprocessing in DOE facilities at the Savannah River Site, Hanford Site, and the Idaho National Engineering Laboratory. It appears likely that the reprocessing of fuels that have been reprocessed in the past will continue and that the resulting high-level wastes will become part of defense HLW. However, it is not entirely clear in some cases whether a given fuel will be reprocessed, especially in cases where pretreatment may be needed before reprocessing, or where the enrichment is not high enough to make reprocessing attractive. Some fuels may be canistered, while others may require special means of disposal. The major categories covered in this chapter include HTGR spent fuel from the Fort St. Vrain and Peach Bottom-1 reactors, research and test reactor fuels, and miscellaneous fuels, and wastes generated from the decommissioning of facilities

  18. Environmental program planning for the proposed high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1987-08-01

    This report was prepared to illustrate the policy and actions that the State of Nevada believe are required to assure that the quality of the environment is adequately considered during the course of the DOE work at the proposed high-level nuclear waste repository at Yucca Mountain. The report describes the DOE environmental program and the studies planned by NWPO to reflect the State's position toward environmental protection. 41 refs., 2 figs., 11 tabs

  19. Potential Future Igneous Activity at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Cline, M.; Perry, F.; Valentine, G.; Smistad, E.

    2005-01-01

    Location, timing, and volumes of post-Miocene volcanic activity, along with expert judgment, provide the basis for assessing the probability of future volcanism intersecting a proposed repository for nuclear waste at Yucca Mountain, Nevada. Analog studies of eruptive centers in the region that may represent the style and extent of possible future igneous activity at Yucca Mountain have aided in defining the consequence scenarios for intrusion into and eruption through a proposed repository. Modeling of magmatic processes related to magma/proposed repository interactions has been used to assess the potential consequences of a future igneous event through a proposed repository at Yucca Mountain. Results of work to date indicate future igneous activity in the Yucca Mountain region has a very low probability of intersecting the proposed repository. Probability of a future event intersecting a proposed repository at Yucca Mountain is approximately 1.7 x 10 -8 per year. Since completion of the Probabilistic Volcanic Hazard Assessment (PVHA) in 1996, anomalies representing potential buried volcanic centers have been identified from aeromagnetic surveys. A re-assessment of the hazard is currently underway to evaluate the probability of intersection in light of new information and to estimate the probability of one or more volcanic conduits located in the proposed repository along a dike that intersects the proposed repository. US Nuclear Regulatory Commission regulations for siting and licensing a proposed repository require that the consequences of a disruptive event (igneous event) with annual probability greater than 1 x 10 -8 be evaluated. Two consequence scenarios are considered: (1) igneous intrusion-poundwater transport case and (2) volcanic eruptive case. These scenarios equate to a dike or dike swarm intersecting repository drifts containing waste packages, formation of a conduit leading to a volcanic eruption through the repository that carries the contents of

  20. Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    Hoxie, D.T.

    1995-01-01

    Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system

  1. Disruption scenarios for a high-level waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ross, B.

    1986-01-01

    A high-level waste repository located in unsaturated welded tuff at Yucca Mountain, Nevada, would rely on six different, although not entirely independent, barriers to prevent escape of radioactivity. These barriers are the waste canister, fuel cladding, slow dissolution of the spent fuel itself, and slow movement of released contaminants in three different hydrogeologic units: the unsaturated Topopah Spring welded tuff unit, the unsaturated Calico Hills nonwelded tuff unit, and the saturated tuff aquifer. Fifty-eight processes and events that might affect such a repository were reviewed. Eighty-three different sequences were identified by which these processes and events could lead to failure of one or more barriers. Sequences which had similar consequences were grouped, yielding 17 categories. The repository system has considerable redundancy; most of the more likely disruptions affect only one or a few barriers. Occurrence of more than one disruption is needed before such disruptions would cause release of radioactivity. Future studies of repository performance must assess the likelihood and consequences of multiple-disruption scenarios to evaluate how well the repository meets performance standards

  2. US Department of Energy public hearing for the proposed nomination of Yucca Mountain as a potential high level radioactive waste repository. Registration and transport of proceedings, Reno, Nevada - March 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The purpose of this public hearing was: (1) to solicit comments on the nomination of Yucca Mountain for site characterization as a potential high-level radioactive waste repository; (2) to solicit issues to be included in an Environmental Assessment supporting the Departments' formal nomination of that site; and (3) to solicit issues to be addressed in the Site Characterization Plan which would subsequently be issued prior to proceeding with site characterization. The public hearing utilized a panel comprising of three persons including a chairperson, who were not employees of the Department of Energy, and who had not participated directly in the preparation of the proposed nomination of Yucca Mountain. This volume contains statements from 24 participants

  3. Total system performance predictions (TSPA-1995) for the potential high-level waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Sevougian, S.D.; Andrews, R.W.; McNeish, J.A.

    1996-01-01

    The management and operating contractor for the potential high-level nuclear waste repository at Yucca Mountain, Nevada, has been recently completed a new performance assessment of the ability of the repository to isolate and contain nuclear waste for long time periods (up to 1,000,000 years). Sensitivity analyses determine the most important physical parameters and processes, using the most current information and models

  4. A performance assessment review tool for the proposed radioactive waste repository at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Mohanty, Sitakanta; Codell, Richard

    2000-01-01

    The U.S. Nuclear Regulatory Commission (NRC), with the assistance of the Center for Nuclear Waste Regulatory Analyses, has developed a Total-system Performance Assessment (TPA) Code to assist in evaluating the performance of the Yucca Mountain (YM) High-Level Waste Repository in Nevada, proposed by the U.S. Department of Energy (DOE). The proposed YM repository would be built in a thick sequence of partially saturated volcanic tuff above the water table. Among the unique challenges of this environment are (1) the transport of radionuclides would take place partially through highly heterogeneous unsaturated rock; (2) the waste packages (WPs) would be generally exposed to oxidizing conditions, and (3) water either infiltrating from the surface or recirculating because of decay heat may drip onto the WPs. Tools such as the TPA code and embedded techniques for evaluating YM performance are aimed at (1) determining the parameters and key parts of the repository system that have the most influence on repository performance; (2) performing alternative conceptual models studies, especially with bounding models; (3) estimating the relative importance of the physical phenomena that lead to human exposure to radionuclides; and (4) improving NRC staff capabilities in performance assessment and associated license application reviews. This paper presents an overview of the NRC conceptual framework, approach to conducting system-level sensitivity analyses for determining influential parameters, and alternative conceptual model studies to investigate the effect of model uncertainties. (author)

  5. Evolution of waste-package design at the potential U.S. geologic repository

    International Nuclear Information System (INIS)

    Benton, H.; Harkins, B.

    2000-01-01

    This paper describes the evolution of the waste-package design at the potential geologic repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. Because the potential repository is the first of its kind, the design of its components must be flexible and capable of evolving in response to continuing scientific study, development efforts, and changes to performance criteria. The team of scientists and engineers at the Yucca Mountain Project has utilized a systematic, scientific approach to design the potential geologic nuclear-waste repository. As a result of continuing development efforts, the design has incorporated a growing base of scientific and engineering information to ensure that regulatory and performance requirements are met. (authors)

  6. Southern Nevada residents' views about the Yucca Mountain high-level nuclear waste repository and related issues: A comparative analysis of urban and rural survey data

    International Nuclear Information System (INIS)

    Krannich, R.S.; Little, R.L.; Mushkatel, A.; Pijawka, K.D.; Jones, P.

    1991-10-01

    Two separate surveys were undertaken in 1988 to ascertain southern Nevadans' views about the Yucca Mountain repository and related issues. The first of these studies focused on the attitudes and perceptions of residents in the Las Vegas metropolitan area. The second study addressed similar issues, but focused on the views of residents in six rural communities in three counties adjacent to the Yucca Mountain site. However, parallel findings from the two data sets have not been jointly analyzed in order to identify ways in which the views and orientations of residents in the rural and urban study areas may be similar or different. The purpose of this report is to develop and present a comparative assessment of selected issues addressed in the rural and urban surveys. Because both urban and rural populations would potentially be impacted by the Yucca Mountain repository, such an analysis will provide important insights into possible repository impacts on the well-being of residents throughout southern Nevada

  7. Modelling magma-drift interaction at the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

    NARCIS (Netherlands)

    Woods, Andrew W.; Sparks, Steve; Bokhove, Onno; Lejeune, Anne-Marie; Connor, Charles B.; Hill, Britain E.

    2002-01-01

    We examine the possible ascent of alkali basalt magma containing 2 wt percent water through a dike and into a horizontal subsurface drift as part of a risk assessment for the proposed high-level radioactive waste repository beneath Yucca Mountain, Nevada, USA. On intersection of the dike with the

  8. Images of a place and vacation preferences: Implications of the 1989 surveys for assessing the economic impacts of a nuclear waste repository in Nevada

    International Nuclear Information System (INIS)

    Slovic, P.; Layman, M.; Flynn, J.H.

    1990-11-01

    In July, 1989 the authors produced a report titled Perceived Risk, Stigma, and Potential Economic Impacts of a High-Level Nuclear-Waste Repository in Nevada (Slovic et al., 1989). That report described a program of research designed to assess the potential impacts of a high-level nuclear waste repository at Yucca Mountain, Nevada upon tourism, retirement and job-related migration, and business development in Las Vegas and the state. It was concluded that adverse economic impacts potentially may result from two related social processes. Specifically, the study by Slovic et al. employed analyses of imagery in order to overcome concerns about the validity of direct questions regarding the influence of a nuclear-waste repository at Yucca Mountain upon a person's future behaviors. During the latter months of 1989, data were collected in three major telephone surveys, designed to achieve the following objectives: (1) to replicate the results from the Phoenix, Arizona, surveys using samples from other populations that contribute to tourism, migration, and development in Nevada; (2) to retest the original Phoenix respondents to determine the stability of their images across an 18-month time period and to determine whether their vacation choices subsequent to the first survey were predictable from the images they produced in that original survey; (3) to elicit additional word-association images for the stimulus underground nuclear waste repository in order to determine whether the extreme negative images generated by the Phoenix respondents would occur with other samples of respondents; and (4) to develop and test a new method for imagery elicitation, based upon a rating technique rather than on word associations. 2 refs., 8 figs., 13 tabs

  9. Environmental program planning for the proposed high-level nuclear waste repository at Yucca Mountain, Nevada: Volume 1

    International Nuclear Information System (INIS)

    1987-08-01

    Environmental protection during the course of siting and constructing a repository is mandated by NWPA in conjunction with various phases of repository siting and development. However, DOE has issued no comprehensive, integrated plan for environmental protection. Consequently, it is unclear how DOE will accomplish environmental assessment, monitoring, impact mitigation, and site reclamation. DOE should, therefore, defer further implementation of its current characterization program until a comprehensive environmental protection plan is available. To fulfill its oversight responsibilities the State of Nevada has proposed a comprehensive environmental program for the Yucca Mountain site that includes immediately undertaking studies to establish a 12-month baseline of environmental information at the site; adopting the DOE Site Characterization Plan (SCP) and the engineering design plans it will contain as the basis for defining the impact potential of site characterization activities; using the environmental baseline and the SCP to evaluate the efficacy of the preliminary impact analyses reported by DOE in the EA; using the SCP as the basis for discussions with federal, state, and local regulatory authorities to decide which environmental requirements apply and how they can be complied with; using the SCP, the EA impact review, and the compliance requirements to determine the scope of reclamation measures needed; and developing environmental monitoring and impact mitigation plans based on the EA impact review, compliance requirements, and anticipated reclamation needs

  10. Fabrication and closure development of nuclear waste containers for storage at the Yucca Mountain, Nevada repository

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.; Domian, H.A.; LaCount, D.F.; Robitz, E.S.; Stein, K.O.

    1989-04-01

    US Congress and the President have determined that the Yucca Mountain site in Nevada is to be characterized to determine its suitability for construction of the first US high-level nuclear waste repository. Work in connection with this site is carried out within the Yucca Mountain Project (YMP). Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing, developing, and projecting the performance of the waste package for the permanent storage of high-level nuclear waste. Babcock ampersand Wilcox (B ampersand W) is involved with the YMP as a subcontractor to LLNL. B ampersand W's role is to recommend and demonstrate a method for fabricating the metallic waste container and a method for performing the final closure of the container after it has been filled with waste. Various fabrication and closure methods are under consideration for the production of containers. This paper presents progress to date in identifying and evaluating the candidate manufacturing processes. 2 refs., 1 fig., 7 tabs

  11. A Natural Analogue for Thermal-Hydrological-Chemical Coupled Processes at the Proposed Nuclear Waste Repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bill Carey; Gordon Keating; Peter C. Lichtner

    1999-01-01

    Dike and sill complexes that intruded tuffaceous host rocks above the water table are suggested as natural analogues for thermal-hydrologic-chemical (THC) processes at the proposed nuclear waste repository at Yucca Mountain, Nevada. Scoping thermal-hydrologic calculations of temperature and saturation profiles surrounding a 30-50 m wide intrusion suggest that boiling conditions could be sustained at distances of tens of meters from the intrusion for several thousand years. This time scale for persistence of boiling is similar to that expected for the Yucca Mountain repository with moderate heat loading. By studying the hydrothermal alteration of the tuff host rocks surrounding the intrusions, insight and relevant data can be obtained that apply directly to the Yucca Mountain repository and can shed light on the extent and type of alteration that should be expected. Such data are needed to bound and constrain model parameters used in THC simulations of the effect of heat produced by the waste on the host rock and to provide a firm foundation for assessing overall repository performance. One example of a possible natural analogue for the repository is the Paiute Ridge intrusive complex located on the northeastern boundary of the Nevada Test Site, Nye County, Nevada. The complex consists of dikes and sills intruded into a partially saturated tuffaceous host rock that has stratigraphic sequences that correlate with those found at Yucca Mountain. The intrusions were emplaced at a depth of several hundred meters below the surface, similar to the depth of the proposed repository. The tuffaceous host rock surrounding the intrusions is hydrothermally altered to varying extents depending on the distance from the intrusions. The Paiute Ridge intrusive complex thus appears to be an ideal natural analogue of THC coupled processes associated with the Yucca Mountain repository. It could provide much needed physical and chemical data for understanding the influence of heat

  12. Environmental Impacts of Transportation to the Potential Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Sweeney, R.L.; Best, R.; Bolton, P.; Adams, P.

    2002-01-01

    The Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada analyzes a Proposed Action to construct, operate, monitor, and eventually close a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. As part of the Proposed Action, the EIS analyzes the potential impacts of transporting commercial and DOE spent nuclear fuel and high-level radioactive waste to Yucca Mountain from 77 sites across the United States. The analysis includes information on the comparative impacts of transporting these materials by truck and rail and discusses the impacts of building a rail line or using heavy-haul trucks to move rail casks from a mainline railroad in Nevada to the site. This paper provides an overview of the analyses and the potential impacts of these transportation activities. The potential transportation impacts were looked at from two perspectives: transportation of spent nuclear fuel and high-level radioactive waste by legal-weight truck or by rail on a national scale and impacts specific to Nevada from the transportation of these materials from the State borders to the Yucca Mountain site. In order to address the range of impacts that could result from the most likely modes, legal-weight truck and rail, the EIS employed two analytical scenarios--mostly legal-weight truck and mostly rail. Estimated national transportation impacts were based on 24 years of transportation activities. Approximately 8 fatalities could occur from all causes in the nationwide general population from incident-free transportation activities of the mostly legal-weight truck scenario and about 4 from the mostly rail scenario. The analysis examined the radiological consequences under the maximum foreseeable accident scenario and also overall accident risk. The overall accident risk over the 24 year period would be about 0.0002 latent cancer fatality for

  13. Nye County, Nevada 1992 nuclear waste repository program: Program overview. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of this document is to provide an overview of the Nye County FY92 Nuclear Waste Repository Program (Program). Funds to pay for Program costs will come from the Federal Nuclear Waste Fund, which was established under the Nuclear Waste Policy Act of 1982 (NWPA). In early 1983, the Yucca Mountain was identified as a potentially suitable site for the nation's first geologic repository for spent reactor fuel and high-level radioactive waste. Later that year, the Nye County Board of County Commissioners (Board) established the capability to monitor the Federal effort to implement the NWPA and evaluate the potential impacts of repository-related activities on Nye County. Over the last eight years, the County's program has grown in complexity and cost in order to address DOE's evolving site characterization studies, and prepare for the potential for facility construction and operation. Changes were necessary as well, in response to Congress's redirection of the repository program specified in the amendments, to the NWPA approved in 1987. In early FY 1991, the County formally established a project office to plan and implement its program of work. The Repository Project Office's (RPO) mission and functions are provided in Section 2.0. The RPO organization structure is described in Section 3.0

  14. Nevada

    International Nuclear Information System (INIS)

    Noble, D.C.; Plouff, D.; Close, T.J.; Bergquist, J.R.; Neumann, T.R.

    1987-01-01

    The part of the High Rock Late Wilderness Study Area, requested for mineral surveys by the Bureau of Land Management, encompasses 14,000 acres in the northern part of the Calico Mountains, Northwest Nevada. No resources were identified in the study area; however, there is low potential throughout the study area for volcanic-hosted deposits of mercury, uranium, and disseminated gold. The northern part of the study area has low potential for geothermal energy

  15. Potential role of ABC-assisted repositories in U.S. plutonium and high-level waste disposition

    Energy Technology Data Exchange (ETDEWEB)

    Berwald, D.; Favale, A.; Myers, T. [Grumman Aerospace Corporation, Bethpage, NY (United States)] [and others

    1995-10-01

    This paper characterizes the issues involving deep geologic disposal of LWR spent fuel rods, then presents results of an investigation to quantify the potential role of Accelerator-Based Conversion (ABC) in an integrated national nuclear materials and high level waste disposition strategy. The investigation used the deep geological repository envisioned for Yucca Mt., Nevada as a baseline and considered complementary roles for integrated ABC transmutation systems. The results indicate that although a U.S. geologic waste repository will continue to be required, waste partitioning and accelerator transmutation of plutonium, the minor actinides, and selected long-lived fission products can result in the following substantial benefits: plutonium burndown to near zero levels, a dramatic reduction of the long term hazard associated with geologic repositories, an ability to place several-fold more high level nuclear waste in a single repository, electricity sales to compensate for capital and operating costs.

  16. THERMAL CONDUCTIVITY OF THE POTENTIAL REPOSITORY HORIZON

    Energy Technology Data Exchange (ETDEWEB)

    J.E. BEAN

    2004-09-27

    The primary purpose of this report is to assess the spatial variability and uncertainty of bulk thermal conductivity in the host horizon for the repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). Design plans indicate that approximately 81 percent of the repository will be excavated in the Tptpll, approximately 12 percent in the Tptpmn, and the remainder in the Tptul and Tptpln (BSC 2004 [DIRS 168370]). This report provides three-dimensional geostatistical estimates of the bulk thermal conductivity for the four stratigraphic layers of the repository horizon. The three-dimensional geostatistical estimates of matrix and lithophysal porosity, dry bulk density, and matrix thermal conductivity are also provided. This report provides input to various models and calculations that simulate heat transport through the rock mass. These models include the ''Drift Degradation Analysis, Multiscale Thermohydrologic Model, Ventilation Model and Analysis Report, Igneous Intrusion Impacts on Waste Packages and Waste Forms, Drift-Scale Coupled Processes (DST and TH Seepage) Models'', and ''Drift Scale THM Model''. These models directly or indirectly provide input to the total system performance assessment (TSPA). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large-scale (centimeters-meters) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity.

  17. Uncertainty and sensitivity analysis in performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Helton, Jon C.; Hansen, Clifford W.; Sallaberry, Cédric J.

    2012-01-01

    Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. As part of this development, a detailed performance assessment (PA) for the YM repository was completed in 2008 and supported a license application by the DOE to the U.S. Nuclear Regulatory Commission (NRC) for the construction of the YM repository. The following aspects of the 2008 YM PA are described in this presentation: (i) conceptual structure and computational organization, (ii) uncertainty and sensitivity analysis techniques in use, (iii) uncertainty and sensitivity analysis for physical processes, and (iv) uncertainty and sensitivity analysis for expected dose to the reasonably maximally exposed individual (RMEI) specified the NRC’s regulations for the YM repository. - Highlights: ► An overview of performance assessment for the proposed Yucca Mountain radioactive waste repository is presented. ► Conceptual structure and computational organization are described. ► Uncertainty and sensitivity analysis techniques are described. ► Uncertainty and sensitivity analysis results for physical processes are presented. ► Uncertainty and sensitivity analysis results for expected dose are presented.

  18. Characteristics of potential repository wastes. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The LWR spent fuels discussed in Volume 1 of this report comprise about 99% of all domestic non-reprocessed spent fuel. In this report we discuss other types of spent fuels which, although small in relative quantity, consist of a number of diverse types, sizes, and compositions. Many of these fuels are candidates for repository disposal. Some non-LWR spent fuels are currently reprocessed or are scheduled for reprocessing in DOE facilities at the Savannah River Site, Hanford Site, and the Idaho National Engineering Laboratory. It appears likely that the reprocessing of fuels that have been reprocessed in the past will continue and that the resulting high-level wastes will become part of defense HLW. However, it is not entirely clear in some cases whether a given fuel will be reprocessed, especially in cases where pretreatment may be needed before reprocessing, or where the enrichment is not high enough to make reprocessing attractive. Some fuels may be canistered, while others may require special means of disposal. The major categories covered in this chapter include HTGR spent fuel from the Fort St. Vrain and Peach Bottom-1 reactors, research and test reactor fuels, and miscellaneous fuels, and wastes generated from the decommissioning of facilities.

  19. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-18

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a `snapshot` or `base case` look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future.

  20. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1992-01-01

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a 'snapshot' or 'base case' look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future

  1. Palaeohydrogeological modelling for potential future repository sites

    International Nuclear Information System (INIS)

    2001-01-01

    In order to consider the future behaviour of a groundwater system over time scales of relevance to repository safety assessment, it is necessary to develop an understanding of how the groundwater system has changed over time. This can be done through studying the palaeohydrogeology of the groundwater system. The EQUIP project (Evidence from Quaternary Infills for Palaeohydrogeology) set out to develop and evaluate methodologies for obtaining palaeohydrogeological information from fracture infill minerals formed under past groundwater conditions. EQUIP was a collaborative project funded jointly by the European Commission and, in the UK, by the Environment Agency and UK Nirex Limited. The project also involved partners in Finland, France, Spain and Sweden. The fracture infill material chosen for this investigation was calcite, because its reactions in low temperature groundwater environments are fairly well understood and it is fairly ubiquitous in both crystalline and sedimentary rocks. In addition, geochemical modelling suggests that plausible time scales for growth of individual calcite crystals are in the range 10 to 10,000 years, so they may accumulate a record of groundwater evolution over periods of significant climate change. The project was based on four sites, having different climate histories and geological conditions, at which drillcore samples of the deep crystalline rocks, accompanied by hydrogeological and hydrochemical data for the current groundwater conditions, were already available. The principal study sites were Olkiluoto in Finland, Aspo/Laxemar in Sweden, Sellafield in the UK and Vienne in France. The results of the study focus on the morphology and bulk compositions of calcite, compositional zoning of calcite crystals and compositions of fluid inclusions. There are systematic variations in bulk compositions with depth and also in discrete compositional fluctuations (or zones) in individual calcite crystals. These are inferred to reflect

  2. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  3. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  4. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    Science.gov (United States)

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  5. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ho, Chih-Hsiang

    1994-01-01

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP)

  6. A geologic scenario for catastrophic failure of the Yucca Mountain Nuclear Waste Repository, Nevada

    International Nuclear Information System (INIS)

    McMackin, M.R.

    1993-01-01

    A plausible combination of geologic factors leading to failure can be hypothesized for the Yucca Mountain Nuclear Waste Repository. The scenarios is constructed using elementary fault mechanics combined with geologic observations of exhumed faults and published information describing the repository site. The proposed repository site is located in the Basin and Range Province, a region of active crustal deformation demonstrated by widespread seismicity. The Yucca Mountain area has been characterized as tectonically quiet, which in the context of active crustal deformation may indicate the accumulation of the stresses approaching the levels required for fault slip, essentially stick-slip faulting. Simultaneously, dissolution of carbonate rocks in underlying karst aquifers is lowering the bulk strength of the rock that supports the repository site. Rising levels of hydrostatic stress concurrent with a climatically-driven rise in the water table could trigger faulting by decreasing the effective normal stress that currently retards fault slip. Water expelled from collapsing caverns in the underlying carbonate aquifer could migrate upward with sufficient pressure to open existing fractures or create new fractures by hydrofracturing. Water migrating through fractures could reach the repository in sufficient volume to react with heated rock and waste perhaps creating steam explosions that would further enhance fracture permeability. Closure of conduits in the underlying carbonate aquifer could lead to the elevation of the saturated zone above the level of the repository resulting in sustained saturation of radioactive waste in the repository and contamination of through-flowing groundwater

  7. Nevada test site low-level and mixed waste repository design in the unsaturated zone

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Warren, D.M.

    1989-01-01

    The Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) is used for shallow land disposal of Low-Level Radioactive (LLW) and for retrievable disposal of Mixed Wastes (MW) from various Department of Energy (DOE) facilities. The site is situated in southern Nevada, one of the most arid regions of the United States. Design considerations include vadose zone monitoring in lieu of groundwater monitoring, stringent waste acceptance and packaging criteria, a waste examination and real-time radiography facility, and trench design. 4 refs

  8. Thermal Management and Analysis for a Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Dr. A. Van Luik

    2004-01-01

    In the current Yucca Mountain repository design concept, heat from the emplaced waste (mostly from spent nuclear fuel) would keep the temperature of the rock around the waste packages higher than the boiling point of water for hundreds to thousands of years after the repository is closed. The design concept allows below-boiling portions of the pillars between drifts to serve as pathways for the drainage of thermally mobilized water and percolating groundwater by limiting the distance that boiling temperatures extend into the surrounding rock. This design concept takes advantage of host rock dry out, which would create a dry environment within the emplacement drifts and reduce the amount of water that might otherwise be available to enter the drifts and contact the waste packages during this thermal pulse. Table 1 provides an overview of design constraints related to thermal management after repository closure. The Yucca Mountain repository design concept also provides flexibility to allow for operation over a range of lower thermal operating conditions. The thermal conditions within the emplacement drifts can be varied, along with the relative humidity, by modifying operational parameters such as the thermal output of the waste packages, the spacing of the waste packages in the emplacement drifts, and the duration and rate of active and passive ventilation. A lower range has been examined to quantify lower-temperature thermal conditions (temperatures and associated humidity conditions) in the emplacement drifts and to quantify impacts to the required emplacement area and excavated drift length. This information has been used to evaluate the potential long-term performance of a lower-temperature repository and to estimate the increase in costs associated with operating a lower-temperature repository. This presentation provides an overview of the thermal management evaluations that have been conducted to investigate a range of repository thermal conditions and

  9. Fabrication and closure development of corrosion resistant containers for Nevada's Yucca Mountain high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.; Domian, H.A.; LaCount, D.F.; Robitz, E.S.; Stein, K.O.

    1989-11-01

    US Congress and the President have determined that the Yucca Mountain site in Nevada is to be characterized to determine its suitability for construction of the first US high-level nuclear waste repository. Work in connection with this site is carried out within the Yucca Mountain Project (YMP). Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing, developing, and projecting the performance of the waste package for the permanent storage of high-level nuclear waste. Babcock ampersand Wilcox (B ampersand W) is involved with the YMP as a subcontractor to LLNL. B ampersand W's role is to recommend and demonstrate a method for fabricating the metallic waste container and a method for performing the final closure of the container after it has been filled with waste. Various fabrication and closure methods are under consideration for the production of containers. This paper presents progress to date in identifying and evaluating the candidate manufacturing processes. 2 refs., 2 figs., 4 tabs

  10. Thermal management and analysis for a potential yucca mountain repository

    International Nuclear Information System (INIS)

    Van Luik, A.

    2005-01-01

    In the current Yucca Mountain repository design concept, heat from the emplaced. waste (mostly from spent nuclear fuel.) would keep the temperature of the rock around the waste packages higher than the boiling point of water for hundreds to thousands of years after the repository is closed. The design concept allows below-boiling portions of the pillars between drifts to serve as pathways for the drainage of thermally mobilized water and percolating groundwater by limiting the distance that boiling temperatures extend into the surrounding rock. This design concept takes advantage of host rock dry out, which would create a dry environment within the emplacement drifts and reduce the amount of water that might otherwise be available to enter the drifts and contact the waste packages during this thermal pulse. The Yucca Mountain repository design concept also provides flexibility to allow for operation over a range of lower thermal operating conditions. The thermal conditions within the emplacement drifts can be varied, along with the relative humidity, by modifying operational parameters such as the thermal output of the waste packages, the spacing of the waste packages in the emplacement drifts, and. the duration and rate of active and passive ventilation. A lower range has been examined to quantify lower-temperature thermal conditions (temperatures and associated humidity conditions) in the emplacement drifts and to quantify impacts to the required emplacement area and excavated drift length. This information has been used to evaluate the potential long-term performance of a lower-temperature repository and to estimate the increase in costs associated with operating a lower-temperature repository. This presentation provides an overview of the thermal management evaluations that have been conducted to investigate a range of repository thermal conditions and includes a summary of the technical basis that supports these evaluations. The majority of the material

  11. Evaluation of a potential nuclear fuel repository criticality: Lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.R.; Evans, D.

    1995-10-01

    This paper presents lessons learned from a Probabilistic Risk Assessment (PRA) of the potential for a criticality in a repository containing spent nuclear fuel with high enriched uranium. The insights gained consisted of remarkably detailed conclusions about design issues, failure mechanisms, frequencies and source terms for events up to 10,000 years in the future. Also discussed are the approaches taken by the analysts in presenting this very technical report to a nontechnical and possibly antagonistic audience.

  12. Evaluation of a potential nuclear fuel repository criticality: Lessons learned

    International Nuclear Information System (INIS)

    Wilson, J.R.; Evans, D.

    1995-01-01

    This paper presents lessons learned from a Probabilistic Risk Assessment (PRA) of the potential for a criticality in a repository containing spent nuclear fuel with high enriched uranium. The insights gained consisted of remarkably detailed conclusions about design issues, failure mechanisms, frequencies and source terms for events up to 10,000 years in the future. Also discussed are the approaches taken by the analysts in presenting this very technical report to a nontechnical and possibly antagonistic audience

  13. Expected brine movement at potential nuclear waste repository salt sites

    International Nuclear Information System (INIS)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m 3 brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs

  14. Analytical model for screening potential CO2 repositories

    Science.gov (United States)

    Okwen, R.T.; Stewart, M.T.; Cunningham, J.A.

    2011-01-01

    Assessing potential repositories for geologic sequestration of carbon dioxide using numerical models can be complicated, costly, and time-consuming, especially when faced with the challenge of selecting a repository from a multitude of potential repositories. This paper presents a set of simple analytical equations (model), based on the work of previous researchers, that could be used to evaluate the suitability of candidate repositories for subsurface sequestration of carbon dioxide. We considered the injection of carbon dioxide at a constant rate into a confined saline aquifer via a fully perforated vertical injection well. The validity of the analytical model was assessed via comparison with the TOUGH2 numerical model. The metrics used in comparing the two models include (1) spatial variations in formation pressure and (2) vertically integrated brine saturation profile. The analytical model and TOUGH2 show excellent agreement in their results when similar input conditions and assumptions are applied in both. The analytical model neglects capillary pressure and the pressure dependence of fluid properties. However, simulations in TOUGH2 indicate that little error is introduced by these simplifications. Sensitivity studies indicate that the agreement between the analytical model and TOUGH2 depends strongly on (1) the residual brine saturation, (2) the difference in density between carbon dioxide and resident brine (buoyancy), and (3) the relationship between relative permeability and brine saturation. The results achieved suggest that the analytical model is valid when the relationship between relative permeability and brine saturation is linear or quasi-linear and when the irreducible saturation of brine is zero or very small. ?? 2011 Springer Science+Business Media B.V.

  15. Strategic Basis for License Application Planning for a Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Newberry, C. M.; Brocoum, S. J.; Gamble, R. P.; Murray, R. C.; Cline, M.

    2002-01-01

    If Yucca Mountain, Nevada is designated as the site for development of a geologic repository for disposal of spent nuclear fuel and high-level radioactive waste, the Department of Energy (DOE) must obtain Nuclear Regulatory Commission (NRC) approval first for repository construction, then for an operating license, and, eventually, for repository closure and decommissioning. The licensing criteria defined in Code of Federal Regulations, Title 10, Part 63 (10 CFR Part 63) establish the basis for these NRC decisions. Submittal of a license application (LA) to the NRC for authorization to construct a repository at the Yucca Mountain site is, at this point, only a potential future action by the DOE. The policy process defined in the Nuclear Waste Policy Act (NWPA), as amended, for recommendation and designation of Yucca Mountain as a repository site makes it difficult to predict whether or when the site might be designated. The DOE may only submit a LA to the NRC if the site designation takes effect. In spite of this uncertainty, the DOE must take prudent and appropriate action now, and over the next several years, to prepare for development and timely submittal of a LA. This is particularly true given the need for the DOE to develop, load, and certify the operation of its electronic information system to provide access to its relevant records as part of the licensing support network (LSN) in compliance with NRC requirements six months prior to LA submittal. The DOE must also develop a LA, which is a substantially different document from those developed to support a Site Recommendation (SR) decision. The LA must satisfy NRC licensing criteria and content requirements, and address the acceptance criteria defined by the NRC in its forthcoming Yucca Mountain Review Plan (YMRP). The content of the LA must be adequate to facilitate NRC acceptance and docketing for review, and the LA and its supporting documents must provide the documented basis for the NR C findings required

  16. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    International Nuclear Information System (INIS)

    R.A. Levich; J.S. Stuckless

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation

  17. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  18. Disruption scenarios for a nuclear-waste repository on the Nevada Test Site

    International Nuclear Information System (INIS)

    Link, R.L.; Bingham, F.W.; Barr, G.E.

    1981-01-01

    Scenarios are being constructed for the release of radioactive maerial from hypothetical repositories in different types of rock at NTS. Deductive event trees are constructed; each path through an event tree is a scenario. The complete set of NTS event trees comprises about 340 scenarios, not counting the multiple paths through the subtrees made by expanding complex events. Each of these scenarios is being analyzed for 10 different types of rocks

  19. Evaluation of geochemical properties used in area-to-location screening for a nuclear waste repository at the Nevada Test Site

    International Nuclear Information System (INIS)

    Purson, J.D.

    1983-03-01

    The area-to-location screening of a potential site for a nuclear waste repository is dependent on geologic compatibility. Specifically, the geochemical properties of candidate locations are significant in the overall site evaluation. This report describes three geochemical factors or attributes and their application to an area-to-location screening of the southwestern quadrant of the Nevada Test Site and contiguous areas. These are only 3 of 31 attributes examined in the screening process. Geochemical and rock media considerations relevant to site screening include: (1) retardation by hydraulics - a study of ground-water movement through fractures vs a permeable matrix; (2) thermal stability of minerals - a measurement of undesirable mineral assemblages in the rock; and (3) retardation by sorption - an evaluation of the total sorptive capacity at a location, based on stratigraphy and lithology. Twelve potential host rocks situated in 20 locations are examined; 2 of these have consistently fewer favorable characteristics, and 6 others have generally fewer favorable characteristics than the 4 remaining rock units. The four units that appear most favorable by geochemical measures are the tuffaceous beds of Calico Hills, granite intrusives, the densely welded Topopah Spring tuff, and the Crater Flat Tuff at Yucca Mountain

  20. Distribution of potentially hazardous phases in the subsurface at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Guthrie, G.D. Jr.; Bish, D.L.; Chipera, S.J.; Raymond, R. Jr.

    1995-05-01

    Drilling, trenching, excavation of the Exploratory Studies Facility, and other surface and underground-distributing activities have the potential to release minerals into the environment from tuffs at Yucca Mountain, Nevada. Some of these minerals may be potential respiratory health hazards. Therefore, an understanding of the distribution of the minerals that may potentially be liberated during site-characterization and operation of the potential repository is crucial to ensuring worker and public safety. Analysis of previously reported mineralogy of Yucca Mountain tuffs using data and criteria from the International Agency for Research on Cancer (IARC) suggests that the following minerals are of potential concern: quartz, cristobalite, tridymite, opal-CT, erionite, mordenite, and palygorskite. The authors have re-evaluated the three-dimensional mineral distribution at Yucca Mountain above the static water level both in bulk-rock samples and in fractures, using quantitative X-ray powder diffraction analysis. Erionite, mordenite, and palygorskite occur primarily in fractures; the crystalline-silica minerals, quartz, cristobalite, and tridymite are major bulk-rock phases. Erionite occurs in the altered zone just above the lower Topopah Spring Member vitrophyre, and an occurrence below the vitrophyre but above the Calico Hills has recently been identified. In this latter occurrence, erionite is present in the matrix at levels up to 35 wt%. Mordenite and palygorskite occur throughout the vadose zone nearly to the surface. Opal-CT is limited to zeolitic horizons

  1. The Nevada initiative: A risk communication Fiasco

    International Nuclear Information System (INIS)

    Flynn, J.; Solvic, P.; Mertz, C.K.

    1993-01-01

    The U.S. Congress has designated Yucca Mountain, Nevada as the only potential site to be studied for the nation's first high-level nuclear waste repository. People in Nevada strongly oppose the program, managed by the U.S. Department of Energy. Survey research shows that the public believes there are great risks from a repository program, in contrast to a majority of scientists who feel the risks are acceptably small. Delays in the repository program resulting in part from public opposition in Nevada have concerned the nuclear power industry, which collects the fees for the federal repository program and believes it needs the repository as a final disposal facility for its high-level nuclear wastes. To assist the repository program, the American Nuclear Energy Council (ANEC), an industry group, sponsored a massive advertising campaign in Nevada. The campaign attempted to assure people that the risks of a repository were small and that the repository studies should proceed. The campaign failed because its managers misunderstood the issues underlying the controversy, attempted a covert manipulation of public opinion that was revealed, and most importantly, lacked the public trust that was necessary to communicate credibly about the risks of a nuclear waste facility. This article describes the advertising campaign and its effects. The manner in which the ANEC campaign itself became a controversial public issue is reviewed. The advertising campaign is discussed as it relates to risk assessment and communication. 29 refs., 2 tabs

  2. Important parameters in the performance of a potential repository at Yucca Mountain (TSPA-1995)

    International Nuclear Information System (INIS)

    Atkins, J.E.; Sevougian, S.D.; Lee, J.H.; Andrews, R.W.; McNeish, J.A.

    1996-01-01

    A total system performance assessment (TSPA) was conducted to determine how a potential repository at Yucca Mountain would behave. Using the results of this TSPA, regression was done to determine which parameters had the most important effect on the repository performance. These results were consistent with the current conceptual understanding of the repository

  3. Uncertainty and sensitivity analysis in the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

    2010-01-01

    Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. As part of this development, an extensive performance assessment (PA) for the YM repository was completed in 2008 (1) and supported a license application by the DOE to the U.S. Nuclear Regulatory Commission (NRC) for the construction of the YM repository (2). This presentation provides an overview of the conceptual and computational structure of the indicated PA (hereafter referred to as the 2008 YM PA) and the roles that uncertainty analysis and sensitivity analysis play in this structure.

  4. Modeling fault rupture hazard for the proposed repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Coppersmith, K.J.; Youngs, R.R.

    1992-01-01

    In this paper as part of the Electric Power Research Institute's High Level Waste program, the authors have developed a preliminary probabilistic model for assessing the hazard of fault rupture to the proposed high level waste repository at Yucca Mountain. The model is composed of two parts: the earthquake occurrence model that describes the three-dimensional geometry of earthquake sources and the earthquake recurrence characteristics for all sources in the site vicinity; and the rupture model that describes the probability of coseismic fault rupture of various lengths and amounts of displacement within the repository horizon 350 m below the surface. The latter uses empirical data from normal-faulting earthquakes to relate the rupture dimensions and fault displacement amounts to the magnitude of the earthquake. using a simulation procedure, we allow for earthquake occurrence on all of the earthquake sources in the site vicinity, model the location and displacement due to primary faults, and model the occurrence of secondary faulting in conjunction with primary faulting

  5. Recent characterization activities of Midway Valley as a potential repository surface facility site

    International Nuclear Information System (INIS)

    Gibson, J.D.; Wesling, J.R.; Swan, F.H.; Bullard, T.F.

    1992-01-01

    Midway Valley, located at the eastern base of Yucca Mountain, Nye County, Nevada, has been identified as a possible location for the surface facilities of a potential high-level nuclear-waste repository. This structural and topographic valley is bounded by two north- trending, down-to-the-west normal faults: the Paintbrush Canyon fault on the east and the Bow Ridge fault on the west. Surface and near-surface geological data have been acquired from Midway Valley during the past three years with particular emphasis on evaluating the existence of Quaternary faults. A detailed (1:6000) surficial geological map has been prepared based on interpretation of new and existing aerial photographs, field mapping, soil pits, and trenches. No evidence was found that would indicate displacement of these surficial deposits along previously unrecognized faults. However, given the low rates of Quaternary faulting and the extensive areas that are covered by late Pleistocene to Holocene deposits south of Sever Wash, Quaternary faulting between known faults cannot be precluded based on surface evidence alone. Middle to late Pleistocene alluvial fan deposits (Unit Q3) exist at or near the surface throughout Midway Valley. Confidence is increased that the potential for surface fault rupture in Midway Valley can be assessed by excavations that expose the deposits and soils associated with Unit Q3 or older units (middle Pleistocene or earlier)

  6. Supplemental Performance Analyses for the Potential High-Level Nuclear Waste Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Sevougian, S. D.; McNeish, J. A.; Coppersmith, K.; Jenni, K. E.; Rickertsen, L. D.; Swift, P. N.; Wilson, M. L.

    2002-01-01

    The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for the potential development of a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. To facilitate public review and comment, in May 2001 the DOE released the Yucca Mountain Science and Engineering Report (S and ER) (1), which presents technical information supporting the consideration of the possible site recommendation. The report summarizes the results of more than 20 years of scientific and engineering studies. Based on internal reviews of the S and ER and its key supporting references, the Total System Performance Assessment for the Site Recommendation (TSPA-SR) (2) and the Analysis Model Reports and Process Model Reports cited therein, the DOE has recently identified and performed several types of analyses to supplement the treatment of uncertainty in support of the consideration of a possible site recommendation. The results of these new analyses are summarized in the two-volume report entitled FY01 Supplemental Science and Performance Analysis (SSPA) (3,4). The information in this report is intended to supplement, not supplant, the information contained in the S and ER. The DOE recognizes that important uncertainties will always remain in any assessment of the performance of a potential repository over thousands of years (1). One part of the DOE approach to recognizing and managing these uncertainties is a commitment to continued testing and analysis and to the continued evaluation of the technical basis supporting the possible recommendation of the site, such as the analysis contained in the SSPA. The goals of the work described here are to provide insights into the implications of newly quantified uncertainties, updated science, and evaluations of lower operating temperatures on the performance of a potential Yucca Mountain repository and to increase confidence in the results of the TSPA described

  7. Emplacement feasibility of a multi-tier, expanded capacity repository at Yucca Mountain, Nevada USA

    International Nuclear Information System (INIS)

    Apted, Michael; Kessler, John; Fairhurst, Charles

    2008-01-01

    A geological repository at Yucca Mountain has been proposed for the disposal of spent fuel from the US commercial reactors and other radioactive waste. A legislative capacity of 70,000 MTHM has been set by the Nuclear Waste Policy Act of 1982, including 63,000 MTHM of commercial spent nuclear fuel (CSNF), the projected amount of CSNF that will be produced by about 2014. Policy issues remain as to how to handle waste that is generated beyond 2014 from a growing nuclear industry in the US. The Electric Power Research Institute (EPRI) is independently evaluating the technical, rather than legislative, limit of CSNF that could be safely disposed at Yucca Mountain. Geological, thermal management, safety and cost factors have been recently evaluated by EPRI (2006; 2007) for grouped emplacement drifts and/or a multi-tier repository. EPRI's evaluation of emplacement feasibility for a multi-tier concept is described here. Expanded capacity concepts as envisioned for Yucca Mountain (EPRI, 2006; 2007) assume excavation of one or two additional levels of drifts parallel to or above and/or below the original drift excavations. For the latter multi-tier concept each 'tier' or 'level' would essentially replicate the original layer with a 30-m separation between tiers. This arrangement essentially doubles or triples the capacity of the repository for a two- or three-tier design, respectively. The main issues that affect the feasibility of expanded capacity design are; (i) ventilation requirements; (ii) radiation hazards; (iii) thermal and thermo-mechanical constraints. (i)Ventilation: The repository design involves waste packages mounted in close proximity to each other in 600-m long drifts that remain open and actively ventilated for at least 50-100 years. Analyses,conservatively assuming that all three repository levels operate simultaneously, indicate no technological obstacles in meeting ventilation requirements for sustained simultaneous operation ba sed on current industrial

  8. Total System Performance Assessment, 1993: An evaluation of the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Andrews, R.W.; Dale, T.F.; McNeish, J.A.

