WorldWideScience

Sample records for neutron-irradiation induced defects

  1. DLTS and capacitance transients study of defects induced by neutron irradiation in MOS structures CCD process

    International Nuclear Information System (INIS)

    Ahaitouf, A.; Losson, E.; Charles, J.P.

    1999-01-01

    The aim of this paper is to study neutron irradiation effects on PMOS capacitors and NMOSFETs transistors. The characterization of induced defects was made by capacitance transients C(t) measurements, DLTS spectroscopy, and optical DLTS (ODLTS). DLTS spectra present three peaks due to deep levels created in the semiconductor and two peaks due to minority carrier generation. Two levels are reported in the literature. Two other minority carrier traps have been observed on ODLTS spectra after irradiation. This can explain the decrease of the minority carrier generation lifetime observed by capacitance transients measurements. (authors)

  2. Fusion neutron irradiation induced ordering and defect production in Cu3Au at high temperatures

    International Nuclear Information System (INIS)

    Huang, J.S.; Guinan, M.W.; Kirk, M.A.; Hahn, P.A.

    1987-08-01

    We irradiate three Cu 3 Au alloys different degrees of initial long-range order at temperatures between 300K and 434K. The resistivity of samples is monitored during irradiation and related to the long-term order parameter by the Muto relation. The results show that the ordering rate, which is proportional to the concentration of freely migrating vacancies, increases at the beginning and then decreases later with fluence. The decrease is a result of the continuous production of sinks in the form of dislocation loops. The effect of sinks on vacancy annihilation in some cases causes a reversed temperature dependence of ordering rate. The free vacancy production rate and the rate of sink production are determined using an ordering kinetics theory. The results of the 14 MeV neutron irradiations are compared to those obtained in other neutron spectra and particle irradiations. The estimated free vacancy production rate is also compared to the primary defect production rate measured at 4.2K in disordered samples

  3. Effect of defects induced by doping and fast neutron irradiation on the thermal properties of lithium ammonium sulphate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kandil, S.H.; Ramadan, T.A.; Darwish, M.M. (Alexandria Univ. (Egypt). Dept. of Materials Science); Kassem, M.E.; El-Khatib, A.M. (Alexandria Univ. (Egypt). Dept. of Physics)

    1994-05-01

    Structural defects were introduced in lithium ammonium sulphate crystals (LAS) either in the process of crystal growth (in the form of foreign ions) or by neutron irradiation. The effect of such defects on the thermal properties of LAS crystals was studied in the temperature range 300-500 K. It was assumed that the doped LAS crystals are composed of a two-phase system having different thermal parameters in each phase. The specific heat at constant pressure, C[sub p], of irradiated samples was found to decrease with increasing irradiation doses. The thermal expansion of LAS crystals was found to be dependent on neutron irradiation, and was attributed to two processes: the release of new species and the trapping process. (author).

  4. First-principles investigation of neutron-irradiation-induced point defects in B4C, a neutron absorber for sodium-cooled fast nuclear reactors

    Science.gov (United States)

    You, Yan; Yoshida, Katsumi; Yano, Toyohiko

    2018-05-01

    Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.

  5. Microstructural defects in EUROFER 97 after different neutron irradiation conditions

    Directory of Open Access Journals (Sweden)

    Christian Dethloff

    2016-12-01

    Full Text Available Characterization of irradiation induced microstructural evolution is essential for assessing the applicability of structural steels like the Reduced Activation Ferritic/Martensitic steel EUROFER 97 in upcoming fusion reactors. In this work Transmission Electron Microscopy (TEM is used to determine the defect microstructure after different neutron irradiation conditions. In particular dislocation loops, voids and precipitates are analyzed concerning defect nature, density and size distribution after irradiation to 15 dpa at 300 °C in the mixed spectrum High Flux Reactor (HFR. New results are combined with previously obtained data from irradiation in the fast spectrum BOR-60 reactor (15 and 32 dpa, 330 °C, which allows for assessment of dose and dose rate effects on the aforementioned irradiation induced defects and microstructural characteristics.

  6. Point defects and magnetic properties of neutron irradiated MgO single crystal

    Directory of Open Access Journals (Sweden)

    Mengxiong Cao

    2017-05-01

    Full Text Available (100-oriented MgO single crystals were irradiated to introduce point defects with different neutron doses ranging from 1.0×1016 to 1.0×1020 cm-2. The point defect configurations were studied with X-ray diffuse scattering and UV-Vis absorption spectra. The isointensity profiles of X-ray diffuse scattering caused by the cubic and double-force point defects in MgO were theoretically calculated based on the Huang scattering theory. The magnetic properties at different temperature were measured with superconducting quantum interference device (SQUID. The reciprocal space mappings (RSMs of irradiated MgO revealed notable diffuse scattering. The UV-Vis spectra indicated the presence of O Frenkel defects in irradiated MgO. Neutron-irradiated MgO was diamagnetic at room temperature and became ferromagnetic at low temperature due to O Frenkel defects induced by neutron-irradiation.

  7. Utilization of shear stress for determination of activation energy of the defects created by neutron irradiation

    International Nuclear Information System (INIS)

    Gonzalez, Hector C.; Miralles, Monica

    1996-01-01

    This paper describes an experimental technique used for the determination thermodynamical parameters such as activation energy using the thermal annealing of increments of Critical resolved Shear Stress of the defects created by neutron irradiation at 77 K. The doses chosen for this work was 3.1 x 10 16 n/cm 2 since the defects are stable to plastic deformation and the cascades of atomic displacements do not overlap. Specimens without any prior deformation were used allowing then the single addition of the initial stress to that due to the created defects. (author)

  8. Indium antimonide crystal defects formed by fast neutron irradiation

    International Nuclear Information System (INIS)

    Vitovskij, N.A.; Dolgolenko, A.P.; Mashovets, T.V.; Oganesyan, O.V.

    1979-01-01

    It is shown, that indium antimonide irradiation with fast neutrons of reactor results in the formation of disorded regions with a mean radius of approximately 130 A surrounded with space charge regions forming barriers for main carriers. But the found values of defect cluster depolarization coefficient (Lsub(x)sup(n)=0.18 and Lsub(x)sup(p)=0.29) show, that the clusters have marked conductivity for main charge carriers. The found position of the Fermi level in the disorded regions Esub(F)=Esub(c)-0.085 eV does not depend on the impurity type and its concentration in an initial material. The disorded regions play the main part in charge carrier scattering at low temperatures and markedly contribute to the change of mobility at 80 K. It is found, that irradiation temperature change in the range from 77 to 300 K does not effect practically on the disorded region parameters

  9. Simulation of Sark Current Increase in Si PIN Photodiode Induced by Neutron Irradiation

    International Nuclear Information System (INIS)

    Wang Zujun; Chen Wei; Zhang Yong; Tang Benqi; Xiao Zhigang; Huang Shaoyao; Liu Minbo; Liu Yinong

    2010-01-01

    The mechanism of dark current increase in Si PIN photodiode induced by neutron irradiation was analyzed. The device physics and neutron irradiation models were presented to simulate dark current in Si PIN photodiode by MEDICI software. The primary regularity of dark current increase in Si PIN photodiode was concluded by neutron irradiation with the energy of 1 MeV and at the fluence of 10 10 -10 14 cm -2 . The simulation results are in agreement with the experimental results from relevant literature. (authors)

  10. Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Chinnathambi [Boise State Univ., ID (United States). Dept. of Materials Science and Engineering; Idaho Falls, ID (United States) Center for Advanced Energy Studies; Kane, Joshua [Boise State Univ., ID (United States). Dept. of Materials Science and Engineering; Idaho Falls, ID (United States) Center for Advanced Energy Studies; Idaho National Lab. (INL), Idaho Falls, ID (United States); Butt, Darryl P. [Boise State Univ., ID (United States). Dept. of Materials Science and Engineering; Idaho Falls, ID (United States) Center for Advanced Energy Studies; Windes, William E. [Idaho Falls, ID (United States) Center for Advanced Energy Studies; Idaho National Lab. (INL), Idaho Falls, ID (United States); Ubic, Rick [Boise State Univ., ID (United States). Dept. of Materials Science and Engineering; Idaho Falls, ID (United States) Center for Advanced Energy Studies

    2015-05-01

    This paper reports the neutron-irradiation-induced effects on the microstructure of NBG-18 and IG-110 nuclear graphites. The high-temperature neutron irradiation at two different irradiation conditions was carried out at the Advanced Test Reactor National User Facility at the Idaho National Laboratory. NBG-18 samples were irradiated to 1.54 dpa and 6.78 dpa at 430 °C and 678 °C respectively. IG-110 samples were irradiated to 1.91 dpa and 6.70 dpa at 451 °C and 674 °C respectively. Bright-field transmission electron microscopy imaging was used to study the changes in different microstructural components such as filler particles, microcracks, binder and quinoline-insoluble (QI) particles. Significant changes have been observed in samples irradiated to about 6.7 dpa. The closing of pre-existing microcracks was observed in both the filler and the binder phases. The binder phase exhibited substantial densification with near complete elimination of the microcracks. The QI particles embedded in the binder phase exhibited a complete microstructural transformation from rosettes to highly crystalline solid spheres. The lattice images indicate the formation of edge dislocations as well as extended line defects bridging the adjacent basal planes. The positive climb of these dislocations has been identified as the main contributor to the irradiation-induced swelling of the graphite lattice.

  11. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Shimada; M. Hara; T. Otsuka; Y. Oya; Y. Hatano

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recovery mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st annealing

  12. Direct observation of defects in A15 compounds produced by fast neutron irradiation

    International Nuclear Information System (INIS)

    Pande, C.S.

    1979-01-01

    The nature of defect or defect complexes produced in superconducting compounds Nb 3 Sn, Nb 3 Pt, and V 3 Si by high energy (E greater than or equal to 1 MeV) neutron irradiation is investigated by transmission electron microscopy. The newly developed technique of superlattice reflection imaging is used whereby the regions of reduced long range order are directly imaged. Unlike metals these regions were found in general not to collapse into dislocation loops. The size and the volume fraction of these disordered regions are obtained for fluences ranging from 10 17 neutrons/cm 2 to 3 x 10 19 neutrons/cm 2 . The size ranges from 20A to 60A. Typical volume fraction for 10 18 neutrons/cm 2 is over 1%

  13. Study of supersaturation of defects under neutron irradiation by Zener relaxation

    International Nuclear Information System (INIS)

    Gonzalez, Hector C.; Justus, Francisco J.W.

    2004-01-01

    Vacancy supersaturation in dynamic equilibrium under fast neutron irradiation could be determined by anelastic relaxation. This phenomenon is particularly noticeable in some substitutional binary alloys. Relaxation is due to the reordering of atoms pairs under a stress, being a local reordering at the atomic scale. Relaxation time (τ) is inversely proportional to the vacancy concentration (Cv) and decreases under irradiation because a dynamical equilibrium of vacancy concentration, higher than thermodynamic equilibrium, is established. Theoretical models allow estimating the magnitude of that supersaturation. Determinations of τ at different temperatures, with and without fast neutron irradiations, were made with an 'in situ' device placed in the high temperature loop in the RA1 CAC-CNEA reactor. An alloy Au-30% Ni was used, since it presents an appreciable Zener effect. The measurements were performed in a spring-shaped specimen in order to minimize temperature and flux gradients. An Arrhenius plot of τ was obtained, and it was observed that for temperatures lower than 220 C degrees a vacancy supersaturation exists. The lowest temperature of our experiments was 190 C degrees. A value of τ at this temperature was three times lower under irradiations. A plot of τ vs. fast neutron fluence (φ f t) at the irradiation temperature T= 203 C degrees was obtained. An increase of τ was observed. After an annealing at T = 280 C degrees, the value of τ recovers the value corresponding to the unirradiated case. This fact suggests that the loops produced by irradiation act as defect sinks. (author) [es

  14. Welding-induced microstructure in austenitic stainless steels before and after neutron irradiation

    International Nuclear Information System (INIS)

    Stoenescu, R.; Schaeublin, R.; Gavillet, D.; Baluc, N.

    2007-01-01

    The effects of neutron irradiation on the microstructure of welded joints made of austenitic stainless steels have been investigated. The materials were welded AISI 304 and AISI 347, so-called test weld materials, and irradiated with neutrons at 300 deg. C to 0.3 and 1.0 dpa. In addition, an AISI 304 type from a decommissioned pressurised water reactor, so-called in-service material, which had accumulated a maximum dose of 0.35 dpa at about 300 deg. C, was investigated. The microstructure of heat-affected zones and base materials was analysed before and after irradiation, using transmission electron microscopy. Neutron diffraction was performed for internal stress measurements. It was found that the heat-affected zone contains, relative to the base material, a higher dislocation density, which relates well to a higher residual stress level and, after irradiation, a higher irradiation-induced defect density. In both materials, the irradiation-induced defects are of the same type, consisting in black dots and Frank dislocation loops. Careful analysis of the irradiation-induced defect contrast was performed and it is explained why no stacking fault tetrahedra could be identified

  15. Welding-induced microstructure in austenitic stainless steels before and after neutron irradiation

    Science.gov (United States)

    Stoenescu, R.; Schäublin, R.; Gavillet, D.; Baluc, N.

    2007-02-01

    The effects of neutron irradiation on the microstructure of welded joints made of austenitic stainless steels have been investigated. The materials were welded AISI 304 and AISI 347, so-called test weld materials, and irradiated with neutrons at 300 °C to 0.3 and 1.0 dpa. In addition, an AISI 304 type from a decommissioned pressurised water reactor, so-called in-service material, which had accumulated a maximum dose of 0.35 dpa at about 300 °C, was investigated. The microstructure of heat-affected zones and base materials was analysed before and after irradiation, using transmission electron microscopy. Neutron diffraction was performed for internal stress measurements. It was found that the heat-affected zone contains, relative to the base material, a higher dislocation density, which relates well to a higher residual stress level and, after irradiation, a higher irradiation-induced defect density. In both materials, the irradiation-induced defects are of the same type, consisting in black dots and Frank dislocation loops. Careful analysis of the irradiation-induced defect contrast was performed and it is explained why no stacking fault tetrahedra could be identified.

  16. Study of the temperature evolution of defect agglomerates in neutron irradiated molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lambri, O.A. [Instituto de Fisica Rosario. Member of the CONICET' s Research Staff, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina); Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina)], E-mail: olambri@fceia.unr.edu.ar; Zelada-Lambri, G.I. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Laboratorio de Materiales, Escuela de Ingenieria Electrica, Avda. Pellegrini 250, (2000) Rosario, Santa Fe (Argentina); Cuello, G.J. [Institut Laue Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble (France); Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain); Bozzano, P.B. [Laboratorio de Microscopia Electronica. Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, (1650) San Martin (Argentina); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)

    2009-04-15

    Small angle neutron scattering as a function of temperature, differential thermal analysis, electrical resistivity and transmission electron microscopy studies have been performed in low rate neutron irradiated single crystalline molybdenum, at room temperature, for checking the evolution of the defects agglomerates in the temperature interval between room temperature and 1200 K. The onset of vacancies mobility was found to happen in temperatures within the stage III of recovery. At around 550 K, the agglomerates of vacancies achieve the largest size, as determined from the Guinier approximation for spherical particles. In addition, the decrease of the vacancy concentration together with the dissolution of the agglomerates at temperatures higher than around 920 K was observed, which produce the release of internal stresses in the structure.

  17. Inhomogeneous strain induced by fast neutron irradiation in NaKSO4 crystals

    International Nuclear Information System (INIS)

    Kandil, S.H.; El Gamal, M.A.; El Khatib, A.; El Wahidy, E.F.

    1987-06-01

    The effect of fast neutron irradiation on the thermal properties of NaKSO 4 crystals was studied around the phase transition temperature T c =453 K. The thermal expansion coefficient as well as the phase transition temperature were found to be dependent upon the irradiation dose. The specific heat, C p , showed multiple peaks in the phase transition temperature region. An explanation of this behaviour was based on the induced inhomogeneous strain in the crystal casued by the neutron irradiation process. (author). 10 refs, 3 figs

  18. Structural and optical properties improvements of PVP/gelatin blends induced by neutron irradiation

    Science.gov (United States)

    Basha, Mohammad Ahmad-Fouad; Hassan, Mohamed Ahmed

    2018-05-01

    Blends of polyvinylpyrrolidone and gelatin were prepared in three different concentrations to study the modifications in their structural and optical properties induced by neutron irradiations with different neutron fluence values from 108 up to 1011 neutron/cm2. X-ray spectroscopy revealed that the irradiation has induced a recrystallization phenomenon in the studied blends and the crystallinity index increased by increasing the neutron fluence due to the breaking of the crystallites. Fourier-transform infrared spectroscopy came to confirm the existence of interactions between interchain groups and a higher compatibility for the irradiated blends. The irradiation induced defects inside the material were responsible for the change in their optical and structural properties. The creation of free radicals or ions inside the conduction bands has led to the increase in the number of carriers on localized states; this has caused the increase in optical conductivity of the irradiated blends as a result of decreasing the energy gaps by increasing the neutron fluence. Results may widen the applications of the gelatin based blends to include optoelectronic devices, organic light emitting devices, solar selective and anti-reflectance bio-coatings, optical organic glass and lenses.

  19. Influence of interstitial impurity atoms on point defect relaxation in neutron irradiated iron

    International Nuclear Information System (INIS)

    Weller, M.; Diehl, J.

    1975-01-01

    The aim of the investigation was to study the combined influence of neutron irradiation and interstitial impurities on the low temperature internal friction peaks as well as on those appearing at higher temperatures after annealing, in a more systematic manner, using irradiations at [de

  20. Characterization of defect accumulation in neutron-irradiated Mo by positron annihilation spectroscopy

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Li, Meimei; Snead, L.L.

    2008-01-01

    Positron annihilation lifetime spectroscopy measurements were performed on neutron-irradiated low carbon arc cast Mo. Irradiation took place in the high flux isotope reactor, Oak Ridge National Laboratory, at a temperature of 80 +/- 10 degrees C. Neutron fluences ranged from 2 x 10(21) to 8 x 10......(24) n/m(2) (E > 0.1 MeV), corresponding to displacement damage levels in the range from 7.2 x 10(-5) to 2.8 x 10(-1) displacements per atom (dpa). A high density of submicroscopic cavities was observed in the neutron-irradiated Mo and their size distributions were estimated. Cavities were detected even...... at a very low-dose of similar to 10(-4) dpa. The average size of the cavities did not change significantly with dose, in contrast to neutron-irradiated bcc Fe where cavity sizes increased with increasing dose. It is suggested that the in-cascade vacancy clustering may be significant in neutron-irradiated Mo...

  1. The intrinsic gettering in neutron irradiation Czochralski-silicon

    CERN Document Server

    Li Yang Xian; Niu Ping Juan; Liu Cai Chi; Xu Yue Sheng; Yang Deren; Que Duan Lin

    2002-01-01

    The intrinsic gettering in neutron irradiated Czochralski-silicon is studied. The result shows that a denuded zone at the surface of the neutron irradiated Czochralski-silicon wafer may be formed through one-step short-time annealing. The width of the denuded zone is dependent on the annealing temperature and the dose of neutron irradiation, while it is irrelated to the annealing time in case the denuded zone is formed. The authors conclude that the interaction between the defects induced by neutron irradiation and the oxygen in the silicon accelerates the oxygen precipitation in the bulk, and becomes the dominating factor of the quick formation of intrinsic gettering. It makes the effect of thermal history as the secondary factor

  2. Welding-induced mechanical properties in austenitic stainless steels before and after neutron irradiation

    Science.gov (United States)

    Stoenescu, R.; Schäublin, R.; Gavillet, D.; Baluc, N.

    2007-03-01

    The effects of neutron irradiation on the mechanical properties of welded joints made of austenitic stainless steels have been investigated. The materials are welded AISI 304 and AISI 347, so-called test weld materials, irradiated with neutrons at 573 K to doses of 0.3 and 1.0 dpa. In addition, an AISI 304 from a decommissioned pressurised water reactor, so-called in-service material, which had accumulated a maximum dose of 0.35 dpa at about 573 K, was investigated. The mechanical properties of heat-affected zones and base materials were analysed before and after irradiation. Tensile parameters were determined at room temperature and at 573 K, for all materials and irradiation conditions. In the test weld materials it is found that radiation hardening is lower and loss of ductility is higher in the heat-affected zone than in the base material. In the in-service material radiation hardening is about the same in heat-affected zone and base material. After irradiation, deformation takes place by stacking faults and twins, at both room temperature and high temperature, contrary to unirradiated materials, where deformation takes place by twinning at room temperature and by dislocation cells at high temperature. No defect free channels are observed.

  3. Radiation-induced conductivity of doped silicon in response to photon, proton and neutron irradiation

    International Nuclear Information System (INIS)

    Kishimoto, N.; Amekura, H.; Plaksin, O.A.; Stepanov, V.A.

    2000-01-01

    The opto-electronic performance of semiconductors during reactor operation is restricted by radiation-induced conductivity (RIC) and the synergistic effects of neutrons/ions and photons. The RICs of Si due to photons, protons and pulsed neutrons have been evaluated, aiming at radiation correlation. Protons of 17 MeV with an ionizing dose rate of 10 3 Gy/s and/or photons (hν=1.3 eV) were used to irradiate impurity-doped Si (2x10 16 B atoms/cm 3 ) at 300 and 200 K. Proton-induced RIC (p-RIC) and photoconductivity (PC) were intermittently detected in an accelerator device. Neutron-induced RIC (n-RIC) was measured for the same Si in a pulsed fast-fission reactor, BARS-6, with a 70-μs pulse of 2x10 12 n/cm 2 (E>0.01 MeV) and a dose rate of up to 6x10 5 Gy/s. The neutron irradiation showed a saturation tendency in the flux dependence at 300 K due to the strong electronic excitation. Normalization of the electronic excitation, including the pulsed regime, gave a fair agreement among the different radiation environments. Detailed comparison among PC, p-RIC and n-RIC is discussed in terms of radiation correlation including the in-pile condition

  4. Multi-nuclear NMR study of polytype and defect distribution in neutron irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Brigden, C.T., E-mail: ctb26@cam.ac.uk [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Farnan, I., E-mail: if203@cam.ac.uk [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Hania, P.R., E-mail: hania@nrg.eu [Nuclear Research Group (NRG), Westerduinweg 3, NL-1755LE Petten (Netherlands)

    2014-01-15

    Silicon carbide containing 92% β-SiC has been irradiated in a material test reactor at a fast neutron fluence (>0.1 MeV) of 3.39 × 10{sup 21} n cm{sup −2} at an average temperature of 796 °C, and subsequently studied by {sup 29}Si and {sup 13}C MAS NMR spectroscopy. A small amount of structural alteration was measured with the α-SiC polytypes increasing from around 8–14%. Based on the assumption that the primary dominant defect is the paramagnetic Si{sub V}{sup -} defect. The defect concentration has been measured in both the irradiated and unirradiated sample using spin lattice relaxation time (T{sub 1}) data obtained via a saturation-recovery experiment and was found to increase from 4.6 × 10{sup 18} cm{sup −3} to 1.5 × 10{sup 20} cm{sup −3}. A case is presented to show that a small residual internuclear dipolar coupling contribution (at 3.80 × 10{sup −6}% of its total value) towards the T{sub 1} in the unirradiated reference sample significantly modifies the relaxation time from a value based solely on the dominant nuclear defect coupling mechanism.

  5. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    Science.gov (United States)

    Shimada, Masashi; Hara, Masanori; Otsuka, Teppei; Oya, Yasuhisa; Hatano, Yuji

    2015-08-01

    Three tungsten samples irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to deuterium plasma (ion fluence of 1 × 1026 m-2) at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy was performed with a ramp rate of 10 °C min-1 up to 900 °C, and the samples were annealed at 900 °C for 0.5 h. These procedures were repeated three times to uncover defect-annealing effects on deuterium retention. The results show that deuterium retention decreases approximately 70% for at 500 °C after each annealing, and radiation damages were not annealed out completely even after the 3rd annealing. TMAP modeling revealed the trap concentration decreases approximately 80% after each annealing at 900 °C for 0.5 h.

  6. Charge Deep Level Transient Spectroscopy Study of 3\\div7 MeV/amu Ion and Fast Neutron Irradiation-Induced Changes in Mos Structures

    CERN Document Server

    Stano, J; Ziska, M

    2001-01-01

    Radiation-induced changes in MOS capacitor structures irradiated with Bi (710 MeV), Kr (245 MeV), Ar (280, 155 MeV) ions and fast neutrons (E>0.1 MeV) have been studied in view of Q-DLTS and C-V techniques. As was found, high energy ion and neutron irradiation enhance the induction of positive charge density in the oxide layer of MOS samples. The number of electrically active defects in this layer strongly decreases under dense electronic excitations. No dependence of vacancy-oxygen center concentration in silicon substrate normalized per number of displaced atoms by nuclear elastic collisions on projectile type have been observed.

  7. Identification of neutron irradiation induced strain rate sensitivity change using inverse FEM analysis of Charpy test

    Science.gov (United States)

    Haušild, Petr; Materna, Aleš; Kytka, Miloš

    2015-04-01

    A simple methodology how to obtain additional information about the mechanical behaviour of neutron-irradiated WWER 440 reactor pressure vessel steel was developed. Using inverse identification, the instrumented Charpy test data records were compared with the finite element computations in order to estimate the strain rate sensitivity of 15Ch2MFA steel irradiated with different neutron fluences. The results are interpreted in terms of activation volume change.

  8. Identification of neutron irradiation induced strain rate sensitivity change using inverse FEM analysis of Charpy test

    Energy Technology Data Exchange (ETDEWEB)

    Haušild, Petr, E-mail: petr.hausild@fjfi.cvut.cz [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Materials, Trojanova 13, 120 00 Praha 2 (Czech Republic); Materna, Aleš [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Materials, Trojanova 13, 120 00 Praha 2 (Czech Republic); Kytka, Miloš [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Materials, Trojanova 13, 120 00 Praha 2 (Czech Republic); Nuclear Research Institut, ÚJV Řež, a.s., Hlavní 130, Řež, 250 68 Husinec (Czech Republic)

    2015-04-15

    A simple methodology how to obtain additional information about the mechanical behaviour of neutron-irradiated WWER 440 reactor pressure vessel steel was developed. Using inverse identification, the instrumented Charpy test data records were compared with the finite element computations in order to estimate the strain rate sensitivity of 15Ch2MFA steel irradiated with different neutron fluences. The results are interpreted in terms of activation volume change.

  9. Neutron irradiation effects on AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Lü Ling; Zhang Jin-Cheng; Xue Jun-Shuai; Ma Xiao-Hua; Zhang Wei; Bi Zhi-Wei; Zhang Yue; Hao Yue

    2012-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) were exposed to 1 MeV neutron irradiation at a neutron fluence of 1 × 10 15 cm −2 . The dc characteristics of the devices, such as the drain saturation current and the maximum transconductance, decreased after neutron irradiation. The gate leakage currents increased obviously after neutron irradiation. However, the rf characteristics, such as the cut-off frequency and the maximum frequency, were hardly affected by neutron irradiation. The AlGaN/GaN heterojunctions have been employed for the better understanding of the degradation mechanism. It is shown in the Hall measurements and capacitance—voltage tests that the mobility and concentration of two-dimensional electron gas (2DEG) decreased after neutron irradiation. There was no evidence of the full-width at half-maximum of X-ray diffraction (XRD) rocking curve changing after irradiation, so the dislocation was not influenced by neutron irradiation. It is concluded that the point defects induced in AlGaN and GaN by neutron irradiation are the dominant mechanisms responsible for performance degradations of AlGaN/GaN HEMT devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Neutron irradiation effects on AlGaN/GaN high electron mobility transistors

    Science.gov (United States)

    Lü, Ling; Zhang, Jin-Cheng; Xue, Jun-Shuai; Ma, Xiao-Hua; Zhang, Wei; Bi, Zhi-Wei; Zhang, Yue; Hao, Yue

    2012-03-01

    AlGaN/GaN high electron mobility transistors (HEMTs) were exposed to 1 MeV neutron irradiation at a neutron fluence of 1 × 1015 cm-2. The dc characteristics of the devices, such as the drain saturation current and the maximum transconductance, decreased after neutron irradiation. The gate leakage currents increased obviously after neutron irradiation. However, the rf characteristics, such as the cut-off frequency and the maximum frequency, were hardly affected by neutron irradiation. The AlGaN/GaN heterojunctions have been employed for the better understanding of the degradation mechanism. It is shown in the Hall measurements and capacitance—voltage tests that the mobility and concentration of two-dimensional electron gas (2DEG) decreased after neutron irradiation. There was no evidence of the full-width at half-maximum of X-ray diffraction (XRD) rocking curve changing after irradiation, so the dislocation was not influenced by neutron irradiation. It is concluded that the point defects induced in AlGaN and GaN by neutron irradiation are the dominant mechanisms responsible for performance degradations of AlGaN/GaN HEMT devices.

  11. Atomic-resolution study of homogeneous radiation-induced precipitation in a neutron-irradiated W-10 at. % Re alloy. MSC report No. 5014

    International Nuclear Information System (INIS)

    Herschitz, R.; Seidman, D.N.

    1983-06-01

    The phenomenon of radiation-induced precipitation has been investigated in a W-10 at. % Re alloy using the atom-probe field-ion microscope. Results show a significant alteration of the microstructure of this alloy as a result of the fast-neutron irradiation. Precipitates with the composition approx. WRe (sigma phase) were detected at a density of 10 16 cm -3 . Coherent, semicoherent and possibly incoherent precipitates of the sigma phase have been observed. They were not associated with either linear or planar defects, or with any impurity atoms; i.e. a true homogeneous radiation-induced precipitation occurs in this alloy. A physical argument is presented for the nucleation of the sigma phase precipitates in the vicinity of displacement cascades produced by primary knock-on atoms. It is suggested that the nucleation of the sigma phase is due to the formation of tightly-bound mobil mixed dumbells which react to form an immobile rhenium cluster. The growth of this cluster into a precipitate is most likely driven by the irreversible vacancy: self-interstitial atom (SIA) annihilation reaction, as suggested recently by Cauvin and Martin. A mechanism for the suppression of voids, in this alloy, is presented which is self-consistent with the homogeneous radiation-induced precipitation mechanism

  12. Neutron irradiation damage in transition metal carbides

    International Nuclear Information System (INIS)

    Matsui, Hisayuki; Nesaki, Kouji; Kiritani, Michio

    1991-01-01

    Effects of neutron irradiation on the physical properties of light transition metal carbides, TiC x , VC x and NbC x , were examined, emphasizing the characterization of irradiation induced defects in the nonstoichiometric composition. TiC x irradiated with 14 MeV (fusion) neutrons showed higher damage rates with increasing C/Ti (x) ratio. A brief discussion is made on 'cascade damage' in TiC x irradiated with fusion neutrons. Two other carbides (VC x and NbC x ) were irradiated with fission reactor neutrons. The irradiation effects on VC x were not so simple, because of the complex irradiation behavior of 'ordered' phases. For instance, complete disordering was revealed in an ordered phase, 'V 8 C 7 ', after an irradiation dose of 10 25 n/m 2 . (orig.)

  13. Micro-Raman and photoluminescence studies of neutron-irradiated gallium nitride epilayers

    International Nuclear Information System (INIS)

    Wang, R.X.; Xu, S.J.; Fung, S.; Beling, C.D.; Wang, K.; Li, S.; Wei, Z.F.; Zhou, T.J.; Zhang, J.D.; Huang Ying; Gong, M.

    2005-01-01

    GaN epilayers grown on sapphire substrate were irradiated with various dosages of neutrons and were characterized using Micro-Raman and photoluminescence. It was found that the A 1 (LO) peak in the Raman spectra clearly shifted with neutron irradiation dosage. Careful curve fitting of the Raman data was carried out to obtain the carrier concentration which was found to vary with the neutron irradiation dosage. The variation of the full width at half maximum height of the photoluminescence was consistent with the Raman results. The neutron irradiation-induced structural defects (likely to be Ge Ga ) give rise to carrier trap centers which are responsible for the observed reduction in carrier concentration of the irradiated GaN

  14. Utilization of shear stress for determination of activation energy of the defects created by neutron irradiation; Utilizacion de la tension de fluencia en la determinacion de la energia de activacion de defectos producidos por irradiacion neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Hector C.; Miralles, Monica [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    1996-07-01

    This paper describes an experimental technique used for the determination thermodynamical parameters such as activation energy using the thermal annealing of increments of Critical resolved Shear Stress of the defects created by neutron irradiation at 77 K. The doses chosen for this work was 3.1 x 10 {sup 16} n/cm{sup 2} since the defects are stable to plastic deformation and the cascades of atomic displacements do not overlap. Specimens without any prior deformation were used allowing then the single addition of the initial stress to that due to the created defects. (author)

  15. Code ACTIVE for calculation of the transmutation, induced activity and decay heat in neutron irradiation

    International Nuclear Information System (INIS)

    Ioki, Kimihiro; Harada, Yuhei; Asami, Naoto.

    1976-03-01

    The computer code ACTIVE has been prepared for calculation of the transmutation rate, induced activity and decay heat. Calculations are carried out with activation chain and spatial distribution of neutron energy spectrum. The spatial distribution of secondary gamma-ray source due to the unstable nuclides is also obtainable. Special attension is paid to the short life decays. (auth.)

  16. Mortality and sterility induced in Piophila casei by x-ray and neutron irradiation

    International Nuclear Information System (INIS)

    Sacchi, L.; Gasperi, G.; Grigolo, A.; Caprotti, M.; Pinelli, T.; Altieri, S.

    1977-01-01

    Different doses of neutrons and X-rays were given to 5-day-old pupae of Piophila casei L. (Diptera, Piophilidae), just before their emergence. The mortality and sterility induced by the different types of radiation were measured. Neutrons are more effective than X-rays in provoking lethal lesions in somatic cells. Females are more resistant than males to the sterilizing action of neutrons, the relative biological efficiency of neutrons being 6 and 3.5, respectively

  17. Theory of radiation induced defect production

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1975-10-01

    The theory of defect production in solids by neutron irradiation is reviewed, including discussions of the nuclear reactions which produce the primary recoils and the loss of energy from the displacement cascade by electron excitations. The theoretical predictions are compared with the limited available experiments on thermal and fast neutron irradiation. The results are in rough agreement in most instances, but further improvements in the theory are clearly needed

  18. Measurement of the Electrical Conductivity of He{sup 3} Plasma Induced by Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Braun, J.; Nygaard, K.

    1966-03-15

    The conductivity of a He plasma created by the inelastic reaction with thermal neutrons: {sup 3}He + n{sub th} -> {sup 3}H + p + 0.76 MeV is studied as a function of neutron flux, gas temperature and gas density. Using reported values of the electron mobility the electron density is calculated from experimental conductivity values. Further, by accepting a reasonable value for the mean energy lost in creating one ion-pair, the recombination coefficient is estimated. The measurements performed so far cover temperatures between 300 - 1600 K and densities between 0.25 - 1 times the density at atmospheric pressure and 300 K. The neutron flux is varied between 10{sup 10} - 10{sup 11} n/cm{sup 2}/s. As a sample of results achieved at 1600 K and the lowest density (corresponding to about atmospheric pressure) and the highest neutron flux the following values are obtained for the conductivity, the electron density and the recombination coefficient respectively: {sigma} 0.2 S/m, n{sub e} 6x10{sup 11}/cm{sup 3}, {alpha} = 2xl0{sup -10} cm{sup 3}/s. An extrapolation of data obtained shows that the concept of neutron induced conductivity should be attractive for MHD power generation.

  19. Neutron irradiation therapy machine

    International Nuclear Information System (INIS)

    1980-01-01

    Conventional neutron irradiation therapy machines, based on the use of cyclotrons for producing neutron beams, use a superconducting magnet for the cyclotron's magnetic field. This necessitates complex liquid He equipment and presents problems in general hospital use. If conventional magnets are used, the weight of the magnet poles considerably complicates the design of the rotating gantry. Such a therapy machine, gantry and target facilities are described in detail. The use of protons and deuterons to produce the neutron beams is compared and contrasted. (U.K.)

  20. Defects annihilation behavior of neutron-irradiated SiC ceramics densified by liquid-phase-assisted method after post-irradiation annealing

    Directory of Open Access Journals (Sweden)

    Mohd Idzat Idris

    2016-12-01

    Full Text Available Numerous studies on the recovery behavior of neutron-irradiated high-purity SiC have shown that most of the defects present in it are annihilated by post-irradiation annealing, if the neutron fluence is less than 1×1026 n/m2 (>0.1MeV and the irradiation is performed at temperatures lower than 973K. However, the recovery behavior of SiC fabricated by the nanoinfiltrated and transient eutectic phase (NITE process is not well understood. In this study, the effects of secondary phases on the irradiation-related swelling and recovery behavior of monolithic NITE-SiC after post-irradiation annealing were studied. The NITE-SiC specimens were irradiated in the BR2 reactor at fluences of up to 2.0–2.5×1024 n/m2 (E>0.1MeV at 333–363K. This resulted in the specimens swelling up ∼1.3%, which is 0.1% higher than the increase seen in concurrently irradiated high-purity SiC. The recovery behaviors of the specimens after post-irradiation thermal annealing were examined using a precision dilatometer; the specimens were heated at temperatures of up to 1673K using a step-heating method. The recovery curves were analyzed using a first-order model, and the rate constants for each annealing step were obtained to determine the activation energy for volume recovery. The NITE-A specimen (containing 12 wt% sintering additives recovered completely after annealing at ∼1573K; however, it shrank because of the volatilization of the oxide phases at 1673K. The NITE-B specimen (containing 18wt% sintering additives did not recover fully, since the secondary phase (YAG was crystallized during the annealing process. The recovery mechanism of NITE-A SiC was based on the recombination of the C and Si Frenkel pairs, which were very closely sited or only slightly separated at temperatures lower than 1223K, as well as the recombination of the slightly separated C Frenkel pairs and the migration of C and Si interstitials at temperatures of 1223–1573K. That is to say, the

  1. Deuterium trapping at vacancy clusters in electron/neutron-irradiated tungsten studied by positron annihilation spectroscopy

    Science.gov (United States)

    Toyama, T.; Ami, K.; Inoue, K.; Nagai, Y.; Sato, K.; Xu, Q.; Hatano, Y.

    2018-02-01

    Deuterium trapping at irradiation-induced defects in tungsten, a candidate material for plasma facing components in fusion reactors, was revealed by positron annihilation spectroscopy. Pure tungsten was electron-irradiated (8.5 MeV at ∼373 K and to a dose of ∼1 × 10-3 dpa) or neutron-irradiated (at 573 K to a dose of ∼0.3 dpa), followed by post-irradiation annealing at 573 K for 100 h in deuterium gas of ∼0.1 MPa. In both cases of electron- or neutron-irradiation, vacancy clusters were found by positron lifetime measurements. In addition, positron annihilation with deuterium electrons was demonstrated by coincidence Doppler broadening measurements, directly indicating deuterium trapping at vacancy-type defects. This is expected to cause significant increase in deuterium retention in irradiated-tungsten.

  2. Correlating radiation exposure with embrittlement: Comparative studies of electron- and neutron-irradiated pressure vessel alloys

    International Nuclear Information System (INIS)

    Alexander, D. E.; Rehn, L. E.; Odette, G. R.; Lucas, G. E.; Klingensmith, D.; Gragg, D.

    1999-01-01

    Comparative experiments using high energy (10 MeV) electrons and test reactor neutrons have been undertaken to understand the role that primary damage state has on hardening (embrittlement) induced by irradiation at 300 C. Electrons produce displacement damage primarily by low energy atomic recoils, while fast neutrons produce displacements from considerably higher energy recoils. Comparison of changes resulting from neutron irradiation, in which nascent point defect clusters can form in dense cascades, with electron irradiation, where cascade formation is minimized, can provide insight into the role that the in-cascade point defect clusters have on the mechanisms of embrittlement. Tensile property changes induced by 10 MeV electrons or test reactor neutron irradiations of unalloyed iron and an Fe-O.9 wt.% Cu-1.0 wt.% Mn alloy were examined in the damage range of 9.0 x 10 -5 dpa to 1.5 x 10 -2 dpa. The results show the ternary alloy experienced substantially greater embrittlement in both the electron and neutron irradiate samples relative to unalloyed iron. Despite their disparate nature of defect production similar embrittlement trends with increasing radiation damage were observed for electrons and neutrons in both the ternary and unalloyed iron

  3. Diamond amorphization in neutron irradiation

    International Nuclear Information System (INIS)

    Nikolaenko, V.A.; Gordeev, V.G.

    1996-01-01

    The paper presents the results on neutron irradiation of the diamond in a nuclear reactor. It is shown that the neutron irradiation stimulates the diamond transition to the amorphous state. At a temperature below 750 o K the time required for the diamond-graphite transition decreases with decreasing irradiation temperature. On the contrary, in irradiation at higher temperatures the time of diamond conversion into the amorphous state increases with decreasing but always remains shorter than in the absence of irradiation. (author)

  4. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects; Mecanismes de fragilisation sous irradiation aux neutrons d'alliages modeles ferritiques et d'un acier de cuve: amas de defauts

    Energy Technology Data Exchange (ETDEWEB)

    Meslin-Chiffon, E

    2007-11-15

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  5. Investigation of the combined effect of neutron irradiation and electron beam exposure on pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Van Renterghem, W., E-mail: wvrenter@sckcen.be; Uytdenhouwen, I., E-mail: iuytdenh@sckcen.be

    2016-08-15

    Pure tungsten samples were neutron irradiated in the BR2 reactor of SCK·CEN to fluences of 1.47 × 10{sup 20} n/cm{sup 2} and 4.74 × 10{sup 20} n/cm{sup 2} at 300 °C under Helium atmosphere and exposed to the electron beam of the Judith 1 installation The effect of these treatments on the defect structure was studied with transmission electron microscopy. In the irradiated samples the defect structure in the bulk is compared to the structure at the surface. The neutron irradiation created a large amount of a/2‹111› type dislocation loops forming dislocation rafts. The loop density increased from 8.5 × 10{sup 21}/m³ to 9 × 10{sup 22}/m³ with increasing dose, while the loop size decreased from 5.2 nm to 3.5 nm. The electron beam exposure induced significant annealing of the defects and almost all of the dislocation loops were removed. The number of line dislocations in that area increased as a result of the thermal stresses from the thermal shock. - Highlights: • Neutron irradiated and electron beam exposed tungsten samples were studied with transmission electron microscopy. • Neutron irradiation creates dislocation loops and rafts, while voids are created at higher irradiation dose. • No precipitates of transmutation products were found under these low dose irradiation conditions. • Electron beam exposure annihilates the dislocation loops and rafts.

  6. Irradiation hardening of pure tungsten exposed to neutron irradiation

    Science.gov (United States)

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Kumar, N. A. P. Kiran; Snead, Lance L.; Wirth, Brian D.; Katoh, Yutai

    2016-11-01

    Pure tungsten samples have been neutron irradiated in HFIR at 90-850 °C to 0.03-2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (0.6 dpa). The precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.

  7. Mechanical properties microstructure correlation in neutron irradiated heat-affected zones of austenitic stainless steels

    Science.gov (United States)

    Stoenescu, R.; Schaeublin, R.; Gavillet, D.; Baluc, N.

    2007-05-01

    The effects of neutron irradiation on austenitic stainless steels, usually used for the manufacturing of internal elements of nuclear reactors (e.g. the core shrouds), are the alteration of the microstructure, and, as a consequence, of the mechanical properties. The present study is aimed at extending knowledge upon the impact of neutron-irradiation on the heat-affected zone of welded materials, which was influenced by the thermal cycles upon fusion welding. An austenitic stainless steel weld type AISI 304 from a decommissioned experimental pressurised water reactor has been used in the present study. The welded material has been irradiated during 11 reactor cycles to a maximum dpa dose of 0.35 and a temperature of around 573 K. The mechanical properties and microstructure are determined on specimens from heat-affected zone and base materials, with different dose levels. The mechanical properties were determined by performing tensile tests on small flat specimens at two deformation temperatures: room temperature and about 573 K. The characterisation of the microstructure was made by transmission electron microscopy. The correlation between mechanical properties and microstructure after neutron irradiation is made using the dispersed obstacle hardening model. It was found that the measured radiation hardening cannot be explained solely by the presence of the irradiation-induced defects observed in TEM. Smaller irradiation-induced features not resolvable in TEM may also contribute to radiation hardening.

  8. Neutron irradiation effects on plasma facing materials

    Science.gov (United States)

    Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.

    2000-12-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.

  9. Neutron irradiation effects on plasma facing materials

    International Nuclear Information System (INIS)

    Barabash, V.; Federici, G.; Roedig, M.; Snead, L.L.; Wu, C.H.

    2000-01-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed

  10. Structural properties and neutron irradiation effects of ceramics

    International Nuclear Information System (INIS)

    Yano, Toyohiko

    1994-01-01

    In high temperature gas-cooled reactors and nuclear fusion reactors being developed at present, various ceramics are to be used in the environment of neutron irradiation for undertaking important functions. The change of the characteristics of those materials by neutron irradiation must be exactly forecast, but it has been known that the response of the materials is different respectively. The production method of ceramics and the resulted structures of ceramics which control their characteristics are explained. The features of covalent bond and ionic bond, the synthesis of powder and the phase change by heating, sintering and sintering agent, and grain boundary phase are described. The smelling of ceramics by neutron irradiation is caused by the formation of the clusters of Frenkel defects and minute spot defects. Its restoration by annealing is explained. The defects remaining in materials after irradiation are the physical defects by flipping atoms cut due to the collision with high energy particles and the chemical defects by nuclear transformation. Some physical defects can be restored, but chemical defects are never restored. The mechanical properties of ceramics and the effect of irradiation on them, and the thermal properties of ceramics and the effect of irradiation on them are reported. (K.I.)

  11. Influence of neutron irradiation on etching of SiC in KOH

    Science.gov (United States)

    Mokhov, E. N.; Kazarova, O. P.; Soltamov, V. A.; Nagalyuk, S. S.

    2017-07-01

    The effect of reactor neutron irradiation on the etch rate of SiC in potassium hydroxide has been studied. In the case of high irradiation doses (1019-1021 cm-2), the etch rate of silicon carbide has been shown to drastically rise, especially in the [0001]Si direction. This considerably mitigates the orientation anisotropy of polar face etching. After high-temperature annealing (up to 1200-1400°C), a higher etch rate of irradiated crystals persists. The results have been explained by the high concentration of radiation-induced (partially clustered) defects they contain.

  12. Positron annihilation studies of neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Brauer, G.; Liszkay, L.; Molnar, B.

    1988-01-01

    Several annealing studies by positron annihilation (Doppler broadening, lifetime) on neutron irradiated Cr-Mo-V reactor pressure vessel steels (Soviet type 15Kh2MFA) regarding the influences of irradiation temperature, fluence of fast neutrons as well as different impurity contents are presented and discussed. A possibility of explaining the positron annihilation data by irradiation induced carbide formation is proposed. (author)

  13. Trapping induced Neff and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors

    International Nuclear Information System (INIS)

    Eremin, V.; Li, Z.; Iljashenko, I.

    1994-02-01

    The trapping of both non-equilibrium electrons and holes by neutron induced deep levels in high resistivity silicon planar detectors have been observed. In the experiments Transient Current and Charge Techniques, with short laser light pulse excitation have been applied at temperature ranges of 77--300 k. Light pulse illumination of the front (p + ) and back (n + ) contacts of the detectors showed effective trapping and detrapping, especially for electrons. At temperatures lower than 150 k, the detrapping becomes non-efficient, and the additional negative charge of trapped electrons in the space charge region (SCR) of the detectors leads to dramatic transformations of the electric field due to the distortion of the effective space charge concentration N eff . The current and charge pulses transformation data can be explained in terms of extraction of electric field to the central part of the detector from the regions near both contacts. The initial field distribution may be recovered immediately by dropping reverse bias, which injects both electrons and holes into the space charge region. In the paper, the degree of the N eff distortions among various detectors irradiated by different neutron fluences are compared

  14. Neutron irradiation of seeds

    International Nuclear Information System (INIS)

    1967-01-01

    Neutrons are a valuable type of ionizing radiation for seed irradiation and radiobiological studies and for inducing mutations in crop plants. In experiments where neutrons are used in research reactors for seed irradiation it is difficult to measure the dose accurately and therefore to establish significant comparisons between experimental results obtained in various reactors and between repeated experiments in the same reactor. A further obstacle lies in the nature and response of the seeds themselves and the variety of ways in which they are exposed in reactors. The International Atomic Energy Agency decided to initiate international efforts to improve and standardize methods of exposing seeds in research reactors and of measuring and reporting the neutron dose. For this purpose, an International Neutron Seed Irradiation Programme has been established. The present report aims to give a brief but comprehensive picture of the work so far done in this programme. Refs, figs and tabs

  15. Emulation of neutron irradiation effects with protons: validation of principle

    International Nuclear Information System (INIS)

    Was, G.S.; Busby, J.T.; Allen, T.; Kenik, E.A.; Jensson, A.; Bruemmer, S.M.; Gan, J.; Edwards, A.D.; Scott, P.M.; Andreson, P.L.

    2002-01-01

    This paper presents the results of the irradiation, characterization and irradiation assisted stress corrosion cracking (IASCC) behavior of proton- and neutron-irradiated samples of 304SS and 316SS from the same heats. The objective of the study was to determine whether proton irradiation does indeed emulate the full range of effects of in-reactor neutron irradiation: radiation-induced segregation (RIS), irradiated microstructure, radiation hardening and IASCC susceptibility. The work focused on commercial heats of 304 stainless steel (heat B) and 316 stainless steel (heat P). Irradiation with protons was conducted at 360 deg. C to doses between 0.3 and 5.0 dpa to approximate those by neutron irradiation at 275 deg. C over the same dose range. Characterization consisted of grain boundary microchemistry, dislocation loop microstructure, hardness as well as stress corrosion cracking (SCC) susceptibility of both un-irradiated and irradiated samples in oxygenated and de-oxygenated water environments at 288 deg. C. Overall, microchemistry, microstructure, hardening and SCC behavior of proton- and neutron-irradiated samples were in excellent agreement. RIS analysis showed that in both heats and for both irradiating particles, the pre-existing grain boundary Cr enrichment transformed into a 'W' shaped profile at 1.0 dpa and then into a 'V' shaped profile between 3.0 and 5.0 dpa. Grain boundary segregation of Cr, Ni, Si, and Mo all followed the same trends and agreed well in magnitude. The microstructure of both proton- and neutron-irradiated samples was dominated by small, faulted dislocation loops. Loop size distributions were nearly identical in both heats over a range of doses. Saturated loop size following neutron irradiation was about 30% larger than that following proton irradiation. Loop density increased with dose through 5.0 dpa for both particle irradiations and was a factor of 3 greater in neutron-irradiated samples vs. proton-irradiated samples. Grain boundary

  16. Radiation hardening: study of production velocity and post-irradiation recovery of defect clusters produced by neutron irradiation at 77 K

    International Nuclear Information System (INIS)

    Gonzalez, Hector C.; Miralles, Monica T.