    1994-03-01

    Total System Performance Assessments are an important component in the evaluation of the suitability of Yucca Mountain, Nevada as a potential site for a mined geologic repository for the permanent disposal of high-level radioactive wastes in the United States. The Total System Performance Assessments are conducted iteratively during site characterization to identify issues which should be addressed by the characterization and design activities as well as providing input to regulatory/licensing and programmatic decisions. During fiscal years 1991 and 1992, the first iteration of Total System Performance Assessment (hereafter referred to as TSPA 1991) was completed by Sandia National Laboratories and Pacific Northwest Laboratory. Beginning in fiscal year 1993, the Civilian Radioactive Waste Management System Management and Operating Contractor was assigned the responsibility to plan, coordinate, and contribute to the second iteration of Total System Performance Assessment (hereafter referred to as TSPA 1993). This document presents the objectives, approach, assumptions, input, results, conclusions, and recommendations associated with the Management and Operating Contractor contribution to TSPA 1993. The new information incorporated in TSPA 1993 includes (1) revised estimates of radionuclide solubilities (and their thermal and geochemical dependency), (2) thermal and geochemical dependency of spent fuel waste alteration and glass dissolution rates, (3) new distribution coefficient (k d ) estimates, (4) revised estimates of gas-phase velocities and travel times, and (5) revised hydrologic modeling of the saturated zone which provides updated estimates of the advective flux through the saturated zone

  9. Total System Performance Assessment, 1993: An evaluation of the potential Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, R.W.; Dale, T.F.; McNeish, J.A.

    1994-03-01

    Total System Performance Assessments are an important component in the evaluation of the suitability of Yucca Mountain, Nevada as a potential site for a mined geologic repository for the permanent disposal of high-level radioactive wastes in the United States. The Total System Performance Assessments are conducted iteratively during site characterization to identify issues which should be addressed by the characterization and design activities as well as providing input to regulatory/licensing and programmatic decisions. During fiscal years 1991 and 1992, the first iteration of Total System Performance Assessment (hereafter referred to as TSPA 1991) was completed by Sandia National Laboratories and Pacific Northwest Laboratory. Beginning in fiscal year 1993, the Civilian Radioactive Waste Management System Management and Operating Contractor was assigned the responsibility to plan, coordinate, and contribute to the second iteration of Total System Performance Assessment (hereafter referred to as TSPA 1993). This document presents the objectives, approach, assumptions, input, results, conclusions, and recommendations associated with the Management and Operating Contractor contribution to TSPA 1993. The new information incorporated in TSPA 1993 includes (1) revised estimates of radionuclide solubilities (and their thermal and geochemical dependency), (2) thermal and geochemical dependency of spent fuel waste alteration and glass dissolution rates, (3) new distribution coefficient (k{sub d}) estimates, (4) revised estimates of gas-phase velocities and travel times, and (5) revised hydrologic modeling of the saturated zone which provides updated estimates of the advective flux through the saturated zone.

  10. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  11. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  12. Suggested data-gathering methods for the assessment of attitudes of Nevada citizens toward location of a repository at Yucca Mountain: Final report

    International Nuclear Information System (INIS)

    Bradbury, J.A.

    1986-12-01

    The purpose of this paper is to outline a variety of methods that could be used by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project to assess the attitudes of Nevada citizens toward the location of a repository at Yucca Mountain. The paper is divided into three chapters: Chapter 1 provides a background discussion; Chapter 2 discusses different social science methods and summarizes the advantages and disadvantages of each; and Chapter 3 outlines a conceptual approach to integrating several methods into one overall strategy for assessment. An assessment of the attitudes of persons who may be affected by repository activities will (1) enhance the NNWSI Project's ability to conduct the social impact assessment that can be included in an Environmental Impact Statement (EIS); (2) provide an information base for understanding and anticipating public responses; (3) allow the NNWSI Project to scope and prioritize issues that arise in the public debate that may occur over the repository location; and (4) help to facilitate communication and cooperation between the US Department of Energy (DOE) and state and local entities in the process of conducting the study. 114 refs., 1 tab

  13. Suggested data-gathering methods for the assessment of attitudes of Nevada citizens toward location of a repository at Yucca Mountain: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, J A

    1986-12-01

    The purpose of this paper is to outline a variety of methods that could be used by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project to assess the attitudes of Nevada citizens toward the location of a repository at Yucca Mountain. The paper is divided into three chapters: Chapter 1 provides a background discussion; Chapter 2 discusses different social science methods and summarizes the advantages and disadvantages of each; and Chapter 3 outlines a conceptual approach to integrating several methods into one overall strategy for assessment. An assessment of the attitudes of persons who may be affected by repository activities will (1) enhance the NNWSI Project`s ability to conduct the social impact assessment that can be included in an Environmental Impact Statement (EIS); (2) provide an information base for understanding and anticipating public responses; (3) allow the NNWSI Project to scope and prioritize issues that arise in the public debate that may occur over the repository location; and (4) help to facilitate communication and cooperation between the US Department of Energy (DOE) and state and local entities in the process of conducting the study. 114 refs., 1 tab.

  14. Surveys for desert tortoise on the proposed site of a high-level nuclear waste repository at the Nevada Test Site

    International Nuclear Information System (INIS)

    Collins, E.; Sauls, M.L.; O'Farrell, T.P.

    1983-01-01

    The National Waste Terminal Storage Program is a national search for suitable sites to isolate commercial spent nuclear fuel or high-level radioactive waste. The Nevada Nuclear Waste Storage Investigation (NNWSI) managed by the U.S. Department of Energy (DOE), Nevada Operations Office, was initiated to study the suitability of a portion of Yucca Mountain on the DOE's Nevada Test Site (NTS) as a location for such a repository. EG and G was contracted to provide information concerning the ecosystems encountered on the site. A comprehensive literature survey was conducted to evaluate the status and completeness of the existing biological information for the previously undisturbed area. Site specific studies were begun in 1981 when preliminary field surveys confirmed the presence of the desert tortoise (Gopherus agassizi) within the project area FY82 studies were designed to determine the overall distribution and abundance of the tortoise within the area likely to be impacted by NNWSI activities. The Yucca Mountain area of the Nevada Test Site is situated close to the northern range limit of the desert tortoise. Prior to the 1982 surveys, the desert tortoise was reported from only nine locations on NTS. A known population had been under study in Rock Valley about 25 miles southeast of the project area. However, the distribution and population densities of tortoise in the southwest portion of NTS were virtually unknown. Results of our surveys indicate that desert tortoise can be expected, albeit in small numbers, in a wide range of Mojavean and Transitional habitats

  15. Methodology used for total system performance assessment of the potential nuclear waste repository at yucca mountain (USA)

    International Nuclear Information System (INIS)

    Devonec, E.; Sevougian, S.D.; Mattie, P.D.; Mcneish, J.A.; Mishra, S.

    2001-01-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption. Finally, robustness analysis evaluates the performance of the repository when various natural or engineered barriers are assumed to be degraded. The objective of these analyses is to evaluate the performance of the potential repository system under conditions ranging from expected to highly unlikely, though physically possible conditions. (author)

  16. Methodology used for total system performance assessment of the potential nuclear waste repository at yucca mountain (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Devonec, E.; Sevougian, S.D.; Mattie, P.D.; Mcneish, J.A. [Duke Engineering and Services, Town Center Drive, Las Vegas (United States); Mishra, S. [Duke Engineering and Services, Austin, TX (United States)

    2001-07-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption. Finally, robustness analysis evaluates the performance of the repository when various natural or engineered barriers are assumed to be degraded. The objective of these analyses is to evaluate the performance of the potential repository system under conditions ranging from expected to highly unlikely, though physically possible conditions. (author)

  17. Characterization, propagation and analysis of aleatory and epistemic uncertainty in the 2008 performance assessment for the proposed repository for radioactive waste at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

    2010-01-01

    The 2008 performance assessment (PA) for the proposed repository for high-level radioactive waste at Yucca Mountain (YM), Nevada, illustrates the conceptual structure of risk assessments for complex systems. The 2008 YM PA is based on the following three conceptual entities: a probability space that characterizes aleatory uncertainty; a function that predicts consequences for individual elements of the sample space for aleatory uncertainty; and a probability space that characterizes epistemic uncertainty. These entities and their use in the characterization, propagation and analysis of aleatory and epistemic uncertainty are described and illustrated with results from the 2008 YM PA.

  18. Atmospheric Despersal and Disposition of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G. Keating; W.Statham

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model

  19. Atmospheric Dispersal and Dispostion of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Keating; W.Statham

    2004-02-12

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.

  20. Potential Emissions of Tritium in Air from Wells on the Nevada National Security Site

    International Nuclear Information System (INIS)

    Warren, R.

    2012-01-01

    This slide-show discusses the Nevada National Security Site (NNSS) and tritium in the groundwater. It describes the wells and boreholes and potential airflow from these sources. Monitoring of selected wells is discussed and preliminary results are presented

  1. Deep geological repository: Starting communication at potentially suitable sites

    International Nuclear Information System (INIS)

    Sumberova, Vera

    2001-01-01

    The siting of a deep geological repository in the Czech Republic is and will be a complicated process, since it is the first siting process of a nuclear facility designed from the start to be located at non-nuclear sites and to be organised under democratic conditions. This presentation describes the concept of radioactive waste and spent nuclear management in the Czech Republic, Communication activities of Radioactive Waste Repository Authority (RAWRA) with local representatives and lessons learned

  2. Estimations of the extent of migration of surficially applied water for various surface conditions near the potential repository perimeter

    International Nuclear Information System (INIS)

    Sobolik, S.R.; Fewell, M.E.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to support the design of site characterization activities so to have minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. Two examples of site characterization activities are the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and surface-based testing activities, which may require borehole drilling, excavation of test pits, and road watering for dust control. The information in this report pertains to two-dimensional numerical calculations modeling the movement of surficially applied water and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing recommendations for two Yucca Mountain Site Characterization Project documents: Appendix I of the Exploratory Studies Facility Design Requirements document, and the Surface-Based Testing Field Requirements Document

  3. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-01-01

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used

  4. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI, Inc., Albuquerque, NM (United States)

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices.

  5. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr.; Gdowski, G.E.

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices

  6. What do we mean by a cold repository?

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1994-01-01

    The topic of thermal loading of a potential repository at Yucca Mountain in Nevada has been the subject of intense discussion within the project technical community. While terms such as ''Hot Repository'' and ''Cold Repository'' are frequently used, they have not been clearly defined. In particular, the definition of a cold repository has remained the opinion of each individual. This has led to confusion and misunderstanding. In this paper, a number of observed definitions for a cold repository are discussed along with the technical implications, assumptions and inconsistencies. Finally, a common language is suggested

  7. Measurements of matric and water potentials in unsaturated tuff at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Thamir, F.; McBride, C.M.

    1985-01-01

    Two types of instruments were installed in a borehole in order to monitor matric and water potentials of various hydrogeologic units consisting of tuff. The borehole was drilled as part of a study to provide information to the US Department of Energy for their use in evaluating Yucca Mountain, Nevada, for a repository for high-level radioactive waste. Heat-dissipation probes were used to monitor matric potentials and thermocouple psychrometers were used to monitor water potentials. Two major concerns regarding the use of these instruments in deep boreholes are: (1) the effect of length of the lead wires, and (2) the inability to recalibrate the instruments after installation. The length of the lead wire contributes to the source resistance and lead capacitance, which affects the signal settling time. Both instruments tested proved to be insensitive to lead-wire length, except when connected to smaller input-impedance data loggers. Thermocouple wires were more sensitive than heat-dissipation probe wires because of their greater resistance and quality of voltmeters used. Two thermocouple psychrometers were installed at every instrument station for backup and verification of data, because the instruments could not be recalibrated in situ. Multiple scanning rather than single-point scanning of the evaporation curve of a thermocouple psychrometer could give more reliable data, especially in differentiating between very wet and very dry environments. An isolated power supply needs to be used for each heat dissipation probe rather than a single power supply for a group of probes to avoid losing data from all probes when one probe malfunctions. This type of system is particularly desirable if the site is unattended by an operator for as long as a month. 20 refs., 13 figs., 2 tabs

  8. Seismic activity parameters of the Finnish potential repository sites

    International Nuclear Information System (INIS)

    Saari, J.

    2000-10-01

    Posiva Oy has started a project for estimating the possible earthquake induced rock movements on the deposition holes containing canisters of spent nuclear fuel. These estimates will be made for the four investigation sites, Romuvaara, Kivetty, Olkiluoto and Haestholmen. This study deals with the current and future seismicity associated with the above mentioned sites. Seismic belts that participate the seismic behaviour of the studied sites have been identified and the magnitude-frequency distributions of these belts have been estimated. The seismic activity parameters of the sites have been deduced from the characteristics of the seismic belts in order to forecast the seismicity during the next 100,000 years. The report discusses the possible earthquakes induced by future glaciation. The seismic interpretation seems to indicate that the previous postglacial faults in Finnish Lapland have been generated in compressional environment. The orientation of the rather uniform compression has been NW-SE, which coincide with the current stress field. It seems that, although the impact of postglacial crustal rebound must have been significant, the impact of plate tectonics has been dominant. A major assumption of this study has been that future seismicity will generally resemble the current seismicity. However, when the postglacial seismicity is concerned, the magnitude-frequency distribution is likely different and the expected maximum magnitude will be higher. Maximum magnitudes of future postglacial earthquakes have been approximated by strain release examinations. Seismicity has been examined within the framework of the lineament maps, in order to associate the future significant earthquakes with active fault zones in the vicinity of the potential repository sites. (orig.)

  9. Methodology Used for Total System Performance Assessment of the Potential Nuclear Waste Repository at Yucca Mountain (USA)

    International Nuclear Information System (INIS)

    E. Devibec; S.D. Sevougian; P.D. Mattie; J.A. McNeish; S. Mishra

    2001-01-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model [1]. Process models included in the TSPA model are unsaturated zone flow and transport, thermal hydrology, in-drift geochemistry, waste package degradation, waste form degradation, engineered barrier system transport, saturated zone flow and transport, and biosphere transport. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. The environmental impact is measured primarily by the annual dose received by an average member of a critical population group residing 20 km down-gradient of the potential repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption. Finally, robustness analysis evaluates

  10. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    C. Harrington

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to

  11. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit

  12. Flood potential of Topopah Wash and tributaries, eastern part of Jackass Flats, Nevada Test Site, southern Nevada

    International Nuclear Information System (INIS)

    Christensen, R.C.; Spahr, N.E.

    1980-01-01

    Guidelines for evaluating potential surface facilities to be used for the storage of high-level radioactive wastes on the Nevada Test Site in southern Nevada include the consideration of the potential for flooding. Those floods that are considered to constitute the principal flood hazards for these facilities are the 100- and 500-year floods, and the maximum potential flood. Flood-prone areas for the three floods with present natural-channel conditions were defined for the eastern part of Jackass Flats in the southwestern part of the Nevada Test Site. The 100-year flood-prone areas would closely parallel most stream channels with very few occurrences of out-of-bank flooding between adjacent channels. Out-of-bank flooding would occur at depths of less than 2 feet with mean velocities as much as 7 feet per second. Channel flood depths would range from 1 to 9 feet and mean velocities would range from 3 to 9 feet per second. The 500-year flood would exceed the discharge capacities of all channels except for Topopah Wash and some channels in the upstream reaches of a few tributaries. Out-of-bank flows between adjacent channels would occur at depths as much as 3 feet with mean velocities of more than 7 feet per second. Channel flood depths would range from 1 to 12 feet and mean velocities would range from 3 to 13 feet per second. The maximum potential flood would inundate most of the study area. Excluded areas would be those located immediately east of the upstream reach of Topopah Wash and between upstream channel reaches of some tributaries. Out-of-bank flows between adjacent channels would occur at depths as much as 5 feet with mean velocities as much s 13 feet per second. Channel flood depth would range from 2 to 23 feet and mean velocities would range from 4 to 26 feet per second

  13. Comparison of potential radiological consequences from a spent-fuel repository and natural uranium deposits

    International Nuclear Information System (INIS)

    Wick, O.J.; Cloninger, M.O.

    1980-09-01

    A general criterion has been suggested for deep geological repositories containing spent fuel - the repositories should impose no greater radiological risk than due to naturally occurring uranium deposits. The following analysis investigates the rationale of that suggestion and determines whether current expectations of spent-fuel repository performance are consistent with such a criterion. In this study, reference spent-fuel repositories were compared to natural uranium-ore deposits. Comparisons were based on intrinsic characteristics, such as radionuclide inventory, depth, proximity to aquifers, and regional distribution, and actual and potential radiological consequences that are now occurring from some ore deposits and that may eventually occur from repositories and other ore deposits. The comparison results show that the repositories are quite comparable to the natural ore deposits and, in some cases, present less radiological hazard than their natural counterparts. On the basis of the first comparison, placing spent fuel in a deep geologic repository apparently reduces the hazard from natural radioactive materials occurring in the earth's crust by locating the waste in impermeable strata without access to oxidizing conditions. On the basis of the second comparison, a repository constructed within reasonable constraints presents no greater hazard than a large ore deposit. It is recommended that if the naturally radioactive environment is to be used as a basis for a criterion regarding repositories, then this criterion should be carefully constructed. The criterion should be based on the radiological quality of the waters in the immediate region of a specific repository, and it should be in terms of an acceptable potential increase in the radiological content of those waters due to the existence of the repository

  14. Expected dose for the early failure scenario classes in the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Helton, J.C.; Hansen, C.W.; Sallaberry, C.J.

    2014-01-01

    Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. In support of this development and an associated license application to the U.S. Nuclear Regulatory Commission (NRC), the DOE completed an extensive performance assessment (PA) for the proposed YM repository in 2008. This presentation describes the determination of expected dose to the reasonably maximally exposed individual (RMEI) specified in the NRC regulations for the YM repository for the early waste package (WP) failure scenario class and the early drip shield (DS) failure scenario class in the 2008 YM PA. The following topics are addressed: (i) properties of the early failure scenario classes and the determination of dose and expected dose the RMEI, (ii) expected dose and uncertainty in expected dose to the RMEI from the early WP failure scenario class, (iii) expected dose and uncertainty in expected dose to the RMEI from the early DS failure scenario class, (iv) expected dose and uncertainty in expected dose to the RMEI from the combined early WP and early DS failure scenario class with and without the inclusion of failures resulting from nominal processes, and (v) uncertainty in the occurrence of early failure scenario classes. The present article is part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA; additional articles in the issue describe other aspects of the 2008 YM PA. - Highlights: • Extensive work has been carried out by the U.S. DOE in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. • Properties of the early failure scenario classes (i.e. early waste package failure and early drip shield failure) in the 2008 YM performance assessment are described. • Determination of dose, expected dose and expected (mean

  15. Illustration of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high level radioactive waste repository at Yucca Mountain, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Helton, Jon Craig (Arizona State University, Tempe, AZ); Sallaberry, Cedric J. PhD. (.; .)

    2007-04-01

    A deep geologic repository for high level radioactive waste is under development by the U.S. Department of Energy at Yucca Mountain (YM), Nevada. As mandated in the Energy Policy Act of 1992, the U.S. Environmental Protection Agency (EPA) has promulgated public health and safety standards (i.e., 40 CFR Part 197) for the YM repository, and the U.S. Nuclear Regulatory Commission has promulgated licensing standards (i.e., 10 CFR Parts 2, 19, 20, etc.) consistent with 40 CFR Part 197 that the DOE must establish are met in order for the YM repository to be licensed for operation. Important requirements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. relate to the determination of expected (i.e., mean) dose to a reasonably maximally exposed individual (RMEI) and the incorporation of uncertainty into this determination. This presentation describes and illustrates how general and typically nonquantitive statements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. can be given a formal mathematical structure that facilitates both the calculation of expected dose to the RMEI and the appropriate separation in this calculation of aleatory uncertainty (i.e., randomness in the properties of future occurrences such as igneous and seismic events) and epistemic uncertainty (i.e., lack of knowledge about quantities that are poorly known but assumed to have constant values in the calculation of expected dose to the RMEI).

  16. Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    W.R. Keefer; J.W. Whitney; D.C. Buesch

    2006-09-25

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during

  17. Thermal Conductivity of the Potential Repository Horizon Model Report

    International Nuclear Information System (INIS)

    Ramsey, J.

    2002-01-01

    The purpose of this report is to assess the spatial variability and uncertainty of thermal conductivity in the host horizon for the proposed repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). The Tptpul is the layer directly above the repository host layers, which consist of the Tptpmn, Tptpll, and the Tptpln. Current design plans indicate that the largest portion of the repository will be excavated in the Tptpll (Board et al. 2002 [157756]). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large scale (cm-m) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity and perhaps repository system performance as well. To assess the spatial variability and uncertainty of thermal conductivity, a model is proposed that is functionally dependent on the volume fraction of lithophysae and the thermal conductivity of the matrix portion of the rock. In this model, void space characterized as lithophysae is assumed to be air-saturated under all conditions, while void space characterized as matrix may be either water- or air-saturated. Lithophysae are assumed to be air-saturated under all conditions since the units being studied are all located above the water table in the region of interest, and the relatively strong capillary forces of the matrix will, under most conditions, preferentially retain any moisture present in the rock

  18. Potential host media for a high-level waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Hustrulid, W

    1982-01-01

    Earlier studies of burial of radioactive wastes in geologic repositories had concentrated on salt formations for well-publicized reasons. However, under the Carter administration, significant changes were made in the US nuclear waste management program. Changes which were made were: (1) expansion of the number of rock types under consideration; (2) adoption of the multiple-barrier approach to waste containment; (3) additional requirements for waste retrieval; and (4) new criteria proposed by the Nuclear Regulatory Commission for the isolation of high-level waste in geologic repositories. Results of the studies of different types of rocks as repository sites are summarized herein. It is concluded that each generic rock type has certain advantages and disadvantages when considered from various aspects of the waste disposal problem and that characteristics of rocks are so varied that a most favorable or least favorable rock type cannot be easily identified. This lack of definitive characteristics of rocks makes site selection and good engineering barriers very important for containment of the wastes. (BLM)

  19. Factors limiting microbial growth and activity at a proposed high-level nuclear repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Kieft, T.L.; Kovacik, W.P. Jr.; Ringelberg, D.B.; White, D.C.; Haldeman, D.L.; Amy, P.S.; Hersman, L.E.

    1997-01-01

    As part of the characterization of Yucca Mountain, Nev., as a potential repository for high-level nuclear waste, volcanic tuff was analyzed for microbial abundance and activity. Tuff was collected aseptically from nine sites along a tunnel in Yucca Mountain. Microbial abundance was generally low: direct microscopic cell counts were near detection limits at all sites (3.2 X 10(1) to 2.0 X 10(5) cells g-1 [dry weight]); plate counts of aerobic heterotrophs ranged from 1.0 X 10(1) to 3.2 X 10(3) CFU g-1 (dry weight). Phospholipid fatty acid concentrations (0.1 to 3.7 pmol g-1) also indicated low microbial biomasses: diglyceride fatty acid concentrations, indicative of dead cells, were in a similar range (0.2 to 2.3 pmol g-1). Potential microbial activity was quantified as 14CO2 production in microcosms containing radiolabeled substrates (glucose, acetate, and glutamic acid); amendments with water and nutrient solutions (N and P) were used to test factors potentially limiting this activity. Similarly, the potential for microbial growth and the factors limiting growth were determined by performing plate counts before and after incubating volcanic tuff samples for 24 h under various conditions: ambient moisture, water-amended, and amended with various nutrient solutions (N, P, and organic C). A high potential for microbial activity was demonstrated by high rates of substrate mineralization (as much as 70% of added organic C in 3 weeks). Water was the major limiting factor to growth and microbial activity, while amendments with N and P resulted in little further stimulation. Organic C amendments stimulated growth more than water alone

  20. Analysis simulation of tectonic earthquake impact to the lifetime of radioactive waste container and equivalent dose rate predication in Yucca Mountain geologic repository, Nevada test site, USA

    International Nuclear Information System (INIS)

    Ko, I.S.; Imardjoko, Y.U.; Karnawati, Dwikorita

    2003-01-01

    US policy not to recycle her spent nuclear fuels brings consequence to provide a nuclear waste repository site Yucca Mountain in Nevada, USA, considered the proper one. High-level radioactive waste to be placed into containers and then will be buried in three hundred meter underground tunnels. Tectonic earthquake is the main factor causing container's damage. Goldsim version 6.04.007 simulates mechanism of container's damage due to a great devastating impact load, the collapse of the tunnels. Radionuclide inventories included are U-234, C-14, Tc-99, I-129, Se-79, Pa-231, Np-237, Pu-242, and Pu-239. Simulation carried out in 100,000 years time span. The research goals are: 1). Estimating tunnels stan-up time, and 2). Predicting the equivalent dose rate contributed by the included radionuclides to the human due to radioactive polluted drinking water intake. (author)

  1. Flood potential of Fortymile Wash and its principal southwestern tributaries, Nevada Test Site, Southern Nevada

    International Nuclear Information System (INIS)

    Squires, R.R.; Young, R.L.

    1984-01-01

    Flood hazards for a 9-mile reach of Fortymile Wash and its principal southwestern tributaries - Busted Butte, Drill Hole, and Yucca Washes - were evaluated to aid in determining possible sites for the storage of high-level radioactive wastes on the Nevada Test Site. Data from 12 peak-flow gaging stations adjacent to the Test Site were used to develop regression relations that would permit an estimation of the magnitude of the 100- and 500-year flood peaks (Q 100 and Q 500 ), in cubic feet per second. The resulting equations are: Q 100 = 482A 0 565 and Q 500 = 2200A 0 571 , where A is the tributary drainage area, in square miles. The estimate of the regional maximum flood was based on data from extreme floods elsewhere in Nevada and in surrounding states. Among seven cross sections on Fortymile Wash, the estimated maximum depths of the 100-year, 500-year, and regional maximum floods are 8, 11, and 29 feet, respectively. At these depths, flood water would remain within the deeply incised channel of the wash. Mean flow velocities would be as great as 9, 14, and 28 feet per second for the three respective flood magnitudes. The study shows that Busted Butte and Drill Hole Washes (9 and 11 cross sections, respectively) would have water depths of up to at least 4 feet and mean flow velocities of up to at least 8 feet per second during a 100-year flood. A 500-year flood would exceed stream-channel capacities at several places, with depths to 10 feet and mean flow velocities to 11 feet per second. The regional maximum flood would inundate sizeable areas in central parts of the two watersheds. At Yucca Wash (5 cross sections), the 100-year, 500-year, and regional maximum floods would remain within the stream channel. Maximum flood depths would be about 5, 9, and 23 feet and mean velocities about 9, 12, and 22 feet per second, respectively, for the three floods

  2. Fire weather and large fire potential in the northern Sierra Nevada

    Science.gov (United States)

    Brandon M. Collins

    2014-01-01

    Fuels, weather, and topography all contribute to observed fire behavior. Of these, weather is not only the most dynamic factor, it is the most likely to be directly influenced by climate change. In this study 40 years of daily fire weather observations from five weather stations across the northern Sierra Nevada were analyzed to investigate potential changes or trends...

  3. Investigative study of the underground excavations for a nuclear waste repository in tuff: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    St John, C.M.

    1987-07-01

    Numerical studies were conducted on the behavior of a tuff rock mass within which emplacement drifts for a nuclear waste repository are excavated. The first study evaluated the effects of rockbolting and excavation-induced damage on the behavior of the rock mass round typical drifts. The second study provided a simple means of assessing the significance of drift shape, drift size, and in-situ state of stress on the deformation and stress in the vicinity of drifts for vertical and horizontal emplacement of waste. Neither study considered the effect of heating of the rock mass after emplacement of the waste so the conclusions pertain only to the conditions immediately after excavation of the underground openings. The results of analyses of the rockbolted excavations indicated that rockbolts do not have a significant influence on the states of deformation or stress within the rock mass, and that the rockbolts are subjected to acceptable levels of stress even if installed as close to the face of the excavation as possible. Accordingly, rockbolts were not considered in the study of drift shape, drift size, and the in-situ state of stress. That study indicated that stable openings of the dimensions investigated can be constructed within a tuff rock mass with the properties assumed. Of the parameters investigated, the in-situ state of stress appeared to be most important. Potentially adverse conditions were predicted if the in-situ horizontal stress is very low, but current indications are that it lies within a range which is consistent with good conditions and a stable roof. 28 refs., 49 figs., 11 tabs

  4. Review of the potential effects of alkaline plume migration from a cementitious repository for radioactive waste

    International Nuclear Information System (INIS)

    Savage, D.

    1997-01-01

    Extensive use of cement and concrete is envisaged in the construction of geological repositories for low and intermediate-level radioactive wastes, both for structural, and encapsulation and backfilling purposes. Saturation of these materials with groundwater may occur in the post-closure period of disposal, producing a hyperalkaline pore fluid with a pH in the range 10-13.5. These pore fluids have the potential to migrate from the repository according to local groundwater flow conditions and react chemically with the host rock. These chemical reactions may affect the rock's capacity to retard the migration of radionuclides released from the repository after the degradation of the waste packages. The effects of these chemical reactions on the behaviour of the repository rock as a barrier to waste migration need to be investigated for the purposes of assessing the safety of the repository design (so-called 'safety assessment' or 'performance assessment'). The objectives of the work reported here were to: identify those processes influencing radionuclide mobility in the geosphere which could be affected by plume migration; review literature relevant to alkali-rock reaction; contact organisations carrying out relevant research and summarise their current and future activities; and make recommendations how the effects of plume migration can be incorporated into models of repository performance assessment. (author)

  5. Investigations of hydro-tectonic hazards at the proposed Yucca Mountain high-level nuclear waste repository. Annual report - Nevada

    International Nuclear Information System (INIS)

    Livingston, D.E.

    1994-01-01

    This document includes several reports describing scientific studies of the origin of near surface calcite/silica deposits at Yucca Mountain, Nevada. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  6. Economic potential of alternative land and natural resource uses at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Richard-Haggard, K.

    1983-03-01

    The economic potentials of several alternative land uses at the Nevada Test Site (NTS) are estimated. Alternatives considered include mining, agriculture, grazing, and hunting. There are two known tungsten ore bodies located in the Oak Spring mining district. The economic potential of the reserves is estimated to be $42,840. It is also possible that there are other economic mineral resources on the NTS whose values are yet unknown. There are an estimated 5000 ha of agricultural land on the Test Site; the cash value of alfalfa grown on this acreage is approximately $564,030. The economic potential of grazing at the Test Site lies somewhere in the range of $10,340 to $41,220. The assumed annual worth of mule deer to hunters is $90,440. The gross potential of hunting at the NTS is probably somewhat higher if trophy species, game birds and fur-bearing animals are also considered. It should be noted that the above values indicate gross worth; no costs are included in the estimates

  7. Workshop on Potentially Disruptive Phenomena for Nuclear Waste Repositories, July 27-28, 1977

    International Nuclear Information System (INIS)

    Jacobson, J.J.

    1977-01-01

    The workshop on Potentially Disruptive Phenomena for Nuclear Waste Repositories brought together experts in the geosciences to identify and evaluate potentially disruptive events and processes and to contribute ideas on how to extrapolate data from the past into the next one million years. The analysis is to be used to model a repository in geologic media for long-term safety assessments of nuclear waste storage. The workshop included invited presentations on the following items: an overview of the Waste Isolation Safety Assessment Program (WISAP), simulation techniques, subjective probabilities and methodology of obtaining data, similar modeling efforts at Lawrence Livermore and Sandia Laboratories, and geologic processes or events

  8. The hydrothermal stability of cement sealing materials in the potential Yucca Mountain high level nuclear waste repository

    International Nuclear Information System (INIS)

    Krumhansl, J.L.; Hinkebein, T.E.; Myers, J.

    1991-01-01

    Cementitious materials, together with other materials, are being considered to seal a potential repository at Yucca Mountain. A concern with cementitious materials is the chemical and mineralogic changes that may occur as these materials age while in contact with local ground waters. A combined theoretical and experimental approach was taken to determine the ability to theoretically predict mineralogic changes. The cementitious material selected for study has a relatively low Ca:Si ratio approaching that of the mineral tobermorite. Samples were treated hydrothermally at 200 degrees C with water similar to that obtained from the J-13 well on the Nevada Test Site. Post-test solutions were analyzed for pH as well as dissolved K, Na, Ca, Al, and Si. Solid phases formed during these experiments were characterized by scanning electron microscopy and X- ray diffraction. These findings were compared with predictions made by the geochemical modeling code EQ3NR/E06. It was generally found that there was good agreement between predicted and experimental results

  9. Supplemental Performance Analyses for Igneous Activity and Human Intrusion at the Potential High-Level Nuclear Waste Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Swift, P.; Gaither, K.; Freeze, G.; McCord, J.; Kalinich, D.; Saulnier, G.; Statham, W.

    2002-01-01

    The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for the potential development of a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. Consequences of hypothetical disruption of the Yucca Mountain site by igneous activity or human intrusion have been evaluated in the Yucca Mountain Science and Engineering Report (S and ER) (1), which presents technical information supporting the consideration of the possible site recommendation. Since completion of the S and ER, supplemental analyses have examined possible impacts of new information and alternative assumptions on the estimates of the consequences of these events. Specifically, analyses of the consequences of igneous disruption address uncertainty regarding: (1) the impacts of changes in the repository footprint and waste package spacing on the probability of disruption; (2) impacts of alternative assumptions about the appropriate distribution of future wind speeds to use in the analysis; (3) effects of alternative assumptions about waste particle sizes; and (4) alternative assumptions about the number of waste packages damaged by igneous intrusion; and (5) alternative assumptions about the exposure pathways and the biosphere dose conversion factors used in the analysis. Additional supplemental analyses, supporting the Final Environmental Impact Statement (FEIS), have examined the results for both igneous disruption and human intrusion, recalculated for a receptor group located 18 kilometers (km) from the repository (the location specified in 40 CFR 197), rather than at the 20 km distance used in the S and ER analyses

  10. Appraisal of hard rock for potential underground repositories of radioactive wastes

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1977-10-01

    The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  11. Long term effects on potential repository sites: occurrence and diagenesis of anhydrite

    International Nuclear Information System (INIS)

    Bath, A.H.; George, I.A.; Milodowski, A.E.; Darling, W.G.

    1985-10-01

    The report deals with the long-term behaviour of anhydrite as a potential host rock for deep disposal of intermediate-level radioactive wastes. The principal long-term effect on the integrity of such a repository is the possibility of penetration of groundwater and consequent transformation to gypsum. Therefore, in order to assess the chydrological and geochemical processes of hydration in detail, mineralogical and geochemical analyses have been carried out on anhydrite samples in a drillcore taken near Darlington, United Kingdom. The results are discussed in terms of the long-term integrity of anhydrite as a repository site. (U.K.)

  12. Transportation cask decontamination and maintenance at the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Hartman, D.J.; Miller, D.D.; Hill, R.R.

    1992-04-01

    This study investigates spent fuel cask handling experience at existing nuclear facilities to determine appropriate cask decontamination and maintenance operations at the potential Yucca Mountain repository. These operations are categorized as either routine or nonroutine. Routine cask decontamination and maintenance tasks are performed in the cask preparation area at the repository. Casks are taken offline to a separate cask maintenance area for major nonroutine tasks. The study develops conceptual designs of the cask preparation area and cask maintenance area. The functions, layouts, and major features of these areas are also described

  13. Role of groundwater oxidation potential and radiolysis on waste glass performance in crystalline repository environments

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.

    1985-01-01

    Laboratory experiments have shown that groundwater conditions in a Stripa granite repository will be as reducing as those in a basalt repository. The final oxidation potential (Eh) at 70 0 C for Stripa groundwater deaerated and equilibrated with crystalline granite was -0.45V. In contrast, the oxidation potential at 60 0 C for Grande Ronde groundwater equilibrated with basalt was -0.40V. The reducing groundwater conditions were found to slightly decrease the time-dependent release of soluble components from the waste glass. Spectrophotometric analysis of the equilibrated groundwaters indicated the presence of Fe 2+ confirming that the Fe 2+ /Fe 3+ couple is controlling the oxidation potential. It was also shown that in the alkaline pH regime of these groundwaters the iron species are primarily associated with x-ray amorphous precipitates in the groundwater. Gamma radiolysis in the absence of waste glass and in the absence of oxygen further reduces the oxidation potential of both granitic and basaltic groundwaters. The effect is more pronounced in the basaltic groundwater. The mechanism for this decrease is under investigation but appears related to the reactive amorphous precipitate. The results of these tests suggest that H 2 may not escape from the repository system as postulated and that radiolysis may not cause the groundwaters to become oxidizing in a crystalline repository when abundant Fe 2+ species are present. 23 refs., 3 figs., 3 tabs

  14. Compilation of data for thermomechanical analyses of four potential salt repositories

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.; Loken, M.C.; Osnes, J.D.; Wagner, R.A.

    1986-01-01

    This report includes a collection and summarization of the data which are necessary to perform thermomechanical analyses of four potential salt repository sites: Paradox Basin, Utah; Permian Basin, Texas; Richton Dome, Mississippi; and Vacherie Dome, Louisiana. Thermal, mechanical, and hydrogeological material properties are presented so that the numerical analyses can be subdivided into three geometric regions: canister, disposal room, and repository site. Data are presented for the salt formations, the surrounding geological units, and for human-made materials placed in the repository such as the nuclear waste and its protective steel liner. Wherever possible, site-specific data are used which have been determined from laboratory testing of drill core or from interpretation of geophysical logs. Although much effort has been made to obtain the most appropriate data, there are deficiencies because some of the required site-specific data are either not available or are inconsistent with anticipated values

  15. Strontium Isotopes in Pore Water as an Indicator of Water Flux at the Proposed High-Level Radioactive Waste Repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.; Futa, K.

    2004-01-01

    The proposed high-level radioactive waste repository at Yucca Mountain, Nevada, would be constructed in the high-silica rhyolite (Tptp) member of the Miocene-age Topopah Spring Tuff, a mostly welded ash-flow tuff in the ∼500-m-thick unsaturated zone. Strontium isotope compositions have been measured in pore water centrifuged from preserved core samples and in leachates of pore-water salts from dried core samples, both from boreholes in the Tptp. Strontium isotope ratios ( 87 Sr/ 86 Sr) vary systematically with depth in the surface-based boreholes. Ratios in pore water near the surface (0.7114 to 0.7124) reflect the range of ratios in soil carbonate (0.7112 to 0.7125) collected near the boreholes, but ratios in the Tptp (0.7122 to 0.7127) at depths of 150 to 370 m have a narrower range and are more radiogenic due to interaction with the volcanic rocks (primarily non-welded tuffs) above the Tptp. An advection-reaction model relates the rate of strontium dissolution from the rocks with flow velocity. The model results agree with the low transport velocity (∼2 cm per year) calculated from carbon-14 data by I.C. Yang (2002, App. Geochem., v. 17, no. 6, p. 807-817). Strontium isotope ratios in pore water from Tptp samples from horizontal boreholes collared in tunnels at the proposed repository horizon have a similar range (0.7121 to 0.7127), also indicating a low transport velocity. Strontium isotope compositions of pore water below the proposed repository in core samples from boreholes drilled vertically downward from tunnel floors are more varied, ranging from 0.7112 to 0.7127. The lower ratios ( 87 Sr/ 86 Sr of 0.7115. Ratios lower than 0.7115 likely reflect interaction of construction water with concrete in the tunnel inverts, which had an 87 Sr/ 86 Sr < 0.709. These low Sr ratios indicate penetration of construction water to depths of ∼20 m below the tunnels within three years after construction, a transport velocity of ∼7 m per year. These studies show that

  16. Geohydrology surrounding a potential high-level nuclear waste repository in the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Brandstetter, A.; Kroitoru, L.; Andrews, R.W.; Thackston, J.W.

    1984-01-01

    The Gibson Dome area in the Paradox Basin in southeastern Utah has been identified as a potential location for a high-level nuclear waste repository on the basis of an adequate thickness of bedded salt formations at desirable depths, suitable topography for surface facilities, few known archaeological sites, less resource potential than otherwise similar areas, and long-term geologic and tectonic stability. The area appears also suitable from a geohydrologic viewpoint, on the basis of data collected and analyses performed to date. The upper, near-surface, geologic formations include both regionally continuous water-bearing formations and locally perched ground waters that discharge into nearby surface streams and into the Colorado River. Below the Paradox salts, the formations of interest with respect to repository safety include regionally continuous water-bearing formations, with the Leadville limestone being the principal water-transmitting unit. Flows in all water-bearing formations are essentially horizontal. If a vertical connection were established through a potential repository, hydraulic gradients indicate that the flow would first be downward from the upper to the lower formations and then laterally, principally in the Leadville formation. There are some indications that minor leakage could occur into the Colorado River as close as Cataract Canyon, about 20 to 25 km (10 to 15 miles) from a potential repository location in Davis Canyon, or into the Colorado River in Marble Canyon (Arizona), about 240 km (150 miles) to the southwest. Groundwater flow from a repository to these locations is unlikely, however, since water would first have to penetrate the essentially impermeable salt layers before it would reach the Leadville formation. 11 references, 4 figures

  17. Physical processes of magmatism and effects on the potential repository: Synthesis of technical work through Fiscal Year 1995

    International Nuclear Information System (INIS)

    Valentine, G.A.

    1996-01-01

    This chapter summarizes data collection and model calculations through FY 95 under Study Plan 8.3.1.8.1.2 Physical Processes of Magmatism and Effects on the Potential Repository. The focus of this study plan is to gather information that ultimately constrains the consequences of small-volume, basaltic magmatic activity at or near a potential repository. This is then combined with event probability estimates, described elsewhere in this synthesis report, to yield a magmatic risk assessment. Tere are two basic classes of effects of magmatisms that are considered here: (1) Eruptive effects, whereby rising magma intersects a potential repository, entrains radioactive waste, and erupts it onto the earth's surface. (2) Subsurface effects, which includes a wide range of processes such as hydrothermal flow, alteration of mineral assemblages in the potential repository system, and alteration of hydrologic flow properties of the rocks surrounding a potential repository

  18. Physical processes of magmatism and effects on the potential repository: Synthesis of technical work through Fiscal Year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, G.A.

    1996-09-01

    This chapter summarizes data collection and model calculations through FY 95 under Study Plan 8.3.1.8.1.2 Physical Processes of Magmatism and Effects on the Potential Repository. The focus of this study plan is to gather information that ultimately constrains the consequences of small-volume, basaltic magmatic activity at or near a potential repository. This is then combined with event probability estimates, described elsewhere in this synthesis report, to yield a magmatic risk assessment. Tere are two basic classes of effects of magmatisms that are considered here: (1) Eruptive effects, whereby rising magma intersects a potential repository, entrains radioactive waste, and erupts it onto the earth`s surface. (2) Subsurface effects, which includes a wide range of processes such as hydrothermal flow, alteration of mineral assemblages in the potential repository system, and alteration of hydrologic flow properties of the rocks surrounding a potential repository.

  19. Identification of structures, systems, and components important to safety at the potential repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Hartman, D.J.; Miller, D.D.; Klamerus, L.J.

    1991-10-01

    This study recommends which structures, systems, and components of the potential repository at Yucca Mountain are important to safety. The assessment was completed in April 1990 and uses the reference repository configuration in the Site Characterization Plan Conceptual Design Report and follows the methodology required at that time by DOE Procedure AP6.10-Q. Failures of repository items during the preclosure period are evaluated to determine the potential offsite radiation doses and associated probabilities. Items are important to safety if, in the event they fail to perform their intended function, an accident could result which causes a dose commitment greater than 0.5 rem to the whole body or any organ of an individual in an unrestricted area. This study recommends that these repository items include the structures that house spent fuel and high-level waste, the associated filtered ventilation exhaust systems, certain waste- handling equipment, the waste containers, the waste treatment building structure, the underground waste transporters, and other items listed in this report. This work was completed April 1990. 27 refs., 7 figs., 9 tabs

  20. Nature and continuity of the Sundance Fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Potter, Christopher J.; Dickerson, Robert P.; Day, Warren C.

    2000-01-01

    This report describes the detailed geologic mapping (1:2,400 scale) that was performed in the northern part of the potential nuclear waste repository area at Yucca Mountain, Nevada, to determine the nature and extent of the Sundance Fault zone and to evaluate structural relations between the Sundance and other faults

  1. Assessment of potential perturbations to Posiva's SF repository at Olkiluoto from the ONKALO Facility

    International Nuclear Information System (INIS)

    Alexander, W.R.; Neall, F.B.

    2007-06-01

    Although the site of the proposed spent fuel repository at Olkiluoto in southwest Finland has been extensively investigated over the last fifteen years, Posiva decided to construct a rock characterisation facility (RCF) at the site to collect more detailed information on the host rock. The data provided by the ONKALO RCF will support the detailed repository design and safety assessment (SA) and will allow construction and disposal methods to be tested under relevant in situ conditions. ONKALO has been so designed that it can act as access routes and auxiliary rooms for the SF repository and so may be in use for the entire operational phase of the repository (currently up to 100 years). Extensive experience from deep mining suggests that such an extended period of operation could have a major impact on both the host rock formation and any nearby facilities, such as the SF repository, and, consequently, Posiva decided to investigate potential perturbations to the repository caused by the existence of ONKALO. A preliminary assessment was carried out in 2003, before construction of the RCF began, and this was recently partially updated in early 2006. This current report represents the most recent update of these reports and has the primary aims of: checking if the previous reports have missed any essential issues; evaluating whether the identified issues have been treated in an appropriate manner; updating the reports in the light of new information. This is carried out based on data from ONKALO itself and on improved understanding of some of the perturbation mechanisms identified in the original studies along with a consideration of newly identified processes. This report differs from the previous studies in addressing the issues in a more SA-oriented manner (for example, focussing the examination of potential perturbations on a re-worked FEP list), allowing the work reported here to be more easily dovetailed with future SA studies on the Olkiluoto repository

  2. Preliminary evaluation of 30 potential granitic rock sites for a radioactive waste storage facility in southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, C.R.; Knutson, C.F.