    1999-01-01

    This work includes three basic studies using radiation hardening of Cu single crystals irradiated at 77 K in the RA-1-reactor of CNEA: 1) The initial of a production curve of defect clusters originated during radiation until 5.2 x 10 20 n m 2 . The shape of the curve is compared with those obtained from measurement of resistivity increased (Δρ) with neutronic doses (φt) and the acceptance of the linear dependency of Δρ with Frenkel Pairs concentration (PFs); 2) The isochronal hardening recovery in the temperature interval of stage V (T > 450 K). The existence of the sub-stages Vb (∼ 550 K) and Vc (∼ 587 K), determined for the first time from hardening measurements, are shown and compared with results obtained by other techniques; 3) Isothermal recoveries performed in the temperature interval of the sub-stage Vc to determine phenomenologically the apparent activation energy of the sub-stage. The value obtained was in agreement with the energy for Cu vacancies auto diffusion. (author)

  17. Effects of neutron irradiation on microstructures and hardness of stainless steel weld-overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Oarai Research and Development Center, Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan); Kakubo, Y.; Matsukawa, Y.; Nozawa, Y.; Toyama, T.; Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Katsuyama, J.; Yamaguchi, Y.; Onizawa, K. [Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2014-06-01

    The microstructures and the hardness of stainless steel weld overlay cladding of reactor pressure vessels subjected to neutron irradiation at a dose of 7.2 × 10{sup 19} n cm{sup −2} (E > 1 MeV) and a flux of 1.1 × 10{sup 13} n cm{sup −2} s{sup −1} at 290 °C were investigated by atom probe tomography and by a nanoindentation technique. To isolate the effects of the neutron irradiation, we compared the results of the measurements of the neutron-irradiated samples with those from a sample aged at 300 °C for a duration equivalent to that of the irradiation. The Cr concentration fluctuation was enhanced in the δ-ferrite phase of the irradiated sample. In addition, enhancement of the concentration fluctuation of Si, which was not observed in the aged sample, was observed. The hardening in the δ-ferrite phase occurred due to both irradiation and aging; however, the hardening of the irradiated sample was more than that expected from the Cr concentration fluctuation, which suggested that the Si concentration fluctuation and irradiation-induced defects were possible origins of the additional hardening.

  18. The multifunction neutron irradiator (MNI)

    International Nuclear Information System (INIS)

    Zhou, Yongmao; Li, Shenzhi

    1994-01-01

    The Multifunction Neutron Irradiator (MNI) presented is a small-type neutron source reactor, for usage in the Boron Neutron Capture Therapy for human brain glioblastoma, Instrumental Neutron Activation Analysis (INAA), short-lived radioisotope production, and some fundamental researches. The reactor core is designed to have passive safety and the process control of the reactor operations is fully computerized. There are two operational modes: The routine operation mode with reactor power 20 ∼ 30 kW and flux 1 x 10 12 n · cm -2 · s -1 and the enhanced power operation mode for medical use. The irradiator can be located in a medical centre, research institute or university. 4 refs., 1 tab., 1 fig

  19. Recovery of point defects, created by neutron irradiation at 20 K, in ordered and disordered FeCo and FeCo2V alloys

    International Nuclear Information System (INIS)

    Dinhut, J.F.; Riviere, J.P.

    1978-01-01

    Samples of FeCo and FeCo2V ordered and disordered alloys were irradiated by fission neutrons at liquid hydrogen temperature up to an integrated dose of 7 x 10 17 n/cm 2 (E > 1 MeV), and then annealed. During the two first important recovery stages below 200 K, the annealing of about 60% of the radiation induced resistivity occurs. These two steps are respectively assigned to close pair recombination and rearrangement and detrapping of interstitials. During the annealing of the two other stages observed above 200 K, the migration and elimination of interstitials and vacancies involves ordering phenomena. These results and their interpretations are discussed in relation to those of pure metals and to those previously found in ordered and disordered alloys of the same type. (author)

  20. Comparative study of neutron irradiation and carbon doping in MgB2 single crystals

    International Nuclear Information System (INIS)

    Krutzler, C.; Zehetmayer, M.; Eisterer, M.; Weber, H. W.; Zhigadlo, N. D.; Karpinski, J.

    2007-01-01

    We compare the reversible and irreversible magnetic properties of superconducting carbon doped and undoped MgB 2 single crystals before and after neutron irradiation. A large number of samples with transition temperatures between 38.3 and 22.8 K allows us to study the effects of disorder systematically. Striking similarities are found in the modification of the reversible parameters by irradiation and doping, which are discussed in terms of impurity scattering and changes of the Fermi surface. The irreversible properties are influenced by two counteracting mechanisms: they are enhanced by the newly introduced pinning centers but degraded by changes in the thermodynamic properties. Accordingly, the large neutron induced defects and the small defects from carbon doping lead to significantly different effects on the irreversible properties. Finally, the fishtail effect caused by all kinds of disorder is discussed in terms of an order-disorder transition of the flux-line lattice

  1. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab.

  2. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    International Nuclear Information System (INIS)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab

  3. Photoluminescence and optical absorption in neutron-irradiated crystalline quartz

    Energy Technology Data Exchange (ETDEWEB)

    Corazza, A.; Crivelli, B.; Martini, M.; Spinolo, G.; Vedda, A. [Istituto Nazionale Di Fisica Della Materia, Dipartimento di Fisica, Universita di Milano, Via Celoria 16, I-20133 Milano (Italy)

    1996-04-01

    Optical absorption measurements in the 3.5{endash}6.5 eV spectral range and photoluminescence spectra, excited in the 4{endash}8 eV range have been performed on neutron irradiated synthetic crystalline quartz as a function of temperature and of neutron fluence. The Gaussian deconvolution of the radiation-induced absorption spectrum in the 4.5{endash}6 eV region reveals a complex structure: five distinct components, peaking at 4.85, 5.06, 5.35, 5.62, and 5.96 eV are detected. The complexity of the absorption pattern finds a correspondence in photoluminescence spectra excited in the 5 eV region: a detailed analysis of the emission spectra as a function of excitation energy indicates the presence of three emission bands centered at 3.91, 4.23, and 4.46 eV, excited at 5.25, 4.83, and 5.03 eV respectively. Excitation in the 5.62 and 5.96 eV absorption peaks does not produce emission. The features of the 4.23 eV and of the 4.46 eV bands are very similar to those of the {alpha}{sub intrinsic} emission, already well studied in amorphous SiO{sub 2}: this suggests a possible correlation between these bands and the {alpha}{sub intrinsic} center. The 3.91 eV band does not find a correspondence in amorphous SiO{sub 2}, and so the responsible defect appears specifically related to the crystalline structure. The emission spectra excited in the E absorption band ({approx_equal}7.6 eV) present a weak band centered at 4.83 eV: its dependence on neutron irradiation dose suggests the attribution to an intrinsic center different from those responsible for the emission in the 3.8 {endash} 4.5 eV region. {copyright} {ital 1996 The American Physical Society.}

  4. Photoluminescence and optical absorption in neutron-irradiated crystalline quartz

    International Nuclear Information System (INIS)

    Corazza, A.; Crivelli, B.; Martini, M.; Spinolo, G.; Vedda, A.

    1996-01-01

    Optical absorption measurements in the 3.5 endash 6.5 eV spectral range and photoluminescence spectra, excited in the 4 endash 8 eV range have been performed on neutron irradiated synthetic crystalline quartz as a function of temperature and of neutron fluence. The Gaussian deconvolution of the radiation-induced absorption spectrum in the 4.5 endash 6 eV region reveals a complex structure: five distinct components, peaking at 4.85, 5.06, 5.35, 5.62, and 5.96 eV are detected. The complexity of the absorption pattern finds a correspondence in photoluminescence spectra excited in the 5 eV region: a detailed analysis of the emission spectra as a function of excitation energy indicates the presence of three emission bands centered at 3.91, 4.23, and 4.46 eV, excited at 5.25, 4.83, and 5.03 eV respectively. Excitation in the 5.62 and 5.96 eV absorption peaks does not produce emission. The features of the 4.23 eV and of the 4.46 eV bands are very similar to those of the α intrinsic emission, already well studied in amorphous SiO 2 : this suggests a possible correlation between these bands and the α intrinsic center. The 3.91 eV band does not find a correspondence in amorphous SiO 2 , and so the responsible defect appears specifically related to the crystalline structure. The emission spectra excited in the E absorption band (≅7.6 eV) present a weak band centered at 4.83 eV: its dependence on neutron irradiation dose suggests the attribution to an intrinsic center different from those responsible for the emission in the 3.8 endash 4.5 eV region. copyright 1996 The American Physical Society

  5. Mechanical compression tests of beryllium pebbles after neutron irradiation up to 3000 appm helium production

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A. [Karlsruhe Institute of Technology, Institite for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • Compression tests of highly neutron irradiated beryllium pebbles have been performed. • Irradiation hardening of beryllium pebbles decreases the steady-state strain-rates. • The steady-state strain-rates of irradiated beryllium pebbles exceed their swelling rates. - Abstract: Results: of mechanical compression tests of irradiated and non-irradiated beryllium pebbles with diameters of 1 and 2 mm are presented. The neutron irradiation was performed in the HFR in Petten, The Netherlands at 686–968 K up to 1890–2950 appm helium production. The irradiation at 686 and 753 K cause irradiation hardening due to the gas bubble formation in beryllium. The irradiation-induced hardening leads to decrease of steady-state strain-rates of irradiated beryllium pebbles compared to non-irradiated ones. In contrary, after irradiation at higher temperatures of 861 and 968 K, the steady-state strain-rates of the pebbles increase because annealing of irradiation defects and softening of the material take place. It was shown that the steady-state strain-rates of irradiated beryllium pebbles always exceed their swelling rates.

  6. Stability of γ' and γ'' in inconel 706 under neutron irradiation

    International Nuclear Information System (INIS)

    Thomas, L.E.

    1980-01-01

    Inconel 706, a commercial γ'-γ'' hardenable Fe-Ni-Cr base superalloy was examined by transmission electron microscopy after neutron irradiation up to 15 x 10 22 n/cm 2 , E > 0.1 MeV, at 400 to 735 0 C. Compared with other γ'-hardened superalloys, this alloy is exceptionally resistant to irradiation-induced swelling and creep. Phase instabilities found after irradiation include the replacement of γ'' by γ' at 400 to 500 0 C, and redistribution of γ' and γ'' to irradiation-induced dislocations at 550 to 650 0 C. These instabilities are shown to result from segregation of nickel and niobium to point defect sinks. The dislocations formed during irradiation are extrinsic Frank partial loops which grow within γ'; stacking faults produced by growth of these dislocations are identifical to thin sheets of eta-phase

  7. Phase transformations in neutron-irradiated Zircaloys

    International Nuclear Information System (INIS)

    Chung, H.M.

    1986-04-01

    Microstructural evolution in Zircaloy-2 and -4 spent-fuel cladding specimens after ∼3 years of irradiation in commercial power reactors has been investigated by TEM and HVEM. Two kinds of precipitates induced by the fast-neutron irradiation in the reactors have been identified, i.e., Zr 3 O and cubic-ZrO 2 particles approximately 2 to 10 nm in size. By means of a weak-beam dark-field ''2-1/2D-microscopy'' technique, the bulk nature of the precipitates and the surficial nature of artifact oxide and hydride phases could be discerned. The Zr(Fe/sub x/,Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/,Ni/sub 1-x/) intermetallic precipitates normally present in the as-fabricated material virtually dissolved in the spent-fuel cladding specimens after a fast-neutron fluence of ∼4 x 10 21 ncm -2 in the power reactors. The observed radiation-induced phase transformations are compared with predictions based on the currently available understanding of the alloy characteristics. 29 refs

  8. Effects of neutron irradiation on a superconducting metallic glass

    International Nuclear Information System (INIS)

    Kramer, E.A.; Johnson, W.L.; Cline, C.

    1979-06-01

    The effects of fast neutron irradiation on a superconducting metallic glass (Mo 6 Ru 4 ) 82 B 18 have been studied. Following irradiation to a total fluence of 10 19 n/cm 2 , T/sub c/ increases from 6.05 K to 6.19 K, and the width of the transition decreases sharply. The density of the material decreases by 1.5%, and the x-ray scattering intensity maxima are broadened. An improvement in the ductility of the samples is observed which together with the other observations suggests the production of defects having atomic scale dimensions and characterized by excess volume

  9. Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels

    International Nuclear Information System (INIS)

    Dethloff, Christian; Gaganidze, Ermile; Svetukhin, Vyacheslav V.; Aktaa, Jarir

    2012-01-01

    Reduced activation ferritic/martensitic (RAFM) steels are promising candidates for structural materials in future fusion technology. In addition to other irradiation defects, the transmuted helium is believed to strongly influence material hardening and embrittlement behavior. A phenomenological model based on kinetic rate equations is developed to describe homogeneous nucleation and growth of helium bubbles in neutron irradiated RAFM steels. The model is adapted to different 10 B doped EUROFER97 based heats, which already had been studied in past irradiation experiments. Simulations yield bubble size distributions, whereby effects of helium generation rate, surface energy, helium sinks and helium density are investigated. Peak bubble diameters under different conditions are compared to preliminary microstructural results on irradiated specimens. Helium induced hardening was calculated by applying the Dispersed Barrier Hardening model to simulated cluster size distributions. Quantitative microstructural investigations of unirradiated and irradiated specimens will be used to support and verify the model.

  10. Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels

    Energy Technology Data Exchange (ETDEWEB)

    Dethloff, Christian, E-mail: christian.dethloff@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gaganidze, Ermile [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Svetukhin, Vyacheslav V. [Ulyanovsk State University, Leo Tolstoy Str. 42, 432970 Ulyanovsk (Russian Federation); Aktaa, Jarir [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-15

    Reduced activation ferritic/martensitic (RAFM) steels are promising candidates for structural materials in future fusion technology. In addition to other irradiation defects, the transmuted helium is believed to strongly influence material hardening and embrittlement behavior. A phenomenological model based on kinetic rate equations is developed to describe homogeneous nucleation and growth of helium bubbles in neutron irradiated RAFM steels. The model is adapted to different {sup 10}B doped EUROFER97 based heats, which already had been studied in past irradiation experiments. Simulations yield bubble size distributions, whereby effects of helium generation rate, surface energy, helium sinks and helium density are investigated. Peak bubble diameters under different conditions are compared to preliminary microstructural results on irradiated specimens. Helium induced hardening was calculated by applying the Dispersed Barrier Hardening model to simulated cluster size distributions. Quantitative microstructural investigations of unirradiated and irradiated specimens will be used to support and verify the model.

  11. 'In situ' straining in the HVEM of neutron irradiated copper crystals

    International Nuclear Information System (INIS)

    Johnson, E.; Hirsch, P.B.

    1976-01-01

    High energy neutron irradiated copper single crystals strained 'in situ' in the high voltage electron microscope are observed to yield in relatively few strongly developed slip bands. The deformation in the slip bands is caused by glide of inclined dislocations close to screw orientation belonging to the primary slip system. Radiation induced point defect clusters are swept up by the dislocations whereby superjogs are formed. Some of the jogs will be sessile and act as pinning points for the gliding dislocations, which bow out under the applied stress to form perfect dipoles mainly of edge nature, as well as faulted dipoles, which are finally pinched off. The effective stress measured from the radius of curvature of the bowed-out dislocations is in agreement with resolved flow stress measurements from irradiated bulk crystals. (Auth.)

  12. Preliminary microstructural characterization by transmission electron microscopy of 14 MeV neutron irradiated type 316 stainless steel

    International Nuclear Information System (INIS)

    Echer, C.J.

    1977-01-01

    Substantial changes in the mechanical properties of 316 stainless steel were observed after neutron irradiation (phi/sub t/ = 2.3 x 10 21 n/m 2 and E = 14 MeV) at 25 0 C. Comparison of microstructures of the unirradiated and neutron irradiated materials were evaluated using transmission electron microscopy. Evidence of small defect clusters in the irradiated material was found. These findings are consistent with other investigators also evaluating low dose irradiations

  13. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  14. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs

  15. Physical model of evolution of oxygen subsystem of PLZT-ceramics at neutron irradiation and annealing

    CERN Document Server

    Kulikov, D V; Trushin, Y V; Veber, K V; Khumer, K; Bitner, R; Shternberg, A R

    2001-01-01

    The physical model of evolution of the oxygen subsystem defects of the ferroelectric PLZT-ceramics by the neutron irradiation and isochrone annealing is proposed. The model accounts for the effect the lanthanum content on the material properties. The changes in the oxygen vacancies concentration, calculated by the proposed model, agree well with the polarization experimental behavior by the irradiated material annealing

  16. Comparison of deuterium retention for ion-irradiated and neutron-irradiated tungsten

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Kobayashi, Makoto; Okuno, Kenji; Shimada, Masashi; Calderoni, Pattrick; Oda, Takuji; Hara, Masanori; Hatano, Yuji; Watanabe, Hideo

    2014-01-01

    The behavior of D retentions for Fe 2+ irradiated tungsten with the damage of 0.025-3 dpa was compared with that for neutron irradiated tungsten with 0.025 dpa. The D 2 TDS spectra for Fe 2+ irradiated tungsten consisted of two desorption stages at 450 K and 550 K although that for neutron irradiated tungsten was composed of three stages and addition desorption stage was found around 750 K. The desorption rate of major desorption stage at 550 K increased as the number of dpa by Fe 2+ irradiation increased. In addition, the first desorption stage at 450 K was only found for the damaged samples, indicating that the second stage would be based on intrinsic defects or vacancy produced by Fe 2+ irradiation and the first stage should be the accumulation of D in mono vacancy leading to the lower activation energy, where the dislocation loop and vacancy was produced. The third one was only found for the neutron irradiation, showing the D trapping by void or vacancy cluster and the diffusion effect is also contributed due to high FWHM of TDS spectrum. It can be said that the D 2 TDS spectra for Fe 2+ -irradiated tungsten could not represent that for neutron-irradiated one, showing that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten has a difference from that for ion-irradiated one. (author)

  17. Positron annihilation spectroscopy of vacancy aggregates in neutron-irradiated MgO crystals

    International Nuclear Information System (INIS)

    Pareja, R.; De La Cruz, R.M.; Gonzalez, R.; Chen, Y.; Department of Energy, Washington, DC

    1992-01-01

    Positron annihilation measurements in neutron-irradiated MgO crystals show that the positron lifetime is shorter than in as-grown crystals, suggesting that most of the defects produced by neutron irradiations are positively charged. The concentration of the neutral anion vacancy (possibly also the neutral anion divacancy) is estimated to be no more than ∼ 10 16 cm -3 for samples irradiated to a dose of 10 17 to 10 19 n cm -2 . Annealing experiments on the neutron-irradiated crystals show a significant increase in the positron lifetime after anneals at 900 K. The increase is attributed to positron trapping by anion-vacancy aggregates. A lifetime of (284±15)ps is tentatively assigned to positrons trapped in these aggregates. (Author)

  18. Gamma-induced defect production in ZrO2-Y2O3 crystals with different defectiveness

    International Nuclear Information System (INIS)

    Ashurov, M.Kh.; Amonov, M.Z.; Rakov, A.F.

    2002-01-01

    Full text: The defectiveness degree of ZrO 2 -Y 2 O 3 crystals depends on stabilizer concentration. The work is aimed at study gamma-induced defect production in crystals with different concentration of stabilizer and defects generated by neutron irradiation. Absorption spectra were measured with Specord M-40. It was found, that after gamma-irradiation of as-grown crystals up to some dose the intensity of absorption band at 420 nm reaches the maximum level of saturation. The dose of saturation depends of the concentration of stabilizer. It means that gamma-radiation does not produce any additional defects of structure. The oxygen vacancies existing in as-grown crystals are filled by the radiation induced electrons. Since the number of oxygen vacancies depends on the stabilizer concentration, then all these vacancies can be occupied by electrons at different gamma-doses. In crystals pre-irradiated with different neutron fluences followed by gamma-irradiation, the intensity of absorption bands at 420 and 530 nm increases in two stages. The gamma-dose of the second stage beginning decreases as the neutron fluence grows. The first stage of the absorption increase is due to developing of vacancies existing in as-grown crystals. The second stage is caused by generation of additional vacancies as the result of non-radiative exciton decay near the existing structure damages. The decrease of the gamma-dose, when the second stage of vacancy accumulation begins, results from the neutron induced structure damage degree

  19. Thermal annealing in neutron-irradiated tribromobenzenes

    DEFF Research Database (Denmark)

    Siekierska, K.E.; Halpern, A.; Maddock, A. G.

    1968-01-01

    The distribution of 82Br among various products in neutron-irradiated isomers of tribromobenzene has been investigated, and the effect of thermal annealing examined. Reversed-phase partition chromatography was employed for the determination of radioactive organic products, and atomic bromine...

  20. Protons in neutron-irradiated and thermochemically reduced MgO crystals doped with lithium impurities

    International Nuclear Information System (INIS)

    Gonzalez, R.; Pareja, R.; Chen, Y.

    1992-01-01

    H - (hydride) ions have been observed in lithium-doped MgO crystals which have been neutron irradiated or thermochemically reduced (TCR). Infrared-absorption measurements have been used to identify the local modes of the H - ions in these crystals. The concentration of the H - ions in the neutron-irradiated crystals is found to be far less than that found in the TCR crystals. The thermal stability of H - and oxygen vacancies in both oxidizing and reducing atmospheres are investigated. The emergence of sharp structures due to OH - ions is attributed to the displacements of substitutional Li + ions, leaving behind unperturbed OH - ions, via a mechanism of rapid radiation-induced diffusion during irradiation in a reactor. Results of neutron-irradiated MgO:Li, which had previously been oxidized at high temperature, are also presented

  1. Microstructure of V-4Cr-4Ti following low temperature neutron irradiation

    International Nuclear Information System (INIS)

    Rice, P.M.; Snead, L.L.; Alexander, D.J.; Zinkle, S.J.

    1996-01-01

    The V-4Cr-4Ti alloys displays excellent mechanical properties, including a ductile-to-brittle transition temperature (DBTT) below - 200 C in the unirradiated conditions. Samples were fission neutron- irradiated in HFBR to a 0.4 dpa dose at 100-275 C. Mechanical tests showed significant irradiation hardening which increased with irradiation temperature. Charpy impact testing also showed a dramatic increase in DBTT on the order of 100 to 350 C. The mechanical property changes are correlated with preliminary results from TEM analysis of the defect microstructure resulting from the low-dose neutron irradiations. TEM of the irradiated material showed a nearly constant defect density of ∼1.6x10 23 m -3 , with an average defect diameter of slightly greater than 3 nm

  2. Germanium-doped gallium phosphide obtained by neutron irradiation

    Science.gov (United States)

    Goldys, E. M.; Barczynska, J.; Godlewski, M.; Sienkiewicz, A.; Heijmink Liesert, B. J.

    1993-08-01

    Results of electrical, optical, electron spin resonance and optically detected magnetic resonance studies of thermal neutron irradiated and annealed at 800 °C n-type GaP are presented. Evidence is found to support the view that the main dopant introduced via transmutation of GaP, germanium, occupies cation sites and forms neutral donors. This confirms the possibility of neutron transmutation doping of GaP. Simultaneously, it is shown that germanium is absent at cation sites. Presence of other forms of Ge-related defects is deduced from luminescence and absorption data. Some of them are tentatively identified as VGa-GeGa acceptors leading to the self-compensation process. This observation means that the neutron transmutation as a doping method in application to GaP is not as efficient as for Si.

  3. Annealing process of F- and F{sup +}-centers in Al{sub 2}O{sub 3} single crystal induced by fast neutrons irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Izerrouken, M., E-mail: izerrouken@yahoo.com [Centre de Recherche Nucléaire de Draria, BP.43, Sebala, Draria, Algiers (Algeria); Djouadi, Y. [Université Ferhat Abbas, Faculté des Sciences, Université de Sétif (Algeria); Zirour, H. [Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene, El-Alia, BP 32, Bab-Ezzouar, Algiers (Algeria)

    2014-01-15

    F and F{sup +} centers were produced in Al{sub 2}O{sub 3} single crystal by fast neutrons (E{sub n} > 1.2 MeV) irradiation at low fluence (4.4 × 10{sup 16} n cm{sup −2}). The evolution of defects intensity as a function of temperature and of time at 493, 623 and 823 K was investigated by UV–visible spectrophotometry technique. It can be concluded from the analysis of isochronal and isothermal annealing data, that the F- and F{sup +}-centers annealing process is complex. At low annealing temperature (<473 K), only F- to F{sup +}-center conversion process takes place. At higher temperature (>493 K) the annealing is due to the superposition of several mechanisms with different activation energies. According to our results, the activation energies needed for both F- and F{sup +}-centers elimination are 0.2, 0.3 and 0.03 eV for temperature range of 300–673 K, 673–873 K and >873 K, respectively.

  4. Self-ion emulation of high dose neutron irradiated microstructure in stainless steels

    Science.gov (United States)

    Jiao, Z.; Michalicka, J.; Was, G. S.

    2018-04-01

    Solution-annealed 304L stainless steel (SS) was irradiated to 130 dpa at 380 °C, and to 15 dpa at 500 °C and 600 °C, and cold-worked 316 SS (CW 316 SS) was irradiated to 130 dpa at 380 °C using 5 MeV Fe++/Ni++ to produce microstructures and radiation-induced segregation (RIS) for comparison with that from neutron irradiation at 320 °C to 46 dpa in the BOR60 reactor. For the 304L SS alloy, self-ion irradiation at 380 °C produced a dislocation loop microstructure that was comparable to that by neutron irradiation. No voids were observed in either the 380 °C self-ion irradiation or the neutron irradiation conditions. Irradiation at 600 °C produced the best match to radiation-induced segregation of Cr and Ni with the neutron irradiation, consistent with the prediction of a large temperature shift by Mansur's invariant relations for RIS. For the CW 316 SS alloy irradiated to 130 dpa at 380 °C, both the irradiated microstructure (dislocation loops, precipitates and voids) and RIS reasonably matched the neutron-irradiated sample. The smaller temperature shift for RIS in CW 316 SS was likely due to the high sink (dislocation) density induced by the cold work. A single self-ion irradiation condition at a dose rate ∼1000× that in reactor does not match both dislocation loops and RIS in solution-annealed 304L SS. However, a single irradiation temperature produced a reasonable match with both the dislocation/precipitate microstructure and RIS in CW 316 SS, indicating that sink density is a critical factor in determining the temperature shift for self-ion irradiations.

  5. Optical absorption characteristics of neutron irradiated heavy metal fluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, S.S.; Banerjee, P.K.; Pereira, J.M.T.; Gedam, S.G.

    1987-10-15

    Samples of ZBLA and HBLA glasses were subjected to various fluences of neutron irradiation, and the spectral dependence of optical absorption was measured before and after irradiation. The IR edge was found to be unaffected by neutron irradiation for the fluences used. However, a red shift occurred at the UV edge which slightly recovered after three weeks.

  6. Impact of neutron irradiation on thermal helium desorption from iron

    Science.gov (United States)

    Hu, Xunxiang; Field, Kevin G.; Taller, Stephen; Katoh, Yutai; Wirth, Brian D.

    2017-06-01

    The synergistic effect of neutron irradiation and transmutant helium production is an important concern for the application of iron-based alloys as structural materials in fission and fusion reactors. In this study, we investigated the impact of neutron irradiation on thermal helium desorption behavior in high purity iron. Single crystalline and polycrystalline iron samples were neutron irradiated in HFIR to 5 dpa at 300 °C and in BOR-60 to 16.6 dpa at 386 °C, respectively. Following neutron irradiation, 10 keV He ion implantation was performed at room temperature on both samples to a fluence of 7 × 1018 He/m2. Thermal desorption spectrometry (TDS) was conducted to assess the helium diffusion and clustering kinetics by analyzing the desorption spectra. The comparison of He desorption spectra between unirradiated and neutron irradiated samples showed that the major He desorption peaks shift to higher temperatures for the neutron-irradiated iron samples, implying that strong trapping sites for He were produced during neutron irradiation, which appeared to be nm-sized cavities through TEM examination. The underlying mechanisms controlling the helium trapping and desorption behavior were deduced by assessing changes in the microstructure, as characterized by TEM, of the neutron irradiated samples before and after TDS measurements.

  7. Current Amplification Characteristics of BJT on Fast Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung Ho; Sun, Gwang Min; Baek, Hani [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    BJT (Bipolar Junction Transistor) is a three-terminal device with an important feature in that the current through two terminals can be controlled by small changes we make in the current or voltage at the third terminal. This control feature allows us to amplify small AC signals or to switch the device from an on state and off state and back. Fast neutron irradiation incurs lattice damage in bulk Si. The recombination rate of minority carriers and register are increased by the lattice damage. This study will investigate the current amplification characteristics of a pnp Si BJT through fast neutron irradiation experiments. In this paper, the current amplification characteristics of a pnp Si BJT were investigated for fast neutron irradiation. The experimental results show that base-tocollector current amplification ratio is decreased with an increase in the fast neutron irradiation. These indicate that the lattice damage caused by fast neutron irradiation increases the recombination rate of minority carriers and resistor.

  8. Final report on neutron irradiation at low temperature to investigate plastic instability and at high temperature to study caviation

    DEFF Research Database (Denmark)

    Singh, B.N; Eldrup, Morten Mostgaard; Golubov, D.J.

    2005-01-01

    Effects of neutron irradiation on defect accumulation and physical and mechanical properties of pure iron and F82H and EUROFER 97 ferritic-martensitic steels have been investigated. Tensile specimens were neutron irradiated to a dose level of 0,23 dpa at333 and 573 K. Electrical resistivity...... and EUROFER 97 were implanted with different amounts of helium at 323 K and subsequently neutron irradiated to doses of 10-3, 10-2 and 10-1 dpa at 323 K. Defectmicrostructures were investigated using positron annihilation spectroscopy (PAS) and transmission electron microscopy (TEM). Numerical calculations......, based on the production bias model (PBM) were carried out to study the details of evolution of cavitieswith and without helium generation. The phenomena of dislocation decoration and raft formation, which are important for understanding radiation hardening and plastic flow localization, have been...

  9. In situ high-energy X-ray diffraction study of tensile deformation of neutron-irradiated polycrystalline Fe-9%Cr alloy

    International Nuclear Information System (INIS)

    Zhang, Xuan; Li, Meimei; Park, Jun-Sang; Kenesei, Peter; Almer, Jonathan

    2016-01-01

    The effect of neutron irradiation on tensile deformation of a Fe-9wt.%Cr alloy was investigated using in situ high-energy synchrotron X-ray diffraction during room-temperature uniaxial tensile tests. New insights into the deformation mechanisms were obtained through the measurements of lattice strain evolution and the analysis of diffraction peak broadening using the modified Williamson-Hall method. Two neutron-irradiated specimens, one irradiated at 300 °C to 0.01 dpa and the other at 450 °C to 0.01dpa, were tested along with an unirradiated specimen. The macroscopic stress–strain curves of the irradiated specimens showed increased strength, reduced ductility and work-hardening exponent compared to the unirradiated specimen. The evolutions of the lattice strain, the dislocation density and the coherent scattering domain size in the deformation process revealed different roles of the submicroscopic defects in the 300°C/0.01 dpa specimen and the TEM-visible nanometer-sized dislocation loops in the 450°C/0.01 dpa specimen: submicroscopic defects extended the linear work hardening stage (stage II) to a higher strain, while irradiation-induced dislocation loops were more effective in dislocation pinning. Lastly, while the work hardening rate of stage II was unaffected by irradiation, significant dynamic recovery in stage III in the irradiated specimens led to the early onset of necking without stage IV as observed in the unirradiated specimen.

  10. Investigation of the agglomeration and amorphous transformation effects of neutron irradiation on the nanocrystalline silicon carbide (3C-SiC) using TEM and SEM methods

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, Elchin M., E-mail: elchin.h@yahoo.com [Department of Nanotechnology and Radiation Material Science, National Nuclear Research Center, Inshaatchilar pr. 4, AZ 1073 Baku (Azerbaijan); Institute of Radiation Problems of Azerbaijan National Academy of Sciences, B.Vahabzade 9, AZ 1143 Baku (Azerbaijan)

    2017-04-01

    Nanocrystalline 3C-SiC particles irradiated by neutron flux during 20 h in TRIGA Mark II light water pool type research reactor. Silicon carbide nanoparticles were analyzed by Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM) devices before and after neutron irradiation. The agglomeration of nanoparticles was studied comparatively before and after neutron irradiation. After neutron irradiation the amorphous layer surrounding the nanoparticles was analyzed in TEM device. Neutron irradiation defects in the 3C-SiC nanoparticles and other effects investigated by TEM device. The effect of irradiation on the crystal structure of the nanomaterial was studied by selected area electron diffraction (SAED) and electron diffraction patterns (EDP) analysis.

  11. ATF Neutron Irradiation Program Technical Plan

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.

  12. Radiation damage in stainless steel under varying temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Naoaki [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1998-03-01

    Microstructural evolution of model alloys of 316SS was examined by neutron irradiation at JMTR under cyclic temperature varying condition. In the case of Fe-16Cr-17Ni, formation of interstitial loops and voids are strongly suppressed by varying the temperature from 473K to 673K. By adding Ti as miner element (0.25wt%), however, abnormal accumulation of vacancies (void swelling of 11%dpa at 0.1dpa) was observed. Theoretical analysis standing on the rate theory of defect clustering and simulation irradiation experiments with heavy ions indicates that the vacancy-rich condition which appears temporally during and after changing the temperature from low to high brings these results. It was also shown that only 1 dpa pre-irradiation at low temperature changes swelling behavior at high temperature above several 10 dpa. The understanding of non-steady-state defect processes under temperature varying irradiation is very important to estimate the radiation damage under fusion environment where short-term and long-term temperature variation is expected. (author)

  13. A neutron irradiator applied to cancer treatment

    International Nuclear Information System (INIS)

    Campos, Tarcisio P.R.; Andrade, Ana P. de

    2000-01-01

    Cancer and the way of treating it with neutron capture therapy are addressed. This paper discusses also the type of neutron facilities used to treat cancer around the world, as follow: discrete neutron sources, accelerators, and nuclear reactors. The major features of an epithermal neutron irradiation facility applied to BNCT treatment are addressed. The main goal is to give another choice of neutron irradiators to be set in a hospital. The irradiation facility embeds a set of 252 Cf neutron source coupled with a homogeneous mixture of uranium-zirconium hydride alloy containing 8.4 wt % uranium enriched to 20% U 235 . The facility delivers an epithermal neutron beam with low background of fast neutron and gamma rays. The N particle transport code (MCNP-4A) has been used during the simulation in order to achieve the desired configurations and to estimate the multiplication factor, k eff . The present facility loaded with 30 mg of 252 Cf neutron source generates an external beam with an intensity of 10 7 n/cm 2 .s on the spectrum of 4 eV to 40 KeV. The 252 Cf - facility coupled with fissile material was able to amplify the epithermal flux to 10 8 n/cm 2 .s, maintaining the figure-of-merits represented by the ratios of the fast dose and gamma dose in air per epithermal neutron flux closed to those values presented by BMRR, MITR-II and Petten Reactor. The medical irradiation facility loaded with 252 Cf- 235 U can be a choice for BNCT. (author)

  14. The effect of neutron irradiation on the recuperation and recristallization of the polycrystalline niobium

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1978-01-01

    Through the measurements in Transmission Electron Microscopy and Microhardness is studied the effect of fast neutron irradiation (E > or = 0,1 MeV) on the Recovery and Recrystallization in very pure grade Niobium. The range of temperature is 25 0 C - 1200 0 C for one hour. The sigmoidal curve of the Recovery in Niobium shows a initial increase in the microhardness in the range of temperature of 25 0 C - 300 0 C, who is related to the intersticial migration (impurity atoms) O, C and N to the dislocations and to the defects clusters produced by cold work and radiation. The Recrystallization in cold worked Niobium comes by subgrain growth (subgrains coalescence) and by strain induced grain boundary migration. The radiation with fast neutrons (O=1,3 x 10 18 nvt) acelerates the overall nucleation process of Recrystallization by about 150 0 C with respect to the only deformed Niobium. The activation energy for the Recrystallization process is obtained in both cases, in the rolling Niobium and in Nb deformed and irradiated by fast neutrons (1,2 x 10 17 nvt) [pt

  15. Simulation analysis of radiation fields inside phantoms for neutron irradiation

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Y.; Miyahara, N.

    2007-01-01

    Radiation fields inside phantoms have been calculated for neutron irradiation. Particle and heavy-ion transport code system PHITS was employed for the calculation. Energy and size dependences of neutron dose were analyzed using tissue equivalent spheres of different size. A voxel phantom of mouse was developed based on CT images of an 8-week-old male C3H/HeNs mouse. Deposition energy inside the mouse was calculated for 2- and 10-MeV neutron irradiation. (author)

  16. Quenchable compressed graphite synthesized from neutron-irradiated highly oriented pyrolytic graphite in high pressure treatment at 1500 °C

    Science.gov (United States)

    Niwase, Keisuke; Terasawa, Mititaka; Honda, Shin-ichi; Niibe, Masahito; Hisakuni, Tomohiko; Iwata, Tadao; Higo, Yuji; Hirai, Takeshi; Shinmei, Toru; Ohfuji, Hiroaki; Irifune, Tetsuo

    2018-04-01

    The super hard material of "compressed graphite" (CG) has been reported to be formed under compression of graphite at room temperature. However, it returns to graphite under decompression. Neutron-irradiated graphite, on the other hand, is a unique material for the synthesis of a new carbon phase, as reported by the formation of an amorphous diamond by shock compression. Here, we investigate the change of structure of highly oriented pyrolytic graphite (HOPG) irradiated with neutrons to a fluence of 1.4 × 1024 n/m2 under static pressure. The neutron-irradiated HOPG sample was compressed to 15 GPa at room temperature and then the temperature was increased up to 1500 °C. X-ray diffraction, high-resolution transmission electron microscopy on the recovered sample clearly showed the formation of a significant amount of quenchable-CG with ordinary graphite. Formation of hexagonal and cubic diamonds was also confirmed. The effect of irradiation-induced defects on the synthesis of quenchable-CG under high pressure and high temperature treatment was discussed.

  17. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  18. Hydriding and neutron irradiation in zircaloy-4

    International Nuclear Information System (INIS)

    Ramos, Ruben Fortunato; Martin, Juan Ezequiel; Orellano, Pablo; Dorao, Carlos; Analia Soldati; Ghilarducci, Ada Albertina; Corso, Hugo Luis; Peretti, Hernan Americo; Bolcich, Juan Carlos

    2003-01-01

    The composition of Zircaloy-4 for nuclear applications is specified by the ASTM B350 Standard, that fixes the amount of alloying elements (Sn, Fe, Cr) and impurities (Ni, Hf, O, N, C, among others) to optimize good corrosion and mechanical behavior.The recycling of zircaloy-4 scrap and chips resulting from cladding tube fabrication is an interesting issue.However, changes in the final composition of the recycled material may occur due to contamination with tool pieces, stainless steel chips, turnings, etc. while scrap is stored and handled. Since the main components of the possible contaminants are Fe, Cr and Ni, it arises the interest in studying up to what limit the Fe, Ni and Cr contents could be exceeded beyond the standard specification without affecting significantly the alloy properties.Zircaloy-4 alloys elaborated with Fe, Cr and Ni additions and others of standard composition in use in nuclear plants are studied by tensile tests, SEM observations and EDS microanalysis.Some samples are tested in the initial condition and others after hydriding treatments and neutron irradiation in the RA6

  19. Effect of neutron irradiation on vanadium alloys

    International Nuclear Information System (INIS)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600 0 C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520 0 C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys

  20. Effect of neutron irradiation on vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600/sup 0/C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520/sup 0/C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys.

  1. Recovery characteristics of neutron-irradiated V-Ti alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Pareja, R.

    2000-01-01

    The recovery characteristics of neutron-irradiated pure V and V-Ti alloys with 1.0 and 4.5 at.% Ti have been investigated by positron annihilation spectroscopy. Microvoid formation during irradiation at 320 K is produced in pure V and V-1Ti but not in V-4.5Ti. The results are consistent with a model of swelling inhibition induced by vacancy trapping by solute Ti during irradiation. The temperature dependencies of the parameter S in the range 8-300 K indicate a large dislocation bias for vacancies and solute Ti. This dislocation bias prevents the microvoid nucleation in V-4.5Ti, and the microvoid growth in V-1Ti, when vacancies become mobile during post-irradiation annealing treatments. A characteristic increase of the positron lifetime is found during recovery induced by isochronal annealing. It is attributed to a vacancy accumulation into the lattice of Ti oxides precipitated during cooling down, or at their matrix/precipitate interfaces. These precipitates could be produced by the decomposition of metastable phases of Ti oxides formed during post-irradiation annealing above 1000 K

  2. Neutron irradiation of rat embryos in utero

    International Nuclear Information System (INIS)

    Vogel, H.H. Jr.

    1978-01-01

    In the rat radiation is most effective in producing congenital anomalies during the organ-forming period (days 9 to 13), which is approximately equivalent to the 14th to 50th days of human pregnancy. We have exposed female Sprague--Dawley rats on the 18th day of pregnancy to single whole-body doses of fission neutrons (20 to 150 rads). After 20 rads there was a small decrease in body weight which lasted from birth to weaning. During this period 9% of the irradiated rats died compared with 4% of the controls. After 50 rads, 65/275 (23.6%) of the rats died between birth and weaning, and the body-weight loss of the survivors was increased. After 100 rads, 62/133 (47%) died at birth or day 1 and 103/133 (77.4%) died before weaning. A large and significant decrease in body weight persisted in the survivors. After 150 rads of fission neutrons, all 95 rats died within 48 hr of birth. From cross-fostering experiments, we believe this is a direct effect of radiation on the embryos and not an indirect action through the mother or her milk. The LD 50 for the period from birth to weaning is approximately 75 rads of fission neutrons. Studies of organ weight were conducted daily for the first week after birth in an attempt to find the cause of radiation mortality. Body weight of the irradiated animals averaged only about one-half that of the controls. The liver, kidney, brain, and testes of the neutron-irradiated rats weighed significantly less than those of the controls. The weights of the spleen, lungs, duodenum, and stomach were decreased but not significantly. The bone marrow appeared depleted in the irradiated long bones, but the spleen maintained active hematopoiesis 1 to 2 months after neutron exposure

  3. Degradation of physical and mechanical properties of steel G-91 under low-dose neutron irradiation

    Science.gov (United States)

    Kislitsin, Sergey; Dikov, Alexey; Maksimkin, Oleg; Merezhko, Mikhail; Rofman, Oleg; Turubarova, Lyudmila; Gorlachev, Igor; Sil'nagina, Nadezhda

    2017-12-01

    Changes in the structure and physicomechanical properties of steel G-91 were studied after low-dose neutron irradiation. The irradiation was carried out in the "wet" channel of the WWR-K research nuclear reactor of INP, Almaty, Kazakhstan, to the fast neutron fluencies 8.6×1019 n/cm2 at a temperature of steel G-91. Microstructural changes manifested themselves in a growth of dislocation density and appearance of radiation defects (black dots). The most significant consequence of low-dose irradiation during a long period (up to a year and a half) is severe corrosion, which leads to embrittlement of steel G-91.

  4. Experimental Study of Fast Neutron Irradiation on Si Transistor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung Ho; Sun, Gwang Min; Baek, Ha ni; Jin, Seong Bok; Hoang, Sy Minh Tuan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Bipolar junction transistors (BJTs) are applied in many industrial fields. BJT is a three-terminal device with an important feature in that the current through two terminals can be controlled by small changes we make in the current or voltage at the third terminal. This control feature allows us to amplify small AC signals or to switch the device from an on state and off state and back. These two operations, amplification and switching, are the basis of a host of electronic functions. This study will investigate the electrical characteristics of a p-n-p BJT, such as the base current and collector current for fast neutron irradiation. Fast neutron irradiation can cause displacement damage in the Si bulk. In this paper, the electrical characteristics of a p-n-p BJT such as a base current and collector current are investigated for fast neutron irradiation. The experimental results show that the base current is increased and the collector current is decreased after fast neutron irradiation. These results indicate that the displacement damage caused by fast neutron irradiation increases the recombination rate of minority carriers and resistors.

  5. Neutron-Irradiated Samples as Test Materials for MPEX

    International Nuclear Information System (INIS)

    Ellis, Ronald James; Rapp, Juergen

    2015-01-01

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility

  6. Swelling and tensile properties of neutron-irradiated vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1990-07-01

    Vanadium-base alloys are candidates for use as structural material in magnetic fusion reactors. In comparison to other candidate structural materials (e.g., Type 316 stainless and HT-9 ferritic steels), vanadium-base alloys such as V-15Cr-5Ti and V-20Ti have intrinsically lower long-term neutron activation, neutron irradiation after-heat, biological hazard potential, and neutron-induced helium and hydrogen transmutation rates. Moreover, vanadium-base alloys can withstand a higher surface-heat, flux than steels because of their lower thermal stress factor. In addition to having these favorable neutronic and physical properties, a candidate alloy for use as structural material in a fusion reactor must have dimensional stability, i.e., swelling resistance, and resistance to embrittlement during the reactor lifetime at a level of structural strength commensurate with the reactor operating temperature and structural loads. In this paper, we present experimental results on the swelling and tensile properties of several vanadium-base alloys after irradiation at 420, 520, and 600 degree C to neutron fluences ranging from 0.3 to 1.9 x 10 27 neutrons/m 2 (17 to 114 atom displacements per atom [dpa])

  7. Neutron irradiation of sputtered NbN films

    International Nuclear Information System (INIS)

    Weber, H.W.; Gregshammer, P.; Gray, K.E.; Kampwirth, R.T.

    1989-01-01

    In addition to the excellent high-field superconducting properties of NbN, it is the strain and radiation tolerance, measured in bulk NbN, which makes the material so attractive for large high-field magnets, especially for fusion applications. The authors report neutron irradiation experiments on sputtered NbN films, up to a fluence of 10/sup 23/ m/sup -2/ (E > 0.1 MeV), which prove that NbN films are also extremely radiation-hard high-field superconductors. Both the transition temperatures, T/sub c/, and the normal state resistivities show only small changes with neutron fluence. Concerning the critical current densities, j/sub c/, degradations by as much as 30% are observed at low fields, whereas in an intermediate field range (11-15 T) virtually no change of j/sub c/ and at high fields near 20 T even an increase of j/sub c/ are found. The latter observation is ascribed to a radiation-induced increase of the upper critical field, B/sub c2/, and to the occurence of peak effects near B/sub c2/

  8. Reflection and photoemission studies of neutron-irradiated graphite

    International Nuclear Information System (INIS)

    Fukutani, Hirohito; Yamada, Akio; Yagi, Kazutoshi; Ooe, Satoshi; Higashiyama, Kazuyuki; Kato, Hiroo; Iwata, Tadao.

    1990-01-01

    Neutron-irradiated graphites were studied by reflectivity and photoemission (UPS, ARUPS, XPS) measurements. The π-band reflectivity peak of graphite, located at 5 eV, changed significantly and a small absorption band ascribed to vacancies produced by neutron bombardment was found to grow around 3 eV. Modification of the valence band by neutron irradiation was studied by ARUPS. The π-valence band shifts to lower binding energy towards the Fermi level and its band width becomes smaller. These results were also confirmed by the optical joint density of states obtained from K-K analysis of the reflectivity. (author)

  9. Behavior of fluorine 18 in neutron irradiated zeolites

    International Nuclear Information System (INIS)

    Estevez Lopez, D.R.

    1992-01-01

    The transformation of Li-exchanged H-Y zeolite has been investigated at 300, 550, 850 and 1050 Centigrade degree, formation of quartz structure in addition to an amorphous phase, was nited. The Li-aluminosilicate obtained was neutron irradiated and the chemical behavior of 18 F produced by the reaction sequence 6 Li (n, α) 3 H, 16 O ( 3 H, n) 18 F, was studied. The neutron irradiated material was purged with argon-hydron gas streams. It was found that the amount of released 18 F depends on the temperature used (Author)

  10. Tritium Retention and Permeation in Ion- and Neutron-Irradiated Tungsten under US-Japan PHENIX Collaboration

    Science.gov (United States)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.; Chikada, Takumi; Oya, Yasuhisa; Hatano, Yuji

    2015-11-01

    A critical challenge for long-term operation of ITER and beyond to a FNSF, a DEMO and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to intense heat and neutral/ion particle fluxes under the extreme fusion nuclear environment, while minimizing in-vessel inventories and ex-vessel permeation of tritium. Recent work at Tritium Plasma Experiment demonstrated that tritium diffuses in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. US-Japan PHENIX collaboration (2013-2019) investigates irradiation response on tritium behavior in tungsten, and performs one-of-a-kind neutron-irradiation with Gd thermal neutron shield at High Flux Isotope Reactor, ORNL. This presentation describes the challenge in elucidating tritium behavior in neutron-irradiated PFCs, the PHENIX plans for neutron-irradiation and post irradiation examination, and the recent findings on tritium retention and permeation in 14MeV neutron-irradiated and Fe ion irradiated tungsten. This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  11. Final Report on Investigations of the influence of Helium concentration and implantation rate on Cavity Nucleation and Growth during neutron irradiation of Fe and EUROFER 97

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, Bachu Narain; Golubov, S.

    after He implantation in general leads to an increase of both cavity sizes and densities. Estimates of cavity sizes and densities in EUROFER 97 after neutron irradiation with or without prior helium implantation are rather uncertain, but lead to values of the same order as for iron. TEM cannot resolve......This report presents results of investigations of damage accumulation during neutron irradiation of pure iron and EUROFER 97 steel with or without prior helium implantation. The defect microstructure, in particular the cavities, was characterized using Positron Annihilation Spectroscopy (PAS...... for EUROFER 97 and for both materials smaller for implantation at 623 K than at 323 K. This lifetime increase is due primarily to the formation of He bubbles. For He doses of 10 – 100 appm cavity sizes and densities in Fe were estimated to be 1.7 – 2.8 nm and 4 - 14×1021 m-3, respectively. Neutron irradiation...

  12. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa

    Science.gov (United States)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Yamamoto, Yukinori; Howard, Richard H.

    2017-11-01

    FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and aluminum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3-0.8 displacements per atom (dpa) at temperatures of 335-355 °C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a / 2 〈 111 〉 or a 〈 100 〉 Burgers vectors. Weak composition dependencies were observed and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.

  13. Neutron irradiation effects on magnetic properties of some Heusler alloys

    International Nuclear Information System (INIS)

    Onodera, Hideya; Shinohara, Takeshi; Yamamoto, Hisao; Watanabe, Hiroshi

    1975-01-01

    The neutron irradiation effects were studied with measurements of temperature dependence of magnetization in ordered and disordered Heusler alloys. The irradiation was carried out in JMTR with a total flux of fast neutrons of 10 20 nvt. Fully ordered Cu 2 MnIn, partially ordered Cu 2 MnAl and completely disordered Cu 2 MnSn were prepared with various temperature treatments. The magnetization-temperature curves of each specimen were measured before and after irradiation. In the irradiated Cu 2 MnIn, the disordering by the irradiation gave rise to a decrease of magnetization, and the temperature dependence of magnetization showed that the disordered region contained various regions with different degrees of disorder. For the distribution of the disordered region, the calculation based on the theory of temperature spike by Seitz and Koekler gave a feasible result that a disordered region comprised a central core with a radius of 5.4 A which was completely disordered and a periphery of 3.3 A thickness which was partially disordered. From the magnetization-temperature curves of Cu 2 MnAl, it was considered that the disordered regions induced by the irradiation had different properties from those induced by the heat treatment. The former were the localized and comprised regions corresponding to various degrees of disorder, while the latter spread spatially in a wide range with a certain degree of disorder. The ordering by enhanced diffusion occurred simultaneously to an extent comparable to the disordering, and so it played an important role in the magnetization in the partially disordered Cu 2 MnAl. In the disordered Cu 2 MnSn, however, the ordering effect was very small. It is supposed to be difficult for the A2 structure to transform into the L2 1 structure by the enhanced diffusion. (auth.)

  14. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    Science.gov (United States)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  15. Evaluation of gamma and neutron irradiation effects on the ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. We present an investigation of gamma and neutron radiation effects on mica film capacitors from an electrical point of view. We have studied quantitatively the effects of gamma and neutron irradiation on mica film capacitors of thickness, 20 and 40 µm (0⋅7874 and 1⋅5748 mil) with two different areas, 01 and.

  16. Evaluation of gamma and neutron irradiation effects on the ...

    Indian Academy of Sciences (India)

    We present an investigation of gamma and neutron radiation effects on mica film capacitors from an electrical point of view. We have studied quantitatively the effects of gamma and neutron irradiation on mica film capacitors of thickness, 20 and 40 m (0.7874 and 1.5748 mil) with two different areas, 01 and 04 cm2.

  17. Response of neutron-irradiated RPV steels to thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-03-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels.

  18. Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe–Cr model alloys

    International Nuclear Information System (INIS)

    Bergner, F.; Pareige, C.; Hernández-Mayoral, M.; Malerba, L.; Heintze, C.

    2014-01-01

    An attempt is made to quantify the contributions of different types of defect-solute clusters to the total irradiation-induced yield stress increase in neutron-irradiated (300 °C, 0.6 dpa), industrial-purity Fe–Cr model alloys (target Cr contents of 2.5, 5, 9 and 12 at.% Cr). Former work based on the application of transmission electron microscopy, atom probe tomography, and small-angle neutron scattering revealed the formation of dislocation loops, NiSiPCr-enriched clusters and α′-phase particles, which act as obstacles to dislocation glide. The values of the dimensionless obstacle strength are estimated in the framework of a three-feature dispersed-barrier hardening model. Special attention is paid to the effect of measuring errors, experimental details and model details on the estimates. The three families of obstacles and the hardening model are well capable of reproducing the observed yield stress increase as a function of Cr content, suggesting that the nanostructural features identified experimentally are the main, if not the only, causes of irradiation hardening in these model alloys

  19. Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe–Cr model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, F., E-mail: f.bergner@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Pareige, C. [Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR 6634 CNRS, Avenue de l’Université, BP 12, 76801 Saint Etienne du Rouvray (France); Hernández-Mayoral, M. [Division of Materials, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Malerba, L. [SCK-CEN, Nuclear Material Science Institute, Boeretang 200, B-2400 Mol (Belgium); Heintze, C. [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany)

    2014-05-01

    An attempt is made to quantify the contributions of different types of defect-solute clusters to the total irradiation-induced yield stress increase in neutron-irradiated (300 °C, 0.6 dpa), industrial-purity Fe–Cr model alloys (target Cr contents of 2.5, 5, 9 and 12 at.% Cr). Former work based on the application of transmission electron microscopy, atom probe tomography, and small-angle neutron scattering revealed the formation of dislocation loops, NiSiPCr-enriched clusters and α′-phase particles, which act as obstacles to dislocation glide. The values of the dimensionless obstacle strength are estimated in the framework of a three-feature dispersed-barrier hardening model. Special attention is paid to the effect of measuring errors, experimental details and model details on the estimates. The three families of obstacles and the hardening model are well capable of reproducing the observed yield stress increase as a function of Cr content, suggesting that the nanostructural features identified experimentally are the main, if not the only, causes of irradiation hardening in these model alloys.

  20. Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe-Cr model alloys

    Science.gov (United States)

    Bergner, F.; Pareige, C.; Hernández-Mayoral, M.; Malerba, L.; Heintze, C.

    2014-05-01

    An attempt is made to quantify the contributions of different types of defect-solute clusters to the total irradiation-induced yield stress increase in neutron-irradiated (300 °C, 0.6 dpa), industrial-purity Fe-Cr model alloys (target Cr contents of 2.5, 5, 9 and 12 at.% Cr). Former work based on the application of transmission electron microscopy, atom probe tomography, and small-angle neutron scattering revealed the formation of dislocation loops, NiSiPCr-enriched clusters and α‧-phase particles, which act as obstacles to dislocation glide. The values of the dimensionless obstacle strength are estimated in the framework of a three-feature dispersed-barrier hardening model. Special attention is paid to the effect of measuring errors, experimental details and model details on the estimates. The three families of obstacles and the hardening model are well capable of reproducing the observed yield stress increase as a function of Cr content, suggesting that the nanostructural features identified experimentally are the main, if not the only, causes of irradiation hardening in these model alloys.

  1. Neutron irradiation effects on silicon detectors structure, electrical and mechanical characteristics

    International Nuclear Information System (INIS)

    Rabinovich, E.; Golan, G.; Axelevich, A.; Inberg, A.; Oksman, M.; Rosenwaks, I.; Lubarsky, G.; Seidman, A.; Croitoru, N.; Rancoita, P.G.; Rattaggi, M.

    1999-01-01

    Neutron irradiation effects on (p-n) and Schottky-junction silicon detectors were studied. It was shown that neutron interactions with monocrystalline silicon create specific types of microstructure defects with morphology differing according to the level of neutron fluences (Φ). The isolated dislocation loops, formed by interstitial atoms were observed in microstructure images for 10 10 ≤ Φ ≤ 10 12 n/cm 2 . A strong change in the dislocation loops density and a cluster formation was observed for Φ ≥ 10 13 n/cm 2 . A drastic silicon damage was found for fluences over 10 14 n/cm 2 . These fluences created zones enriched with all types of dislocations, covering more than 50 % of the total surface area. A mechanical fragility appeared in that fluence range in a form of microcracks. 10 14 n/cm 2 appears to be a critical value of neutron irradiation because of the radiation damage described above and because the characteristics I f -V f of silicon detectors can be differentiated from those obtained at low fluences. (A.C.)

  2. Nanostructure evolution of neutron-irradiated reactor pressure vessel steels: Revised Object kinetic Monte Carlo model

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Messina, L. [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-114 21 Stockholm (Sweden); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Olsson, P. [KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-114 21 Stockholm (Sweden); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2017-02-15

    This work presents a revised set of parameters to be used in an Object kinetic Monte Carlo model to simulate the microstructure evolution under neutron irradiation of reactor pressure vessel steels at the operational temperature of light water reactors (∼300 °C). Within a “grey-alloy” approach, a more physical description than in a previous work is used to translate the effect of Mn and Ni solute atoms on the defect cluster diffusivity reduction. The slowing down of self-interstitial clusters, due to the interaction between solutes and crowdions in Fe is now parameterized using binding energies from the latest DFT calculations and the solute concentration in the matrix from atom-probe experiments. The mobility of vacancy clusters in the presence of Mn and Ni solute atoms was also modified on the basis of recent DFT results, thereby removing some previous approximations. The same set of parameters was seen to predict the correct microstructure evolution for two different types of alloys, under very different irradiation conditions: an Fe-C-MnNi model alloy, neutron irradiated at a relatively high flux, and a high-Mn, high-Ni RPV steel from the Swedish Ringhals reactor surveillance program. In both cases, the predicted self-interstitial loop density matches the experimental solute cluster density, further corroborating the surmise that the MnNi-rich nanofeatures form by solute enrichment of immobilized small interstitial loops, which are invisible to the electron microscope.

  3. Effects of neutron irradiation on tensile and creep properties of stainless steels

    International Nuclear Information System (INIS)

    Miyaji, Noriko; Abe, Yasuhiro; Asayama, Tai; Aoto, Kazumi; Ukai, Shigeharu

    1997-01-01

    In order to investigate the effects of neutron irradiation on the creep and tensile properties of stainless steels, post-irradiation tests were made on the specimens of FBR grade type 316 stainless steel (316FR) and type 304 stainless steel. The post-irradiation tensile tests showed that the fracture elongation of both 316FR and type 304 stainless steel decreased and the 0.2% proof strength increased by irradiation. These phenomena are related to the point defect accumulation due to neutron irradiation. The post-irradiation creep test of 316FR demonstrated that the time to rupture decreased to between 1/3 and 1/5 of the unirradiated one, and this reduction is smaller than that of type 304 stainless steels under the same irradiation and test conditions. The creep property degradation of type 304 stainless steel due to the irradiation is caused by accumulation of helium bubbles at the grain boundaries. As for 316FR, it is considered that beyond the neutron exposure level of 0.3dpa a growth of phosphide caused a decrease in solution hardening and accumulation of helium bubbles at the grain boundaries. It is concluded that the reduction ratio of time to rupture for both 316FR and type 304 stainless steels after irradiation became larger than 1/30, which is the lower limit of the reduction ratio for the 'Monju' FBR. (author)

  4. Neutron irradiation effects in amorphous SiO2: optical absorption and electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Guzzi, M.; Martini, M.; Paleari, A.; Pio, F.; Vedda, A.; Azzoni, C.B.

    1993-01-01

    Optical absorption spectra of as-grown and neutron-irradiated amorphous SiO 2 , both fused natural quartz and synthetic silica, have been analysed in the ultraviolet region below the fundamental edge. The description of the optical spectrum has been further clarified by a detailed study of the spectral components as a function of the neutron irradiation in different types of silica; we have verified known correlations between optical bands and between bands and paramagnetic centres. In 'as-grown' fused quartz samples, a previously unreported band at 6.2 eV has been detected. 'As-grown' synthetic silicas do not show any band, up to the intrinsic absorption edge. In the irradiated samples, the experimental results suggest a correlation between two bands at 5.8 and 7.1 eV, while previous attribution of the bands at 5.0 eV (B 2 band) and 7.6 eV (E band) to the same defect is discussed. The role of impurities in the optical absorption and in the radiation hardness is also considered. (author)

  5. Neutron irradiation effects in quartz: optical absorption and electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Guzzi, M.; Pio, F.; Spinolo, G.; Vedda, A.

    1992-01-01

    Optical absorption measurements in the 3-9 eV energy range and electron paramagnetic resonance (EPR) have been performed at 300 K and at 80 K on Sawyer PQ quartz. Both as-received and neutron-irradiated samples (neutron fluences up to 3 x 10 18 neutrons cm -2 ) have been studied. The absorption spectra have been analysed in terms of a sum of elementary Gaussian components. The effect of the neutron irradiation is to induce the presence of absorption bands at 7.6 eV (E band), at 7.1 eV (D band) and at 6 eV (E' region). The most intense peak of all the spectra is the E band (7.6 eV); its shape is complex and the existence of a double structure can be suggested. The D band is evidenced for the first time in neutron-irradiated synthetic quartz; our measurements show that this structure is correlated with the 6.0 eV band. The 'E'' region is complex; in fact, at the highest neutron fluence the optical absorption spectrum reveals the existence of four structures, at 4.7, 5.2, 5.6 and 6.0 eV, where the 4.7 eV band has the same characteristics as the D o band, which is present in amorphous silica. The comparison between the results of EPR measurements and the analysis of the complex structure of this absorption indicates that the correlation between optical absorption bands in this region and the EPR E' -centre signals suggested previously must be re-examined. (Author)

  6. Micro to nanostructural observations in neutron irradiated nuclear graphites PCEA and PCIB

    Science.gov (United States)

    Freeman, H. M.; Mironov, B. E.; Windes, W.; Alnairi, M. M.; Scott, A. J.; Westwood, A. V. K.; Brydson, R. M. D.

    2017-08-01

    The neutron irradiation-induced structural changes in nuclear grade graphites PCEA and PCIB were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and electron energy loss spectroscopy (EELS). The graphite samples were irradiated at the Advanced Test Reactor at the Idaho National Laboratory. Received doses ranged from 1.5 to 6.8 displacements per atom and irradiation temperatures varied between 350 °C and 670 °C. XRD and Raman measurements provided evidence for irradiation induced crystallite fragmentation, with crystallite sizes reduced by 39-55%. Analysis of TEM images was used to quantify fringe length, tortuosity, and relative misorientation of planes, and indicated that neutron irradiation induced basal plane fragmentation and curvature. EELS was used to quantify the proportion of sp2 bonding and specimen density; a slight reduction in planar-sp2 content (due to the buckling basal planes and the introduction of non-six-membered rings) agreed with the observations from TEM.

  7. Study of the behaviour under neutron irradiation of hafnium diboride; Etude du comportement sous irradiation neutronique du diborure d`hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Cheminant-Coatanlem, P

    1998-12-31

    Owing to its good neutron cross section and to its high melting point, hafnium diboride is a potential candidate for a use as neutron absorbing material in control rod of pressurized water reactor of the next generation. The main causes of damage under neutron irradiation in this ceramic are due to the {sup 10}B(n,{alpha}){sup 7}Li reaction that introduces in the crystal structure new atoms and point defects. The materials under consideration are the stoichiometric HfB{sub 2} compound and the HfB{sub 2} + 10 vol. % Hf compound. They are been irradiated with neutrons at several fluences and temperatures. Electron irradiations, helium and lithium implantations have been carried out in order to simulate the creation of point defects and/or fission products. Transmission and scanning electron microscopy have been used to determine damage mechanisms in HfB{sub 2}. At a low temperature (<500 deg C), irradiation defects precipitate in dislocation loops of both nature, interstitial and vacancy. Those loops have a particular organisation in the HfB{sub 2} lattice: vacancy loops are lying in the basal plane and interstitial loops in planes perpendicular to basal planes. This induces anisotropic deformation of grains that originates internal stress development. These stresses are associated with the dislocation staking and consequently with the cavity formation at grain boundaries. At a higher temperature (>700 deg C), the same dislocation loops are observed. But, in addition, the irradiation defects diffuse to grain boundaries where helium bubbles are formed. The damage caused by this latter mechanism becomes predominant. The HfB{sub 2} + 10 vol. % Hf materials is more resistant under neutron irradiation than the HfB{sub 2} pellets that display a very damaged surface. This result is explained by the fact that, on the one band, the HfB{sub 2} + 10 vol. % Hf pellets have a higher toughness than the HfB{sub 2} pellets and, on the other hand, the HfB{sub 2} + 10 vol. % Hf

  8. Study on neutron irradiation behavior of beryllium as neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  9. Study on neutron irradiation behavior of beryllium as neutron multiplier

    International Nuclear Information System (INIS)

    Ishitsuka, Etsuo

    1998-01-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  10. In vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta Etel Treiger; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Lab. de Biologia Molecular]. E-mail: samanta@usp.br; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo (IMT-SP), SP (Brazil). Lab. de Protozoologia]. E-mail:hfandrad@usp.br

    2005-10-15

    Pentavalent antimony, as meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes {sup 122} Sb and {sup 124} Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology. (author)

  11. Separation of Protactinium from Neutron Irradiated Thorium Oxide

    International Nuclear Information System (INIS)

    Dominguez, G.; Gutierrez, L.; Ropero, M.

    1983-01-01

    The chemical separation of thorium and protactinium can be carried out by leaching most of the last one, about 95%, with aqueous HF from neutron irradiated thorium oxide. This leaching reaction la highly favored by the transformation reaction of the ThO 2 material into ThF 4 . For both reactions, leaching and transformation, the reagents concentration, agitation speed and temperature influences were studied and the activation energies were found. (Author) 18 refs

  12. National Low-Temperature Neutron-Irradiation Facility

    International Nuclear Information System (INIS)

    Coltman, R.R. Jr.; Klabunde, C.E.; Young, F.W. Jr.

    1983-08-01

    The Materials Sciences Division of the United States Department of Energy will establish a National Low Temperature Neutron Irradiation Facility (NLTNIF) which will utilize the Bulk Shielding Reactor (BSR) located at Oak Ridge National Laboratory. The facility will provide high radiation intensities and special environmental and testing conditions for qualified experiments at no cost to users. This report describes the planned experimental capabilities of the new facility

  13. Studies of neutron irradiation effects at IPNS-REF

    International Nuclear Information System (INIS)

    Kirk, M.A.

    1983-09-01

    Neutron irradiation effects studies at the Radiation Effects Facility (REF) at the Intense Pulsed Neutron Source (IPNS) located at Argonne National Laboratory (ANL) are reviewed. A brief history of the development of this user facility is followed by an overview of the scientific program. Experiments unique to a spallation neutron source are covered in more detail. Future direction of research at this facility is suggested

  14. Neutron irradiation effects on high Nicalon silicon carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, M.C.; Steiner, D.; Snead, L.L. [Oak Ridge National Laboratory, TN (United States)

    1996-10-01

    The effects of neutron irradiation on the mechanical properties and microstructure of SiC and SiC-based fibers is a current focal point for the development of radiation damage resistant SiC/SiC composites. This report discusses the radiation effects on the Nippon Carbon Hi-Nicalon{trademark} fiber system and also discusses an erratum on earlier results published by the authors on this material. The radiation matrix currently under study is also summarized.

  15. Neutron irradiation effects on high Nicalon silicon carbide fibers

    International Nuclear Information System (INIS)

    Osborne, M.C.; Steiner, D.; Snead, L.L.

    1996-01-01

    The effects of neutron irradiation on the mechanical properties and microstructure of SiC and SiC-based fibers is a current focal point for the development of radiation damage resistant SiC/SiC composites. This report discusses the radiation effects on the Nippon Carbon Hi-Nicalon trademark fiber system and also discusses an erratum on earlier results published by the authors on this material. The radiation matrix currently under study is also summarized

  16. Evaluation of gamma and neutron irradiation effects on the ...

    Indian Academy of Sciences (India)

    However, appreciable change in the capacitance has been observed due to low doses of fast neutrons (cumulative dose, 115 cGy) with flux ∼ 9.925 × 107 neutrons/cm2 h from 252Cf neutron source of fluence, 2.5 × 107 neutrons/s. We have also observed that the impact of gamma and neutron irradiation is more at ...

  17. Characterization of the National Low-Temperature Neutron Irradiation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kerchner, H.R.; Coltman, R.R. Jr.; Klabunde, C.E.; Young, F.W. Jr.

    1986-02-01

    The National Low-Temperature Neutron Irradiation Facility (NLTNIF) is now operating at the Bulk Shielding Reactor at ORNL. The facility provides high radiation intensities and special environmental and testing conditions for qualified experiments at no cost to users. A general description and major specifications of the NLTNIF are presented along with the results of performance tests. In addition, the hardware and other considerations required to perform experiments in the NLTNIF are described.

  18. Overview of microstructural evolution in neutron-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1993-01-01

    Austenitic stainless steels are important structural materials common to several different reactor systems, including light water and fast breeder fission, and magnetic fusion reactors (LWR, FBR, and MFR, respectively). The microstructures that develop in 300 series austenitic stainless steels during neutron irradiation at 60-700 C include combinations of dislocation loops and networks, bubbles and voids, and various kinds of precipitate phases (radiation-induced, or -enhanced or -modified thermal phases). Many property changes in these steels during neutron irradiation are directly or indirectly related to radiation-induced microstructural evolution. Even more important is the fact that radiation-resistance of such steels during either FBR or MFR irradiation is directly related to control of the evolving microstructure during such irradiation. The purpose of this paper is to provide an overview of the large and complex body of data accumulated from various fission reactor irradiation experiments conducted over the many years of research on microstructural evolution in this family of steels. The data can be organized into several different temperature regimes which then define the nature of the dominant microstructural components and their sensitivities to irradiation parameters (dose, helium/dpa ratio, dose rate) or metallurgical variables (alloy composition, pretreatment). The emphasis in this paper will be on the underlying mechanisms driving the microstructure to evolve during irradiation or those enabling microstructural stability related to radiation resistance. (orig.)

  19. Enhancement of flux pinning properties in nanosized MgO added Bi-2212 superconductor through neutron irradiation

    Science.gov (United States)

    Mohiju, Zaahidah'Atiqah; Hamid, Nasri A.; Abdullah, Yusof

    2017-01-01

    For superconducting material to maintain high critical current density, Jc in any applications, effective flux pinning centers are needed. The addition of small size MgO particles in bulk Bi2Sr2CaCu2O8 (Bi-2212) superconductor has been proven to enhance the effective flux pinning centers in the superconducting material by creating a desired microstructure with appropriate defects. To further enhance the pinning properties, radiation is one of the convenient ways to improve the microstructure of the material that has correlation with basic properties of superconductors. Neutron irradiation is one of the niche techniques that can be used to perform the task. Defects with larger radius have dimension comparable to the coherence length of the material and thus improved its superconducting properties. In this paper, a small amount of nanosized MgO particles was used to create defects in the Bi-2212 superconducting material. The Bi-2212/MgO compounds were heat treated, followed by partial melting and slow cooling. Part of the samples was subjected to neutron irradiation using the TRIGA-MARK-II research reactor at the Malaysian Nuclear Agency. Characterization of non-irradiated and irradiated samples was performed via the temperature dependence on electrical resistance measurements, X-ray Diffraction Patterns (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) analysis. From the analysis, there was changed in the critical current density and transition temperature of samples subjected to neutron irradiation due to formation of point defects in the microstructure. Higher critical current density indicates better flux pinning properties in the Bi-2212/MgO compounds.

  20. Neutron irradiation effects on grain-refined W and W-alloys

    International Nuclear Information System (INIS)

    Hasegawa, A.; Fukuda, M.; Tanno, T.; Nogami, S.; Yabuuchi, K.; Tanaka, T.; Muroga, T.

    2014-10-01

    Microstructural data of neutron irradiated Tungsten (W) such as size and number density of voids and precipitates obtained by W up to 1.5dpa irradiation in the temperature range of 400-800degC were compiled quantitatively. Nucleation and growth process of these defects were clarified and a qualitative prediction of the damage structure development and hardening of W in fusion reactor environments were made taking into account the solid transmutation effects for the first time. To improve recrystallization behavior and low temperature embrittlement, grain refined-W alloys were fabricated by K- or La-doping method. Rhenium addition to the grain refining process was also examined to improve mechanical properties. Characterizations of unirradiated materials were performed. (author)

  1. The Role of Grain Size on Neutron Irradiation Response of Nanocrystalline Copper

    Directory of Open Access Journals (Sweden)

    Walid Mohamed

    2016-03-01

    Full Text Available The role of grain size on the developed microstructure and mechanical properties of neutron irradiated nanocrystalline copper was investigated by comparing the radiation response of material to the conventional micrograined counterpart. Nanocrystalline (nc and micrograined (MG copper samples were subjected to a range of neutron exposure levels from 0.0034 to 2 dpa. At all damage levels, the response of MG-copper was governed by radiation hardening manifested by an increase in strength with accompanying ductility loss. Conversely, the response of nc-copper to neutron irradiation exhibited a dependence on the damage level. At low damage levels, grain growth was the primary response, with radiation hardening and embrittlement becoming the dominant responses with increasing damage levels. Annealing experiments revealed that grain growth in nc-copper is composed of both thermally-activated and irradiation-induced components. Tensile tests revealed minimal change in the source hardening component of the yield stress in MG-copper, while the source hardening component was found to decrease with increasing radiation exposure in nc-copper.

  2. Evaluation of toughness degradation by small punch (SP) tests for neutron irradiated structural steels

    International Nuclear Information System (INIS)

    Misawa, Toshihei; Hamaguchi, Yoshikazu; Kimura, Akihiko; Eto, Motokuni; Suzuki, Masahide; Nakajima, Nobuya.

    1992-01-01

    The small punch (SP) test as one of the useful small specimen testing technique (SSTT) has been developed to evaluate the fracture toughness, ductile-brittle transition temperature (DBTT) and tensile properties for neutron irradiated structural materials. The SP tests using the miniaturized specimens of φ3 mm TEM disk and 10 mm 2 coupon were performed for six kinds of ferritic steels of F-82, F-82H, HT-9, JFMS, 2.25-1Mo and SQV2A. It was shown that the temperature dependence of SP fracture energies with scatter in miniaturized testing can give reliable information on the DBTT by use of the statistical analysis based on the Weibull distribution. A good correlation between the DBTT of the SP tests and that of the standard CVN test has been obtained for the various nuclear ferritic steels. The SP test was performed for cryogenic austenitic steels as a way of evaluating elastic-plastic fracture toughness, J IC , on the basis of a universal empirical relationship between J IC and SP equivalent fracture strain, ε-bar qf . The SP testing using the neutron irradiated specimens of 2.25Cr-1Mo, F-82, F-82H and HT-9 steels was successfully applied and presented the neutron radiation induced changes on the DBTT, fracture toughness and tensile properties. (author)

  3. Anisotropic shift of the irreversibility line by neutron irradiation

    International Nuclear Information System (INIS)

    Sauerzopf, F.M.; Wiesinger, H.P.; Weber, H.W.; Crabtree, G.W.; Frischherz, M.C.; Kirk, M.A.

    1991-09-01

    The irreversibility line of high-T c superconductors is shifted considerably by irradiating the material with fast neutrons. The anisotropic and non-monotonous shift is qualitatively explained by a simple model based on an interaction between three pinning mechanisms, the intrinsic pinning by the ab-planes, the weak pinning by the pre-irradiation defect structure, and strong pinning by neutron induced defect cascades. A correlation between the cascade density and the position of the irreversibility line is observed

  4. Deformation modes of proton and neutron irradiated stainless steels

    Science.gov (United States)

    Bailat, C.; Gröschel, F.; Victoria, M.

    2000-01-01

    AISI 304 and 316 stainless steels of two purity levels that have been irradiated with high energy protons up to 0.3 dpa and neutrons in a high flux reactor up to 7.5 dpa were investigated in terms of irradiation induced mechanical properties and microstructural changes. The stress-strain relationships were obtained at room temperature. The deformation, grain, twinning and irradiation defect microstructures were investigated using both transmission and scanning electron microscopy. The results are discussed in terms of deformation mechanisms linked with the radiation induced defect microstructure.

  5. Characterization of neutron irradiated, low-resistivity silicon detectors

    International Nuclear Information System (INIS)

    Angarano, M.M.; Bilei, G.M.; Ciampolini, P.P.; Giorgi, M.; Mihul, A.; Militaru, O.; Passeri, D.; Scorzoni, A.

    2002-01-01

    A complete electrical characterization of silicon detectors fabricated using low- (≅1.5 kΩ cm) and high- (>5 kΩ cm) resistivity substrates has been carried out. Measurements have been performed before and after neutron irradiation at several different fluences, up to 3x10 14 n cm -2 (1 MeV eq.). Experimental results have been compared with CAD-based simulations. A good agreement has been found, thus validating the CAD model predictions. The adoption of low-resistivity devices appears to have some definite advantages in terms of depletion voltage, which in turn results in better interstrip capacitance and interstrip resistance

  6. Gamma and neutron irradiation tests on commercial IC op amps

    International Nuclear Information System (INIS)

    Kennedy, E.J.; Morris, A.C. Jr.; Su, D.K.

    1985-01-01

    Experimental results of gamma and neutron irradiation tests on 30 types of integrated-circuit operational amplifiers from 11 manufacturers are presented. All units were low-cost, commercial-grade devices. Op amps were evaluated for changes in offset voltage, input bias current, power supply current, open-loop gain, gain-bandwidth product, slew rate, power-supply and common-mode rejection ratios. Bipolar transistor op amps with resistive collector load resistors for the input stage indicated the best radiation hardness

  7. Microstructure and mechanical properties of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, E.; Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Terai, T.; Tanaka, S.

    1998-01-01

    Microstructure and mechanical properties of the neutron irradiated beryllium with total fast neutron fluences of 1.3 - 4.3 x 10{sup 21} n/cm{sup 2} (E>1 MeV) at 327 - 616degC were studied. Swelling increased by high irradiation temperature, high fluence, and by the small grain size and high impurity. Obvious decreasing of the fracture stress was observed in the bending test and in small grain specimens which had many helium bubbles on the grain boundary. Decreasing of the fracture stress for small grain specimens was presumably caused by crack propagation on the grain boundaries which weekend by helium bubbles. (author)

  8. Positron lifetime study of neutron-irradiated molybdenum

    International Nuclear Information System (INIS)

    Hinode, Kenji; Tanigawa, Shoichiro; Kumakura, Hiroaki; Doyama, Masao; Shiraishi, Kensuke.

    1978-01-01

    Annealing behavior of fast-neutron-irradiated molybdenum was studied by means of positron lifetime technique. It was found that Stage III annealing can be mainly identified as the vacancy migration process from the detailed analyses of data. The void growth after successive high temperature annealings was clearly detected through the changes of positron lifetime parameters. An attempt to analyse the size distribution of voids from positron lifetime spectra was presented, and discussions on the evaluation of void concentration from positron data are also given. (author)

  9. Neutron irradiation studies of avalanche photodiodes using californium-252

    Science.gov (United States)

    Reucroft, S.; Rusack, R.; Ruuska, D.; Swain, J.

    1997-02-01

    Californium-252 is a convenient and copious source of neutrons of energies around 1 MeV, and provides many advantages over reactors for neutron irradiation studies of detector components. We describe here an experimental setup at Oak Ridge National Laboratory which has been constructed to study the performance of avalanche photodiodes in neutron fluences up to 10 13 neutrons/cm 2, similar to what is expected in parts of the CMS detector at the LHC. An irradiation study of some avalanche photodiodes is discussed, followed by a brief summary of results obtained.

  10. Characterization of neutron irradiated, low-resistivity silicon detectors

    CERN Document Server

    Angarano, M M; Giorgi, M; Bilei, G M; Mihul, A; Militaru, O; Passeri, D; Scorzoni, A

    2000-01-01

    A complete electrical characterization of silicon detectors fabricated using low-( ~ 1.5 kOhm cm) and high-( > 5 kOhm cm) resistivity substrates has been carried out. Measurements have been performed before and after neutron irradiation at several different fluences, up to 3x10^14 n cm^-2 ( 1 MeV eq.). Experimental results have been compared with CAD based simulations. A good agreement has been found, thus validating the CAD model predictions. The adoption of low resistivity devices appears to have some definite advantages in terms of depletion voltage, which in turn results in better interstrip resistance.

  11. Photoconversion of F+ centers in neutron-irradiated MgO

    International Nuclear Information System (INIS)

    Monge, M.A.; Gonzalez, R.; Munoz Santiuste, J.E.; Pareja, R.; Chen, Y.; Kotomin, E.A.; Popov, A.I.

    2000-01-01

    In neutron-irradiated MgO crystals, experiments and theory demonstrate that photon excitation of the positively charged anion vacancies (F + centers) at 5.0 eV releases holes that are subsequently trapped at V-type centers, which are cation vacancies charge-compensated by impurities, such as Al 3+ , F - , and OH - ions. A photoconversion mechanism occurs very likely via electron transfer to F + centers from the quasi-local states which are induced in the valence band. INDO quantum chemical simulations of F + centers confirmed the appearance of two induced quasi-local states located at 1.2 and 2.0 eV below the top of the valence band

  12. Final report on neutron irradiation at low temperature to investigate plastic instability and a high temperature to study cavitation

    International Nuclear Information System (INIS)

    Singh, B.N.; Eldrup, M.; Golubov, S.I.; Edwards, D.J.; Jung, P.

    2005-01-01

    Effects of neutron irradiation on defect accumulation and physical and mechanical properties of pure iron and F82H and EUROFER 97 ferritic-martensitic steels have been investigated. Tensile specimens were neutron irradiated to a dose level of 0,23 dpa at 333 and 573 K. Electrical resistivity and tensile properties were measured both in the unirradiated and irradiated condition. Some additional specimens of pure iron were irradiated at 333 K to doses of 10-3, 10-2 and 10-1 dpa and tensile tested at 333 K. To investigate the effect of helium on cavity nucleation and growth, specimens of pure iron and EUROFER 97 were implanted with different amounts of helium at 323 K and subsequently neutron irradiated to doses of 10-3, 10-2 and 10-1 dpa at 323 K. Defect microstructures were investigated using positron annihilation spectroscopy (PAS) and transmission electron microscopy (TEM). Numerical calculations, based on the production bias model (PBM) were carried out to study the details of evolution of cavities with and without helium generation. The phenomena of dislocation decoration and raft formation, which are important for understanding radiation hardening and plastic flow localization, have been studied using the Kinetic Monte Carlo (KMC) code during a realistic dynamic irradiation of bcc iron at 300 K. Molecular dynamics (MD) simulations have been carried out to study the stress dependencies of dislocation velocity and drag coefficient for an edge dislocation decorated with small SIA loops.The present report describes both experimental procedure and calculational methodology employed in the present work. The main results of all these investigations, both experimental and theoretical, are highlighted with appropriate examples. Finally, a brief summary is given of the main results conclusions. (au)

  13. Results of neutron irradiation of liquid lithium saturated with deuterium

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Mazzitelli, Giuseppe

    2017-01-01

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(−144/RT). • The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10 −13 cm −2 s −1 . The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(-144/RT). The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  14. Tritium release from neutron irradiated lithium-aluminium oxides

    International Nuclear Information System (INIS)

    Guggi, D.; Ihle, H.R.; Kurz, U.

    1976-01-01

    The release of tritium from neutron irradiated Li 5 AlO 4 (low temperature phase α-Li 5 AlO 4 ; high temperature phase: β-Li 5 AlO 4 ) and Li 2 O powders was studied. Some measurements were also carried out with γ-LiAlO 2 (samples from fused materials) in order to investigate the effect of grain size on the release of tritium. The results on the tritium release from neutron irradiated powdered α- and β-Li 5 AlO 4 and Li 2 O expressed as time constant tau=r 2 /D.π 2 as a function of temperature are given by the following equations: α-Li 5 AlO 4 :ln(1/tau)=-(4460+-720)/T-(1.13+-0.14); β-Li 5 AlO 4 :ln(1/tau)=-(9000+-1200)/T+(6.06+-0.13); Li 2 O:ln(1/tau)=-(3460+-470)/T-(2.48+-0.12). From these equations it is seen that at elevated temperature, e.g. at 600 0 C tritium is released at a much higher rate from β-Li 5 AlO 4 than from α-Li 5 AlO 4 and Li 2 O

  15. Cavity nucleation and growth during helium implantation and neutron irradiation of Fe and steel

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, Bachu Narain

    In order to investigate the role of He in cavity nucleation in neutron irradiated iron and steel, pure iron and Eurofer-97 steel have been He implanted and neutron irradiated in a systematic way at different temperatures, to different He and neutron doses and with different He implantation rates....

  16. Micromechanisms of Twin Nucleation in TiAl: Effects of Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, A.; Yoo, M.H.

    1999-01-28

    The so-called radiation-induced ductility (RID) reported in neutron-irradiated 47at%Al alloys is attributed to the formation of effective twin embryos in the presence of interstitial-type Frank loops in {gamma}-TiAl and the subsequent nucleation and growth of microtwins during post-irradiation tensile deformation. The stability of large faulted Frank loops is explained in terms of the repulsive interaction between Shockley and Frank partials. Interaction of only six ordinary slip dislocations with a Frank loop can facilitate a pole mechanism for twin formation to work. The relative ease of heterogeneous twin nucleation is the reason for the RID and the lack of changes in yield strength and work hardening.

  17. Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Saleh, Tarik A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eftink, Benjamin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, the synergies between ' and fine-scale and moderate-scale cavity formation is investigated.

  18. Reduction of beta-interference in gamma-spectrometric measurements of neutron-irradiated geological material

    International Nuclear Information System (INIS)

    Garmann, L.B.

    1986-01-01

    The analytical technique for INAA, when applied to geological materials, is improved by introducing an electromagnetic field between sample and detector. This field lowers the bremsstrahlung background intensity in the gamma-spectrum by reducing the number of beta-particles reaching the detector. Thus precision, accuracy and lower detection limit are improved. The technique was used on alkalisyenite and on meteoritic material, rocks containing high quantities of sodium and iron, respectively. After neutron irradiation, the induced nuclides sup(24)Na and sup(59)Fe are responsible for high bremsstrahlung interference, which under normal analyitical conditions would mask any x-ray or gamma-ray peaks of interest. The technique is easily applied to multielement analysis of geological and biological materials. It can be combined with sophisticated spectrum-treating techniques such as spectrum stripping and spectrum smoothing, or coincidence-anticoincidence circuits. (author)

  19. Neutron irradiation effects on superconducting and stabilizing materials for fusion magnets

    International Nuclear Information System (INIS)

    Maurer, W.

    1984-05-01

    Available low-temperature neutron irradiation data for the superconductors NbTi and Nb 3 Sn and the stabilization materials Cu and Al are collected and maximum tolerable doses for these materials are defined. A neutron flux in a reactor of about 10 9 n/cm 2 s at the magnet position is expected. However, in fusion experiments the flux can be higher by an order of magnitude or more. The energy spectrum is similar to a fission reactor. A fluence of about 10 18 n/cm 2 results during the lifetime of a fusion magnet (about 20 full power years). At this fluence and energy spectrum no severe degradation of the superconducting properties of NbTi and Nb 3 Sn will occur. But the radiation-induced resistivity is for Cu about a twentieth of the room temperature resistivity and a tenth for Al. (orig.) [de

  20. Investigations on neutron irradiated 3D carbon fibre reinforced carbon composite material

    Science.gov (United States)

    Venugopalan, Ramani; Alur, V. D.; Patra, A. K.; Acharya, R.; Srivastava, D.

    2018-04-01

    As against conventional graphite materials carbon-carbon (C/C) composite materials are now being contemplated as the promising candidate materials for the high temperature and fusion reactor owing to their high thermal conductivity and high thermal resistance, better mechanical/thermal properties and irradiation stability. The current need is for focused research on novel carbon materials for future new generation nuclear reactors. The advantage of carbon-carbon composite is that the microstructure and the properties can be tailor made. The present study encompasses the irradiation of 3D carbon composite prepared by reinforcement using PAN carbon fibers for nuclear application. The carbon fiber reinforced composite was subjected to neutron irradiation in the research reactor DHRUVA. The irradiated samples were characterized by Differential Scanning Calorimetry (DSC), small angle neutron scattering (SANS), XRD and Raman spectroscopy. The DSC scans were taken in argon atmosphere under a linear heating program. The scanning was carried out at temperature range from 30 °C to 700 °C at different heating rates in argon atmosphere along with reference as unirradiated carbon composite. The Wigner energy spectrum of irradiated composite showed two peaks corresponding to 200 °C and 600 °C. The stored energy data for the samples were in the range 110-170 J/g for temperature ranging from 30 °C to 700 °C. The Wigner energy spectrum of irradiated carbon composite did not indicate spontaneous temperature rise during thermal annealing. Small angle neutron scattering (SANS) experiments have been carried out to investigate neutron irradiation induced changes in porosity of the composite samples. SANS data were recorded in the scattering wave vector range of 0.17 nm-1 to 3.5 nm-1. Comparison of SANS profiles of irradiated and unirradiated samples indicates significant change in pore morphology. Pore size distributions of the samples follow power law size distribution with

  1. Neutron irradiation effects on spark plasma sintered boron carbide

    International Nuclear Information System (INIS)

    Buyuk, B.; Cengiz, M.; Tugrul, A.; Ozer, S.; Yucel, O.; Goller, G.; Sahin, F.C.; Lastovski, S.B.

    2015-01-01

    In this study, spark plasma sintered boron carbide (B 4 C) was examined against neutrons. The specimens were ir-radiated by reactor neutrons (include both thermal and fast neutrons) up to fluence of 1.37x10 21 n*m -2 . Thermal and fast neutrons cause swelling by different interactions with boron ( 10 B) atoms in the related materials. X-Ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images were investigated for initial and irradiated samples. In addition, lattice parameters and unit cell volumes were calculated for the samples. The swelling percentages were calculated to be within a range of 0.49-3.80 % (average 1.70 %) for the outer surface of the materials for applied neutron irradiation doses. (authors)

  2. Tensile and fracture toughness test results of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R.; Moons, F.; Puzzolante, J.L. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)

    1998-01-01

    Tensile and fracture toughness test results of four Beryllium grades are reported here. The flow and fracture properties are investigated by using small size tensile and round compact tension specimens. Irradiation was performed at the BR2 material testing reactor which allows various temperature and irradiation conditions. The fast neutron fluence (>1 MeV) ranges between 0.65 and 2.45 10{sup 21} n/cm{sup 2}. In the meantime, un-irradiated specimens were aged at the irradiation temperatures to separate if any the effect of temperature from irradiation damage. Test results are analyzed and discussed, in particular in terms of the effects of material grade, test temperature, thermal ageing and neutron irradiation. (author)

  3. Effect of neutron irradiation on p-type silicon

    International Nuclear Information System (INIS)

    Sopko, B.

    1973-01-01

    The possibilities are discussed of silicon isotope reactions with neutrons of all energies. In the reactions, 30 Si is converted to a stable phosphorus isotope forming n-type impurities in silicon. The above reactions proceed as a result of thermal neutron irradiation. An experiment is reported involving irradiation of two p-type silicon single crystals having a specific resistance of 2000 ohm.cm and 5000 to 20 000 ohm.cm, respectively, which changed as a result of irradiation into n-type silicon with a given specific resistance. The specific resistance may be pre-calculated from the concentration of impurities and the time of irradiation. The effects of irradiation on other silicon parameters and thus on the suitability of silicon for the manufacture of semiconductor elements are discussed. (J.K.)

  4. Preparation of 227Ac by neutron irradiation of 226Ra

    International Nuclear Information System (INIS)

    Kukleva, E.; Kozempel, J.; Vlk, M.; Micolova, P.; Vopalka, D.

    2015-01-01

    Radium-223 is prospective alpha-emitting therapeutic radionuclide for targeted radionuclide therapy. Although 223 Ra is formed naturally by the decay of 235 U, for practical reasons its preparation involves neutron irradiation of 226 Ra. The α-decay of the 227 Ra (T 12 = 43 min.) produced via 226 Ra(n,γ) 227 Ra reaction leads to 227 Ac, a mother nuclide of 227 Th and 223 Ra subsequently. Irradiation target radium material is generally available in multi-gram quantities from historical stock. Main aim of this study was to experimentally and theoretically evaluate and verify available literature data on production of 223 Ra. According to data obtained from γ-spectra, the approximate yield values were determined and effective cross-section for the 223 Ra production was calculated. (authors)

  5. Neutron irradiation and compatibility testing of Li2O

    International Nuclear Information System (INIS)

    Porter, D.L.; Krsul, J.R.; Laug, M.T.; Walters, L.C.; Tetenbaum, M.

    1983-01-01

    A study was made of the neutron-irradiation behavior of 6 Li-enriched Li 2 O material in EBR-II. In addition, a stress-corrosion study was performed ex-reactor to test compatibility of Li 2 O materials with a variety of stainless steels. Results of the irradiation testing showed that tritium and helium retention in the Li 2 O (approx. 89% dense) lessened with neutron exposure. Helium and tritium retention appear to approach steady-state after approx. 1% 6 Li burnup. The stress-corrosion studies, using 316 stainless steel (Ti-modified) and a 35% Ni alloy, showed that stress does not enhance the corrosion, and that dry Li 2 O is not significantly corrosive, the LiOH content producing the corrosive effects. Corrosion, in general, was not severe as a passivation in sealed capsules seemed to occur after a time, greatly reducing corrosion rates

  6. ATF Neutron Irradiation Program Irradiation Vehicle Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cetiner, N. O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; McDuffee, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to Japan. This report discusses the conceptual design, the development and irradiation of the test vehicles.

  7. Design, Construction, and Modeling of a 252Cf Neutron Irradiator

    Directory of Open Access Journals (Sweden)

    Blake C. Anderson

    2016-01-01

    Full Text Available Neutron production methods are an integral part of research and analysis for an array of applications. This paper examines methods of neutron production, and the advantages of constructing a radioisotopic neutron irradiator assembly using 252Cf. Characteristic neutron behavior and cost-benefit comparative analysis between alternative modes of neutron production are also examined. The irradiator is described from initial conception to the finished design. MCNP modeling shows a total neutron flux of 3 × 105 n/(cm2·s in the irradiation chamber for a 25 μg source. Measurements of the gamma-ray and neutron dose rates near the external surface of the irradiator assembly are 120 μGy/h and 30 μSv/h, respectively, during irradiation. At completion of the project, total material, and labor costs remained below $50,000.

  8. Proceedings of neutron irradiation technical meeting on BNCT

    International Nuclear Information System (INIS)

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  9. Proceedings of neutron irradiation technical meeting on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  10. Calculations on neutron irradiation damage in reactor materials

    International Nuclear Information System (INIS)

    Sone, Kazuho; Shiraishi, Kensuke

    1976-01-01

    Neutron irradiation damage calculations were made for Mo, Nb, V, Fe, Ni and Cr. Firstly, damage functions were calculated as a function of neutron energy with neutron cross sections of elastic and inelastic scatterings, and (n,2n) and (n,γ) reactions filed in ENDF/B-III. Secondly, displacement damage expressed in displacements per atom (DPA) was estimated for neutron environments such as fission spectrum, thermal neutron reactor (JMTR), fast breeder reactor (MONJU) and two fusion reactors (The Conceptual Design of Fusion Reactor in JAERI and ORNL-Benchmark). then, damage cross section in units of dpa. barn was defined as a factor to convert a given neutron fluence to the DPA value, and was calculated for the materials in the above neutron environments. Finally, production rates of helium and hydrogen atoms were calculated with (n,α) and (n,p) cross sections in ENDF/B-III for the materials irradiated in the above reactors. (auth.)

  11. Results of neutron irradiation of liquid lithium saturated with deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Mazzitelli, Giuseppe [ENEA, RC Frascati, Frascati (Italy)

    2017-04-15

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(−144/RT). • The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10{sup −13} cm{sup −2} s{sup −1}. The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10{sup 9} exp(-144/RT). The T{sub 2} molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  12. Study of EUV induced defects on few-layer graphene

    NARCIS (Netherlands)

    Gao, An; Rizo, P.J.; Zoethout, E.; Scaccabarozzi, L.; Lee, Christopher James; Banine, V.; Bijkerk, Frederik

    2012-01-01

    Defects in graphene greatly affect its properties1-3. Radiation induced-defects may reduce the long-term survivability of graphene-based nano-devices. Here, we expose few-layer graphene to extreme ultraviolet (EUV, 13.5nm) radiation and show there is a power-dependent increase in defect density. We

  13. Final Report on investigations of the influence of helium concentration and implantation rate on cavity nucleation and growth during neutron irradiation of Fe and EUROFER 97

    International Nuclear Information System (INIS)

    Eldrup, M.; Singh, B.N.; Golubov, S.

    2010-09-01

    This report presents results of investigations of damage accumulation during neutron irradiation of pure iron and EUROFER 97 steel with or without prior helium implantation. The defect microstructure, in particular the cavities, was characterized using Positron Annihilation Spectroscopy (PAS) and Transmission Electron Microscopy (TEM). The PAS investigations revealed a clear difference between the He implantation effects in Fe and EUROFER 97 at 623 K. For both materials the mean positron lifetimes increased with He dose in the range 1 - 100 appm, although the increase was stronger for Fe than for EUROFER 97 and for both materials smaller for implantation at 623 K than at 323 K. This lifetime increase is due primarily to the formation of He bubbles. For He doses of 10 - 100 appm cavity sizes and densities in Fe were estimated to be 1.7 - 2.8 nm and 4 - 14Oe10 21 m -3 , respectively. Neutron irradiation after He implantation in general leads to an increase of both cavity sizes and densities. Estimates of cavity sizes and densities in EUROFER 97 after neutron irradiation with or without prior helium implantation are rather uncertain, but lead to values of the same order as for iron. TEM cannot resolve any cavities in Fe or EUROFER 97 after implantation of 100 appm He neither at 323 K nor at 623 K. However, neutron irradiation at 623 K to a dose level of 0.23 dpa in Fe is observed to lead to cavities with sizes of about 4 nm and densities of about 1.5Oe10 21 m -3 . He implantation (100 appm) prior to neutron irradiation results in a cavity density increase to ∼1Oe10 22 m -3 . In EUROFER 97 a very inhomogeneous cavity distribution, formed at dislocations and interfaces, is observed after He implantation with subsequent neutron irradiation. In addition, a very low density of very large voids have been observed in Fe (without He) neutron irradiated at 323 K, already at a dose level of 0.036 dpa. Detailed numerical calculations within the framework of the Production Bias

  14. Final Report on investigations of the influence of helium concentration and implantation rate on cavity nucleation and growth during neutron irradiation of Fe and EUROFER 97

    Energy Technology Data Exchange (ETDEWEB)

    Eldrup, M.; Singh, B.N. (Risoe DTU, Materials Research Div., Roskilde (Denmark)); Golubov, S. (Materials Science and Technology Div., Oak Ridge National Lab., Oak Ridge (United States))

    2010-09-15

    This report presents results of investigations of damage accumulation during neutron irradiation of pure iron and EUROFER 97 steel with or without prior helium implantation. The defect microstructure, in particular the cavities, was characterized using Positron Annihilation Spectroscopy (PAS) and Transmission Electron Microscopy (TEM). The PAS investigations revealed a clear difference between the He implantation effects in Fe and EUROFER 97 at 623 K. For both materials the mean positron lifetimes increased with He dose in the range 1-100 appm, although the increase was stronger for Fe than for EUROFER 97 and for both materials smaller for implantation at 623 K than at 323 K. This lifetime increase is due primarily to the formation of He bubbles. For He doses of 10-100 appm cavity sizes and densities in Fe were estimated to be 1.7-2.8 nm and 4-14 x 10{sup 21} m{sup -3}, respectively. Neutron irradiation after He implantation in general leads to an increase of both cavity sizes and densities. Estimates of cavity sizes and densities in EUROFER 97 after neutron irradiation with or without prior helium implantation are rather uncertain, but lead to values of the same order as for iron. TEM cannot resolve any cavities in Fe or EUROFER 97 after implantation of 100 appm He neither at 323 K nor at 623 K. However, neutron irradiation at 623 K to a dose level of 0.23 dpa in Fe is observed to lead to cavities with sizes of about 4 nm and densities of about 1.5 x 10{sup 21} m{sup -3}. He implantation (100 appm) prior to neutron irradiation results in a cavity density increase to {approx} 1 x 10{sup 22} m{sup -3}. In EUROFER 97 a very inhomogeneous cavity distribution, formed at dislocations and interfaces, is observed after He implantation with subsequent neutron irradiation. In addition, a very low density of very large voids have been observed in Fe (without He) neutron irradiated at 323 K, already at a dose level of 0.036 dpa. Detailed numerical calculations within the

  15. Study of gem materials by neutron irradiation: characterization of impurities and color centers

    International Nuclear Information System (INIS)

    Leal, Alexandre S.; Menezes, Maria A.B.C.; Brito, Walter de; D'Urco, Ana F.A.; Felix, Marcia C.; Krambrock, Klaus; Ferreira, Ana F.