    1978-02-15

    Results of preliminary study are presented which was performed under subtask 2.7 of the NTS Terminal Waste Storage Program Plan for 1978. Subtask 2.7 examines the feasibility of locating a nuclear waste repository in a granitic stock or pluton in southern Nevada near the Nevada Test Site (NTS). It is assumed for the purposes of this study that such a repository cannot be located at NTS. This assumption may or may not be correct. This preliminary report does not identify a particular site as being a suitable location for a repository. Nor does it absolutely eliminate a particular site from further consideration. It does, however, answer the basic question of probable suitability of some of the sites and present a systematic method for site evaluation. Since the findings of this initial study have been favorable, it will be followed by more exhaustive and detailed studies of the original 30 sites and perhaps others. In future studies some of the evaluation criteria used in the preliminary study may be modified or eliminated, and new criteria may be introduced.

  3. Preliminary evaluation of 30 potential granitic rock sites for a radioactive waste storage facility in southern Nevada

    International Nuclear Information System (INIS)

    Boardman, C.R.; Knutson, C.F.

    1978-01-01

    Results of preliminary study are presented which was performed under subtask 2.7 of the NTS Terminal Waste Storage Program Plan for 1978. Subtask 2.7 examines the feasibility of locating a nuclear waste repository in a granitic stock or pluton in southern Nevada near the Nevada Test Site (NTS). It is assumed for the purposes of this study that such a repository cannot be located at NTS. This assumption may or may not be correct. This preliminary report does not identify a particular site as being a suitable location for a repository. Nor does it absolutely eliminate a particular site from further consideration. It does, however, answer the basic question of probable suitability of some of the sites and present a systematic method for site evaluation. Since the findings of this initial study have been favorable, it will be followed by more exhaustive and detailed studies of the original 30 sites and perhaps others. In future studies some of the evaluation criteria used in the preliminary study may be modified or eliminated, and new criteria may be introduced

  4. Overview of the current CRWMS repository design

    International Nuclear Information System (INIS)

    Daniel, R.B.; Teraoka, G.M.

    1998-01-01

    This paper summarizes the current design for a potential geologic repository for spent fuels and high-level wastes at Yucca Mountain, Nevada. The objective of the paper is to present the key design features of the Mined Geologic Disposal System (MGDS) surface facilities and MGDS subsurface facilities. The paper describes the following: surface layout; waste handling operations design; subsurface design; and the underground transport and emplacement design. A more detailed presentation of key features is provided in the ''Reference design description for a geologic repository'' which is located on the YMP Homepage at www.ymp.gov

  5. VerSi - A Methodology for a Comparison of Potential Repository Sites

    International Nuclear Information System (INIS)

    Hund, Wilhelm

    2010-09-01

    In the year 2000 the moratorium on the exploration of the Gorleben salt dome as a potential repository for all kinds of radioactive waste became effective as a result of the consensus agreement between the Federal Government and the utilities about phasing out nuclear energy in Germany. All exploration activities were interrupted for at maximum ten years to clarify conceptual and safety relevant questions. A new set of safety requirements for the final disposal of heat-generating radioactive waste in deep geological formations was established in July 2009 by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). As the BMU intended to carry out a comparison of potential repository sites it was necessary to initiate the development of a methodology for the identification of the site with the highest level of safety. A comparison of different repository sites requires a tool ensuring most confident and objective criteria for the comparison, whereas up to present long-term safety analyses were focused on confirming the suitability of sites by meeting the protection objectives by the measures of dose and risk. Within the 2006 established project VerSi a methodology for comparing different sites in different host rocks will be developed on the basis of long-term safety analyses taking into account geoscientific databases, inventory of radioactive waste, waste containers, corresponding disposal concepts and the feasibility of appropriate backfilling and closure concepts. The development of the method is aiming at providing measures other than dose and risk for the evaluation of the level of safety. For testing the tools a HLW-repository hosted in a salt dome (Gorleben) will be compared with a generic HLW-repository in consolidated clay as a host rock. As until now in Germany no clay stone site has been investigated for hosting a HLW repository, the required data are transferred from international research projects and repository concepts

  6. Potential retrieval of radioactive wastes at the proposed Yucca Mountain repository

    International Nuclear Information System (INIS)

    Goble, R.; Golding, D.; Kasperson, R.E.

    1988-06-01

    The absence of risk-based criteria for retrieval planning does not mean, of course, that DOE has been unconcerned about the risks of a retrieval operation or that pertinent information has not been generated. On the other hand, it is worrisome that there has not yet been a systematic identification and assessment of the potential risks. The goals of this preliminary review are: to explore the nature of the risks associated with a retrieval operation; to assess the adequacy of DOE's evaluation of these risks; to identify unresolved issues requiring further attention, and to examine implications for the state of Nevada

  7. Potential site selection for radioactive waste repository using GIS (Study area: Negeri Sembilan) - Phase 1

    International Nuclear Information System (INIS)

    Ahmad Hasnulhadi Che Kamaruddin; Faizal Azrin Abdul Razalim; Mohd Abdul Wahab Yusof; Nik Marzukee Nik Ibrahim; Nazran Harun; Muhammad Fathi Sujan; Karuppiah, T.; Surip, N.; Malik, N.N.A.; Che Musa, R.

    2010-01-01

    The main purpose in this paper is to create the Geographic Information System (GIS) based analysis on the potential site area for near-surface radioactive waste repository in the state of Negeri Sembilan. There are several parameters should be considered related to the safety assessment in selecting the potential site. These parameters such as land-use, urban area, soil, rainfall, lithology, lineament, geomorphology, landslide potential, slope, elevation, hydrogeology and protected land need to be considered before choosing the site. In this phase, we only consider ten parameters for determining the potential suitable site. (author)

  8. Appraisal of hard rock for potential underground repositories of radioactive wastes. LBL-7004

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1978-01-01

    Underground burial of radioactive wastes in hard rock may be an effective and safe means of isolating them from the environment and from man. The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 km to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  9. Methods of simulating low redox potential (Eh) for a basalt repository

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1983-01-01

    Basalt groundwaters have inherently low redox potentials, approximately -0.4V, which can be measured with platinum electrodes, but are difficult to reproduce during leaching experiments. In the presence of deionized water, crushed basalt reaches the measured Eh-pH values of a basalt repository. Other waste package components, such as iron, will interact with groundwater in different ways under oxic or anoxic conditions since the presence of any redox active solid will affect the groundwater Eh. 26 references, 4 figures

  10. Role of groundwater oxidation potential and radiolysis on waste glass performance in crystalline repository environments

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.

    1986-01-01

    Laboratory experiments have shown that groundwater conditions in a granite repository will be as reducing as those in a basalt repository. Chemical analysis of the reduced groundwaters confirmed that the Fe 2+ /Fe 3+ couple controls the oxidation potential (Eh). The reducing groundwater conditions were found to decrease the time-dependent release of soluble elements (Li and B) from the waste glass. However, due to the lower solubility of multivalent elements released from the glass when the groundwaters are reducing, these elements have significantly lower concentrations in the leachates. Gamma radiolysis reduced the oxidation potential of both granitic and basaltic groundwater in the absence of both waste glass and oxygen. This occurred in tests at atmospheric pressure where H 2 could have escaped from the solution. The mechanism for this decrease in Eh is under investigation but appears related to the reactive amorphous precipitate in both groundwaters. The results of these tests suggest that radiolysis may not cause the groundwaters to become oxidizing in a crystalline repository when abundant Fe 2+ species are present

  11. Simulated effects of potential withdrawals from wells near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tucce, Patrick; Faunt, Claudia C.

    1999-01-01

    The effects of potential future withdrawals from wells J-12, J-13, and UE-25c number 3 on the ground-water flow system in the area surrounding Yucca Mountain, Nevada, were simulated by using an existing (1997) three-dimensional regional ground-water flow model. The 1997 regional model was modified only to include changes at the pumped wells. Two steady-state simulations (baseline and predictive) were conducted to estimate changes in water level and changes in ground-water outflow from Jackass Flats, where the pumped wells are located, south to the Amargosa Desert

  12. Potential environmental effects of pack stock on meadow ecosystems of the Sierra Nevada, USA

    Science.gov (United States)

    Ostoja, Steven M.; Brooks, Matthew L.; Moore, Peggy E.; Berlow, Eric L.; Robert Blank,; Roche, Jim; Chase, Jennifer T.; Sylvia Haultain,

    2014-01-01

    Pack and saddle stock, including, but not limited to domesticated horses, mules, and burros, are used to support commercial, private and administrative activities in the Sierra Nevada. The use of pack stock has become a contentious and litigious issue for land management agencies in the region inter alia due to concerns over effects on the environment. The potential environmental effects of pack stock on Sierra Nevada meadow ecosystems are reviewed and it is concluded that the use of pack stock has the potential to influence the following: (1) water nutrient dynamics, sedimentation, temperature, and microbial pathogen content; (2) soil chemistry, nutrient cycling, soil compaction and hydrology; (3) plant individuals, populations and community dynamics, non-native invasive species, and encroachment of woody species; and (4) wildlife individuals, populations and communities. It is considered from currently available information that management objectives of pack stock should include the following: minimise bare ground, maximise plant cover, maintain species composition of native plants, minimise trampling, especially on wet soils and stream banks, and minimise direct urination and defecation by pack stock into water. However, incomplete documentation of patterns of pack stock use and limited past research limits current understanding of the effects of pack stock, especially their effects on water, soils and wildlife. To improve management of pack stock in this region, research is needed on linking measurable monitoring variables (e.g. plant cover) with environmental relevancy (e.g. soil erosion processes, wildlife habitat use), and identifying specific environmental thresholds of degradation along gradients of pack stock use in Sierra Nevada meadows.

  13. A preliminary analysis of the risk of transporting nuclear waste to potential candidate commercial repository sites

    International Nuclear Information System (INIS)

    Madsen, M.M.

    1984-01-01

    In accordance with the provisions of the Nuclear Waste Policy Act of 1982, environmental assessments for potential candidate sites are required to provide a basis for selection of the first site for disposal of commercial radioactive waste in deep geologic repositories. A preliminary analysis of the impacts of transportation for each of the five potential sites will be described. Transportation was assumed to be entirely by truck or entirely by rail in order to obtain bounding impacts. This paper presents both radiological and nonradiological risks for the once-through fuel cycle

  14. Small scale hydroelectric power potential in Nevada: a preliminary reconnaissance survey

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, G.F.; Fordham, J.W.; Richard, K.; Loux, R.

    1981-04-01

    This preliminary reconnaissance survey is intended to: develop a first estimate as to the potential number, location and characteristics of small-scale (50 kW to 15 MW) hydroelectric sites in Nevada; provide a compilation of various Federal and state laws and regulations, including tax and financing regulations, that affect small-scale hydroelectric development and provide information on sources of small-scale hydroelectric generation hardware and consultants/ contractors who do small scale hydroelectric work. The entire survey has been conducted in the office working with various available data bases. The site survey and site evaluation methods used are described, and data are tabulated on the flow, power potential, predicted capital expenditures required, etc. for 61 potential sites with measured flows and for 77 sites with derived flows. A map showing potential site locations is included. (LCL)

  15. Nevada state revenues analysis

    International Nuclear Information System (INIS)

    1988-06-01

    This report analyzes the major sources of revenue to the Nevada State General Fund for purposes of estimating impacts associated with the siting of a nuclear waste repository at Yucca Mountain in Nye County, Nevada. Each major revenue source is analyzed to identify relationships among the economic or demographic base, the revenue base, and the revenues generated. Trends and changes in the rates and/or base are highlighted. A model is developed for each revenue source to allow impact estimation

  16. Shear Slip Potential Induced by Thermomechanical Loading in an Underground Repository for Nuclear Waste

    International Nuclear Information System (INIS)

    Lee, Jaewon; Min, Kibok; Stephansson, Ove

    2010-01-01

    In the context of a deep geological repository for nuclear water, the thermal stress generated by nuclear waster is expected to contribute to shear slip and dilation, which will eventually alter the fracture permeability in the region. In this study, the probability of the occurrence of shear slip at a fracture was examined by the Mohr-Coulomb failure criterion. The study was based on the fracture orientation generated by the Latin hypercube sampling method, which can improve the efficiency of Monte Carlo simulations by the use of a more systematic approach for selecting the input samples. Statistical data of fracture orientations from the site investigation in Forsmark, Sweden, were used in this study. The historical assessment of thermal stress was based on three-dimensional finite element modeling of a geological repository that measures 800 m by 2000 m and on a time scale up to 10,000 years. The results show that the probability of shear slip evolved differently at six selected points due to the difference stresses at each point. However, it was evident that the probability of shear slip was more that twice as large as the initial probability of failure. This increased permeability and micro seismicity, which can be an issue during the initial operation of the repository. The study provided a quantitative assessment of the probability of shear slip at a fracture, which is an important parameter for assessing the performance of a geological repository. Conclusions are summarized as follows: · With random orientation data, the probability of shear slip around the repository model increases with increased thermal stress. · The probability of shear slip depends on the manner in which the thermal stress is generated. Higher shear slip is expected with higher differential thermal stress. · The probability of shear slip at Forsmark was less than 1 %. If different sites have fracture sets with more overlap, however, the probability may become increase. Therefore, a

  17. Shear Slip Potential Induced by Thermomechanical Loading in an Underground Repository for Nuclear Waste

    International Nuclear Information System (INIS)

    Lee, Jaewon; Min, Kibok; Stephansson, Ove

    2010-01-01

    In the context of a deep geological repository for nuclear water, the thermal stress generated by nuclear waster is expected to contribute to shear slip and dilation, which will eventually alter the fracture permeability in the region. In this study, the probability of the occurrence of shear slip at a fracture was examined by the Mohr-Coulomb failure criterion. The study was based on the fracture orientation generated by the Latin hypercube sampling method, which can improve the efficiency of Monte Carlo simulations by the use of a more systematic approach for selecting the input samples. Statistical data of fracture orientations from the site investigation in Forsmark, Sweden, were used in this study. The historical assessment of thermal stress was based on three-dimensional finite element modeling of a geological repository that measures 800 m by 2000 m and on a time scale up to 10,000 years. The results show that the probability of shear slip evolved differently at six selected points due to the difference stresses at each point. However, it was evident that the probability of shear slip was more that twice as large as the initial probability of failure. This increased permeability and micro seismicity, which can be an issue during the initial operation of the repository. The study provided a quantitative assessment of the probability of shear slip at a fracture, which is an important parameter for assessing the performance of a geological repository. Conclusions are summarized as follows: · With random orientation data, the probability of shear slip around the repository model increases with increased thermal stress. · The probability of shear slip depends on the manner in which the thermal stress is generated. Higher shear slip is expected with higher differential thermal stress. · The probability of shear slip at Forsmark was less than 1 %. If different sites have fracture sets with more overlap, however, the probability may become increase. Therefore, a

  18. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements

  19. Long term effects on potential repository sites: the alteration of the Lower Oxford Clay during weathering

    International Nuclear Information System (INIS)

    Milowdowski, A.E.; Bloodworth, A.J.; Wilmot, R.D.

    1985-09-01

    The report is one of a short series describing work carried out to investigate the long-term effects of various geological processes on the performance of both shallow and deep repositories for low and intermediate-level radioactive wastes. This paper deals with the alteration as a result of weathering of the Lower Oxford Clay, a potential host rock for shallow disposal of wastes. A description of the Lower Oxford Clay is given, along with the weathering of argillaceous rocks. Investigations of the weathering at the Elstow Storage Depot are described, as well as the implications for radioactive waste disposal. (U.K.)

  20. Potential sites for a spent unreprocessed fuel facility (SURFF), southwesten part of the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoover, D.L.; Eckel, E.B.; Ohl, J.P.

    1978-01-01

    In the absence of specific criteria, the topography, geomorphology, and geology of Jackass Flats and vicinity in the southwestern part of the Nevada Test Site are evaluated by arbitrary guidelines for a Spent Unreprocessed Fuel Facility. The guidelines include requirements for surface slopes of less than 5%, 61 m of alluvium beneath the site, an area free of active erosion or deposition, lack of faults, a minimum area of 5 km 2 , no potential for flooding, and as many logistical support facilities as possible. The geology of the Jackass Flats area is similar to the rest of the Nevada Test Site in topographic relief (305-1,200 m), stratigraphy (complexly folded and faulted Paleozoic sediments overlain by Tertiary ash-flow tuffs and lavas overlain in turn by younger alluvium), and structure (Paleozoic thrust faults and folds, strike-slip faults, proximity to volcanic centers, and Basin and Range normal faults). Of the stratigraphic units at the potential Spent Unreprocessed Fuel Facility site in Jackass Flats, only the thickness and stability of the alluvium are of immediate importance. Basin and Range faults and a possible extension of the Mine Mountain fault need further investigation. The combination of a slope map and a simplified geologic and physiographic map into one map shows several potential sites for a Spent Unreprocessed Fuel Facility in Jackass Flats. The potential areas have slopes of less than 5% and contain only desert pavement or segmented pavement--the two physiographic categories having the greatest geomorphic and hydraulic stability. Before further work can be done, specific criteria for a Spent Unreprocessed Fuel Facility site must be defined. Following criteria definition, potential sites will require detailed topographic and geologic studies, subsurface investigations (including geophysical methods, trenching, and perhaps shallow drilling for faults in alluvium), detailed surface hydrologic studies, and possibly subsurface hydrologic studies

  1. Annotated bibliography of cultural resources literature for the Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    1983-11-01

    This annotated bibliography of the cultural resources literature pertinent for the Nevada Nuclear Waste Storage Investigations was assembled in order to (1) identify and evaluate the prehistoric and historic properties previously recorded in the Nevada Nuclear Waste Storage Investigations Project Area of southern Nye County, Nevada, (2) identify and develop research problems that have been and/or could be addressed by the cultural resources of this area, (3) isolate factors that might be important in the selection of a potential locality for a high level nuclear waste repository in the project area, and (4) critically evaluate the adequacy and current status of cultural resources knowledge in the project area. 195 references

  2. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1993-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain according the performance objective--10 CFR 60.112. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  3. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1992-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  4. Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G. [UNR; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    Amy Eisses, Annie M. Kell, Graham Kent, Neal W. Driscoll, Robert E. Karlin, Robert L. Baskin, John N. Louie, Kenneth D. Smith, Sathish Pullammanappallil, 2011, Marine and land active-source seismic investigation of geothermal potential, tectonic structure, and earthquake hazards in Pyramid Lake, Nevada: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract NS14A-08.

  5. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities

    International Nuclear Information System (INIS)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J.; Laub, T.W.

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10 -11 /yr to 10 -5 /yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10 -9 /yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution

  6. Analysis of the potential formation of a Breccia chimney beneath the WIPP repository

    International Nuclear Information System (INIS)

    Spiegler, P.

    1982-05-01

    This report evaluates the potential formation of a Breccia pipe beginning at the Bell Canyon aquifer beneath the WIPP repository and the resulting release of radioactivity to the surface. Rock mechanics considerations indicate that the formation of a Breccia pipe by collapse of a cavern is not reasonable. Even if rock mechanics is ignored, the overlying strata act as a barrier and would prevent the release of radioactivity to the biosphere. Gradual formation of a Breccia pipe is so slow that the plutonium-239 in the waste (one of the most important long-lived components) would decay during formation. If Bell Lake and San Simon Sinks are the surface manifestation of a regional deep dissolution wedge, such a wedge is too far removed to represent pipe forming activity near the WIPP site. The formation of a Breccia pipe under the WIPP repository is highly unlikely. If it did occur, the concentration of plutonium-239 in brine reaching the surface would be less than the maximum permissible concentration in water specified in the Code of Federal Regulation Title 10, part 20

  7. Summary of Natural Resources that Potentially Influence Human Intrusion at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    In 1993, Raytheon Services Nevada completed a review of natural resource literature and other sources to identify potentially exploitable resources and potential future land uses near the Area 5 Radioactive Waste Management Site (RWMS) of the Nevada Test Site (NTS), Nye County, Nevada, that could lead to future inadvertent human intrusion and subsequent release of radionuclides to the accessible environment. National Security Technologies, LLC, revised the original limited-distribution document to conform to current editorial standards and U.S. Department of Energy requirements for public release. The researchers examined the potential for future development of sand, gravel, mineral, petroleum, water resources, and rural land uses, such as agriculture, grazing, and hunting. The study was part of the performance assessment for Greater Confinement Disposal boreholes. Sand and gravel are not considered exploitable site resources because the materials are common throughout the area and the quality at the Area 5 RWMS is not ideal for typical commercial uses. Site information also indicates a very low mineral potential for the area. None of the 23 mining districts in southern Nye County report occurrences of economic mineral deposits in unconsolidated alluvium. The potential for oil and natural gas is low for southern Nye County. No occurrences of coal, tar sand, or oil shale on the NTS are reported in available literature. Several potential future uses of water were considered. Agricultural irrigation is impractical due to poor soils and existing water supply regulations. Use of water for geothermal energy development is unlikely because temperatures are too low for typical commercial applications using current technology. Human consumption of water has the most potential for cause of intrusion. The economics of future water needs may create a demand for the development of deep carbonate aquifers in the region. However, the Area 5 RWMS is not an optimal location for

  8. State-of-the-art for evaluating the potential impact of flooding on a radioactive waste repository

    International Nuclear Information System (INIS)

    1980-01-01

    This report is a review of the state-of-the-art for evaluating the potential impact of flooding on a deep radioactive-waste repository, namely, for predicting the future occurrence of catastrophic flooding and for estimating the effect of such flooding on waste containment characteristics. Several detrimental effects are identified: flooding can increase groundwater seepage velocities through a repository within the framework of the existing hydrologic system and thus increase the rate of radioactive-waste leakage to the biosphere; flooding may alter repository hydrology by reversing flow gradients, relocating sources of groundwater recharge and discharge, or shortening seepage paths, thereby producing unpredictable leakage; saturation of a vadose-zone repository during flooding can increase groundwater seepage velocities by several orders of magnitude; and flooding can damage repository-media containment properties by inducing seismic or chemical instability or increasing fracture permeability in relatively shallow repository rock as a result of redistributing in-situ stresses. Short-term flooding frequency and magnitude can be predicted statistically by analyzing historical records of flooding. However, long-term flooding events that could damage a permanent repository cannot be predicted with confidence because the geologic record is neither unique nor sufficienly complete for statistical analysis. It is more important to identify parameters characterizing containment properties (such as permeability, groundwater gradient, and shortest seepage path length to the biosphere) that could be affected by future flooding, estimate the maximum magnitude of flooding that could occur within the life of the repository by examining the geologic record, and determine the impact such flooding could have on the parameter values

  9. Environmental assessment overview, Yucca Mountain site, Nevada Research and Development Area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendations of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization. 3 figs

  10. Nevada Transportation Options Study

    International Nuclear Information System (INIS)

    P. GEHNER; E.M. WEAVER; L. FOSSUM

    2006-01-01

    This study performs a cost and schedule analysis of three Nevada Transportation options that support waste receipt at the repository. Based on the U.S. Department of Energy preference for rail transportation in Nevada (given in the Final Environmental Impact Statement), it has been assumed that a branch rail line would be constructed to support waste receipt at the repository. However, due to potential funding constraints, it is uncertain when rail will be available. The three Nevada Transportation options have been developed to meet a varying degree of requirements for transportation and to provide cost variations used in meeting the funding constraints given in the Technical Direction Letter guidelines for this study. The options include combinations of legal-weight truck, heavy-haul truck, and rail. Option 1 uses a branch rail line that would support initial waste receipt at the repository in 2010. Rail transportation would be the primary mode, supplemented by legal weight trucks. This option provides the highest level of confidence in cost and schedule, lowest public visibility, greatest public acceptability, lowest public dose, and is the recommended option for support of waste receipt. The completion of rail by 2010 will require spending approximately $800 million prior to 2010. Option 2 uses a phased rail approach to address a constrained funding scenario. To meet funding constraints, Option 2 uses a phased approach to delay high cost activities (final design and construction) until after initial waste receipt in 2010. By doing this, approximately 95 percent of the cost associated with completion of a branch rail line is deferred until after 2010. To support waste receipt until a branch rail line is constructed in Nevada, additional legal-weight truck shipments and heavy-haul truck shipments (on a limited basis for naval spent nuclear fuel) would be used to meet the same initial waste receipt rates as in Option 1. Use of heavy-haul shipments in the absence

  11. Swelling pressures of a potential buffer material for high-level waste repository

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Cho, Won Jin; Chun, Kwan Sik

    1999-01-01

    The swelling pressure of a potential buffer material was measured and the effect of dry density, bentonite content and initial water content on the swelling pressure was investigated to provide the information for the selection of buffer material in a high-level waste repository. Swelling tests were carried out according to Box-Behnken's experimental design. Measured swelling pressures were in the wide range of 0.7 Kg/cm 2 to 190.2 Kg/cm 2 under given experimental conditions. Based upon the experimental data, a 3-factor polynomial swelling model was suggested to analyze the effect of dry density, bentonite content and initial water content on the swelling pressure. The swelling pressure increased with an increase in the dry density and bentonite content, while it decreased with increasing the initial water content and, beyond about 12 wt.% of the initial water content, levelled to nearly constant value. (author). 21 refs., 10 figs., 4 tabs

  12. Preliminary analyses of scenarios for potential human interference for repositories in three salt formations

    International Nuclear Information System (INIS)

    1985-10-01

    Preliminary analyses of scenarios for human interference with the performance of a radioactive waste repository in a deep salt formation are presented. The following scenarios are analyzed: (1) the U-Tube Connection Scenario involving multiple connections between the repository and the overlying aquifer system; (2) the Single Borehole Intrusion Scenario involving penetration of the repository by an exploratory borehole that simultaneously connects the repository with overlying and underlying aquifers; and (3) the Pressure Release Scenario involving inflow of water to saturate any void space in the repository prior to creep closure with subsequent release under near lithostatic pressures following creep closure. The methodology to evaluate repository performance in these scenarios is described and this methodology is applied to reference systems in three candidate formations: bedded salt in the Palo Duro Basin, Texas; bedded salt in the Paradox Basin, Utah; and the Richton Salt Dome, Mississippi, of the Gulf Coast Salt Dome Basin

  13. Total System Performance Assessment, 1993: An evaluation of the potential Yucca Mountain repository, B00000000-01717-2200-00099, Rev. 01

    International Nuclear Information System (INIS)

    Andrews, R.W.; Dale, T.F.; McNeish, J.A.

    1994-03-01

    Total System Performance Assessments are an important component in the evaluation of the suitability of Yucca Mountain, Nevada as a potential site for a mined geologic repository for the permanent disposal of high-level radioactive wastes in the United States. The Total System Performance Assessments are conducted iteratively during the site characterization to identify issues which should be addressed by the characterization and design activities as well as providing input to regulatory/licensing and programmatic decisions. During fiscal years 1991 and 1992, the first iteration of Total System Performance Assessment (hereafter referred to as TSPA 1991) was completed by Sandia National Laboratories and Pacific Northwest Laboratory. Beginning in fiscal year 1993, the Civilian Radioactive Waste Management System Management and Operating Contractor was assigned the responsibility to plan, coordinate, and contribute to the second iteration of Total System Performance Assessment (hereafter referred to as TSPA 1993). This document presents the objectives, approach, assumptions, input, results, conclusions, and recommendations associated with the Management and Operating Contractor contribution to TSPA 1993. A parallel effort was conducted by Sandia National Laboratories and is reported in Wilson et al. (1994, in press)

  14. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    International Nuclear Information System (INIS)

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E.

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  15. Backfilling techniques and materials in underground excavations: Potential alternative backfill materials in use in Posiva's spent fuel repository concept

    International Nuclear Information System (INIS)

    Dixon, D.A.; Keto, P.

    2009-05-01

    A variety of geologic media options have been proposed as being suitable for safely and permanently disposing of spent nuclear fuel or fuel reprocessing wastes. In Finland the concept selected is construction of a deep repository in crystalline rock (Posiva 1999, 2006; SKB 1999), likely at the Olkiluoto site (Posiva 2006). Should that site prove suitable, excavation of tunnels and several vertical shafts will be necessary. These excavations will need to be backfilled and sealed as emplacement operations are completed and eventually all of the openings will need to be backfilled and sealed. Clay-based materials were selected after extensive review of materials options and the potential for practical implementation in a repository and work over a 30+ year period has led to the development of a number of workable clay-based backfilling options, although discussion persists as to the most suitable clay materials and placement technologies to use. As part of the continuous process of re-evaluating backfilling options in order to provide the best options possible, placement methods and materials that have been given less attention have been revisited. Primary among options that were and continue to be evaluated as a potential backfill are cementitious materials. These materials were included in the list of candidate materials initially screened in the late 1970's for use in repository backfilling. Conventional cement-based materials were quickly identified as having some serious technical limitations with respect their ability to fulfil the identified requirements of backfill. Concerns related to their ability to achieve the performance criteria defined for backfill resulted in their exclusion from large-scale use as backfill in a repository. Development of new, less chemically aggressive cementitious materials and installation technologies has resulted in their re-evaluation. Concrete and cementitious materials have and are being developed that have chemical, durability

  16. Assessing the potentialities of integrated modelling during early phases of siting and design of a geological repository: the REGIME exercise

    Energy Technology Data Exchange (ETDEWEB)

    Genty, A.; Certes, C.; Serres, C.; Besnus, F. [Institut de Radioprotection et de Surete Nucleaire IRSN, 92 - Fontenay aux Roses (France); Fischer-Appelt, K.; Baltes, B.; Rohlig, J. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany)

    2003-01-01

    This paper presents the safety assessment exercise 'REGIME' (Repository Evaluation performed by GRS and IRSN through a Modelling Exercise) performed jointly by GRS and IRSN. The main objective of the project is to test the ability of integrated modelling to contribute to site selection and repository conception in the context of high-level radioactive waste disposal. The project is divided in two parts. Phase 1 consisted in studying different flow patterns in a given geological context. The selected hydrogeological contexts and three site locations potentially favourable for hosting a repository are described. Phase 2, under progress, aims at evaluating the rote of limitation of releases played by the different components of the disposal system taking into account possible dysfunctions. The main issues to be addressed in phase 2, the modelling outline and the scenarios to be studied are presented. (authors)

  17. Cost estimate of the Yucca Mountain repository based on the site characterization plan conceptual design: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    Gruer, E.R.; Fowler, M.E.; Rocha, G.A.

    1987-06-01

    This report of the life-cycle costs of a mined repository in tuff is based on the site characterization conceptual design and contains estimates of two methods of waste emplacement - vertical and horizontal. The life cycle of the repository progresses from design and construction to emplacement operations that last 25 years. When emplacement has ended, a caretaker period begins and continues until 50 years from emplacement of the first waste. The life of the repository concludes with closure and decommissioning, which includes backfilling and sealing the repository, decontaminating and razing the surface facilities, restoring the land to as near its original condition as possible, and marking the site. The estimates, developed for each phase of the life cycle of the repository, are based on January 1986 constant (unescalated) dollars and include an allowance for contingency. This report mainly comprises explanations of design and operating assumptions, estimating methods, exclusions, definition of cost accounts, calculating procedures, data sources, staffing and other qualifying remarks. Cost estimates are approximations of value and should not be construed as exact. The cost and staffing detail provided in this estimate is commensurate with the detail in the conceptual design

  18. Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation`s commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives set forward by the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Environmental Protection Agency (EPA). The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. As additional site and design information is generated, performance assessment analyses can be revised to become more representative of the expected conditions and remove some of the conservative assumptions necessitated by the incompleteness of site and design data. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993. These analyses have been documented in Barnard, Eslinger, Wilson and Andrews.

  19. Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, J.E.; Lee, J.H.; Lingineni, S.; Mishra, S; McNeish, J.A.; Sassani, D.C.; Sevougian, S.D.

    1995-11-01

    The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation`s commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives of the US NRC and the US EPA. The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). Total system performance assessments require the explicit quantification of the relevant processes and process interactions. In addition assessments are useful to help define the most significant processes, the information gaps and uncertainties and therefore the additional information required for more robust and defensible assessment of the overall performance. The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993.

  20. Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Atkins, J.E.; Lee, J.H.; Lingineni, S.; Mishra, S.; McNeish, J.A.; Sassani, D.C.; Sevougian, S.D.

    1995-11-01

    The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation's commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives of the US NRC and the US EPA. The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). Total system performance assessments require the explicit quantification of the relevant processes and process interactions. In addition assessments are useful to help define the most significant processes, the information gaps and uncertainties and therefore the additional information required for more robust and defensible assessment of the overall performance. The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993

  1. Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    1995-11-01

    The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation's commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives set forward by the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Environmental Protection Agency (EPA). The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. As additional site and design information is generated, performance assessment analyses can be revised to become more representative of the expected conditions and remove some of the conservative assumptions necessitated by the incompleteness of site and design data. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993. These analyses have been documented in Barnard, Eslinger, Wilson and Andrews

  2. Evaluations of Yucca Mountain survey findings about the attitudes, opinions, and evaluations of nuclear waste disposal and Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flynn, J.H.; Slovic, P.; Mertz, C.K.; Toma, J.

    1990-09-01

    This report provides findings from three surveys conducted during the Fall 1989 as part of the socioeconomic research program sponsored by the Nevada Agency for Nuclear Projects. The US Congress passed the Nuclear Waste Policy Act (NWPA) in 1982 and defined specific oversight responsibilities, including studies of socioeconomic effects and impacts, to the states in which potential high-level nuclear waste repositories might be located. The NWPA was amended in 1987 and Yucca Mountain, Nevada was designated as the only site to be characterized (studied in detail) as a location for the nation's first repository. These surveys were conducted so they could provide information to the state of Nevada in its evaluation of the Yucca Mountain project. This report presents information from these surveys on two major areas. First, respondent evaluations of environmental hazards, especially nuclear waste facilities are reported. Second, an analysis is made of the Nevada State Survey to examine the public response to the positions taken by the officials and institutions of Nevada in regard to the Yucca Mountain project. The survey data support a finding that the respondents from all three surveys are seriously concerned about the environmental effects of technological facilities and hazards. The evaluations of a nuclear waste repository especially is viewed as likely to produce adverse events and impacts in every aspect of its implementation, operation or long-term existence. When compared to other industrial or technological activities, a high-level nuclear waste repository is seen as the most feared and least acceptable. 36 tabs

  3. Bibliography of publications related to Nevada-sponsored research of the proposed Yucca Mountain high-level radioactive waste repository site through 1994

    International Nuclear Information System (INIS)

    Johnson, M.

    1994-12-01

    Since 1985, the State of Nevada has sponsored academic/private sector research into various health, safety, and environmental issues identified with the Yucca Mountain site. This research has been documented in scientific peer-reviewed literature, conferences, and workshops, as well as numerous state-sponsored University thesis and dissertation programs. This document is a bibliography of the scientific articles, manuscripts, theses, dissertations, conference symposium abstracts, and meeting presentations produced as a result of state-sponsored research

  4. Experimental investigation of hydrous pyrolysis of diesel fuel and the effect of pyrolysis products on performance of the candidate nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Jackson, K.J.; Carroll, S.A.

    1994-01-01

    It is thought that a significant amount of diesel fuel and other hydrocarbon-rich phases may remain inside the candidate nuclear waste repository at Yucca Mountain after construction and subsequent emplacement of radioactive waste. Although the proposed repository horizon is above the water table, the remnant hydrocarbon phases may react with hydrothermal solutions generated by high temperature conditions that will prevail for a period of time in the repository. The preliminary experimental results of this study show that diesel fuel hydrous pyrolysis is minimal at 200 degrees C and 70 bars. The composition of the diesel fuel remained constant throughout the experiment and the concentration of carboxylic acids in the aqueous phases was only slightly above the detection limit (1-2 ppm) of the analytical technique

  5. Long term effects on potential repository sites: climatic and geomorphological changes

    International Nuclear Information System (INIS)

    Seddon, M.B.; Worsley, P.

    1985-05-01

    A study of the effects of climatic variability on the geomorphological processes operating on the landscape are important in the study of radioactive waste repository sites. The effects of glacial erosion and deposition are fundamental to an examination of repository safety, particularly in North Britain. Rates of climatic shift need to be examined. Predictive simulation models, based on a knowledge of past climatic events, for future global climates are proposed. (UK)

  6. Human intrusion into geologic repositories for high-level radioactive waste: potential and prevention

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, F X [Nuclear Regulatory Commission, Washington, DC (USA). Office of Nuclear Regulatory Research

    1981-12-01

    Isolation of high-level radioactive waste over long periods of time requires protection not only from natural events and processes, but also from the deliberate or inadvertent activities of future societies. This paper evaluates the likelihood of inadvertent human intrusion due to the loss of societal memory of the repository site. In addition measures to prevent inadvertent intrusion, and to guide future societies in any decision to deliberately intrude into the repository are suggested.

  7. Effects of magmatic processes on the potential Yucca Mountain repository: Field and computational studies

    International Nuclear Information System (INIS)

    Valentine, G.A.; Groves, K.R.; Gable, C.W.; Perry, F.V.; Crowe, B.M.

    1993-01-01

    Assessing the risk of future magmatic activity at a potential Yucca Mountain radioactive waste repository requires, in addition to event probabilities, some knowledge of the consequences of such activity. Magmatic consequences are divided into an eruptive component, which pertains to the possibility of radioactive waste being erupted onto the surface of Yucca Mountain, and a subsurface component, which occurs whether there is an accompanying eruption or not. The subsurface component pertains to a suite of processes such as hydrothermal activity, changes in country rock properties, and long term alteration of the hydrologic flow field which change the waste isolation system. This paper is the second in a series describing progress on studies of the effects of magmatic activity. We describe initial results of field analog studies at small volume basaltic centers where detailed measurements are being conducted of the amount of wall rock debris that can be erupted as a function of depth in the volcanic plumbing system. Constraints from field evidence of wall rock entrainment mechanisms are also discussed. Evidence is described for a mechanism of producing subhorizontal sills versus subvertical dikes, an issue that is important for assessing subsurface effects. Finally, new modeling techniques, which are being developed in order to capture the three dimensional complexities of real geologic situations in subsurface effects, are described

  8. Two factors important to the criticality potential of spent fuel in geologic repositories

    International Nuclear Information System (INIS)

    Gore, B.F.; Jenquin, U.P.

    1981-02-01

    Two factors important to the criticality potential of spent fuel in geologic repositories are: the residual fissile content of the fuel, and the extent to which geochemical processes might somehow separate and accumulate plutonium from other spent fuel materials. This paper presents the results of two calculational surveys defining conditions required for criticality. In the first, homogeneous spherical mixtures of spent fuel actinide oxides and water with water reflection are analyzed. Graphs of minimum critical mass vs duration of in-reactor exposure are presented. Parametric variations from a base case are explored, including the effects of initial enrichment, post exposure radioactive decay and addition of rock materials to the mixture. In the second study, homogeneous spherical mixtures devoid of water, containing plutonium and a neutronically optimized rock material, with a thick rock neutron reflector are analyzed. Graphs of Pu critical mass are presented as a function of concentration over the range from 2 to 100 g Pu/l. Parametric variations from a base case are explored, including effects of rock composition, 240 Pu content and uranium contamination of the plutonium

  9. Social impacts of hazardous and nuclear facilities and events: Implications for Nevada and the Yucca Mountain high-level nuclear waste repository; [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Freudenburg, W.R. [Wisconsin Univ., Madison, WI (United States); Carter, L.F.; Willard, W. [Washington State Univ., Pullman, WA (United States); Lodwick, D.G. [Miami Univ., Oxford, OH (United States); Hardert, R.A. [Arizona State Univ., Tempe, AZ (United States); Levine, A.G. [State Univ. of New York, Buffalo, NY (United States). Dept. of Sociology; Kroll-Smith, S. [New Orleans Univ., LA (United States); Couch, S.R. [Pennsylvania State Univ., University Park, PA (United States); Edelstein, M.R. [Ramapo College, Mahwah, NJ (United States)

    1992-05-01

    Social impacts of a nuclear waste repository are described. Various case studies are cited such as Rocky Flats Plant, the Feed Materials Production Center, and Love Canal. The social impacts of toxic contamination, mitigating environmental stigma and loss of trust are also discussed.

  10. Social impacts of hazardous and nuclear facilities and events: Implications for Nevada and the Yucca Mountain high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Freudenburg, W.R.; Carter, L.F.; Willard, W.; Lodwick, D.G.; Hardert, R.A.; Levine, A.G.; Couch, S.R.; Edelstein, M.R.

    1992-05-01

    Social impacts of a nuclear waste repository are described. Various case studies are cited such as Rocky Flats Plant, the Feed Materials Production Center, and Love Canal. The social impacts of toxic contamination, mitigating environmental stigma and loss of trust are also discussed

  11. Preliminary worst-case accident analysis to support the conceptual design of a potential repository in tuff

    International Nuclear Information System (INIS)

    Jackson, J.L.; Gram, H.F.; Hong, K.J.; Ng, H.S.; Pendergrass, A.M.

    1984-01-01

    The Nevada Waste Storage Investigations (NNWSI) Project is conducting investigations to determine suitability of a site at Yucca Mountain for development as a high-level waste repository. In support of conceptual design, a preliminary analysis has been performed to identify events that could cause radiological releases from the surface facilities during the operations period. Accidental releases were modeled short-duration release plumes, dispersed under averaged climatic conditions, using the AIRDOS-EPA code. consequences of these accidents, in 50-yr integrated dose commitments to operations personnel, to the minimally exposed member of the public, and to the general population in the surrounding area were calculated. risk to the general public from each event was also assessed. All postulated accidents result in doses to pers of the public that are lower than the 0.5 rem/accident limit set by the NRC in 10 CFR 60. For those accidents that do not involve both fire and breach of waste canisters, doses to operations personnel are behind the NRC limit for routine operations of 5 rem/yr set in 10 CFR 20. Accidents that involve fire and breach of waste canisters may cause doses to some operations personnel that are in excess of this limit

  12. Preliminary worst-case accident analysis to support the conceptual design of a potential repository in tuff

    International Nuclear Information System (INIS)

    Jackson, J.L.; Gram, H.F.; Hong, K.J.; Ng, H.S.; Pendergrass, A.M.

    1984-01-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is conducting investigations to determine the suitability of a site at Yucca Mountain for development as a high level waste repository. In support of the conceptual design, a preliminary analysis has been performed to identify events that could cause radiological releases from the surface facilities during the operations period. Accidental releases were modeled as short-duration release plumes, dispersed under averaged climatic conditions, using the AIRDOS-EPA code. The consequences of these accidents, in 50-yr integrated dose commitments to operations personnel, to the maximally exposed member of the public, and to the general population in the surrounding area were calculated. The risk to the general public from each event was also assessed. All postulated accidents result in doses to members of the public that are lower than the 0.5 rem/accident limit set by the NRC in 10 CFR 60. For those accidents that do not involve both fire and breach of waste canisters, doses to operations personnel are within the NRC limit for routine operations of 5 rem/yr set in 10 CFR 20. Accidents that involve fire and breach of waste canisters may cause doses to some operations personnel that are in excess of this limit. 18 references, 1 figure, 3 tables

  13. Implications of seismic reflection and potential field geophysical data on the structural framework of the Yucca Mountain--Crater Flat region, Nevada

    International Nuclear Information System (INIS)

    Brocher, T.M.; Langenheim, V.E.; Hunter, W.C.

    1998-01-01

    Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate-to-high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64 degree ± 5 degree. Along the profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging

  14. Characteristics of special-case wastes potentially destined for disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.L.; Duran, F.A.

    1994-09-01

    The U.S. Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. It may be possible to dispose of some of the DOE's special-case waste using greater confinement disposal techniques at the Nevada Test Site (NTS). The DOE asked Sandia National Laboratories to investigate this possibility by performing system configuration analyses. The first step in performing system configuration analyses is to estimate the characteristics of special-case waste that might be destined for disposal at the NTS. The objective of this report is to characterize this special-case waste based upon information available in the literature. No waste was sampled and analyzed specifically for this report. The waste compositions given are not highly detailed, consisting of grains and curies of specific radionuclides per cubic meter. However, such vague waste characterization is adequate for the purposes of the system configuration task. In some previous work done on this subject, Kudera et al. [1990] identified nine categories of special-case radioactive waste and estimated volumes and activities for these categories. It would have been difficult to develop waste compositions based on the categories proposed by Kudera et al. [1990], so we created five groups of waste on which to base the waste compositions. These groups are (1) transuranic waste, (2) fission product waste, (3) activation product waste, (4) mobile/volatile waste, and (5) sealed sources. The radionuclides within a given group share common characteristics (e.g., alpha-emitters, heat generators), and we believe that these groups adequately represent the DOE's special-case waste potentially destined for greater confinement disposal at the NTS

  15. Preliminary Evaluation of the Effects of Buried Volcanoes on Estimates of Volcano Probability for the Proposed Repository Site at Yucca Mountain, Nevada

    Science.gov (United States)

    Hill, B. E.; La Femina, P. C.; Stamatakos, J.; Connor, C. B.