    2005-01-01

    Since one-century laboratory irradiation techniques are applied to the color enhancement of gem minerals. Its actual status and applications are discussed. Many different colors in a variety of gem minerals can be produced by gamma, electron and neutron irradiation combined with thermal treatments, however, many color centers and coloration processes are not known in detail. In this work we present examples of neutron irradiation applied to colorless topaz, spodumene and diamond. Topaz and diamond turned blue, spodumene orange. All color centers produced by neutron irradiation are stable to elevated temperatures and can be considered as color enhancing processes. (author)

  16. Shielding of a neutron irradiator with {sup 241}Am-Be source

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, K.A.M. de; Crispim, V.R.; Silva, A.X., E-mail: koliveira@con.ufrj.b, E-mail: verginia@con.ufrj.b, E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear; Fonseca, E.S., E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The equivalent dose rates at 1.0 cm from the outer surface of the shielding of a neutron irradiation system that uses {sup 241}Am-Be source with activity of 185 GBq (5 Ci) were determined. A theoretical-experimental approach including case studies, through computer simulations with MCNP code was employed to calculate the best shielding thickness. Following the construction of the neutron irradiator, dose measurements were conducted in order to validate data obtained from simulation. The neutron irradiator shielding was designed in such a way to allow transport of the neutron radiography system for in loco inspections ensuring workers' radiologic safety. (author)

  17. Improvement of Switching Speed of a 600-V Nonpunch-Through Insulated Gate Bipolar Transistor Using Fast Neutron Irradiation

    Directory of Open Access Journals (Sweden)

    Ha Ni Baek

    2017-02-01

    Full Text Available Fast neutron irradiation was used to improve the switching speed of a 600-V nonpunch-through insulated gate bipolar transistor. Fast neutron irradiation was carried out at 30-MeV energy in doses of 1 × 108 n/cm2, 1 × 109 n/cm2, 1 × 1010 n/cm2, and 1 × 1011 n/cm2. Electrical characteristics such as current–voltage, forward on-state voltage drop, and switching speed of the device were analyzed and compared with those prior to irradiation. The on-state voltage drop of the initial devices prior to irradiation was 2.08 V, which increased to 2.10 V, 2.20 V, 2.3 V, and 2.4 V, respectively, depending on the irradiation dose. This effect arises because of the lattice defects generated by the fast neutrons. In particular, the turnoff delay time was reduced to 92 nanoseconds, 45% of that prior to irradiation, which means there is a substantial improvement in the switching speed of the device.

  18. The effects of thermal-neutron irradiation on platinum and dilute platinum-gold alloys

    International Nuclear Information System (INIS)

    Piani, C.S.B.

    1978-12-01

    The effect of varying defect concentrations on the recovery spectrum of thermal-neutron-irradiated pure platinum after isochronal anneals was investigated. The dose-independence of substages I(A), I(B) and I(C), and the dose dependence of substage I(D) and I(E), were observed to be in agreement with electron-irradiated studies. The 120 K substage in pure platinum was shown not to be due to interstitial-interstitial reactions, but could possibly be accounted for in terms of detrapping of interstitials from impurities or intrinsic immobile defects. The 360 K stage was shown to shift and was suppressed with increasing defect concentration. The possible conversion of the crowdion to a dumbbell near 160 K in Stage ll in platinum, as predicted by the two-interstitial model, was investigated by consideration of the initial slopes of the production curves between 80 K and 300 K. A minimum in these slopes was observed near 160 K and could be interpreted as due to the conversion of the highly mobile crowdion to an immobile dumbbell at this temperature. The influence of varying gold concentrations on the recovery spectrum of platinum was investigated in dilute platinum-gold alloys. The characteristics of several additional substages in Stage ll, due to the gold alloying were comparable to the results of electron-irradiation experiments. The observations made with regard to the impurity (gold) dependence of these substages could be interpreted in terms of the concentrations of the interstitials, vacancies and impurities present in the material. The interpretation of these substages was found to be consistent, if the recovery spectrum was investigated as a function of defect concentration [af

  19. Design of experiments on production and reaction of point defects

    Science.gov (United States)

    Kiritani, Michio

    Experiments designed by the author for the research of production and reaction of point defects during his stay in eight universities and research institutes for about forty years are reviewed. Two-step aging method elucidated the stability of vacancy cluster nucleus in quenched metals, and the deformation induced vacancies were detected by the aid of quenched-in vacancies. High-voltage electron microscopes were efficiently used as micro-laboratories, especially to do the quantitative electron microscopy to extract fundamental properties of point defects and defect interactions. Fusion neutron irradiation with a neutron source RTNS-II was a unique systematic experiment on defects produced by large collision cascades. Advantage of the use of thin foil samples for neutron irradiation was emphasized. The temperature control in fission reactor irradiation was improved to eliminate the influence of the reactor power. Temperature cycle reactor irradiation became possible, and a multi-section removable rig was constructed for systematic irradiation. The role of freely migrating point defects in microstructure evolution was detected by changing the depth of damage zone with the incidence of self-ions with glancing angles. Finally, the ultra-high-speed plastic deformation gave rise to the anomalous production of vacancies and vacancy clusters, and then to the proposal of plastic deformation of metals without dislocations.

  20. Production of point defects

    International Nuclear Information System (INIS)

    Zuppiroli, L.

    1975-01-01

    Vacancies at thermodynamic equilibrium and the annealing of these defects are studied first, after which electron irradiations are dealt with. The displacement threshold energy concept is introduced. Part three concerns heavy ion and neutron irradiations. Displacement cascades and the thermal spike concept are discussed [fr

  1. Dirhenium decacarbonyl-loaded PLLA nanoparticles: influence of neutron irradiation and preliminary in vivo administration by the TMT technique.

    Science.gov (United States)

    Hamoudeh, Misara; Fessi, Hatem; Mehier, Henri; Faraj, Achraf Al; Canet-Soulas, Emmanuelle

    2008-02-04

    In a previous study, we have described the elaboration of PLLA-based nanoparticles loaded with non radioactive dirhenium decacarbonyl [Re(2)(CO)(10)], a novel neutron-activatable radiopharmaceutical dosage form for intra-tumoral radiotherapy. These nanoparticles are designed for a neutron irradiation which can be carried out in a nuclear reactor facility. This new paper describes the neutron irradiation influence on these Re(2)(CO)(10)-loaded PLLA nanoparticles. The loaded nanoparticles with 23% (w/w) of metallic rhenium have shown to remain stable and separated and to keep out their sphericity at the lower neutron flux (1x10(11)n/cm(2)/s for 0.5h) which was used for rhenium content determination (neutron activation analysis, NAA). However, when loaded nanoparticles were irradiated at the higher neutron flux (1.45x10(13)n/cm(2)/s, 1h), they have shown to be partially coagglomerated and some pores appeared at their surface. Furthermore, DSC results showed a decrease in the PLLA melting point and melting enthalpy in both blank and loaded nanoparticles indicating a decrease in polymer crystallinity. In addition, the polymer molecular weights (M(n), M(w)) decreased after irradiation but without largely affecting the polymer polydispersity index (P.I.) which indicated that an irradiation-induced PLLA chain scission had occurred in a random way. The XRD patterns of irradiated PLLA provided another proof of polymer loss of crystallinity. FTIR spectra results have shown that irradiated nanoparticles retained the chemical identity of the used Re(2)(CO)(10) and PLLA despite the reduction in polymer crystallinity and molecular weight. Nanoparticles suspending after irradiation became also more difficult, but it was properly achievable by adding PVA (1%) and ethanol (10%) into the dispersing medium. Moreover, after 24h incubation of different irradiated nanoparticles in two different culture mediums, visual examination did not show bacterial growth indicating that applied

  2. Flux dependence of cluster formation in neutron-irradiated weld material

    International Nuclear Information System (INIS)

    Bergner, F; Ulbricht, A; Hein, H; Kammel, M

    2008-01-01

    The effect of neutron flux on the formation of irradiation-induced clusters in reactor pressure vessel (RPV) steels is an unresolved issue. Small-angle neutron scattering was measured for a neutron-irradiated RPV weld material containing 0.22 wt% impurity Cu. The experiment was focused on the influence of neutron flux on the formation of irradiation-induced clusters at fixed fluence. The aim was to separate and tentatively interpret the effect of flux on the characteristics of the cluster size distribution. We have observed a pronounced effect of neutron flux on cluster size, whereas the total volume fraction of irradiation-induced clusters is insensitive to the level of flux. The result is compatible with a rate theory model according to which the range of applied fluxes covers the transition from a flux-independent regime at lower fluxes to a regime of decelerating cluster growth. The results are confronted with measured irradiation-induced changes of mechanical properties. Despite the observed flux effect on cluster size, both yield stress increase and transition temperature shift turned out to be independent of flux. This is in agreement with the volume fraction of irradiation-induced clusters being insensitive to the level of flux

  3. In Vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2005-10-01

    Full Text Available Pentavalent antimony, as meglumine antimoniate (Glucantime® or sodium stibogluconate (Pentostam® , is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes 122Sb and 124Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology.Os antimoniais pentavalentes, como o antimoniato de meglumina (Glucantime® ou estibogluconato de sódio (Pentostam® , são o principal tratamento para a leishmaniose, um complexo de doenças causadas pelo protozoário parasita Leishmania, uma doença endêmica e negligenciada no Brasil. Apesar do seu uso clínico por mais de meio século, seu mecanismo de ação, toxicidade e dados de farmacocinética permanecem desconhecidos. Os métodos analíticos para determinação de antimônio em sistemas biológicos são complexos e apresentam baixa sensibilidade. Estudos utilizando radiotraçadores têm papel potencial no desenvolvimento farmacológico. O objetivo deste estudo foi desenvolver um radiotraçador de antimônio, com propriedades físicas e biológicas adequadas. O antimoniato de meglumina foi irradiado por nêutrons no reator nuclear IEA-R1, produzindo dois radioisótopos: 122

  4. Present status of ESNIT (energy selective neutron irradiation test facility) program

    International Nuclear Information System (INIS)

    Noda, K.; Ohno, H.; Sugimoto, M.; Kato, Y.; Matsuo, H.; Watanabe, K.; Kikuchi, T.; Sawai, T.; Usui, T.; Oyama, Y.; Kondo, T.

    1994-01-01

    The present status of technical studies of a high energy neutron irradiation facility, ESNIT (energy selective neutron irradiation test facility), is summarized. Technological survey and feasibility studies of ESNIT have continued since 1988. The results of technical studies of the accelerator, the target and the experimental systems in ESNIT program were reviewed by an International Advisory Committee in February 1993. Recommendations for future R and D on ESNIT program are also summarized in this paper. ((orig.))

  5. Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys

    Science.gov (United States)

    Hasegawa, Akira; Fukuda, Makoto; Yabuuchi, Kiyohiro; Nogami, Shuhei

    2016-04-01

    Data on the microstructural development of tungsten (W) and tungsten rhenium (Re) alloys were obtained after neutron irradiation at 400-800 °C in the Japan Materials Testing Reactor (JMTR), the experimental fast test reactor Joyo, and the High Flux Isotope Reactor (HFIR) for irradiation damage levels in the range of 0.09-1.54 displacement per atom (dpa). Microstructural observations showed that a small amount of Re (3-5%) in W-Re alloys is effective in suppressing void formation. In W-Re alloys with Re concentrations greater than 10%, acicular precipitates are the primary structural defects. In the HFIR-irradiated specimen, in which a large amount of Re was expected to be produced by the nuclear transmutation of W to Re because of the reactor's high thermal neutron flux, voids were not observed even in pure W. The synergistic effects of displacement damage and solid transmutation elements on microstructural development are discussed, and the microstructural development of tungsten materials utilized in fusion reactors is predicted.

  6. Defect-induced mix experiment for NIF

    Directory of Open Access Journals (Sweden)

    Schmitt M.J.

    2013-11-01

    Full Text Available The Defect Induced Mix Experiment (DIME-II will measure the implosion and mix characteristics of CH capsules filled with 5 atmospheres of DT by incorporating mid-Z dopant layers of Ge and Ga. This polar direct drive (PDD experiment also will demonstrate the filling of a CH capsule at target chamber center using a fill tube. Diagnostics for these experiments include areal x-ray backlighting to obtain early time images of the implosion trajectory and a multiple-monochromatic imager (MMI to collect spectrally-resolved images of the capsule dopant line emission near bangtime. The inclusion of two (or more thin dopant layers at separate depths within the capsule shell facilitates spatial correlation of mix between the layers and the hot gas core on a single shot. The dopant layers are typically 2 μm thick and contain dopant concentrations of 1.5%. Three dimensional Hydra simulations have been performed to assess the effects of PDD asymmetry on capsule performance.

  7. A constitutive equation of creep, swelling and damage under neutron irradiation applicable to multiaxial and variable states of stress

    International Nuclear Information System (INIS)

    Murakami, Sumio; Mizuno, Mamoru.

    1992-01-01

    A constitutive equation of creep, swelling and damage under neutron irradiation applicable to multiaxial non-steady states of stress is developed. In the formulation of the constitutive equation, the creep under irradiation was divided into irradiation-affected thermal creep and irradiation-induced creep. Then the irradiation-affected thermal creep was formulated by extending the creep-hardening surface model to include the effects of neutron-irradiation and material damage. The Bailey-Norton creep law and Kachanov-Rabotnov creep-damage theory were employed. The effect of irradiation on thermal creep was described by expressing the material functions of the constitutive equation as functions of neutron flux φ and neutron fluence Φ. The constitutive equation of irradiation-induced creep was formulated by taking account of SIPA and CCG mechanisms and by representing the creep rate as a function of stress of order zero and one. Creep of 316 stainless steel under various conditions of irradiation and variable stress was analyzed in order to elucidate the validity and the utility of the proposed constitutive equation. (author)

  8. The effect of neutron irradiation on silicon carbide fibers

    International Nuclear Information System (INIS)

    Newsome, G.A.

    1997-01-01

    Nine types of SiC fiber have been exposed to neutron radiation in the Advanced Test Reactor at 250 C for various lengths of time ranging from 83 to 128 days. The effects of these exposures have been initially determined using scanning electron microscopy. The fibers tested were Nicalon trademark CG, Tyranno, Hi-Nicalon trademark, Dow Corning SiC, Carborundum SiC, Textron SCS-6, polymethysilane (PMS) derived SiC from the University of Michigan, and two types of MER SiC fiber. This covers a range of fibers from widely used commercial fibers to developmental fibers. Consistent with previous radiation experiments, Nicalon fiber was severely degraded by the neutron irradiation. Similarly, Tyranno suffered severe degradation. The more advanced fibers which approach the composition and properties of SiC performed well under irradiation. Of these, the Carborundum SiC fiber appeared to perform the best. The Hi-Nicalon and Dow Corning Fibers exhibited good general stability, but also appear to have some surface roughening. The MER fibers and the Textron SCS-6 fibers both had carbon cores which adversely influenced the overall stability of the fibers

  9. Effect of neutron irradiation on select MAX phases

    International Nuclear Information System (INIS)

    Tallman, Darin J.; Hoffman, Elizabeth N.; Caspi, El’ad N.; Garcia-Diaz, Brenda L.; Kohse, Gordon; Sindelar, Robert L.; Barsoum, Michel W.

    2015-01-01

    Herein we report on the effect of neutron irradiation – of up to 0.1 displacements per atom at 360(20) °C or 695(25) °C – on polycrystalline samples of Ti 3 AlC 2 , Ti 2 AlC, Ti 3 SiC 2 and Ti 2 AlN. Rietveld refinement of X-ray diffraction patterns of the irradiated samples showed irradiation-enhanced dissociation into TiC of the Ti 3 AlC 2 and Ti 3 SiC 2 phases, most prominently in the former. Ti 2 AlN also showed an increase in TiN content, as well as Ti 4 AlN 3 after irradiation. In contrast, Ti 2 AlC was quite stable under these irradiation conditions. Dislocation loops are seen to form in Ti 2 AlC and Ti 3 AlC 2 after irradiation at 360(20) °C. The room temperature electrical resistivity of all samples increased by an order of magnitude after irradiation at 360(20) °C, but only by 25% after 695(25) °C, providing evidence for the MAX phases’ dynamic recovery at temperatures as low at 695(25) °C. Based on these preliminary results, it appears that Ti 2 AlC and Ti 3 SiC 2 are the more promising materials for high-temperature nuclear applications

  10. Hyper-thermal neutron irradiation field for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1994-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwell distribution higher than the room temperature of 300 K, has been studied in order to improve the thermal neutron flux distribution in a living body for a deep-seated tumor in neutron capture therapy (NCT). Simulation calculations using MCNP-V3 were carried out in order to investigate the characteristics of the hyper-thermal neutron irradiation field. From the results of simulation calculations, the following were confirmed: (i) The irradiation field of the hyper-thermal neutrons is feasible by using some scattering materials with high temperature, such as Be, BeO, C, SiC and ZrH 1.7 . Especially, ZrH 1.7 is thought to be the best material because of good characteristics of up-scattering for thermal neutrons. (ii) The ZrH 1.7 of 1200 K yields the hyper-thermal neutrons of a Maxwell-like distribution at about 2000 K and the treatable depth is about 1.5 cm larger comparing with the irradiation of the thermal neutrons of 300 K. (iii) The contamination by the secondary gamma-rays from the scattering materials can be sufficiently eliminated to the tolerance level for NCT through the bismuth layer, without the larger change of the energy spectrum of hyper-thermal neutrons. ((orig.))

  11. Effect of neutron irradiation on Mo-Si amorphous alloys

    International Nuclear Information System (INIS)

    Ito, Fumitake; Hasegawa, Masayuki; Suzuki, Kenji; Honda, Toshihisa; Fukunaga, Toshiharu.

    1982-01-01

    The irradiation effects on Mo-Si amorphous alloys were investigated by means of X-ray diffraction and positron annihilation, and their electric resistance at low temperature was measured to examine the superconductivity of the alloys. The specimens of Mo 68 Si 32 and Mo 45 Si 55 were irradiated with the neutron fluence (E > 1 MeV) of about 9 x 10 18 n/cm 2 without temperature control in the Japanese Material Testing Reactor (JMTR). For these irradiated specimens, the X-ray diffraction experiment was performed to examine the irradiation effects on the radial distribution function, and the angular correlation curves for the positron annihilation were also measured. Both experiments showed that there was almost no irradiation effect. However, the width of the superconductive transition measured in Mo 68 Si 32 became extremely narrow due to neutron irradiation, and the transition temperature rose from 6.89 K to 7.03 K. On the other hand, in Mo 45 Si 55 , the width showed a tendency to become somewhat narrow, but the transition temperature shifted to the lower side. (Asami, T.)

  12. Hot atom reactions in neutron irradiated solid iron group metallocenes

    International Nuclear Information System (INIS)

    Yassine, T.; Blackburn, R.

    1990-01-01

    Investigation of the hot reactions of the recoil metal nuclides in neutron irradiated solid ferrocene, ruthenocene and osmocene shows that the retention decreases from ferrocene to osmocene. This observation is ascribed to the effects of recoil energy and the size of the hot zone. The large isotope effect observed between osmium isotopes and between ruthenium isotopes are explained as resulting from the effect of the Auger ionisation produced by internal conversion which takes place in Os-185 and Ru-97 to a greater degree than in their other isotopes. Irradiation of solid metallocenes diluted with an inert solid (silica) showed that the retention in ruthenocene is high and only slightly less than for the pure case whilst the retention of osmocene is very small and the retention of ferrocene is almost zero. The high retention in solid diluted ruthenocene was tentatively attributed to a combination of primary retention resulting from γ cancellation and uptake of recoil momentum by the solid lattice. (author) 15 refs. 5 tabs. 2 figs

  13. Radioactivity of neutron-irradiated cat's-eye chrysoberyls

    Science.gov (United States)

    Tang, S. M.; Tay, T. S.

    1999-04-01

    The recent report of marketing of radioactive chrysoberyl cat's-eyes in South-East Asian markets has led us to use an indirect method to estimate the threat to health these color-enhanced gemstones may pose if worn close to skin. We determined the impurity content of several cat's-eye chrysoberyls from Indian States of Orissa and Kerala using PIXE, and calculated the radioactivity that would be generated from these impurities and the constitutional elements if a chrysoberyl was irradiated by neutrons in a nuclear reactor for color enhancement. Of all the radioactive nuclides that could be created by neutron irradiation, only four ( 46Sc, 51Cr, 54Mn and 59Fe) would not have cooled down within a month after irradiation to the internationally accepted level of specific residual radioactivity of 2 nCi/g. The radioactivity of 46Sc, 51Cr and 59Fe would only fall to this safe limit after 15 months and that of 54Mn could remain above this limit for several years.

  14. Resistivity measurements on the neutron irradiated detector grade silicon materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng

    1993-11-01

    Resistivity measurements under the condition of no or low electrical field (electrical neutral bulk or ENB condition) have been made on various device configurations on detector grade silicon materials after neutron irradiation. Results of the measurements have shown that the ENB resistivity increases with neutron fluence ({Phi}{sub n}) at low {phi}{sub n} (<10{sup 13} n/cm{sup 2}) and saturates at a value between 300 and 400 k{Omega}-cm at {phi}{sub n} {approximately}10{sup 13} n/cm{sup 2}. Meanwhile, the effective doping concentration N{sub eff} in the space charge region (SCR) obtained from the C-V measurements of fully depleted p{sup +}/n silicon junction detectors has been found to increase nearly linearly with {phi}{sub n} at high fluences ({phi}{sub n} > 10{sup 13} n/cm{sup 2}). The experimental results are explained by the deep levels crossing the Fermi level in the SCR and near perfect compensation in the ENB by all deep levels, resulting in N{sub eff} (SCR) {ne} n or p (free carrier concentrations in the ENB).

  15. Tritium extraction from neutron-irradiated lithium aluminate

    International Nuclear Information System (INIS)

    Garcia H, F.

    1995-01-01

    Lithium aluminate is being strongly considered as a breeder material because of its thermophysical, chemical and mechanical stability at high temperatures and its favorable irradiation behavior. Furthermore, it is compatible with other blanket and structural materials. In this work, the effects of calcination temperature during preparation, extraction temperature and sweep gas composition were observed. Lithium aluminate prepared by four different methods, was neutron irradiated for 30 minutes at a flux of 10 12 -10 13 n/cm 2 s in the TRIGA Mark III reactor at Salazar, Mexico; and the tritium extraction rate was measured. Calcination temperature do not affect the tritium extraction rate. However, using high calcination temperature, gamma lithium aluminate was formed. The tritium extraction at 600 Centigrade degrees was lower than at 800 Centigrade degrees and the tritium amount extracted by distillation of the solid sample was higher. The sweep gas composition showed that tritium extraction was less with Ar plus 0.5 % H 2 that with Ar plus 0.1 % H 2 . This result was contrary to expected, where the tritium extraction rate could be higher when hydrogen is added to the sweep gas. Probably this effect could be attributed to the gas purity. (Author)

  16. Neutron irradiation effect of thermally-sensitized stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hide, Kouitiro [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) susceptibility of irradiated thermally-sensitized Type 304 Stainless Steels (SSs) was studied as a function of neutron fluence and correlated with mechanical responses of the materials. Neutron irradiation was carried out to neutron fluences up to 1.1 x 10{sup 24} n/m{sup 2} (E > 1MeV) at the light water reactor temperature in the Japan Material Test Reactor. The irradiated specimens were examined by slow strain rate stress corrosion cracking tests in 290degC pure water of 0.2 ppm dissolved oxygen concentration and microhardness measurements. The IGSCC susceptibility of the irradiated specimens increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}. From an attempt to correlate the IGSCC susceptibility with the mechanical properties, an excellent correlation was identified between the susceptibility and microhardness increments at the grain boundary relative to the grain center. While intergranular corrosion rate of thermally sensitized SS increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}, that of solution annealed SS did not change. The incremental grain boundary hardening and degradation of intergranular corrosion resistance may presumably be the major factors affecting IGSCC performance. (author)

  17. Study of natural diamond detector spectrometric properties under neutron irradiation

    CERN Document Server

    Alekseyev, A B; Kaschuck, Y; Krasilnikov, A; Portnov, D; Tugarinov, S

    2002-01-01

    Natural diamond detector (NDD) performance was studied up to a neutron fluence of 10 sup 1 sup 5 neutron/cm sup 2. The variations of the NDD spectrometric response to incident alpha-particles from sup 2 sup 4 sup 1 Am source after exposure to fast neutron fluences up to 3x10 sup 1 sup 6 n/cm sup 2 were examined. No significant variations up to the level of 10 sup 1 sup 4 n/cm sup 2 were observed. Degradation of charge collection efficiency at higher fluences is reported. No remarkable increase of the NDD leakage current and count rate change had been observed up to a neutron fluence of 3x10 sup 1 sup 6 n/cm sup 2. The charge collection efficiency variations of neutron irradiated diamond spectrometer were studied ex situ under gamma-rays, beta-radiation and visible light excitation. Charge collection efficiency restoration up to 75% level and the NDD performance stabilization by extrinsic low-intensity visible light (550 nm

  18. Automated Heuristic Defect Classification (AHDC) for haze-induced defect growth management and mask requalification

    Science.gov (United States)

    Munir, Saghir; Qidwai, Gul

    2012-03-01

    This article presents results from a heuristic automated defect classification algorithm for reticle inspection that mimics the classification rules. AHDC does not require CAD data, thus it can be rapidly deployed in a high volume production environment without the need for extensive design data management. To ensure classification consistency a software framework tracks every defect in repeated inspections. Through its various image based derived metrics it is shown that such a system manages and tracks repeated defects in applications such as haze induced defect growth.

  19. EPR study of gamma and neutron irradiation effects on KU1, KS-4V and Infrasil 301 silica glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lagomacini, Juan C., E-mail: jc.lagomacini@uam.es [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Bravo, David [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Leon, Monica; Martin, Piedad; Ibarra, Angel [Materiales para Fusion, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Martin, Agustin [Dept. Fisica e Instalaciones, ETS Arquitectura UPM, E-28040 Madrid (Spain); Lopez, Fernando J. [Dept. Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)

    2011-10-01

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 and KS-4V high purity quartz glasses and commercial silica Infrasil 301, irradiated with gamma rays up to a dose of 11.6 MGy and neutron fluences of 10{sup 21} and 10{sup 22} n/m{sup 2}. Gamma irradiations produce a much higher concentration of defect centres (mainly E', POR and NBOHC) for KU1 and I301 than for KS-4V silica. In contrast, neutron irradiation at the highest fluence produces similar concentrations in all silica types. These results agree to a good extent with those obtained in previous optical absorption measurements. Moreover, oxygen-related centres (POR and NBOHC) have been well characterized by means of electron paramagnetic resonance.

  20. EPR study of gamma and neutron irradiation effects on KU1, KS-4V and Infrasil 301 silica glasses

    International Nuclear Information System (INIS)

    Lagomacini, Juan C.; Bravo, David; Leon, Monica; Martin, Piedad; Ibarra, Angel; Martin, Agustin; Lopez, Fernando J.

    2011-01-01

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 and KS-4V high purity quartz glasses and commercial silica Infrasil 301, irradiated with gamma rays up to a dose of 11.6 MGy and neutron fluences of 10 21 and 10 22 n/m 2 . Gamma irradiations produce a much higher concentration of defect centres (mainly E', POR and NBOHC) for KU1 and I301 than for KS-4V silica. In contrast, neutron irradiation at the highest fluence produces similar concentrations in all silica types. These results agree to a good extent with those obtained in previous optical absorption measurements. Moreover, oxygen-related centres (POR and NBOHC) have been well characterized by means of electron paramagnetic resonance.

  1. Characteristics of the behavior of rare-earth oxides and composites on their base by charged particles and neutrons irradiated

    International Nuclear Information System (INIS)

    Tuseev, T.; Aksenova, T.I.; Berdauletov, A.K.

    2000-01-01

    In this work the results of comparative investigation of adsorption curves versus REM order number (La, Ce, Nd, Pr, Gd) and dose neutron irradiation are presented. It is discovered that the original REM oxides have high adsorption capacity both for donor gases and for acceptor ones. The adsorption capacity for oxygen and hydrogen becomes lower when the REM order number is higher, but it is contrary for water molecules. The obtained results showed that adsorption properties of REM oxides were changing on identical laws. But oxides of metals, having anomalous properties (variable valency, high cross-section capture) revealed especial adsorption properties under irradiation. In the time of consideration of possible mechanism of radiation - stimulated gas adsorption on oxide surface it is necessary to take in attention both the formation of radiation defects in crystal lattice and the characteristics of electron structure and presence of 4 f - cover in rare-earth metals

  2. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  3. Study of irradiation induced defects in silicon

    International Nuclear Information System (INIS)

    Pal, Gayatri; Sebastian, K.C.; Somayajulu, D.R.S.; Chintalapudi, S.N.

    2000-01-01

    Pure high resistivity (6000 ohm-cm) silicon wafers were recoil implanted with 1.8 MeV 111 In ions. As-irradiated wafers showed a 13 MHz quadrupole interaction frequency, which was not observed earlier. The annealing behaviour of these defects in the implanted wafers was studied between room temperature and 1073 K. At different annealing temperatures two more interaction frequencies corresponding to defect complexes D2 and D3 are observed. Even though the experimental conditions were different, these are identical to the earlier reported ones. Based on an empirical point charge model calculation, an attempt is made to identify the configuration of these defect complexes. (author)

  4. Induced Magnetic Moment in Defected Single-Walled Carbon Nanotubes

    International Nuclear Information System (INIS)

    Liu Hong

    2006-01-01

    The existence of a large induced magnetic moment in defect single-walled carbon nanotube(SWNT) is predicted using the Green's function method. Specific to this magnetic moment of defect SWNT is its magnitude which is several orders of magnitude larger than that of perfect SWNT. The induced magnetic moment also shows certain remarkable features. Therefore, we suggest that two pair-defect orientations in SWNT can be distinguished in experiment through the direction of the induced magnetic moment at some Specific energy points

  5. Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at.%Cu alloy under neutron irradiation

    Science.gov (United States)

    Bai, Xian-Ming; Ke, Huibin; Zhang, Yongfeng; Spencer, Benjamin W.

    2017-11-01

    Neutron irradiation in light water reactors can induce precipitation of nanometer sized Cu clusters in reactor pressure vessel steels. The Cu precipitates impede dislocation gliding, leading to an increase in yield strength (hardening) and an upward shift of ductile-to-brittle transition temperature (embrittlement). In this work, cluster dynamics modeling is used to model the entire Cu precipitation process (nucleation, growth, and coarsening) in a Fe-0.3at.%Cu alloy under neutron irradiation at 300°C based on the homogenous nucleation mechanism. The evolution of the Cu cluster number density and mean radius predicted by the modeling agrees well with experimental data reported in literature for the same alloy under the same irradiation conditions. The predicted precipitation kinetics is used as input for a dispersed barrier hardening model to correlate the microstructural evolution with the radiation hardening and embrittlement in this alloy. The predicted radiation hardening agrees well with the mechanical test results in the literature. Limitations of the model and areas for future improvement are also discussed in this work.

  6. Effect of neutron irradiation on the density of low-energy excitations in vitreous silica. [Neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Terry Lee [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1979-01-01

    Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity were made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat Cex, the thermal conductivity κ the anomalous temperature dependence of the ultrasound velocity Δv/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that kappa and Δv/v are determined by the same localized excitations responsible for Cex, but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. A consistent account for the measured Cex, κ, and Δv/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model.

  7. Neutron irradiation effects in Fe and Fe-Cr at 300 °C

    International Nuclear Information System (INIS)

    Chen, Wei-Ying; Miao, Yinbin; Gan, Jian; Okuniewski, Maria A.; Maloy, Stuart A.; Stubbins, James F.

    2016-01-01

    Fe and Fe-Cr (Cr = 10–16 at.%) specimens were neutron-irradiated at 300 °C to 0.01, 0.1 and 1 dpa. The TEM observations indicated that the Cr significantly reduced the mobility of dislocation loops and suppressed vacancy clustering, leading to distinct damage microstructures between Fe and Fe-Cr. Irradiation-induced dislocation loops in Fe were heterogeneously observed in the vicinity of grown-in dislocations, whereas the loop distribution observed in Fe-Cr is much more uniform. Voids were observed in the irradiated Fe samples, but not in irradiated Fe-Cr samples. Increasing Cr content in Fe-Cr results in a higher density, and a smaller size of irradiation-induced dislocation loops. Orowan mechanism was used to correlate the observed microstructure and hardening, which showed that the hardening in Fe-Cr can be attributed to the formation of dislocation loops and α′ precipitates. -- Graphical abstract: Addition of Cr in Fe suppressed the mobility of mobile 1/2<111> dislocation loops and increased the proportion of immobile <100> dislocation loops, leading to a transition of loop distribution from highly heterogeneous to uniform. Display Omitted

  8. Effect of phase instabilities on the correlation of nickel ion and neutron irradiation swelling in solution annealed 316 stainless steel

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Lee, E.H.; Sklad, P.S.

    1979-01-01

    Annealed 316 stainless steel specimens were neutron irradiated to establish steady-state microstructures and then subjected to further high temperature irradiations with 4 MeV Ni ions. It is shown that void growth under neutron irradiation is simulated in ion irradiations carried out at approx. 180 0 C above reactor temperature. However, the precipitate microstructure developed during neutron irradiation is unstable during subsequent ion irradiation. As a result, the relative swelling rates at various reactor temperatures are not simulated correctly

  9. Neutron irradiation behavior of ITER candidate beryllium grades

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [A.A.Bochvar All-Russia Scientific Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Melder, R.R.; Ostrovsky, Z.E.

    1998-01-01

    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why its behaviour under the typical for fusion reactor loading, in particular, under the neutron irradiation is of a great importance. This paper presents mechanical properties, swelling and microstructure of six beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia and also one - (S-65) fabricated by Brush Wellman, USA. The average grain size of the beryllium grades varied from 8 to 25 {mu}m, beryllium oxide content was 0.8-3.2 wt. %, initial tensile strength was 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor up to the fast neutron fluence (5.5-6.2) {center_dot} 10{sup 21} cm{sup -2} (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV at two temperature ranges: T{sub 1} = 130-180degC and T{sub 2} = 650-700degC. After irradiation at 130-180degC no changes in samples dimensions were revealed. After irradiation at 650-700degC swelling of the materials was found to be in the range 0.1-2.1 %. Beryllium grades TR-30 and TRR, having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which was no more than 0.1 % at 650-700degC and fluence 5.5 {center_dot} 10{sup 21} cm{sup -2}. Tensile and compression test results and microstructure parameters measured before and after irradiation are also presented. (author)

  10. Study of damages by neutron irradiation in lithium aluminates

    International Nuclear Information System (INIS)

    Palacios G, O.

    1999-01-01

    Lithium aluminates proposed to the production of tritium in fusion nuclear reactors, due to the thermal stability that they present as well as the behavior of the aluminium to the irradiation. As a neutron flux with profile (≅ 14 Mev) of a fusion reactor is not available. A irradiation experiment was designed in order to know the micro and nano structure damages produced by fast and thermal neutrons in two irradiation positions of the fusion nuclear reactor Triga Mark III: CT (Thermal Column) and SIFCA (System of Irradiation Fixed of Capsules). In this work samples of lithium aluminate were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy). Two samples were prepared by two methods: a) coalition method and b) peroxide method. This characterization comprised original and irradiated samples. The irradiated sample amounted to 4 in total: one for each preparation method and one for each irradiation position. The object of this analysis was to correlate with the received neutron dose the damages suffered by the samples with the neutron irradiation during long periods (440 H), in their micro and nano structure aspects; in order to understand the changes as a function of the irradiation zone (with thermal and fast neutron flux) and the preparation methods of the samples and having as an antecedent the irradiation in SIFCA position by short times (2h). The obtained results are referred to the stability of γ -aluminate phase, under given conditions of irradiation and defined nano structure arrangement. They also refer to the proposals of growth mechanism and nucleation of new phases. The error associated with the measurement of neutron dose is also discussed. (Author)

  11. Study of boron carbide evolution under neutron irradiation; Contribution a l'etude de l'evolution du carbure de bore sous irradiation neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Simeone, D. [CEA/Saclay, Dept. de Mecanique et de Technologie (DMT), 91 - Gif-sur-Yvette (France)]|[Universite Blaise Pascal, Clermont-Ferrand II, (CNRS), 63 - Aubiere (France)

    1999-07-01

    Owing to its high neutron efficiency, boron carbide (B{sub 4}C) is used as a neutron absorber in control rods of nuclear plants. Its behaviour under irradiation has been extensively studied for many years. It now seems clear that brittleness of the material induced by the {sup 10}B(n,{alpha}){sup 7}Li capture reaction is due to penny shaped helium bubbles associated to a high strain field around them. However, no model explains the behaviour of the material under neutron irradiation. In order to build such a model, this work uses different techniques: nuclear microprobe X-ray diffraction profile analysis and Raman and Nuclear Magnetic Resonance Spectroscopy to present an evolution model of B{sub 4}C under neutron irradiation. The use of nuclear reactions produced by a nuclear microprobe such as the {sup 7}Li(p,p'{gamma}){sup 7}Li reaction, allows to measure lithium profile in B{sub 4}C pellets irradiated either in Pressurised Water Reactors or in Fast Breeder Reactors. Examining such profiles enables us to describe the migration of lithium atoms out of B{sub 4}C materials under neutron irradiation. The analysis of X-ray diffraction profiles of irradiated B{sub 4}C samples allows us to quantify the concentrations of helium bubbles as well as the strain fields around such bubbles.Furthermore Raman spectroscopy studies of different B{sub 4}C samples lead us to propose that under neutron irradiation. the CBC linear chain disappears. Such a vanishing of this CBC chain. validated by NMR analysis, may explain the penny shaped of helium bubbles inside irradiated B{sub 4}C. (author)

  12. Photoresponse in graphene induced by defect engineering

    Science.gov (United States)

    Du, Ruxia; Wang, Wenhui; Du, Jianxin; Guo, Xitao; Liu, Er; Bing, Dan; Bai, Jing

    2016-11-01

    We present a photoresponse study on a lateral defect/pristine graphene junction device fabricated by a simple plasma irradiation method. The junction between pristine graphene and plasma-modified graphene was created by controlling the location of Ar+ plasma treatment. We found that a distinct photocurrent was generated at the junction by photocurrent line scanning measurements, and further analysis reveals that the photo-thermoelectric (PTE) effect, instead of the photovoltaic (PV) effect, dominates the photocurrent generation at the interface. Additionally, the obtained results suggest that tuning the defect density could be effective in modulating the optoelectronic performance of junctions in our device.

  13. Effect of neutron irradiation on the mechanical properties of weld overlay cladding for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Tobita, Tohru, E-mail: tobita.tohru@jaea.go.jp; Udagawa, Makoto; Chimi, Yasuhiro; Nishiyama, Yutaka; Onizawa, Kunio

    2014-09-15

    This study investigates the effects of high fluence neutron irradiation on the mechanical properties of two types of cladding materials fabricated using the submerged-arc welding and electroslag welding methods. The tensile tests, Charpy impact tests, and fracture toughness tests were conducted before and after the neutron irradiation with a fluence of 1 × 10{sup 24} n/m{sup 2} at 290 °C. With neutron irradiation, we could observe an increase in the yield strength and ultimate strength, and a decrease in the total elongation. All cladding materials exhibited ductile-to-brittle transition behavior during the Charpy impact tests. A reduction in the Charpy upper-shelf energy and an increase in the ductile-to-brittle transition temperature was observed with neutron irradiation. There was no obvious decrease in the elastic–plastic fracture toughness (J{sub Ic}) of the cladding materials upon irradiation with high neutron fluence. The tearing modulus was found to decrease with neutron irradiation; the submerged-arc-welded cladding materials exhibited low J{sub Ic} values at high temperatures.

  14. Examination of the creep behaviour of ceramic fuel elements under neutron irradiation

    International Nuclear Information System (INIS)

    Brucklacher, D.

    1978-01-01

    This paper examines the creeping of UO 2 , UO 2 -PuO 2 and UN under neutron irradiation. It starts with the experimental results about the relation between the thermal creep rate and the load, the temperature, as well as characteristic material values, stoichiometry, grain size and porosity. These correlation are first qualitatively discussed and then compared with the statements of actual quantitative equations. From the models and theories on which these equations are based a modified Nabarro-Heering-equation results for the correlation between the creep rate of ceramic fuels, stress, temperature and the fission rate. In the experimental part of the examination, length-changes of creep samples of UO 2 , (U,Pu)O 2 and UN were measured in specially developed irradiation creep casings in different reactors. The measuring data were corrected and evaluated considering the thermal expansion effects, irregular temperature distribution and swelling effects in such a way that the dependences of the creep rate of UO 2 , UO 2 -PuO 2 and UN under irradiation on stress, temperature, fission rate, burn-up and porosity is obtained. It shows that creeping of fuels under irradiation at high temperatures is equivalent to thermally activated creeping, while at low temperature the creep rate induced by irradiation is much higher than the condition without irradiation. The increment of oxidic nuclear fuels is greater than in UN, the stress dependence on low burn-up is proportional in both cases, and the influence of temperature is quite small. (orig.) [de

  15. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    International Nuclear Information System (INIS)

    Di Cicco, D.; Antal, S.; Ammassari-Teule, M.

    1991-01-01

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice

  16. Effect of periodic temperature variations on the microstructure of neutron-irradiated metals

    DEFF Research Database (Denmark)

    Zinkle, S.J.; Hashimoto, N.; Hoelzer, D.T.

    2002-01-01

    Specimens of pure copper, a high purity austenitic stainless steel, and V–4Cr–4Ti were exposed to eight cycles of either constant temperature or periodic temperature variations during neutron irradiation in the High Flux Isotopes Reactor to a cumulative damage level of 4–5 displacements per atom.......-induced microstructural features consisted of dislocation loops, stacking fault tetrahedra and voids in the stainless steel, Ti-rich precipitates in the V alloy, and voids (along with a low density of stacking fault tetrahedra) in copper........ Specimens exposed to periodic temperature variations experienced a low temperature (360 °C) during the initial 10% of accrued dose in each of the eight cycles, and a higher temperature (520 °C) during the remaining 90% of accrued dose in each cycle. The microstructures of the irradiated stainless steel...... and V–4Cr–4Ti were qualitatively similar to companion specimens that were continuously maintained at 520 °C during the entire irradiation. The microstructural observations on pure copper irradiated at a constant temperature of 340 °C in this experiment are also summarized. The main radiation...

  17. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Directory of Open Access Journals (Sweden)

    Hu J.-P.

    2016-01-01

    Full Text Available Radiation dosimetry for Neutron Capture Therapy (NCT has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR. In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1 in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2 out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3 beam shutter upgrade to reduce strayed neutrons and gamma dose, (4 beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5 beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates to reduce prompt gamma and fast neutron doses, (6 sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7 holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4–7

  18. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Science.gov (United States)

    Hu, J.-P.; Holden, N. E.; Reciniello, R. N.

    2016-02-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than

  19. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  20. Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Mohd Idzat, E-mail: idzat.i.aa@m.titech.ac.jp [Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan); The National University of Malaysia, School of Applied Physics, Faculty of Science and Technology, 43600 Bangi Selangor (Malaysia); Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 Japan (Japan)

    2015-10-15

    Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0–2.5 × 10{sup 24} (E > 0.1 MeV) at 333–363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373–573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17–0.24 eV and 0.12–0.14 eV; 0.002–0.04 eV and 0.006–0.04 eV at 723–923 K; 0.20–0.27 eV and 0.26–0.31 eV at 923–1223 K; and 1.37–1.38 eV and 1.26–1.29 eV at 1323–1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323–1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K. - Highlights: • Two kinds of high purity cubic (β) SiC polycrystals were irradiated. • Macroscopic lengths were examined by post-irradiation thermal annealing. • The recovery curves were analyzed with first order model.

  1. Conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at SINQ

    International Nuclear Information System (INIS)

    Zanini, L.; Baluc, N.; Simone, A. De; Eichler, R.; Joray, S.; Manfrin, E.; Pouchon, M.; Rabaioli, S.; Schumann, D.; Welte, J.; Zhernosekov, K.

    2011-12-01

    This comprehensive, illustrated report by the Paul Scherrer Institute PSI in Switzerland documents the proposals concerning the conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at the PSI's Swiss Spallation Neutron Source SINQ facility. The need for fast neutron irradiation is discussed and the possibility of using SINQ as a fast neutron irradiation facility is considered. The production of isotopes, tracers and medical isotopes is discussed, as are fission and fusion reactor technologies. The characteristics of the neutron spectrum in SINQ are discussed. The neutronic and radioprotection calculations for an irradiation station at SINQ are looked at in detail and extensive examples of work done and results obtained are presented and discussed. Radioprotection issues are also looked at. Further contributions in the report cover the hot/cold irradiation station in the SINQ target. An appendix provides detailed drawings of the facility's pneumatic delivery system

  2. A radiomodifying effect of acute hypoxia on neutron-irradiated mice and dogs

    International Nuclear Information System (INIS)

    Sverdlov, A.G.; Kalmykova, G.I.; Timoshenko, S.I.; Nikanorova, N.G.

    1986-01-01

    Anoxia increased the survival of neutron irradiated mice with DMF=1.66. As to haemopoietic stem cells neutron irradiated in vivo, DMF was 1.8. With X-irradiation DMF was 2.49 and 2.94, respectively. Anoxia decreased the damage of the intestinal mucous membrane after a whole-body neutron irradiation with a dose 3.0 Gy. A protective effect of acute hypoxia was demonstrated on dogs exposed to fast neutrons (4.0 Gy). Breathing of 10% gas hypoxic mixture protected more than half of the exposed animals from death and provided the development of a light form of radiation sickness instead on a serious one. (orig.) [de

  3. Microstructural development of tungsten and tungsten-rhenium alloys due to neutron irradiation in HFIR

    Science.gov (United States)

    Fukuda, Makoto; Yabuuchi, Kiyohiro; Nogami, Shuhei; Hasegawa, Akira; Tanaka, Teruya

    2014-12-01

    The microstructural development of pure tungsten (W) and tungsten-rhenium (Re) alloys due to neutron irradiation in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, TN, USA, was investigated in this work. The irradiation conditions were ∼1 displacements per atom (dpa) at 500 and 800 °C. After the neutron irradiation, microstructural observations were performed using a transmission electron microscope (TEM). Large amounts of precipitates identified as sigma- and chi-phases were observed in not only the W-Re alloys but also in the pure W after the neutron irradiation. The precipitates observed in the pure W were coarse and larger than those in the W-Re alloys. This was considered to be caused by the transmutation products of W and Re, namely, Re and osmium (Os), respectively, under irradiation in the HFIR with a higher contents of thermal neutron flux.

  4. Neutron irradiation test of copper alloy/stainless steel joint materials

    International Nuclear Information System (INIS)

    Yamada, Hirokazu; Kawamura, Hiroshi

    2006-01-01

    As a study about the joint technology of copper alloy and stainless steel for utilization as cooling piping in International Thermonuclear Experimental Reactor (ITER), Al 2 O 3 -dispersed strengthened copper or CuCrZr was jointed to stainless steel by three kinds of joint methods (casting joint, brazing joint and friction welding method) for the evaluation of the neutron irradiation effect on joints. A neutron irradiation test was performed to three types of joints and each copper alloy. The average value of fast neutron fluence in this irradiation test was about 2 x 10 24 n/m 2 (E>1 MeV), and the irradiation temperature was about 130degC. As post-irradiation examinations, tensile tests, hardness tests and observation of fracture surface after the tensile tests were performed. All type joints changed to be brittle by the neutron irradiation effect like each copper alloy material, and no particular neutron irradiation effect due to the effect of joint process was observed. On the casting and friction welding, hardness of copper alloy near the joint boundary changed to be lower than that of each copper alloy by the effect of joint procedure. However, tensile strength of joints was almost the same as that of each copper alloy before/after neutron irradiation. On the other hand, tensile strength of joints by brazing changed to be much lower than CuAl-25 base material by the effect of joint process before/after neutron irradiation. Results in this study showed that the friction welding method and the casting would be able to apply to the joint method of piping in ITER. This report is based on the final report of the ITER Engineering Design Activities (EDA). (author)

  5. Influence of neutron irradiation on the stability of recipitates in zircaloy: a critical review

    International Nuclear Information System (INIS)

    Lobo, Raquel M.; Andrade, Arnaldo H. P.

    2013-01-01

    The realization of RMB enterprise (Brazilian Multipurpose Reactor) will give the country a powerful tool to investigate the behavior materials subjected to irradiation. Among them, zirconium alloys, used as cladding of nuclear fuel in reactors type LWR. It is know that neutron irradiation can affect the stability of precipitates in zircaloys, generating as a result changes in theirs mechanical properties, important application of this alloys. This paper present a critical review of neutron irradiation effects on microstructural stability of zircaloys (2 and 4). (author)

  6. Effect of low temperature neutron irradiation on the magnetoresistivity in stabilizer materials for a superconducting magnet

    International Nuclear Information System (INIS)

    Nakata, Kiyotomo; Tada, Naobumi; Masaoka, Isao; Takamura, Saburo.

    1985-01-01

    Magnetoresistivity changes caused by neutron irradiation at 5 K, annealing up to 300 K and cyclic irradiation are studied in copper and aluminuim stabilizer materials at 4.2 K. The radiation-induced resistivity in Al is about three times as large as that in Cu, and the resistivities in both Al and Cu are independent of the purity and the degree of cold-work of the samples. The radiation-induced magnetoresistivity of the high purity Cu with R.R.R. (R sub(298 K)/R sub(4.2 K)) of 1400 is larger than that of the impure Cu with R.R.R. of 300 and 280. The magnetoresistivities of the high purity Cu and Al with R.R.R. of 1500 increase with the magetic field. Magnetoresistivity change with the magnetic field in the irradiated Cu mostly follows Kohler's rule, and that in the irradiated Al does not follow the rule at high magnetic fields. By the annealing at 300 K after the irradiation, the radiation-induced resistivity is completely annihilated in the Al, but about 20 % of the resistivity retains in the full-annealed Cu and the retained resistivity is accumulated during the cyclic irradiation. Though the accumulated resistivity in the cold-worked Cu is smaller than that in the full-annealed one, the resistivity before irradiation in the cold-worked samples is very large. From the above results, the full-annealed Cu with R.R.R. of about 300 is considered to be the best material as a stabilizer used under irradiation. (author)

  7. Study of the evolution of irradiation induced defects in FeCrx model alloys for fusion applications by means of in-situ resistivity techniques

    International Nuclear Information System (INIS)

    Gómez-Ferrer Ferrán, B.

    2014-01-01

    Reduced activation ferritic/martensitic steels are candidate structural materials for future fusion reactors. These steels can, to a first approximation, be modelled by considering the behavior of binary Fe-Cr alloys. It has been shown that a significant amount of Cr, in the range of 6-14at%, is necessary to provide good mechanical properties of radiation and corrosion resistance. The microstructure evolution induced by neutron irradiation is known to depend on the Cr content. Current knowledge of the role of Cr in the effects of neutron radiation is therefore essential, but still incomplete. The current objective is to extend the experimental study of the point-defect interaction and kinetics in concentrated alloys. This would allow increasing a reliable database of experimental results for validation of computational simulations in order to consolidate the development of models. Thus, to this end, a suitable experimental set-up has been designed and built and subsequently Resistivity Recovery experiments have been run in Fe1-x-Crx (x = 0, 0.05, 0.10, 0.14)...(Author)

  8. Mechanical behavior of AISI 304SS determined by miniature test methods after neutron irradiation to 28 dpa

    Science.gov (United States)

    Rabenberg, Ellen M.; Jaques, Brian J.; Sencer, Bulent H.; Garner, Frank A.; Freyer, Paula D.; Okita, Taira; Butt, Darryl P.

    2014-05-01

    The mechanical properties of AISI 304 stainless steel irradiated for over a decade in the Experimental Breeder Reactor (EBR-II) were measured using miniature mechanical testing methods. The shear punch method was used to evaluate the shear strengths of the neutron-irradiated steel and a correlation factor was empirically determined to predict its tensile strength. The strength of the stainless steel slightly decreased with increasing irradiation temperature, and significantly increased with increasing dose until it saturated above approximately 5 dpa. An effective tensile strain hardening exponent was also obtained from the data which shows a relative decrease in ductility of steel with increased irradiation damage. Ferromagnetic measurements were used to observe and deduce the effects of the stress-induced austenite to martensite transformation as a result of shear punch testing.

  9. Microstructural evolution of NF709 (20Cr-25Ni-1.5MoNbTiN) under neutron irradiation

    Science.gov (United States)

    Kim, B. K.; Tan, L.; Xu, C.; Yang, Y.; Zhang, X.; Li, M.

    2016-03-01

    Because of its superior creep and corrosion resistance as compared with general austenitic stainless steels, NF709 has emerged as a candidate structural material for advanced nuclear reactors. To obtain fundamental information about the radiation resistance of this material, this study examined the microstructural evolution of NF709 subjected to neutron irradiation to 3 displacements per atom at 500 °C. Transmission electron microscopy, scanning electron microscopy, and high-energy x-ray diffraction were employed to characterize radiation-induced segregation, Frank loops, voids, as well as the formation and reduction of precipitates. Radiation hardening of ∼76% was estimated by nanoindentation, approximately consistent with the calculation according to the dispersed barrier-hardening model, suggesting Frank loops as the primary hardening source.

  10. Therapeutic effect of recombinant human interleukin-11 and curcumin on jejunal damage in mice after neutron irradiation

    International Nuclear Information System (INIS)

    Chang Gongmin; Peng Ruiyun; Gao Yabing; Wang Shuiming; Li Yang; Xu Xinping; Wang Lifeng; Dong Ji; Zhao Li

    2010-01-01

    irradiation group (F=0.015-0.035, all P<0.05) but without significant differences between them. Conclusions: Jejunal damage in mice could be induced after 3 Gy neutron irradiation. rhIL-11 and curcumin might reduce the damage and promote the regeneration and repair of the intestinal epithelium. (authors)

  11. Thermally induced defects in industrial diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2009-03-01

    Full Text Available In this study the authors make use of laser heating of HTHP industrial diamond, as well as the optically measured temperature profile of the diamond surface, to study temperature induced changes to the diamond structure, both chemically...

  12. Report of the Working Group on low-temperature neutron irradiation

    International Nuclear Information System (INIS)

    1982-07-01

    This report summarizes deliberations at a Working Group meeting sponsored by the Department of Energy, Division of Materials Sciences for the purpose of: (1) assessing the need for maintaining a low temperature neutron irradiation program in the United States; and (2) recommending a course of action based on this assessment

  13. DT fusion neutron irradiation of ORNL magnesium oxide crystals and BNL--LASL superconductor wires

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1978-01-01

    The DT fusion neutron irradiation of two ORNL magnesium oxide crystals and eleven BNL-LASL superconductor wires is described. The sample position and neutron dose record are given. The maximum neutron fluence on any sample was 2.16 x 10 16 neutrons/cm 2

  14. Neutron irradiation of sapphire for compressive strengthening. II. Physical properties changes

    Energy Technology Data Exchange (ETDEWEB)

    Regan, Thomas M. E-mail: thomas_regan@uml.edu; Harris, Daniel C. E-mail: harrisdc@navair.navy.mil; Blodgett, David W.; Baldwin, Kevin C.; Miragliotta, Joseph A.; Thomas, Michael E.; Linevsky, Milton J.; Giles, John W.; Kennedy, Thomas A.; Fatemi, Mohammad; Black, David R.; Lagerloef, K. Peter D

    2002-01-01

    Irradiation of sapphire with fast neutrons (0.8-10 MeV) at a fluence of 10{sup 22}/m{sup 2} increased the c-axis compressive strength and the c-plane biaxial flexure strength at 600 deg. C by a factor of {approx}2.5. Both effects are attributed to inhibition of r-plane twin propagation by damage clusters resulting from neutron impact. The a-plane biaxial flexure strength and four-point flexure strength in the c- and m-directions decreased by 10-23% at 600 deg. C after neutron irradiation. Neutron irradiation had little or no effect on thermal conductivity, infrared absorption, elastic constants, hardness, and fracture toughness. A featureless electron paramagnetic resonance signal at g=2.02 was correlated with the strength increase: This signal grew in amplitude with increasing neutron irradiation, which also increased the compressive strength. Annealing conditions that reversed the strengthening also annihilated the g=2.02 signal. A signal associated with a paramagnetic center containing two Al nuclei was not correlated with strength. Ultraviolet and visible color centers also were not correlated with strength in that they could be removed by annealing at temperatures that were too low to reverse the compressive strengthening effect of neutron irradiation.

  15. Neutron irradiation of sapphire for compressive strengthening. II. Physical properties changes

    International Nuclear Information System (INIS)

    Regan, Thomas M.; Harris, Daniel C.; Blodgett, David W.; Baldwin, Kevin C.; Miragliotta, Joseph A.; Thomas, Michael E.; Linevsky, Milton J.; Giles, John W.; Kennedy, Thomas A.; Fatemi, Mohammad; Black, David R.; Lagerloef, K. Peter D.

    2002-01-01

    Irradiation of sapphire with fast neutrons (0.8-10 MeV) at a fluence of 10 22 /m 2 increased the c-axis compressive strength and the c-plane biaxial flexure strength at 600 deg. C by a factor of ∼2.5. Both effects are attributed to inhibition of r-plane twin propagation by damage clusters resulting from neutron impact. The a-plane biaxial flexure strength and four-point flexure strength in the c- and m-directions decreased by 10-23% at 600 deg. C after neutron irradiation. Neutron irradiation had little or no effect on thermal conductivity, infrared absorption, elastic constants, hardness, and fracture toughness. A featureless electron paramagnetic resonance signal at g=2.02 was correlated with the strength increase: This signal grew in amplitude with increasing neutron irradiation, which also increased the compressive strength. Annealing conditions that reversed the strengthening also annihilated the g=2.02 signal. A signal associated with a paramagnetic center containing two Al nuclei was not correlated with strength. Ultraviolet and visible color centers also were not correlated with strength in that they could be removed by annealing at temperatures that were too low to reverse the compressive strengthening effect of neutron irradiation

  16. Analysis of microstress in neutron irradiated polyester fibre by X-ray ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Microstresses developed in the crystallites of polymeric material due to irradiation of high-energy particle causes peak broadening and shifting of X-ray diffraction lines to lower angle. Neutron irradiation significantly changes the material properties by displacement of lattice atoms and the generation of helium.

  17. Scanning tunneling spectroscopy on neutron irradiated MgB2 thin films

    International Nuclear Information System (INIS)

    Di Capua, Roberto; Salluzzo, Marco; Vaglio, Ruggero; Ferdeghini, Carlo; Ferrando, Valeria; Putti, Marina; Xi Xiaoxing; Aebersold, Hans U.

    2007-01-01

    Neutron irradiation was performed on MgB 2 thin films grown by hybrid physical chemical vapor deposition. Samples irradiated with different neutron fluences, having different critical temperatures, were studied by scanning tunneling spectroscopy in order to investigate the effect of the introduced disorder on the superconducting and spectroscopic properties. A monotonic increase of the π gap with increasing disorder was found

  18. Scanning tunneling spectroscopy on neutron irradiated MgB{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Di Capua, Roberto [University of Napoli and CNR-INFM/Coherentia, Via Cinthia, Naples I-80126 (Italy)], E-mail: rdicapua@na.infn.it; Salluzzo, Marco; Vaglio, Ruggero [University of Napoli and CNR-INFM/Coherentia, Via Cinthia, Naples I-80126 (Italy); Ferdeghini, Carlo [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Ferrando, Valeria [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Pennsylvania State University, University Park, PA 16802 (United States); Putti, Marina [CNR-INFM/LAMIA, Via Dodecaneso 33, Genova I-16146 (Italy); Xi Xiaoxing [Pennsylvania State University, University Park, PA 16802 (United States); Aebersold, Hans U. [Paul Scherrer Institut, Villigen CH-5232 (Switzerland)

    2007-09-01

    Neutron irradiation was performed on MgB{sub 2} thin films grown by hybrid physical chemical vapor deposition. Samples irradiated with different neutron fluences, having different critical temperatures, were studied by scanning tunneling spectroscopy in order to investigate the effect of the introduced disorder on the superconducting and spectroscopic properties. A monotonic increase of the {pi} gap with increasing disorder was found.

  19. Analysis of microstress in neutron irradiated polyester fibre by X-ray ...

    Indian Academy of Sciences (India)

    Microstresses developed in the crystallites of polymeric material due to irradiation of high-energy particle causes peak broadening and shifting of X-ray diffraction lines to lower angle. Neutron irradiation significantly changes the material properties by displacement of lattice atoms and the generation of helium and hydrogen ...

  20. Investigation of hydrogen isotopes interaction processes with lithium under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaurbekova, Zhanna, E-mail: zaurbekova@nnc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Skakov, Mazhyn; Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Tazhibayeva, Irina; Baklanov, Viktor; Barsukov, Nikolay [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Chikhray, Yevgen [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan)

    2016-11-01

    Highlights: • The experiments on study of helium and tritium generation and release processes under neutron irradiation from lithium saturated with deuterium are described in paper. ​ • The values of relative tritium and helium yield from lithium sample at different levels of neutron irradiation is calculated. • It was concluded that the main affecting process on tritium release from lithium is its interaction with lithium atoms with formation of lithium tritide. - Abstract: The paper describes the experiments on study of helium and tritium generation and release processes from lithium saturated with deuterium under neutron irradiation (in temperature range from 473 to 773 K). The diagrams of two reactor experiments show the time dependences of helium, DT, T{sub 2}, and tritium water partial pressures changes in experimental chamber with investigated lithium sample. According to experimental results, the values of relative tritium and helium yield from lithium sample at different levels of neutron irradiation were calculated. The time dependences of relative tritium and helium yield from lithium sample were plotted. It was concluded that the main affecting process on tritium release from lithium is its interaction with lithium atoms with formation of lithium tritide.

  1. Time factor of BSH from intravenous infusion to neutron irradiation for BNCT in patients with glioblastoma

    International Nuclear Information System (INIS)

    Kageji, T.; Nagahiro, S.; Kitamura, K.; Nakagawa, Y.; Hatanaka, H.; Haritz, D.; Grochulla, F.; Haselsberger, K.; Gabel, D.

    2000-01-01

    The present report evaluates the time factor of BSH from infusion to irradiation in patients with glioblastoma as a cooperative study in Europe and Japan. For BNCT with BSH after intravenous infusion, this work confirms that the planned neutron irradiation after intravenous BSH infusion appears to be optimal around 12-19 hours after the infusion. (author)

  2. Neutron irradiation effects on magnetic properties of iron-nickel Invar alloys

    International Nuclear Information System (INIS)

    Morita, H.; Tanji, Y.; Hiroyoshi, H.; Nakagawa, Y.

    1983-01-01

    The Curie temperature of fcc Fe-Ni containing 30-50% Ni is reaised by neutron irradiation, although no appreciable change is detected in the X-ray diffraction pattern. These results are related to a tendency to two-phase separation of the fcc phase. (orig.)

  3. Neutron irradiation effects on in situ Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Hirano, Y.; Fukumoto, M.; Kodaka, H.; Nishijima, S.; Okada, T.; Yoshida, H.

    1985-01-01

    Three types of ''in situ'' Nb 3 Sn conductors have been studied to determine the detrimental effects of neutron irradiation on critical temperature, critical current and AC losses. It was found that at fluences of 10 18 n/cm 2 , the critical temperature is degraded by approximately 10%. Degradation of AC loss is discussed in comparison with that of critical current density

  4. Fission neutron irradiation of copper containing implanted and transmutation produced helium

    DEFF Research Database (Denmark)

    Singh, B.N.; Horsewell, A.; Eldrup, Morten Mostgaard

    1992-01-01

    . The distributions of helium prior to fission neutron irradiation were determined by a combination of transmission electron microscopy (TEM) and positron annihilation techniques (PAT). These specimens, together with pure copper, were then irradiated with fission neutrons in a single capsule in fast flux test...

  5. Analysis of microstress in neutron irradiated polyester fibre by X-ray ...

    Indian Academy of Sciences (India)

    ... Analytical X-ray diffractometer and the effects of microstresses in tensile strength of fibre measured by Instron have also been reported. The shift of 0.45 cm-1 in the Raman peak position of 1614.65 cm-1 to a higher value confirmed the development of microstresses due to neutron irradiation using micro-Raman technique.

  6. Investigation of plasmid-induced growth defect in Pseudomonas putida.

    Science.gov (United States)

    Mi, Jia; Sydow, Anne; Schempp, Florence; Becher, Daniela; Schewe, Hendrik; Schrader, Jens; Buchhaupt, Markus

    2016-08-10

    Genetic engineering in bacteria mainly relies on the use of plasmids. But despite their pervasive use for physiological studies as well as for the design and optimization of industrially used production strains, only limited information about plasmid induced growth defects is available for different replicons and organisms. Here, we present the identification and characterization of such a phenomenon for Pseudomonas putida transformants carrying the pBBR1-derived plasmid pMiS1. We identified the kanamycin resistance gene and the transcription factor encoding rhaR gene to be causal for the growth defect in P. putida. In contrast, this effect was not observed in Escherichia coli. The plasmid-induced growth defect was eliminated after introduction of a mutation in the plasmid-encoded rep gene, thus enabling construction of the non-toxic variant pMiS4. GFP reporters construct analyses and qPCR experiments revealed a distinctly lowered plasmid copy number for pMiS4, which is probably the reason for alleviation of the growth defect by this mutation. Our work expands the knowledge about plasmid-induced growth defects and provides a useful low-copy pBBR1 replicon variant. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Microstructure and mechanical properties of titanium aluminum carbides neutron irradiated at 400–700 °C

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Caen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shih, Chunghao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); General Atomics, San Diego, CA (United States); Silva, Chinthaka [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-02-23

    Here, this work reports the first mechanical properties of Ti3AlC2-Ti5Al2C3 materials neutron irradiated at ~400, 630 and 700 °C at a fluence of 2 × 1025 n m-2 (E > 0.1 MeV) or a displacement dose of ~2 dpa. After irradiation at ~400 °C, anisotropic swelling and loss of 90% flexural strength was observed. After irradiation at ~630–700 °C, properties were unchanged. Microcracking and kinking-delamination had occurred during irradiation at ~630–700 °C. Further examination showed no cavities in Ti3AlC2 after irradiation at ~630 °C, and MX and A lamellae were preserved. However, disturbance of (0004) reflections corresponding to M-A layers was observed, and the number density of line/planar defects was ~1023 m-3 of size 5–10 nm. HAADF identified these defects as antisite TiAl atoms. Finally, Ti3AlC2-Ti5Al2C3 shows abrupt dynamic recovery of A-layers from ~630 °C, but a higher temperature appears necessary for full recovery.

  8. Effect of neutron irradiation on response of reinforced concrete members for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyoungsoo; Kim, Hyung-Tae [Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kwon, Tae-Hyun, E-mail: taekwonkr@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Choi, Eunsoo [Department of Civil and Environmental Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 121-791 (Korea, Republic of)

    2016-12-15

    Highlights: • Effects of long-term irradiation on reinforced concrete (RC) structures were investigated. • Responses of irradiated RC members were numerically investigated in terms of ductility. • Results demonstrated that energy dissipation capacity decreased under radiation environment. • Level of neutron radiation could be critical for RC structures during operation. - Abstract: In this study, the effects of long-term irradiation on the behaviors of reinforced concrete (RC) members were investigated to obtain a better understanding of the behaviors of RC structures under an irradiation environment, which include the biological shield walls and reactor vessel support structures of nuclear power plants (NPPs). The behaviors of three RC members were examined (a beam, beam-column section, and column under cyclic loading) by considering the changes in the constituent material properties due to neutron irradiation. The load capacity generally increases for a tension failure member with an increase in neutron irradiation because neutron irradiation increases the yield stress of reinforcing steel. However, the load capacity of a compression failure member decreases with a decrease in the compressive strength of concrete when the fluence of neutron radiation increases. Additionally, RC member analysis results demonstrate that the energy dissipation capacity, which is a critical factor in seismic design, decreases significantly when the fluence of neutron radiation is greater than 1.0 × 10{sup 17} n/cm{sup 2}. Therefore, the level of neutron irradiation could be critical for RC structures over the long-term operation of NPPs, and thus the effects of neutron irradiation on RC structures should be considered as age-related damage.

  9. The influence of low dose neutron irradiation on the thermal conductivity of Allcomp carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Porter, Wallace D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    Oak Ridge National Laboratory was contracted via a Work for Others Agreement with Allcomp Inc. (NFE-14-05011-MSOF: Carbon Foam for Beam Stop Applications ) to determine the influence of low irradiation dose on the thermal conductivity of Allcomp Carbon Foam. Samples (6 mm dia. x 5 mm thick) were successfully irradiated in a rabbit capsule in a hydraulic tube in the target region of the High Flux Isotope Reactor at the Oak Ridge National Laboratory. The specimens were irradiated at Tirr = 747.5 C to a neutron damage dose of 0.2 dpa. There is a small dimensional and volume shrinkage and the mass and density appear reduced (we would expect density to increase as volume reduces at constant mass). The small changes in density, dimensions or volume are not of concern. At 0.2 dpa the irradiation shrinkage rate difference between the glassy carbon skeleton and the CVD coating was not sufficient to cause a large enough irradiation-induced strain to create any mechanical degradation. Similarly differential thermal expansion was not a problem. It appears that only the thermal conductivity was affected by 0.2 dpa. For the intended application conditions, i.e. @ 400 C and 0 DPA (start- up) the foam thermal conductivity is about 57 W/m.K and at 700 C and 0.2 DPA (end of life) the foam thermal conductivity is approx. 30.7 W/m.K. The room temp thermal conductivity drops from 100-120 W/m.K to approximately 30 W/m.K after 0.2 dpa of neutron irradiation.

  10. Influence of radiation induced defect clusters on silicon particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Junkes, Alexandra

    2011-10-15

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) addresses some of today's most fundamental questions of particle physics, like the existence of the Higgs boson and supersymmetry. Two large general-purpose experiments (ATLAS, CMS) are installed to detect the products of high energy protonproton and nucleon-nucleon collisions. Silicon detectors are largely employed in the innermost region, the tracking area of the experiments. The proven technology and large scale availability make them the favorite choice. Within the framework of the LHC upgrade to the high-luminosity LHC, the luminosity will be increased to L=10{sup 35} cm{sup -2}s{sup -1}. In particular the pixel sensors in the innermost layers of the silicon trackers will be exposed to an extremely intense radiation field of mainly hadronic particles with fluences of up to {phi}{sub eq}=10{sup 16} cm{sup -2}. The radiation induced bulk damage in silicon sensors will lead to a severe degradation of the performance during their operational time. This work focusses on the improvement of the radiation tolerance of silicon materials (Float Zone, Magnetic Czochralski, epitaxial silicon) based on the evaluation of radiation induced defects in the silicon lattice using the Deep Level Transient Spectroscopy and the Thermally Stimulated Current methods. It reveals the outstanding role of extended defects (clusters) on the degradation of sensor properties after hadron irradiation in contrast to previous works that treated effects as caused by point defects. It has been found that two cluster related defects are responsible for the main generation of leakage current, the E5 defects with a level in the band gap at E{sub C}-0.460 eV and E205a at E{sub C}-0.395 eV where E{sub C} is the energy of the edge of the conduction band. The E5 defect can be assigned to the tri-vacancy (V{sub 3}) defect. Furthermore, isochronal annealing experiments have shown that the V{sub 3} defect

  11. Influence of radiation induced defect clusters on silicon particle detectors

    International Nuclear Information System (INIS)

    Junkes, Alexandra

    2011-10-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) addresses some of today's most fundamental questions of particle physics, like the existence of the Higgs boson and supersymmetry. Two large general-purpose experiments (ATLAS, CMS) are installed to detect the products of high energy protonproton and nucleon-nucleon collisions. Silicon detectors are largely employed in the innermost region, the tracking area of the experiments. The proven technology and large scale availability make them the favorite choice. Within the framework of the LHC upgrade to the high-luminosity LHC, the luminosity will be increased to L=10 35 cm -2 s -1 . In particular the pixel sensors in the innermost layers of the silicon trackers will be exposed to an extremely intense radiation field of mainly hadronic particles with fluences of up to Φ eq =10 16 cm -2 . The radiation induced bulk damage in silicon sensors will lead to a severe degradation of the performance during their operational time. This work focusses on the improvement of the radiation tolerance of silicon materials (Float Zone, Magnetic Czochralski, epitaxial silicon) based on the evaluation of radiation induced defects in the silicon lattice using the Deep Level Transient Spectroscopy and the Thermally Stimulated Current methods. It reveals the outstanding role of extended defects (clusters) on the degradation of sensor properties after hadron irradiation in contrast to previous works that treated effects as caused by point defects. It has been found that two cluster related defects are responsible for the main generation of leakage current, the E5 defects with a level in the band gap at E C -0.460 eV and E205a at E C -0.395 eV where E C is the energy of the edge of the conduction band. The E5 defect can be assigned to the tri-vacancy (V 3 ) defect. Furthermore, isochronal annealing experiments have shown that the V 3 defect exhibits a bistability, as does the leakage current. In oxygen

  12. Electrical effects of transient neutron irradiation of silicon devices

    International Nuclear Information System (INIS)

    Hjalmarson, H.P.; Pease, R.L.; Van Ginhoven, R.M.; Schultz, P.A.; Modine, N.A.

    2007-01-01

    The key effects of combined transient neutron and ionizing radiation on silicon diodes and bipolar junctions transistors are described. The results show that interstitial defect reactions dominate the annealing effects in the first stage of annealing for certain devices. Furthermore, the results show that oxide trapped charge can influence the effects of bulk silicon displacement damage for particular devices

  13. Microstructural investigation, using small-angle neutron scattering (SANS), of Optifer steel after low dose neutron irradiation and subsequent high temperature tempering

    International Nuclear Information System (INIS)

    Coppola, R.; Lindau, R.; Magnani, M.; May, R.P.; Moeslang, A.; Valli, M.

    2007-01-01

    The microstructural effect of low dose neutron irradiation and subsequent high temperature tempering in the reduced activation ferritic/martensitic steel Optifer (9.3 Cr, 0.1 C, 0.50 Mn, 0.26 V, 0.96 W, 0.66 Ta, Fe bal wt%) has been studied using small-angle neutron scattering (SANS). The investigated Optifer samples had been neutron irradiated, at 250 o C, to dose levels of 0.8 dpa and 2.4 dpa. Some of them underwent 2 h tempering at 770 o C after the irradiation. The SANS measurements were carried out at the D22 instrument of the High Flux Reactor at the Institut Max von Laue - Paul Langevin, Grenoble, France. The differences observed in nuclear and magnetic SANS cross-sections after subtraction of the reference sample from the irradiated one suggest that the irradiation and the subsequent post-irradiation tempering produce the growth of non-magnetic defects, tentatively identified as microvoids

  14. Microchemical evolution of neutron-irradiated stainless steel

    International Nuclear Information System (INIS)

    Brager, H.R.; Garner, F.A.

    1980-04-01

    The precipitates that develop in AISI 316 stainless steel during irradiation play a dominant role in determining the dimensional and mechanical property changes of this alloy. This role is expressed primarily in a large change in matrix composition that alters the diffusional properties of the alloy matrix and also appears to alter the rate of acceptance of point defects at dislocations and voids. The major elemental participants in the evolution have been identified as nickel, silicon, and carbon. The exceptional sensitivity of this evolution to many variables accounts for much of the variability of response exhibited by this alloy in nominally similar irradiations

  15. Characterization of phosphorus segregation in neutron-irradiated Russian pressure vessel steel weld

    International Nuclear Information System (INIS)

    Miller, M.K.; Jayaram, R.; Russell, K.F.

    1995-01-01

    An atom probe field ion microscopy characterization of three Russian pressure vessel steels has been performed. Field ion micrographs of several lath boundaries have indicated that they are decorated with a semicontinuous film of discrete brightly-imaging precipitates that were identified as molybdenum carbonitrides. In addition, extremely high phosphorus levels were measured at the lath boundaries. The phosphorus was found to be confined to an extremely narrow region indicative of monolayer type segregation. The phosphorus coverage determined from the atom probe results of the unirradiated materials agree with predictions based on McLean's equilibrium model of grain boundary segregation. The boundary phosphorus coverage of a neutron-irradiated weld material was significantly higher than in the unirradiated material. Ultrafine darkly-imaging copper- and phosphorus-enriched precipitates were also observed in the matrix of the neutron-irradiated material. (orig.)

  16. Phase stability of oxide dispersion-strengthened ferritic steels in neutron irradiation

    International Nuclear Information System (INIS)

    Yamashita, S.; Oka, K.; Ohnuki, S.; Akasaka, N.; Ukai, S.

    2002-01-01

    Oxide dispersion-strengthened ferritic steels were irradiated by neutrons up to 21 dpa and studied by microstructural observation and microchemical analysis. The original high dislocation density did not change after neutron irradiation, indicating that the dispersed oxide particles have high stability under neutron irradiation. However, there is potential for recoil resolution of the oxide particles due to ballistic ejection at high dose. From the microchemical analysis, it was implied that some of the complex oxides have a double-layer structure, such that TiO 2 occupied the core region and Y 2 O 3 the outer layer. Such a structure may be more stable than the simple mono-oxides. Under high-temperature irradiation, Laves phase was the predominant precipitate occurring at grain boundaries α phase and χ phase were not observed in this study

  17. Effect of neutron irradiation on fracture resistance of advanced SiC/SiC composites

    Science.gov (United States)

    Ozawa, Kazumi; Katoh, Yutai; Nozawa, Takashi; Snead, Lance L.

    2011-10-01

    In order to identify the neutron irradiation effects on fracture resistance of advanced SiC/SiC composites, unloading-reloading single edge notched bend tests were conducted and an analytical model based on non-linear fracture mechanics was applied. As a result of the analysis, energy release rate contributed by macro-crack initiation of 3.1 kJ/m 2 for both unirradiated and irradiated advanced SiC/SiC composites (Hi-Nicalon Type-S (0°/90° plain woven)/multilayer/chemically vapor infiltration) is estimated. This result indicates no significant degradation in fracture resistance after neutron irradiation to 5.9 × 10 25 n/m 2 at 800 °C.

  18. Diffuse X-ray scattering from neutron-irradiated silicon doped with boron

    International Nuclear Information System (INIS)

    Mayer, W.; Grasse, D.; Peisl, J.

    1985-01-01

    The diffuse X-ray scattering and lattice parameter change of silicon crystals heavily doped with boron after electron and neutron irradiation are measured. From a comparison of unirradiated and electron-irradiated samples the volume change is determined of substitutional boron Q/sub B/ = -(2.2 +- 0.2) x 10 -2 nm 3 and of boron with a trapped interstitial Q/sub BI/ = (0 +- 0.5) x 10 -2 nm 3 . During neutron irradiation of the doped samples each boron stabilizes an additional Frenkel pair by trapping of the interstitial. The concentration of the untrapped interstitials remains the same as in the undoped sample, but the nucleation of interstitial clusters is enhanced thus reducing the cluster size to 93% of the value of undoped samples. (author)

  19. Investigation of microstructure and mechanical properties of low dose neutron irradiated HT-9 steel

    International Nuclear Information System (INIS)

    Sarkar, A.; Alsabbagh, A.H.; Murty, K.L.

    2014-01-01

    Highlights: • Neutron irradiation has been carried out on HT-9 steel. • Microstructure of the irradiated HT-9 steel has been investigated using XRD. • There is an increase in dislocation density in the irradiated sample. • Tensile tests have been carried out to determine the changes in mechanical properties due to irradiation. • Yield stress and strain rate sensitivity increased due to irradiation. - Abstract: HT-9 steel samples have been irradiated with fast neutrons (E > 0.1 MeV) to a low dose (1.2 × 10 −3 dpa). Microstructure of the unirradiated and irradiated samples has been characterized by X-ray diffraction line profile analysis using different model-based approaches. The domain size and density of dislocations of the irradiated steel have been estimated. Different types of tensile tests have been carried out at room temperature to assess the changes in mechanical properties of HT-9 steel due to neutron irradiation

  20. Spallation and 14-MeV neutron irradiation of stabilized NbTi superconductors

    International Nuclear Information System (INIS)

    Hahn, P.; Brown, B.S.; Weber, H.W.; Guinan, M.W.

    1983-08-01

    The results on 5 K irradiation available so far may be summarized as follows. (1) Increases of j/sub c/ following neutron irradiation occur only in conductors which are far from the optimal metallurgical treatments. (2) The changes of j/sub c/ following neutron irradiation and a thermal cycle to room temperature are small and in most cases comparable to the results obtained after 77 K irradiation. (3) The data available so far indicate that the degradation of j/sub c/ at 8 T is larger by about 5 to 10% than the corresponding changes at 5 T at a neutron fluence of 1.3 x 10 22 m -2 (E > 0.1 MeV). (4) The increase of Cu-resistivity is significant even after a thermal cycle to room temperature and requires design changes for a stable magnet operation

  1. A design study on hyper-thermal neutron irradiation field for neutron capture therapy at Kyoto University Reactor

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2000-01-01

    A study about the installation of a hyper-thermal neutron converter to a clinical collimator was performed, as a series of the design study on a hyper-thermal neutron irradiation field at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. From the parametric-surveys by Monte Carlo calculation, it was confirmed that the practical irradiation field of hyper-thermal neutrons would be feasible by the modifications of the clinical collimator and the bismuth-layer structure. (author)

  2. Impact of neutron irradiation on the structural and optical properties of PVP/gelatin blends doped with dysprosium (III) chloride

    Science.gov (United States)

    Basha, Ahmad Fouad; Basha, Mohammad Ahmad-Fouad

    2017-12-01

    Polymer composites of a system of Polyvinylpyrrolidone (PVP)/gelatin/DyCl3.6H2O were prepared in three groups that have different concentrations of PVP/gelatin contents to study the effect of neutron irradiation on their structural and optical properties. Results showed that the interaction of neutrons led to various complex phenomena, mainly bond breaking, main chain scission and intermolecular cross-linking. These processes introduced defects inside the material that were responsible for the changes in their optical and structural properties. All the calculated parameters were found to be dependent on the irradiation fluence in a uniform manner that makes these materials excellent candidates in the applications of dosimetry and radiology. Moreover, the sensitivity of the three groups of composites to the irradiation doses was found to be different. The variation in the structure of the composite group that contains the least PVP content was found to be less significant; hence, these materials were more stable against high doses that make them suitable for high radiation dose applications.

  3. Changes to Tensile Strength and Electromagnetic Shielding Effectiveness in Neutron Irradiated Carbon Nanocomposites

    Science.gov (United States)

    2013-03-01

    13 Figure 6. Plane wave incident on a slab of finite thickness of shielding material with multiple...studied the durability of MWNT composites under electron and neutron irradiation [3]. Two sets of samples were studied, one for each type of...electronics package from the external EMI sources encountered in the space environment. A far field EM wave incident on a slab of finite thickness

  4. Correlative Microscopy of Alpha Prime Precipitation in Neutron-Irradiated Fe-Cr-Al Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Samuel A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-12-01

    Fe-Cr-Al alloys are currently being considered for accident tolerant light water reactor fuel cladding applications due to their superior high temperature oxidation and corrosion resistance compared to Zr-based alloys. This work represents the current state-of-the-art on both techniques for analysis of α' precipitate microstructures and the processes and mechanisms governing its formation in neutron-irradiated Fe-Cr-Al alloys.

  5. Efigie: a computer program for calculating end-isotope accumulation by neutron irradiation and radioactive decay

    International Nuclear Information System (INIS)

    Ropero, M.

    1978-01-01

    Efigie is a program written in Fortran V which can calculate the concentration of radionuclides produced by neutron irradiation of a target made of either a single isotope or several isotopes. The program includes optimization criteria that can be applied when the goal is the production of a single nuclide. The effect of a cooling time before chemical processing of the target is also accounted for.(author) [es

  6. Small-angle scattering from neutron-irradiated amorphous Pd80Si20

    International Nuclear Information System (INIS)

    Doi, K.; Kayano, H.; Masumoto, T.

    1978-01-01

    Small-angle scattering intensities were observed for amorphous Pd 80 Si 20 which was irradiated by fast neutrons to a fluence of 5 X 10 20 neutrons cm -2 . A broad hump was observed at 2 sin theta/lambda = 0.05 A -1 . The structure inhomogeneities produced by the neutron irradiation are discussed with the aid of the results of wide-angle scattering measurements. (Auth.)

  7. The effects of fast-neutron irradiation on the mechanical properties of austenitic stainless steel

    International Nuclear Information System (INIS)

    Dalton, J.H.

    1978-01-01

    The paper reviews the effects of fast-neutron irradiation on the tensile properties of austenitic stainless steels at irradiation temperatures of less than 400 degrees Celcius, using as an example, work carried out at Pelindaba on an AISI 316 type steel produced in South Africa. Damage produced in these steels at higher irradiation temperatures and fluences is also briefly discussed. The paper concludes with a discussion of some methods of overcoming or decreasing the effects of irradiation damage [af

  8. The Edinburgh experience of treating sarcomas of soft tissues and bone with neutron irradiation

    International Nuclear Information System (INIS)

    Duncan, W.; Arnott, S.J.; Jack, W.J.L.

    1986-01-01

    The experience of treating 30 patients with sarcomas of soft tissue and bone with d(15)+Be neutron irradiation is reported. The local control of measurable soft-tissue sarcomas was 38.5% (minimum follow-up 2 years), which is similar to that expected after photon therapy. The radiation morbidity was unacceptably high (50%). Bone tumours did not respond well; in only one out of nine was lasting local tumour control achieved. (author)

  9. JAIPEC's R and D activity on neutron irradiation embrittlement of RPV materials

    International Nuclear Information System (INIS)

    Otsuka, T.

    1999-01-01

    Japan Power Engineering and Inspection Corporation (JAPEIC) is managing many national RD projects in the field related to inspection, welding and integrity evaluation according to the policy of the Ministry of International Trade and Industry (MITI) on the safety and reliability of operating nuclear power plants. The Plant Life Management Technology Project (PLIM), one of these RD projects, has newly started from 1996 to develop the evaluation methodologies for the neutron irradiation embrittlement in the upper shelf region of the reactor pressure vessel (RPV) and the thermal embrittlement of duplex stainless steel components, and to develop the technology for reconstitution of RPV surveillance test pieces. For the first item of these three, the development of evaluation method in the upper shelf region, the detailed scope of test program has been recently settled and the neutron irradiation of test specimens is scheduled to start this year using the Halden Boiling Water Reactor (HBWR) in Norway. This paper presents the RD scope for the development of evaluation method for the neutron irradiation embrittlement in the upper shelf region in the PLIM project of JAPEIC (author) (ml)

  10. Installation and measurement capacity of 3 x 592 GBq 241Am-Be neutron irradiation cell

    International Nuclear Information System (INIS)

    Bulut, Serdar; Celenk, I.

    2013-01-01

    In this study, the installation and measurement capacity of the neutron irradiation system are investigated. First of all an irradiation geometry enabling optimum irradiation was designed for three 241 Am-Be sources each of it having 592 GBq activity. Neutron irradiation system was installed after design and optimization of the system including the design of appropriate moderator and shielding were completed. Radiation safety standards of the Neutron Research Laboratory fulfilling the requirements of national regulation were achieved with unique configuration of the shielding materials. In this study the results of qualitative and quantitative detection limits obtained for Na, Al, Cl, K, Ti, V, Mn, Fe, Co, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Mo, Ru, Ag, Cd, In, Sb, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Yb, Lu, Hf, W, Pt, Au, Th and U elements by using the neutron irradiation cell comprising 3 x 592 GBq 241 Am-Be isotopic neutron source are presented and discussed. (orig.)

  11. Determination of tritium generation and release parameters at lithium CPS under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ponkratov, Yuriy, E-mail: ponkratov@nnc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Skakov, Mazhyn; Kulsartov, Timur; Tazhibayeva, Irina; Gordienko, Yuriy; Zaurbekova, Zhanna; Tulubayev, Yevgeniy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Chikhray, Yevgeniy [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Lyublinski, Igor [JSC “Star”, Moscow (Russian Federation); NRNU “MEPhI”, Moscow (Russian Federation); Vertkov, Alexey [JSC “Star”, Moscow (Russian Federation)

    2016-11-01

    Highlights: • The main parameters of tritium generation and release from lithium capillary-porous system (CPS) under neutron irradiation at the IVG.1 M research reactor is described in paper. • In the experiments a very small tritium release was fixed likely due to its high solubility in liquid lithium. • If the lithium CPS will be used as a plasma facing material in temperature range up to 773 K under neutron irradiation only helium will release from lithium CPS into a vacuum chamber. - Abstract: This paper describes the main parameters of tritium generation and release from lithium capillary-porous system (CPS) under neutron irradiation at the IVG.1 M research reactor. The experiments were carried out using the method of mass-spectrometric registration of released gases and using a specially constructed ampoule device. Irradiation was carried out at different reactor thermal powers (1, 2 and 6 MW) and sample temperatures from 473 to 773 K. In the experiments a very small tritium release was detected likely due to its high solubility in liquid lithium. It can be caused by formation of lithium tritide during tritium diffusion to the lithium surface.

  12. Development of positron annihilation spectroscopy for characterizing neutron irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    C.N. Taylor; M. Shimada; D.W. Akers; M.W. Drigert; B.J. Merrill; Y. Hatano

    2013-05-01

    Tungsten samples (6 mm diameter, 0.2 mm thick) were irradiated to 0.025 and 0.3 dpa with neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. Samples were then exposed to deuterium plasma in the tritium plasma experiment (TPE) at 100, 200 and 500ºC to a total fluence of 1 x 1026 m-2. Nuclear reaction analysis (NRA) and Doppler broadening positron annihilation spectroscopy (DB-PAS) were performed at various stages to characterize damage and retention. We present the first known results of neutron damaged tungsten characterized by DB-PAS in order to study defect concentration. Two positron sources, 22Na and 68Ge, probe ~58 µm and through the entire 200 µm thick samples, respectively. DB-PAS results reveal clear differences between the various irradiated samples. These results, and the calibration of DB-PAS to NRA data are presented.

  13. Experimental studies of free defect generation during irradiation: Implications for reactor environments

    International Nuclear Information System (INIS)

    Rehn, L.E.; Birtcher, R.C.

    1993-01-01

    Over the past several years, systematic experiments have revealed that irradiations which generate energetically dense cascades are much less effective than light-ion, MeV electron, or thermal neutron irradiations at producing freely-migrating defects. In this paper, the systematic results on freely-migrating defect production from ion irradiation studies are briefly summarized. Difficulties with applying a simple extrapolation of the ion-irradiation results to neutron environments are discussed. This discussion, coupled with our existing knowledge of neutron-induced property changes, indicates that Compton scattering, and the (n,γ), (n,He) and (n,p) nuclear reactions, are considerably more important for producing freely-migrating defects than was previously realized

  14. Study on the piezoresistivity of radiation-induced point defects

    International Nuclear Information System (INIS)

    Cochard, Andre.

    1976-06-01

    This study is made of two distinct part. In a first part experimental results on the elastoresistivity of radiation-induced point defects in gold are presented. A comparison with the results on copper and molybdenum confirms the exceptional annealing behavior of gold. However, as for copper, only interstitials contribute to elastoresistivity. The results can be understood if the elastoresistivity on gold is associated to Frenkel defects. In a second part an experimental set up is described allowing the dynamic measurement of the piezoresistivity associated to radiation-induced point defects. Experiments were carried out on pure copper and Al-Cu alloys. It is shown that both, the modulus and the phase angle of the complex piezoresistivity have to be measured simultaneously. The thermoelastic effect, a phenomenon due to temperature changes in the sample under rapidly varying strain was studied as a function of strain amplitude and frequency. A simple theory of this effect yields a correct description of the experimental results [fr

  15. Neutron irradiation damage of a stress relieved TZM alloy

    International Nuclear Information System (INIS)

    Abe, K.; Masuyama, T.; Satou, M.; Hamilton, M.L.

    1992-01-01

    The objective of this work is to study defect microstructures and irradiation hardening in a stress relieved TZM alloy after irradiation in the Fast Flux Test Facility (FFTF) using the Materials Open Test Assembly (MOTA). Disk specimens of the molybdenum alloy TZM that had been stress relieved at 1199 K (929 C) for 0.9 ks (15 min.) were irradiated in the FFTF/MOTA 1F at 679, 793 and 873 K (406, 520, and 600 C) to a fast fluence of ∼9.6 x 10 22 n/cm 2 . Microstructures were observed in a transmission electron microscope (TEM). Dislocation structures consisted of isolated loops, aggregated loops (rafts) and elongated dislocations. The size of the loops increased with the irradiation temperature. Void swelling was about 1 and 2% at 793 and 873 K (520 and 600 C), respectively. A void lattice was developed in the body centered cubic (bcc) structure with a spacing of 26 - 28 nm. The fine grain size (0.5 - 2 μm) was retained following high temperature irradiation, indicating that the stress relief heat treatment may extend the material's resistance to radiation damage up to high fluence levels. Microhardness measurements indicated that irradiation hardening increased with irradiation temperature. The relationship between the microstructure and the observed hardening was determined

  16. Atomic rearrangements in ordered fcc alloys during neutron irradiation

    International Nuclear Information System (INIS)

    Kirk, M.A.; Blewitt, T.H.

    1978-01-01

    Three sets of experiments performed at Argonne National Laboratory over the past few years are described. These experiments deal with atomic rearrangements in the ordered alloys Ni 3 Mn and Cu 3 Au during fast and thermal neutron bombardment. The unique magnetic properties of ordered Ni 3 Mn are utilized to investigate radiation damage production mechanisms at low temperature (5 K) where defect migration is not possible and only disordering is observed. In the case of thermal neutron bombardment, the average recoil energy is about 450 eV and significant disordering due to [110] replacement collision sequences is observed. For fast neutron bombardment where typical recoil energies are 20 keV, significant random disordering is observed but no evidence for sizable replacement sequences is found. The bombardment of ordered Cu 3 Au by fast and thermal neutrons at higher temperature (approx. 150 0 C) is studied by electrical resistance techniques. Both ordering and disordering are observed and related to the number of migrating vacancies escaping from the high energy collision cascade

  17. Defect-Induced Hedgehog Polarization States in Multiferroics

    Science.gov (United States)

    Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing

    2018-03-01

    Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

  18. Effect of irradiation-induced defects on fusion reactor ceramics

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1986-01-01

    Structural, thermal, and electrical properties critical to performance of ceramics in a fusion environment can be profoundly altered by irradiation effects. Neutron damage may cause swelling, reduction of thermal conductivity, increase in dielectric loss, and either reduction or enhancement of strength depending on the crystal structure and defect content of the material. Absorption of ionizing energy inevitably leads to degradation of insulating properties, but these changes can be reduced by alterations in structural or compositional makeup. Assessment of the irradiation response of candidate ceramics Al 2 O 3 , MgAl 2 O 4 , SiC and Si 3 N 4 shows that each may find use in advanced fusion devices. The present understanding of irradiation-induced defects in ceramics, while far from complete, nevertheless points the way to methods for developing improved materials for fusion applications

  19. Irradiation embrittlement of reactor pressure vessel steels (Report on analysis of the behaviour of advanced reactor pressure vessel steel under neutron irradiation)

    International Nuclear Information System (INIS)

    Sivaramakrishnan, K.S.; Chatterjee, S.; Anantharaman, S.; Balakrishnan, K.S.; Viswanathan, U.K.

    1984-01-01

    The International Working Group on Reliability of Reactor Pressure Components (IWG-RRPC) sponsored by IAEA launched a Coordinated Research Programme in 1977 to investigate the behaviour of Advanced Pressure Vessel Steels under neutron irradiation. IWG-RRPC included provision of various materials produced by organisation in Federal Republic of Germany, France, Japan and a reference Steel from United States of America to those countries participating in the programme. India joined the International Programme in 1977. The scope of study was mainly to evaluate the neutron irradiation induced change in nil ductility transition temperature and tensile properties on some selected materials. The required quantity of these materials was received from Japan, France, Federal Republic of Germany and United States of America. The paper reports the results obtained from the investigations carried out in the Radiometallurgy Division of Bhabha Atomic Research Centre, Trombay, Bombay, India, on Japanese plate, Japanese forging, French plate, French forging and French weld. Due to other important commitments of the CIRUS reactor, in which the irradiation was carried out, it was not possible to complete the entire programme at this time. (author)

  20. Dislocation and void segregation in copper during neutron irradiation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Leffers, Torben; Horsewell, Andy

    1986-01-01

    ); the irradiation experiments were carried out at 250 degree C. The irradiated specimens were examined by transmission electron microscopy. At both doses, the irradiation-induced structure was found to be highly segregated; the dislocation loops and segments were present in the form of irregular walls and the voids...... density, the void swelling rate was very high (approximately 2. 5% per dpa). The implications of the segregated distribution of sinks for void formation and growth are briefly discussed....

  1. Preshot Predictions for Defect Induced Mix (DIME) Capsules

    International Nuclear Information System (INIS)

    Bradley, Paul A.; Krasheninnikova, Natalia S.; Tregillis, Ian L.; Schmitt, Mark J.

    2012-01-01

    In this memo, we evaluate the most probable yield and other results for the Defect Induced Mix (DIME-12A) Polar Direct Drive (PDD) capsule-only shots. We evaluate the expected yield, bang time, burn averaged ion temperature, and the average electron temperature of the Ge line-emitting region. We also include synthetic images of the capsule backlit by Cu K-α emission (8.39 keV) and core self-emission synthetic images. This memo is a companion to the maximum credible yield memo (LA-UR--12-00287) published earlier.

  2. Preshot Predictions for Defect Induced Mix (DIME) Capsules

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Paul A. [Los Alamos National Laboratory; Krasheninnikova, Natalia S. [Los Alamos National Laboratory; Tregillis, Ian L. [Los Alamos National Laboratory; Schmitt, Mark J. [Los Alamos National Laboratory

    2012-07-31

    In this memo, we evaluate the most probable yield and other results for the Defect Induced Mix (DIME-12A) Polar Direct Drive (PDD) capsule-only shots. We evaluate the expected yield, bang time, burn averaged ion temperature, and the average electron temperature of the Ge line-emitting region. We also include synthetic images of the capsule backlit by Cu K-{alpha} emission (8.39 keV) and core self-emission synthetic images. This memo is a companion to the maximum credible yield memo (LA-UR-12-00287) published earlier.

  3. Preliminary Results from in Situ Quartz Fiber Neutron Irradiations

    CERN Document Server

    Akchurin, Nural; Ayan, S; Ayan, S; Bencze, Gyorgy; Dumano, I; Fenyvesi, Andras; Hauptman, John M; Merlo, Jean-Pierre; Miller, Michael; Önel, Y M; McCliment, Edward; Schwellenbach, D

    1998-01-01

    Optical transmission characteristics of multi-mode synthetic silica-core fibers between 325 nm and 800 nm were studied in situ while irradiated with neutrons. In one case, fiber samples were placed in the core of a 10-kWatt reactor; in the other, fast neutrons generated by p ( 18 MeV) + Be reaction in a cyclotron, irradiated the fibers. The neutron fluence in both studies totaled ~10^15 n/cm2. Both of these initial studies indicate that in the sensitivity region of bialkiline PMTs, the irradiation induced loss is ~1dB/m. These initial experiments are aimed at establishing a fiber testing methodology for assessing the expected degradation of the CMS forward calorimeter at the LHC due to large neutron backgrounds.