    2002-12-01

    Probability models that calculate the likelihood of new volcano formation in the Yucca Mountain (YM) area depend on the timing and location of past volcanic activity. Previous spatio-temporal patterns indicated a 10-4 to 10-3 probability of volcanic disruption of the proposed radioactive waste repository site at YM during the 10,000 year post-closure performance period (Connor et al. 2000, JGR 105:1). A recent aeromagnetic survey (Blakely et al. 2000, USGS OFR 00-188), however, identified up to 20 anomalies in alluvium-filled basins, which have characteristics indicative of buried basalt (O'Leary et al. 2002, USGS OFR 02-020). Independent evaluation of these data, combined with new ground magnetic surveys, shows that these anomalies may represent at least ten additional buried basaltic volcanoes, which have not been included in previous probability calculations. This interpretation, if true, nearly doubles the number of basaltic volcanoes within 30 km [19 mi] of YM. Moreover, the magnetic signature of about half of the recognized basaltic volcanoes in the YM area cannot be readily identified in areas where bedrock also produces large amplitude magnetic anomalies, suggesting that additional volcanoes may be present but undetected in the YM area. In the absence of direct age information, we evaluate the potential effects of alternative age assumptions on spatio-temporal probability models. Interpreted burial depths of >50 m [164 ft] suggest ages >2 Ma, based on sedimentation rates typical for these alluvial basins (Stamatakos et al., 1997, J. Geol. 105). Defining volcanic events as individual points, previous probability models generally used recurrence rates of 2-5 volcanoes/million years (v/Myr). If the identified anomalies are buried volcanoes that are all >5 Ma or uniformly distributed between 2-10 Ma, calculated probabilities of future volcanic disruption at YM change by <30%. However, a uniform age distribution between 2-5 Ma for the presumed buried volcanoes

  16. Exploratory shaft facility: It's role in the characterization of the Yucca Mountain site for a potential nuclear repository

    International Nuclear Information System (INIS)

    Kalia, H.N.; Merson, T.J.

    1990-01-01

    The US Department of Energy is characterizing Yucca Mountain, Nevada, to assess its suitability as a potential site for the permanent disposal of high-level radioactive waste from nuclear power plants and defense related activities. The assessment activities include surface investigations, drill holes from the surface, and an underground facility for in situ characterization tests. This underground exploratory shaft facility is being designed to meet the criteria for characterizing the mountain as described in the Site Characterization Plan. 9 refs., 9 figs., 1 tab

  17. Exploratory shaft facility: It`s role in the characterization of the Yucca Mountain site for a potential nuclear repository

    Energy Technology Data Exchange (ETDEWEB)

    Kalia, H.N.; Merson, T.J.

    1990-03-01

    The US Department of Energy is characterizing Yucca Mountain, Nevada, to assess its suitability as a potential site for the permanent disposal of high-level radioactive waste from nuclear power plants and defense related activities. The assessment activities include surface investigations, drill holes from the surface, and an underground facility for in situ characterization tests. This underground exploratory shaft facility is being designed to meet the criteria for characterizing the mountain as described in the Site Characterization Plan. 9 refs., 9 figs., 1 tab.

  18. The Gabbs Valley, Nevada, geothermal prospect: Exploring for a potential blind geothermal resource

    Science.gov (United States)

    Payne, J.; Bell, J. W.; Calvin, W. M.

    2012-12-01

    The Gabbs Valley prospect in west-central Nevada is a potential blind geothermal resource system. Possible structural controls on this system were investigated using high-resolution LiDAR, low sun-angle aerial (LSA) photography, exploratory fault trenching and a shallow temperature survey. Active Holocene faults have previously been identified at 37 geothermal systems with indication of temperatures greater than 100° C in the western Nevada region. Active fault controls in Gabbs Valley include both Holocene and historical structures. Two historical earthquakes occurring in 1932 and 1954 have overlapping surface rupture patterns in Gabbs Valley. Three active fault systems identified through LSA and LiDAR mapping have characteristics of Basin and Range normal faulting and Walker Lane oblique dextral faulting. The East Monte Cristo Mountains fault zone is an 8.5 km long continuous NNE striking, discrete fault with roughly 0.5 m right-normal historic motion and 3 m vertical Quaternary separation. The Phillips Wash fault zone is an 8.2 km long distributed fault system striking NE to N, with Quaternary fault scarps of 1-3 m vertical separation and a 500 m wide graben adjacent to the Cobble Cuesta anticline. This fault displays ponded drainages, an offset terrace riser and right stepping en echelon fault patterns suggestive of left lateral offset, and fault trenching exposed non-matching stratigraphy typical of a significant component of lateral offset. The unnamed faults of Gabbs Valley are a 10.6 km long system of normal faults striking NNE and Quaternary scarps are up to 4 m high. These normal faults largely do not have historic surface rupture, but a small segment of 1932 rupture has been identified. A shallow (2 m deep) temperature survey of 80 points covering roughly 65 square kilometers was completed. Data were collected over approximately 2 months, and continual base station temperature measurements were used to seasonally correct temperature measurements. A 2

  19. State-of-the-art report on potentially useful materials for sealing nuclear waste repositories

    International Nuclear Information System (INIS)

    Coons, W.; Bergstroem, A.; Gnirk, P.; Gray, M.; Knecht, B.; Pusch, R.; Steadman, J.; Stillborg, B.; Tokonami, Masayasu; Vaajasaari, M.

    1987-06-01

    Seals, including fracture seals, may be used to limit groundwater flow into and away and to limit the release of radionuclides that may be transported by groundwater movement. Seals, if required to achieve repository performance or desirable from a performance standpoint, should have as long service life as possible; the primary means to assure long-term sealing functions is to assure long-term stability of the materials selected for sealing. Seal materials selection and seal design will depend on quantitative sealing criteria; these criteria have not been established and probably cannot be established generically; each repository will have different sealing criteria and individually selected seal materials and designs. In light of the above, however, the priority fracture seal materials, i.e., bentonite grouts and cementitious grouts and their mixtures, will probably be widely applicable and will meet sealing requirements that may be imposed by any of the participants' repository programs. (orig./HP)

  20. Overview of runoff of March 11, 1995, in Fortymile Wash and Amargosa River, Southern Nevada

    International Nuclear Information System (INIS)

    Beck, D.A.; Glancy, P.A.

    1996-01-01

    Yucca Mountain, approximately 120 miles northwest of Las Vegas, Nevada, is being studied by the US Department of Energy as a potential repository for long-term storage of the Nation's high-level nuclear waste. This site-characterization study includes elements pertaining to surface-water runoff, including the potential for flooding. The US Geological Survey (USGS), in cooperation with the US Department of Energy, is monitoring streamflow in southern Nevada through a network of stream-flow gaging stations and miscellaneous streamflow measurements in support of the site-characterization effort

  1. Review and critique of the US Department of Energy environmental program plan for site characterization for a high-level waste repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This report provides a review and critique of the US Department of Energy (DOE) environmental program plan for site characterization activities at Yucca Mountain which principally addresses compliance with federal and state environmental regulation and to a lesser extent monitoring and mitigation of significant adverse impacts and reclamation of disturbed areas. There are 15 documents which comprise the plan and focus on complying with the environmental requirements of the Nuclear Waste Policy Act, as amended, (NWPA) and with single-media environmental statutes and their regulations. All elements of the plan follow from the 1986 statutory environmental assessment (EA) required by NWPA which concluded that no significant adverse impacts would result from characterization of the Yucca Mountain site. The lack of appropriate environmental planning and review for site characterization at Yucca Mountain points to the need for an oversight function by the State of Nevada. It cannot be assumed that on its own DOE will properly comply with environmental requirements, especially the substantive requirements that comprise the intent of NEPA. Thus, procedures must be established to assure that the environmental interests of the State are addressed in the course of the Yucca Mountain Project. Accordingly, steps will be taken by the State of Nevada to review the soundness and efficacy of the DOE field surveys, monitoring and mitigation activities, reclamation actions, and ecological impact studies that follow from the DOE environmental program plans addressed by this review.

  2. Review and critique of the US Department of Energy environmental program plan for site characterization for a high-level waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1992-01-01

    This report provides a review and critique of the US Department of Energy (DOE) environmental program plan for site characterization activities at Yucca Mountain which principally addresses compliance with federal and state environmental regulation and to a lesser extent monitoring and mitigation of significant adverse impacts and reclamation of disturbed areas. There are 15 documents which comprise the plan and focus on complying with the environmental requirements of the Nuclear Waste Policy Act, as amended, (NWPA) and with single-media environmental statutes and their regulations. All elements of the plan follow from the 1986 statutory environmental assessment (EA) required by NWPA which concluded that no significant adverse impacts would result from characterization of the Yucca Mountain site. The lack of appropriate environmental planning and review for site characterization at Yucca Mountain points to the need for an oversight function by the State of Nevada. It cannot be assumed that on its own DOE will properly comply with environmental requirements, especially the substantive requirements that comprise the intent of NEPA. Thus, procedures must be established to assure that the environmental interests of the State are addressed in the course of the Yucca Mountain Project. Accordingly, steps will be taken by the State of Nevada to review the soundness and efficacy of the DOE field surveys, monitoring and mitigation activities, reclamation actions, and ecological impact studies that follow from the DOE environmental program plans addressed by this review

  3. Use of natural analog and modeling studies to constrain the effects of magmatic activity on long-term geologic repositories

    International Nuclear Information System (INIS)

    Valentine, G.A.; Rosenberg, N.D.; Crowe, B.M.; Perry, F.V.

    1995-01-01

    Examples of the application of natural-analog studies to the estimation of the consequences of a volcanic eruption penetrating a radioactive waste repository are given, including the criteria for analog selection and new data from ongoing studies. Examples of early modeling results focusing on the spatial and temporal scale of subsurface processes are also provided. All of these examples are taken from studies of the potential Yucca Mountain repository, Nevada, but similar approaches could be applied in other areas. In addition, studies of subsurface processes initiated by magmatic events serve as useful analogs for repository thermal loading studies

  4. Technical test description of activities to determine the potential for spent fuel oxidation in a tuff repository

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1985-06-01

    The potential change in the oxidation state of spent fuel during its residence in a repository must be known to evaluate its radionuclide retention capabilities. Once the container breaches, the spent fuel in a repository sited above the water table will be exposed to a moist air atmosphere at low temperatures. Thermodynamically, there is no reason why the fuel should not oxidize to a higher oxidation state under these conditions, given enough time. Depending on the rate of oxidation, higher oxides with potentially higher leach rates may eventually form or the cladding may even split open. If either of these oxidation effects occurs, the ability of spent fuel to retard radionuclide migration will be reduced. A technical test description is presented to study spent fuel oxidation at low temperatures characteristic of the post-container breach period and at high temperatures in a moist inert atmosphere characteristic of a sealed container with waterlogged fuel, early in the repository life. The approach taken will be to perform tests and evaluations to gain understanding of the operative oxidation mechanisms, to obtain oxidation rate data, and to make projections of potential long-term fuel oxidation states. Time and temperature dependence of existing models will be evaluated, and the dependence of the model projections on fuel variables will be determined. 27 refs., 7 figs., 4 tabs

  5. State-of-the-art for evaluating the potential impact of tectonism and volcanism on a radioactive waste repository

    International Nuclear Information System (INIS)

    1980-01-01

    Most estimates of the time required for safe isolation of radioactive wastes from the biosphere range from 100,000 to 1,000,000 years. For such long time spans, it is necessary to assess the potential effects of geologic processes such as volcanism and tectonic activity on the integrity of geologic repositories. Predictions of geologic phenomena can be based on probabilistic models, which assume a random distribution of events. The necessary historic and geologic records are rarely available to provide an adequate data base for such predictions. The observed distribution of volcanic and tectonic activity is not random, and appears to be controlled by extremely complex deterministic processes. The advent of global plate tectonic theory in the past two decades has been a giant step toward understanding these processes. At each potential repository site, volcanic and tectonic processes should be evaluated to provide the most thorough possible understanding of those deterministic processes. Based on this knowledge, judgements will have to be made as to whether or not the volcanic and tectonic processes pose unacceptable risk to the integrity of the repository. This report describes the potential hazards associated with volcanism and tectonism, and the means for evaluating these processes

  6. Nevada Test Site flood inundation study: Part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for USDOE, Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Blanton, J.O. III.

    1992-01-01

    The Geological Survey (GS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. The Bureau of Reclamation was selected by the GS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates and associated inundation maps are necessary for successful waste repository design and construction. The standard step method for backwater computations, incorporating the Bernouli energy equation and the results of the PMF study were chosen as the basis for defining the areal extent of flooding

  7. Geology of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)

    International Nuclear Information System (INIS)

    W.R. Keefer; J.W. Whitney; D.C. Buesch

    2006-01-01

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor ( 10 Be and 36 Cl cosmogenic dating methods to determine the length of time bedrock outcrops and hillslope boulder deposits were exposed to cosmic rays, which then served as a basis for calculating long-term erosion rates. The results indicate rates ranging from 0.04 to 0.27 cm/k.y., which represent the maximum downcutting along the summit of Yucca Mountain under all climatic conditions that existed there during most of Quaternary time. Associated studies include the stratigraphy of surficial deposits in Fortymile Wash, the major drainage course in the area, which record a complex history of four to five cut-and-fill cycles within the channel during middle to late Quaternary time. The last 2 to 4 m of incision probably occurred during the last pluvial climatic period, 22 to 18 ka, followed by aggradation to the present time

  8. R and D on performance assessment of a potential LILW repository

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo; Lee, Sung Hee; Han, Kyung Won; Lee, Y M

    2001-01-01

    In this technical report Important issues and assessment methods related to post-closure safety of a proposed repository has been discussed, regarding LILW disposal. At first, to summarize the new proposal on the amendment of the MOST Notice 96-16, KAERI set up the overall directions on future R and D over performance assessment. In addition relevant overseas project such as Finnish POSIVA's VLJ repository project was thoroughly reviewed along with the recent progress of the gas generation and migration R and D. In the post-closure safety analysis of the VLJ repository, in addition to the normal evolution scenario, several disturbed evolution and accident scenarios have been analysed. The groundwater flow analysis and the biosphere analysis have been evaluated. The result of the safety analysis show that radiation doses of any significance are caused only if a well is bored in the vicinity of the repository or if the groundwater discharge spot is inhabited and used for cultivation. in the reference scenario the maximum expectation value of the individual dose rate is 0.03 mSv/a. in the realistic scenario the maximum expectation value of the dose rate is 0.0002 mSv/a In general gas generation sources are represented by radioactive gases and non-radioactive gases. The amount of radioactive gases is little that it does not make a significant influence on the safety of LILW repository, however non-radioactive gases can cause safety problem. As mentioned above, gas of LILW generated by corrosion and microbiology and their production rate can be estimated by computer simulation and long-term experiment.

  9. R and D on performance assessment of a potential LILW repository

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo; Lee, Sung Hee; Han, Kyung Won; Lee, Y. M

    2001-01-01

    In this technical report Important issues and assessment methods related to post-closure safety of a proposed repository has been discussed, regarding LILW disposal. At first, to summarize the new proposal on the amendment of the MOST Notice 96-16, KAERI set up the overall directions on future R and D over performance assessment. In addition relevant overseas project such as Finnish POSIVA's VLJ repository project was thoroughly reviewed along with the recent progress of the gas generation and migration R and D. In the post-closure safety analysis of the VLJ repository, in addition to the normal evolution scenario, several disturbed evolution and accident scenarios have been analysed. The groundwater flow analysis and the biosphere analysis have been evaluated. The result of the safety analysis show that radiation doses of any significance are caused only if a well is bored in the vicinity of the repository or if the groundwater discharge spot is inhabited and used for cultivation. in the reference scenario the maximum expectation value of the individual dose rate is 0.03 mSv/a. in the realistic scenario the maximum expectation value of the dose rate is 0.0002 mSv/a In general gas generation sources are represented by radioactive gases and non-radioactive gases. The amount of radioactive gases is little that it does not make a significant influence on the safety of LILW repository, however non-radioactive gases can cause safety problem. As mentioned above, gas of LILW generated by corrosion and microbiology and their production rate can be estimated by computer simulation and long-term experiment.

  10. Plutonium-aerosol emission rates and potential inhalation exposure during cleanup and treatment test at Area 11, Nevada Test Site

    International Nuclear Information System (INIS)

    Shinn, J.H.; Homan, D.N.

    1985-01-01

    A Cleanup and Treatment (CAT) test was conducted in 1981 at Area 11, Nevada Test Site. Its purpose was to evaluate the effectiveness of using a large truck-mounted vacuum cleaner similar to those used to clean paved streets for cleaning radiological contamination from the surface of desert soils. We found that four passes with the vehicle removed 97% of the alpha contamination and reduced resuspension by 99.3 to 99.7%. Potential exposure to cleanup workers was slight when compared to natural background exposure. 7 refs., 1 fig., 2 tabs

  11. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden.

    Science.gov (United States)

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona

    2013-05-01

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  12. Scoping studies on the effect of quaternary climate change on the hydrogeology in the Sellafield potential repository zone

    Energy Technology Data Exchange (ETDEWEB)

    Heathcote, J.A. [Entec UK Ltd., Shrewsbury (United Kingdom)

    1997-04-01

    The present investigations in the vicinity of the Sellafield potential repository zone have provided data on groundwater pressure and salinity to a depth of some 2000 m, for a section extending from the hills to the east of the zone, to the coast. As part of the process of demonstrating the suitability of the site for a deep repository, work has been undertaken to reconcile these observations of pressure and salinity with an understanding of the hydrogeology of the site. It is considered possible that the long glacial history of the site may in part be responsible for present observations. This work documents some preliminary studies to determine the possible magnitude of such glacial effects. 4 refs, 2 figs.

  13. Scoping studies on the effect of quaternary climate change on the hydrogeology in the Sellafield potential repository zone

    International Nuclear Information System (INIS)

    Heathcote, J.A.

    1997-01-01

    The present investigations in the vicinity of the Sellafield potential repository zone have provided data on groundwater pressure and salinity to a depth of some 2000 m, for a section extending from the hills to the east of the zone, to the coast. As part of the process of demonstrating the suitability of the site for a deep repository, work has been undertaken to reconcile these observations of pressure and salinity with an understanding of the hydrogeology of the site. It is considered possible that the long glacial history of the site may in part be responsible for present observations. This work documents some preliminary studies to determine the possible magnitude of such glacial effects. 4 refs, 2 figs

  14. Yucca Mountain socioeconomic project: An interim report on the State of Nevada socioeconomic studies

    International Nuclear Information System (INIS)

    1989-06-01

    The State of Nevada formally initiated a study of the socioeconomic impacts of a proposed high-level nuclear waste repository at Yucca Mountain in southern Nevada in 1986 after the Nevada site had been chosen as a potential waste disposal site. The State and affected local governments that participated in the development of the study recognized that the effort would need to go well beyond what is traditionally considered adequate for socioeconomic impact assessment because of the unique nature of the repository project. This Interim Report is a report on work in progress and presents findings from the research to date on the potential consequences of a repository for the citizens of Nevada. The research and findings in the Report have been subjected to rigorous peer review as part of the state's effort to insure independent, objective analysis that meets the highest professional standards. The basic research effort will continue through June 1990 and will enable the state to refine and clarify the findings presented in this Interim Report

  15. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  16. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  17. The potential for methane hydrate formation in deep repositories of spent nuclear fuel in granitic rocks

    International Nuclear Information System (INIS)

    Tohidi, Bahman; Chapoy, Antonin; Smellie, John; Puigdomenech, Ignasi

    2010-12-01

    The main aim of this work was to establish whether the pertaining pressure and temperature conditions and dissolved gas concentration in groundwater is conducive to gas hydrate formation using a modelling approach. The hydrate stability pressure-temperature zone of dissolved methane in the presence of salt has been obtained through calculations which show that a decrease in the system pressure and/or an increase in salt concentration favours hydrate formation, as both factors reduce equilibrium gas solubility in the aqueous phase. This behaviour is unlike that of the system including a gas phase, where the water phase is always saturated with methane, and hence the methane solubility in water is not a limiting factor. The main conclusion is that hydrate formation is not possible at the reported methane concentrations and water salinities for the Forsmark and Laxemar sites in Sweden and Olkiluoto in Finland. At the highest salinities and methane concentrations encountered, namely ∼0.00073 mole fraction methane and ∼10 mass % NaCl at a depth of 1,000 m in Olkiluoto, Finland, hydrates could form if the system temperatures and pressures are below 2.5 deg C and 60 bar, respectively, i.e. values that are much lower than those prevailing at that depth (∼20 deg C and ∼100 bar, respectively). Furthermore, the calculated results provide the necessary data to estimate the effect of increase in dissolved methane concentration on potential hydrate formation, as well as two phase flow. The available depth dependency of methane concentration at the sites studied in Sweden and Finland was used in another study to estimate the diffusive flow of methane in the rock volumes. These diffusion rates, which are highest at Olkiluoto, indicate that even if the conditions were to become favourable to methane hydrate formation, then it would take several millions of years before a thin layer of hydrates could be formed, a condition which is outside the required period of satisfactory

  18. The potential for methane hydrate formation in deep repositories of spent nuclear fuel in granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Tohidi, Bahman; Chapoy, Antonin (Hydrafact Ltd, Inst. of Petroleum Engineering, Heriot-Watt Univ., Edinburgh (United Kingdom)); Smellie, John (Conterra AB, Uppsala (Sweden)); Puigdomenech, Ignasi (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-12-15

    The main aim of this work was to establish whether the pertaining pressure and temperature conditions and dissolved gas concentration in groundwater is conducive to gas hydrate formation using a modelling approach. The hydrate stability pressure-temperature zone of dissolved methane in the presence of salt has been obtained through calculations which show that a decrease in the system pressure and/or an increase in salt concentration favours hydrate formation, as both factors reduce equilibrium gas solubility in the aqueous phase. This behaviour is unlike that of the system including a gas phase, where the water phase is always saturated with methane, and hence the methane solubility in water is not a limiting factor. The main conclusion is that hydrate formation is not possible at the reported methane concentrations and water salinities for the Forsmark and Laxemar sites in Sweden and Olkiluoto in Finland. At the highest salinities and methane concentrations encountered, namely approx0.00073 mole fraction methane and approx10 mass % NaCl at a depth of 1,000 m in Olkiluoto, Finland, hydrates could form if the system temperatures and pressures are below 2.5 deg C and 60 bar, respectively, i.e. values that are much lower than those prevailing at that depth (approx20 deg C and approx100 bar, respectively). Furthermore, the calculated results provide the necessary data to estimate the effect of increase in dissolved methane concentration on potential hydrate formation, as well as two phase flow. The available depth dependency of methane concentration at the sites studied in Sweden and Finland was used in another study to estimate the diffusive flow of methane in the rock volumes. These diffusion rates, which are highest at Olkiluoto, indicate that even if the conditions were to become favourable to methane hydrate formation, then it would take several millions of years before a thin layer of hydrates could be formed, a condition which is outside the required period of

  19. Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spycher, N.F.; Sonnenthal, E.L.; Apps, J.A.

    2002-01-01

    The evolution of fluid chemistry and mineral alteration around a potential waste emplacement tunnel (drift) is evaluated using numerical modeling. The model considers the flow of water, gas, and heat, plus reactions between minerals, CO 2 gas, and aqueous species, and porosity permeability-capillary pressure coupling for a dual permeability (fractures and matrix) medium. Two possible operating temperature modes are investigated: a ''high-temperature'' case with temperatures exceeding the boiling point of water for several hundred years, and a ''loW--temperature'' case with temperatures remaining below boiling for the entire life of the repository. In both cases, possible seepage waters are characterized by dilute to moderate salinities and mildly alkaline pH values. These trends in fluid composition and mineral alteration are controlled by various coupled mechanisms. For example, upon heating and boiling, CO 2 exsolution from pore waters raises pH and causes calcite precipitation. In condensation zones, this CO 2 redissolves, resulting in a decrease in pH that causes calcite dissolution and enhances feldspar alteration to clays. Heat also enhances dissolution of wallrock minerals leading to elevated silica concentrations. Amorphous silica precipitates through evaporative concentration caused by boiling in the high-temperature case, but does not precipitate in the loW--temperature case. Some alteration of feldspars to clays and zeolites is predicted in the high-temperature case. In both cases, calcite precipitates when percolating waters are heated near the drift. The predicted porosity decrease around drifts in the high-temperature case (several percent of the fracture volume) is larger by at least one order of magnitude than in the low temperature case. Although there are important differences between the two investigated temperature modes in the predicted evolution of fluid compositions and mineral alteration around drifts, these differences are small relative to

  20. State-of-the-art for evaluating the potential effects of erosion and deposition on a radioactive waste repository. Final report

    International Nuclear Information System (INIS)

    1980-01-01

    The potential impact of future geologic processes on the integrity of a deep, high-level radioactive-waste repository is evaluated. The following study identifies the potential consequences of surface erosion and deposition on sub-surface repository containment characteristics and assesses the ability to measure and predict quantitatively the rates and corresponding extent of these processes in the long term. Numerous studies of the magnitudes and rates of surficial erosion and deposition that have been used to determine the minimum allowable depth for a geologic repository (300 m - NRC Code of Federal Regulations, Part 60.122, Draft 10) are cited in this report. Measurement and interpretation of potential rates and extent of surficial processes in these studies involved considerable uncertainty, and the implications of this uncertainty on presently proposed repository siting criteria are addressed herein. Important concepts that should be considered when developing siting criteria to protect against deleterious effects arising from future erosion or deposition are highlighted. Erosion agents that could affect deep repositories are distinguished in this report so that their individual and combined impacts may be examined. This approach is recommended when evaluating potential repository sites in diverse environments that are susceptible to different agents of erosion. In contrast, agents of sedimentation are not differentiated in this report because of their relatively minor impact on a deep repository

  1. BIOSPHERE MODELING AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    NING LIU; JEFFERY, J.; TAPPEN, DE WU; CHAO-HSIUNG TUNG

    1998-01-01

    The objectives of the biosphere modeling efforts are to assess how radionuclides potentially released from the proposed repository could be transported through a variety of environmental media. The study of these transport mechanisms, referred to as pathways, is critical in calculating the potential radiation dose to man. Since most of the existing and pending regulations applicable to the Project are radiation dose based standards, the biosphere modeling effort will provide crucial technical input to support the Viability Assessment (VA), the Working Draft of License Application (WDLA), and the Environmental Impact Statement (EIS). In 1982, the Nuclear Waste Policy Act (NWPA) was enacted into law. This federal law, which was amended in 1987, addresses the national issue of geologic disposal of high-level nuclear waste generated by commercial nuclear power plants, as well as defense programs during the past few decades. As required by the law, the Department of Energy (DOE) is conducting a site characterization project at Yucca Mountain, Nevada, approximately 100 miles northwest of Las Vegas, Nevada, to determine if the site is suitable for the nation's first high-level nuclear waste repository

  2. The use of performance assessment for the potential high-level radioactive waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Lee, Joon H.; Andrews, R. W.

    1997-01-01

    This paper covers the introduction and overview of the Yucca Mountain site, the overview of waste package and EBS design, the organization of CRWMS M and O, the overview of total system performance assessment (TSPA), the components of TSPA model, the examples results of TSPA component models, and the example results of TSPA scoping sensitivity analyses. 22 figs

  3. The climatic and hydrologic history of southern Nevada during the late Quaternary

    International Nuclear Information System (INIS)

    Forester, R.M.; Bradbury, J.P.; Carter, C.; Elvidge-Tuma, A.B.; Hemphill, M.L.; Lundstrom, S.C.; Mahan, S.A.; Marshall, B.D.; Neymark, L.A.; Paces, J.B.; Sharpe, S.E.; Whelan, J.F.; Wigand, P.E.

    1999-01-01

    Understanding climate change during the expected life span of a potential high-level nuclear-waste repository at Yucca Mountain, Nevada, requires estimates of future climate boundary conditions. These climate boundary conditions are governed by changes in the Earth's orbital properties (eccentricity, obliquity, precession) that determine insolation. Subcycles of the 400,000 year insolation-controlled climate cycles last approximately 100,000 years. This report describes the changes which have occurred in the climatic history of Southern Nevada during the past 400,000 years. These changes provide a basis for understanding the changes which may occur during the long-term future in this area

  4. The climatic and hydrologic history of southern Nevada during the late Quaternary

    Energy Technology Data Exchange (ETDEWEB)

    Forester, R.M.; Bradbury, J.P.; Carter, C.; Elvidge-Tuma, A.B.; Hemphill, M.L.; Lundstrom, S.C.; Mahan, S.A.; Marshall, B.D.; Neymark, L.A.; Paces, J.B.; Sharpe, S.E.; Whelan, J.F.; Wigand, P.E.

    1999-09-21

    Understanding climate change during the expected life span of a potential high-level nuclear-waste repository at Yucca Mountain, Nevada, requires estimates of future climate boundary conditions. These climate boundary conditions are governed by changes in the Earth's orbital properties (eccentricity, obliquity, precession) that determine insolation. Subcycles of the 400,000 year insolation-controlled climate cycles last approximately 100,000 years. This report describes the changes which have occurred in the climatic history of Southern Nevada during the past 400,000 years. These changes provide a basis for understanding the changes which may occur during the long-term future in this area.

  5. Nevada may lose nuclear waste funds

    International Nuclear Information System (INIS)

    Marshall, E.

    1988-01-01

    The people of Nevada are concerned that a cut in DOE funding for a nuclear waste repository at Yucca Mountain, Nevada will result in cuts in the state monitoring program, e.g. dropping a seismic monitoring network and a sophisticated drilling program. Economic and social impact studies will be curtailed. Even though a provision to curtail local research forbids duplication of DOE's work and would limit the ability of Nevada to go out an collect its own data, Nevada State University at Las Vegas would receive a nice plum, a top-of-the-line supercomputer known as the ETA-10 costing almost $30 million financed by DOE

  6. Preliminary assessment of the risk of volcanism at a proposed nuclear-waste repository in the southern Great Basin

    International Nuclear Information System (INIS)

    Crowe, B.M.; Carr, W.J.

    1980-01-01

    Volcanic hazard studies of the southern Great Basin are being conducted on behalf of the Nevada Nuclear Waste Storage Investigations program. Current work is chiefly concerned with characterizing the geology, chronology, and tectonic setting of Pliocene and Quaternary volcanism in the Nevada Test Site region, and assessing volcanic risk through consequence and probability studies, particularly with respect to a potential site in the southwestern Nevada Test Site. Young ( - 6 volcanic events per year. Based on this rate, the annual probability of disruption of a 10-km 2 repository located within a 25-km radius circle centered at Yucca Mountain, southwestern Nevada Test Site, is 10 - 8 . A larger area, 50-km radius, yields a disruption probability of 10 - 9 per year. Current tectonic zonation studies of the southern Great Basin will reduce the calculated probabilities of basaltic eruption for certain areas. 21 references, 3 figures

  7. Reference design description for a geologic repository: Revision 01

    International Nuclear Information System (INIS)

    1997-09-01

    This document describes the current design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada. This Reference Design Description (RDD) looks at the surface and subsurface repository and disposal container design. Additionally, it reviews the expected long-term performance of the potential repository. In accordance with current legislation, the reference design for the potential repository does not include an interim storage option. The reference design presented allows the disposal of highly radioactive material received from government-owned spent fuel custodian sites; produces high-level waste sites, and commercial spent fuel sites. All design elements meet current federal, state, and local regulations governing the disposal of high-level radioactive waste and protection of the public and the environment. Due to the complex nature of developing a repository, the design will be created in three phases to support Viability Assessment, License Application, and construction. This document presents the current reference design. It will be updated periodically as the design progresses. Some of the details presented here may change significantly as more cost-effective solutions, technical advancements, or changes to requirements are identified

  8. Potential increase in floods in California's Sierra Nevada under future climate projections

    Science.gov (United States)

    Das, T.; Dettinger, M.D.; Cayan, D.R.; Hidalgo, H.G.

    2011-01-01

    California's mountainous topography, exposure to occasional heavily moisture-laden storm systems, and varied communities and infrastructures in low lying areas make it highly vulnerable to floods. An important question facing the state-in terms of protecting the public and formulating water management responses to climate change-is "how might future climate changes affect flood characteristics in California?" To help address this, we simulate floods on the western slopes of the Sierra Nevada Mountains, the state's primary catchment, based on downscaled daily precipitation and temperature projections from three General Circulation Models (GCMs). These climate projections are fed into the Variable Infiltration Capacity (VIC) hydrologic model, and the VIC-simulated streamflows and hydrologic conditions, from historical and from projected climate change runs, allow us to evaluate possible changes in annual maximum 3-day flood magnitudes and frequencies of floods. By the end of the 21st Century, all projections yield larger-than-historical floods, for both the Northern Sierra Nevada (NSN) and for the Southern Sierra Nevada (SSN). The increases in flood magnitude are statistically significant (at p models, while under the third scenario, GFDL CM2. 1, frequencies remain constant or decline slightly, owing to an overall drying trend. These increases appear to derive jointly from increases in heavy precipitation amount, storm frequencies, and days with more precipitation falling as rain and less as snow. Increases in antecedent winter soil moisture also play a role in some areas. Thus, a complex, as-yet unpredictable interplay of several different climatic influences threatens to cause increased flood hazards in California's complex western Sierra landscapes. ?? 2011 Springer Science+Business Media B.V.

  9. State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1992

    International Nuclear Information System (INIS)

    1992-01-01

    The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada's responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency's oversight responsibilities: (1) Assure that the health and safety of Nevada's citizens are adequately protected with regard to any federal high-level radioactive waste program within the State; (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987; (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State; (4) Work closely and consult with affected local governments and State agencies; (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository

  10. Risk and uncertainty assessment for a potential HLW repository in Korea: TSPA 2006

    International Nuclear Information System (INIS)

    Hwang, Y.S.; Kang, C.H.

    2004-01-01

    KAERI has worked on the concept development on permanent disposal of HLW and its total system performance assessment since 1997. More than 36 000 MT of spent nuclear fuel from PWR and CANDU reactors is planned to be disposed of in crystalline bed-rocks. The total system performance assessment (TSPA) tools are under development. The KAERI FEP encyclopedia is actively developed to include all potential FEP suitable for Korean geo- and socio conditions. The FEPs are prioritized and then categorized to the intermediate level FEP groups. These groups become elements of the rock engineering system (RES) matrix. Then the sub-scenarios such as a container failure, groundwater migration, solute transport, etc are developed by connecting interactions between diagonal elements of the RES matrix. The full scenarios are developed from the combination of sub-scenarios. For each specific scenario, the assessment contexts and associated assessment method flow charts are developed. All information on these studies is recorded into the web based programme, FEAS (FEP to Assessment through Scenarios.) KAERI applies three basic programmes for the post closure radionuclide transport calculations; MASCOT-K, AMBER, and the new MDPSA under development. The MASCOT-K originally developed by Serco for a LLW repository has been extended extensively by KAERI to simulate release reactions such as congruent and gap releases in spent nuclear fuel. The new MDPSA code is dedicated for the probabilistic assessment of radio-nuclides in multi-dimensions of a fractured porous medium. To acquire input data for TSPA domestic experiment programmes as well as literature survey are performed. The data are stored in the Performance Assessment Input Data system (PAID.) To assure the transparency, traceability, retrievability, reproducibility, and review (T2R3) the web based KAERI QA system is developed. All tasks in TSPA are recorded under the concept of a 'Project' in this web system. Currently, FEAS, PAID

  11. Stress, strain, and temperature induced permeability changes in potential repository rocks

    International Nuclear Information System (INIS)

    Heard, H.C.; Duba, A.

    1977-01-01

    Work is in progress to assess the permeability characteristics of coarse-grained igneous rocks as affected by pressure, deviatoric stress, and temperature. In order to predict the long-term behavior of these rocks, both virgin and fractured, permeability and all principal strains resulting from an imposed deviatoric stress under various simulated lithostatic pressures are being measured. In addition, compressional as well as shear velocities and electrical conductivity are being evaluated along these principal directions. These simultaneous measurements are being made initially at 25 0 C on a 15 cm diameter by 30 cm long sample in a pressure apparatus controlled by a mini-computer. Correlation of these data with similar field observations should then allow simplified exploration for a suitable repository site as well as the prediction of the response of a mined cavity with both distance and time at this site. After emplacement of the waste canisters, the mechanical stability and hydrologic integrity of this mined repository will be directly influenced by the fracturing of the surrounding rock which results from local temperature differences and the thermal expansion of that rock. Temperatures (and, hence, these differences) in the vicinity of the repository are expected to be affected by the presence of pore fluids (single- or two-phase) in the rock, the heat capacity and the thermal conductivity of this system. In turn, these are all dependent upon lithostatic pressure, pore pressure, and stress. Thermal expansion (and fracturing) will also be affected by the lithostatic (and effective) pressure, the deviatoric stress field, and the initial anisotropy of the rock

  12. Planning for investigation and evaluation of potential repository sites in Sweden

    International Nuclear Information System (INIS)

    Almen, K.E.; Stroem, A.

    1998-01-01

    The present stage of siting of the Swedish Deep Repository for spent nuclear fuel involves general siting studies on national and regional scales and feasibility studies on a municipal scale. Based on these studies, two areas will be selected for surface-based site investigations. The geoscientific site information will be used in the site evaluation process, in which performance and safety assessments and design studies are the major activities, in combination with geoscientific characterization. The safety report and EIA document from the site investigation stage will be the most important documents in the application for the siting permit and the permit to construct the deep repository. Detailed characterization will then verify the suitability of the selected site. The programme for geoscientific site investigations is based on experience from more than 20 years of field studies in several SKB projects, such as the Study Site Investigations , the Stripa Project, and the Aespoe Hard Rock Laboratory. The strategies and methodologies developed, implemented and verified within the Aespoe HRL are a very important source of information and know-how for the development of the site investigation programme. The investigations will produce geoscientific models that include all information needed to analyze the long-term safety of a deep repository located in and adapted to the geological conditions of the rock. The type of geoscientific information needed for performance and safety assessment, layout and design, environmental studies and for fundamental geoscientific understanding has been specified and compiled in a 'parameter' report. The general strategy is that performance assessment, layout and design studies will be conducted in parallel with the geoscientific investigations. Information will be transferred at logical occasions, when decisions have to be taken and when feedback is desirable for new investigation steps. The role of the geoscientific evaluation is to

  13. Potential impact of ICRP-30 on the calculated risk from waste repositories

    International Nuclear Information System (INIS)

    Croff, A.G.

    1981-01-01

    As a result of the large body of information that has been gathered since ICRP-2 was published (1959), the ICRP has undertaken the task of updating its radiation protection guidance. This update involves revision of the primary radiation guidance as well as the recalculation of intake limits (ICRP-30) based on update biological models, updated nuclide decay schemes, and a new method accounting for simultaneous dose to more than one organ. A detailed analysis of the impacts of ICRP-30 on waste repository safety and risk analyses would require an extensive and detailed study that has not yet been undertaken. Nevertheless, it is possible to identify, in an approximate manner, the impact of using ICRP-30 instead of 10 CFR 20/ICRP-2 in calculating the risk from radioactive repositories. Toward this end, the numerical guidance of ICRP-30 has been obtained and converted into RCG values for the general public using the same methods that were employed in deriving 10 CFR 20. The conversion was cross-checked by comparing 10 CFR 20 and ICRP-30-based values that were known to have remained the same. The most restrictive ICRP-30 RCGs were incorporated into the ORIGEN2 computer code, which was then used to calculate the toxicity of some radioactive materials of interest in waste repository considerations. As a basis for discussion, the toxicities of the spent fuel from a PWR and of the uranium ore required to make the fuel are given for both the 10 CFR 20 and ICRP-30-based RCGs. As is evident, the use of the revised RCGs reduces the toxicity of the spent fuel at times less than 100 years and increases the toxicity at times thereafter

  14. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2004-01-01

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached

  15. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  16. Use of swelling clays to reduce permeability and its potential application to nuclear waste repository sealing

    International Nuclear Information System (INIS)

    Moore, D.E.; Morrow, C.A.; Byerlee, J.D.

    1982-01-01

    The injection of swelling-clay slurries into joints or faults at a deep-burial nuclear waste disposal site may result in signficant permeability reductions for the effective containment of radioactive wastes. In an experiment conducted to illustrate the permeability change accompanying clay swelling, a coarse stone with interconnected pore spaces was injected with a clay-electrolyte slurry, modelling the pressure-grouting of a fractured repository rock. Subsequently, solutions with lower electroylte concentrations were driven through the clay-filled stone, corresponding to migration of lower salinity ground-waters through the clay-grouted fracture. The initial injection procedure reduced the permeability of the stone from 1--10 darcies to 700 nanodarcies; the changes in solution composition decreased permeability by more than 2 additional orders of magnitude to 3 nanodarcies. For application at a nuclear waste repository, the electrolyte concentration of the injected clay slurry should be made higher than that of the ground-water in the host rock. Subesquent interaction of the ground-water with the clays would initiate swelling and create the additional, post-injection permeability reductions that may be important in preventing the escape of buried radioactive wastes. The measured permeability of the clay filling is considerably lower than that of cement tested for borehole plugging. Clays also have the advantage over cement and chemical grouts in that they are geologically stable at relatively low temperatures and have a high capacity for radionuclide adsorption

  17. New three-dimensional far-field potential repository thermomechanical calculations

    International Nuclear Information System (INIS)

    Hardy, M.P.; Bai, M.; Goodrich, R.R.; Lin, M.; Carlisle, S.; Bauer, S.J.

    1993-03-01

    The thermomechanical effect on the exploratory ramps, drifts, and shafts as a result of high-level nuclear waste disposal is examined using a three-dimensional thermo-elastic model. The repository layout modeled is based on the use of mechanical mining of all excavations with equivalent waste emplacement areal power densities of 57 and 80 kW/acre. Predicted temperatures and stress changes for the north and south access drifts, east main drift, east-west exploratory drift, the north and south Calico Hills access ramps, the Calico Hills north-south exploratory drift, and the optional exploratory studies facility and man and materials shafts are presented for times 10, 35, 50, 100, 300, 500, 1000, 2000, 5000, and 10,000 years after the start of waste emplacement. The study indicates that the east-west exploratory drift at the repository horizon is subject to the highest thermomechanical impact because it is located closest the buried waste canisters. For most exploratory openings, the thermally induced temperatures and stresses tend to reach the maximum magnitudes at approximately 1000 years after waste emplacement

  18. The potential significance of permafrost to the behaviour of a deep radioactive waste repository

    International Nuclear Information System (INIS)

    McEwen, T.; Marsily, G.de

    1991-02-01

    Permafrost is one of the scenarios that is being considered as part of the groundwater flow and transport modelling for the Project-90 assessment. It is included as one of the primary Features, Events and Processes (FEPs) which are being kept outside the Process System in the SKB/SKI scenario development project. There is a large amount of evidence that Sweden has suffered several cycles of permafrost development over the Quaternary, approximately the last 2My, and climatic predictions for the next hundred thousand years suggest that similar climatic cycling is likely to occur. The presence of permafrost could have important effects on the hydrogeological regime and could therefore be important in modifying the release and dispersion of radionuclides from a repository. The climatic conditions of permafrost would also influence radionuclide migration and accumulation in the biosphere and the associated radiation exposure of man. These biosphere aspects are not considered here but the implications for discharge into the biosphere are examined, including the abstraction of groundwater by man in permafrost regions. This report reviews the evidence relating to permafrost development and discusses the possible implications for the long-term safety of a deep repository. (78 refs.) (au)

  19. Preliminary constitutive properties for salt and nonsalt rocks from four potential repository sites

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Mellegard, K.D.; Senseny, P.E.

    1983-07-01

    Results are presented from laboratory strength and creep tests performed on salt and nonsalt specimens from the Richton Dome in Mississippi, the Vacherie Dome in Louisiana, the Permian Basin in Texas, and the Paradox Basin in Utah. The constititive properties obtained for salt are the elastic moduli and the failure envelope at 24 0 C and parameter values for the exponential-time creep law. Some additional data are presented to indicate how the elastic moduli and strength change with temperature. The nonsalt constitutive properties reported are the elastic moduli, the unconfined compressive strength and the tensile strength at 24 0 C. The properties given in this report will be used in subsequent numerical simulations that will provide information to assist in the screening and selection of site locations for a nuclear waste repository and to assist in the repository design at the selected site. The matrix of tests performed is the minimum effort required to obtain these constitutive properties. The preliminary values obtained will be supplemented by additional testing for sites that are selected for further investigation

  20. Preliminary calculations of release rates from spent fuel in a tuff repository

    International Nuclear Information System (INIS)

    Apted, M.J.; O'Connell, W.J.; Lee, K.H.; MacIntyre, A.T.; Ueng, T.S.; Pigford, T.H.; Lee, W.W.L.

    1991-01-01

    Time-dependent release rates of Tc-99, I-129, Cs-135, and Np-237 have been calculated for wet-drip and moist-continuous release modes from the engineered barrier system of a potential nuclear waste repository in unsaturated tuff, representative of a possible repository at Yucca Mountain in southern Nevada. We describe the modes of water contact and of release of dissolved radionuclides to the surrounding intact rock, and the corresponding calculational models. We list the parameter values adopted, and then present numerical results, conclusions, and recommendations. 21 refs., 5 figs., 2 tabs

  1. Current progress in implementing the payments-equal-to-taxes (PETT) program in Nevada

    International Nuclear Information System (INIS)

    Lundgaard, E.L.; Ellis, C.B.

    1993-01-01

    The Nuclear Waste Policy Act of 1982, as amended (NWPA), requires the Secretary of Energy to make Payments-equal-to-Taxes (PETT) to local units of government that are affected by the potential repository at Yucca Mountain, Nevada. The PETT program is designed to provide affected jurisdictions with the revenue they would have received if the potential repository site was being characterized and possibly developed by a private entity rather than the Federal government. A paper presented at last year's conference described how the PETT Program would be implemented in the State of Nevada. This paper describes the current progress in implementing the program as it relates to the PETT associated with property taxes

  2. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  3. Reference design description for a geologic repository. Revision 02

    International Nuclear Information System (INIS)

    1999-01-01

    This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada. It describes the proposed design for a surface facility, subsurface repository, and waste packaging; it also presents the current design of the key engineering systems for the final four phases: operations, monitoring, closure, and postclosure. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. In accordance with current law, this design does not include an interim storage option. This document has six major sections. Section 1 describes the physical layout of the proposed repository. The second section describes the 4-phase evolution of the development of the proposed repository. Section 3 describes the reception of waste from offsite locations. The fourth section details the various systems that will package the waste and move it below ground as well as safety monitoring and closure. Section 5 describes the systems (both physical and analytical) that ensure continued safety after closure. The final section offers design options that may be adopted to increase the margin of safety

  4. US Department of Energy Approach to Probabilistic Evaluation of Long-Term Safety for a Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Dr. R. Dyer; Dr. R. Andrews; Dr. A. Van Luik

    2005-01-01

    Regulatory requirements being addressed in the US geological repository program for spent nuclear fuel and high-level waste disposal specify probabilistically defined mean-value dose limits. These dose limits reflect acceptable levels of risk. The probabilistic approach mandated by regulation calculates a ''risk of a dose,'' a risk of a potential given dose value at a specific time in the future to a hypothetical person. The mean value of the time-dependent performance measure needs to remain below an acceptable level defined by regulation. Because there are uncertain parameters that are important to system performance, the regulation mandates an analysis focused on the mean value of the performance measure, but that also explores the ''full range of defensible and reasonable parameter distributions''...System performance evaluations should not be unduly influenced by...''extreme physical situations and parameter values''. Challenges in this approach lie in defending the scientific basis for the models selected, and the data and distributions sampled. A significant challenge lies in showing that uncertainties are properly identified and evaluated. A single-value parameter has no uncertainty, and where used such values need to be supported by scientific information showing the selected value is appropriate. Uncertainties are inherent in data, but are also introduced by creating parameter distributions from data sets, selecting models from among alternative models, abstracting models for use in probabilistic analysis, and in selecting the range of initiating event probabilities for unlikely events. The goal of the assessment currently in progress is to evaluate the level of risk inherent in moving ahead to the next phase of repository development: construction. During the construction phase, more will be learned to inform a new long-term risk evaluation to support moving to the next phase: accepting waste. Therefore, though there was sufficient confidence of safety

  5. Development of ACBIO: A Biosphere Template Using AMBER for a Potential Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Hwang, Yong Soo; Kang, Chul Hyung; Hahn, Pil Soo

    2005-01-01

    Nuclides in radioactive wastes are assumed to be transported in the geosphere by groundwater and probably discharged into the biosphere. Quantitative evaluation of doses to human beings due to nuclide transport in the geosphere and through the various pathways in the biosphere is the final step of safety assessment of the radioactive waste repository. To calculate the flux to dose conversion factors (DCFs) for nuclides appearing at GBIs with their decay chains, a template ACBIO which is an AMBER case file based on mathematical model for the mass transfer coefficients between the compartments has been developed considering material balance among the compartments in biosphere and then implementing to AMBER, a general and flexible software tool that allows to build dynamic compartment models. An illustrative calculation with ACBIO is shown.

  6. Preliminary mapping of surficial geology of Midway Valley Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Wesling, J.R.; Bullard, T.F.; Swan, F.H.; Perman, R.C.; Angell, M.M.; Gibson, J.D.

    1992-04-01

    The tectonics program for the proposed high-level nuclear waste repository at Yucca Mountain in southwestern Nevada must evaluate the potential for surface faulting beneath the prospective surface facilities. To help meet this goal, Quaternary surficial mapping studies and photolineament analyses were conducted to provide data for evaluating the location, recency, and style of faulting with Midway Valley at the eastern base of Yucca Mountain, the preferred location of these surface facilities. This interim report presents the preliminary results of this work

  7. A geotechnical evaluation of potentially acceptable sites for a high-level nuclear waste repository near the Red Lake Indian Reservation

    International Nuclear Information System (INIS)

    1986-01-01

    The scope and work which served as the basis for this report included the following major activities; (1) A review and summary of the screening methodologies utilized by DOE for the selection of proposed nuclear waste repository sites, including a description of the inherent weakness in those methodologies. (2) A description of the geologic and hydrologic features of the rock bodies selected by DOE and an identification of those features which could result in hazardous conditions as a result of the location of a high-level nuclear waste repository. (3) An assessment of potential environmental impacts of the repository and discussion of endanged species in the proposed repository project areas. This report is organized in three major sections in relationship to the scope of work. A list of references is also included at the end of this report. 37 refs., 2 figs

  8. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States); Laub, T.W. [Sandia National Labs., Albuquerque, NM (United States)

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10{sup {minus}11}/yr to 10{sup {minus}5}/yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10{sup {minus}9}/yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution.

  9. Nuclear waste repository siting

    International Nuclear Information System (INIS)

    Soloman, B.D.; Cameron, D.M.

    1987-01-01

    This paper discusses the geopolitics of nuclear waste disposal in the USA. Constitutional choice and social equity perspectives are used to argue for a more open and just repository siting program. The authors assert that every potential repository site inevitably contains geologic, environmental or other imperfections and that the political process is the correct one for determining sites selected

  10. Salt repository project closeout status report

    International Nuclear Information System (INIS)

    1988-06-01

    This report provides an overview of the scope and status of the US Department of Energy (DOE's) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs

  11. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Science.gov (United States)

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-07-01

    This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [1-]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria) in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic. In order to evaluate seismicity and to assess the impact of seismic effects at depths of hypothetical deep geological repository for the next time period, the neo-deterministic method was selected as an extension of the probabilistic method. Each one out of the seven survey areas were assessed by the neo-deterministic evaluation of the seismic wave-field excited by selected individual events and determining the maximum loading. Results of seismological databases studies and neo-deterministic analysis of Čihadlo locality are presented.

  12. Ventilation planning for a prospective nuclear waste repository

    International Nuclear Information System (INIS)

    Wallace, K.G. Jr.

    1987-01-01

    In 1982, the US Congress passed the Nuclear Waste Policy Act to provide for the development of underground repositories for spent nuclear fuel. This development will be managed by the United States Department of Energy. In 1986, the President selected three areas for site characterization to determine their suitability for the development of an underground repository; those sites were: (1) A site in volcanic tuff located at Yucca Mountain in Nevada, (2) a site in bedded salt located in Deaf Smith County in Texas, and (3) a site in basalt located in Hanford, Washington. At present conceptual repository designs are being developed for each site. A key element of a repository design is the underground ventilation system required to support construction, nuclear waste emplacement, and potential waste retrieval. This paper describes the preliminary ventilation systems designed for the repository in tuff. The concept provides separate ventilation systems for the construction and waste emplacement activities. The paper further describes the means by which acceptable environmental conditions will be re-established to allow re-entry into previously closed rooms for the purpose of inspection, maintenance or retrieval

  13. Evaluation and modelling of a potential repository site - Olkiluoto case study

    International Nuclear Information System (INIS)

    Saksa, P.; Ahokas, H.; Loefman, J.; Pitkaenen, P.; Paulamaeki, S.; Snellman, M.

    1998-01-01

    The observations, interpretations and estimates resulting from site investigations were developed into conceptual bedrock model of the Olkiluoto area. Model development has been an interdisciplinary process and three major iterations have occurred. Geochemical sampling and a programme of electromagnetic and electrical soundings were carried out and interpreted to model occurrences of groundwater types. The parametrisation and modifications needed between geological models and ground-water flow simulation model is discussed. The latest groundwater flow modelling effort comprises the transient flow analysis taking into account the effects of density variations, the repository, post-glacial land uplift and global sea level rise. The main flow modeling result quantities (the amount, direction, velocity and routes as well as concentration of water) are used for evaluation of the investigation sites and of the preconditions for safe final disposal of spent nuclear fuel. Integration of hydrological and hydrogeochemical methods and studies has provided the primary method for investigating the evolution. Testing of flow models with hydro-geochemical information is considered to improve the hydrogeological understanding of a site and increases confidence in conceptual hydrogeological models. Bedrock model allows also comparisons to be made between its time-varying versions. The evolution of fracture frequency, fracture zone structures and hydraulic conductivity has been studied. A prediction-outcome comparison was made in selected boreholes and showed that the rock type was the easiest parameter to predict

  14. Proposed sealing field tests for a potential high-level radioactive waste repository in unsaturated tuff

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Case, J.B.; Tyburski, J.

    1992-01-01

    This paper contains a general description of the field tests proposed for the Yucca Mountain Site Characterization Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns associated with sealing components. Ten discrete tests are proposed to address these concerns. These tests are divided into two categories -- simple and complex tests. The simple tests are: the small-scale in situ tests: the intermediate-scale borehole seal tests; the fracture grouting tests; the surface backfill tests; and the grouted rock mass tests. The complex tests are the seepage control tests; in situ backfill tests; in situ bulkhead tests; large-scale shaft seal tests; and remote borehole seal tests. These tests are proposed to be performed in welded and nonwelded tuff environments. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the exploratory studies facility. Some tests may be performed before license application and some after license application

  15. Nevada local government revenues analysis

    International Nuclear Information System (INIS)

    1988-06-01

    This report analyzes the major sources of revenue for Nevada local government for purposes of estimating the impacts associated with the siting of a nuclear waste repository at Yucca Mountain. Each major revenue source is analyzed separately to identify relationships between the economic or demographic base, the revenue base and the revenues generated. Trends and changes in the rates and/or base are highlighted. A model is developed for each component to allow impact estimation. This report is a companion to the report Nevada State Revenues Analysis

  16. Ground-water altitudes and well data, Nye County, Nevada, and Inyo County, California

    International Nuclear Information System (INIS)

    Ciesnik, M.S.

    1995-01-01

    This report contains ground-water altitudes and well data for wells located in Nye County, Nevada, and Inyo County, California, south of Yucca Mountain, Nevada, the potential site for a high-level nuclear waste repository. Data are from wells whose coordinates are within the Beatty and Death Valley Junction, California-Nevada maps from the US Geological Survey, scale 1:100,000 (30-minute x 60-minute quadrangle). Compilation of these data was made to provide a reference for numerical models of ground-water flow at Yucca Mountain and its vicinity. Water-level measurements were obtained from the US Geological Survey National Water Information System (NWIS) data base, and span the period of October 1951 to May 1991; most measurements were made from 1980 to 1990

  17. Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity

    Science.gov (United States)

    Zeng, Yuehua; Petersen, Mark D.; Shen, Zheng-Kang

    2018-01-01

    Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6.5 are collocated with regions of highest strain rates. By contrast, smaller magnitude earthquakes of M ≥ 4 show clear spatiotemporal changes. From 1933 to the late 1980s, earthquakes of M ≥ 4 were more diffused and broadly distributed in both high and low strain rate regions (accumulation phase). From the late 1980s to 2016, earthquakes were more concentrated within the high strain rate areas focused on the major fault strands (localization phase). In the same time period, the rate of M > 6.5 events also increased significantly in the high strain rate areas. The strong correlation between current strain rate and the later period of seismicity indicates that seismicity is closely related to the strain rate. The spatial patterns suggest that before the late 1980s, the strain rate field was also broadly distributed because of the stress shadows from previous large earthquakes. As the deformation field evolved out of the shadow in the late 1980s, strain has refocused on the major fault systems and we are entering a period of increased risk for large earthquakes in California.

  18. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Mower, T.E.; Higgins, J.D.; Yang, In C.; Peters, C.A.

    1994-01-01

    The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone water on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site

  19. An interim report on the State of Nevada socioeconomic studies

    International Nuclear Information System (INIS)

    1989-06-01

    This Interim Report is a report on work in progress and presents findings from the research to date on the potential consequences of a repository for the citizens of Nevada. The research and findings in the Report have been subjected to rigorous peer review as part of the state's effort to insure independent, objective analysis that meets the highest professional standards. The basic research effort will continue through June 1990 and will enable the state to refine and clarify the findings presented in this Interim Report

  20. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Directory of Open Access Journals (Sweden)

    Kaláb Zdeněk

    2017-07-01

    Full Text Available This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [10]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic.

  1. Management of scientific and engineering data collected during site characterization of a potential high-level waste repository

    International Nuclear Information System (INIS)

    Newbury, C.M.; Heitland, G.W.

    1992-01-01

    This paper discusses the characterization of Yucca Mountain as a potential site for a high-level nuclear waste repository encompasses many diverse investigations to determine the nature of the site. Laboratory and on-site investigations are being conducted of the geology, hydrology, mineralogy, paleoclimate, geotechnical properties, and past use of the area, to name a few. Effective use of the data from these investigations requires development of a system for the collection, storage, and dissemination of those scientific and engineering data needed to support model development, design, and performance assessment. The time and budgetary constraints associated with this project make sharing of technical data within the geoscience community absolutely critical to the successful solution of the complex scientific problem challenging us

  2. Preliminary analysis of the cost and risk of transporting nuclear waste to potential candidate commercial repository sites

    International Nuclear Information System (INIS)

    Wilmot, E.L.; Madsen, M.M.; Cashwell, J.W.; Joy, D.S.

    1983-06-01

    This report documents preliminary cost and risk analyses that were performed in support of the Nuclear Waste Terminal Storage (NWTS) program. The analyses compare the costs and hazards of transporting wastes to each of five regions that contain potential candidate nuclear waste repository sites being considered by the NWTS program. These regions are: the Gulf Interior Region, the Permian Basin, the Paradox Basin, Yucca Mountain, and Hanford. Two fuel-cycle scenarios were analyzed: once-through and reprocessing. Transportation was assumed to be either entirely by truck or entirely by rail for each of the scenarios. The results from the risk analyses include those attributable to nonradiological causes and those attributable to the radioactive character of the wastes being transported. 17 references

  3. Challenges and issues with building a potential railroad to Yucca Mountain

    International Nuclear Information System (INIS)

    Sweeney, R.L.

    2004-01-01

    On July 23, 2002, the President of the United States signed into law a joint resolution of the United States Congress designating the Yucca Mountain site in Nye County, Nevada, for development as a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the U.S. Nuclear Regulatory Commission authorizes construction of the repository and receipt and possession of spent nuclear fuel and high-level radioactive at Yucca Mountain, the U.S. Department of Energy (DOE) would be responsible for transporting these materials to the Yucca Mountain repository as part of its obligation under the Nuclear Waste Policy Act. Part of the site recommendation decision included the analysis of a nation-wide shipping campaign to the proposed repository site. The Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada'' (February 2002) (Repository EIS) evaluated the potential impacts of the transportation of 70,000 Metric Tons of Heavy Metal spent nuclear fuel and high-level radioactive waste from 77 locations around the nation to the potential repository in Nevada over a 24 year shipping campaign. DOE believes that the Repository EIS provides the environmental impact information necessary to make certain broad transportation-related decisions, namely the choice of a national mode of transportation outside Nevada (mostly rail or mostly legal-weight truck), the choice among alternative transportation modes in Nevada (mostly rail, mostly legal-weight truck, or heavy-haul truck with use of an associated intermodal transfer station), and the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. In the Repository EIS, DOE identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. In December 2003, based on public

  4. Challenges and issues with building a potential railroad to Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, R.L.

    2004-07-01

    On July 23, 2002, the President of the United States signed into law a joint resolution of the United States Congress designating the Yucca Mountain site in Nye County, Nevada, for development as a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the U.S. Nuclear Regulatory Commission authorizes construction of the repository and receipt and possession of spent nuclear fuel and high-level radioactive at Yucca Mountain, the U.S. Department of Energy (DOE) would be responsible for transporting these materials to the Yucca Mountain repository as part of its obligation under the Nuclear Waste Policy Act. Part of the site recommendation decision included the analysis of a nation-wide shipping campaign to the proposed repository site. The Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada'' (February 2002) (Repository EIS) evaluated the potential impacts of the transportation of 70,000 Metric Tons of Heavy Metal spent nuclear fuel and high-level radioactive waste from 77 locations around the nation to the potential repository in Nevada over a 24 year shipping campaign. DOE believes that the Repository EIS provides the environmental impact information necessary to make certain broad transportation-related decisions, namely the choice of a national mode of transportation outside Nevada (mostly rail or mostly legal-weight truck), the choice among alternative transportation modes in Nevada (mostly rail, mostly legal-weight truck, or heavy-haul truck with use of an associated intermodal transfer station), and the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. In the Repository EIS, DOE identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. In December 2003, based

  5. Operational procedures for receiving, packaging, emplacing, and retrieving high-level and transuranic waste in a geologic repository in TUFF

    International Nuclear Information System (INIS)

    Dennis, A.W.; Mulkin, R.

    1984-01-01

    The Nevada Nuclear Waste Storage Investigations Project, directed by the Nevada Operations Office of the Department of Energy, is currently developing conceptual designs for a commercial nuclear waste repository. In this paper, the preliminary repository operating plans are identified and the proposed repository waste inventory is discussed. The receipt rates for truck and rail car shipments of waste are determined as are the required repository waste emplacement rates

  6. Repository environmental parameters and models/methodologies relevant to assessing the performance of high-level waste packages in basalt, tuff, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, H.C.; Croff, A.G.; Griess, J.C.; Smith, F.J.

    1987-09-01

    This document provides specifications for models/methodologies that could be employed in determining postclosure repository environmental parameters relevant to the performance of high-level waste packages for the Basalt Waste Isolation Project (BWIP) at Richland, Washington, the tuff at Yucca Mountain by the Nevada Test Site, and the bedded salt in Deaf Smith County, Texas. Guidance is provided on the identify of the relevant repository environmental parameters; the models/methodologies employed to determine the parameters, and the input data base for the models/methodologies. Supporting studies included are an analysis of potential waste package failure modes leading to identification of the relevant repository environmental parameters, an evaluation of the credible range of the repository environmental parameters, and a summary of the review of existing models/methodologies currently employed in determining repository environmental parameters relevant to waste package performance. 327 refs., 26 figs., 19 tabs.

  7. Repository environmental parameters and models/methodologies relevant to assessing the performance of high-level waste packages in basalt, tuff, and salt

    International Nuclear Information System (INIS)

    Claiborne, H.C.; Croff, A.G.; Griess, J.C.; Smith, F.J.

    1987-09-01

    This document provides specifications for models/methodologies that could be employed in determining postclosure repository environmental parameters relevant to the performance of high-level waste packages for the Basalt Waste Isolation Project (BWIP) at Richland, Washington, the tuff at Yucca Mountain by the Nevada Test Site, and the bedded salt in Deaf Smith County, Texas. Guidance is provided on the identify of the relevant repository environmental parameters; the models/methodologies employed to determine the parameters, and the input data base for the models/methodologies. Supporting studies included are an analysis of potential waste package failure modes leading to identification of the relevant repository environmental parameters, an evaluation of the credible range of the repository environmental parameters, and a summary of the review of existing models/methodologies currently employed in determining repository environmental parameters relevant to waste package performance. 327 refs., 26 figs., 19 tabs

  8. Consortial routes to effective repositories

    OpenAIRE

    Moyle, M.; Proudfoot, R.

    2009-01-01

    A consortial approach to the establishment of repository services can help a group of Higher Education Institutions (HEIs) to share costs, share technology and share expertise. Consortial repository work can tap into existing structures, or it can involve new groupings of institutions with a common interest in exploring repository development. This Briefing Paper outlines some of the potential benefits of collaborative repository activity, and highlights some of the technical and organisation...

  9. Soil Stabilization Methods with Potential for Application at the Nevada National Security Site: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Shillito, Rose [DRI; Fenstermaker, Lynn [DRI

    2014-01-01

    Nuclear testing at the Nevada National Security Site (NNSS) has resulted in large areas of surficial radionuclide-contaminated soils. Much of the radionuclide contamination is found at or near the soil surface, and due to the dry climate setting, and the long half-life of radioactive isotopes, soil erosion poses a long-term health risk at the NNSS. The objective of this literature review is to present a survey of current stabilization methods used for minimizing soil erosion, both by water and wind. The review focuses on in situ uses of fundamental chemical and physical mechanisms for soil stabilization. A basic overview of the physical and chemical properties of soil is also presented to provide a basis for assessing stabilization methods. Some criteria for stabilization evaluation are identified based on previous studies at the NNSS. Although no specific recommendations are presented as no stabilization method, alone or in combination, will be appropriate in all circumstances, discussions of past and current stabilization procedures and specific soil tests that may aid in current or future soil stabilization activities at the NNSS are presented. However, not all Soils Corrective Action Sites (CASs) or Corrective Action Units (CAUs) will require stabilization of surficial radionuclide-contaminated soils. Each Soils CAS or CAU should be evaluated for site-specific conditions to determine if soil stabilization is necessary or practical for a given specific site closure alternative. If stabilization is necessary, then a determination will be made as to which stabilization technique is the most appropriate for that specific site.

  10. Stability of underground openings in the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    1989-01-01

    The licensing of a repository for high level radioactive waste will require assurances that underground openings do not experience frequent major instabilities, which are defined here as sudden movements of blocks of rock that limit the functions of the openings. Although the design of nuclear power plant structure is controlled by strict adherence to building or professional- engineering codes, this approach is not practical for the structural design of underground facilities because the design must accommodate a varied and partially defined geologic setting. However, regulations require the reduction of the potential for deleterious rock movement and the design of openings to maintain the option to retrieve waste. The present plans for meeting these requirements for a repository at Yucca Mountain, Nevada, include a program of state-of-the- art analyses and modified forms of existing empirically based design methods. An extensive experimental program is required to provide confidence in the results of the design- analysis process

  11. Environmental overview of geothermal development: northern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A. (eds.)

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  12. Continuing Science and Technology at the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Finch, R.J.

    2005-01-01

    Yucca Mountain, Nevada, was designated in 2002 to be the site for the nation's first permanent geological repository for spent nuclear fuel and high-level radioactive waste. The process of selecting a site for the repository began nearly 25 years ago with passage of the Nuclear Waste Policy Act in 1982. The Department of Energy (DOE) is responsible for submitting a license application to the Nuclear Regulatory Commission for constructing and operating the repository, and DOE's Office of Civilian Radioactive Waste Management (OCRWM) is charged with carrying out this action. The use of multiple natural and engineered barriers in the current repository design are considered by OCRWM to be sufficiently robust to warrant license approval; however, potential design enhancements and increased understanding of both natural and engineered barriers, especially over the long time frames during which the waste is to remain isolated from human contact continue to be examined. The Office of Science and Technology and International (OST andI) was created within OCRWM to help explore novel technologies that might lower overall costs and to develop a greater understanding of processes relevant to the long-term performance of the repository. A brief overview of Yucca Mountain, and the role that OST andI has in identifying technological or scientific advances that could make repository operations more efficient or performance more robust, will be presented. It is important to note, however, that adopting any of OST andI's technological or scientific developments will be at the discretion of OCRWM's Office of Repository Development (ORD)

  13. Corrosion of similar and dissimilar metal crevices in the engineered barrier system of a potential nuclear waste repository

    International Nuclear Information System (INIS)

    He, X.; Dunn, D.S.; Csontos, A.A.

    2007-01-01

    Crevice corrosion is considered possible if the corrosion potential (E corr ) exceeds the repassivation potential for crevice corrosion (E rcrev ). In this study, potentiodynamic polarization and potentiostatic hold were used to determine the E rcrev of similar and dissimilar metal crevices in the engineered barrier system of the potential Yucca Mountain repository in 0.5 M NaCl, 4 M NaCl, and 4 M MgCl 2 solutions at 95 deg. C. The results were compared with data previously obtained using crevices formed between Alloy 22 and polytetrafluoroethylene. It was observed that, except for Type 316L stainless steel, all other metal-to-metal crevices were less susceptible to crevice corrosion than the corresponding metal-to-polytetrafluoroethylene crevices. Measurements of galvanic coupling were used to evaluate the crevice corrosion propagation behavior in 5 M NaCl solution at 95 deg. C. The crevice specimens were coupled to either an Alloy 22 or a Titanium Grade 7 plate using metal or polytetrafluoroethylene crevice washers. Crevice corrosion of Type 316L stainless steel propagated without repassivation. For all the tests using a polytetrafluoroethylene crevice washer, crevice corrosion of Alloy 22 was initiated at open circuit potential by the addition of CuCl 2 as an oxidant, whereas no crevice corrosion of Alloy 22 was initiated for all the tests using Alloy 22 or Titanium Grade 7 metals as crevice washer. However, crevice corrosion propagation was found to be very limited under such test conditions

  14. Biologic overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Collins, E.; O'Farrell, T.P.; Rhoads, W.A.

    1982-01-01

    The Nevada Nuclear Waste Storage Investigations project study area includes five major vegetation associations characteristic of the transition between the northern extent of the Mojave Desert and the southern extent of the Great Basin Desert. A total of 32 species of reptiles, 66 species of birds, and 46 species of mammals are known to occur within these associations elsewhere on the Nevada Test Site. Ten species of plants, and the mule deer, wild horse, feral burro, and desert tortoise were defined as possible sensitive species because they are protected by federal and state regulations, or are being considered for such protection. The major agricultural resources of southern Nye County included 737,000 acres of public grazing land managed by the Bureau of Land Management, and 9500 acres of irrigated crop land located in the Beatty/Oasis valleys, the Amargosa Valley, and Ash Meadows. Range lands are of poor quality. Alfalfa and cotton are the major crops along with small amounts of grains, Sudan grass, turf, fruits, and melons. The largest impacts to known ecosystems are expected to result from: extensive disturbances associated with construction of roads, seismic lines, drilling pads, and surface facilities; storage and leaching of mined spoils; disposal of water; off-road vehicle travel; and, over several hundred years, elevated soil temperatures. Significant impacts to off-site areas such as Ash Meadows are anticipated if new residential developments are built there to accommodate an increased work force. Several species of concern and their essential habitats are located at Ash Meadows. Available literature contained sufficient baseline information to assess potential impacts of the proposed project on an area-wide basis. It was inadequate to support analysis of potential impacts on specific locations selected for site characterization studies, mining an exploratory shaft, or the siting and operation of a repository

  15. Rural migration in southern Nevada

    International Nuclear Information System (INIS)

    Mosser, D.; Soden, D.L.

    1993-01-01

    This study reviews the history of migration in two rural counties in Southern Nevada. It is part of a larger study about the impact of a proposed high-level nuclear waste repository on, in and out-migration patterns in the state. The historical record suggests a boom and bust economic cycle has predominated in the region for the past century creating conditions that should be taken into account, by decision makers, when ascertaining the long-term impacts of the proposed repository

  16. 1983 biotic studies of Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    O'Farrell, T.P.; Collins, E.

    1984-04-01

    A 27.5-square-mile portion of Yucca Mountain on and adjacent to the US Department of Energy's Nevada Test Site, Nye County, Nevada, is being considered as a potential location for a national high-level radioactive waste repository. Preliminary geologic and environmental characterization studies have been supported and more extensive studies are planned. Goals of the biotic surveys were to identify species of concern, describe major floral and faunal associations, and assess possible impacts of characterization and operational activities. Floral associations observed were characteristic of either the Mojave or Transition deserts that are widely distributed in southern Nevada. Diversity, in terms of total number of perennial species represented, was higher in Transition Desert associations than in Mojave Desert associations. Canopy coverage of associations fell within the range of reported values, but tended to be more homogeneous than expected. Annual vegetation was found to be diverse only where the frequency of Bromus rubens was low. Ground cover of winter annuals, especially annual grasses, was observed to be very dense in 1983. The threat of range fires on Yucca Mountain was high because of the increased amount of dead litter and the decreased amount of bare ground. Significant variability was observed in the distribution and relative abundance of several small mammal species between 1982 and 1983. Desert tortoise were found in low densities comparable with those observed in 1982. Evidence of recent activity, which included sighting of two live tortoises, was found in five areas on Yucca Mountain. Two of these areas have a high probability of sustaining significant impacts if a repository is constructed. Regeneration of aboveground shrub parts from root crowns was observed in areas damaged in 1982 by seismic testing with Vibroseis machines. These areas, which had been cleared to bare dirt by passage of the machines, also supported lush stands of winter annuals

  17. Public opposition to the siting of the high-level nuclear waste repository: The importance of trust

    International Nuclear Information System (INIS)

    Pijawka, K.D.; Mushkatel, A.H.

    1991-01-01

    This paper examines several dimensions of public opposition to the proposed siting of the high-level nuclear waste repository at Yucca Mountain. In order to provide a context for the public's views of the repository in metropolitan Clark County, both governmental studies of the repository siting process are analyzed, as well as elements of the Nuclear Waste Policy Act. This analysis suggests that one potentially key component of the public's opposition to the siting, as well as their perceptions of risk of the facility, may be the result of a lack of trust in the Department of Energy. Empirical analysis of survey data collected in Nevada in 1988 confirms the strong relationship between political trust and repository risk perceptions

  18. Detecting and modeling persistent self-potential anomalies from underground nuclear explosions at the Nevada Test Site

    International Nuclear Information System (INIS)

    McKague, H.L.; Kansa, E.; Kasameyer, P.W.

    1992-01-01

    Self-potential anomalies are naturally occurring, nearly stationary electric fields that are detected by measuring the potential difference between two points on (or in) the ground. SP anomalies arise from a number of causes: principally electrochemical reactions, and heat and fluid flows. SP is routinely used to locate mineral deposits, geothermal systems, and zones of seepage. This paper is a progress report on our work toward detecting explosion-related SP signals at the Nevada Test Site (NTS) and in understanding the physics of these anomalies that persist and continue changing over periods of time that range from months to years. As background, we also include a brief description of how SP signals arise, and we mention their use in other areas such as exploring for geothermal resources and locating seepage through dams. Between the years 1988 and 1991, we surveyed the areas around seven underground nuclear tests for persistent SP anomalies. We not only detected anomalies, but we also found that various phenomena could be contributing to them and that we did not know which of these were actually occurring. We analyzed our new data with existing steady state codes and with a newly developed time-dependent thermal modeling code. Our results with the new code showed that the conductive decay of the thermal pulse from an underground nuclear test could produce many of the observed signals, and that others are probably caused by movement of fluid induced by the explosion. 25 refs

  19. Efficient way back litters nutrient potential of a tropical forest of bank. Sierra Nevada of Santa Marta Colombia

    International Nuclear Information System (INIS)

    Fuentes Molina, Natalia; Rodriguez Barrios, Javier Alfredo

    2012-01-01

    In three representative forests along the River Gaira, (subtropical wet forest, subtropical moist forest and tropical thorn mount), were measured over six months (wet and dry seasons) fluxes of nitrogen and phosphorus through the litter. Concentrations of nutrients (nitrogen and phosphorus) in the litter were relatively similar in the three Nevada de Santa Marta Colombia. Fuentes, Rodriguez. vegetation types (1.71% n and 0.12% p for the subtropical moist forest, followed by the tropical thorn mount with 1.50% n and 0.10% p and the subtropical wet forest with 1.39% n and 0.08% p), with the most significant differences found for nitrogen, which is the major nutrient with the absolute maximum in the subtropical rain forest set in the middle stretch of the basin. The greatest returns on biomass and nutrients occurred in the subtropical moist forest and tropical thorn mount set in the middle and lower reaches of the basin. The leaves showed high concentration of n and consequently, given the high production values of the different fractions, a high potential return of n (78.6 kg ha-1 yr-1). The foliar p concentration showed a potential return of 4.9 kgha1yr-1 and high values of the indices of efficiency in their use (iev: 2888.5) and foliar resorption (ern: 98.2), was the nutrient most limiting.

  20. Geothermal direct heat use: market potential/penetration analysis for Federal Region IX (Arizona, California, Hawaii, Nevada)

    Energy Technology Data Exchange (ETDEWEB)

    Powell, W.; Tang, K. (eds.)

    1980-05-01

    A preliminary study was made of the potential for geothermal direct heat use in Arizona, California, Hawaii, and Nevada (Federal Region IX). The analysis for each state was performed by a different team, located in that state. For each state, the study team was asked to: (1) define the resource, based on the latest available data; (2) assess the potential market growth for geothermal energy; and (3) estimate the market penetration, projected to 2020. Each of the four states of interest in this study is unique in its own way. Rather than impose the same assumptions as to growth rates, capture rates, etc. on all of the study teams, each team was asked to use the most appropriate set of assumptions for its state. The results, therefore, should reflect the currently accepted views within each state. The four state reports comprise the main portion of this document. A brief regional overview section was prepared by the Jet Propulsion Laboratory, following completion of the state reports.

  1. Repassivation potential for localized corrosion of Alloys 625 and C22 in simulated repository environments

    International Nuclear Information System (INIS)

    Cragnolino, G.A.; Dunn, D.S.; Sridhar, N.

    1998-01-01

    Two corrosion resistant nickel-based alloys, 625 and C22, have been selected by the US Department of Energy as candidate materials for the inner container of high-level radioactive waste packages. The susceptibility of these materials to localized corrosion was evaluated by measuring the repassivation potential as a function of solution chloride concentration and temperature using cyclic potentiodynamic polarization and lead-in-pencil potential step test methods. At intermediate Cl- concentrations, e.g., 0.028--0.4 M, the repassivation potential of alloy 625 is greater than that for alloy 825 and is dependent on the Cl- concentration. However, at higher concentrations, the repassivation potential is slightly less than that for alloy 825 and is weakly dependent on Cl- concentration. The repassivation potentials for alloy C-22 under all test conditions are considerably higher than those of either alloy 625 or 825 and are in the range where oxygen evolution is expected to occur

  2. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  3. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization.

  4. Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada; Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  5. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization

  6. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization

  7. Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization

  8. Atmospheric overview for the Nevada Nuclear Waste Storage Investigations, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Bowen, J.L.; Egami, R.T.

    1983-11-01

    This report discusses atmospheric considerations for a nuclear waste repository at NTS. It presents the climatology of Nevada, and NTS in particular, including paleoclimatology for past climatic changes, present climatology for mean meterological conditions, feature climatological expectations, and occurrence of extreme weather. It discusses air quality aspects including an estimation of present air quality and possible dispersion conditions on NTS. It briefly assesses noise problems. It outlines a plan for an Environmental Impact Statement and covers the federal and state regulations for air quality. It identifies data for climatology and air quality and evaluates their applicability to nuclear waste repository

  9. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  10. Proposed nomination of Yucca Mountain as a potential high-level radioactive waste repository. Correspondence and request for oral presentations for US Department of Energy public hearings

    International Nuclear Information System (INIS)

    1983-01-01

    This volume contains correspondence and requests by the public citizens for oral presentation at the public hearings for the proposed nomination of Yucca Mountain as a potential high-level radioactive waste repository. Written comments are also included on: the proposed nomination; the issues to be addressed in the Environmental Assessment; and the issues to be addressed by any Site Characterization Plan, if developed

  11. High-level nuclear waste transport and storage assessment of potential impacts on tourism in the Las Vegas area. Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    1985-12-01

    The literature review and empirical analyses presented in this report were undertaken, for the most part, between August and October 1983. They are not comprehensive. No primary data were gathered, nor were any formal surveys conducted. Additionally, because construction of a repository at Yucca Mountain, if that site is selected for a repository, is not scheduled to begin until 1993, engineering design and planned physical appearance of the repository are very preliminary. Therefore, specific design features or visual appearance were not addressed in the analyses. Finally, because actual transportation routes have not been designated, impacts on tourism generated specifically by transportation activities are not considered separately. Chapter 2 briefly discusses possible means by which a repository could impact tourism in the Las Vegas area. Chapter 3 presents a review of previous research on alternative methods for predicting the response of people to potential hazards. A review of several published studies where these methods have been applied to facilities and activities associated with radioactive materials is included in Chapter 3. Chapter 4 contains five case studies of tourism impacts associated with past events that were perceived by the public to represent safety hazards. These perceptions of safety hazards were evidenced by news media coverage. These case studies were conducted specifically for this report. Conclusions of this preliminary analysis regarding the potential impact on tourism in the Las Vegas area of a repository at Yucca Mountain are in Chapter 5. Recommendations for further research are contained in Chapter 6

  12. High-level nuclear waste transport and storage assessment of potential impacts on tourism in the Las Vegas area. Nevada Nuclear Waste Storage Investigations Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-12-01

    The literature review and empirical analyses presented in this report were undertaken, for the most part, between August and October 1983. They are not comprehensive. No primary data were gathered, nor were any formal surveys conducted. Additionally, because construction of a repository at Yucca Mountain, if that site is selected for a repository, is not scheduled to begin until 1993, engineering design and planned physical appearance of the repository are very preliminary. Therefore, specific design features or visual appearance were not addressed in the analyses. Finally, because actual transportation routes have not been designated, impacts on tourism generated specifically by transportation activities are not considered separately. Chapter 2 briefly discusses possible means by which a repository could impact tourism in the Las Vegas area. Chapter 3 presents a review of previous research on alternative methods for predicting the response of people to potential hazards. A review of several published studies where these methods have been applied to facilities and activities associated with radioactive materials is included in Chapter 3. Chapter 4 contains five case studies of tourism impacts associated with past events that were perceived by the public to represent safety hazards. These perceptions of safety hazards were evidenced by news media coverage. These case studies were conducted specifically for this report. Conclusions of this preliminary analysis regarding the potential impact on tourism in the Las Vegas area of a repository at Yucca Mountain are in Chapter 5. Recommendations for further research are contained in Chapter 6.

  13. HYDROLOGIC CHARACTERISTICS OF FAULTS AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    R.P. Dickerson

    2000-01-01

    Yucca Mountain comprises a series of north-trending ridges composed of tuffs within the southwest Nevada volcanic field, 120 km northwest of Las Vegas, Nevada. These ridges are formed of east-dipping blocks of interbedded welded and nonwelded tuff that are offset along steep, mostly west-dipping faults that have tens to hundreds of meters of vertical separation. Yucca Mountain is currently under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. To this end, an understanding of the behavior of ground-water flow through the mountain in the unsaturated zone and beneath the mountain in the saturated zone is critical. The percolation of water through the mountain and into the ground-water flow system beneath the potential repository site is predicated on: (1) the amount of water available at the surface as a result of the climatic conditions, (2) the hydrogeologic characteristics of the volcanic strata that compose the mountain. and (3) the hydrogeologic characteristics of the structures, particularly fault zones and fracture networks, that disrupt these strata. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  14. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Lukens, Wayne W. (Lawrence Berkeley National Laboratory)

    2006-03-01

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

  15. Topical session proceedings of the 4. IGSC meeting on: the potential impacts on repository safety from potential partitioning and transmutation programme

    International Nuclear Information System (INIS)

    Wollrath, Juergen; Voinis, Sylvie; Hadermann, Joerg; Van Luik, Abraham E.

    2003-01-01

    /or vitrified high-level waste. Thus, a Topical Session that focused on 'The potential impacts on repository safety from a potential P and T programme' was organised in the framework of the 4. plenary meeting of the IGSC (Integration Group for the Safety Case). This Topical Session sought to create IGSC awareness regarding potential issues involving P and T, other potential fuel cycle changes, and a repository safety case. The Topical Session focused on the recent scientific developments in potential national P and T strategies, and on international research on P and T and the potential impacts of P and T deployment on repository long-term performance and safety. 53 participants represented several national waste management organisations, regulatory authorities, and research institutions from 16 OECD member countries, IAEA and EC. The Topical Session was split in three parts: - Part A was related to national P and T strategies (e.g. which radionuclide are affected by P and T; implication on step-wise decision-making, what are the changes in potential doses...) - Part B consisted of EC and NEA/NDC presentations on the technical bases of P and T; (e.g. what is the resulting inventory of P and T, what is the schedule regarding developing and deploying P and T processes?) and, based on background provided by the previous presentations, - Part C was aimed at discussing the impact of P and T strategies on IGSC-related issues, and agreeing to key messages to be delivered to the RWMC. The current synthesis presented in part A of this document is aimed at briefly reflecting the material presented at the Topical Session and providing a short overview of the main outcomes of its discussions. The written contributions are compiled as-received without further elaboration, either as presentations or papers, in part B of the document. Part C gives the list of participants at this Topical Session

  16. Automated facial recognition of manually generated clay facial approximations: Potential application in unidentified persons data repositories.

    Science.gov (United States)

    Parks, Connie L; Monson, Keith L

    2018-01-01

    This research examined how accurately 2D images (i.e., photographs) of 3D clay facial approximations were matched to corresponding photographs of the approximated individuals using an objective automated facial recognition system. Irrespective of search filter (i.e., blind, sex, or ancestry) or rank class (R 1 , R 10 , R 25 , and R 50 ) employed, few operationally informative results were observed. In only a single instance of 48 potential match opportunities was a clay approximation matched to a corresponding life photograph within the top 50 images (R 50 ) of a candidate list, even with relatively small gallery sizes created from the application of search filters (e.g., sex or ancestry search restrictions). Increasing the candidate lists to include the top 100 images (R 100 ) resulted in only two additional instances of correct match. Although other untested variables (e.g., approximation method, 2D photographic process, and practitioner skill level) may have impacted the observed results, this study suggests that 2D images of manually generated clay approximations are not readily matched to life photos by automated facial recognition systems. Further investigation is necessary in order to identify the underlying cause(s), if any, of the poor recognition results observed in this study (e.g., potential inferior facial feature detection and extraction). Additional inquiry exploring prospective remedial measures (e.g., stronger feature differentiation) is also warranted, particularly given the prominent use of clay approximations in unidentified persons casework. Copyright © 2017. Published by Elsevier B.V.

  17. Preliminary site characterization at Beishan northwest China-A potential site for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Wang Ju; Su Rui; Xue Weiming; Zheng Hualing

    2004-01-01

    Chinese nuclear power plants,radioactive waste and radioactive waste disposal are introduced. Beishan region (Gansu province,Northwest China)for high-level radioactive waste repository and preliminary site characterization are also introduced. (Zhang chao)

  18. Safety assessment for a potential SNF repository and its implication to the proliferation resistance nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hwang, Y.; Jeong, M.S.; Seo, C.S.

    2007-01-01

    KAERI is developing the pyro-process technology to minimize the burden on permanent disposal of spent nuclear fuel. In addition, KAERI has developed the Korean Reference System for potential spent nuclear fuel disposal since 1997. The deep geologic disposal system is composed of a multi-barrier system in a crystalline rock to dispose of 36,000 MT of spent nuclear fuel (SNF) from a CANDU and a PWR. Quite recently, introduction of advanced nuclear fuel cycles such as pyro-processing is a big issue to solve the everlasting disposal problem and to assure the sustainable supply of fuel for reactors. To compare the effect of direct disposal of SNF with that of the high level waste disposal for waste generated from the advanced nuclear fuel cycles, the total system performance assessment for two different schemes is developed; one for direct disposal of SNF and the other for the introduction of the pyro-processing and direct disposal CANDU spent nuclear fuel. The safety indicators to assess the environmental friendliness of the disposal option are annual individual doses, toxicities and risks. Even though many scientists use the toxicity to understand the environmental friendliness of the disposal, scientifically the annual individual doses or risks are meaningful indicators for it. The major mechanisms to determine the doses and risks for direct disposal are as follows: (1) Dissolution mechanisms of uranium dioxides which control the dissolution of most nuclides such as TRU's and most parts of fission products. (2) Instant release fraction of highly soluble nuclides such as I-129, C-135, Tc-99, and others. (3) Retardation and dilution effect of natural and engineered barriers. (4) Dilution effect in the biosphere. The dominant nuclide is I-129 which follows both congruent and instantaneous release modes. Since its long half life associated with the instantaneous release I-129 is dominant well beyond one million. The impact of the TRU's is negligible until the significant

  19. Rock mass modification around a nuclear waste repository in welded tuff

    International Nuclear Information System (INIS)

    Mack, M.G.; Brandshaug, T.; Brady, B.H.