  4. Variation of the properties of siliconized graphite during neutron irradiation

    International Nuclear Information System (INIS)

    Virgil'ev, Y.S.; Chugunova, T.K.; Pikulik, R.G.

    1986-01-01

    The authors evaluate the radiation-induced property changes in siliconized graphite of the industrial grades SG-P and SG-M. The authors simultaneously tested the reference (control) specimens of graphite that are used as the base for obtaining the SG-M siliconized graphite by impregnating with silicon. The suggested scheme (model) atributes the dimensional changes of the siliconized graphite specimens to the effect of the quantitative ratio of the carbide phase and carbon under different conditions of irradiation. If silicon is insufficient for the formation of a dense skeleton, graphite plays a devisive role, and it may be assumed that at an irradiation temperature greater than 600 K, the material shrinks. The presence of isolated carbide inclusions also affects the physicomechanical properties (including the anitfriction properties)

  5. Rare-gas analyses on neutron irradiated Apollo 12 samples.

    Science.gov (United States)

    Alexander, E. C., Jr.; Davis, P. K.; Reynolds, J. H.

    1972-01-01

    Argon, krypton, and xenon from stepwise heating of five Apollo 12 rocks that had been irradiated to a neutron fluence of about 10 to the 19th neutrons/sq cm were analyzed mass-spectrometrically. The Ar40-Ar39 ages were determined and range from 3.18 plus or minus 0.06 x 10 to the 9th years to 3.32 plus or minus 0.06 x 10 to the 9th years. Trace elements Ba, Br, I, and U were measured via the neutron-induced reactions that produce isotopes of krypton and xenon. The following concentration ranges were observed: Ba, 46 to 70 ppm; Br, 48 to 146 ppb; I, 16 to 73 ppb; and U, 170 to 247 ppb.

  6. Influence of neutron irradiation on the tritium retention in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Rolli, R.; Ruebel, S.; Werle, H. [Forschungszentrum Karlsruhe, Inst. fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany); Wu, C.H.

    1998-01-01

    Carbon-based materials and beryllium are the candidates for protective layers on the components of fusion reactors facing plasma. In contact with D-T plasma, these materials absorb tritium, and it is anticipated that tritium retention increases with the neutron damage due to neutron-induced traps. Because of the poor data base for beryllium, the work was concentrated on it. Tritium was loaded into the samples from stagnant T{sub 2}/H{sub 2} atmosphere, and afterwards, the quantity of the loaded tritium was determined by purged thermal annealing. The specification of the samples is shown. The samples were analyzed by SEM before and after irradiation. The loading and the annealing equipments are contained in two different glove boxes with N{sub 2} inert atmosphere. The methods of loading and annealing are explained. The separation of neutron-produced and loaded tritium and the determination of loaded tritium in irradiated samples are reported. Also the determination of loaded tritium in unirradiated samples is reported. It is evident that irradiated samples contained much more loaded tritium than unirradiated samples. The main results of this investigation are summarized in the table. (K.I.)

  7. Neutron Irradiation Tests of Pressure Transducers in Liquid Helium

    CERN Document Server

    Amand, J F; Casas-Cubillos, J; Thermeau, J P

    1999-01-01

    The superconducting magnets of the future Large Hadron Collider (LHC) at CERN will operate in pressurised superfluid helium (1 bar, 1.9 K). About 500 pressure transducers will be placed in the liquid helium bath for monitoring the filling and the pressure transients after resistive transitions. Their precision must remain better than 100 mbar at pressures below 2 bar and better than 5% for higher pressures (up to 20 bar), with temperatures ranging from 1.8 K to 300 K. All the tested transducers are based on the same principle: the fluid or gas is separated from a sealed reference vacuum by an elastic membrane; its deformation indicates the pressure. The transducers will be exposed to high neutron fluence (2 kGy, 1014 n/cm2 per year) during the 20 years of machine operation. This irradiation may induce changes both on the membranes characteristics (leakage, modification of elasticity) and on gauges which measure their deformations. To investigate these effects and select the transducer to be used in the LHC, a...

  8. Modelling ionising radiation induced defect generation in bipolar oxides with gated diodes

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Cirba, C.; Schrimpf, R.D.; Kosier, St.; Fouillat, P.; Montagner, X.

    1999-01-01

    Radiation-induced oxide defects that degrade electrical characteristics of bipolar junction transistor (BJTs) can be measured with the use of gated diodes. The buildup of defects and their effect on device radiation response are modeled with computer simulation. (authors)

  9. Recent status of studies on the neutron irradiation effect focusing on Nb3Sn and Nb3Al strands

    International Nuclear Information System (INIS)

    Nishimura, Arata

    2011-01-01

    A fusion reactor generates a lot of 14 MeV neutrons, some of which penetrate shielding blankets, stream out of ports and reach superconducting magnets. Some important studies were performed in the 1970s and a basic understanding of the mechanisms of neutron irradiation effect was established. Advances in the design concept of nuclear fusion reactors led to the need for consistent studies on the neutron irradiation effect of A-15 strands such as Nb 3 Sn and Nb 3 Al, which are strong candidates for fusion reactors. In the early 2000s, a progressive attempt to organize the collaborative research of universities and national institutes was started using a 14 MeV neutron source at Japan Atomic Energy Agency. This paper outlines the neutron irradiation issues related to superconducting magnets for fusion, and a brief history of research on the neutron irradiation effect is provided. In addition, experimental results regarding changes in the superconducting properties of Nb 3 Sn and Nb 3 Al strands by neutron irradiation obtained in the newly established collaborative framework are presented, and general mechanisms for the property changes are introduced. (author)

  10. Effectiveness of fast neutrons irradiation for the stimulation and induction of genetic changes in soybean (Glycine max L. Merrill) genome

    International Nuclear Information System (INIS)

    Sodkiewicz, T.; Sodkiewicz, W.

    1999-01-01

    Air-dry seeds of soybean cv. Warszawska were irradiated with fast neutrons (Nf) using the U-120 cyclotron (at the Institute of Nuclear Physics in Cracow) at the doses of 500, 1000, 1500 R. Additionally, each of the irradiation doses was combined with the selected effective chemical mutagen N-nitroso-N-methylurea - in three concentrations: 0.5, 1.5 and 2.5 mM, to evaluate synergistic effect of these two different mutagenic agents. The results showed some of protection effect of radiation on the level of somatic damage of soybean plants. In addition, the phenomenon of the 'delaying effect' was noted, because the protection effect of fast neutron radiation in the combined treatments with chemomutagen was observed in the emergence and plant survival in the M 2 generation as well. From the point of view of genetic changes induced in the soybean genome, the most effective dose of fast neutron irradiation was 500 R. The number of soybean mutants with earlier ripening obtained (in comparison with original 'mother' variety) at this irradiation dose was higher, than with the highest effective concentration of chemical mutagen (1.0 -1.5 mM MNUA). (author)

  11. Thermal Conductivity of Diamond - Effect of Neutron Irradiation on Gyrotron Windows for use in Fusion Reactors. Final Report

    International Nuclear Information System (INIS)

    White, Douglas P.

    2005-01-01

    The development of dielectric materials for transmission windows in electron cyclotron resonance heating (ECRH) systems for fusion reactors has recently focused on chemical-vapor-deposited (CVD) diamond. Advances in CVD-diamond processing have made it possible to manufacture gyrotron windows with sufficient thickness (5mm or more) to provide the mechanical strength necessary for this application. A theoretical description of the thermal conductivity changes expected in neutron irradiated diamond at high temperature using the Callaway method is presented. Phonon scattering by radiation induced vacancies and regions of disordered carbon are considered. In addition scattering by boundaries, isotopes and three-phonon normal and umklapp processes are considered. It was found that the higher thermal conductivity advantage gained by isotopically enriching the diamond to 0.1% 13 C, a 32% increase at 300K, was reduced to a 5% increase at 300K upon irradiation to 3.0 x 10 20 n/m 2 . It was found that diamond with the naturally occurring isotope concentration of 1.1% 13 C will experience an 84% decrease in thermal conductivity at 300K and a 62% decrease at 700K upon irradiation to a neutron fluence of 4.5 x 10 22 n/m 2 .

  12. Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 358 °C

    Science.gov (United States)

    Cockeram, B. V.; Smith, R. W.; Leonard, K. J.; Byun, T. S.; Snead, L. L.

    2011-11-01

    Wrought Zircaloy-2 and Zircaloy-4 were neutron irradiated at nominally 358 °C in the high flux isotope reactor (HFIR) at relatively low neutron fluences between 5.8 × 10 22 and 2.9 × 10 25 n/m 2 ( E > 1 MeV). The irradiation hardening and change in microstructure were characterized following irradiation using tensile testing and examinations of microstructure using Analytical Electron Microscopy (AEM). Small increments of dose (0.0058, 0.11, 0.55, 1.08, and 2.93 × 10 25 n/m 2) were used in the range where the saturation of irradiation hardening is typically observed so that the role of microstructure evolution and loop formation on irradiation hardening could be correlated. An incubation dose between 5.8 × 10 23 and 1.1 × 10 24 n/m 2 was needed for loop nucleation to occur that resulted in irradiation hardening. Increases in yield strength were consistent with previous results in this temperature regime, and as expected less irradiation hardening and lower loop number density values than those generally reported in literature for irradiations at 260-326 °C were observed. Unlike previous lower temperature data, there is evidence in this study that the irradiation hardening can decrease with dose over certain ranges of fluence. Irradiation induced voids were observed in very low numbers in the Zircaloy-2 materials at the highest fluence.

  13. Energy spectra of primary knock-on atoms under neutron irradiation

    International Nuclear Information System (INIS)

    Gilbert, M.R.; Marian, J.; Sublet, J.-Ch.

    2015-01-01

    Materials subjected to neutron irradiation will suffer from a build-up of damage caused by the displacement cascades initiated by nuclear reactions. Previously, the main “measure” of this damage accumulation has been through the displacements per atom (dpa) index, which has known limitations. This paper describes a rigorous methodology to calculate the primary atomic recoil events (often called the primary knock-on atoms or PKAs) that lead to cascade damage events as a function of energy and recoiling species. A new processing code SPECTRA-PKA combines a neutron irradiation spectrum with nuclear recoil data obtained from the latest nuclear data libraries to produce PKA spectra for any material composition. Via examples of fusion relevant materials, it is shown that these PKA spectra can be complex, involving many different recoiling species, potentially differing in both proton and neutron number from the original target nuclei, including high energy recoils of light emitted particles such as α-particles and protons. The variations in PKA spectra as a function of time, neutron field, and material are explored. The application of PKA spectra to the quantification of radiation damage is exemplified using two approaches: the binary collision approximation and stochastic cluster dynamics, and the results from these different models are discussed and compared. - Highlights: • Recoil cross-section matrices under neutron irradiation are generated. • Primary knock-on atoms (PKA) spectra are calculated for fusion relevant materials. • Variation in PKA spectra due to changes in geometry are considered. • Inventory simulations to consider time-evolution in PKA spectra. • Damage quantification using damage functions from different approximations.

  14. Effects of neutron irradiation on resistivity of reactor pressure vessel steel

    Science.gov (United States)

    Li, Chengliang; Shu, Guogang; Liu, Yi; Huang, Yili; Chen, Jun; Duan, Yuangang; Liu, Wei

    2018-02-01

    The embrittlement of reactor pressure vessel (RPV) steel owing to fast-neutron irradiation is one of its primary failure mechanisms. In this work, neutron irradiation tests were performed on an RPV steel at a high temperature (565 K) using a neutron irradiation test reactor. In addition, resistivity measurements were performed on the RPV steel both before and after irradiation in a hot laboratory using the four-probe method. The results showed that the resistivity of the RPV steel exhibits nonlinear behaviour with respect to the radiation fluence and that the nonlinearity becomes more pronounced with an increase in the radiation fluence. For instance, when the radiation fluence is 0.1540 dpa and the excitation current is increased from 0.2 mA to 200 mA, the resistivity of the RPV steel decreases by as much as 67.12%. During irradiation embrittlement, the resistivity increases with the fluence. When the radiation fluence is greater than 0.116 dpa, the increase in the resistivity accelerates. When the radiation fluence is less than 0.116 dpa and when an excitation current of 2 mA or 20 mA is used, the relationship between the resistivity and the radiation fluence for the RPV steel is a quadratic one, whereas that between the rate of change in the resistivity and the radiation fluence is a linear one. Thus, the resistivity of RPV steel can be used to characterise its degree of irradiation embrittlement, and resistivity measurements can be employed as a nondestructive evaluation technique for monitoring the degree of irradiation damage experienced by in-service RPV steel.

  15. Radiation induced segregation and point defects in binary copper alloys

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1984-01-01

    Considerable progress, both theoretical and experimental, has been made in establishing and understanding the influence of factors such as temperature, time, displacement rate dependence and the effect of initial solute misfit on radiation induced solute diffusion and segregation. During irradiation, the composition of the alloy changes locally, due to defect flux driven non-equilibrium segregation near sinks such as voids, external surfaces and grain boundaries. This change in composition could influence properties and phenomena such as ductility, corrosion resistance, stress corrosion cracking, sputtering and blistering of materials used in thermo-nuclear reactors. In this work, the effect of 1 MeV electron irradiation on the initiation and development of segregation and defect diffusion in binary copper alloys has been studied in situ, with the aid of a high voltage electron microscope. The binary copper alloys had Be, Pt and Sn as alloying elements which had atomic radii less than, similar and greater than that of copper, respectively. It has been observed that in a wide irradiation temperature range, stabilization and growth of dislocation loops took place in Cu-Sn and Cu-Pt alloys. Whereas in the Cu-Be alloy, radiation induced precipitates formed and transformed to the stable γ phase. (Author) [pt

  16. Evolution of cleared channels in neutron-irradiated pure copper as a function of tensile strain

    DEFF Research Database (Denmark)

    Edwards, D.J.; Singh, B.N.

    2004-01-01

    % of the macroscopic yield, at 1.5% and 5% elongation, and near the ultimate tensile strength at 14.5% elongation, with the 5th specimen tested to failure (e(T) = 22%). SEM and TEM characterization of the deformed specimens revealed that the plastic strain was confined primarily to the 'cleared' channels only......Tensile specimens of pure copper were neutron irradiated at similar to323 K to a displacement dose of 0.3 dpa (displacement per atom). Five irradiated specimens were tensile tested at 300 K, but four of the specimens were stopped at specific strains -just before the yield point at similar to90...

  17. Internal friction study of neutron-irradiation effects on an amorphous Cu40Ti60 alloy

    International Nuclear Information System (INIS)

    Dong, Y.; Wu, G.; Xiao, K.; Li, X.; He, Y.

    1988-01-01

    Effects of neutron irradiation on the structure of an amorphous Cu 40 Ti 60 alloy have been studied by internal friction measurements. After irradiation, the position of the first internal friction peak remains almost unchanged and the shoulder position shifts towards a higher temperature by about 5 K, which indicates that the Cu 40 Ti 60 glass becomes more stable. These results are finally discussed based on the concept of changes of chemical short-range ordering and geometrical short-range ordering due to radiation damage

  18. Low cycle fatigue behaviour of neutron irradiated copper alloys at 250 and 350 deg. C

    DEFF Research Database (Denmark)

    Singh, B.N.; Stubbins, J.F.; Toft, P.

    2000-01-01

    The fatique behaviour of a dispersion strengthened and a precipitation hardened copper alloys was investigated with and without irradiation exposure. Fatigue specimens of these alloys were irradiated with fission neutrons in the DR-3 reactor at Risø witha flux of approx2.5 x 1017 n/m2s (E> 1 Me...... microscope. The present investigations demonstrated that the fatigue life decreases with increasingtemperature and that the exposure to neutron irradiation causes further degradation in fatigue life at both temperatures. These results are discussed in terms of the observed post-fatigue microstructures...

  19. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1985-11-01

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs

  20. Shielding design studies for a neutron irradiator system based on a 252Cf source.

    Science.gov (United States)

    da Silva, A X; Crispim, V R

    2001-01-01

    This study aims to investigate a shielding design against neutrons and gamma rays from a source of 252Cf, using Monte Carlo simulation. The shielding materials studied were borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP4B was used to design shielding for 252Cf based neutron irradiator systems. By normalising the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independent of the intensity of the actual 252Cf source. The results show that the total dose equivalent rates were reduced significantly by the shielding system optimisation.

  1. Cohesive modelling of the fracture of a neutron irradiated pressure vessel steel

    International Nuclear Information System (INIS)

    Gomez, F.J.; Valiente, A.; Elices, M.

    2003-01-01

    The cohesive fracture process zone model was used to account for the neutron irradiation embrittlement of a pressure vessel steel. The tensile testing and fracture of axisymmetrically notched round specimens were numerically modelled assuming a rectangular traction separation law and the irradiation effects were introduced by due modification of this law. The results corroborate those of the experiments performed in a previous work. The cohesive strength and the cohesive energy of the cohesive model were not considered as adjusting parameters, but they were determined from the data of conventional tensile tests and fracture toughness tests on the assumption that the failure of the specimens in these tests also follows the cohesive model

  2. Studies on neutron irradiation effects of iron alloys and nickel-base heat resistant alloys

    International Nuclear Information System (INIS)

    Watanabe, Katsutoshi

    1987-09-01

    The present paper describes the results of neutron irradiation effects on iron alloys and nickel-base heat resistant alloys. As for the iron alloys, irradiation hardening and embrittlement were investigated using internal friction measurement, electron microscopy and tensile testings. The role of alloying elements was also investigated to understand the irradiation behavior of iron alloys. The essential factors affecting irradiation hardening and embrittlement were thus clarified. On the other hand, postirradiation tensile and creep properties were measured of Hastelloy X alloy. Irradiation behavior at elevated temperatures is discussed. (author)

  3. Electron-microscopic investigation of a pressure vessel steel after neutron irradiation

    International Nuclear Information System (INIS)

    Klaar, H.J.

    1975-01-01

    As an introduction, changes in the mechanical properties of pressure vessel steels on neutron irradiation and the causes of radiation embrittlement are discussed. After this, the author describes his own experiments with steel of the composition 0.19% C; 3.88% Ni; 1.57% Cr; 0.51% Mo; 0.2% V. Samples of this material were irradiated in-pile at 300 0 C with various neutron doses. To study the influence of neutron dose, irradiation temperature, and heat treatment on the mechanical properties, tensile tests, notched bar impact bending tests, hardness tests and structural analyses were carried out. The findings are reported. (GSC) [de

  4. Fatigue crack propagation in neutron-irradiated ferritic pressure-vessel steels

    International Nuclear Information System (INIS)

    James, L.A.

    1977-01-01

    The results of a number of experiments dealing with fatigue crack propagation in irradiated reactor pressure-vessel steels are reviewed. The steels included ASTM alloys A302B, A533B, A508-2, and A543, as well as weldments in A543 steel. Fluences and irradiation conditions were generally typical of those experienced by most power reactors. In general, the effect of neutron irradiation on the fatigue crack propagation behavior of these steels was neither significantly beneficial nor significantly detrimental

  5. Investigation of impact of neutron irradiation on properties of InSb-based hall plates

    Czech Academy of Sciences Publication Activity Database

    Ďuran, Ivan; Oszwaldowski, M.; Kovařík, Karel; Jankowski, J.; El-Ahmar, S.; Viererbl, L.; Lahodová, Z.

    2011-01-01

    Roč. 417, 1-3 (2011), s. 846-849 ISSN 0022-3115. [International Conference on Fusion Reactor Materials (ICFRM)/14./. Sapporo, 07.09.2009-12.09.2009] R&D Projects: GA MPO 2A-1TP1/101 Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * Hall sensors * magnetic measurements * neutron irradiation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.052, year: 2011 http://www.sciencedirect.com/science/article/pii/S0022311510009712

  6. Studies of neutron irradiation of avalanche photodiodes using sup 2 sup 5 sup 2 Cf

    CERN Document Server

    Musienko, Y; Ruuska, D; Swain, J D

    2000-01-01

    Results on the radiation hardness of photodiodes to fast neutrons are presented. Four photodiodes (three avalanche photodiodes from two manufacturers, and one PIN photodiode) were exposed to neutrons from a sup 2 sup 5 sup 2 Cf source at Oak Ridge National Laboratory. The effects of this radiation on many parameters such as gain, intrinsic dark current, quantum efficiency, noise, capacitance, and voltage and temperature coefficients of the gain for these devices for fluences up to approx 2x10 sup 1 sup 3 neutrons/cm sup 2 are shown and discussed. While degradation of APDs occurred during neutron irradiation, they remained photosensitive devices with gain.

  7. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.

    1985-11-01

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  8. Measurements and characterization of a hole trap in neutron-irradiated silicon

    International Nuclear Information System (INIS)

    Avset, B.S.

    1996-04-01

    The report describes measurements on a hole trap in neutron irradiated silicon diodes made one high resistivity phosphorus doped floatzone silicon. The hole trap was detected by Deep Level Transient Spectroscopy. This measurement gave a trap activation energy of 0.475 MeV. Other measurements showed that the trap has very small capture cross sections for both holes and electrons (10 -18 to 10 -20 cm 2 ) and that the hole capture cross section is temperature dependent. The energy level position of the trap has been estimated to be between 0.25 and 0.29 eV from the valence band. 25 refs., 21 figs., 4 tabs

  9. Measurement techniques of magnetic properties for evaluation of neutron irradiation damage on austenitic stainless steels

    International Nuclear Information System (INIS)

    Yamagata, Ichiro; Konno, Shotaro; Hayashi, Takehiro; Takaya, Shigeru

    2012-01-01

    The remote-controlled equipment for measurement of magnetic flux density has been developed in order to evaluate the irradiation damage of austenitic stainless steels. Magnetic flux densities by neutron irradiation in austenitic stainless steels, SUS304 and Fast Breeder Reactor grade type 316 (316FR), have been measured by the equipment. The results show that irradiation damage affected to magnetic flux density, and indicate the measuring method of magnetic flux density using a small magnetizer with a permanent magnet of 2 mm in diameter is less affected by specimen shape. (author)

  10. Use of L-cysteine for minimization of inorganic Hg loss during thermal neutron irradiation

    International Nuclear Information System (INIS)

    Anderson, D.L.

    2009-01-01

    Thermal neutron irradiation experiments performed with cellulose-based L-cysteine-treated and untreated Hg standards showed Hg losses of 59-81% for untreated standards but only about a 0.2% loss for treated standards. These results and others for multielement standards showed that Hg loss is highly dependent on total mass and placement of materials in the irradiation vessel and that distribution of volatilized Hg was fairly uniform throughout the sample-containing region of the vessel. Polyethylene trapped volatile Hg much more efficiently than cellulose and a multielement standard containing inorganic Se selectively trapped Hg lost from a co-irradiated multielement standard containing Hg. (author)

  11. Property change mechanism in tungsten under neutron irradiation in various reactors

    Science.gov (United States)

    Hasegawa, Akira; Tanno, Takashi; Nogami, Shuhei; Satou, Manabu

    2011-10-01

    Neutron irradiation data for the hardness and electrical resistivity of W and W-Re was obtained by JOYO, JMTR and HFIR irradiation experiments. The irradiation damage levels and temperature range were 0.15-1.0 dpa at around 500-600 °C. The effects of irradiation temperature, damage level and Re content on hardening and electrical resistivity are discussed. In the case of HFIR irradiated specimen, large irradiation hardening and an increase in electrical resistivity were observed, however, the trend for the electrical resistivity was different from previous work. The property change mechanism is discussed considering the irradiated microstructure and solute elements.

  12. The microstructure and hardness changes of neutron irradiated weld joint of vanadium alloy

    Science.gov (United States)

    Watanabe, H.; Yoshida, N.; Nagasaka, T.; Muroga, T.

    2011-10-01

    Effects of neutron irradiation on YAG laser welded V-4Cr-4Ti alloy were irradiated in High Flux Isotope Reactor (HFIR). The samples were irradiated in Li environment at 723 K and 873 K up to the dose of 3.7 dpa. After the irradiation, the microstructure and Vickers hardness of the welded samples were compared of the base metal, which were simultaneously irradiated at the same irradiation cycle. At 723 K, very high density of dislocations was formed. But prominent Ti(CON) formation, which was commonly observed in He gas and vacuum environment condition, was not detected

  13. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    Science.gov (United States)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J. P.

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 × 1021 m-2 s-1, ion fluence: 4 × 1025 m-2) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  14. Defect-Induced Segregation and Lattice Stability of BSCF Perovskites

    Science.gov (United States)

    Kuklja, Maija; Sharia, Onise; Mastrikov, Yuri; Kotomin, Eugene

    2012-02-01

    Among novel advanced materials for clean energy, BaxSr1-xCo1-yFeyO3-δ(BSCF) are considered as promising materials for cathodes in solid oxide fuel cells (SOFC) and oxygen permeation membranes. BSCF exhibits a good oxygen exchange performance, mixed ionic and electronic conductivity, high oxygen vacancy concentration, and low diffusion activation barrier, which largely define the oxygen reduction chemistry. However, understanding the interplay between the structural disorder and crystalline stability in BSCF is extraordinarily complex and essentially unexplored. We present first principles calculations of an ideal BSCF crystal and the crystal containing point defects, Frenkel and Schottky disorders, cation and antisite exchanges, and a set of relevant solid-solid solutions. We discuss possible mechanisms of defect-induced (in)stability, solid-state decomposition reactions, and phase transitions of the BSCF lattice as a function of oxygen vacancy concentration for cubic and hexagonal BSCF in the context of available experiments. This research explains the observed SOFC performance reduction and provides insights on enhancing energy conversion.

  15. Time resolved photoluminescence of [alpha] centers in neutron irradiated SiO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Anedda, A. (Dipartimento di Scienze Fisiche dell' Universita, via Ospedale 72, 09123 Cagliari (Italy)); Congiu, F. (Dipartimento di Scienze Fisiche dell' Universita, via Ospedale 72, 09123 Cagliari (Italy)); Raga, F. (Dipartimento di Scienze Fisiche dell' Universita, via Ospedale 72, 09123 Cagliari (Italy)); Corazza, A. (Dipartimento di Fisica dell' Universita, via Celoria 16, 20133 Milano (Italy)); Martini, M. (Dipartimento di Fisica dell' Universita, via Celoria 16, 20133 Milano (Italy)); Spinolo, G. (Dipartimento di Fisica dell' Universita, via Celoria 16, 20133 Milano (Italy)); Vedda, A. (Dipartimento di Fisica dell' Universita, via Celoria 16, 20133 Milano (Italy))

    1994-06-01

    Photoluminescence in various types of silica (a-SiO[sub 2]) both unirradiated and neutron irradiated has been studied in the range 10-300 K. The already reported [alpha] emissions at 4.25 eV and at 4.35 eV, whose respective excitation bands peak at 5.10 eV and 4.96 eV, have been found to be excited also in a band peaking at similar 7.6 eV; the temperature dependence of their intensities has also been investigated for both excitations. Time resolved emission spectroscopy excited by KrF excimer laser (5 eV) allowed the detection of the different lifetimes of the two [alpha] emissions. Similar studies on neutron irradiated quartz (c-SiO[sub 2]) have evidenced the presence of the center emitting at 4.35 eV up to now observed only in a-SiO[sub 2]. ((orig.))

  16. Tritium release and retention properties of highly neutron-irradiated beryllium pebbles from HIDOBE-01 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R.; Moeslang, A.; Klimenkov, M.; Kolb, M.; Vladimirov, P.; Kurinskiy, P.; Schneider, H.-C. [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Til, S. van; Magielsen, A.J. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-11-15

    The current helium cooled pebble bed (HCPB) tritium breeding blanket concept for fusion reactors includes a bed of 1 mm diameter beryllium pebbles to act as a neutron multiplier. Beryllium pebbles, fabricated by the rotating electrode method, were neutron irradiated in the HFR in Petten within the HIDOBE-01 experiment. This study presents tritium release and retention properties and data on microstructure evolution of beryllium pebbles irradiated at 630, 740, 873, 948 K up to a damage dose of 18 dpa, corresponding to a helium accumulation of about 3000 appm. The measured cumulative released activity from the beryllium pebbles irradiated at 948 K was found to be significantly lower than the calculated value. After irradiation at 873 and 948 K scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed large pores or bubbles in the bulk and oxide films with a thickness of up to 8 μm at the surface of the beryllium pebbles. The radiation-enhanced diffusion of tritium and the formation of open porosity networks accelerate the tritium release from the beryllium pebbles during the high-flux neutron irradiation.

  17. Practice of adding value to materials by a neutron irradiation in research reactors

    International Nuclear Information System (INIS)

    Oh, Soo Youl; Jun, Byung Jin

    2008-01-01

    Adding value to materials by a neutron irradiation is one of the utilization areas of research reactors. A neutron transmutation doping (NTD) of Si, a gemstone coloration, and a track-etched membrane production are the three important subjects and these are being serviced on a commercial basis. Nevertheless, a further enhancement of the technologies is necessary, and the IAEA/RCA has supported the development and dissemination of the relevant technologies. This article report on what was achieved during the IAEA/RCA regional Training Course on the Design and Operation of Neutron Irradiation Facilities which was held in Korea in April 2008 for two weeks. The Course, which was open to the Asian RCA member states, consisted of lectures, presentations from each country, and design and experiment exercises concerning the above three subjects. The lectures covered not only the principles but also the practice in every detail. The experience of Korea on the NTD and those of indonesia and Thailand on the gemstone coloration drew concentrated attention of the participants. Meanwhile, as one of the exercises the participants designed a device for the NTD or the gemstone irradiation and analyzed its performance from the neutronics point of view. The Course was successful in deepening the understanding on the practice of value-adding technologies and also in sharing some ideas for their enhancement

  18. Evaluation of Damage Tolerance of Advanced SiC/SiC Composites after Neutron Irradiation

    Science.gov (United States)

    Ozawa, Kazumi; Katoh, Yutai; Nozawa, Takashi; Hinoki, Tatsuya; Snead, Lance L.

    2011-10-01

    Silicon carbide composites (SiC/SiC) are attractive candidate materials for structural and functional components in fusion energy systems. The effect of neutron irradiation on damage tolerance of the nuclear grade SiC/SiC composites (plain woven Hi-Nicalon™ Type-S reinforced CVI matrix composites multilayer interphase and unidirectional Tyranno™-SA3 reinforced NITE matrix with carbon mono-layer interphase) was evaluated by means of miniaturized single-edged notched beam test. No significant changes in crack extension behavior and in the load-loadpoint displacement characteristics such as the peak load and hysteresis loop width were observed after irradiation to 5.9 × 1025 n/m2 (E > 0.1 MeV) at 800°C and to 5.8 × 1025 n/m2 at 1300°C. By applying a global energy balance analysis based on non-linear fracture mechanics, the energy release rate for these composite materials was found to be unchanged by irradiation with a value of 3±2 kJ/m2. This has led to the conclusion that, for these fairly aggressive irradiation conditions, the effect of neutron irradiation on the fracture resistance of these composites appears insignificant.

  19. Reticuloendothelial neoplasms in C57 black mice after fast-neutron irradiation at low dosage

    International Nuclear Information System (INIS)

    Mewissen, D.J.; Rust, J.H.

    1976-01-01

    In many inbred strains of mice the modulation of the basic control tumor pattern by ionizing radiation is operative primarily on the reticular tissue. This phenomenon seems more productive with high linear energy transfer radiation, particularly neutrons. The results reported in this paper are based on a total of 1963 C57 Black mice, subline 6, of either sex. From each litter animals were randomly assigned to control and treatment groups and were neutron-irradiated at 3.2, 4.5, 6.3, 8.8, and 12.3 rads of single exposure. In male and female irradiation groups, incidence rates for lymphocytic lymphomas were sharply decreased by neutron irradiation at all dose levels. In reticulum-cell sarcomas an interesting contrast was observed. First, the tumor type shifted almost entirely from type A to type B. Second, all specific incidence rates were markedly increased by radiation, both for male and female mice at all dose levels. Our data suggest the existence of an intercompetitive process triggered or accelerated by radiation

  20. Mechanical properties and microstructure of neutron irradiated cold worked Al-6063 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Munitz, A.; Shtechman, A.; Cotler, C.; Dahan, S. [Nuclear Res. Center-Negev, Beer-Sheva (Israel); Talianker, M. [Ben-Gurion Univ., Beer-Sheva (Israel). Dept. of Materials Science

    1998-01-01

    The impact of neutron irradiation on the mechanical properties and fracture morphology of cold worked Al-6063 were studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens (50 mm long and 6 mm wide gauge sections) were punched out from an Al-6063 23% cold worked tubes, which had been exposed to prolonged neutron irradiation of up to 4.5 x 10{sup 25} thermal neutrons/m{sup 2} (E < 0.625 eV). The temperature ranged between 41 and 52 C. The tensile specimens were then tensioned till fracture in an Instron tensiometer with strain rate of 2 x 10{sup -3} s{sup -1}. The uniform elongation and the ultimate tensile strength increase as functions of fluence. Metallographic examination and fractography reveal a decrease in the local area reduction of the final fracture necking. This reduction is accompanied with a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. No voids could be observed up to the maximum fluence. The dislocation density of cold worked Al decreases with the thermal neutron fluence. Prolonged annealing of unirradiated cold worked Al-6063 at 52 C revealed similar results. It thus appears that under our irradiation conditions the temperature during irradiation is the major factor influencing the mechanical properties and the microstructure during irradiation. (orig.). 23 refs.

  1. Practice of adding value to materials by a neutron irradiation in research reactors

    International Nuclear Information System (INIS)

    Oh, Soo Youl; Jun, Byung Jin

    2008-01-01

    Adding more value to materials by a neutron irradiation is one of the utilization areas of research reactors. A neutron transmutation doping (NTD) of Si, a gemstone coloration, and a track etched membrane production are the three important subjects and these are being serviced on a commercial basis. Nevertheless, a further enhancement of the technologies is necessary, and the IAEA/RCA has supported the development and dissemination of the relevant technologies. This article reports on what was achieved during the IAEA/RCA Regional Training Course on the Design and Operation of Neutron Irradiation Facilities which was held in Korea in April 2008 for two weeks. The Course, which was open to the Asian RCA member states, consisted of lectures, presentations from each country, and design and experiment exercises concerning the above three subjects. The lectures covered not only the principles but also the practice in every detail. The experience of Korea on the NTD and those of Indonesia and Thailand on the gemstone coloration drew concentrated attention of the participants. Meanwhile, as one of the exercises the participants designed a device for the NTD or the gemstone irradiation and analyzed its performance from the neutronics point of view. The Course was successful in deepening the understanding on the practice of value adding technologies and also in sharing some ideas for their enhancement

  2. Practice of adding value to materials by a neutron irradiation in research reactors

    International Nuclear Information System (INIS)

    Oh, Soo-Youl; Jun, Byung Jin

    2008-01-01

    Adding more value to materials by a neutron irradiation is one of the utilization areas of research reactors. A neutron transmutation doping (NTD) of Si, a gemstone coloration, and a track-etched membrane production are the three important subjects and these are being serviced on a commercial basis. Nevertheless, a further enhancement of the technologies is necessary, and the IAEA/RCA has supported the development and dissemination of the relevant technologies. This article reports on what was achieved during the IAEA/RCA Regional Training Course on the Design and Operation of Neutron Irradiation Facilities which was held in Korea in April 2008 for two weeks. The Course, which was open to the Asian RCA member states, consisted of lectures, presentations from each country, and design and experiment exercises concerning the above three subjects. The lectures covered not only the principles but also the practice in every detail. The experience of Korea on the NTD and those of Indonesia and Thailand on the gemstone coloration drew concentrated attention of the participants. Meanwhile, as one of the exercises the participants designed a device for the NTD or the gemstone irradiation and analyzed its performance from the neutronics point of view. The Course was successful in deepening the understanding on the practice of value-adding technologies and also in sharing some ideas for their enhancement. (author)

  3. Study of the chemical species of fluorine 18 produced by neutron irradiation of lithium aluminate

    International Nuclear Information System (INIS)

    Jimenez-Becerril, J.

    1990-01-01

    In the present work, the chemical form of fluorine-18 obtained by means of the neutron irradiated lithium aluminate was studied, in order to know its chemical behavior and to observe if it volatilizes and adheres to the walls of a tritium distillation system; for this matter paper chromatography and high voltage electrophoresis techniques were used. Lithium aluminate was synthetized, being characterized as LiAlO 2 which was irradiated with neutrons in order to produce fluorine-18. Lithium aluminate is a non-soluble solid, therefore fluorine produced may not be extracted, unless it is dissolved or extracted through the solid. So as not affect in a drastic way the chemical form, it was submitted to extraction processes, agitating the irradiated samples with different acids and basic solutions in order to analyze fluorine-18. The best extraction agent was found to be HCl, where two forms of fluorine-18 were found, one at the point of application, probably as a complex hexafluoride-aluminate and the other as a characteristic Rf of the fluorine ion. In the tritium distillation with helium as a carrier of a sample irradiated and heated up to 220-250 o C, no volatile types of fluorine-18 were found, thus it can be considered that in commercial production of tritium by means of neutron irradiation of lithium aluminate, fluorine-18 is not a damaging pollutant of the equipment pipe system. (Author)

  4. Neutron diffraction analysis of Cr–Ni–Mo–Ti austenitic steel after cold plastic deformation and fast neutrons irradiation

    International Nuclear Information System (INIS)

    Voronin, V.I.; Valiev, E.Z.; Berger, I.F.; Goschitskii, B.N.; Proskurnina, N.V.; Sagaradze, V.V.; Kataeva, N.F.

    2015-01-01

    A quantitative assessment is presented of the dislocation density and relative fractions of edge and screw dislocations in reactor-steel samples 16Cr–15Ni–3Mo–1Ti subjected to preliminary cold deformation by rolling and subsequent fast neutron irradiation using neutron diffraction analysis. The Williamson–Hall modified method was used for calculations. It is shown that the fast neutron irradiation leads to a decrease in the density of dislocations that appeared after samples deformation. The applicability of neutron diffraction analysis to the examination of dislocation structure of deformed and irradiated materials is shown

  5. Neutron diffraction analysis of Cr-Ni-Mo-Ti austenitic steel after cold plastic deformation and fast neutrons irradiation

    Science.gov (United States)

    Voronin, V. I.; Valiev, E. Z.; Berger, I. F.; Goschitskii, B. N.; Proskurnina, N. V.; Sagaradze, V. V.; Kataeva, N. F.

    2015-04-01

    A quantitative assessment is presented of the dislocation density and relative fractions of edge and screw dislocations in reactor-steel samples 16Cr-15Ni-3Mo-1Ti subjected to preliminary cold deformation by rolling and subsequent fast neutron irradiation using neutron diffraction analysis. The Williamson-Hall modified method was used for calculations. It is shown that the fast neutron irradiation leads to a decrease in the density of dislocations that appeared after samples deformation. The applicability of neutron diffraction analysis to the examination of dislocation structure of deformed and irradiated materials is shown.

  6. Radiation effects in neutron irradiated and 51Cr(III)-doped hydrated and dehydrated salts of sodium chromate and dichromate

    International Nuclear Information System (INIS)

    Stamouli, M.I.

    1983-01-01

    The influence of γ-radiation in neutron irradiated and 51 Cr-doped hydrated and dehydrated salts of sodium chromate and dichromate has been studied. The increase in the 51 Cr(VI) yield was found to be enhanced in the 51 Cr-doped hydrated salts in comparison to the dehydrated ones. In the neutron irradiated hydrated salts the increase in retention was less pronounced than that in dehydrated ones, for radiation doses less than 250-300 kGy, becoming equal at higher doses. (author)

  7. Effect of neutron irradiation on the London penetration depth for polycrystalline Bi(1.8)Pb(0.3)Sr2Ca2Cu3O10 superconductor

    Science.gov (United States)

    Ossandon, J. G.; Thompson, J. R.; Sun, Yang Ren; Christen, D. K.; Chakoumakos, B. C.

    1995-01-01

    Magnetization studies of polycrystalline Bi(1.8)Pb(0.3)Sr2Ca2Cu3O10 superconductor, prior to and after neutron irradiation, showed an increase in J(sub c) due to irradiation damage. Analysis of the equilibrium magnetization revealed significant increases in other more fundamental properties. In particular, the London penetration depth increased by approximately 15 percent following irradiation with 8 x 10(exp 16) neutrons/sq cm. Corresponding changes were observed in the upper critical magnetic field H(sub c2). However, the most fundamental thermodynamic property, the superconductive condensation energy F(sub c), was unaffected by the moderate level of neutron-induced damage.

  8. Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    KAUST Repository

    Papsdorf, Katharina

    2015-09-03

    Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntington’s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast model system and identify fourteen genes that, if deleted, result in higher polyglutamine toxicity. Several of these genes, like UGO1, ATP15 and NFU1 encode mitochondrial proteins, implying that a challenged mitochondrial system may become dysfunctional during polyglutamine intoxication. We further employed microarrays to decipher the transcriptional response upon polyglutamine intoxication, which exposes an upregulation of genes involved in sulfur and iron metabolism and mitochondrial Fe-S cluster formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative growth is impossible after intoxication with the polyglutamine protein. NMR-based metabolic analyses reveal that mitochondrial metabolism is reduced, leading to accumulation of metabolic intermediates in polyglutamine-intoxicated cells. Conclusion These data show that damages to the mitochondrial system occur in polyglutamine intoxicated yeast cells and suggest an intricate connection between polyglutamine-induced toxicity, mitochondrial functionality and iron homeostasis in this model system.

  9. DT fusion neutron irradiation of LLL Nb3Sn and LLL superconductor wires at 4.20K

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation of one LLL superconductor wire and one LLL Nb 3 Sn foil at 4.2 0 K is described. The sample position, beam-on time, and neutron dose record are given. The results from two ''profile'' dosimetry foils measuring the lateral variation in neutron flux are included

  10. Comparison of four NDT methods for indication of reactor steel degradation by high fluences of neutron irradiation

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Vértesy, G.; Pirfo Barroso, S.; Kobayashi, S.

    2013-01-01

    Roč. 265, DEC (2013), s. 201-209 ISSN 0029-5493 Institutional support: RVO:68378271 Keywords : neutron irradiation * steel degradation * nuclear reactor pressure vessel * magnetic NDT * magnetic minor hysteresis loops * Magnetic Barkhausen Emission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.972, year: 2013 http://www.sciencedirect.com/science/article/pii/S0029549313004664

  11. DLTS study of annihilation of oxidation induced deep-level defects ...

    Indian Academy of Sciences (India)

    This paper describes the fabrication of MOS capacitor and DLTS study of annihilation of deeplevel defects upon thermal annealing. Ni/SiO2/-Si MOS structures fabricated on -type Si wafers were investigated for process-induced deep-level defects. The deep-level traps in Si substrates induced during the processing of ...

  12. Antiradiation Vaccine: Technology Development Of Prophylaxis, Prevention And Treatment Of Biological Consequences And Complications After Neutron Irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Neutrons irradiation produce a unique biological effectiveness compare to different types of radiation because their ability to create a denser trail of ionized atoms in biological living tissues[Straume 1982; Latif et al.2010; Katz 1978; Bogatyrev 1982]. The efficacy of an Anti-Radiation Vaccine for the prophylaxis, prevention and therapy of acute radiation pathology was studied in a neutron exposure facility. The biological effects of fast neutrons include damage of central nervous system and cardiovascular system with development of Acute Cerebrovascular and Cardiovascular forms of acute radiation pathology. After irradiation by high doses of fast neutron, formation of neurotoxins, hematotoxins,cytotoxins forming from cell's or tissue structures. High doses of Neutron Irradiation generate general and specific toxicity, inflammation reactions. Current Acute Medical Management and Methods of Radiation Protection are not effective against moderate and high doses of neutron irradiation. Our experiments demonstrate that Antiradiation Vaccine is the most effective radioprotectant against high doses of neutron-radiation. Radiation Toxins(biological substances with radio-mimetic properties) isolated from central lymph of gamma-irradiated animals could be working substance with specific antigenic properties for vaccination against neutron irradiation. Methods: Antiradiation Vaccine preparation standard - mixture of a toxoid form of Radiation Toxins - include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins were isolated from the central lymph of gamma-irradiated animals with different forms of Acute Radiation Syndromes - Cerebrovascular, Cardiovascular, Gastrointestinal, Hematopoietic forms. Devices for Y-radiation were "Panorama","Puma". Neutron exposure was accomplished at the Department of Research Institute of Nuclear Physics, Dubna, Russia. The neutrons

  13. National Low-Temperature Neutron Irradiation Facility (NLTNIF). The status of development

    International Nuclear Information System (INIS)

    Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.; Young, F.W. Jr.

    1985-12-01

    In May 1983, the Department of Energy authorized the establishment of a National Low-Temperature Neutron Irradiation Facility (NLTNIF) at ORNL's Bulk Shielding Reactor (BSR). The NLTNIF, which will be available for qualified experiments at no cost to users, will provide a combination of high radiation intensities and special environmental and testing conditions that have not been previously available in the US. Since the DOE authorization, work has proceeded on the design and construction of the new facility without interruption. This report describes the present status of the development of the NLTNIF and the anticipated schedule for completion and performance testing. There is a table of the major specifications and capabilities and a schematic layout of the irradiation cryostate for design and dimensioning of test and experiment assemblies

  14. Internal friction in Al alloys after neutron irradiation at low temperature

    International Nuclear Information System (INIS)

    Takamura, S.; Kobiyama, M.

    1985-01-01

    Internal friction and elastic modulus of dilute Al alloys have been measured after fast neutron irradiation at about 5 K. The internal friction spectra in Al-Pb, Al-Si, Al-Zn, Al-Ag, Al-Sn and Al-In are very similar. This result suggests that the configuration of the interstitial-solute atom complex in these alloys is very similar. In Al-Mg, the main complexes have the configuration with nearly symmetry, but its internal friction spectrum is different from that of the above-mentioned alloys. The internal friction spectra and their annealing behavior in Al-Be, Al-Mn, Al-Fe and Al-Cu demonstrate that the configuration of their interstitial-solute atom complex seems to be different from each other and the main complex in these alloys is immobile until stage III. (author)

  15. Relationship of microstructure and tensile properties for neutron-irradiated vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1990-01-01

    The microstructures in V-15Cr-5Ti, V-10Cr-5RTi, V-3Ti-1Si, V-15Ti-7.5Cr, and V-20Ti alloys were examined by transmission electron microscopy after neutron irradiation at 600 degree C to 21--84 atom displacements per atom in the Materials Open Test Assembly of the Fast Flux Test Facility. The microstructures in these irradiated alloys were analyzed to determine the radiation-produced dislocation density, precipitate number density and size, and void number density and size. The results of these analyses were used to compute increases in yield stress and swelling of the irradiated alloys. The computed increase in yield stress was compared with the increase in yield stress determined from tensile tests on these irradiated alloys. This comparison made it possible to evaluate the influence of alloy composition on the evolution of radiation-damaged microstructures and the resulting tensile properties. 11 refs

  16. Behavior of radioisotope in liquid neutron irradiated Pb-17Li eutectic

    International Nuclear Information System (INIS)

    Tebus, V.N.; Aksenov, B.S.; Klabukov, U.G.

    1994-01-01

    Investigation of radioisotope 210 Po evaporation from liquid neutron irradiated Pb- 17 Li eutectic has been performed by Knudsen method. Equilibrium 210 Po vapor pressures at temperatures 250-700 degrees C were found about 3-4 orders of magnitude less than that for pure Po and were closed to equilibrium vapor pressures of Po-Pb compound. It was proposed Po forms stable Po-Pb compounds in eutectic at temperatures up to 750-800 degrees C. But disintegrates during long storage owing to self irradiation. It was determined Po aerosol transfer with radio gases takes place at the melting period. Contamination is happened also under irradiated eutectic storage at room temperature owing to aggregate recoil characteristic of Po

  17. Decommissioning of an Irradiator MPX-γ - 25M and a neutron Irradiator

    International Nuclear Information System (INIS)

    Soguero, Dania; Guerra, Mercedes; Prieto, Enrique; Desdin, Luis

    2013-01-01

    In this paper a technology is developed with its procedures in radiation protection to ensure the safety of the process of decommissioning of two irradiators. Both processes are described, the process of decommissioning of a neutron Irradiator 4. 44·10 11 Bq, employed in the vegetal radio mutagenesis, and disassembling of an installation of gamma irradiation of 3.33 * 10 12 Bq, self-shielded of category I, model MPX - γ - 25 M. The specific objectives are: a) identify aspects of the contractual assurance, of human and technical resources, b) to evaluate the radiological situation of the process and c) analyze the potential radiological extraordinary events in each of the steps of the process, ensuring the right answers. Evaluation of radiological successful events described can be considered as reference to address the process of disassembling of other similar irradiators

  18. Structure and Spatial Distribution of Ge Nanocrystals Subjected to Fast Neutron Irradiation

    Directory of Open Access Journals (Sweden)

    Alexander N. Ionov

    2011-07-01

    Full Text Available The influence of fast neutron irradiation on the structure and spatial distribution of Ge nanocrystals (NC embedded in an amorphous SiO2 matrix has been studied. The investigation was conducted by means of laser Raman Scattering (RS, High Resolution Transmission Electron Microscopy (HR-TEM and X-ray photoelectron spectroscopy (XPS. The irradiation of Ge- NC samples by a high dose of fast neutrons lead to a partial destruction of the nanocrystals. Full reconstruction of crystallinity was achieved after annealing the radiation damage at 8000C, which resulted in full restoration of the RS spectrum. HR-TEM images show, however, that the spatial distributions of Ge-NC changed as a result of irradiation and annealing. A sharp decrease in NC distribution towards the SiO2 surface has been observed. This was accompanied by XPS detection of Ge oxides and elemental Ge within both the surface and subsurface region.

  19. PCC-ring induction in human lymphocytes exposed to gamma and neutron irradiation

    International Nuclear Information System (INIS)

    Lamadrid Boada, Ana I.; Garcia Lima, Omar; Delbos, Martine; Voisin, Philipe; Roy, Laurence

    2008-01-01

    Dose-effect curves for dose assessment in Gamma and neutron overexposures to high doses are presented in this paper for the first time in literature. The relationships were obtained by plotting the Premature Chromosome Condensation -rings (PCC-R) frequencies in PCC lymphocytes obtained by chemical induction with Calyculin A in vitro, with radiation doses between 5 to 25 Gy. For the elaboration of these curves 9 676 PCC cells in G1 G2 and M stages were analyzed. The results were fitted to a lineal quadratic model in Gamma irradiation and showed saturation starting from 20 Gy. For neutron irradiation the data was fitted to a lineal quadratic model up to 10 Gy, and then a markedly cell cycle arrest and saturation was observed. These curves are of particular interest for victims exposed to doses exceeding 5 Gy where it is always very difficult to estimate a dose using the conventional technique. (author)

  20. Glass-like, low-energy excitations in neutron-irradiated quartz

    International Nuclear Information System (INIS)

    Gardner, J.W.