    1989-08-01

    This report presents the results of numerical analyses to estimate the extent of rock mass modification resulting from the presence of a High Level Waste (HLW) repository. Changes in rock mass considered are stresses and joint deformations resulting from disposal room excavation and thermal efffects induced by the heat generated by nuclear waste. rock properties and site conditions are taken from the Site Characterization Plan Conceptual Design Report for the potential repository site at Yucca Mountain, Nevada. Analyses were conducted using boundary element and distinct element methods. Room-scale models and repository-scale models were investigated for up to 500 years after waste emplacement. Results of room-scale analyses based on the thermoelastic boundary element model indicate that a zone of modified rock develops around the disposal rooms for both vertical and horizontal waste emplacement. This zone is estimated to extend a distance of roughly two room diameters from the room surface. Results from the repository-scale model, which are based on the thermoelastic boundary element model and the distinct element model, indicate a zone with modified rock mass properties starting approximately 100 m above and below the repository, with a thickness of approximately 200 m above and 150 m below the repository. Slip-prone subhorizontal features are shown to have a substantial effect on rock mass response. The estimates of rock mass modification reflect uncertainties and simplifying assumptions in the models. 32 refs., 57 figs., 1 tab

  20. Technical evaluation of available state of Nevada survey instruments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    Argonne National Laboratory (ANL) is reviewing the survey research studies completed by Mountain West Research (1987-1989) for the state of Nevada`s Nuclear Waste Project Office. In this research, 14 survey instruments were used to seek data on whether perceptions of risk could be associated with the possible siting of a high-level radioactive waste repository in Nevada and could be a dominant source of potential, significant, adverse economic impacts. This report presents results from phase 1 of the review, in which ANL contracted with the National Opinion Research Center (NORC) at the University of Chicago to evaluate the technical merits of the nine survey instruments that ANL had been able to acquire. The scope of NORC`s work was limited to rating the questions and stating their strengths and weaknesses. NORC concluded that the surveys could provide valuable data about risk perceptions and potential behavioral responses. NORC identified a few minor problems with a number of questions and the calculated response rates but claimed these problems would probably not have any major biasing effect. The NORC evaluation would have been more complete if the terms used in the questionnaires had been defined, all survey instruments had been acquired, and all data had been made available to the public.

  1. Repositories; Repositorios

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Carolina Braccini; Tello, Cledola Cassia Oliveira de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: cbf@cdtn.br; tellocc@cdtn.br

    2007-11-15

    The use of the nuclear energy is increasing in all areas. Then the radioactive waste management is in continuous development to comply the national and international established requirements. The final objective is to assure that it will not have any contamination of the public or the environmental, and that the exposition doses will be lower than the radiological protection limits. The multi barrier concept for the repository is internationally recognized. Among the repository types, the most used are: near surface, geological formations and of deposition in rock cavities. This article explains the concept and the types of repository and gives some examples of them. (author)

  2. Iron and manganese in oxide minerals and in glasses: preliminary consideration of Eh buffering potential at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Caporuscio, F.A.; Vaniman, D.T.

    1985-04-01

    The tuffs of Yucca Mountain at the Nevada Test Site are currently under investigation as a possible deep burial site for high-level radioactive waste disposal. One of the main concerns is the effect of oxidizing groundwater on the transport of radionuclides. Rock components that may affect the oxygen content of groundwater include Fe-Ti oxides, Mn oxides, and glasses that contain ferrous iron. Some phenocryst Fe-Ti oxides at Yucca Mountain are in reduced states, whereas groundmass Fe-Ti oxides have been oxidized to hematite, rutile, and pseudobrookite (Fe 3+ -bearing phases) exclusively. Estimates of Fe 2+ -bearing oxides indicate that less than 0.33 vol% phenocrysts is available to act as solid buffering agents of Eh. Of this percentage, significant amounts of Fe-Ti oxides are isolated from effective interaction with groundwater because they occur in densely welded, devitrified tuffs that have low interstitial permeability. Manganese oxides occur primarily along fractures in the ash-flow tuffs. Because the Mn oxides are concentrated along the same pathways (fractures) where transport has occurred in the past, these small volume percentages could act as buffers. However, the oxidation states of actual Mn-oxide phases are high (Mn 4+ ), and these minerals have virtually no potential for reducing groundwater Eh. Manganese oxides may even act as oxidizing agents. However, regardless of their poor capabilities as reducing agents, the Mn oxides could be important as sorbents of heavy metals at Yucca Mountain. The lack of accessible, pristine Fe-Ti oxides and the generally high oxidation states of Mn oxides seem to rule out these oxides as Eh buffers of the Yucca Mountain groundwater system. Reduction of ferrous iron within glassy tuffs may have some effect on Eh, but further study is needed. At present it is prudent to assume that minerals and glasses have little or no capacity for reducing oxygen-rich groundwater at Yucca Mountain. 25 refs., 3 figs., 12 tabs

  3. Investigation of the mineral potential of the Clipper Gap, Lone Mountain-Weepah, and Pipe Spring plutons, Nevada

    International Nuclear Information System (INIS)

    Tingley, J.V.; Maldonado, F.

    1983-01-01

    The Clipper Gap pluton, composed mostly of quartz monzonite with minor granite, granodiorite, and crosscutting alaskite dikes, intrudes Paleozoic western facies strata. A narrow zone of contact metamorphism is present at the intrusive-sediment contact. No mineral production has been recorded from Clipper Gap, but quartz veins containing gold-silver-copper mineral occurrences have been prospected there from the late 1800's to the present. Areas of the Lone Mountain-Weepah plutons that were studied are located in Esmeralda County about 14 km west of Tonopah, Nevada. At Lone Mountain, a Cretaceous intrusive cuts folded Precambrian and Cambrian sediments. Lead-zinc ores have been mined from small replacement ore bodies in the Alpine district, west of Lone Mountain. Copper and molybdenum occurrences have been found along the east flank of Lone Mountain, and altered areas were noted in intrusive outcrops around the south end of Lone Mountain. Mineral occurrences are widespread and varied with mining activity dating back to the 1860's. The Pipe Spring pluton study area is flanked by two important mining districts, Manhattan to the north and Belmont to the northeast. Mining activity at Belmont dates from 1865. Activity at Manhattan was mainly between 1907 and 1947, but the district is active at the present time (1979). Four smaller mining areas, Monarch, Spanish Springs, Baxter Spring, and Willow Springs, are within the general boundary of the area. The Pipe Spring pluton study area contains numerous prospects along the northern contact zone of the pluton. Tungsten-bearing veins occur within the pluton near Spanish Springs, with potential for gold-tungsten placer in the Ralston Valley. Nickel and associated metals occur at Willow Spring and Monarch Ranch, where prospects may be associated with the margin of the Big Ten Peak Caldera

  4. UPDATING AN EXPERT ELICITATION IN THE LIGHT OF NEW DATA: TEN YEARS OF PROBABILISTIC VOLCANIC HAZARD ANALYSIS FOR THE PROPOSED HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    F.V. Perry; A. Cogbill; R. Kelley

    2005-01-01

    The U.S. Department of Energy (DOE) considers volcanism to be a potentially disruptive class of events that could affect the safety of the proposed high-level waste repository at Yucca Mountain. Volcanic hazard assessment in monogenetic volcanic fields depends on an adequate understanding of the temporal and spatial pattern of past eruptions. At Yucca Mountain, the hazard is due to an 11 Ma-history of basaltic volcanism with the latest eruptions occurring in three Pleistocene episodes to the west and south of Yucca Mountain. An expert elicitation convened in 1995-1996 by the DOE estimated the mean hazard of volcanic disruption of the repository as slightly greater than 10 -8 dike intersections per year with an uncertainty of about two orders of magnitude. Several boreholes in the region have encountered buried basalt in alluvial-filled basins; the youngest of these basalts is dated at 3.8 Ma. The possibility of additional buried basalt centers is indicated by a previous regional aeromagnetic survey conducted by the USGS that detected approximately 20 magnetic anomalies that could represent buried basalt volcanoes. Sensitivity studies indicate that the postulated presence of buried post-Miocene volcanoes to the east of Yucca Mountain could increase the hazard by an order of magnitude, and potentially significantly impact the results of the earlier expert elicitation. Our interpretation of the aeromagnetic data indicates that post-Miocene basalts are not present east of Yucca Mountain, but that magnetic anomalies instead represent faulted and buried Miocene basalt that correlates with nearby surface exposures. This interpretation is being tested by drilling. The possibility of uncharacterized buried volcanoes that could significantly change hazard estimates led DOE to support an update of the expert elicitation in 2004-2006. In support of the expert elicitation data needs, the DOE is sponsoring (1) a new higher-resolution, helicopter-borne aeromagnetic survey

  5. Evidence of prehistoric flooding and the potential for future extreme flooding at Coyote Wash, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Glancy, P.A.

    1994-01-01

    Coyote Wash, an approximately 0.3-square-mile drainage on the eastern flank of Yucca Mountain, is the potential location for an exploratory shaft to evaluate the suitability of Yucca Mountain for construction of an underground repository for the storage of high-level radioactive wastes. An ongoing investigation is addressing the potential for hazards to the site and surrounding areas from flooding and related fluvial-debris movement. Unconsolidated sediments in and adjacent to the channel of North Fork Coyote Wash were examined for evidence of past floods. Trenches excavated across and along the valley bottom exposed multiple flood deposits, including debris-flow deposits containing boulders as large as 2 to 3 feet in diameter. Most of the alluvial deposition probably occurred during the late Quaternary. Deposits at the base of the deepest trench overlie bedrock and underlie stream terraces adjacent to the channel; these sediments are moderately indurated and probably were deposited during the late Pleistocene. Overlying nonindurated deposits clearly are younger and may be of Holocene age. This evidence of intense flooding during the past indicates that severe flooding and debris movement are possible in the future. Empirical estimates of large floods of the past range from 900 to 2,600 cubic feet per second from the 0.094-square-mile drainage area of North Fork Coyote Wash drainage at two proposed shaft sites. Current knowledge indicates that mixtures of water and debris are likely to flow from North Fork Coyote Wash at rates up to 2,500 cubic feet per second. South Fork Coyote Wash, which has similar basin area and hydraulic characteristics, probably will have concurrent floods of similar magnitudes. The peak flow of the two tributaries probably would combine near the potential sites for the exploratory shaft to produce future flow of water and accompanying debris potentially as large as 5,000 cubic feet per second

  6. Probabilistic calculations and sensitivity analysis of parameters for a reference biosphere model assessing the potential exposure of a population to radionuclides from a deep geological repository

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, Christian; Kaiser, Jan Christian [Helmholtz Zentrum Muenchen, Institute of Radiation Protection, Munich (Germany); Proehl, Gerhard [International Atomic Energy Agency, Division of Radiation, Transport and Waste Safety, Wagramerstrasse 5, 1400 Vienna (Austria)

    2014-07-01

    Radioecological models are used to assess the exposure of hypothetical populations to radionuclides. Potential radionuclide sources are deep geological repositories for high level radioactive waste. Assessment time frames are long since releases from those repositories are only expected in the far future, and radionuclide migration to the geosphere biosphere interface will take additional time. Due to the long time frames, climate conditions at the repository site will change, leading to changing exposure pathways and model parameters. To identify climate dependent changes in exposure in the far field of a deep geological repository a range of reference biosphere models representing climate analogues for potential future climate states at a German site were developed. In this approach, model scenarios are developed for different contemporary climate states. It is assumed that the exposure pathways and parameters of the contemporary biosphere in the far field of the repository will change to be similar to those at the analogue sites. Since current climate models cannot predict climate developments over the assessment time frame of 1 million years, analogues for a range of realistically possible future climate conditions were selected. These climate states range from steppe to permafrost climate. As model endpoint Biosphere Dose conversion factors (BDCF) are calculated. The radionuclide specific BDCF describe the exposure of a population to radionuclides entering the biosphere in near surface ground water. The BDCF are subject to uncertainties in the exposure pathways and model parameters. In the presented work, probabilistic and sensitivity analysis was used to assess the influence of model parameter uncertainties on the BDCF and the relevance of individual parameters for the model result. This was done for the long half-live radionuclides Cs-135, I-129 and U-238. In addition to this, BDCF distributions for nine climate reference regions and several scenarios were

  7. Repository operational criteria analysis

    International Nuclear Information System (INIS)

    Hageman, J.P.; Chowdhury, A.H.

    1992-08-01

    The objective of the ''Repository Operational Criteria (ROC) Feasibility Studies'' (or ROC task) was to conduct comprehensive and integrated analyses of repository design, construction, and operations criteria in 10 CFR Part 60 regulations, considering the interfaces and impacts of any potential changes to those regulations. The study addresses regulatory criteria related to the preclosure aspects of the geologic repository. The study task developed regulatory concepts or potential repository operational criteria (PROC) based on analysis of a repository's safety functions and other regulations for similar facilities. These regulatory concepts or PROC were used as a basis to assess the sufficiency and adequacy of the current criteria in 10 CFR Part 60. Where the regulatory concepts were same as current operational criteria, these criteria were referenced. The operations criteria referenced or the PROC developed are given in this report. Detailed analyses used to develop the regulatory concepts and any necessary PROC for those regulations that may require a minor change are also presented. The results of the ROC task showed a need for further analysis and possible major rule change related to the design bases of a geologic repository operations area, siting, and radiological emergency planning

  8. Mineral potential modelling of gold and silver mineralization in the Nevada Great Basin - a GIS-based analysis using weights of evidence

    Science.gov (United States)

    Mihalasky, Mark J.

    2001-01-01

    The distribution of 2,690 gold-silver-bearing occurrences in the Nevada Great Basin was examined in terms of spatial association with various geological phenomena. Analysis of these relationships, using GIS and weights of evidence modelling techniques, has predicted areas of high mineral potential where little or no mining activity exists. Mineral potential maps for sedimentary (?disseminated?) and volcanic (?epithermal?) rock-hosted gold-silver mineralization revealed two distinct patterns that highlight two sets of crustal-scale geologic features that likely control the regional distribution of these deposit types. The weights of evidence method is a probability-based technique for mapping mineral potential using the spatial distribution of known mineral occurrences. Mineral potential maps predicting the distribution of gold-silver-bearing occurrences were generated from structural, geochemical, geomagnetic, gravimetric, lithologic, and lithotectonic-related deposit-indicator factors. The maps successfully predicted nearly 70% of the total number of known occurrences, including ~83% of sedimentary and ~60% of volcanic rock-hosted types. Sedimentary and volcanic rockhosted mineral potential maps showed high spatial correlation (an area cross-tabulation agreement of 85% and 73%, respectively) with expert-delineated mineral permissive tracts. In blind tests, the sedimentary and volcanic rock-hosted mineral potential maps predicted 10 out of 12 and 5 out of 5 occurrences, respectively. The key mineral predictor factors, in order of importance, were determined to be: geology (including lithology, structure, and lithotectonic terrane), geochemistry (indication of alteration), and geophysics. Areas of elevated sedimentary rock-hosted mineral potential are generally confined to central, north-central, and north-eastern Nevada. These areas form a conspicuous ?V?-shape pattern that is coincident with the Battle Mountain-Eureka (Cortez) and Carlin mineral trends and a

  9. Socioeconomic profile of Nye County, Nevada: Community services inventory

    International Nuclear Information System (INIS)

    1986-09-01

    The Nevada Nuclear Waste Storage Investigations Project is preparing socioeconomic profiles of Nye County, Nevada, and communities in Nye County that could be affected by siting, construction, operation, and decommissioning of a high-level nuclear waste repository at Yucca Mountain, located in Nye County. These profiles serve as a data base for evaluating local community service impacts; store existing socioeconomic data in a uniform, readily accessible format; identify the need for additional data; and assist in developing a plan for monitoring and mitigating any significant adverse impacts that may be associated with site characterization and potential repository development. This element of the socioeconomic profiles contains an inventory of community services provided by local, county, and state agencies and volunteer organizations to residents of Amargosa Valley, Beatty, and Pahrump. Services inventoried for each community include housing, growth management, general government, education, police protection, transportation networks, public clinics, private health personnel, parks and recreation, social services, libraries, ambulances, electric power, heating fuel, water, sewers and wastewater treatment, solid waste, and fire protection. The report includes a summary overview of service providers in Nye County, discussions of services provided to residents of the three communities, and summary tables. Data presented in this profile were collected through early 1985. Data collection efforts are ongoing and this profile will be updated periodically

  10. Socioeconomic profile of Clark County, Nevada: Community services inventory

    International Nuclear Information System (INIS)

    1986-09-01

    The Nevada Nuclear Waste Storage Investigations Project is preparing socioeconomic profiles of Clark County, Nevada, and communities in Clark County that could be affected by siting, construction, operation, and decommissioning of a high-level nuclear waste repository at Yucca Mountain, located in Nye County. These profiles serve as a data base for evaluating local community service impacts; store existing socioeconomic data in a uniform, readily accessible format; identify the need for additional data; and assist in developing a plan for monitoring and mitigating any significant adverse impacts that may be associated with site characterization and potential repository development. This element of the socioeconomic profiles contains an inventory of community services provided by local, county, and state agencies and volunteer organizations to residents of Las Vegas, North Las Vegas, Henderson, Boulder City, Indian Springs, and unincorporated areas of the county. Services inventoried include housing, growth management, general government, education, police protection, transportation networks, public clinics, private health personnel, parks and recreation, social services, libraries, ambulances, electric power, natural gas, water, sewers and wastewater treatment, solid waste, and fire protection. The report includes a summary overview of service providers in Clark County, discussions of the services provided to residents of communities in Clark County that may be affected by Project activities, and a description of service providers whose service areas are not limited to the incorporated areas of Clark County. Data presented in this profile were collected through March of 1985. Data collection efforts are ongoing and this profile will be updated periodically

  11. Analysis of gaseous-phase stable and radioactive isotopes in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Haas, H.H.; Weeks, E.P.; Thorstenson, D.C.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy provides that agency with data for evaluating volcanic tuff beneath Yucca Mountain, Nevada, to determine its suitability for a potential repository of high-level radioactive waste. Thickness of the unsaturated zone, which consists of fractured, welded and nonwelded tuff, is about 1640 to 2460 feet (500 to 750 meters). One question to be resolved is an estimate of minimum ground-water traveltime from the disturbed zone of the potentail repository to the accessible environment. Another issue is the potential for diffusive or convective gaseous transport of radionuclides from an underground facility in the unsaturated zone to the accessible environment. Gas samples were collected at intervals to a depth of 1200 feet from the unsaturated zone at Yucca Mountain, Nevada. Samples were analyzed for major atmospheric gases; carbon dioxide in the samples was analyzed for carbon-14 activity and for delta 13 C; water vapor in the samples was analyzed for deuterium and oxygen-18. These data could provide insight into the nature of unsaturated zone transport processes. 15 refs., 4 figs., 4 tabs

  12. Banking Umbilical Cord Blood (UCB) Stem Cells: Awareness, Attitude and Expectations of Potential Donors from One of the Largest Potential Repository (India).

    Science.gov (United States)

    Pandey, Deeksha; Kaur, Simar; Kamath, Asha

    2016-01-01

    The concept of Umbilical Cord blood (UCB) stem cells is emerging as a non-invasive, efficacious alternative source of hematopoietic stem cells to treat a variety of blood and bone marrow diseases, blood cancers, metabolic disorders and immune deficiencies. Aim of the present study was to determine the level of awareness about banking UCB among pregnant women in India. We also assessed patient perception for banking of UCB and explored the patient expectations of banking UCB in future. This is the first study to assess current attitudes, in a sample population of potential donors from one of the largest potential UCB repository (India). Obtaining this information may help optimize recruitment efforts and improve patient education. Present explorative questionnaire based survey included 254 pregnant women in the final analysis. We established only 26.5% pregnant women in our study population knew what exactly is meant by UCB. A large proportion (55.1%) was undecided on whether they want to bank UCB or not. Women were more aware of the more advertised private cord blood banking compared to public banking. More than half of the pregnant women expected their obstetrician to inform them regarding UCB. One-third of the women in our population had undue expectations from banking of the UCB. Obstetricians should play a more active role in explaining the patients regarding pros and cons of UCB banking.

  13. Banking Umbilical Cord Blood (UCB Stem Cells: Awareness, Attitude and Expectations of Potential Donors from One of the Largest Potential Repository (India.

    Directory of Open Access Journals (Sweden)

    Deeksha Pandey

    Full Text Available The concept of Umbilical Cord blood (UCB stem cells is emerging as a non-invasive, efficacious alternative source of hematopoietic stem cells to treat a variety of blood and bone marrow diseases, blood cancers, metabolic disorders and immune deficiencies. Aim of the present study was to determine the level of awareness about banking UCB among pregnant women in India. We also assessed patient perception for banking of UCB and explored the patient expectations of banking UCB in future. This is the first study to assess current attitudes, in a sample population of potential donors from one of the largest potential UCB repository (India. Obtaining this information may help optimize recruitment efforts and improve patient education.Present explorative questionnaire based survey included 254 pregnant women in the final analysis.We established only 26.5% pregnant women in our study population knew what exactly is meant by UCB. A large proportion (55.1% was undecided on whether they want to bank UCB or not. Women were more aware of the more advertised private cord blood banking compared to public banking. More than half of the pregnant women expected their obstetrician to inform them regarding UCB. One-third of the women in our population had undue expectations from banking of the UCB.Obstetricians should play a more active role in explaining the patients regarding pros and cons of UCB banking.

  14. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; San Juan, C.A.

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here

  15. Potential long-term chemical effects of diesel fuel emissions on a mining environment: A preliminary assessment based on data from a deep subsurface tunnel at Rainer Mesa, Nevada test site

    International Nuclear Information System (INIS)

    Meike, A.; Bourcier, W.L.; Alai, M.

    1995-09-01

    The general purpose of the Yucca Mountain Site Characterization Project (YMSCP) Introduced Materials Task is to understand and predict potential long-term modifications of natural water chemistry related to the construction and operation of a radioactive waste repository that may significantly affect performance of the waste packages. The present study focuses on diesel exhaust. Although chemical information on diesel exhaust exists in the literature, it is either not explicit or incomplete, and none of it establishes mechanisms that might be used to predict long-term behavior. In addition, the data regarding microbially mediated chemical reactions are not well correlated with the abiotic chemical data. To obtain some of the required long-term information, we chose a historical analog: the U12n tunnel at Rainier Mesa, Nevada Test Site. This choice was based on the tunnel's extended (30-year) history of diesel usage, its geological similarity to Yucca Mountain, and its availability. The sample site within the tunnel was chosen based on visual inspection and on information gathered from miners who were present during tunnel operations. The thick layer of dark deposit at that site was assumed to consist primarily of rock powder and diesel exhaust. Surface samples and core samples were collected with an intent to analyze the deposit and to measure potential migration of chemical components into the rock. X-ray diffraction (XRD), x-ray fluorescence (XRF), scanning electron microscopy (SEM) with energy dispersive spectra (EDS) analysis, secondary-ion mass spectrometry (SIMS), and Fourier transform infrared (FTIR) analysis were used to measure both spatial distribution and concentration for the wide variety of chemical components that were expected based on our literature survey

  16. Potential long-term chemical effects of diesel fuel emissions on a mining environment: A preliminary assessment based on data from a deep subsurface tunnel at Rainer Mesa, Nevada test site

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A.; Bourcier, W.L.; Alai, M. [and others

    1995-09-01

    The general purpose of the Yucca Mountain Site Characterization Project (YMSCP) Introduced Materials Task is to understand and predict potential long-term modifications of natural water chemistry related to the construction and operation of a radioactive waste repository that may significantly affect performance of the waste packages. The present study focuses on diesel exhaust. Although chemical information on diesel exhaust exists in the literature, it is either not explicit or incomplete, and none of it establishes mechanisms that might be used to predict long-term behavior. In addition, the data regarding microbially mediated chemical reactions are not well correlated with the abiotic chemical data. To obtain some of the required long-term information, we chose a historical analog: the U12n tunnel at Rainier Mesa, Nevada Test Site. This choice was based on the tunnel`s extended (30-year) history of diesel usage, its geological similarity to Yucca Mountain, and its availability. The sample site within the tunnel was chosen based on visual inspection and on information gathered from miners who were present during tunnel operations. The thick layer of dark deposit at that site was assumed to consist primarily of rock powder and diesel exhaust. Surface samples and core samples were collected with an intent to analyze the deposit and to measure potential migration of chemical components into the rock. X-ray diffraction (XRD), x-ray fluorescence (XRF), scanning electron microscopy (SEM) with energy dispersive spectra (EDS) analysis, secondary-ion mass spectrometry (SIMS), and Fourier transform infrared (FTIR) analysis were used to measure both spatial distribution and concentration for the wide variety of chemical components that were expected based on our literature survey.

  17. Hydrogeology and potential effects of changes in water use, Carson Desert agricultural area, Churchill County, Nevada

    Science.gov (United States)

    Maurer, Douglas K.; Johnson, Ann K.; Welch, Alan H.

    1996-01-01

    Operating Criteria and Procedures for Newlands Project irrigation and Public Law 101-618 could result in reductions in surface water used for agriculture in the Carson Desert, potentially affecting ground-water supplies from shallow, intermediate, and basalt aquifers. A near-surface zone could exist at the top of the shallow aquifer near the center and eastern parts of the basin where underlying clay beds inhibit vertical flow and could limit the effects of changes in water use. In the basalt aquifer, water levels have declined about 10 feet from pre-pumping levels, and chloride and arsenic concentrations have increased. Conceptual models of the basin suggest that changes in water use in the western part of the basin would probably affect recharge to the shallow, intermediate, and basalt aquifers. Lining canals and removing land from production could cause water-level declines greater than 10 feet in the shallow aquifer up to 2 miles from lined canals. Removing land from production could cause water levels to decline from 4 to 17 feet, depending on the distribution of specific yield in the basin and the amount of water presently applied to irrigated fields. Where wells pump from a near-surface zone of the shallow aquifer, water level declines might not greatly affect pumping wells where the thickness of the zone is greatest, but could cause wells to go dry where the zone is thin.

  18. Initial results from dissolution rate testing of N-Reactor spent fuel over a range of potential geologic repository aqueous conditions

    International Nuclear Information System (INIS)

    Gray, W.J.; Einziger, R.E.

    1998-04-01

    Hanford N-Reactor spent nuclear fuel (HSNF) may ultimately be placed in a geologic repository for permanent disposal. To determine whether the engineered barrier system that will be designed for emplacement of light-water-reactor (LWR) spent fuel will also suffice for HSNF, aqueous dissolution rate measurements were conducted on the HSNF. The purpose of these tests was to determine whether HSNF dissolves faster or slower than LWR spent fuel under some limited repository-relevant water chemistry conditions. The tests were conducted using a flowthrough method that allows the dissolution rate of the uranium matrix to be measured without interference by secondary precipitation reactions that would confuse interpretation of the results. Similar tests had been conducted earlier with LWR spent fuel, thereby allowing direct comparisons. Two distinct corrosion modes were observed during the course of these 12 tests. The first, Stage 1, involved no visible corrosion of the test specimen and produced no undissolved corrosion products. The second, Stage 2, resulted in both visible corrosion of the test specimen and left behind undissolved corrosion products. During Stage 1, the rate of dissolution could be readily determined because the dissolved uranium and associated fission products remained in solution where they could be quantitatively analyzed. The measured rates were much faster than has been observed for LWR spent fuel under all conditions tested to date when normalized to the exposed test specimen surface areas. Application of these results to repository conditions, however, requires some comparison of the physical conditions of the different fuels. The surface area of LWR fuel that could potentially be exposed to repository groundwater is estimated to be approximately 100 times greater than HSNF. Therefore, when compared on the basis of mass, which is more relevant to repository conditions, the HSNF and LWR spent fuel dissolve at similar rates

  19. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Valentine, G.

    2001-01-01

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain shapes

  20. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine

    2001-12-20

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain

  1. Nuclear waste. DOE has terminated research evaluating crystalline rock for a repository

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Weigel, Dwayne E.; Price, Vincent P.

    1989-05-01

    We found that DOE terminated funding of research projects specifically designed to evaluate the suitability of crystalline rock for a repository. DOE continued other research efforts involving crystalline rock because they will provide information that it considers useful for evaluating the suitability of Yucca Mountain, Nevada, for a potential repository. Such research activities are not prohibited by the amendments. In January 1988, DOE began evaluating both its domestic and international research programs to ensure their compliance with the 1987 amendments. Several DOE offices and contractors were involved in the evaluation. DOE officials believe that the evaluation effectively brought the Office of Civilian Radioactive Waste Management activities into compliance with the amendments while maintaining useful international relations of continuing benefit to the nuclear waste program in general and to DOE's investigation of the Yucca Mountain site in particular. (The 1987 amendments designated Yucca Mountain as the only site that DOE is to investigate for a potential repository.) The approach and results of DOE's evaluation are discussed. Our review of DOE documents indicates that, by June 22, 1988, DOE completed its evaluation of ongoing crystalline rock research projects to ensure compliance with the 1987 amendments, terminated those research activities it identified as being specifically designed to evaluate the suitability of crystalline rock for a repository, continued some research activities involving crystalline rock because these activities would benefit the investigation and development of the Yucca Mountain repository site, and redirected some research activities so that they would contribute to investigating and developing the Yucca Mountain site

  2. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs

  3. Repository design

    Energy Technology Data Exchange (ETDEWEB)

    John, C M

    1982-01-01

    Various technical issues of radioactive waste design are addressed in this paper. Two approaches to repository design considered herein are: (1) design to minimize the disturbance of the hot rock; and (2) designs that intentionally modify the hot rock to insure better containment of the wastes. The latter designs range from construction of a highly impermeable barrier around a spherical cavern to creating a matrix of tunnels and boreholes to form a cage within which the hydraulic pressure is nearly constant. Examples of these design alternatives are described in some detail. It is concluded that proposed designs for repositories illustrate that performance criteria considered acceptable for such facilities can be met by appropriate site selection and repository engineering. With these technically feasible design concepts, it is also felt that socioeconomic and institutional issues can be better resolved. (BLM)

  4. Sellafield repository design concept

    International Nuclear Information System (INIS)

    1998-01-01

    Between 1989 and 1997, UK Nirex Ltd carried out a programme of investigations to evaluate the potential of a site adjacent to the BNFL Sellafield works to host a deep repository for the United Kingdom's intermediate-level and certain low-level radioactive waste. The programme of investigations was wound down following the decision in March 1997 to uphold the rejection of the Company's planning application for the Rock Characterisation Facility (RCF), an underground laboratory which would have allowed further investigations to confirm whether or not the site would be suitable. Since that time, the Company's efforts in relation to the Sellafield site have been directed towards documenting and publishing the work carried out. The design concept for a repository at Sellafield was developed in parallel with the site investigations through an iterative process as knowledge of the site and understanding of the repository system performance increased. This report documents the Sellafield repository design concept as it had been developed, from initial design considerations in 1991 up to the point when the RCF planning application was rejected. It shows, from the context of a project at that particular site, how much information and experience has been gained that will be applicable to the development of a deep waste repository at other potential sites

  5. Dispute resolution in the nuclear waste repository program

    International Nuclear Information System (INIS)

    Creighton, J.L.; Shorett, A.J.

    1988-01-01

    During 1987 a seven-person team addressed just that question for the State of Washington, as part of the studies of the socioeconomic impacts of a possible nuclear waste repository site at the Hanford site. The authors were, respectively, the Mitigation/Compensation team leader and the conflict resolution specialist within the team. While the studies were terminated when Congress selected the Nevada site, the conclusions may still have value for the State of Nevada, or for other controversial federal projects

  6. Repository exploration

    International Nuclear Information System (INIS)

    Pentz, D.L.

    1984-01-01

    This paper discusses exploration objectives and requirements for a nuclear repository in the U.S.A. The importance of designing the exploration program to meet the system performance objectives is emphasized and some examples of the extent of exploration required before the License Application for Construction Authorization is granted are also discussed

  7. Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D.; Langford, D.W.; Ouderkirk, S.J.

    1993-01-01

    The placement of high-level radioactive wastes in minded repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models

  8. Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D. [Pacific Northwest Lab., Richland, WA (United States); Langford, D.W.; Ouderkirk, S.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-01-01

    The placement of high-level radioactive wastes in mined repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models.

  9. Evaluation of possible host rocks for China's high level radioactive waste repository and the progress in site characterization at the Beishan potential site in NW China's Gansu province

    International Nuclear Information System (INIS)

    Wang Ju; Jin Yuanxin; Chen Zhangru; Chen Weiming; Wang Wenguang

    2000-01-01

    Evaluation of possible host rocks for China's high level radioactive waste repository is summarized in this paper. The distribution and characteristics of granite, tuff, clay stone, salt and loess in China are described, while maps showing the distribution of host rocks are presented. Because of the wide distribution, large scale, good heat conductivity and suitable mechanical properties, granite is considered as the most potential host rock. Some granite bodies distributed in NW China, SW China, South China and Inner Mongolia have been selected as potential areas. Detailed site characterization at Beishan area, Gansu Province NW China is in progress

  10. Potential impact of Andrassy bentonite microbial diversity in the long-term performance of a deep nuclear waste repository

    Science.gov (United States)

    Tadza, M. Y. Mohd; Tadza, M. A. Mohd; Bag, R.; Harith, N. S. H.

    2018-01-01

    Copper and steel canning and bentonite buffer are normally forseen as the primary containment component of a deep nuclear waste repository. Distribution of microbes in subsurface environments have been found to be extensive and directly or indirectly may exert influence on waste canister corrosion and the mobility of radionuclides. The understanding of clays and microbial interaction with radionuclides will be useful in predicting the microbial impacts on the performance of the waste repositories. The present work characterizes the culture-dependent microbial diversity of Andrassy bentonite recovered from Tawau clay deposits. The evaluation of microbial populations shows the presence of a number of cultivable microbes (e.g. Staphylococcus, Micrococcus, Achromobacter, Bacillus, Paecilomyces, Trichoderma, and Fusarium). Additionally, a pigmented yeast strain Rhodotorula mucilaginosa was also recovered from the formation. Both Bacillus and Rhodotorula mucilaginosa have high tolerance towards U radiation and toxicity. The presence of Rhodotorula mucilaginosa in Andrassy bentonite might be able to change the speciation of radionuclides (e.g. uranium) in a future deep repository. However, concern over the presence of Fe (III) reduction microbes such as Bacillus also found in the formation could lead to corrosion of copper steel canister and affect the overall performance of the containment system.

  11. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Volume 1, Appendices A-F

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  12. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Volume 1, Chapters 1-9

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  13. Simulating the Thermal History of the Unsaturated Zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    B.D. Marshal; J.F. Whelan

    2001-01-01

    Heat transfer within Earth's upper crust is primarily by conduction, and conductive thermal models adequately explain the cooling history of deep, batholith-scale intrusions and surrounding wall rocks, as confirmed by numerous thermochronometric studies. However, caldera magmatic systems require consideration of the small and localized component of hydrothermal convection and numerical models to simulate additional boundary conditions, irregular magma chamber shapes, and complex intrusive histories. At Yucca Mountain, Nevada, the site of a potential high-level nuclear waste repository, simulating the detailed thermal history at any location in the unsaturated zone requires knowledge of the shape of the magma chamber and its proximity to Yucca Mountain (the southern margin of the Timber Mountain caldera complex is approximately 8 km north of the potential repository site), the temporal and spatial extent of hydrothermal convection, the erosional history of the area, and past levels of the water table

  14. Geochemistry of outcrop samples from the Raven Canyon and Paintbrush Canyon reference sections, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, Z.E.; Spengler, R.W.; Singer, F.R.; Dickerson, R.P.

    1996-01-01

    The Yucca Mountain area in southern Nevada is being evaluated for its suitability as a potential site for the construction of an underground, high-level nuclear waste repository. With support from the Department of Energy, the US Geological Survey is conducting detailed petrographic, geochemical, and isotopic analyses of samples collected from drill cores and from outcrops. The geochemical and isotopic compositions of the volcanic rocks of Yucca Mountain derive from those of their parental magmas, from changes resulting from the eruptive processes and from post-depositional alteration. In this study, geochemical and isotopic data were acquired on samples from reference sections selected in areas where the effects of the post-depositional alteration has been minimal. These data will be used as baseline information for delineating and correlating zonal features in the volcanic rock alteration that may occur in the thermal aureole of the potential repository after it has been loaded with nuclear waste

  15. Borehole and geohydrologic data for test hole USW UZ-6, Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S. Jr.; Loskot, C.L.; Cope, C.M.

    1993-01-01

    Test hole USW UZ-6, located 1.8 kilometers west of the Nevada Test Site on a major north-trending ridge at Yucca Mountain, was dry drilled in Tertiary tuff to a depth of 575 meters. The area near this site is being considered by the US Department of Energy for potential construction of a high-level, radioactive-waste repository. Test hole USW UZ-6 is one of seven test holes completed in the unsaturated zone as part of the US Geological Survey's Yucca Mountain Project to characterize the potential repository site. Data pertaining to borehole drilling and construction, lithology of geologic units penetrated, and laboratory analyses for hydrologic characteristics of samples of drill-bit cuttings are included in this report

  16. Applications of in situ cosmogenic nuclides in the geologic site characterization of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Gosse, J.C.; Harrington, C.D.

    1995-01-01

    The gradual buildup of rare isotopes from interactions between cosmic rays and atoms in an exposed rock provides a new method of directly determining the exposure age of rock surfaces. The cosmogenic nuclide method can also provide constraints on erosion rates and the length of time surface exposure was interrupted by burial. Numerous successful applications of the technique have been imperative to the complete surface geologic characterization of Yucca Mountain, Nevada, a potential high level nuclear waste repository. In this short paper, we summarize the cosmogenic nuclide method and describe with examples some the utility of the technique in geologic site characterization. We report preliminary results from our ongoing work at Yucca Mountain

  17. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-01-01

    Roč. 15, č. 1 (2017), s. 486-493 E-ISSN 2391-5471 R&D Projects: GA MŠk LM2010008; GA MŠk(CZ) LM2015079 Institutional support: RVO:68145535 ; RVO:67985530 Keywords : deep geological repository * earthquake * seismicity * neo-deterministic analysis * probabilistic seismic hazard assessment Subject RIV: DC - Siesmology, Volcanology, Earth Structure; DC - Siesmology, Volcanology, Earth Structure (GFU-E) OBOR OECD: Environmental and geological engineering, geotechnics; Environmental and geological engineering, geotechnics (GFU-E) Impact factor: 0.745, year: 2016 https://www.degruyter.com/downloadpdf/j/phys.2017.15.issue-1/phys-2017-0055/phys-2017-0055.pdf

  18. Evaluating potential overlap between pack stock and Sierra Nevada bighorn sheep (Ovis canadensis sierrae) in Sequoia and Kings Canyon National Parks, California

    Science.gov (United States)

    Klinger, Robert C.; Few, Alexandra P.; Knox, Kathleen A.; Hatfield, Brian E.; Clark, Jonathan; German, David W.; Stephenson, Thomas R.

    2015-01-01

    Pack stock (horses, mules, burros, llamas, and goats) are frequently assumed to have negative effects on public lands, but there is a general lack of data to be able to quantify the degree to which this is actually the case. Sequoia and Kings Canyon National Parks have received complaints that pack stock may affect Sierra Nevada bighorn sheep (Ovis canadensis sierrae; SNBS), a federally endangered subspecies that occurs in largely disjunct herds in the Sierra Nevada Range of California. The potential effects are thought to be displacement of SNBS from meadows on their summer range (altered habitat use) or, more indirectly, through changes in SNBS habitat or forage quality. Our goals were to conduct an association analysis to quantify the degree of potential spatial overlap in meadow use between SNBS and pack stock and to compare differences in vegetation community composition, structure, and diversity among meadows with different levels of use by bighorn sheep and pack stock. For the association analysis, we used two approaches: (1) we quantified the proportion of meadows that were within the herd home ranges of bighorn sheep and were potentially open to pack stock, and, (2) we used Monte Carlo simulations and use-availability analyses to compare the proportion of meadows used by bighorn sheep relative to the proportional occurrence or area of meadows available to bighorn sheep that were used by pack stock. To evaluate potential effects of pack stock on meadow plant communities and SNBS forage, we sampled vegetation in 2011 and 2012 at 100 plots to generate data that allowed us to compare:

  19. Fluid geochemistry associated associated to rocks: preliminary tests om minerals of granite rocks potentially hostess of radioactive waste repository

    International Nuclear Information System (INIS)

    Amorim, Lucas E.D.; Rios, Francisco J.; Oliveira, Lucilia A.R. de; Alves, James V.; Fuzikawa, Kazuo; Garcia, Luiz; Ribeiro, Yuri; Matos, Evandro C. de

    2009-01-01

    Fluid inclusions (FI) are micro cavities present on crystals and imprison the mineralizer fluids, and are formed during or posterior to the mineral formation. Those kind of studies are very important for orientation of the engineer barrier projects for this purpose, in order to avoid that the solutions present in the mineral FI can affect the repository walls. This work proposes the development of FI micro compositional studies in the the hostess minerals viewing the contribution for a better understanding of the solution composition present in the metamorphosis granitoid rocks. So, micro thermometric, microchemical and characterization of the material confined in the FI, and the hostess minerals. Great part of the found FI are present in the quartz and plagioclase crystals. The obtained data on the mineral compositions and their inclusions will allow to formulate hypothesis on the process which could occurs at the repository walls, decurrens from of the corrosive character (or not) of the fluids present in the FI, and propose measurements to avoid them

  20. Scenarios constructed for the effects of tectonic processes on the potential nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Barr, G.E.; Borns, D.J.; Fridrich, C.

    1996-10-01

    A comprehensive collection of scenarios is presented that connect initiating tectonic events with radionuclide releases by logical and physically possible combinations or sequences of features, events and processes. The initiating tectonic events include both discrete faulting and distributed rock deformation developed through the repository and adjacent to it, as well as earthquake-induced ground motion and changes in tectonic stress at the site. The effects of these tectonic events include impacts on the engineered-barrier system, such as container rupture and failure of repository tunnels. These effects also include a wide range of hydrologic effects such as changes in pathways and flow rates in the unsaturated and saturated zones, changes in the water-table configuration, and in the development of perched-water systems. These scenarios are intended go guide performance-assessment analyses and to assist principal investigators in how essential field, laboratory, and calculational studies are used. This suite of scenarios will help ensure that all important aspects of the system disturbance related to a tectonic scenario are captured in numerical analyses. It also provides a record of all options considered by project analysts to provide documentation required for licensing agreement. The final portion of this report discusses issues remaining to be addressed with respect to tectonic activity. 105 refs

  1. Rock mechanics evaluation of potential repository sites in the Paradox, Permian, and Gulf Coast Basins: Volume 1

    International Nuclear Information System (INIS)

    1987-09-01

    Thermal and thermomechanical analyses of a conceptual radioactive waste repository containing commercial and defense high-level wastes and spent fuel have been performing using finite element models. The thermal and thermomechanical responses of the waste package, disposal room, and repository regions were evaluated. four bedded salt formations, in Davis and Lavender Canyons in the Paradox Basin of southeastern Utah and in Deaf Smith and Swisher counties in the Permian Basin of northwestern Texas, and three salt domes, Vacherie Dome in northwestern Louisiana and Richton and Cypress Creek Domes in southeastern Mississippi, located in the Gulf Coast Basin, were examined. In the Paradox Basin, the pressure exerted on the waste package overpack was much greater than the initial in situ stress. The disposal room closure was less than 10 percent after 5 years. Surface uplift was nominal, and no significant thermomechanical perturbation of the aquitards was observed. In the Permian Basin, the pressure exerted on the waste package overpack was greater than the initial in situ stress. The disposal room closures were greater than 10 percent in less than 5 years. Surface uplift was nominal, and no significant thermomechanical perturbation of the aquitards was observed. In the Gulf Coast Basin, the pressure exerted on the waste package overpack was greater than the initial in situ stress. The disposal room closures were greater than 10 percent in less than 5 years. No significant thermomechanical perturbation of the overlying geology was observed. 40 refs., 153 figs., 32 tabs

  2. Reference Design Description for a Geologic Repository

    International Nuclear Information System (INIS)

    2000-01-01

    One of the current major national environmental problems is the safe disposal of large quantities of spent nuclear fuel and high-level radioactive waste materials, which are rapidly accumulating throughout the country. These radioactive byproducts are generated as the result of national defense activities and from the generation of electricity by commercial nuclear power plants. At present, spent nuclear fuel is accumulating at over 70 power plant sites distributed throughout 33 states. The safe disposal of these high-level radioactive materials at a central disposal facility is a high national priority. This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada for the disposal of spent nuclear fuel and high-level radioactive waste materials. This document describes a possible design for the three fundamental parts of a repository: a surface facility, subsurface repository, and waste packaging. It also presents the current conceptual design of the key engineering systems for the final four phases of repository processes: operations, monitoring, closure, and postclosure. In accordance with current law, this design does not include an interim storage option. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. It describes the natural barrier system which, together with the engineered systems, achieves the repository objectives. This design will protect the public and the environment by allowing the safe disposal of radioactive waste received from government-owned custodial spent fuel sites, high-level radioactive waste sites, and commercial power reactor sites. All design elements meet or exceed applicable regulations governing the disposal of high-level radioactive waste. The design will provide safe disposal of waste materials for at least a 10,000 year period. During this time interval, natural radioactive decay

  3. The ground water chemical characteristics of Beishan area-the China's potential high level radioactive waste repository

    International Nuclear Information System (INIS)

    Yang Tianxiao; Guo Yonghai

    2004-01-01

    The ground water chemical characteristics have impact on nuclide migration in high level waste repository, so the study on the ground water chemical characteristics is an important aspect in site screening and characterization. The geochemical modeling of the reaction trend between ground water and solid phase, the water-rock interaction modeling of the formation and evolution of ground water chemistry, the modeling of the reaction between ground water and nuclear waste are all carried out in this paper to study the ground water chemical characteristics in Beishan area. The study illustrates that the ground water chemical characteristics in Beishan area is favorable to the disposal of high level nuclear waste and to prevent the nuclides migration. (author)

  4. Gravity and magnetic data of Midway Valley, southwest Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.; Sikora, R.F.

    1993-01-01

    Detailed gravity and ground magnetic data collected along five traverses across Midway Valley on the eastern flank of Yucca Mountain in southwest Nevada are described. These data were collected as part of an effort to evaluate faulting in the vicinity of proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. Geophysical data show that Midway Valley is bounded by large gravity and magnetic anomalies associated with the Bow Ridge and Paintbrush Canyon faults, on the west side of Exile Hill and on the west flank of Fran Ridge, respectively. In addition, Midway Valley itself is characterized by a number of small-amplitude anomalies that probably reflect small-scale faulting beneath Midway Valley

  5. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California

    International Nuclear Information System (INIS)

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; Brian D. Marshall.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  6. Monitoring the vadose zone in fractured tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Weeks, E.P.; Thamir, F.; Yard, S.N.; Hofrichter, P.B.

    1985-01-01

    Unsaturated tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential repository for high-level radioactive waste. As part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy, the US Geological Survey has been conducting hydrologic, geologic, and geophysical investigations at Yucca Mountain and the surrounding region to provide data evaluation of the potential suitability of the site. Hydrologic investigations of the unsaturated zone at this site were started in 1982. A 17.5-inch- (44.5-centimeter-) diameter borehole (USW UZ-1) was drilled by the reverse-air vacuum-drilling technique to a depth of 1269 feet (387 meters). This borehole was instrumented at 33 depth levels. At 15 of the levels, 3 well screens were embedded in coarse-sand columns. The sand columns were isolated from each other by thin layers of bentonite, columns of silica flour, and isolation plugs consisting of expansive cement. Thermocouple psychrometers and pressure transducers were installed within the screens and connected to the data-acquisition system at the land surface through thermocouple and logging cables. Two of the screens at each level were equipped with access tubes to allow collection of pore-gas samples. In addition to these instruments, 18 heat-dissipation probes were installed within the columns of silica flour, some of which also had thermocouple psychrometers. 20 refs., 13 figs., 2 tabs

  7. The occurrence and distribution of erionite at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.

    1989-09-01

    We have conducted an investigation to determine the occurrence and distribution of erionite, a potential carcinogen, at Yucca Mountain, Nevada. Using x-ray powder diffraction techniques yielding detection limits to below 0.05 wt %, we positively identified erionite in only 3 out of 76 bulk and 12 fracture samples investigated. The three erionite-bearing samples (J12-620/630, UE-25aNo.1-1296.2, and USW G4-1314) all occur above the static water level in clay/zeolite-rich horizons near the top of vitrophyres. Erionite occurs as trace amounts of less than 1 wt % in the whole rock, although it may occur locally in significant amounts as fracture fillings (e.g., UE-25aNo.1-1296.2 where it comprises approximately 45 wt % of the fracture filling material). All three occurrences appear to be extremely isolated cases since erionite was not detected in neighboring samples. Erionite at Yucca Mountain apparently formed only in localized microenvironments, possibly restricted to fractures. Since erionite occurs in trace amounts only in extremely isolated instances, it should pose little or no health hazard to workers in the potential repository at Yucca Mountain or to the public. The amounts of erionite liberated to the biosphere should be negligible, particularly when compared with the amounts of erionite occurring naturally at the surface in Nevada and surrounding states. 24 refs., 7 figs., 2 tabs

  8. Technical evaluation of available state of Nevada survey instruments

    International Nuclear Information System (INIS)

    1993-02-01

    Argonne National Laboratory (ANL) is reviewing the survey research studies completed by Mountain West Research (1987-1989) for the state of Nevada's Nuclear Waste Project Office. In this research, 14 survey instruments were used to seek data on whether perceptions of risk could be associated with the possible siting of a high-level radioactive waste repository in Nevada and could be a dominant source of potential, significant, adverse economic impacts. This report presents results from phase 1 of the review, in which ANL contracted with the National Opinion Research Center (NORC) at the University of Chicago to evaluate the technical merits of the nine survey instruments that ANL had been able to acquire. The scope of NORC's work was limited to rating the questions and stating their strengths and weaknesses. NORC concluded that the surveys could provide valuable data about risk perceptions and potential behavioral responses. NORC identified a few minor problems with a number of questions and the calculated response rates but claimed these problems would probably not have any major biasing effect. The NORC evaluation would have been more complete if the terms used in the questionnaires had been defined, all survey instruments had been acquired, and all data had been made available to the public

  9. Preliminary assessment of clinoptilolite K/Ar results from Yucca Mountain, Nevada: A potential high-level radioactive waste repository site

    International Nuclear Information System (INIS)

    WoldeGabriel, G.; Bish, D.L.; Broxton, D.E.; Chipera, S.J.

    1992-01-01

    At Yucca Mountain, evidence for at least three distinct temporal groups of clinoptilolites can be delineated from the preliminary K/Ar dates (2--3 Ma; 4--5 Ma; 7--11 Ma). The older K/Ar dates that are similar to published illite/smectite ages (9--12 Ma) may be crystallization ages, whereas the younger dates probably represent continued diagenetic reactions of older clinoptilolites with percolating fluids. The K/Ar dates increase with depth, suggesting minimal argon loss in the deeper samples. Internal consistency of the clinoptilolite K/Ar results at different levels within the drill holes suggest that dating of K-rich zeolites may provide useful information for assessing the zeolitization at Yucca Mountain. Variations in the K/Ar dates are probably related to Ar loss during dissolution of older clinoptilolites and to contamination by finely crystalline feldspars

  10. Preliminary evaluation of the environmental aspects of potential radioactive waste repository study areas in the Ohio and New York portions of the Salina Basin

    International Nuclear Information System (INIS)

    1979-09-01

    Various geographical regions and geological media are being evaluated to determine their potential suitability as an underground repository for commercial radioactive wastes. All three areas and the subarea of Ohio and New York have good highway and rail-transport access. More information is needed on the agricultural viability of all areas. Surface and ground-water usage are much greater in the urbanized Ohio area; because of its rural nature, New York Study Area 1 and the Beaver Dams Subarea have the lowest demand for either water source. Of the New York areas, Study Area 1 appears to provide greater possibilities, considering the objective of minimizing environmental impact. The Ohio study area includes a large part that is within the urbanized area surrounding Cleveland. In addition, the entire study area is marked by a high density of other screening factors such as historic and archaeological sites, natural areas and scenic highways. While more detailed study in the Ohio area might reveal subareas relatively lightly developed and sufficient in size for a repository, significant land use conflicts are likely for most of the area of geologic interst. The Ohio area, from a nongeologic standpoint, appears to be the least promising of the areas identified

  11. Learning Object Repositories

    Science.gov (United States)

    Lehman, Rosemary

    2007-01-01

    This chapter looks at the development and nature of learning objects, meta-tagging standards and taxonomies, learning object repositories, learning object repository characteristics, and types of learning object repositories, with type examples. (Contains 1 table.)

  12. Fuel buildup and potential fire behavior after stand-replacing fires, logging fire-killed trees and herbicide shrub removal in Sierra Nevada forests

    Science.gov (United States)

    McGinnis, Thomas W.; Keeley, Jon E.; Stephens, Scott L.; Roller, Gary B.

    2010-01-01

    Typically, after large stand-replacing fires in mid-elevation Sierra Nevada forests, dense shrub fields occupy sites formerly occupied by mature conifers, until eventually conifers overtop and shade out shrubs. Attempting to reduce fuel loads and expedite forest regeneration in these areas, the USDA Forest Service often disrupts this cycle by the logging of fire-killed trees, replanting of conifers and killing of shrubs. We measured the effects of these treatments on live and dead fuel loads and alien species and modeled potential fire behavior and fire effects on regenerating forests. Sampling occurred in untreated, logged and herbicide-treated stands throughout the Sierra Nevada in four large fire areas 4–21 years after stand-replacing fires. Logging fire-killed trees significantly increased total available dead fuel loads in the short term but did not affect shrub cover, grass and forb cover, alien species cover or alien species richness. Despite the greater available dead fuel loads, fire behavior was not modeled to be different between logged and untreated stands, due to abundant shrub fuels in both logged and untreated stands. In contrast, the herbicide treatment directed at shrubs resulted in extremely low shrub cover, significantly greater alien species richness and significantly greater alien grass and forb cover. Grass and forb cover was strongly correlated with solar radiation on the ground, which may be the primary reason that grass and forb cover was higher in herbicide treated stands with low shrub and tree cover. Repeat burning exacerbated the alien grass problem in some stands. Although modeled surface fire flame lengths and rates of spread were found to be greater in stands dominated by shrubs, compared to low shrub cover conifer plantations, surface fire would still be intense enough to kill most trees, given their small size and low crown heights in the first two decades after planting.

  13. Thermal analyses for a nuclear-waste repository in tuff using USW-G1 borehole data

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1982-10-01

    Thermal calculations using properties of tuffs obtained from the USW-G1 borehole, located near the SW margin of the Nevada Test Site (NTS), have been completed for a nuclear waste repository sited in welded tuff below the water table. The analyses considered two wasteforms, high level waste and spent fuel, emplaced at two different, gross thermal loadings, 50 and 75 kW/Acre (20.24 and 30.36 kW/ha). Calculations were made assuming that no boiling of the groundwater occurs; i.e., that the hydrostatic head potential was reestablished soon after waste emplacement. 23 figures, 2 tables

  14. Distribution and stability of potential salmonid spawning gravels in steep boulder-bed streams of the eastern Sierra Nevada

    International Nuclear Information System (INIS)

    Kondolf, G.M.; Cada, G.F.; Sale, M.J.; Felando, T.

    1991-01-01

    Interest in small hydroelectric development (< 5 MW) has recently focused attention on steep streams and the resident trout populations they contain. High-gradient boulder-bed streams have been the sites of relatively few studies of salmonid spawning habitat, although they have geomorphic and hydraulic characteristics - and therefore gravel distributions - that are quite different from the more commonly described lower-gradient channels. The authors documented gravel distribution in seven high-gradient stream reaches in the eastern Sierra Nevada. Gravels occurred only in locations characterized by relatively low shear stress; they formed small pockets in sites of low divergence and larger deposits upstream of natural hydraulic controls. In 1986 (a wet year), all tracer gravels placed in gravel pockets at nine sites on four streams were completely swept away, and substantial scour, fill, and other channel changes occurred at many sites. In 1987 (a dry year), tracer gravels and the channel cross sections were generally stable. Periodic mobility of gravel may explain why brown trout Salmo trutta are more abundant than rainbow trout Oncorhychus mykiss in the study reaches, where high flows occur every May and June during snowmelt. Brown trout are fall spawners, and their fry emerge long before the high snowmelt flows, whereas rainbow trout are spring spawners whose eggs are in the gravel, and thus vulnerable to scour, during snowmelt flows

  15. Nevada Test Site Environmental Report 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders

  16. Occurrence of fracture-lining manganese minerals in silicic tuffs, Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Carlos, B.A.

    1986-01-01

    Yucca Mountain, in southern Nevada, is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project as a potential site for an underground high-level nuclear waste repository. The site is within Miocene volcanic rocks that are 1.5 to 4 km thick and range in age from 12.5 to 14 MY. Several holes have been drilled in Yucca Mountain for geologic and hydrologic studies. Drill hole USW G-4, the most recently cored hole within the potential repository block, was chosen for detailed study of fracture-filling minerals because it is closest to the planned NNWSI exploratory shaft. Drill hole USW G-4 was drilled to 914.7 m (3001 ft) and continuously cored from 6.7 m (22 ft) to total depth (TD). The drilling history, lithology of the core, and geophysical logs of the well were published earlier. Because manganese oxides in fractures may act as a natural barrier to radionuclide migration, it is important to determine exactly which manganese minerals are present, in what intervals they occur, and how extensive these fracture coatings are

  17. Nevada Nuclear Waste Storage Investigations: Exploratory Shaft Facility fluids and materials evaluation

    Energy Technology Data Exchange (ETDEWEB)

    West, K.A.

    1988-11-01

    The objective of this study was to determine if any fluids or materials used in the Exploratory Shaft Facility (ESF) of Yucca Mountain will make the mountain unsuitable for future construction of a nuclear waste repository. Yucca Mountain, an area on and adjacent to the Nevada Test Site in southern Nevada, USA, is a candidate site for permanent disposal of high-level radioactive waste from commercial nuclear power and defense nuclear activities. To properly characterize Yucca Mountain, it will be necessary to construct an underground test facility, in which in situ site characterization tests can be conducted. The candidate repository horizon at Yucca Mountain, however, could potentially be compromised by fluids and materials used in the site characterization tests. To minimize this possibility, Los Alamos National Laboratory was directed to evaluate the kinds of fluids and materials that will be used and their potential impacts on the site. A secondary objective was to identify fluids and materials, if any, that should be prohibited from, or controlled in, the underground. 56 refs., 19 figs., 11 tabs.

  18. Nevada Nuclear Waste Storage Investigations: Exploratory Shaft Facility fluids and materials evaluation

    International Nuclear Information System (INIS)

    West, K.A.

    1988-11-01

    The objective of this study was to determine if any fluids or materials used in the Exploratory Shaft Facility (ESF) of Yucca Mountain will make the mountain unsuitable for future construction of a nuclear waste repository. Yucca Mountain, an area on and adjacent to the Nevada Test Site in southern Nevada, USA, is a candidate site for permanent disposal of high-level radioactive waste from commercial nuclear power and defense nuclear activities. To properly characterize Yucca Mountain, it will be necessary to construct an underground test facility, in which in situ site characterization tests can be conducted. The candidate repository horizon at Yucca Mountain, however, could potentially be compromised by fluids and materials used in the site characterization tests. To minimize this possibility, Los Alamos National Laboratory was directed to evaluate the kinds of fluids and materials that will be used and their potential impacts on the site. A secondary objective was to identify fluids and materials, if any, that should be prohibited from, or controlled in, the underground. 56 refs., 19 figs., 11 tabs

  19. Radionuclide migration studies at the Nevada Test Site

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1989-01-01

    The United States government routinely tests nuclear devices at the Nevada Test Site (NTS) in southern Nevada. A significant amount of radioactive material exists underground at the NTS with no containers or engineered barriers to inhibit its subsequent migration. The Department of Energy has sponsored for many years a research program on radionuclide movement in the geologic media at this location. Goals of this research program are to measure the extent of movement of radionuclides away from underground explosion sites and to determine the mechanisms by which such movement occurs. This program has acquired significance in another aspect of nuclear waste management because of the Yucca Mountain Project. Yucca Mountain at the NTS is being intensively studied as the possible site for a mined repository for high level nuclear waste. The NTS provides a unique setting for field studies concerning radionuclide migration; there is the potential for greatly increasing our knowledge of the behavior of radioactive materials in volcanogenic media. This review summarizes some of the significant findings made under this research program at the NTS and identifies reports in which the details of the research may be found. 36 refs., 4 figs

  20. Bibliography with abstracts of geological literature pertaining to southern Nevada with particular reference to the Nevada Test Site

    International Nuclear Information System (INIS)

    Connolly, J.R.; Hicks, R.T.; Emmanuel, K.M.; Cappon, J.P.; Sinnock, S.

    1983-05-01

    This bibliography (with abstracts) of geological literature pertains to the Nevada Test Site and its southern Nevada environs. Its purpose is to provide a convenient, general reference document for published geological information potentially useful for radioactive waste studies conducted by the Nevada Nuclear Waste Storage Investigation project at the Nevada Test Site. It is organized so that users of geological information about southern Nevada may find subject matter in their areas or topics of interest. The most current published literature included is dated 1980

  1. Reflection seismic imaging of the upper crystalline crust for characterization of potential repository sites: Fine tuning the seismic source

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, C.; Palm, H.; Bergman, B. [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2001-09-01

    SKB is currently carrying out studies to determine which seismic techniques, and how, they will be used for investigations prior to and during the building of a high-level nuclear waste repository. Active seismic methods included in these studies are refraction seismics, reflection seismics, and vertical seismic profiling (VSP). The main goal of the active seismic methods is to locate fracture zones in the crystalline bedrock. Plans are to use longer reflection seismic profiles (3.4 km) in the initial stages of the site investigations. The target depth for these seismic profiles is 100-1500 m. Prior to carrying out the seismic surveys over actual candidate waste repository sites it has been necessary to carry out a number of tests to determine the optimum acquisition parameters. This report constitutes a summary of the tests carried out by Uppsala University. In addition, recommended acquisition and processing parameters are presented at the end of the report. A major goal in the testing has been to develop a methodology for acquiring high-resolution reflection seismic data over crystalline rock in as a cost effective manner as possible. Since the seismic source is generally a major cost in any survey, significant attention has been given to reducing the cost of the source. It was agreed upon early in the study that explosives were the best source from a data quality perspective and, therefore, only explosive source methods have been considered in this study. The charge size and shot hole dimension required to image the upper 1-1.5 km of bedrock is dependent upon the conditions at the surface. In this study two types of shot hole drilling methods have been employed depending upon whether the thickness of the loose sediments at the surface is greater or less than 0.5 m. The charge sizes and shot hole dimensions required are: Loose sediment thickness less than 0.5 m: 15 g in 90 cm deep 12 mm wide uncased shot holes. Loose sediment thickness greater than 0.5 m: 75 g

  2. Computed distributions of residual shaft drilling and construction water in the exploratory facilities at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Eaton, R.R.; Peterson, A.C.

    1989-01-01

    The Yucca Mountain Project is studying the feasibility of constructing a high-level nuclear waste repository at Yucca Mountain in southwest Nevada. One activity of site characterization is the construction of two exploratory shafts. This paper contains the results of engineering analytical calculations of the potential distribution of residual construction water in the exploratory shafts and drifts and numerical calculations of the movement of the residual water and how the movement is affected by drift ventilation. In all cases the increase in rock saturation resulting from the construction water was extremely small. 11 refs., 15 figs., 1 tab

  3. Pre-waste-emplacement ground-water travel time sensitivity and uncertainty analyses for Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Kaplan, P.G.

    1993-01-01

    Yucca Mountain, Nevada is a potential site for a high-level radioactive-waste repository. Uncertainty and sensitivity analyses were performed to estimate critical factors in the performance of the site with respect to a criterion in terms of pre-waste-emplacement ground-water travel time. The degree of failure in the analytical model to meet the criterion is sensitive to the estimate of fracture porosity in the upper welded unit of the problem domain. Fracture porosity is derived from a number of more fundamental measurements including fracture frequency, fracture orientation, and the moisture-retention characteristic inferred for the fracture domain

  4. Evaluation of geological documents available for provisional safety analyses of potential sites for nuclear waste repositories - Are additional geological investigations needed?

    International Nuclear Information System (INIS)

    2010-10-01

    The procedure for selecting repository sites for all categories of radioactive waste in Switzerland is defined in the conceptual part of the Sectoral Plan for Deep Geological Repositories, which foresees a selection of sites in three stages. In Stage I, Nagra proposed geological siting regions based on criteria relating to safety and engineering feasibility. The Swiss Government (the Federal Council) is expected to decide on the siting proposals in 2011. The objective of Stage 2 is to prepare proposals for the location of the surface facilities within the planning perimeters defined by the Federal Council in its decision on Stage 1 and to identify potential sites. Nagra also has to carry out a provisional safety analysis for each site and a safety-based comparison of the sites. Based on this, and taking into account the results of the socio-economic-ecological impact studies, Nagra then has to propose at least two sites for each repository type to be carried through to Stage 3. The proposed sites will then be investigated in more detail in Stage 3 to ensure that the selection of the sites for the General Licence Applications is well founded. In order to realise the objectives of the upcoming Stage 2, the state of knowledge of the geological conditions at the sites has to be sufficient to perform the provisional safety analyses. Therefore, in preparation for Stage 2, the conceptual part of the Sectoral Plan requires Nagra to clarify the need for additional investigations aimed at providing input for the provisional safety analyses. The purpose of the present report is to document Nagra's technical-scientific assessment of this need. The focus is on evaluating the geological information based on processes and parameters that are relevant for safety and engineering feasibility. In evaluating the state of knowledge the key question is whether additional information could lead to a different decision regarding the selection of the sites to be carried through to Stage 3

  5. Stability of underground openings in the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    1989-01-01

    The licensing of a repository for high-level radioactive waste will require assurances that underground openings do not experience frequent major instabilities, which are defined here as sudden movements of blocks of rock that limit the functions of the openings. Although the design of nuclear power plant structures is controlled by strict adherence to building or professional-engineering codes, this approach is not practical for the structural design of underground facilities because the design must accommodate a varied and partially defined geologic setting. However, regulations require the reduction of the potential for deleterious rock movement and the design of openings to maintain the option to retrieve waste. The present plans for meeting these requirements for a repository at Yucca Mountain, Nevada, include a program of state-of-the-art analyses and modified forms of existing empirically based design methods. An extensive experimental program is required to provide confidence in the results of the design-analysis process. 7 refs., 1 fig

  6. Assessment of risk associated with long-term corrosion of alloy 22 and Ti-7 in the potential yucca mountain high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Ahn, T.M.; Pensado, O.; Dunn, D.

    2004-01-01

    Full text of publication follows: The potential high-level nuclear waste (HLW) repository at Yucca Mountain (YM) may rely on the robustness of the outer container of the waste package (WP) as one of many barriers for waste isolation. The container is proposed to be constructed of Alloy 22, a Ni-Cr-Mo alloy known to be resistant to localized corrosion and stress corrosion cracking. Additionally, drip shields (DS) will be emplaced above the WP to minimize the groundwater contact, in the form of seepage, with the WP. The candidate alloy to construct the drip shields is a titanium based alloy (Ti-7) with some small amounts of Pd and is also known for resistance to localized corrosion. To enhance confidence of long-term WP and DS lifetimes, it is necessary to assess the conditions under which loss of passivity or localized degradation processes could occur. The accelerated degradation processes may include uniform passivity breakdown, localized corrosion, and stress corrosion cracking. This paper evaluates how such processes may occur under the long-term YM repository conditions. In the uniform passivity breakdown, three potential concerns are evaluated. The first is anodic sulphur segregation at the interface between the passive film and the bare metal. This paper models the cyclic behavior of free transient fast dissolution (induced by sulfur segregation) and re-passivation. The second is the potential accumulation of corrosion products on the WP surface, which may act as cathode of large surface area leading to fast corrosion. The effective ratio of the corrosion product area to the bare metal area is evaluated. The third is the ion selectivity in the corrosion products to alter the aqueous chemistry, which may accelerate or inhibit the corrosion. Thermodynamics of ionic sorption in the corrosion products is reviewed. In the localized corrosion, the groundwater chemistry on the WP surface is evaluated at the temperatures of the WP above 100 deg. C during the early

  7. Coupling Legacy and Contemporary Deterministic Codes to Goldsim for Probabilistic Assessments of Potential Low-Level Waste Repository Sites

    Science.gov (United States)

    Mattie, P. D.; Knowlton, R. G.; Arnold, B. W.; Tien, N.; Kuo, M.

    2006-12-01

    project between Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research (INER) for the preliminary assessment of several candidate low-level waste repository sites. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.

  8. Cs sorption to potential host rock of low-level radioactive waste repository in Taiwan: experiments and numerical fitting study.

    Science.gov (United States)

    Wang, Tsing-Hai; Chen, Chin-Lung; Ou, Lu-Yen; Wei, Yuan-Yaw; Chang, Fu-Lin; Teng, Shi-Ping

    2011-09-15

    A reliable performance assessment of radioactive waste repository depends on better knowledge of interactions between nuclides and geological substances. Numerical fitting of acquired experimental results by the surface complexation model enables us to interpret sorption behavior at molecular scale and thus to build a solid basis for simulation study. A lack of consensus on a standard set of assessment criteria (such as determination of sorption site concentration, reaction formula) during numerical fitting, on the other hand, makes lower case comparison between various studies difficult. In this study we explored the sorption of cesium to argillite by conducting experiments under different pH and solid/liquid ratio (s/l) with two specific initial Cs concentrations (100mg/L, 7.5 × 10(-4)mol/L and 0.01 mg/L, 7.5 × 10(-8)mol/L). After this, numerical fitting was performed, focusing on assessment criteria and their consequences. It was found that both ion exchange and electrostatic interactions governed Cs sorption on argillite. At higher initial Cs concentration the Cs sorption showed an increasing dependence on pH as the solid/liquid ratio was lowered. In contrast at trace Cs levels, the Cs sorption was neither s/l dependent nor pH sensitive. It is therefore proposed that ion exchange mechanism dominates Cs sorption when the concentration of surface sorption site exceeds that of Cs, whereas surface complexation is attributed to Cs uptake under alkaline environments. Numerical fitting was conducted using two different strategies to determine concentration of surface sorption sites: the clay model (based on the cation exchange capacity plus surface titration results) and the iron oxide model (where the concentration of sorption sites is proportional to the surface area of argillite). It was found that the clay model led to better fitting than the iron oxide model, which is attributed to more amenable sorption sites (two specific sorption sites along with larger site

  9. Report of the State of Nevada Commission on Nuclear Projects

    International Nuclear Information System (INIS)

    1988-11-01

    Chapter One of the report presents a brief overview of the commission's functions and statutory charges. It also contains a summary of developments which have affected the overall nuclear waste disposal issue since the last Commission report was published. This chapter summarizes the Nuclear Waste Policy Amendments Act of 1987 (NWPAA), which significantly modified federal waste disposal policy and identified Nevada's Yucca Mountain as the only site to be evaluated for suitability as a nuclear waste repository. Chapter Two contains a synthesis of Commission activities and reports on the findings of the Commission relative to the geotechnical, environmental, socioeconomic, transportation, intergovernmental and legal aspects of federal and state nuclear waste program efforts. Chapter Three of the report presents recommendations which the Commission is making to the 1989 Nevada Legislature, the governor, and others concerned with matters surrounding the proposed high-level nuclear waste repository at Yucca Mountain and with repository-related activities, such as the transportation of radioactive materials

  10. Final environmental impact statement for the Nevada test site and off-site locations in the State of Nevada. Public comment and response document, Volume 3, Part B responses

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  11. Characterization of natural organic matter in bentonite clays for potential use in deep geological repositories for used nuclear fuel

    International Nuclear Information System (INIS)

    Marshall, Michaela H.M.; McKelvie, Jennifer R.; Simpson, André J.; Simpson, Myrna J.

    2015-01-01

    Highlights: • We studied the composition of natural organic matter in bentonite clay. • Biomarker results indicate a predominance of plant-derived organic matter. • Aromatic and aliphatic compounds were observed in NMR spectra. • Degradation ratios suggest that organic matter is highly altered. • The natural organic matter in bentonite clay is predominantly recalcitrant. - Abstract: The Nuclear Waste Management Organization (NWMO) is developing a Deep Geological Repository (DGR) to contain and isolate used nuclear fuel in a suitable rock formation at a depth of approximately 500 m. The design concept employs a multibarrier system, including the use of copper-coated used fuel containers, surrounded by a low-permeability, swelling clay buffer material within a low permeability, stable host rock environment. The natural organic matter (NOM) composition of the bentonite clays being considered for the buffer material is largely uncharacterized at the molecular-level. To gain a better understanding of the NOM in target clays from Wyoming and Saskatchewan, molecular-level methods (biomarker analysis, solid-state 13 C NMR and solution-state 1 H nuclear magnetic resonance (NMR)) were used to elucidate the structure and sources of NOM. Organic carbon content in three commercially available bentonites analyzed was low (0.11–0.41%). The aliphatic lipid distribution of the clay samples analyzed showed a predominance of higher concentration of lipids from vascular plants and low concentrations of lipids consistent with microbial origin. The lignin phenol vanillyl acid to aldehyde ratio (Ad/Al) for the National sample indicated an advanced state of lignin oxidation and NOM diagenesis. The 13 C NMR spectra were dominated by signals in the aromatic and aliphatic regions. The ratio of alkyl/O-alkyl carbon ranged from 7.6 to 9.7, indicating that the NOM has undergone advanced diagenetic alteration. The absence lignin-derived phenols commonly observed in CuO oxidation

  12. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository

    Directory of Open Access Journals (Sweden)

    Jordan Daoudi

    2017-06-01

    Full Text Available We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl− selective electrodes, one Ag2S/Ag-based reference or S2− selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.

  13. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository.

    Science.gov (United States)

    Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis

    2017-06-13

    We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl - selective electrodes, one Ag₂S/Ag-based reference or S 2- selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.

  14. Handling encapsulated spent fuel in a geologic repository environment

    International Nuclear Information System (INIS)

    Ballou, L.B.

    1983-02-01

    In support of the Spent Fuel Test-Climate at the U.S. Department of Energy's Nevada Test Site, a spent-fuel canister handling system has been designed, deployed, and operated successfully during the past five years. This system transports encapsulated commercial spent-fuel assemblies between the packaging facility and the test site (approx. 100 km), transfers the canisters 420 m vertically to and from a geologic storage drift, and emplaces or retrieves the canisters from the storage holes in the floor of the drift. The spent-fuel canisters are maintained in a fully shielded configuration at all times during the handling cycle, permitting manned access at any time for response to any abnormal conditions. All normal operations are conducted by remote control, thus assuring as low as reasonably achievable exposures to operators; specifically, we have had no measurable exposure during 30 canister transfer operations. While not intended to be prototypical of repository handling operations, the system embodies a number of concepts, now demonstrated to be safe, reliable, and economical, which may be very useful in evaluating full-scale repository handling alternatives in the future. Among the potentially significant concepts are: Use of an integral shielding plug to minimize radiation streaming at all transfer interfaces. Hydraulically actuated transfer cask jacking and rotation features to reduce excavation headroom requirements. Use of a dedicated small diameter (0.5 m) drilled shaft for transfer between the surface and repository workings. A wire-line hoisting system with positive emergency braking device which travels with the load. Remotely activated grapples - three used in the system - which are insensitive to load orientation. Rail-mounted underground transfer vehicle operated with no personnel underground

  15. Draft environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received on the draft EA. The Yucca Mountain site is located in the Great Basin, one of five distinct geohydrologic settings that are being considered for the first repository. On the basis of the evaluations reported in this draft EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Yucca Mountain site as one of five sites suitable for characterization. Furthermore, having performed a comparative evaluation of the five sites proposed for nomination, the DOE has determined that the Yucca Mountain site is one of three sites preferred for site characterization

  16. Feasibility assessment of copper-base waste package container materials in a tuff repository

    International Nuclear Information System (INIS)

    Acton, C.F.; McCright, R.D.

    1986-01-01

    This report discussed progress made during the second year of a two-year study on the feasibility of using copper or a copper-base alloy as a container material for a waste package in a potential repository in tuff rock at the Yucca Mountain site in Nevada. Corrosion testing in potentially corrosive irradiated environments received emphasis during the feasibility study. Results of experiments to evaluate the effect of a radiation field on the uniform corrosion rate of the copper-base materials in repository-relevant aqueous environments are given as well as results of an electrochemical study of the copper-base materials in normal and concentrated J-13 water. Results of tests on the irradiation of J-13 water and on the subsequent formation of hydrogen peroxide are given. A theoretical study was initiated to predict the long-term corrosion behavior of copper in the repository. Tests were conducted to determine whether copper would adversely affect release rates of radionuclides to the environment because of degradation of the Zircaloy cladding. A manufacturing survey to determine the feasibility of producing copper containers utilizing existing equipment and processes was completed. The cost and availability of copper was also evaluated and predicted to the year 2000. Results of this feasibility assessment are summarized

  17. Conflict, location, and politics: Siting a nuclear waste repository

    International Nuclear Information System (INIS)

    Jacob, G.R.

    1988-01-01

    Nuclear power and the management of high-level radioactive waste is examined with the goal of explaining the forces driving the formulation of the 1982 Nuclear Waste Policy Act and a subsequent decision to site a nuclear waste repository at Yucca Mountain, Nevada. The study draws upon geographic, political, economic, and organizational factors to examine the commitment to dispose of spent fuel in a geologic repository located in Nevada or in Utah, Texas, Mississippi, Louisiana, or at Hanford Washington. Special attention is given to the impact of location, science and technology on the definition of the nuclear waste problem and political agendas, public participation, and the power of the nuclear establishment. The study finds that the choice of a Yucca Mountain Nevada as the preferred site for a repository was based more on technological precedent and political-economic expediency than on the demonstrated superiority of that site's geology. Conflict over a repository location is interpreted as a symptom of more fundamental conflicts concerning: the credibility of nuclear science, the legitimacy of federal authority and administration, and the priorities of environmental protection and a nuclear economy

  18. Evaluation of repository safety

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, B.; Patrick, W.; Dasgupta, B.; Mohanty, S. [Center for Nuclear Waste Regulatory Analyses, San Antonio (United States)

    2002-07-01

    The United States high-level waste program requires evaluation of radiological safety during two distinct time intervals. The first interval, commonly referred to as the preclosure period, deals with receipt of waste at the site, transfer into disposal containers, if needed, emplacement in the underground openings, monitoring and maintenance activities, backfill and closure of the underground openings, and decontamination and decommissioning of the surface facilities of the geologic repository. The preclosure period may extend from a few tens of years to as long as a few hundred of years, depending on repository design and societal norms regarding a final decision to permanently seal the repository. During the preclosure or operational period, performance confirmation studies are conducted to provide a basis for updating and reevaluating estimates of postclosure performance and, finally, to provide a basis for a closure decision. The postclosure period during which expected repository performance must meet certain standards may range from ten thousands years, as it does in the United States, to millions of years, as it does in some European nations. Waste handling operations in the preclosure period are to be evaluated in relation to their potential effect on workers, members of general public, and the general environment. During this period, releases of radioactivity are to be monitored and appropriate actions taken whenever established limits are approached or exceeded. Preclosure safety is highly dependent on facility design, operational hardware and automated systems, operational sequences, and reliability of humans involved in operations. Preclosure safety analyses conducted before operations begin play a major role in the design process, selection of equipment, and development of operational procedures. Because of the complexity, duration, and spatial scales of the operations, analyses are conducted using mathematical models implemented in computer codes

  19. Evaluation of repository safety

    International Nuclear Information System (INIS)

    Sagar, B.; Patrick, W.; Dasgupta, B.; Mohanty, S.

    2002-01-01

    The United States high-level waste program requires evaluation of radiological safety during two distinct time intervals. The first interval, commonly referred to as the preclosure period, deals with receipt of waste at the site, transfer into disposal containers, if needed, emplacement in the underground openings, monitoring and maintenance activities, backfill and closure of the underground openings, and decontamination and decommissioning of the surface facilities of the geologic repository. The preclosure period may extend from a few tens of years to as long as a few hundred of years, depending on repository design and societal norms regarding a final decision to permanently seal the repository. During the preclosure or operational period, performance confirmation studies are conducted to provide a basis for updating and reevaluating estimates of postclosure performance and, finally, to provide a basis for a closure decision. The postclosure period during which expected repository performance must meet certain standards may range from ten thousands years, as it does in the United States, to millions of years, as it does in some European nations. Waste handling operations in the preclosure period are to be evaluated in relation to their potential effect on workers, members of general public, and the general environment. During this period, releases of radioactivity are to be monitored and appropriate actions taken whenever established limits are approached or exceeded. Preclosure safety is highly dependent on facility design, operational hardware and automated systems, operational sequences, and reliability of humans involved in operations. Preclosure safety analyses conducted before operations begin play a major role in the design process, selection of equipment, and development of operational procedures. Because of the complexity, duration, and spatial scales of the operations, analyses are conducted using mathematical models implemented in computer codes

  20. Incorporating cold-air pooling into downscaled climate models increases potential refugia for snow-dependent species within the Sierra Nevada Ecoregion, CA.

    Directory of Open Access Journals (Sweden)

    Jennifer A Curtis

    Full Text Available We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist.

  1. Staged Repository Development Programmes

    International Nuclear Information System (INIS)

    Isaacs, T

    2003-01-01

    Programs to manage and ultimately dispose of high-level radioactive wastes are unique from scientific and technological as well as socio-political aspects. From a scientific and technological perspective, high-level radioactive wastes remain potentially hazardous for geological time periods-many millennia-and scientific and technological programs must be put in place that result in a system that provides high confidence that the wastes will be isolated from the accessible environment for these many thousands of years. Of course, ''proof'' in the classical sense is not possible at the outset, since the performance of the system can only be known with assurance, if ever, after the waste has been emplaced for those geological time periods. Adding to this challenge, many uncertainties exist in both the natural and engineered systems that are intended to isolate the wastes, and some of the uncertainties will remain regardless of the time and expense in attempting to characterize the system and assess its performance. What was perhaps underappreciated in the early days of waste management and repository program development were the unique and intense reactions that the institutional, political, and public bodies would have to repository program development, particularly in programs attempting to identify and then select sites for characterization, design, licensing, and ultimate development. Reactions in most nations were strong, focused, unrelenting, and often successful in hindering, derailing, and even stopping national repository programs. The reasons for such reactions and the measures to successfully respond to them are still evolving and continue to be the focus of many national program and political leaders. Adaptive Staging suggests an approach to repository program development that reflects the unique challenges associated with the disposal of high-level radioactive waste. The step-wise, incremental, learn-as-you-go approach is intended to maximize the

  2. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  3. Smectite dehydration and stability: Applications to radioactive waste isolation at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bish, D.L.

    1988-03-01

    Montmorillonite-beidellite smectites are present in amounts up to 50% in the rocks directly underlying the potential high-level radioactive waste repository horizon at Yucca Mountain, Nevada. The thermal reactions of concern include reversible collapse/expansion of the smectite layers due to loss/gain of interlayer water;irreversible collapse due to loss of interlayer water and migration of interlayer cations into the 2:1 silicate layers;irreversible reduction of the osmotic swelling ability through reaction in a steam atmosphere;and inhomogeneous transformation of the smectite into an interstratified illite/smectite. Reversible collapse should be of minor importance because any thermally driven collapse will be reversed when water is introduced and temperatures go down. The amounts of smectite in the potential repository horizon itself are probably insufficient to give rise to rock strength problems due to reversible collapse. The irreversible reduction of somotic selling capacity in a steam environment may be significant in the rocks near the repository horizon. This effect on naturally occurring Na-rich smectites would probably increase permeabilitie shut would also provide for increased cation exchange by the smectite. 60 refs., 9 figs

  4. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A.

    1995-01-01

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM). Results of comparisons of the ECM and DK model are also presented in Ho et al

  5. Projected environmental impacts of radioactive material transportation to the first US repository site

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Cashwell, J.W.; Reardon, P.C.; Ostmeyer, R.M.; McNair, G.W.

    1986-01-01

    This paper discusses the relative national environmental impacts of transporting nuclear wastes to each of the nine candidate repository sites in the United States. Several of the potential sites are closely clustered and, for the purpose of distance and routing calculations, are treated as a single location. These are: Cypress Creek Dome and Richton Dome in Mississippi (Gulf Interior Region), Deaf Smith County and Swisher County sites in Texas (Permian Basin), and Davis Canyon and Lavender Canyon site in Utah (Paradox Basin). The remaining sites are: Vacherie Dome, Louisiana; Yucca Mountain, Nevada; and Hanford Reservation, Washington. For compatibility with both the repository system authorized by the NWPA and with the MRS option, two separate scenarios were analyzed. In belief, they are (1) shipment of spent fuel and high-level wastes (HLW) directly from waste generators to a repository (Reference Case) and (2) shipment of spent fuel to a Monitored Retrievable Storage (MRS) facility and then to a repository. Between 17 and 38 truck accident fatalities, between 1.4 and 7.7 rail accident fatalities, and between 0.22 and 12 radiological health effects can be expected to occur as a result of radioactive material transportation during the 26-year operating period of the first repository. During the same period in the United States, about 65,000 total deaths from truck accidents and about 32,000 total deaths from rail accidents would occur; also an estimated 58,300 cancer fatalities are predicted to occur in the United States during a 26-year period from exposure to background radiation alone (not including medical and other manmade sources). The risks reported here are upper limits and are small by comparison with the ''natural background'' of risks of the same type. 3 refs., 6 tabs

  6. Use of modeling in repository licensing

    International Nuclear Information System (INIS)

    McGarry, J.M. III; Echols, F.S.

    1995-01-01

    A review of the regulatory history of the Nuclear Regulatory Commission (NRC) regulations applicable to the licensing of a geologic repository, as well as a review of NRC administrative (licensing) decisions and federal case law, support the NRC's use of simplified models, in appropriate circumstances, which provide well-documented and reasonably conservative bounding assumptions, together with the use of expert judgement, natural analogues, and other aids to supplement available information, in reaching its reasonable assurance determination whether the public health and safety will be adequately protected if the Yucca Mountain, Nevada site should be licensed for development as a geologic repository. Specific examples are provided to assist the reader to better understand how such qualitative concepts as open-quote reasonable assurance close-quote, open-quote reasonably conservative close-quote, and open-quote adequate close-quote protection are used in an administrative context to resolve technical issues

  7. Investigation of potential water inflow into a ventilated tunnel of the proposed low/intermediate-level waste repository in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Eugster, S.M. [Swiss Federal Institute of Technology, Zurich (Switzerland); Senger, R.K. [INTERA Inc., Austin, TX (United States)

    1995-03-01

    Design calculations of two-phase flow phenomena associated with the construction and ventilation of a tunnel were investigated to estimate the potential water inflow through discrete water-conducting features (WCFs) into the tunnel. The physical processes that were considered in numerical simulations include the transient propagation of the pressure decline into the formation (Valanginian Marl, initially fully saturated, no dissolved gas) as a result of the tunnel construction. Ventilation of the tunnel results in a reduction in relative humidity of the tunnel air which, in turn, causes evaporation of water at the tunnel wall and the potential development of an unsaturated zone into the formation. The objective of this study is to investigate under what conditions the tunnel wall appears wet or dry, i.e. whether WCFs can be identified in a ventilated tunnel by mapping water inflow patterns. The simulation results indicate that inflow to the tunnel decreases with time approaching steady state flow rates under single-phase flow conditions, which is lower than the evaporation rate. The water inflow rate decreased more rapidly for a first model scenario (WCF parallel to the tunnel axis), caused by linear flow through the WCF, than for a second model scenario (WCF perpendicular to the tunnel axis), characterized by radial flow toward the tunnel. Similarly, the desaturation zone extends farther into the WCF under linear flow than under radial flow.

  8. Process mining software repositories

    NARCIS (Netherlands)

    Poncin, W.; Serebrenik, A.; Brand, van den M.G.J.

    2011-01-01

    Software developers' activities are in general recorded in software repositories such as version control systems, bug trackers and mail archives. While abundant information is usually present in such repositories, successful information extraction is often challenged by the necessity to

  9. Breast Cancer Tissue Repository

    National Research Council Canada - National Science Library

    Iglehart, J

    1997-01-01

    The Breast Tissue Repository at Duke enters its fourth year of finding. The purpose of the Repository at Duke is to provide substantial quantities of frozen tissue for explorative molecular studies...

  10. Geologic report of the Maquoketa Shale, New Albany Shale, and Borden Group rocks in the Illinois Basin as potential solid waste repository sites

    International Nuclear Information System (INIS)

    Droste, J.B.; Vitaliano, C.J.

    1976-06-01

    We have evaluated the Illinois Basin in order to select a ''target site'' for a possible solid nuclear waste repository. In the process we have been mindful of geology (particularly stratigraphy and lithology and structure), terrane, population density, land use, land ownership and accessibility. After taking these restrictions into account, we have singled out a strip of land in south central Indiana in which we have selected four potential sites worthy of further exploration. In three of the sites the geology, lithology, and depth below the surface are more than adequate for crypt purposes in two separate formations--the Maquoketa Shale of the Ordovician System and the New Albany Shale-Borden Group of the Upper Devonian-Mississippian Systems. The interval between the two is several hundred feet. The geology and associated features in the fourth site are undoubtedly similar to those in the first three. In all four selections a sizeable proportion of the land is in public ownership and the population density in the nonpublicly owned land is low. The geology, lithology, and position of the target formations have been projected into the sites in question from data provided by drill core records of the Indiana Geological Survey. Precise details would, of course, require exploratory drilling on the selected site

  11. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H.

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit''. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes

  12. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

  13. Wellbore enlargement investigation: Potential analogs to the Waste Isolation Pilot Plant during inadvertent intrusion of the repository

    International Nuclear Information System (INIS)

    Boak, D.M.; Dotson, L.; Aguilar, R.

    1997-01-01

    This study involved the evaluation and documentation of cases in which petroleum wellbores were enlarged beyond the nominal hole diameter as a consequence of erosion during exploratory drilling, particularly as a function of gas flow into the wellbore during blowout conditions. A primary objective was to identify analogs to potential wellbore enlargement at the Waste Isolation Pilot Plant (WIPP) during inadvertent human intrusion. Secondary objectives were to identify drilling scenarios associated with enlargement, determine the physical extent of enlargement, and establish the physical properties of the formation in which the enlargement occurred. No analogs of sufficient quality to establish quantitative limits on wellbore enlargement at the WIPP disposal system were identified. However, some information was obtained regarding the frequency of petroleum well blowouts and the likelihood that such blowouts would bridge downhole, self-limiting the surface release of disposal-system material. Further work would be necessary, however, to determine the conditions under which bridging could occur and the extent to which the bridging might be applicable to WIPP. In addition, data on casing sizes of petroleum boreholes in the WIPP vicinity support the use of a 12-1/4 inch borehole size in WIPP performance assessment calculations. Finally, although data are limited, there was no evidence of significant wellbore enlargement in any of three blowouts that occur-red in wellbores in the Delaware Basin (South Culebra Bluff Unit No. 1, Energy Research and Development Administration (ERDA) 6, and WIPP 12)

  14. Status of aeromagnetic survey coverage of Yucca Mountain and vicinity to a radius of about 140 kilometers, southwestern Nevada and southeastern California, 1992

    International Nuclear Information System (INIS)

    Sikora, R.F.; Ponce, D.A.; Oliver, H.W.