    1980-01-01

    The specific heat and thermal conductivity of neutron-irradiated crystalline quartz have been measured for temperatures approx. = 0.1 to 5 K. Four types of low-energy excitations are observed in the irradiated samples, two of which can be removed selectively by heat treatment. One set of remaining excitations gives rise to low-temperature thermal behavior characteristic of glassy (amorphous) solids. The density of these glass-like excitations can be 50% the density observed in vitreous silica, yet the sample still retains long-range atomic order. In a less-irradiated sample, glass-like excitations may be present with a density only approx. = 2.5% that observed in vitreous silica and possess a similar broad energy spectrum over 0.1 to 1 K

  1. Neutron irradiation effects on the mechanical properties of thorium and thorium--carbon alloy

    International Nuclear Information System (INIS)

    Wang, S.C.P.

    1978-04-01

    The effects of neutron exposure to 3.0 x 10 18 neutrons/cm 2 on the mechanical properties of thorium and thorium-carbon alloy are described. Tensile measurements were done at six different test temperatures from 4 0 K to 503 0 K and at two strain rates. Thorium and thorium-carbon alloy are shown to display typical radiation hardening like other face-centered cubic metals. The yield drop phenomenon of the thorium-carbon alloy is unchanged after irradiation. The variation of shear stress and effective shear stress with test temperature was fitted to Seeger's and Fleischer's equations for irradiated and unirradiated thorium and thorium-carbon alloy. Neutron irradiation apparently contributes an athermal component to the yield strength. However, some thermal component is detected in the low temperature range. Strain-rate parameter is increased and activation volume is decreased slightly for both kinds of metal after irradiation

  2. Effect of Fast Neutron Irradiation on Current Transport Properties of HTS Materials

    CERN Document Server

    Ballarino, A; Kruglov, V S; Latushkin, S T; Lubimov, A N; Ryazanov, A I; Shavkin, S V; Taylor, T M; Volkov, P V

    2004-01-01

    The effect of fast neutron irradiation with energy up to 35 MeV and integrated fluence of up to 5 x 10**15 cm-2 on the current transport properties of HTS materials Bi-2212 and Bi-2223 has been studied, both at liquid nitrogen and at room temperatures. The samples irradiated were selected after verification of the stability of their superconducting properties after temperature cycling in the range of 77 K - 293 K. It has been found that the irradiation by fast neutrons up to the above dose does not produce a significant degradation of critical current. The effect of room temperature annealing on the recovery of transport properties of the irradiated samples is also reported, as is a preliminary microstructure investigation of the effect of irradiation on the soldered contacts.

  3. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chunghao [ORNL; Katoh, Yutai [ORNL; Snead, Lance Lewis [ORNL; Steinbeck, John [ORNL

    2013-01-01

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/ mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  4. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chunghao, E-mail: shihc@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Katoh, Yutai, E-mail: katohy@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Snead, Lance L., E-mail: sneadll@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Steinbeck, John, E-mail: jws@psicorp.com [Physical Science Inc., Andover MA (United States)

    2013-08-15

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 °C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (−54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  5. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    Science.gov (United States)

    Shih, Chunghao; Katoh, Yutai; Snead, Lance L.; Steinbeck, John

    2013-08-01

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 °C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (-54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  6. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    International Nuclear Information System (INIS)

    Shih, Chunghao; Katoh, Yutai; Snead, Lance L.; Steinbeck, John

    2013-01-01

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 °C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (−54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material

  7. Influence of neutron irradiation on the microstructure of nuclear graphite: An X-ray diffraction study

    Science.gov (United States)

    Zhou, Z.; Bouwman, W. G.; Schut, H.; van Staveren, T. O.; Heijna, M. C. R.; Pappas, C.

    2017-04-01

    Neutron irradiation effects on the microstructure of nuclear graphite have been investigated by X-ray diffraction on virgin and low doses (∼ 1.3 and ∼ 2.2 dpa), high temperature (750° C) irradiated samples. The diffraction patterns were interpreted using a model, which takes into account the turbostratic disorder. Besides the lattice constants, the model introduces two distinct coherent lengths in the c-axis and the basal plane, that characterise the volumes from which X-rays are scattered coherently. The methodology used in this work allows to quantify the effect of irradiation damage on the microstructure of nuclear graphite seen by X-ray diffraction. The results show that the changes of the deduced structural parameters are in agreement with previous observations from electron microscopy, but not directly related to macroscopic changes.

  8. PCC-ring induction in human lymphocytes exposed to gamma and neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lamadrid B, A.I.; Garcia L, O. [CPHR, Calle 20 No. 4113 e/41 y 47, Playa, La Habana 11300 (Cuba); Delbos, M.; Voisin, P.; Roy, L. [Institut de Radioprotection et de Surete Nucleaire, BP 17, 92262 Fontenay-aux-Roses (France)]. e-mail: ana@cphr.edu.cu

    2006-07-01

    Dose-effect curves for dose assessment in Gamma and neutron overexposures to high doses are presented in this paper for the first time in literature. The relationships were obtained by plotting the Premature Chromosome Condensation -rings (PCC-R) frequencies in PCC Iymphocytes obtained by chemical induction with Calyculin A in vitro, with radiation doses between 5 to 25 Gy. For the elaboration of these curves 9 676 PCC cells in Gl G2 and M stages were analyzed. The results were fitted to a lineal quadratic model in Gamma irradiation. For neutron irradiation the data was fitted to a lineal quadratic model up to 10 Gy and then a markedly cell cycle arrest and saturation was observed. These curves are of particular interest for victims exposed to doses exceeding 5 Gy where it is always very difficult to estimate a dose using the conventional technique. (Author)

  9. Temperature dependence of the thermal expansion of neutron-irradiated pyrolytic carbon and graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1988-01-01

    The effects of neutron irradiation and annealing on the temperature dependence of the linear thermal expansion of pyrolytic carbon and graphite were investigated after irradiation at 930-1280 0 C to a maximum neutron fluence of 2.84 x 10 25 m -2 (E > 29 fJ). After irradiation, little change in the thermal expansion of pyrolytic graphite was observed. However, as-deposited pyrolytic carbon showed an increase in thermal expansion in the perpendicular direction, a decrease in the direction parallel to the deposition plane, and also an increase in the anisotropy of the thermal expansion. Annealing at 2000 0 C did not cause any effective changes for irradiated specimens of either as-deposited pyrolytic carbon or pyrolytic graphite. (author)

  10. Neutron irradiation effects in reactor pressure vessel steels and weldments. Working document

    International Nuclear Information System (INIS)

    1998-10-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. A separate abstract was prepared for the introduction and for each of the eleven chapters, which are: 1. Reactor Pressure Vessel Design, 2. Reactor Pressure Materials, 3. WWER Pressure Vessels, 4. Determination of Mechanical Properties, 5. Neutron Exposure, 6. Methodology of Irradiation Experiments, 7. Effect of Irradiation on Mechanical Properties, 8. Mechanisms of Irradiation Embrittlement, 9. Modelling of Irradiation Damage, 10. Annealing of Irradiation Damage, 11. Safety Assessment using Surveillance Programmes and Data Bases

  11. Evolution of the microstructure of a French reactor pressure vessel steel under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.F.; Radiguet, B.; Pareige, P. [Groupe de physique des materiaux, UMR CNRS 6634, Universite et INSA de Rouen, avenue de l' Universite, 76801 Saint Etienne du Rouvray (France); Todeschini, P. [EDF, Materials and Mechanics of Component Department, Site des Renardieres-Ecuelles, 77818 Moret-sur-Loing cedex (France); Chas, G. [EDF, Production and Engineering Branch, CEIDRE/DLAB, CNPE de Chinon, BP 23, 37420 Avoine (France)

    2011-07-01

    The microstructure of a low copper French reactor pressure vessel steel, neutron irradiated within the frame of the EDF Surveillance Program of a production reactor, was characterised by atom probe tomography. Specimens were irradiated at low flux (2*10{sup 15} m{sup -2}/s), at 4 different fluences up to 7.6*10{sup 23} m{sup -2}. Atom Probe experiments have revealed the presence of roughly spherical clusters enriched in nickel, manganese, silicon and, in a lesser extent, phosphorus and copper at all irradiation fluences. The chemical composition of these clusters shows no evolution with fluence, as well as their diameter, close to 3 nm. On the contrary, their number density increases linearly with the neutron fluence. Continuous segregation of the elements found in the clusters is also observed along dislocation lines, with similar enrichments. (authors)

  12. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  13. High dose effects in neutron irradiated face-centered cubic metals

    International Nuclear Information System (INIS)

    Garner, F.A.; Toloczko, M.B.

    1993-06-01

    During neutron irradiation, most face-centered cubic metals and alloys develop saturation or quasi-steady state microstructures. This, in turn, leads to saturation levels in mechanical properties and quasi-steady state rates of swelling and creep deformation. Swelling initially plays only a small role in determining these saturation states, but as swelling rises to higher levels, it exerts strong feedback on the microstructure and its response to environmental variables. The influence of swelling, either directly or indirectly via second order mechanisms, such as elemental segregation to void surfaces, eventually causes major changes, not only in irradiation creep and mechanical properties, but also on swelling itself. The feedback effects of swelling on irradiation creep are particularly complex and lead to problems in applying creep data derived from highly pressurized creep tubes to low stress situations, such as fuel pins in liquid metal reactors

  14. Influence of composition, heat treatment and neutron irradiation on the electrical conductivity of copper alloys

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, B.N.

    1998-01-01

    The electrical conductivity of three different types of copper alloys, viz. CuNiBe, CuCrZr and Cu-Al(2)O(3) as well as of pure copper are reported. The alloys have undergone different pre-irradiation heat treatments and have been fission-neutron irradiated up to 0.3 dpa. In some cases post......-irradiation annealing has been carried out. The results are discussed with reference to equivalent Transmission Electron Microscopy results on the microstructure of the materials. The CuNiBe has the lowest conductivity (less than or equal to 55% of that of pure Cu), and Cu-Al(2)O(3) the highest (75-90% of pure Cu). (C...

  15. Influence of composition, heat treatment and neutron irradiation on the electrical conductivity of copper alloys

    Science.gov (United States)

    Eldrup, M.; Singh, B. N.

    1998-10-01

    The electrical conductivity of three different types of copper alloys, viz. CuNiBe, CuCrZr and Cu-Al 2O 3 as well as of pure copper are reported. The alloys have undergone different pre-irradiation heat treatments and have been fission-neutron irradiated up to 0.3 dpa. In some cases post-irradiation annealing has been carried out. The results are discussed with reference to equivalent Transmission Electron Microscopy results on the microstructure of the materials. The CuNiBe has the lowest conductivity (⩽55% of that of pure Cu), and Cu-Al 2O 3 the highest (75-90% of pure Cu).

  16. Influence of neutron irradiation on the magnetic properties of the Fe Ni pure alloy and with impurities of Si and Mo

    International Nuclear Information System (INIS)

    Lucki, George

    1971-01-01

    Hysteresis loop, Initial permeability and Curie Temperature measurements were conducted on several pure and polluted (with Si and Mo) Fe Ni 50-50% at. alloys. Isochronal annealings were performed between 25 deg 65 deg C, on each composition in three different ways: quenched (anisotropic) samples; quenched and irradiated samples; quenched irradiated samples annealed with saturating magnetic field. The experiment showed a sharp decrease in all parameters of the polluted alloys. Fast neutron irradiation results indicated that the magnetic properties are affected by the defects created during irradiation. The effect of thermal treatment, magnetic annealing and irradiation is greatest in anisotropic alloys. It is considered that magnetic annealing introduces a uniaxial anisotropy that tends to increase the remanence and hence the squareness of the hysteresis loop; but an increase in both remanence and coercivity was measured even in absence of the magnetic field. Magnetic after effect has been detected and a simple model for the diffusion of defects is presented. Many models have been proposed to explain the resultant properties, the most feasible being that based upon short-range ordering, proposed by Neel and Taniguchi, together with the interesting hypothesis of Heidenreich and Nesbitt. (author)

  17. Elevated temperature annealing behaviors of bulk resistivity and space charge density (Neff) of neutron irradiated silicon detectors and materials

    International Nuclear Information System (INIS)

    Li, Z.

    1996-01-01

    The bulk resistivity of neutron irradiated detector grade silicon material has been measured under the condition of no or low electrical filed (electrical neutral bulk or ENB condition) after elevated temperature (T=110 C) anneals (ETA). The ENB resistivity (ρ) for as-irradiated silicon material increases with neutron fluence at low fluences (Φ n 13 n/cm 2 ) and starts to saturate at a value between 300-400 kΩ cm at high fluences (Φ n >10 13 n/cm 2 ). The saturation of the ENB resistivity near the intrinsic value can be explained by the near perfect compensation of all neutron induced deep donors and acceptors in the ENB. After ETA, it has been observed that ρ increases with annealing time for silicon materials irradiated below the saturation and decreases with annealing time for those irradiated after saturation. For those irradiated near the saturation point, ρ increases with annealing time initially and decreases thereafter. This ETA behavior of ρ may be explained by the increase of net acceptor-like deep levels in silicon during the anneal, qualitatively consistent with the observed reverse annealing effect of the space charge density (N eff ) in silicon detectors which is an increase of negative space charge density (acceptors) after long term room temperature (RTA) anneal and/or ETA. However, the amount of the increase of net hole concentration (p) of about 5 x 10 11 cm -3 , corresponding to 20 hours of ETA at 110 C for a fluence of 1.5 x 10 14 n/cm 2 , is still much less than the corresponding increase of N eff of about 1.5 x 10 13 cm -3 . This suggests that while the ETA restores some of the free carrier concentration (namely holes), there is still a large degree of compensation. The space charge density is still dominated by the deep levels and N eff ≠p. (orig.)

  18. On the Thermal Conductivity Change of Matrix Graphite Materials after Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Kim, Eung-Seon; Sah, Injin; Park, Daegyu; Kim, Youngjun; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this work, the variations of the thermal conductivity of the A3-3 matrix graphite after neutron irradiation is discussed as well as of the IG-110 graphite for comparison. Neutron irradiation of the graphite specimens was carried out as a part of the first irradiation test of KAERI's coated particle fuel specimens by use of Hanaro research reactor. This work can be summarized as follows: 1) In the evaluation of the specific heat of the graphite materials, various literature data were used and the variations of the specific heat data of all the graphite specimens are observed well agreed, irrespectively of the difference in specimens (graphite and matrix graphite and irradiated and un-irradiated). 2) This implies that it should be reasonable that for both structural graphite and fuel matrix graphite, and even for the neuron-irradiated graphite, any of these specific heat data set be used in the calculation of the thermal conductivity. 3) For the irradiated A3-3 matrix graphite specimens, the thermal conductivity decreased on both directions. On the radial direction, the tendency of variation upon temperature is similar to that of unirradiated specimen, i.e., decreasing as the temperature increases. 4) In the German irradiation experiments with A3-27 matrix graphite specimens, the thermal conductivity of the un-irradiated specimen shows a decrease and that of irradiated specimen is nearly constant as the temperature increases. 5) The thermal conductivity of the irradiated IG-110 was considerably decreased compared with that of un-irradiated specimens The difference of the thermal conductivity of un-irradiated and irradiated IG-110 graphite specimens is much larger than that of un-irradiated and irradiated A3-3 matrix graphite specimens.

  19. Mechanical Properties and Microstructure of Neutron Irradiated Cold-worked Al-1050 and Al-6063 Alloys

    International Nuclear Information System (INIS)

    Munitz, A.; Cotler, A; Talianker, M.

    1998-01-01

    The impact of neutron irradiation on the internal microstructure, mechanical properties and fracture morphology of cold-worked Al-1050 and Al-6063 alloys was studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens consisting of 50 mm long and 6 mm wide gauge sections, were punched out from Al-1050 and Al-6063 23% cold-worked tubes. They were exposed to prolonged neutron irradiation of up to 4.5x10 25 and 8x10 25 thermal neutrons/m 2 (E -3 s -1 . In general, the uniform and total elongation, the yield stress, and the ultimate tensile strength increase as functions of fluence. However, for Al-1050 a decrease in the ultimate tensile strength and yield stress was observed up to a fluence of 1x10 25 thermal neutrons/m 2 which then increase with thermal neutrons fluence. Metallographic examination and fractography for Al-6063 revealed a decrease in the local area reduction of the final fracture necking. This reduction is accompanied by a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. In contrast, for Al-1050, fracture morphology remains ductile transgranular shear rupture and the final local area reduction remains almost constant No voids could be observed in either alloy up to the maximum fluence. The dislocation density of cold-worked Al was found to decrease with the thermal neutron fluence. Prolonged annealing of unirradiated cold-worked Al-6063 at 52 degree led to similar results. Thus, it appears that, under our irradiation conditions, whereby the temperature encompassing the samples increases the exposure to this thermal field is the major factor influencing the mechanical properties and microstructure of aluminum alloys

  20. Correlative Microscopy of alpha' Precipitation in Neutron-Irradiated Fe-Cr-Al Alloys

    Science.gov (United States)

    Briggs, Samuel A.

    Fe-Cr-Al alloys are currently being considered for accident tolerant light water reactor fuel cladding applications due to their superior high temperature oxidation and corrosion resistance compared to Zr-based alloys. However, precipitation of the Cr-rich alpha' phase during exposure to LWR operational environments can result in application-limiting hardening and embrittlement. To study this effect, four Fe-Cr-Al model alloys with compositions between 10-18 at.% Cr and 5.8-9.3 at.% Al have been neutron-irradiated in the High Flux Isotope Reactor at a target temperature of 320°C to nominal damage doses of up to 7 dpa in order to emulate typical LWR exposure conditions. A correlative microscopy approach involving atom probe tomography, small-angle neutron scattering, and scanning transmission electron microscopy coupled with energy dispersive x-ray spectroscopy was employed to study the resulting precipitate microstructure. This approach necessitated the development of various analysis techniques to allow for cross-comparison between experimental techniques, including a novel method for correcting for trajectory aberration artifacts in atom probe data sets through phase density comparison. Successful correlation of results from these techniques allows for the individual limitations of each to be overcome and enables the detailed microstructural information gleaned from highly localized atom probe tomography analyses to be extrapolated to bulk alloy behavior. Precipitation response was found to increase with Cr content, while Al additions appeared to partially destabilized the alpha' phase, resulting in precipitate compositions with reduced Cr content compared to binary Fe-Cr systems. Observed precipitate evolution with radiation dose indicates a diffusion-limited coarsening mechanism that is similar to what is observed in the thermally aged system. This work represents the current state-of-the-art on both techniques for analysis of alpha' precipitate

  1. Kinetic Defects Induced by Melittin in Model Lipid Membranes: A Solution Atomic Force Microscopy Study.

    Science.gov (United States)

    Pan, Jianjun; Khadka, Nawal K

    2016-05-26

    Quantitative characterization of membrane defects (pores) is important for elucidating the molecular basis of many membrane-active peptides. We study kinetic defects induced by melittin in vesicular and planar lipid bilayers. Fluorescence spectroscopy measurements indicate that melittin induces time-dependent calcein leakage. Solution atomic force microscopy (AFM) is used to visualize melittin-induced membrane defects. After initial equilibration, the most probable defect radius is ∼3.8 nm in 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) bilayers. Unexpectedly, defects become larger with longer incubation, accompanied by substantial shape transformation. The initial defect radius is ∼4.7 nm in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. Addition of 30 mol % cholesterol to DOPC bilayers suppresses defect kinetics, although the inhibitory impact is negated by longer incubation. Overall, the kinetic rate of defect development follows DLPC > DOPC > DOPC/cholesterol. Kinetic defects are also observed when anionic lipids are present. Based on the observation that defects can occupy as large as 40% of the bilayer surface, we propose a kinetic defect growth model. We also study the effect of melittin on the phase behavior of DOPC/egg-sphingomyelin/cholesterol bilayers. We find that melittin initially suppresses or eliminates liquid-ordered (Lo) domains; Lo domains gradually emerge and become the dominant species with longer incubation; and defects in phase-coexisting bilayers have a most probable radius of ∼5 nm and are exclusively localized in the liquid-disordered (Ld) phase. Our experimental data highlight that melittin-induced membrane defects are not static; conversely, spontaneous defect growth is intrinsically associated with membrane permeabilization exerted by melittin.

  2. The Defect Induced Mix Experiment (DIME) for NIF

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Mark J [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Cobble, James A [Los Alamos National Laboratory; Hakel, Peter [Los Alamos National Laboratory; Hsu, Scott C [Los Alamos National Laboratory; Krasheninnikova, Natalia S [Los Alamos National Laboratory; Kyrala, George A [Los Alamos National Laboratory; Murphy, Thomas J [Los Alamos National Laboratory; Obrey, Kimberly A [Los Alamos National Laboratory; Shah, Rahul C [Los Alamos National Laboratory; Tregillis, Ian L [Los Alamos National Laboratory

    2012-06-18

    LANL will perform two Defect Induced Mix Experiment (DIME) implosion campaigns on NIF in July and September, 2012. This presentation describes the goals for these shots and the experimental configuration and diagnostic set up to collect the appropriate data. The first two-shot campaign will focus on executing polar direct drive (PDD) implosions of plastic CH capsules filled with deuterium gas. Gas filling will be performed through a fill tube at target chamber center. A vanadium backligher foil will provide x-rays to radiograph the last half of the implosion to compare the implosion trajectory with modeling predictions. An equatorial groove in one of the capsules will be present to determine its effect on implosion dynamics. The second DIME campaign will commission and use a spectral imager (MMI) to examine the evolution of thin capsule layers doped with either Ge or Ga at 1.85%. Spectral line emission from these layers will quantify the mix width at the inner shell radius and near an equatorial groove feature.

  3. Electrical Characterisation of electron beam exposure induced Defects in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Danga, Helga T., E-mail: helga.danga@up.ac.za; Auret, Francois D.; Coelho, Sergio M.M.; Diale, Mmantsae

    2016-01-01

    The defects introduced in epitaxially grown p-type silicon (Si) during electron beam exposure were electrically characterised using deep level transient spectroscopy (DLTS) and high resolution Laplace-DLTS. In this process, Si samples were first exposed to the conditions of electron beam deposition (EBD) without metal deposition. This is called electron beam exposure (EBE) herein. After 50 minutes of EBE, nickel (Ni) Schottky contacts were fabricated using the resistive deposition method. The defect level observed using the Ni contacts had an activation energy of H(0.55). This defect has an activation energy similar to that of the I-defect. The defect level is similar to that of the HB4, a boron related defect. DLTS depth profiling revealed that H(0.55) could be detected up to a depth of 0.8 μm below the junction. We found that exposing the samples to EBD conditions without metal deposition introduced a defect which was not introduced by the EBD method. We also observed that the damage caused by EBE extended deeper into the material compared to that caused by EBD.

  4. Ion-irradiation-induced defects in bundles of carbon nanotubes

    International Nuclear Information System (INIS)

    Salonen, E.; Krasheninnikov, A.V.; Nordlund, K.

    2002-01-01

    We study the structure and formation yields of atomic-scale defects produced by low-dose Ar ion irradiation in bundles of single-wall carbon nanotubes. For this, we employ empirical potential molecular dynamics and simulate ion impact events over an energy range of 100-1000 eV. We show that the most common defects produced at all energies are vacancies on nanotube walls, which at low temperatures are metastable but long-lived defects. We further calculate the spatial distribution of the defects, which proved to be highly non-uniform. We also show that ion irradiation gives rise to the formations of inter-tube covalent bonds mediated by carbon recoils and nanotube lattice distortions due to dangling bond saturation. The number of inter-tube links, as well as the overall damage, linearly grows with the energy of incident ions

  5. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels

    International Nuclear Information System (INIS)

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends

  6. Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Juergen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, A. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bell, Gary L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burgess, Thomas W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ellis, Ronald James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lessard, Timothy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ohriner, Evan Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perkins, Dale E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Varma, Venugopal Koikal [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-20

    Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panel reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady

  7. DLTS study of annihilation of oxidation induced deep-level defects ...

    Indian Academy of Sciences (India)

    Administrator

    and optoelectronic devices. With technological scaling of semiconductor devices, the processing steps tend to be- come more complicated and are likely to result in more process-induced defects. Hence, defect investigation and characterization are interesting from the cognitive and practical point of view, as they govern the ...

  8. Compact Models for Defect Diffusivity in Semiconductor Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics Department; Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics Department; Lee, Stephen R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Sciences Department; Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Department

    2017-09-01

    Predicting transient effects caused by short - pulse neutron irradiation of electronic devices is an important part of Sandia's mission. For example , predicting the diffusion of radiation - induced point defects is needed with in Sandia's Qualification Alternative to the Sandia Pulsed Reactor (QASPR) pro gram since defect diffusion mediates transient gain recovery in QASPR electronic devices. Recently, the semiconductors used to fabricate radiation - hard electronic devices have begun to shift from silicon to III - V compounds such as GaAs, InAs , GaP and InP . An advantage of this shift is that it allows engineers to optimize the radiation hardness of electronic devices by using alloy s such as InGaAs and InGaP . However, the computer codes currently being used to simulate transient radiation effects in QASP R devices will need to be modified since they presume that defect properties (charge states, energy levels, and diffusivities) in these alloys do not change with time. This is not realistic since the energy and properties of a defect depend on the types of atoms near it and , therefore, on its location in the alloy. In particular, radiation - induced defects are created at nearly random locations in an alloy and the distribution of their local environments - and thus their energies and properties - evolves with time as the defects diffuse through the alloy . To incorporate these consequential effects into computer codes used to simulate transient radiation effects, we have developed procedures to accurately compute the time dependence of defect energies and properties and then formulate them within compact models that can be employed in these computer codes. In this document, we demonstrate these procedures for the case of the highly mobile P interstitial (I P ) in an InGaP alloy. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE

  9. Parotid gland pathophysiology after mixed gamma and neutron irradiation of cancer patients

    International Nuclear Information System (INIS)

    Anderson, M.W.; Izutsu, K.T.; Rice, J.C.

    1981-01-01

    Electrolyte and protein concentrations were measured in parotid saliva samples obtained from patients receiving localized, fractionated, neutron and gamma irradiation for the treatment of cancer. Salivary sodium chloride concentration increased transiently but then usually decreased to preirradiation values after 2 weeks of therapy. There were concurrent decreases in salivary flow rate, pH, and bicarbonate concentration. The decreases in sodium chloride concentration and flow rate are inconsistent with a previously suggested, irradiation-induced ductal sodium resorption defect. The findings contribute toward understanding how salivary gland physiology is altered in irradiation injury

  10. On the design of a cold neutron irradiator (CNI) for quantitative materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Alexander Grover [Cornell Univ., Ithaca, NY (United States)

    1997-08-01

    A design study of a cold neutron irradiator (CNI) for materials characterization using prompt gamma-ray neutron activation analysis (PGNAA) is presented. Using 252Cf neutron sources in a block of moderator, a portion of which is maintained at a cryogenic temperature, the CNI employs cold neutrons instead of thermal neutrons to enhance the neutron capture reaction rate in a sample. Capture gamma rays are detected in an HPGe photon detector. Optimization of the CNI with respect to elemental sensitivity (counts per mg) is the primary goal of this design study. Monte Carlo simulation of radiation transport, by means of the MCNP code and the ENDF/B cross-section libraries, is used to model the CNI. A combination of solid methane at 22 K, room-temperature polyethylene, and room-temperature beryllium has been chosen for the neutron delivery subsystem of the CNI. Using four 250-microgram 252Cf neutron sources, with a total neutron emission rate of 2.3 x 109 neutrons/s, a thermal-equivalent neutron flux of 1.7 x 107 neutrons/cm2-s in an internally located cylindrical sample space of diameter 6.5 cm and height 6.0 cm is predicted by MCNP calculations. A cylindrical port with an integral annular collimator composed of bismuth, lead, polyethylene, and lithium carbonate, is located between the sample and the detector. Calculations have been performed of gamma-ray and neutron transport in the port and integral collimator with the objective of optimizing the statistical precision with which one can measure elemental masses in the sample while also limiting the fast neutron flux incident upon the HPGe detector to a reasonable level. The statistical precision with which one can measure elemental masses can be enhanced by a factor of between 2.3 and 5.3 (depending on the origin of the background gamma rays) compared with a neutron irradiator identical to the CNI except for the replacement of the cryogenic solid methane by room

  11. Ion-Neutron Irradiated BOR60 Sample Preparation and Characterization: Nuclear Science User Facility 2017 Milestone Report

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parish, Chad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Quinlan B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This document outlines the results obtained by Oak Ridge National Laboratory (ORNL) in collaboration with the University of Michigan-led Consolidated Innovative Nuclear Research project, “Feasibility of combined ion-neutron irradiation for accessing high dose levels.” In this reporting period, neutron irradiated were prepared and shipped to the University of Michigan for subsequent ion irradiation. The specimens were returned to ORNL’s Low Activation Materials Development and Analysis facility, prepared via focused ion beam for examination using scanning/transmission electron microscopy (S/TEM), and then examined using S/TEM to measure the as-irradiated microstructure. This report briefly summarizes the S/TEM results obtained at ORNL’s Low Activation Materials Development and Analysis facility.

  12. Separation of Protactinium from Neutron Irradiated Thorium Oxide; Separacion de Protactinio de Oxido de Torio Irradiado con Neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, G.; Gutierrez, L.; Ropero, M.

    1983-07-01

    The chemical separation of thorium and protactinium can be carried out by leaching most of the last one, about 95%, with aqueous HF from neutron irradiated thorium oxide. This leaching reaction la highly favored by the transformation reaction of the ThO{sub 2} material into ThF{sub 4}. For both reactions, leaching and transformation, the reagents concentration, agitation speed and temperature influences were studied and the activation energies were found. (Author) 18 refs.

  13. Analysis of the microstructural evolution of the damage by neutron irradiation in the pressure vessel of a nuclear power reactor BWR

    International Nuclear Information System (INIS)

    Moranchel y R, M.

    2012-01-01

    Nuclear reactor pressure vessel type BWR, installed in Mexico and in many other countries, are made of an alloy of low carbon steel. The American Society for Testing and Materials (Astm) classifies this alloy as A533-B, class 1. Both the vessel and other internal structures are continuously exposed to the neutron flux from the reactions of fission in nuclear fuel. A large number of neutrons reach the vessel and penetrate certain depth depending on their energy. Its penetration in the neutron collides with the nuclei of the atoms out of their positions in the crystal lattice of steel, producing vacancies, interstitial, segregations, among other defects, capable of affecting its mechanical properties. Analyze the micro-structural damage to the vessel due to neutron irradiation, is essential for reasons of integrity of this enclosure and safety of any nuclear power plant. The objective of this thesis work is theoretical and experimentally determine the microstructural damage of a type nuclear reactor vessel steel BWR, due to neutron radiation from the reactor core, using microscopic and spectroscopic techniques as well as Monte Carlo simulation. Microscopy Optical, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersion of X-rays Spectrometry and X-rays Diffractometry were the techniques used in this research. These techniques helped in the characterization of both the basis of design of pressure vessel steel and steel irradiated, after eight years of neutron irradiation on the vessel, allowing know the surface morphology and crystal structures of the previous steel and post-irradiation, analyze the change in the microstructure of the steel vessel, morphological damage to surface level in an irradiated sample, among which are cavities in the order of microns produced by Atomic displacements due to the impact of neutronic, above all in the first layers of thickness of the vessel, the effect of swelling, regions of greater damage and Atomic

  14. Ionization-induced rearrangement of defects in silicon

    International Nuclear Information System (INIS)

    Vinetskij, V.L.; Manojlo, M.A.; Matvijchuk, A.S.; Strikha, V.I.; Kholodar', G.A.

    1988-01-01

    Ionizing factor effect on defect rearrangement in silicon including centers with deep local electron levels in the p-n-transition region is considered. Deep center parameters were determined using non-steady-state capacity spectroscopy of deep levels (NCDLS) method. NCDLS spectrum measurement was performed using source p + -n - diodes and after their irradiation with 15 keV energy electrons or laser pulses. It is ascertained that in silicon samples containing point defect clusters defect rearrangement under ionizing factor effect takes place, i.e. deep level spectra are changed. This mechanism is efficient in case of silicon irradiation with subthreshold energy photons and electrons and can cause degradation of silicon semiconducting structures

  15. Effects of neutron irradiation on optical and chemical properties of CR-39: Potential application in neutron dosimetry

    International Nuclear Information System (INIS)

    Sahoo, G.S.; Paul, S.; Tripathy, S.P.; Sharma, S.C.; Jena, S.; Rout, S.; Joshi, D.S.; Bandyopadhyay, T.

    2014-01-01

    Effects of high-dose neutron irradiation on chemical and optical properties of CR-39 were studied using FTIR (Fourier Transform Infrared) and UV–vis (Ultraviolet–Visible) spectroscopy. The primary goal was to find a correlation between the neutron dose and the corresponding changes in the optical and chemical properties of CR-39 resulted from the neutron irradiation. The neutrons were produced by bombarding a thick Be target with 22-MeV protons. In the FTIR spectra, prominent absorbance peaks were observed at 1735 cm −1 (C=O stretching), 1230 cm −1 (C–O–C stretching), and 783 cm −1 (=C–H bending), the intensities of which decreased with increasing neutron dose. The optical absorbance in the visible range increased linearly with the neutron dose. Empirical relations were established to estimate neutron doses from these optical properties. This technique is particularly useful in measuring high doses, where track analysis with an optical microscope is difficult because of track overlapping. - Highlights: • CR-39 optical absorbance measurements can be used for neutron dosimetry instead of track counting. • The technique is particularly useful for measuring high doses. • Effects of neutron irradiations on various properties of CR-39 have been characterized

  16. Effect of neutron irradiation on the microstructure of the stainless steel electroslag weld overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita, Oarai, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Kakubo, Y.; Matsukawa, Y.; Nozawa, Y.; Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Katsuyama, J.; Onizawa, K. [Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka-gun, Ibaraki 319-1195 (Japan); Suzuki, M. [Japan Atomic Energy Agency, 4002 Narita, Oarai, Higashiibaraki-gun, Ibaraki 311-1393 (Japan)

    2013-11-15

    Microstructural changes in the stainless steel weld overlay cladding of reactor pressure vessels subjected to neutron irradiation with a fluence of 7.2 × 10{sup 23} n m{sup −2} (E > 1 MeV) and a flux of 1.1 × 10{sup 17} n m{sup −2} s{sup −1} at 290 °C were investigated by atom probe tomography. The results showed a difference in the microstructural changes that result from neutron irradiation and thermal aging. Neutron irradiation resulted in the slight progression of Cr spinodal decomposition and an increase in the fluctuation of the Si, Ni, and Mn concentrations in the ferrite phases, with formation of γ′-like clusters in the austenite phases. On the other hand, thermal aging resulted in the considerable progression of the Cr spinodal decomposition, formation of G-phases, and a decrease in the Si and an increase in the Ni and Mn concentration fluctuations at the matrix in the ferrite phases, without the microstructural changes in the austenite phases.

  17. Effect of impurities on mechanical properties of vanadium alloys under liquid-lithium environment during neutron irradiation at HFIR

    Science.gov (United States)

    Fukumoto, K.; Kuroyanagi, Y.; Kuroiwa, H.; Narui, M.; Matsui, H.

    2011-10-01

    Vanadium alloys, including the highly purified V-4Cr-4Ti alloy, were irradiated in liquid lithium up to a damage level of 3.7 dpa in the HFIR at 425 °C and 598 °C. Neutron irradiation caused an increase of the ductile-brittle transition temperature (DBTT) and irradiation hardening was observed. Adding titanium to the V-Cr alloys was effective for increasing irradiation hardening at 425 °C. For highly purified (Zr-treated) V-4Cr-4Ti alloys the irradiation hardening was significantly reduced at both 425 °C and 598 °C. However, microstructural observations after the irradiation experiments showed that there was no significant difference in microstructure between the original and the highly purified specimens. It is suggested that the reduction of irradiation hardening in the highly purified V-4Cr-4Ti alloys was caused by the configuration and distribution of interstitial impurities in the neutron-irradiated specimen matrix. Controlling the impurities in V-4Cr-4Ti alloys has a very important effect for improving their mechanical properties that take place under neutron irradiation at around 400 °C.

  18. In situ electrochemical studies of forming-induced defects of organic coatings on galvanised steel

    Energy Technology Data Exchange (ETDEWEB)

    Klueppel, Ingo [Dortmunder Oberflaechencentrum GmbH, Eberhardstrasse 12, 44145 Dortmund (Germany); Max-Planck-Institut fuer Eisenforschung GmbH, Department for Interface Chemistry and Surface Engineering, Max-Planck-Strasse 1, 40237 Duesseldorf (Germany); Schinkinger, Bernhard [Dortmunder Oberflaechencentrum GmbH, Eberhardstrasse 12, 44145 Dortmund (Germany); Grundmeier, Guido [University of Paderborn, Warburger Str. 100, 33098 Paderborn (Germany)], E-mail: g.grundmeier@tc.uni-paderborn.de

    2009-05-01

    A new electrochemical setup is presented for in situ measurements during uniaxial forming of thin film coated metal substrates. This approach allows the formability analysis of a zinc pigmented organic coating on a galvanised steel substrate. The aim is to monitor the formation of defects during the forming process. The setup comprises an electrochemical microcapillary cell in a three-electrode arrangement and a miniaturised linear stretching device. The development of forming-induced defects is monitored in situ by applying electrochemical impedance spectroscopy (EIS) and also microscopically analysed by means of field emission scanning electron microscopy (FE-SEM). The studies were supported by GOM grid measurements and finite element simulations of model sample forming degrees. The established technique enables the evaluation of the correlation between forming degree and degradation of the barrier properties of organic coatings. Finally a phosphating process on the unformed and formed specimen is electrochemically and microscopically analysed to correlate the respective defect size with its local reactivity. The results show that stretching-induced defects occur at the interface between spherical Zn particles and the epoxy binder matrix. The defect size increases with increasing strain values. The phosphating process leads to the nucleation of phosphate crystals especially in the forming-induced defects and thereby reduces the free zinc in the defect area. The kinetic of the phosphating is accelerated with increasing size of the defect.

  19. Ferromagnetism induced by point defect in Janus monolayer MoSSe regulated by strain engineering

    Science.gov (United States)

    Meng, Ming; Li, Tinghui; Li, Shaofeng; Liu, Kuili

    2018-03-01

    The formation and regulation of magnetism dependent on introduced defects in the Janus MoSSe monolayer has attracted much attention because of its potential application in spintronics. Here, we present a theoretical study of defect formation in the MoSSe monolayer and its introduced magnetism under external strain. The tensile deformation induced by external strain not only leads to decreases in defect formation energy, but also enhances magnetic characteristics. However, as compressed deformation increases, the magnetism in the structure induced by Se or S defects remains unchanged because this microstructural deformation adequately spin polarizes unpaired electrons of neighboring Mo atoms. Our results suggest the use of point defect and strain engineering in the Janus MoSSe monolayer for spintronics applications.

  20. Subsurface defects of fused silica optics and laser induced damage at 351 nm.

    Science.gov (United States)

    Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng

    2013-05-20

    Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.

  1. Consequences of the embrittlement of channels following neutron irradiation in a High Flux Reactor

    International Nuclear Information System (INIS)

    Bauer, E.

    1987-01-01

    Channel failure is an incident that the reactor design takes into account and whose consequences have been studied and accepted during the safety analysis of the facilities. The study of the failure modes (Chapter 3) has shown that the embrittlement of the material due to neutron irradiation does not constitute a fact that could fundamentally change the probability of failure compared to a new reactor. The mechanical properties of the irradiated material in elastic regime are not below the values of the new material. In this respect, the second part of the AG3 NET - HFR test program, whose results are available, does not raise concerns, given the very high mechanical properties of the irradiated material. Consequently, no preventive provisions have to be made, since the irradiated material is compatible with its use as structural material for the channels. The study of the failure modes also demonstrated that mechanical blows applied to irradiated material could lead to destruction because of the reduced plastic deformability. However, this risk only arises when the reactor is shut down during maintenance operations that require access to equipment placed inside the channels

  2. Effect of fast neutron irradiation upon the omega transformation process in zirconium--niobium alloys

    International Nuclear Information System (INIS)

    Bremer, B.W.

    1974-01-01

    The effect of fast neutrons (E greater than 1 MeV) upon the beta-omega transformation was investigated. Irradiation-produced vacancies promoted the omega transformation by migrating to the regions of high compressive stress associated with the one-dimensional omega embryos, thereby allowing rearrangement of the strain fields. This rearrangement allows the omega embryos to attain large sizes. Growth of these embryos is diffusion controlled. However, irradiation produced no increase in growth rate. It is concluded the vacancies are effectively trapped by these strain fields even at the aging temperature, 400 0 C. The omega hardening mechanism is shown to be related solely to lattice misfit, independent of irradiation, and to saturate when the magnitude of the strain causes a breakdown of the coherent interface, thereby creating one or two interfacial dislocations. Aging at 400 0 C results in alpha growth into the interomega beta phase, producing an additional hardness increase additive to that resulting from the omega phase. At higher aging temperatures 500 0 C, the omega is rapidly replaced by alpha. The alpha microstructure consists of ultra-fine grains, 1000 A, each composed of one 12 interrelated crystallographic variants. Fast neutron irradiation has no effect upon the omega metastable equilibrium phase diagram

  3. Mössbauer spectroscopy of tin in unirradiated and neutron irradiated Zircaloys

    Science.gov (United States)

    Sawicki, Jerzy A.

    1999-01-01

    Mössbauer spectroscopy of the 23.9 keV γ-rays in 119Sn nuclei was applied to study Zircaloy-2, Zircaloy-4, and other tin-bearing zirconium-based alloys of interest to nuclear power technology. Zircaloys are extensively used in nuclear reactors as fuel cladding. In CANDU reactors, Zircaloys are also used as major structural components such as calandria tubes, and were used until the late 1970's as pressure tubes (now replaced by Zr-2.5Nb alloy). Unirradiated specimens of these alloys, as well as radioactive specimens, both neutron-irradiated in high-flux test reactors and extracted from nuclear power-reactor components after many years of service, were examined. The obtained spectra consistently showed tin in substitutional solid solution in α-Zr, whereas no evidence was found of metallic Sn or intermetallic Zr 4Sn precipitates. In oxide scrapes removed from Zircaloy-2 pressure tube of one of CANDU reactors, where the alloy was exposed for about 10 years to pressurized heavy water coolant at temperatures of ˜280°C, a considerable fraction of tin was found in the Sn(IV) state, in the form that coincides with the state of tin in stannic oxide, SnO 2. The same form of tin was identified in filterable deposits in the primary heavy water coolant of CANDU reactors. For comparison, in Zircaloy heated in air, SnO 2 was formed only at temperatures above 500°C.

  4. Preparation of the Nanostructured Radioisotope Metallic Oxide by Neutron Irradiation for Use as Radiotracers

    Directory of Open Access Journals (Sweden)

    Sang-Ei Seo

    2017-10-01

    Full Text Available Metallic oxides manganese dioxide (MnO2, samarium oxide (Sm2O3, and dysprosium oxide (Dy2O3 with nanorod-like structures were synthesized by the hydrothermal synthesis method, respectively. Subsequently, the nanostructured radioisotopes MnO2 with Mn-56, Sm2O3 with Sm-153, and Dy2O3 with Dy-165 were prepared by neutron irradiation from the HANARO research reactor, respectively. The three different elements, Mn, Sm, and Dy, were selected as radiotracers because these elements can be easily gamma-activated from neutrons (activation limits: 1 picogram (Dy, 1–10 picogram (Mn, 10–100 picogram (Sm. Furthermore, the synthesized radioisotopes can be used as radiotracers in Prompt Gamma Neutron Activation Analysis as the rare earth metals Dy and Sm were not present in the Korean environment. The successful synthesis of the radioisotope metallic oxides was confirmed by Transmission Electron Microscopy (TEM, Energy Dispersive X-ray Spectrometry (EDS, X-ray Diffraction (XRD analysis, and gamma spectroscopy analysis. The synthesized nanostructured radioisotope metallic oxides may be used as radiotracers in scientific, environmental, engineering, and industrial fields.

  5. Mechanical properties and tritium release behavior of neutron irradiated beryllium pebbles

    International Nuclear Information System (INIS)

    Ishitsuka, E.; Kawamura, H.

    2000-01-01

    Beryllium pebbles are expected as a neutron multiplier of a fusion reactor blanket. Mechanical properties and tritium release behaviors of the neutron irradiated beryllium pebbles were tested as a post irradiation examination (PIE). Two kinds of beryllium specimens (diameter:1 mm, grain size: about 0.5 mm), which were fabricated by the rotating electrode method (REM) and by the Mg reduction method (MRM), were irradiated with a total fast neutron fluence of 1.6 x 10 22 n/cm 2 (E>0.1 MeV) at 673, 773 and 873 K. The estimated helium concentration and dpa value were about 1 x 10 3 appmHe and 10 dpa, respectively. Compression tests were carried out at the room temperature in the Beryllium PIE facility of JMTR (Japan materials testing reactor) hot laboratory. Compression speed was 0.2 mm/min in ten tests for each specimen. From the results of compression test, no significant difference in the compression strength was observed between two kinds of beryllium pebbles. Additionally, it was clear that not only helium concentration but also dpa value was an important factor on the mechanical properties, because the compression strength of the high dpa specimens (10 dpa) was smaller than that of the low dpa specimens (6 dpa) with similar helium concentration (about 1 x 10 3 appmHe). Also, the tritium release experiment will be carried out for these specimens, and results will be presented in this workshop. (orig.)

  6. High Temperature Tensile Properties of Unirradiated and Neutron Irradiated 20 Cr-35 Ni Austenitic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.B.; Solly, B.

    1966-12-15

    The tensile properties of an unirradiated and neutron irradiated (at 40 deg C) 20 % Cr, 35 % Ni austenitic steel have been studied at 650 deg C, 750 deg C and 820 deg C. The tensile elongation and mode of fracture (transgranular) of unirradiated specimens tested at room temperature and 650 deg C are almost identical. At 750 deg C and 820 deg C the elongation decreases considerably and a large part of the total elongation is non-uniform. Furthermore, the mode of fracture at these temperatures is intergranular and microscopic evidence suggests that fracture is caused by formation and linkup of grain boundary cavities. YS and UTS decrease monotonically with temperature. Irradiated specimens show a further decrease in ductility and an increase in the tendency to grain boundary cracking. Irradiation has no significant effect on the YS, but the UTS are reduced. The embrittlement of the irradiated specimens is attributed to the presence of He and Li atoms produced during irradiation and the possible mechanisms are discussed. Prolonged annealing of irradiated and unirradiated specimens at 650 deg C appears to have no significant effect on tensile properties.

  7. The effect of neutron irradiation on the mechanical properties of precipitation hardened copper alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.A.; Pokrovsky, A.S.

    1997-01-01

    The effects of neutron irradiation on strength and ductility properties of precipitation hardened (PH) copper alloys are discussed. The analysis is based on the experimental study of radiation damage of PH alloys irradiated in the mixed spectrum reactor SM-2 to fluences of 3.7-5.5 x 10 25 n/m 2 (E>0.1 MeV), corresponding to NRT displacement dose levels of 2.6-3.8 dpa. At irradiation temperatures of 100-285 C the processes of radiation hardening and reduction in the uniform elongation are the major effects. Irradiation at temperatures higher than 300 C causes a dramatic softening and improvement in uniform elongation of the Cu-Cr-Zr and Cu-Cr-Zr-Mg alloys. The threshold softening temperature for the PH alloys is shown to be about 300 C at a dose of 4.5 x 10 25 n/m 2 (E>0.1 MeV). The effect of the irradiation dose and temperature on the shift of the threshold temperature of PH copper-alloys softening is also considered. (orig.)

  8. Dose field research of analysis room for in-hospital neutron irradiator

    International Nuclear Information System (INIS)

    Zhang Zizhu; Song Mingzhe; Li Wei; Chen Jun; Yang Yong; Li Yiguo

    2012-01-01

    Neutron equivalent dose rate and y ray dose rate inside the analysis room of the in-hospital neutron irradiator (IHNI) and outdoor were measured. The results show that γ ray dose rate inside the analysis room exceeds calculation value many times and γ/ ray dose rate outdoor is higher than supervision region dose limit of 7.5 μSv/h. According to the measurement results and the Monte Carlo simulation, the following shielding plan was adopted. Lead shielding with thickness of 16 cm was installed on the wall, which faces the neutron beam, to shield γ ray, and lithium polyethylene plate with thickness of l cm was installed on all the wall (not including ceiling and floor) to shield scattering neutron. After shielding transformation, the highest γ ray dose rate point inside the analysis room decreased 277 times, the neutron equivalent dose rate decreased 5.8 times, and the outdoor γ/ray dose rate decreased nearly 90 times. (authors)

  9. Near-infrared emissions in additively coloured or neutron-irradiated ZnS

    International Nuclear Information System (INIS)

    Matsuura, K.; Teratani, S.; Kishida, S.; Tsurumi, I.

    1976-01-01

    On ZnS crystals irradiated by neutrons or heated in zinc vapour, photoluminescence spectra have been measured in the near-infrared wavelength region (700 to 1300 nm) at 20 to 300 K. The two emission peaks at 847 nm (1.45 eV) and 1.13 μm (1.1 eV) were created in Zn-treated specimens, as reported previously, and these emission bands were also created by neutron irradiation. It was found that the halfwidths of the 1.1 eV and 1.45 eV emission bands are 0.26+ - 0.02 eV at 20 K, and 0.30 + - 0.02 eV at 120 K, respectively. The excitation spectra for these emission bands have been measured. The 1.1 eV emission band was excited by the irradiation of light in the 2.9 eV and 2.3 eV optical absorption bands, while the 1.45 eV emission band was excited by light in the 2.9 eV absorption band, suggesting that these emission bands are related to the F + -centre. The temperature dependences of these emission bands were also investigated. (author)

  10. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Poehlsen, Thomas

    2010-04-15

    In this work epitaxial n-type silicon diodes with a thickness of 100 {mu}m and 150 {mu}m are investigated. After neutron irradiation with fluences between 10{sup 14} cm{sup -2} and 4 x 10{sup 15} cm{sup -2} annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10{sup 14} cm{sup -2} showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time {tau}{sub eff}. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time {tau}{sub eff}(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 {mu}m thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  11. Effect of neutron irradiation on the density of low-energy excitations in vitreous silica

    International Nuclear Information System (INIS)

    Smith, T.L.

    1979-01-01

    Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity were made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat C/sub ex/, the thermal conductivity kappa, and the anomalous temperature dependence of the ultrasound velocity Δv/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that kappa and Δv/v are determined by the same localized excitations responsible for C/sub ex/, but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. A consistent account for the measured C/sub ex/, kappa, and Δv/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model

  12. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Poehlsen, Thomas

    2010-04-01

    In this work epitaxial n-type silicon diodes with a thickness of 100 μm and 150 μm are investigated. After neutron irradiation with fluences between 10 14 cm -2 and 4 x 10 15 cm -2 annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10 14 cm -2 showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time τ eff . Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time τ eff (E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 μm thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  13. Response of the MG-63 human osteosarcoma cell line grown as multicellular spheroids to neutron irradiation

    International Nuclear Information System (INIS)

    Kubota, Nobuo; Kakehi, Masae; Matsubara, Shou; Koike, Sachiko; Ando, Koichi.

    1993-01-01

    Multicellular tumor spheroids are composed of the mixed populations of cells with regard to cell proliferation, nutrition, oxygenation and radiosensitivity. Human osteogenic sarcoma is generally considered clinically radioresistant. However, the in vitro cell survival curves for human osteogenic sarcoma cell lines do not differ from those of other tumor cell lines. In this study, the responses of human osteogenic sarcoma cell line to gamma ray and neutrons were investigated by using spheroid system. The spheroids of the osteogenic sarcoma cell line are considered to be a good in vitro model of radioresistant tumors. The purpose of this study is to measure the response of the spheroids to fast neutron irradiation. MG-63 human osteogenic sarcoma cell line was used for this study. The cell line was cultured in alpha-MEM with supplement. Cell survival was estimated after the trypsinization of spheroids 24 hours after irradiation. The method of measuring spheroid cure is explained. The mean number of surviving cells per spheroid can be obtained from the mean clonogenic number and cell survival curve. The cell survival of MG-63 spheroids exposed to gamma ray and neutrons and the dose effect curves for spheroid cure after irradiation are shown. (K.I.)

  14. Change in properties of superconducting magnet materials by fusion neutron irradiation

    International Nuclear Information System (INIS)

    Nishimura, Arata; Nishijima, Shigehiro; Takeuchi, Takao; Nishitani, Takeo

    2007-01-01

    A fusion reactor will generate a lot of high energy neutron and much energy will be taken out of the neutrons by a blanket system. Since some neutrons will stream out of a plasma vacuum vessel through neutral beam injection ports and penetrate a blanket system, a superconducting magnet system, which provides high magnetic field to confirm high energy particles, will be irradiated by a certain amount of neutrons. By developing the new NBI system or by reducing the penetration, the neutron fluence to the superconducting magnet will be able to be reduced. However, it is not easy to achieve the lower streaming and penetration at the present. Therefore, investigations on irradiation behavior of superconducting magnet materials are desired and some novel researches have been performed from 1970s. In general, the critical current of the superconducting wire increases under fast neutron environment comparing with that of the non-irradiated wire, and then decreased to almost zero as an increase of neutron fluence. On the other hand, the critical temperature of the wire starts to get down around 10 22 n/m 2 of neutron fluence and the temperature margin will be decreased during the operation by the neutron irradiation. In this paper, some aspects of irradiated materials will be overviewed and general tendency will be discussed focussing on knock-on effect of fast neutron and long range ordering of A15 compounds

  15. Importance diagrams - a novel presentation of the response of a material to neutron irradiation

    International Nuclear Information System (INIS)

    Forrest, R.A.

    1998-01-01

    Activation of fusion materials following neutron irradiation is of great technological importance, especially in the study of safety and environmental impacts. Currently, activation calculations are performed for a particular neutron spectrum, appropriate to a region in a particular fusion device, which makes it difficult to extract generic information. The present work gives details of a method to present the dominant nuclides for the radiological responses or an irradiated material in a fashion that is independent of the neutron spectrum and almost independent of the flux. The importance diagrams show regions in the decay time versus neutron energy space where a nuclide contributes >50% of the response. The importance diagrams for pure iron and SS316 are described, and it is noted that the shapes of the various regions vary very little with the total neutron flux. Variation of the diagrams with irradiation time occurs at short decay times in a systematic fashion. The use of the diagrams in a realistic spectrum relies on an expansion, which while not generally true, does hold approximately for many of the nuclides of interest. The diagrams are therefore a valuable summary of the universal, device-independent, response of the materials, and when combined with pathway information give a comprehensive description of activation for that material. (orig.)

  16. Effect of high fluence neutron irradiation on transport properties of thermoelectrics

    Science.gov (United States)

    Wang, H.; Leonard, K. J.

    2017-07-01

    Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.

  17. Design of small-animal thermal neutron irradiation facility at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Liu, H.B.

    1996-01-01

    The broad beam facility (BBF) at the Brookhaven Medical Research Reactor (BMRR) can provide a thermal neutron beam with flux intensity and quality comparable to the beam currently used for research on neutron capture therapy using cell-culture and small-animal irradiations. Monte Carlo computations were made, first, to compare with the dosimetric measurements at the existing BBF and, second, to calculate the neutron and gamma fluxes and doses expected at the proposed BBF. Multiple cell cultures or small animals could be irradiated simultaneously at the so-modified BBF under conditions similar to or better than those individual animals irradiated at the existing thermal neutron irradiation Facility (TNIF) of the BMRR. The flux intensity of the collimated thermal neutron beam at the proposed BBF would be 1.7 x 10 10 n/cm 2 ·s at 3-MW reactor power, the same as at the TNIF. However, the proposed collimated beam would have much lower gamma (0.89 x 10 -11 cGy·cm 2 /n th ) and fast neutron (0.58 x 10 -11 cGy·cm 2 /n th ) contaminations, 64 and 19% of those at the TNIF, respectively. The feasibility of remodeling the facility is discussed

  18. Radioactivity of neutron-irradiated cat's-eye chrysoberyls

    Energy Technology Data Exchange (ETDEWEB)

    Tang, S.M. E-mail: phytsm@leonis.nus.edu.sg; Tay, T.S

    1999-04-02

    The recent report of marketing of radioactive chrysoberyl cat's-eyes in South-East Asian markets has led us to use an indirect method to estimate the threat to health these color-enhanced gemstones may pose if worn close to skin. We determined the impurity content of several cat's-eye chrysoberyls from Indian States of Orissa and Kerala using PIXE, and calculated the radioactivity that would be generated from these impurities and the constitutional elements if a chrysoberyl was irradiated by neutrons in a nuclear reactor for color enhancement. Of all the radioactive nuclides that could be created by neutron irradiation, only four ({sup 46}Sc, {sup 51}Cr, {sup 54}Mn and {sup 59}Fe) would not have cooled down within a month after irradiation to the internationally accepted level of specific residual radioactivity of 2 nCi/g. The radioactivity of {sup 46}Sc, {sup 51}Cr and {sup 59}Fe would only fall to this safe limit after 15 months and that of {sup 54}Mn could remain above this limit for several years.

  19. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    Science.gov (United States)

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Structural and chemical evolution in neutron irradiated and helium-injected ferritic ODS PM2000 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.; Yamamoto, Takuya; Wu, Yuan; Odette, G. Robert

    2017-02-01

    An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron 59Ni(nth, 59Ni(nth,α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The corresponding microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).

  1. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    Science.gov (United States)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2015-01-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory at reactor coolant temperatures of 50-70 °C to low displacement damage of 0.025 and 0.3 dpa. After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5 × 1025 m-2 to reach the total ion fluence of 1 × 1026 m-2 in order to investigate the near-surface deuterium retention and saturation via nuclear reaction analysis. Final thermal desorption spectroscopy was performed to elucidate the irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near-surface (<5 µm depth) deuterium concentration increased from 0.5 at% D/W in 0.025 dpa samples to 0.8 at% D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near-surface retention via nuclear reaction analysis indicated the deuterium was trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.3 dpa) at 500 °C cases even in the relatively low ion fluence of 1026 m-2.

  2. Structural and chemical evolution in neutron irradiated and helium-injected ferritic ODS PM2000 alloy

    Science.gov (United States)

    Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.; Yamamoto, Takuya; Wu, Yuan; Odette, G. Robert

    2017-02-01

    An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron 58Ni(nth,γ) 59Ni(nth,α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The corresponding microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).

  3. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    Science.gov (United States)

    Taylor, C. N.; Shimada, M.; Merrill, B. J.; Akers, D. W.; Hatano, Y.

    2015-08-01

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.

  4. Defect-induced magnetic structure of CuMnSb

    Czech Academy of Sciences Publication Activity Database

    Máca, František; Kudrnovský, Josef; Drchal, Václav; Turek, I.; Stelmakhovych, O.; Beran, Přemysl; Llobet, A.; Martí, Xavier

    2016-01-01

    Roč. 94, č. 9 (2016), 1-9, č. článku 094407. ISSN 2469-9950 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 ; RVO:61389005 Keywords : CuMnSb * electronic structure * defects * magnetic order * ab initio calculations * neutron diffraction analysis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  5. Atomic hydrogen induced defect kinetics in amorphous silicon

    NARCIS (Netherlands)

    Peeters, F. J. J.; Zheng, J.; Aarts, I. M. P.; Pipino, A. C. R.; Kessels, W. M. M.; van de Sanden, M. C. M.

    2017-01-01

    Near-infrared evanescent-wave cavity ring-down spectroscopy (CRDS) has been applied to study the defect evolution in an amorphous silicon (a-Si:H) thin film subjected to a directed beam of atomic H with a flux of (0.4–2) × 1014 cm−2 s−1. To this end, a 42 ± 2 nm a-Si:H film was grown on the total

  6. The Primary Origin of Dose Rate Effects on Microstructural Evolution of Austenitic Alloys During Neutron Irradiation

    International Nuclear Information System (INIS)

    Okita, Taira; Sato, Toshihiko; Sekimura, Naoto; Garner, Francis A.; Greenwood, Lawrence R.

    2002-01-01

    The effect of dose rate on neutron-induced microstructural evolution was experimentally estimated. Solution-annealed austenitic model alloys were irradiated at approximately 400 degrees C with fast neutrons at seven different dose rates that vary more than two orders difference in magnitude, and two different doses were achieved at each dose rate. Both cavity nucleation and growth were found to be enhanced at lower dose rate. The net vacancy flux is calculated from the growth rate of cavities that had already nucleated during the first cycle of irradiation and grown during the second cycle. The net vacancy flux was found to be proportional to (dpa/sec) exp (1/2) up to 28.8 dpa and 8.4 x 10 exp (-7) dpa/sec. This implies that mutual recombination dominates point defect annihilation, in this experiment even though point defect sinks such as cavities and dislocations were well developed. Thus, mutual recombination is thought to be the primary origin of the effect of dose rate on microstructural evolution

  7. Neutron induced teratogenesis and spermatogenesis inhibitor fertilysin induced fetal bis-diamine syndrome in the rat. An animal model for DiGeorge and CATCH22 syndromes

    International Nuclear Information System (INIS)

    Shoji, Shuneki

    2003-01-01

    To develop preventive and regenerative medicine measures and to clarify the effect of neutron-irradiation and Fertilysin on vasculogenesis and teratogenesis, we decided to investigate the pathogenesis of these abnormalities in this study and compare them to abnormalities reported in humans. Pregnant rats were exposed to graded doses of 14.1 MeV neutron irradiation or Fertilysin on day 10 of gestation. The rats were sacrificed on day 18 of gestation, examined for lethality and surviving fetuses, and were microdissected for malformations. Our studies showed that neutron irradiation of rats commonly induced abnormalities whose types included eye, limb and tail defects, transposition of the great arteries, riding aorta, right aortic arch and aortic arch anomalies. These results suggest that maternal exposure to neutron-irradiation may have caused DNA damage and neural crest deficiency in offspring. These results are similar to those found in animal models with Retinoic acid syndrome and human fetuses with DiGeorge syndrome, a condition considered as a pharyngeal arch syndrome related to a cephalic neurocristopathy. In addition, multi-organ malformations associated with the highest incidences of abnormal vasculogenesis, cardiac outflow tracts and aortic arch anomalies such as right aortic arch and aberrant subclavian artery were found to be consistently produced following maternal exposure to Fertilysin on day 10 of gestation. Evidently the crucial scenario for administering Fertilysin to cause the cardiovascular defects of all surviving fetuses, in which over 80% of the fetuses were persistent truncus arteriosus (PTA) and the remainder was tetralogy of Fallot (TOF), is 200 mg for day 10 of gestation. This corresponds in humans to approximately day 21 after conception. A mechanism involving DNA damage, disruption of neural crest cells and growth and transcription factors, as well as growth failure of the branchial arches from apoptosis and neurocristopathy of the third

  8. Neutron induced teratogenesis and spermatogenesis inhibitor fertilysin induced fetal bis-diamine syndrome in the rat. An animal model for DiGeorge and CATCH22 syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Shuneki [Hiroshima Univ., Research Institute for Radiation Biology and Medicine, Hiroshima (Japan)

    2003-07-01

    To develop preventive and regenerative medicine measures and to clarify the effect of neutron-irradiation and Fertilysin on vasculogenesis and teratogenesis, we decided to investigate the pathogenesis of these abnormalities in this study and compare them to abnormalities reported in humans. Pregnant rats were exposed to graded doses of 14.1 MeV neutron irradiation or Fertilysin on day 10 of gestation. The rats were sacrificed on day 18 of gestation, examined for lethality and surviving fetuses, and were microdissected for malformations. Our studies showed that neutron irradiation of rats commonly induced abnormalities whose types included eye, limb and tail defects, transposition of the great arteries, riding aorta, right aortic arch and aortic arch anomalies. These results suggest that maternal exposure to neutron-irradiation may have caused DNA damage and neural crest deficiency in offspring. These results are similar to those found in animal models with Retinoic acid syndrome and human fetuses with DiGeorge syndrome, a condition considered as a pharyngeal arch syndrome related to a cephalic neurocristopathy. In addition, multi-organ malformations associated with the highest incidences of abnormal vasculogenesis, cardiac outflow tracts and aortic arch anomalies such as right aortic arch and aberrant subclavian artery were found to be consistently produced following maternal exposure to Fertilysin on day 10 of gestation. Evidently the crucial scenario for administering Fertilysin to cause the cardiovascular defects of all surviving fetuses, in which over 80% of the fetuses were persistent truncus arteriosus (PTA) and the remainder was tetralogy of Fallot (TOF), is 200 mg for day 10 of gestation. This corresponds in humans to approximately day 21 after conception. A mechanism involving DNA damage, disruption of neural crest cells and growth and transcription factors, as well as growth failure of the branchial arches from apoptosis and neurocristopathy of the third

  9. Neutron irradiation studies on low density pan fiber based carbon/carbon composites

    Science.gov (United States)

    Venugopalan, Ramani; Sathiyamoorthy, D.; Acharya, R.; Tyagi, A. K.

    2010-09-01

    Carbon has been extensively used in nuclear reactors and there has been growing interest to develop carbon-based materials for high-temperature nuclear and fusion reactors. Carbon-carbon composite materials as against conventional graphite material are now being looked into as the promising materials for the high temperature reactor due their ability to have high thermal conductivity and high thermal resistance. Research on the development of such materials and their irradiation stability studies are scant. In the present investigations carbon-carbon composite has been developed using polyacrylonitrile (PAN) fiber. Two samples denoted as Sample-1 and Sample-2 have been prepared by impregnation using phenolic resin at pressure of 30 bar for time duration 10 h and 20 h respectively, and they have been irradiated by neutrons. The samples were irradiated in a flux of 10 12 n/cm 2/s at temperature of 40 °C. The fluence was 2.52 × 10 16 n/cm 2. These samples have been characterized by XRD and Raman spectroscopy before and after neutron irradiation. DSC studies have also been carried out to quantify the stored energy release behavior due to irradiation. The XRD analysis of the irradiated and unirradiated samples indicates that the irradiated samples show the tendency to get ordered structure, which was inferred from the Raman spectroscopy. The stored energy with respect to the fluence level was obtained from the DSC. The stored energy from these carbon composites is very less compared to irradiated graphite under ambient conditions.

  10. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  11. Desorption of tritium and helium from high dose neutron irradiated beryllium

    Science.gov (United States)

    Kupriyanov, I. B.; Nikolaev, G. N.; Vlasov, V. V.; Kovalev, A. M.; Chakin, V. P.

    2007-08-01

    The effect of high dose neutron irradiation on tritium and helium desorption in beryllium is described. Beryllium samples were irradiated in the SM and BOR-60 reactors to a neutron fluences ( E > 0.1 MeV) of (5-16) × 10 22 cm -2 at 70-100 °C and 380-420 °C. A mass-spectrometry technique was used in out of pile tritium release experiments during stepped annealing in the 250-1300 °C temperature range. The total amount of helium accumulated in irradiated beryllium samples varied from 6000 to 7200 appm. The first signs of tritium and helium release were detected at temperature of 312-445 °C and 500-740 °C, respectively. It is shown that most tritium (˜82%) from sample irradiated at 70-100 °C releases in temperature range of 312-700 °C before the beginning of helium release (740 °C). In the case of beryllium sample irradiated at 380-420 °C, tritium release starts at a higher temperature ( Ts > Tann = 445 °C) and most of the tritium (˜99.8%) is released concurrently with helium which could be considered as evidence of co-existence of partial amounts of tritium and helium in common bubbles. Both the Be samples differ little in the upper temperatures of gas release: 745 and 775 °C for tritium; 1140 and 1160 °C for helium. Swelling of beryllium starts to play a key role in accelerating tritium release at Tann > 600 °C and in helium release - at Tann > 750 °C.

  12. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    Science.gov (United States)

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-05-01

    The dynamics of deformation localization and dislocation channel formation were investigated in situ in a neutron-irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy (TEM). Channel formation was observed at ∼70% of the polycrystalline yield stress of the irradiated materials (σ0.2). It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the σ0.2, channels often formed near the middle of the grain boundary. For a single grain, the role of elastic stiffness value (Young's modulus) in channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in "soft" grains with a high Schmid factor located near "stiff" grains with high elastic stiffness. The spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one-third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. In the AISI 304 steel, channels in grains oriented close to 〈0 0 1〉||TA (tensile axis) and 〈1 0 1〉||TA were twin free and grain with 〈1 1 1〉||TA and grains oriented close to a Schmid factor maximum contained deformation twins.

  13. The effect of helium generation and irradiation temperature on tritium release from neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Kupriyanov, I.B.; Gorokhov, V.A.; Vlasov, V.V.; Kovalev, A.M.; Chakin, V.P.

    2004-01-01

    The effect of neutron irradiation condition on tritium release from beryllium is described in this paper. Beryllium samples were irradiated in the SM reactor with neutron fluence (E > 0.1 MeV) of (0.37-2.0) x 10 22 cm -2 at 70-100degC and 650-700degC. Mass-spectrometer technique was used in out of tritium release experiments during stepped-temperature anneal within a temperature range from 250 to 1300degC. The total amount of helium accumulated in irradiated beryllium samples varied from 521 appm to 3061 appm. The first signs of tritium release were detected at temperature of 406-553degC. It was shown that irradiation temperature and helium generation level significantly affect the tritium release. A fraction of 44 - 74 % of tritium content in samples irradiated at low temperature (70 - 100degC) is release from beryllium at an annealing temperature below 800degC, whereas for samples after high temperature irradiation (650 - 700 degC) tritium release did not exceed 14 %. Majority of tritium (∼68%) is released within a temperature range from 800 to 920 degC. The increase of helium generation from 521 appm to 3061 appm results in lowering the temperature of maximal tritium release rate and the upper temperature of tritium release from beryllium by 100-130degC and 200-240degC, correspondingly. On the basis of data obtained, the diffusion coefficients of tritium in beryllium were calculated. (author)

  14. Annealing of radiation-induced defects in silicon in a simplified phenomenological model

    International Nuclear Information System (INIS)

    Lazanu, S.; Lazanu, I.

    2001-01-01

    The concentration of primary radiation-induced defects has been previously estimated considering both the explicit mechanisms of the primary interaction between the incoming particle and the nuclei of the semiconductor lattice, and the recoil energy partition between ionisation and displacements, in the frame of the Lindhard theory. The primary displacement defects are vacancies and interstitials that are essentially unstable in silicon. They interact via migration, recombination, annihilation or produce other defects. In the present work, the time evolution of the concentration of defects induced by pions in medium and high resistivity silicon for detectors is modelled, after irradiation. In some approximations, the differential equations representing the time evolution processes could be decoupled. The theoretical equations so obtained are solved analytically in some particular cases, with one free parameter, for a wide range of particle fluences and/or for a wide energy range of incident particles, for different temperatures; the corresponding stationary solutions are also presented

  15. Pressure-induced Phase Transitions in Defect Pyrochlores

    Directory of Open Access Journals (Sweden)

    Claudio A. Perottoni

    2013-12-01

    Full Text Available In this paper the influence of pressure and temperature on four compounds with defect pyrochlore structure (NH4NbWO6, RbNbWO6, CsNbWO6 and p-WO3 is explored by means of X-ray diffraction, vibrational (Raman and infrared absorption spectroscopy and computer simulations. Several structural transitions were observed, including an unusual insertion reaction with volume increase at high pressures. This latter transition is further explored to reveal the influence on the transition pressure of the nature and ionic radius of the cation residing inside the cages formed by the pyrochlore framework.

  16. Ion irradiation used as surrogate of neutron irradiation in graphite: Consequences on 14C and 36Cl behavior and structural evolution

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2018-04-01

    Graphite has been widely used as neutron moderator, reflector or fuel matrix in different types of reactors such as gas cooled nuclear reactors (UNGG, Magnox, AGR), RBMK reactors or high temperature gas cooled reactors. Their operation produces a great quantity of irradiated graphite or other carbonaceous waste (around 250,000 tons worldwide) that requires a special management strategy. In the case of disposal, which is a current management strategy, two main radionuclides, 14C and 36Cl might be dose determining at the outlet. Particular attention is paid to 14C due to its long half-life (T∼5730 years) [1] and as major contributor to the radioactive dose. 14C has two main production routes, i) transmutation of nitrogen (14N(n,p)14C) where nitrogen is mainly adsorbed at the surfaces of the irradiated graphite; ii) activation of carbon from the matrix (13C(n,γ)14C). According to leaching tests, it was shown that even if the quantity of 14C released in the solution is low (less than 1% of the initial inventory), around 30% is in the organic form that would be mobile in repository conditions [2,3]. 36Cl is mainly produced through the activation of 35Cl (35Cl(n,γ)36Cl) which is an impurity in nuclear graphite. Its activity is low but it might be highly mobile in clay host rocks. Thus, in order to make informed decisions about the best management process and to anticipate potential radionuclide dissemination during dismantling and in the repository, it is necessary to collect information on 14C and 36Cl location and speciation in graphite, after reactor closure. The goal of the present paper is therefore to use ion irradiation to simulate neutron irradiation and to evaluate the irradiation effects on the behavior of 36Cl and 14C as well as on the induced graphite structure modifications. For that, to understand and model the underlying mechanisms, we used an indirect approach based on 13C or 37Cl implantation to simulate the respective presence of 14C or 36Cl. These

  17. The fine structure of electron irradiation induced EL2-like defects in n-GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Tunhuma, S. M.; Auret, F. D.; Legodi, M. J.; Diale, M. [Department of Physics, University of Pretoria, Private Bag X20, Pretoria 0002 (South Africa)

    2016-04-14

    Defects induced by electron irradiation in n-GaAs have been studied using deep level transient spectroscopy (DLTS) and Laplace DLTS (L-DLTS). The E{sub 0.83} (EL2) is the only defect observed prior to irradiation. Ru/n-GaAs Schottky diodes were irradiated with high energy electrons from a Sr-90 radionuclide up to a fluence of 2.45 × 10{sup 13} cm{sup −2}. The prominent electron irradiation induced defects, E{sub 0.04}, E{sub 0.14}, E{sub 0.38}, and E{sub 0.63}, were observed together with the metastable E{sub 0.17}. Using L-DLTS, we observed the fine structure of a broad base EL2-like defect peak. This was found to be made up of the E{sub 0.75}, E{sub 0.83}, and E{sub 0.85} defects. Our study reveals that high energy electron irradiation increases the concentration of the E{sub 0.83} defect and introduces a family of defects with electronic properties similar to those of the EL2.

  18. Shock-induced spall in copper: the effects of anisotropy, temperature, loading pulse and defect

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shengnian [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; An, Qi [Los Alamos National Laboratory; Han, Li - Bo [USTC

    2009-07-28

    Shock-induced spall in Cu is investigated with molecular dynamics simulations. We examine spallation in initially perfect crystals and defective solids with grain boundaries (columnar bicrystals), stacking faults or vacancies, as well as the effect of temperature and loading pulses. Spall in single crystal Cu is anisotropic, and defects and high temperature may reduce the spall strength. Taylor-wave (triangular shock-release wave) loading is explored in comparison with square wave shock loading.

  19. Defect-induced change of temperature-dependent elastic constants in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Gao, N.; Setyawan, W.; Zhang, S. H.; Wang, Z. G.

    2017-07-01

    The effects of radiation-induced defects (randomly distributed vacancies, voids, and interstitial dislocation loops) on temperature-dependent elastic constants, C11, C12, and C44 in BCC iron, are studied with molecular dynamics method. The elastic constants are found to decrease with increasing temperatures for all cases containing different defects. The presence of vacancies, voids, or interstitial loops further decreases the elastic constants. For a given number of point defects, the randomly distributed vacancies show the strongest effect compared to voids or interstitial loops. All these results are expected to provide useful information to combine with experimental results for further understanding of radiation damage.

  20. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    Science.gov (United States)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-07-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  1. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    International Nuclear Information System (INIS)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-01-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO 2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  2. Exercise-induced thallium-201 myocardial perfusion defects in angina pectoris without significant coronary artery stenosis

    International Nuclear Information System (INIS)

    Nakazato, Masayasu; Maruoka, Yuji; Sunagawa, Osahiko; Kinjo, Kunihiko; Tomori, Masayuki; Fukiyama, Koshiro

    1990-01-01

    We performed exercise thallium-201 myocardial scintigraphy in 32 patients with angina pectoris to study the incidence of perfusion defects, who had no significant organic stenosis on coronary angiography. None of them had myocardial infarction or cardiomyopathy. Thallium-201 myocardial scintigraphy and 12-lead ECG recording were performed during supine bicycle ergometer exercise. Perfusion defects in thallium-201 scintigrams in SPECT images were assessed during visual analysis by two observers. In the coronary angiograms obtained during intravenous infusion of nitroglycerin, the luminal diameter of 75% stenosis or less in the AHA classification was regarded as an insignificant organic stenosis. Myocardial perfusion defects in the thallium-201 scintigrams were detected in eight (25%) of the 32 patients. Six of these eight patients had variant angina documented during spontaneous attacks with ST elevations in standard 12-lead ECGs. Perfusion defects were demonstrated at the inferior or infero-posterior regions in six patients, one of whom had concomitant anteroseptal defect. The defects were not always accompanied by chest pain. All but one patient demonstrating inferior or inferoposterior defects showed ST depression in leads II, III and aV F on their ECGs, corresponding to inferior wall ischemia. The exception was a case with right bundle branch block. Thus, 25% of the patients with angina pectoris, who had no evidence of significant organic stenosis on their coronary angiograms, exhibited exercise-induced perfusion defects in their thallium-201 scintigrams. Coronary spasms might have caused myocardial ischemia in these patients. (author)

  3. Edge dislocations as sinks for sub-nanometric radiation induced defects in α-iron

    Science.gov (United States)

    Anento, N.; Malerba, L.; Serra, A.

    2018-01-01

    The role of edge dislocations as sinks for small radiation induced defects in bcc-Fe is investigated by means of atomistic computer simulation. In this work we investigate by Molecular Statics (T = 0K) the interaction between an immobile dislocation line and defect clusters of small sizes invisible experimentally. The study highlights in particular the anisotropy of the interaction and distinguishes between absorbed and trapped defects. When the considered defect intersects the dislocation glide plane and the distance from the dislocation line to the defect is on the range between 2 nm and 4 nm, either total or partial absorption of the cluster takes place leading to the formation of jogs. Residual defects produced during partial absorption pin the dislocation. By the calculation of stress-strain curves we have assessed the strength of those residues as obstacles for the motion of the dislocation, which is reflected on the unpinning stresses and the binding energies obtained. When the defect is outside this range, but on planes close to the dislocation glide plane, instead of absorption we have observed a capture process. Finally, with a view to introducing explicitly in kinetic Monte Carlo models a sink with the shape of a dislocation line, we have summarized our findings on a table presenting the most relevant parameters, which define the interaction of the dislocation with the defects considered.

  4. Exercise-induced thallium-201 myocardial perfusion defects in angina pectoris without significant coronary artery stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Nakazato, Masayasu; Maruoka, Yuji; Sunagawa, Osahiko; Kinjo, Kunihiko; Tomori, Masayuki; Fukiyama, Koshiro (Ryukyu Univ., Nishihara, Okinawa (Japan). School of Medicine)

    1990-01-01

    We performed exercise thallium-201 myocardial scintigraphy in 32 patients with angina pectoris to study the incidence of perfusion defects, who had no significant organic stenosis on coronary angiography. None of them had myocardial infarction or cardiomyopathy. Thallium-201 myocardial scintigraphy and 12-lead ECG recording were performed during supine bicycle ergometer exercise. Perfusion defects in thallium-201 scintigrams in SPECT images were assessed during visual analysis by two observers. In the coronary angiograms obtained during intravenous infusion of nitroglycerin, the luminal diameter of 75% stenosis or less in the AHA classification was regarded as an insignificant organic stenosis. Myocardial perfusion defects in the thallium-201 scintigrams were detected in eight (25%) of the 32 patients. Six of these eight patients had variant angina documented during spontaneous attacks with ST elevations in standard 12-lead ECGs. Perfusion defects were demonstrated at the inferior or infero-posterior regions in six patients, one of whom had concomitant anteroseptal defect. The defects were not always accompanied by chest pain. All but one patient demonstrating inferior or inferoposterior defects showed ST depression in leads II, III and aV{sub F} on their ECGs, corresponding to inferior wall ischemia. The exception was a case with right bundle branch block. Thus, 25% of the patients with angina pectoris, who had no evidence of significant organic stenosis on their coronary angiograms, exhibited exercise-induced perfusion defects in their thallium-201 scintigrams. Coronary spasms might have caused myocardial ischemia in these patients. (author).

  5. Radiation damage in silicon. Defect analysis and detector properties

    International Nuclear Information System (INIS)

    Hoenniger, F.

    2008-01-01

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after γ-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO i , C i O i , C i C s , VP or V 2 several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO 2 defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep acceptor, a model has been introduced to

  6. Radiation damage in silicon. Defect analysis and detector properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F.

    2008-01-15

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after {gamma}-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO{sub i}, C{sub i}O{sub i}, C{sub i}C{sub s}, VP or V{sub 2} several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO{sub 2} defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep

  7. The changes of the structural, magnetic, and mechanical properties in a reactor pressure vessel steel neutron-irradiated at 70 .deg. C

    CERN Document Server

    Park, D G; Jang, K S; Jung, M M; Kim, G M

    1999-01-01

    The irradiation embrittlement of reactor-pressure-vessel steel has been one of the main safety concerns in nuclear power plants. In the present study, an SA508-3 RPV steel was irradiated by neutrons with various fluences up to 10 sup 1 sup 8 n/cm sup 2 (E>=1MeV) at a temperature of approximately 70 .deg. C. The irradiation responses of the structural, the magnetic, and the mechanical properties of the steel were investigated by means of X-ray diffraction, Moessbauer spectroscopy, magnetic Barkhausen noise, and micro-Vickers hardness measurements. The transitions of all of these parameters occurred above a neutron does of 10 sup 1 sup 6 n/cm sup 2. The results of the X-ray and the Moessbauer experiments revealed that neutron irradiation led to the possibility of partial amorphization in the investigated RPV steel. The changes of the physical and the mechanical properties were discussed in terms of irradiation-induced cascade damage of crystalline materials.

  8. Critical assessment of Cr-rich precipitates in neutron-irradiated Fe-12 at%Cr: Comparison of SANS and APT

    Science.gov (United States)

    Bergner, F.; Pareige, C.; Kuksenko, V.; Malerba, L.; Pareige, P.; Ulbricht, A.; Wagner, A.

    2013-11-01

    Neutron irradiation at 300 °C up to 0.6 dpa of an industrial purity Fe-12at%Cr alloy gives rise to the formation of Cr-rich precipitates of radii of about 1 nm. Small-angle neutron scattering (SANS) and atom probe tomography (APT) applied to the same material should reveal consistent characteristics of the irradiation-induced features. They roughly do so with respect to size and volume fraction, but they do not with respect to the composition of the precipitates or clusters. The discrepancy was expressed in terms of the Porod invariant of nuclear SANS. This quantity can be determined directly by integrating the measured nuclear difference scattering cross section or, alternatively, estimated from the APT results. Both estimates were compared taking into account all potential sources of deviation including error propagation. We have found that the deviation is significant and can be progressively removed by artificially reducing the Fe fraction in the Cr-rich clusters with respect to the measured value. A well-known effect of this kind is the different evaporation fields of Cr-rich clusters and the Fe-rich matrix and resulting ion trajectory overlaps in APT. State-of-the-art consideration of this effect indicates, however, that it is not sufficient to remove the observed discrepancy.

  9. Recombination processes and light-induced defect creation in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Morigaki, K. [Department of Electrical and Digital-System Engineering, Hiroshima Institute of Technology, Miyake, Saeki-ku (Japan)

    2009-05-15

    Recombination processes of electrons and holes in hydrogenated amorphous silicon (a-Si:H) are reviewed in terms of our model. The long decay component of photoluminescence (PL) and the long decay of light-induced electron spin resonance (LESR) are compared, and it is concluded that radiative centres responsible for the long decay component of PL are not LESR centres that are nonradiative centres. This is consistent with our model. The mechanism of light-induced defect creation in a-Si:H and its kinetics is summarized in terms of our model. The related defects involved in the recombination processes and the light-induced defect creation in a-Si:H are discussed. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Alterations in water and electrolyte absorption in the rat colon following neutron irradiation: influence of neutron component and irradiation dose.

    Science.gov (United States)

    Dublineau, I; Ksas, B; Joubert, C; Aigueperse, J; Gourmelon, P; Griffiths, N M

    2002-12-01

    To study the absorptive function of rat colon following whole-body exposure to neutron irradiation, either to the same total dose with varying proportion of neutrons or to the same neutron proportion with an increasing irradiation dose. Different proportions of neutron irradiation were produced from the reactor SILENE using a fissile solution of uranium nitrate (8, 47 and 87% neutron). Water and electrolyte fluxes were measured in the rat in vivo under anaesthesia by insertion into the descending colon of an agarose gel cylinder simulating the faeces. Functional studies were completed by histological analyses. In the first set of experiments, rats received 3.8 Gy with various neutron percentages and were studied from 1 to 14 days after exposure. In the second set of experiments, rats were exposed to increasing doses of irradiation (1-4Gy) with a high neutron percentage (87%n) and were studied at 4 days after exposure. The absorptive capacity of rat colon was diminished by irradiation at 3-5 days, with a nadir at 4 days. The results demonstrate that an increase in the neutron proportion is associated with an amplification of the effects. Furthermore, a delay in the re-establishment of normal absorption was observed with the high neutron proportion (87%n). A dose-dependent reduction of water absorption by rat colon was also observed following neutron irradiation (87%n), with a 50% reduction at 3 Gy. Comparison of this dose-effect curve with the curve obtained following gamma (60)Co-irradiation indicates an RBE of 2.2 for absorptive colonic function in rat calculated at 4 days after exposure.

  11. Mechanical energy losses in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zelada, Griselda I. [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Lambri, Osvaldo Agustin [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario - CONICET, Member of the CONICET& #x27; s Research Staff, Avda. Pellegrini 250, 2000 Rosario (Argentina); Bozzano, Patricia B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, 1650 San Martin (Argentina); Garcia, Jose Angel [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)

    2012-10-15

    Mechanical spectroscopy (MS) and transmission electron microscopy (TEM) studies have been performed in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum, oriented for single slip, in order to study the dislocation dynamics in the temperature range within one third of the melting temperature. A damping peak related to the interaction of dislocation lines with both prismatic loops and tangles of dislocations was found. The peak temperature ranges between 900 and 1050 K, for an oscillating frequency of about 1 Hz. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Nuclear and Physical Properties of Dielectrics under Neutron Irradiation in Fast (BN-600) and Fusion (DEMO-S) Reactors

    Science.gov (United States)

    Blokhin, D. A.; Chernov, V. M.; Blokhin, A. I.

    2017-12-01

    Nuclear and physical properties (activation and transmutation of elements) of BN and Al2O3 dielectric materials subjected to neutron irradiation for up to 5 years in Russian fast (BN-600) and fusion (DEMO-S) reactors were calculated using the ACDAM-2.0 software complex for different post-irradiation cooling times (up to 10 years). Analytical relations were derived for the calculated quantities. The results may be used in the analysis of properties of irradiated dielectric materials and may help establish the rules for safe handling of these materials.

  13. Qualitative dose response of the normal canine head to epithermal neutron irradiation with and without boron capture

    International Nuclear Information System (INIS)

    DeHaan, C.E.; Gavin, P.R.; Kraft, S.L.; Wheeler, F.J.; Atkinson, C.A.

    1992-01-01

    Boron Neutron Capture Therapy is being re-evaluated for the treatment of intracranial tumors. Prior to human clinical trials, determination of normal tissue tolerance is critical. Dogs were chosen as a large animal model for the following reasons. Dogs can be evaluated with advanced imaging, diagnostic and therapeutic modalities. Dogs are amenable to detailed neurologic examination and subtle behavioral changes are easily detected. Specifically, Labrador retrievers were chosen for their large body and head size. The dogs received varying doses of epithermal neutron irradiation and boron neutron capture irradiation using an epithermal neutron source. The dogs were closely monitored for up to one year post irradiation

  14. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels; Etude a la sonde atomique de l`evolution microstructurale sous irradiation d`alliages ferritiques Fe-Cu et d`aciers de cuve REP

    Energy Technology Data Exchange (ETDEWEB)

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends.

  15. Reduction in diabetes-induced craniofacial defects by maternal immune stimulation.

    Science.gov (United States)

    Hrubec, Terry C; Prater, M Renee; Toops, Kimberly A; Holladay, Steven D

    2006-02-01

    Maternal diabetes can induce a number of developmental abnormalities in laboratory animals and humans, including facial deformities and defects in neural tube closure. The incidence of birth defects in newborns of diabetic women is approximately 3-5 times higher than among non-diabetics. In mice, non-specific activation of the maternal immune system can reduce fetal abnormalities caused by diverse etiologies, including diabetes induced neural tube defects. This study was conducted to determine whether non-specific maternal immune stimulation could reduce diabetes-induced craniofacial defects as well. Maternal immune function was stimulated before streptozocin (STZ) treatment by maternal footpad injection with Freund's complete adjuvant (FCA), maternal intraperitoneal (i.p.) injection with granulocyte-macrophage colony-stimulating factor (GM-CSF), or maternal i.p. injection with interferon-gamma (IFNgamma). Streptozocin (200 mg/kg i.p.) was used to induce hyperglycemia (26-35 mmol blood glucose) in female ICR mice before breeding. Fetuses from 12-18 litters per treatment group, were collected at Day 17 of gestation. Craniofacial defects were observed in fetuses from all hyperglycemic groups. The incidence of defects was significantly decreased in fetuses from dams immune stimulated with IFNgamma or GM-CSF. The most common defects were reduced maxillary and mandibular lengths. Both were prevented by maternal stimulation with GM-CSF. Maternal immune stimulation reduced the incidence of diabetic craniofacial embryopathy. The mechanisms for these protective effects are unknown but may involve maternal or fetal production of cytokines or growth factors that protect the fetus from the dysregulatory effects of hyperglycemia.

  16. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    International Nuclear Information System (INIS)

    Senor, D.J.; Youngblood, G.E.; Moore, C.E.; Trimble, D.J.; Woods, J.J.

    1996-06-01

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation of irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD β-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination

  17. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics

    International Nuclear Information System (INIS)

    Senor, D.J.; Youngblood, G.E.; Moore, C.E.; Trimble, D.J.; Woods, J.J.

    1997-05-01

    A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation after irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD β-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination

  18. Analysis of the micro-structural damages by neutronic irradiation of the steel of reactor vessels of the nuclear power plant of Laguna Verde. Characterization of the design steel

    International Nuclear Information System (INIS)

    Moranchel y Rodriguez, M.; Garcia B, A.; Longoria G, L. C.

    2010-09-01

    The vessel of a nuclear reactor is one of the safety barriers more important in the design, construction and operation of the reactor. If the vessel results affected to the grade of to have fracture and/or cracks it is very probable the conclusion of their useful life in order to guarantee the nuclear safety and the radiological protection of the exposure occupational personnel, of the public and the environment avoiding the exposition to radioactive sources. The materials of the vessel of a nuclear reactor are exposed continually to the neutronic irradiation that generates the same nuclear reactor. The neutrons that impact to the vessel have the sufficient energy to penetrate certain depth in function of the energy of the incident neutron until reaching the repose or to be absorbed by some nucleus. In the course of their penetration, the neutrons interact with the nuclei, atoms, molecules and with the same crystalline nets of the vessel material producing vacuums, interstitial, precipitate and segregations among other defects that can modify the mechanical properties of the steel. The steel A533-B is the material with which is manufactured the vessel of the nuclear reactors of nuclear power plant of Laguna Verde, is an alloy that, among other components, it contains atoms of Ni that if they are segregated by the neutrons impact this would favor to the cracking of the same vessel. This work is part of an investigation to analyze the micro-structural damages of the reactor vessels of the nuclear power plant of Laguna Verde due to the neutronic irradiation which is exposed in a continuous way. We will show the characterization of the design steel of the vessel, what offers a comprehension about their chemical composition, the superficial topography and the crystalline nets of the steel A533-B. It will also allow analyze the existence of precipitates, segregates, the type of crystalline net and the distances inter-plains of the design steel of the vessel. (Author)

  19. Electric field deformation in diamond sensors induced by radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de; Boegelspacher, Felix; Dierlamm, Alexander; Mueller, Thomas; Steck, Pia [Institut fuer Experimentelle Kernphysik (IEKP), Karlsruher Institut fuer Technologie (KIT) (Germany); Dabrowski, Anne; Guthoff, Moritz [CERN (Switzerland)

    2016-07-01

    The BCML system is a beam monitoring device in the CMS experiment at the LHC. As detectors 32 poly-crystalline CVD diamond sensors are positioned in a ring around the beam pipe at a distance of ±1.8 m and ±14.4 m from the interaction point. The radiation hardness of the diamond sensors in terms of measured signal during operation was significantly lower than expected from laboratory measurements. At high particle rates, such as those occurring during the operation of the LHC, a significant fraction of the defects act as traps for charge carriers. This space charge modifies the electrical field in the sensor bulk leading to a reduction of the charge collection efficiency (CCE). A diamond irradiation campaign was started to investigate the rate dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the Transient Current Technique, the CCE was measured. The experimental results were used to create an effective trap model that takes the radiation damage into account. Using this trap model the rate dependent electrical field deformation and the CCE were simulated with the software ''SILVACO TCAD''. This talk compares the experimental measurement results with the simulations.

  20. Defect-impurity complex induced long-range ferromagnetism in GaN nanowires

    KAUST Repository

    Assa Aravindh, S

    2015-12-14

    Present work investigates the structural, electronic and magnetic properties of Gd doped wurtzite GaN nanowires (NWs) oriented along the [0001] direction in presence of intrinsic defects by employing the GGA + U approximation. We find that Ga vacancy (VGa) exhibits lower formation energy compared to N vacancy. Further stabilization of point defects occurs due to the presence of Gd. The strength of ferromagnetism (FM) increases by additional positive charge induced by the VGa. Electronic structure analysis shows that VGa introduces defect levels in the band gap leading to ferromagnetic coupling due to the hybridization of the p states of the Ga and N atoms with the Gd d and f states. Ferromagnetic exchange coupling energy of 76.4 meV is obtained in presence of Gd-VGa complex; hence, the FM is largely determined by the cation vacancy-rare earth complex defects in GaN NWs.

  1. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Science.gov (United States)

    Shim, Hee Jin; Lee, Eun-Mi; Nguyen, Long Duy; Shim, Jaekyung; Song, Young-Han

    2014-01-01

    Ionizing radiation (IR) treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs) generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  2. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Hee Jin Shim

    Full Text Available Ionizing radiation (IR treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  3. Effect of implanted species on thermal evolution of ion-induced defects in ZnO

    International Nuclear Information System (INIS)

    Azarov, A. Yu.; Rauwel, P.; Kuznetsov, A. Yu.; Svensson, B. G.; Hallén, A.; Du, X. L.

    2014-01-01

    Implanted atoms can affect the evolution of ion-induced defects in radiation hard materials exhibiting a high dynamic annealing and these processes are poorly understood. Here, we study the thermal evolution of structural defects in wurtzite ZnO samples implanted at room temperature with a wide range of ion species (from 11 B to 209 Bi) to ion doses up to 2 × 10 16  cm −2 . The structural disorder was characterized by a combination of Rutherford backscattering spectrometry, nuclear reaction analysis, and transmission electron microscopy, while secondary ion mass spectrometry was used to monitor the behavior of both the implanted elements and residual impurities, such as Li. The results show that the damage formation and its thermal evolution strongly depend on the ion species. In particular, for F implanted samples, a strong out-diffusion of the implanted ions results in an efficient crystal recovery already at 600 °C, while co-implantation with B (via BF 2 ) ions suppresses both the F out-diffusion and the lattice recovery at such low temperatures. The damage produced by heavy ions (such as Cd, Au, and Bi) exhibits a two-stage annealing behavior where efficient removal of point defects and small defect clusters occurs at temperatures ∼500 °C, while the second stage is characterized by a gradual and partial annealing of extended defects. These defects can persist even after treatment at 900 °C. In contrast, the defects produced by light and medium mass ions (O, B, and Zn) exhibit a more gradual annealing with increasing temperature without distinct stages. In addition, effects of the implanted species may lead to a nontrivial defect evolution during the annealing, with N, Ag, and Er as prime examples. In general, the obtained results are interpreted in terms of formation of different dopant-defect complexes and their thermal stability

  4. Response of induced bone defects in horses to collagen matrix containing the human parathyroid hormone gene.

    Science.gov (United States)

    Backstrom, Kristin C; Bertone, Alicia L; Wisner, Erik R; Weisbrode, Stephen E

    2004-09-01

    To determine whether human parathyroid hormone (hPTH) gene in collagen matrix could safely promote bone formation in diaphyseal or subchondral bones of horses. 8 clinically normal adult horses. Amount, rate, and quality of bone healing for 13 weeks were determined by use of radiography, quantitative computed tomography, and histomorphometric analysis. Diaphyseal cortex and subchondral bone defects of metacarpi were filled with hPTH(1-34) gene-activated matrix (GAM) or remained untreated. Joints were assessed on the basis of circumference, synovial fluid analysis, pain on flexion, lameness, and gross and histologic examination. Bone volume index was greater for cortical defects treated with hPTH(1-34) GAM, compared with untreated defects. Bone production in cortical defects treated with hPTH(1-34) GAM positively correlated with native bone formation in untreated defects. In contrast, less bone was detected in hPTH(1-34) GAM-treated subchondral bone defects, compared with untreated defects, and histology confirmed poorer healing and residual collagen sponge. Use of hPTH(1-34) GAM induced greater total bone, specifically periosteal bone, after 13 weeks of healing in cortical defects of horses. The hPTH(1-34) GAM impeded healing of subchondral bone but was biocompatible with joint tissues. Promotion of periosteal bone formation may be beneficial for healing of cortical fractures in horses, but the delay in onset of bone formation may negate benefits. The hPTH(1-34) GAM used in this study should not be placed in articular subchondral bone defects, but contact with articular surfaces is unlikely to cause short-term adverse effects.

  5. Effect of implanted species on thermal evolution of ion-induced defects in ZnO

    Science.gov (United States)

    Azarov, A. Yu.; Hallén, A.; Du, X. L.; Rauwel, P.; Kuznetsov, A. Yu.; Svensson, B. G.

    2014-02-01

    Implanted atoms can affect the evolution of ion-induced defects in radiation hard materials exhibiting a high dynamic annealing and these processes are poorly understood. Here, we study the thermal evolution of structural defects in wurtzite ZnO samples implanted at room temperature with a wide range of ion species (from 11B to 209Bi) to ion doses up to 2 × 1016 cm-2. The structural disorder was characterized by a combination of Rutherford backscattering spectrometry, nuclear reaction analysis, and transmission electron microscopy, while secondary ion mass spectrometry was used to monitor the behavior of both the implanted elements and residual impurities, such as Li. The results show that the damage formation and its thermal evolution strongly depend on the ion species. In particular, for F implanted samples, a strong out-diffusion of the implanted ions results in an efficient crystal recovery already at 600 °C, while co-implantation with B (via BF2) ions suppresses both the F out-diffusion and the lattice recovery at such low temperatures. The damage produced by heavy ions (such as Cd, Au, and Bi) exhibits a two-stage annealing behavior where efficient removal of point defects and small defect clusters occurs at temperatures ˜500 °C, while the second stage is characterized by a gradual and partial annealing of extended defects. These defects can persist even after treatment at 900 °C. In contrast, the defects produced by light and medium mass ions (O, B, and Zn) exhibit a more gradual annealing with increasing temperature without distinct stages. In addition, effects of the implanted species may lead to a nontrivial defect evolution during the annealing, with N, Ag, and Er as prime examples. In general, the obtained results are interpreted in terms of formation of different dopant-defect complexes and their thermal stability.

  6. Photo-induced current transient spectroscopy of defect clusters in heavily irradiated silicon

    CERN Document Server

    Menichelli, D

    2002-01-01

    We report an experimental study on radiation-induced defects in silicon p sup + n junctions irradiated with 1 MeV neutrons up to a fluence of approx 2x10 sup 1 sup