    1993-01-01

    Fifty aeromagnetic surveys in the southwestern part of Nevada and the southeastern part of California have been evaluated to assess the quality and coverage of aeromagnetic data within 140 kilometers (km) of a potential nuclear waste repository at Yucca Mountain, Nevada. The compilation shows that all the study area is covered by aeromagnetic surveys, but in some areas, particularly in the Death Valley region, new surveys flown with closer flight line spacing and lower elevations than the existing coverage are needed. In addition, the California part of the study area needs to be analytically continued downward to 305 meters (m) above ground level to provide a consistent data set for interpretation of subsurface geologic structures

  15. Methods and Techniques Used to Convey Total System Performance Assessment Analyses and Results for Site Recommendation at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Mattie, Patrick D.; McNeish, Jerry A.; Sevougian, S. David; Andrews, Robert W.

    2001-01-01

    Total System Performance Assessment (TSPA) is used as a key decision-making tool for the potential geologic repository of high level radioactive waste at Yucca Mountain, Nevada USA. Because of the complexity and uncertainty involved in a post-closure performance assessment, an important goal is to produce a transparent document describing the assumptions, the intermediate steps, the results, and the conclusions of the analyses. An important objective for a TSPA analysis is to illustrate confidence in performance projections of the potential repository given a complex system of interconnected process models, data, and abstractions. The methods and techniques used for the recent TSPA analyses demonstrate an effective process to portray complex models and results with transparency and credibility

  16. Nevada state and local government comments on the US Department of Energy's report to Congress pursuant to Section 175 of the Nuclear Waste Policy Act, as amended

    International Nuclear Information System (INIS)

    1989-03-01

    The State of Nevada and affected local governments and Indian Tribes recognize the difficulties Department of Energy (DOE) encountered in attempting to compile a meaningful report on possible repository-related impacts in the relatively short amount of time available for the task. Overall, the Section 175 Report represents a positive beginning in what must, necessarily, be a much more thorough and detailed impact assessment effort. Although the current Report Does not identify the full range of repository impacts, nor seek to quantify them, it is useful as a framework or scoping document which, when supplemented with information on the specifics of impacts and costs/strategies for mitigation, may be useful in understanding the effects a repository will have upon the State of Nevada and affected communities. Subsequent socioeconomic analyses should follow-up this positive beginning and specify in greater detail the areas where undefined impacts may occur. Such analyses should expand the geographic scope of the Report, address transportation impacts along potential high-level waste routes, complete the project description (i.e., uncertainties with regard to labor force, materials requirements, etc.) used in forecasting effects within various categories of impacts, refine the section on impact mitigation strategies, and give fuller treatment to tourism and economic development impacts

  17. Meteorological, stream-discharge, and water-quality data for water year 1992 from two basins in Central Nevada

    International Nuclear Information System (INIS)

    McKinley, P.W.; Oliver, T.A.

    1995-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is studying Yucca Mountain, Nevada, as a potential repository for high level nuclear waste. As part of the Yucca Mountain Site Project, the analog recharge study is providing data for the evaluation of recharge to the Yucca Mountain ground-water system given a cooler and wetter climate than currently exists. The current and climatic conditions are favorable to the isolation of radioactive waste. Because waste isolation from the accessible environment for 10,000 years is necessary, climatic change and the potential for increased ground-water recharge need to be considered as part of the characterization of the potential repository. Therefore, two small basins, measuring less than 2 square miles, were studied to determine the volume of precipitation available for recharge to ground water. The semiarid 3-Springs Basin is located to the east of Kawich Peak in the Kawich Range east of Tonopah, Nevada. Stewart Basin is a subalpine drainage basin north of Arc Dome in the Toiyabe Range north of Tonopah, Nevada. The purpose of this publication is to make available the meteorological, stream-discharge, and water-quality data collected during the study. Meteorological data collected include air temperature, soil temperature, solar radiation, and relative humidity. Stream-discharge data were collected from the surface-water outlet of each basin. Water-quality data are chemical analyses of water samples collected from surface- and ground-water sources. Each basin has a meteorological station located in the lower and upper reaches of the basin. Hydrologic records include stream-discharge and water-quality data from the lower meteorological site and water-quality data from springs within the basins

  18. A Clinical Decision Support Engine Based on a National Medication Repository for the Detection of Potential Duplicate Medications: Design and Evaluation.

    Science.gov (United States)

    Yang, Cheng-Yi; Lo, Yu-Sheng; Chen, Ray-Jade; Liu, Chien-Tsai

    2018-01-19

    A computerized physician order entry (CPOE) system combined with a clinical decision support system can reduce duplication of medications and thus adverse drug reactions. However, without infrastructure that supports patients' integrated medication history across health care facilities nationwide, duplication of medication can still occur. In Taiwan, the National Health Insurance Administration has implemented a national medication repository and Web-based query system known as the PharmaCloud, which allows physicians to access their patients' medication records prescribed by different health care facilities across Taiwan. This study aimed to develop a scalable, flexible, and thematic design-based clinical decision support (CDS) engine, which integrates a national medication repository to support CPOE systems in the detection of potential duplication of medication across health care facilities, as well as to analyze its impact on clinical encounters. A CDS engine was developed that can download patients' up-to-date medication history from the PharmaCloud and support a CPOE system in the detection of potential duplicate medications. When prescribing a medication order using the CPOE system, a physician receives an alert if there is a potential duplicate medication. To investigate the impact of the CDS engine on clinical encounters in outpatient services, a clinical encounter log was created to collect information about time, prescribed drugs, and physicians' responses to handling the alerts for each encounter. The CDS engine was installed in a teaching affiliate hospital, and the clinical encounter log collected information for 3 months, during which a total of 178,300 prescriptions were prescribed in the outpatient departments. In all, 43,844/178,300 (24.59%) patients signed the PharmaCloud consent form allowing their physicians to access their medication history in the PharmaCloud. The rate of duplicate medication was 5.83% (1843/31,614) of prescriptions. When

  19. Characterization of Quaternary and suspected Quaternary faults, Amargosa area, Nevada and California

    International Nuclear Information System (INIS)

    Anderson, R.E.; Crone, A.J.; Machette, M.N.; Bradley, L.A.; Diehl, S.F.

    1995-01-01

    This report presents the results of geologic studies that help define the Quaternary history of selected faults in the region around Yucca Mountain, Nevada. These results are relevant to the seismic-design basis of a potential nuclear waste repository at Yucca Mountain. The relevancy is based, in part, on a need for additional geologic data that became apparent in ongoing studies by S. Pezzopane (written commun., 1995) that resulted in the identification of 51 relevant and potentially relevant (see appendix A for definitions) individual and compound faults and fault zones in the 100-km-radius region around the Yucca Mountain site. These structures were divided into local and regional categories by Pezzopane (1995); this report deals with selected regional structures. In this introduction, the authors outline the scope and strategy of the studies and the tectonic environment of the studied structures

  20. Characterization of Quaternary and suspected Quaternary faults, Amargosa area, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.E.; Crone, A.J.; Machette, M.N.; Bradley, L.A.; Diehl, S.F.

    1995-12-31

    This report presents the results of geologic studies that help define the Quaternary history of selected faults in the region around Yucca Mountain, Nevada. These results are relevant to the seismic-design basis of a potential nuclear waste repository at Yucca Mountain. The relevancy is based, in part, on a need for additional geologic data that became apparent in ongoing studies by S. Pezzopane (written commun., 1995) that resulted in the identification of 51 relevant and potentially relevant (see appendix A for definitions) individual and compound faults and fault zones in the 100-km-radius region around the Yucca Mountain site. These structures were divided into local and regional categories by Pezzopane (1995); this report deals with selected regional structures. In this introduction, the authors outline the scope and strategy of the studies and the tectonic environment of the studied structures.

  1. Rural migration in Nevada: Lincoln County

    International Nuclear Information System (INIS)

    Soden, D.L.; Carns, D.E.; Mosser, D.; Conary, J.S.; Ansell, J.P.

    1993-01-01

    The principal objective of this project was to develop insight into the scope of migration of working age Nevadans out of their county of birth; including the collection of data on their skill levels, desire to out or in-migrate, interactions between families of migratory persons, and the impact that the proposed high-level nuclear waste repository at Yucca mountain might have on their individual, and collective, decisions to migrate and return. The initial phase of this project reported here was conducted in 1992 and 1993 in Lincoln County, Nevada, one of the counties designated as ''affected'' by the proposed repository program. The findings suggest that a serious out-migration problem in Lincoln County, and that the Yucca mountain project will likely affect decisions relating to migration patterns in the future

  2. Two-phase unsaturated flow at Yucca Mountain, Nevada - A Report on Current Understanding

    International Nuclear Information System (INIS)

    Pruess, K.

    1998-01-01

    The U.S. civilian nuclear waste program is unique in its focus on disposal of high-level wastes in the unsaturated zone (UZ), above the water table. The potential repository site currently under investigation is located in a semi-arid region of the southwestern U.S. at Yucca Mountain, Nevada. The geology of the site consists of layered sequences of faulted, fractured, and bedded tuffs. The groundwater table is approximately 600 m beneath the land surface, while the proposed repository horizon is at a nominal depth of approximately 375 m. In this kind of environment, two-phase flow is not just a localized perturbation to natural conditions, as in the saturated zone, but is the predominant mode of water and gas flow. The purpose of this report is to review the current understanding of gas and water flow, and mass transport, in the unique hydrogeologic environment of Yucca Mountain. Characteristics of the Yucca Mountain site are examined, and concepts and mathematical modeling approaches are described for variably saturated flow in thick unsaturated zones of fractured rock. The paper includes a brief summary of the disposal concept and repository design, as developed by a team of engineering contractors to the U.S. Department of Energy (DOE), with strong participation from the DOE National Laboratories

  3. GIS for Nevada railroads: 1993 report

    International Nuclear Information System (INIS)

    Carr, J.R.

    1993-12-01

    This is an interim report on a task within a large, ongoing study by the University of Nevada, Reno to examine the safety of Nevada railroads. The overall goal, of which this year's research is a middle stage, is to develop models based on the use of geographic information systems (GIS). These models are to enable the selection of the best and safest railway routes for the transport of high-level nuclear waste across Nevada to the proposed repository at Yucca Mountain. Last year's research concluded that the databases are adequate and that GIS are feasible and desirable for displaying the multi-layered data required to reach decisions about safety. It developed several database layers. This report deals with work during 1993 on the use of geographic information systems (GIS) for rail-route selection. The goal was to identify and assemble many of the databases necessary for the models. In particular, the research aimed to identify (a) any problems with developing database layers; and (b) the level of effort required. This year's effort developed database layers for two Nevada counties: Clark and Lincoln. The layers dealt with: topographic information, geologic information, and land ownership. These are among the most important database layers. The database layers were successfully created. No significant problems arose in developing them. The level of effort did not exceed the expected level. The most effective approach is by means of digital, shaded relief maps. (Sample maps appear in plates.) Therefore, future database development will be straightforward. Research may proceed on the full development of shaded relief elevation maps for Elko, White Pine, Nye and Eureka counties and with actual modeling for the selection of a route or routes between the UP/SP line in northern Nevada and Yucca Mountain

  4. Potential climatic refugia in semi-arid, temperate mountains: plant and arthropod assemblages associated with rock glaciers, talus slopes, and their forefield wetlands, Sierra Nevada, California, USA

    Science.gov (United States)

    Constance I. Millar; Robert D. Westfall; Angela Evenden; Jeffrey G. Holmquist; Jutta Schmidt-Gengenbach; Rebecca S. Franklin; Jan Nachlinger; Diane L. Delany

    2015-01-01

    Unique thermal and hydrologic regimes of rock-glacier and periglacial talus environments support little-studied mountain ecosystems. We report the first studies of vascular plant and arthropod diversity for these habitats in the central Sierra Nevada, California, USA. Surfaces of active rock glaciers develop scattered islands of soil that provide habitat for vegetation...

  5. Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Bullard, K.L.

    1994-01-01

    The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ''worst possible case'' flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services's Hydrometeorological Report No. 49 (HMR 49)

  6. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    Science.gov (United States)

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation

  7. Nuclear waste in a repository: amount as a factor in risk duration

    International Nuclear Information System (INIS)

    Zen, E.

    1980-01-01

    The relationship between the amount of nuclear waste in a nuclear repository and the safety of the repository is examined. It is shown that the amount of a given hazardous nuclide that is potentially leachable depends on the initial amount of waste in the repository and the time that has elapsed since the repository was put into operation. Nuclear repository safety can be enhanced if repositories are designed as modular units with leach-resistant watertight compartments

  8. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    1992-07-01

    This document, and its associated appendices and microcomputer (PC) data bases, constitutes the reference OCRWM data base of physical and radiological characteristics data of radioactive wastes. This Characteristics Data Base (CDB) system includes data on spent nuclear fuel and high-level waste (HLW), which clearly require geologic disposal, and other wastes which may require long-term isolation, such as sealed radioisotope sources. The data base system was developed for OCRWM by the CDB Project at Oak Ridge National Laboratory. Various principal or official sources of these data provided primary information to the CDB Project which then used the ORIGEN2 computer code to calculate radiological properties. The data have been qualified by an OCRWM-sponsored peer review as suitable for quality-affecting work meeting the requirements of OCRWM's Quality Assurance Program. The wastes characterized in this report include: light-water reactor (LWR) spent fuel and immobilized HLW

  9. Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. As such, this map focuses on the central block at Yucca Mountain, which contains the potential repository site. The central block is a structural block of Tertiary volcanic rocks bound on the west by the Solitario Canyon Fault, on the east by the Bow Ridge Fault, to the north by the northwest-striking Drill Hole Wash Fault, and on the south by Abandoned Wash. Earlier reconnaissance mapping by Lipman and McKay (1965) provided an overview of the structural setting of Yucca Mountain and formed the foundation for selecting Yucca Mountain as a site for further investigation. They delineated the main block-bounding faults and some of the intrablock faults and outlined the zoned compositional nature of the tuff units that underlie Yucca Mountain. Scott and Bonk (1984) provided a detailed reconnaissance geologic map of favorable area at Yucca Mountain in which to conduct further site-characterization studies. Of their many contributions, they presented a detailed stratigraphy for the volcanic units, defined several other block-bounding faults, and outlined numerous intrablock faults. This study was funded by the U.S. Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bonk (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the

  10. Repository for high level radioactive wastes in Brazil: the importance of geochemical (Micro thermometric) studies and fluid migration in potential host rocks

    International Nuclear Information System (INIS)

    Rios, Francisco Javier; Fuzikawa, Kazuo; Alves, James Vieira; Neves, Jose Marques Correia

    2003-01-01

    A detailed fluid inclusion study of host rocks, is of fundamental importance in the selection of geologically suitable areas for high level nuclear waste repository constructions (HLRW). The LIFM-CDTN is enabled to develop studies that confirm: the presence or not, of corrosive fluid in minerals from host rocks of the repository and the possible presence of micro fractures (and fluid leakage) when these rocks are submitted to high temperatures. These fluid geochemistry studies, with permeability determinations by means of pressurized air injection must be carried out in rocks hosting nuclear waste. Micro fracture determination is of vital importance since many naturally corrosive solutions, present in the mineral rocks, could flow out through these plans affecting the walls of the repository. (author)

  11. U.S. DEPARTMENT OF ENERGY EXPERIENCE IN CREATING AND COMMUNICATING THE CASE FOR THE SAFETY OF A POTENTIAL YUCCA MOUNTAIN REPOSITORY

    International Nuclear Information System (INIS)

    W.J. Boyle; A.E. Van Luik

    2005-01-01

    Experience gained by the U.S. Department of Energy (the Department) in making the recommendation for the development of the Yucca Mountain site as the nation's first high-level waste and spent nuclear fuel repository is useful for creating documents to support the next phase in the repository program, the licensing phase. The experience that supported the successful site-recommendation process involved a three-tiered approach. First, was making a highly technical case for regulatory compliance. Second, was making a broader case for safety in an Environmental Impact Statement. And third, producing plain language brochures, made available to the public in hard copy and on the Internet, to explain the Department's action and its legal and scientific bases. This paper reviews lessons learned from this process, and makes suggestions for the next stage of the repository program: licensing

  12. Influence of temperature elevation on the sealing performance of a potential buffer material for a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Cho, W.-J.; Lee, J.-O.; Kang, C.-H.

    2000-01-01

    The sealing performance of buffer material in a high-level waste repository depends largely upon the hydraulic conductivity, the swelling pressure, and the dissolution of organic carbon in the buffer material. Temperature effects on these properties were evaluated. The hydraulic conductivity and the swelling pressure of compacted bentonite increase with increasing temperature, but the effect of temperature elevation is not large. The dissolution of organic carbon in bentonite also increases with increasing temperature, but the resultant aqueous concentrations of organic carbon in bentonite suspensions are less than those of deep groundwater in granite. Therefore, the organic carbon dissolved from the bentonite will not cause a significant increase in the organic carbon content of deep groundwater in the repository environment. Overall, temperature effects on the sealing performance of buffer material in a waste repository is not important, if the maximum temperature is maintained below 100 deg. C

  13. Progress in evaluation of radionuclide geochemical information developed by DOE high-level nuclear waste repository site projects. Annual report, October 1984-September 1985. Volume 4

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Blencoe, J.G.; Jacobs, G.K.; Kelmers, A.D.; Seeley, F.G.; Whatley, S.K.

    1986-05-01

    Information pertaining to the potential geochemical behavior of radionuclides at candidate sites for a high-level radioactive waste repository, which is being developed by projects within the Department of Energy (DOE), is being evaluated by Oak Ridge National Laboratory for the Nuclear Regulatory Commission (NRC). During this report period, emphasis was placed on the evaluation of information pertinent to the Hanford site in southeastern Washington. Results on the sorption/solubility behavior of technetium, neptunium, and uranium in the basalt/water geochemical system are summarized and compared to the results of DOE. Also, summaries of results are reported from two geochemical modeling studies: (1) an evaluation of the information developed by DOE on the native copper deposits of Michigan as a natural analog for the emplacement of copper canisters in a repository in basalt, and (2) calculation of the solubility and speciation of radionuclides for representative groundwaters from the Yucca Mountain site in Nevada

  14. Potential influence of organic compounds on the transport of radionuclides from a geologic repository. Assessment of effectiveness of geologic isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Silviera, D.J.

    1981-03-01

    This study identifies organic compounds that may be present in a repository and outlines plausible interactions and mechanisms that may influence the forms and chemical behavior of these compounds. A review of the literature indicates that large quantities of organic radioactive wastes are generated by the nuclear industry and if placed in a repository could increase or decrease the leach rate and sorption characteristics of waste radionuclides. The association of radionuclides with organic matter can render the nuclides soluble or insoluble depending on the particular nuclide and such parameters as the pH, Eh, and temperature of the hydrogeologic system as well as the properties of the organic compounds themselves. 44 references.

  15. Potential influence of organic compounds on the transport of radionuclides from a geologic repository. Assessment of effectiveness of geologic isolation systems

    International Nuclear Information System (INIS)

    Silviera, D.J.

    1981-03-01

    This study identifies organic compounds that may be present in a repository and outlines plausible interactions and mechanisms that may influence the forms and chemical behavior of these compounds. A review of the literature indicates that large quantities of organic radioactive wastes are generated by the nuclear industry and if placed in a repository could increase or decrease the leach rate and sorption characteristics of waste radionuclides. The association of radionuclides with organic matter can render the nuclides soluble or insoluble depending on the particular nuclide and such parameters as the pH, Eh, and temperature of the hydrogeologic system as well as the properties of the organic compounds themselves. 44 references

  16. Seismic design ampersand analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid open-quotes deterministicclose quotes and open-quotes probabilisticclose quotes concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  17. Seismic design and analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid ''deterministic'' and ''probabilistic'' concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  18. Repository operational criteria comparative analysis

    International Nuclear Information System (INIS)

    Hageman, J.P.; Chowdhury, A.H.

    1994-06-01

    The objective of the ''Repository Operational Criteria (ROC) Feasibility Studies'' (or ROC task) was to conduct comprehensive and integrated analyses of repository design, construction, and operations criteria in 10 CFR Part 60 regulations considering the interfaces among the components of the regulations and impacts of any potential changes to those regulations. The ROC task addresses regulatory criteria and uncertainties related to the preclosure aspects of the geologic repository. Those parts of 10 CFR Part 60 that require routine guidance or minor changes to the rule were addressed in Hageman and Chowdhury, 1992. The ROC task shows a possible need for further regulatory clarity, by major changes to the rule, related to the design bases and siting of a geologic repository operations area and radiological emergency planning in order to assure defense-in-depth. The analyses, presented in this report, resulted in the development and refinement of regulatory concepts and their supporting rationale for recommendations for potential major changes to 10 CFR Pan 0 regulations

  19. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  20. Open DOAR the Directory of Open Access Repositories

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    The last year has seen wide-spread growth in the idea of using open access repositories as a part of a research institution's accepted infrastructure. Policy development from institutions and funding bodies has also supported the growth of the repository network. The next stage of expansion will be in the provision of services and cross-repository facilities and resources. Of course, it is hoped that these will then establish a feed-back loop to encourage repository population and further repository establishment, as the potential of open access to research materials is realised. The growth of repositories has been organic, with a variety of different repositories based in departments, institutions, funding agencies or subject communities, with a range of content, both in type and subject. Existing repositories are expanding their holdings, from eprints to associated research data-sets, or with learning objects and multimedia material. This presentation will look at the development of the Directory of Open Ac...

  1. Development of rail access to the proposed repository site at Yucca Mountain

    International Nuclear Information System (INIS)

    Standish, P.N.; Seidler, P.E.; Andrews, W.B.; Shearin, G.

    1991-01-01

    In accordance with the Nuclear Waste Policy Amendment Act of 1987, Yucca Mountain was designated as the initial site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is considered desirable by the Office of Civilian Radioactive Waste Management (OCRWM) program because of the potential of rail transportation to reduce (1) costs and (2) number of shipments, relative to highway transportation. Therefore, it is necessary to conduct a study to determine (1) that there are alignments for a potential rail line from existing mainline railroads to Yucca Mountain and (2) that these are consistent with present rail design standards and are acceptable relative to environmental and land access considerations

  2. Reference repository design concept for bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Martin, R.W.

    1980-10-08

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  3. Reference repository design concept for bedded salt

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Martin, R.W.

    1980-01-01

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood

  4. Repository Rodeo Redux

    CERN Document Server

    Anez, Melissa; Donohue, Tim; Fyson, Will; Simko, Tibor; Wilcox, David

    2017-01-01

    You’ve got more repository questions and we’ve got more answers! Last year’s Repository Rodeo panel was a huge success, so we’re taking the show on the road to Brisbane for OR2017. Join representatives from the DSpace, Eprints, Fedora, Hydra, and Islandora communities as we (briefly) explain what each of our repositories actually does. We'll also talk about the directions of our respective technical and community developments, and related to the conference theme of Open: Innovation Knowledge Repositories, offer brief observations about the latest, most promising and/or most surprising innovations in our space. This panel will be a great opportunity for newcomers to Open Repositories to get a crash course on the major repository options and meet representatives from each of their communities. After a brief presentation from each representative, we'll open the session up for questions from the audience.

  5. Modeling fluid-rock interaction at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ''Geochemical Modeling of Clinoptilolite-Water Interactions,'' solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ''Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,'' describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement

  6. Gravity and magnetic investigations of the Ghost Dance and Solitario Canyon faults, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.

    1995-01-01

    Ground magnetic and gravity data collected along traverses across the Ghost Dance and Solitario Canyon faults on the eastern and western flanks, respectively, of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Gravity and magnetic data and models along traverses across the Ghost Dance and Solitario Canyon faults show prominent anomalies associated with known faults and reveal a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by several small amplitude anomalies that probably reflect small scale faulting

  7. Three-dimensional hydrological and thermal property models of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Rautman, C.A.; McKenna, S.A.

    1997-11-01

    This report describes the creation of three-dimensional numerical models of selected rock-matrix properties for the region of the potential high-level nuclear waste repository site at Yucca Mountain, which is located in southern Nevada. The models have been generated for a majority of the unsaturated and shallow saturated zone within an area referred to within the Yucca Mountain Site Characterization project as the site area. They comprise a number of material properties of importance both to detailed process-level modeling activities and to more summary-style performance assessment modeling. The material properties within these models are both spatially variable (heterogeneous) and spatially correlated, as the rocks are understood from data obtained from site-characterization drill holes widely scattered across the site area

  8. Isotopic and trace element variability in altered and unaltered tuffs at Yucca Mountain, Nevada

    Science.gov (United States)

    Peterman, Z.E.; Spengler, R.W.; Singer, F.R.; Dickerson, R.P.

    1993-01-01

    Reference stratigraphic sections near Yucca Mountain, Nevada were established and sampled in outcrop areas where the volcanic rocks have been minimally altered. Isotopic and trace element analyses obtained for these reference sections are baseline data for assessing the degree and extent of element mobility attendant with past zonal alteration of the rock mass. In agreement with earlier studies, zeolitization is shown to have occurred under wholesale open-system conditions. Calcium was increased by two three times the baseline values and strontium up to twenty times. In contrast, barium displays less variability, and the high-field strength elements zirconium and titanium were the least mobile during zeolitization. The data reported here establish the usefulness of reference sections of assessing past elements mobility. The information gained will be helpful in predicting possible future element mobility induced by thermally activated fluids in the near field of a potential repository.

  9. Ecology, ethics, and professional environmental practice: The Yucca Mountain, Nevada, project as a case study

    International Nuclear Information System (INIS)

    Malone, C.R.

    1995-01-01

    The US Department of Energy (DOE) is proposing to develop a geologic repository for disposing of high-level nuclear waste at Yucca Mountain, Nevada. In this commentary, the ecology program for the DOE's Yucca Mountain Project is discussed from the perspective of state-of-the-art ecosystem analysis, environmental ethics, and standards of professional practice. Specifically at issue is the need by the Yucca Mountain ecology program to adopt an ecosystem approach that encompasses the current strategy based on population biology and community ecology alone. The premise here is that an ecosystem approach is essential for assessing the long-term potential environmental impacts at Yucca Mountain in light of the thermal effects expected to be associated with heat from radioactive decay

  10. Assessment of geophysical logs from borehole USW G-2, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.; Schimschal, U.

    1993-01-01

    Commercial logging contractors, Western Atlas, Schlumberger, and Edcon obtained borehole geophysical logs at the site of a potential high level nuclear waste repository at Yucca Mountain, Nevada. Drill hole USW-G2 was picked for this test of suitable logging tools and logging technology, both representing state-of-the-art technology by these commercial companies. Experience gained by analysis of existing core data and a variety of logs obtained earlier by Birdwell and Dresser Atlas served as a guide to a choice of logs to be obtained. Logs were obtained in water-filled borehole in zeolitized tuff (saturated zone) and in air-filled borehole largely in unaltered welded tuff (unsaturated zone)

  11. CAED Document Repository

    Data.gov (United States)

    U.S. Environmental Protection Agency — Compliance Assurance and Enforcement Division Document Repository (CAEDDOCRESP) provides internal and external access of Inspection Records, Enforcement Actions, and...

  12. Administrative Data Repository (ADR)

    Data.gov (United States)

    Department of Veterans Affairs — The Administrative Data Repository (ADR) was established to provide support for the administrative data elements relative to multiple categories of a person entity...

  13. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J.; Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II

    1998-01-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin

  14. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J. [Geological Survey, Denver, CO (US); Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II [Pacific Western Technologies, Inc., Denver, CO (US)

    1998-11-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections o f the southwestern Great Basin.

  15. Geologic framework and Cenozoic evolution of the Yucca Mountain area, Nevada

    International Nuclear Information System (INIS)

    Fox, K.F. Jr.; Spengler, R.W.; Myers, W.B.

    1990-01-01

    Yucca Mountain, Nevada, has been proposed as the site of a high-level nuclear waste repository. The purpose of this paper is to outline aspects of the geology and tectonics of the area which bear on its suitability as a waste repository. The repository is to be excavated from a non-lithophysal zone within the lower part of the Paintbrush Tuff. Revised estimates of the thickness of this zone indicate that the lower, down-dip extremity of the planned repository could be raised by as much as 130 m, thus reducing the grade within the repository and increasing the distance to the water table below. We note that because of the closely spaced fracturing and low in-situ stresses within the repository block, lateral support of fractured rock is likely to be poor. 30 refs., 5 figs

  16. Public reactions to nuclear waste: Citizens' views of repository siting

    International Nuclear Information System (INIS)

    Rosa, E.A.

    1993-01-01

    This book presents revised and updated papers from a panel of social scientists, at the 1989 AAAS meetings, that examined the public's reactions to nuclear waste disposal and the repository siting process. The papers report the results of original empirical research on citizens' views of nuclear waste repository siting. Topics covered include the following: content analysis of public testimony; sources of public concern about nuclear waste disposal in Texas agricultural communities; local attitudes toward high-level waste repository at Hanford; perceived risk and attitudes toward nuclear wastes; attitudes of Nevada urban residents toward a nuclear waste repository; attitudes of rural community residents toward a nuclear waste respository. An introductory chapter provides background and context, and a concluding chapter summarizes the implications of the reports. Two additional chapters cover important features of high-level waste disposal: long term trends in public attitudes toward nuclear energy and nuclear waste policy and assessment of the effects on the Los Vegas convention business if a high-level nuclear waste depository were sited in Nevada

  17. Volcanic harzards studies tailored to future populations and facilities: Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Keating, Gordon N.; Perry, Frank V.; Harrington, Charles; Krier, Don; Valentine, Greg A.; Gaffney, Edward; Cline, Mike

    2004-01-01

    The evaluation of impacts of potential volcanic eruptions on populations and facilities far in the future may involve detailed volcanological studies that differ from traditional hazards analyses. The proximity of Quaternary volcanoes to a proposed repository for disposal of the USA's high-level radioactive waste at Yucca Mountain, Nevada, has required in-depth study of probability and consequences of basaltic igneous activity. Because of the underground nature of the repository, evaluation of the potential effects of dike intrusion and interaction with the waste packages stored in underground tunnels (dnfts) as well as effects of eruption and ash dispersal have been important. These studies include analyses of dike propagation, dike-drift intersection, flow of magma into dnfts, heat and volcanic gas migration, atmospheric dispersal of tephra, and redistribution of waste-contaminated tephra by surficial processes. Unlike traditional volcanic hazards studies that focus on impacts on housing, transportation, communications, etc. (to name a small subset), the igneous consequences studies at Yucca Mountain have focused on evaluation of igneous impacts on nuclear waste packages and implications for enhanced radioactive dose on a hypothetical future ((le) 10000 yrs) local population. Potential exposure pathways include groundwater (affected by in-situ degradation of waste packages by igneous heat and corrosion) and inhalation, ingestion, and external exposure due to deposition and redistribution of waste-contaminated tephra

  18. Preliminary stratigraphic and petrologic characterization of core samples from USW-G1, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Waters, A.C.; Carroll, P.R.

    1981-11-01

    Tuffs of the Nevada Test Site are currently under investigation to determine their potential for long-term storage of radioactive waste. As part of this program, hole USW-G1 was drilled to a depth of 6000 ft below the surface, in the central part of the Yucca Mountain area, Nevada Test Site, Nevada. Petrographic study of the USW-G1 core is presented in this report and shows the tuffs (which generally were variably welded ash flows) are partly recrystallized to a variety of secondary minerals. The important alteration products are zeolites (heulandite, clinoptilolite, mordenite and analcime), smectite clays with minor interstratified illite, albite, micas, potassium feldspar, and various forms of silica. Iijima's zeolite zones I through IV of burial metamorphism can be recognized in the core. Zeolites are first observed at about the 1300-ft depth, and the high-temperature boundary of zeolite stability in this core occurs at about 4350 ft. Analcime persists, either metastably or as a retrograde mineral, deeper in the core. The oxidation state of Fe-Ti oxide minerals, through most of the core, increases as the degree of welding decreases, but towards the bottom of the hole, reducing conditions generally prevail. Four stratigraphic units transected by the core may be potentially favorable sites for a waste repository. These four units, in order of increasing depth in the core, are (1) the lower cooling unit of the Topopah Spring Member, (2) cooling unit II of the Bullfrog Member, (3) the upper part of the Tram tuff, and (4) the Lithic-rich tuff

  19. Preliminary stratigraphic and petrologic characterization of core samples from USW-G1, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Waters, A.C.; Carroll, P.R. (eds.)

    1981-11-01

    Tuffs of the Nevada Test Site are currently under investigation to determine their potential for long-term storage of radioactive waste. As part of this program, hole USW-G1 was drilled to a depth of 6000 ft below the surface, in the central part of the Yucca Mountain area, Nevada Test Site, Nevada. Petrographic study of the USW-G1 core is presented in this report and shows the tuffs (which generally were variably welded ash flows) are partly recrystallized to a variety of secondary minerals. The important alteration products are zeolites (heulandite, clinoptilolite, mordenite and analcime), smectite clays with minor interstratified illite, albite, micas, potassium feldspar, and various forms of silica. Iijima`s zeolite zones I through IV of burial metamorphism can be recognized in the core. Zeolites are first observed at about the 1300-ft depth, and the high-temperature boundary of zeolite stability in this core occurs at about 4350 ft. Analcime persists, either metastably or as a retrograde mineral, deeper in the core. The oxidation state of Fe-Ti oxide minerals, through most of the core, increases as the degree of welding decreases, but towards the bottom of the hole, reducing conditions generally prevail. Four stratigraphic units transected by the core may be potentially favorable sites for a waste repository. These four units, in order of increasing depth in the core, are (1) the lower cooling unit of the Topopah Spring Member, (2) cooling unit II of the Bullfrog Member, (3) the upper part of the Tram tuff, and (4) the Lithic-rich tuff.

  20. PROCESS FOR LICENSE APPLICATION DEVELOPMENT FOR THE GEOLOGIC REPOSITORY

    International Nuclear Information System (INIS)

    DOUGLAS M. FRANKS AND NORMAN C. HENDERSON

    1997-01-01

    The Department of Energy (DOE), specifically the Office of Civilian Radioactive Waste Management (OCRWM) has been charged by the U.S. Congress, through the Nuclear Waste Policy Act (NWPA), with the responsibility for obtaining a license to develop a geologic repository. The NRC is the licensing authority for geologic disposal, and its regulations pertinent to construction authorization and license application are specified in 10 CFR Part 60, Disposal of High-Level Radioactive Wastes in Geologic Repositories, (section)60.21ff and (section)60.31ff. This paper discusses the process the Yucca Mountain Site Site Characterization Project (YMP) will use to identify and apply regulatory and industry guidance to development of the license application (LA) for a geologic repository at Yucca Mountain, Nevada. This guidance will be implemented by the ''Technical Guidance Document for Preparation of the License Application'' (TGD), currently in development

  1. Process for license application development for the geologic repository

    International Nuclear Information System (INIS)

    Franks, D.M.; Henderson, N.C.

    1998-01-01

    The Department of Energy (DOE), specifically the Office of Civilian Radioactive Waste Management (OCRWM) has been charged by the US Congress, through the Nuclear Waste Policy Act (NWPA), with the responsibility for obtaining a license to develop a geologic repository. The NRC is the licensing authority for geologic disposal, and its regulations pertinent to construction authorization and license application are specified in 10 CFR Part 60, Disposal of High-Level Radioactive Wastes in Geologic Repositories, section 60.21ff and section 60.31ff. This paper discusses the process the Yucca Mountain Site Characterization Project (YMP) will use to identify and apply regulatory and industry guidance to development of the license application (LA) for a geologic repository at Yucca Mountain, Nevada. This guidance will be implemented by the Technical Guidance Document for Preparation of the License Application (TGD), currently in development

  2. Radioactive waste repository study

    International Nuclear Information System (INIS)

    1978-11-01

    This is the second part of a report of a preliminary study for AECL. It considers the requirements for an underground waste repository for the disposal of wastes produced by the Canadian Nuclear Fuel Program. The following topics are discussed with reference to the repository: 1) geotechnical assessment, 2) hydrogeology and waste containment, 3) thermal loading and 4) rock mechanics. (author)

  3. An analysis of repository waste-handling operations

    International Nuclear Information System (INIS)

    Dennis, A.W.

    1990-09-01

    This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs

  4. Nevada Operations overview

    International Nuclear Information System (INIS)

    Church, B.W.

    1981-01-01

    A brief overview is given of weapon test site decontamination activities carried out by Nevada Operations Office. Tabulated data is given of event name, date, location, year of cleanup, and radioisotopes that were present, activity levels, and cost of cleanup

  5. Special Nevada report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-09-23

    This report is submitted to Congress by the Secretary of the Air Force, the Secretary of the Navy, and the Secretary of the Interior pursuant to Section 6 of the Military Lands Withdrawal Act of 1986. It contains an analysis and evaluation of the effects on public health and safety resulting from DOD and Department of Energy (DOE) military and defense-related uses on withdrawn public lands in the State of Nevada and in airspace overlying the State. This report describes the cumulative impacts of those activities on public and private property in Nevada and on plants, fish and wildlife, cultural, historic, scientific, recreational, wilderness and other resources of the public lands of Nevada. An analysis and evaluation of possible measures to mitigate the cumulative effects of the withdrawal of lands and the use of airspace in Nevada for defense-related purposes was conducted, and those considered practical are listed.

  6. Nevada Test Site Environmental Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-10-01

    The ''Nevada Test Site Environmental Report 2004'' was prepared by Bechtel Nevada (BN) to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of non-radiological releases, implementation status of the NTS Environmental Management System, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled ''Nevada Test Site Environmental Report Summary 2004''. It was produced this year to provide a more cost-effective and wider distribution of a hardcopy summary of the ''Nevada Test Site Environmental Report 2004'' to interested DOE stakeholders.

  7. Geomechanics investigations in support of the large block test at Fran Ridge, Nye County, Nevada

    International Nuclear Information System (INIS)

    Blair, S.C.; Berge, P.; Kansa, E.; Lin, Wunan; Roberts, J.

    1994-01-01

    The Yucca Mountain Site Characterization Project is investigating the Topopah Spring Tuff at Yucca Mountain, Nevada for its suitability as a host rock for the disposal of high level nuclear wastes. The Lawrence Livermore National Laboratory is planning a large block test (LBT) to investigate coupled thermal-mechanical-hydrological and geochemical processes that may occur in the repository near-field environment

  8. Chemical risks from nuclear waste repositories

    International Nuclear Information System (INIS)

    Persson, L.

    1988-01-01

    Studies concerning the chemical risks of nuclear waste are reviewed. The radiological toxicity of the material is of primary concern but the potential nonradiological toxicity should not be overlooked as the chemotoxic substances may reach the biosphere from a nuclear waste repository. In the report is concluded that the possible chemotoxic effects of a repository for nuclear waste should be studied as a part of the formal risk assessment of the disposal concept. (author)

  9. Geology of the USW SD-9 drill hole, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Engstrom, D.A.; Rautman, C.A.

    1996-10-01

    Drill hole USW SD-9 is one of several holes drilled under Site Characterization Plan Study as part of the characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-9 drill hole is located in the northern part of the potential repository area. Quantitative and semiquantitative data are included in this report for cover recovery, rock-quality designation (RQD), lithophysal cavity abundance, and fracturing. These data are spatially variable, both within and among the major formational-level stratigraphic units. Nonwelded intervals in general exhibit higher recoveries and more intact (higher) RQD values than welded intervals. The most intact, highest-RQD materials encountered within the Topopah Spring belong to the lower 33.3 ft of the middle nonlithophysal zone. This report includes quantitative data for the framework material properties of porosity, bulk and particle density, and saturated hydraulic conductivity. Graphical analysis of variations in these laboratory hydrologic properties indicates first-order control of material properties by the degree of welding and the presence of zeolite minerals. Many major lithostratigraphic contacts are not well expressed in the material-property profiles; contacts of material-property units are related more to changes in the intensity of welding. Approximate in-situ saturation data of samples preserved immediately upon recovery from the hole are included in the data tabulation

  10. Current plans to characterize the design basis ground motion at the Yucca Mountain, Nevada Site

    International Nuclear Information System (INIS)

    Simecka, W.B.; Grant, T.A.; Voegele, M.D.; Cline, K.M.

    1992-01-01

    A site at Yucca Mountain Nevada is currently being studied to assess its suitability as a potential host site for the nation's first commercial high level waste repository. The DOE has proposed a new methodology for determining design-basis ground motions that uses both deterministic and probabilistic methods. The role of the deterministic approach is primary. It provides the level of detail needed by design engineers in the characterization of ground motions. The probabilistic approach provides a logical structured procedure for integrating the range of possible earthquakes that contribute to the ground motion hazard at the site. In addition, probabilistic methods will be used as needed to provide input for the assessment of long-term repository performance. This paper discusses the local tectonic environment, potential seismic sources and their associated displacements and ground motions. It also discusses the approach to assessing the design basis earthquake for the surface and underground facilities, as well as selected examples of the use of this type of information in design activities

  11. Geology of the USW SD-9 drill hole, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, D.A. [Spectra Research Inst., Albuquerque, NM (United States); Rautman, C.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-10-01

    Drill hole USW SD-9 is one of several holes drilled under Site Characterization Plan Study as part of the characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-9 drill hole is located in the northern part of the potential repository area. Quantitative and semiquantitative data are included in this report for cover recovery, rock-quality designation (RQD), lithophysal cavity abundance, and fracturing. These data are spatially variable, both within and among the major formational-level stratigraphic units. Nonwelded intervals in general exhibit higher recoveries and more intact (higher) RQD values than welded intervals. The most intact, highest-RQD materials encountered within the Topopah Spring belong to the lower 33.3 ft of the middle nonlithophysal zone. This report includes quantitative data for the framework material properties of porosity, bulk and particle density, and saturated hydraulic conductivity. Graphical analysis of variations in these laboratory hydrologic properties indicates first-order control of material properties by the degree of welding and the presence of zeolite minerals. Many major lithostratigraphic contacts are not well expressed in the material-property profiles; contacts of material-property units are related more to changes in the intensity of welding. Approximate in-situ saturation data of samples preserved immediately upon recovery from the hole are included in the data tabulation.

  12. Hydrologic modeling and field testing at Yucca mountain, Nevada

    International Nuclear Information System (INIS)

    Hoxie, D.T.

    1991-01-01

    Yucca Mountain, Nevada, is being evaluated as a possible site for a mined geologic repository for the disposal of high-level nuclear waste. The repository is proposed to be constructed in fractured, densely welded tuff within the thick (500 to 750 meters) unsaturated zone at the site. Characterization of the site unsaturated-zone hydrogeologic system requires quantitative specification of the existing state of the system and the development of numerical hydrologic models to predict probable evolution of the hydrogeologic system over the lifetime of the repository. To support development of hydrologic models for the system, a testing program has been designed to characterize the existing state of the system, to measure hydrologic properties for the system and to identify and quantify those processes that control system dynamics. 12 refs

  13. Potential for formation of disinfection by-products from storage of chlorinated surface water in the Basalt aquifer near Fallon, Nevada

    Science.gov (United States)

    Fram, Miranda S.; Maurer, Douglas K.; Lico, Michael S.

    2005-01-01

    Increased pumpage from a basalt aquifer near Fallon, Nevada, has caused its water levels to decline and has induced changes in the quality of water pumped from the basalt. The aquifer is the sole source of water for municipal supply to the city of Fallon, the Naval Air Station Fallon, and the Fallon Paiute-Shoshone Tribe. These changes may be mitigated by storage of surface water in the basalt for subsequent use. Because chlorination of the surface water may be required for storage, the U.S. Geological Survey, in cooperation with the Fallon Paiute-Shoshone Tribe, made laboratory tests using laboratory carbon-organic-free water, surface-water, ground-water, and basaltic-rock samples to determine the potential for formation of disinfection by-products. Experiments with water samples only (no rock and no chlorine) indicated no change in dissolved-organic-carbon (DOC) concentrations over a 20-day reaction period; whereas, all experiments using rock, water, and no chlorine indicated an increase in DOC concentrations. The greatest increase in DOC concentrations for all three water samples occurred in experiments with the rock samples from outcrops on Rattlesnake Hill. Experiments with water only and chlorine yielded a total trihalomethane (THM) concentration of 97.4 ?g/L for the ground-water sample and 347 ?g/L for the surface-water sample. Experiments with mixtures of water, rocks, and chlorine indicated that reactions with the rock consumed chlorine and released significant amounts of organic carbon from the rock, increasing the DOC concentration in the water. The organic carbon in the rocks likely is associated with the secondary clay minerals that line vesicles and fractures in the rocks. THM concentrations were greatest, from 335 to 909 ?g/L, for surface water equilibrated with rock samples from Rattlesnake Hill. However, the concentration of chlorine required to produce these high THM concentrations ranged from 18 to 84 mg/L. The results of the experiments suggest

  14. Hydrologic and Water-Quality Responses in Shallow Ground Water Receiving Stormwater Runoff and Potential Transport of Contaminants to Lake Tahoe, California and Nevada, 2005-07

    Science.gov (United States)

    Green, Jena M.; Thodal, Carl E.; Welborn, Toby L.

    2008-01-01

    Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrog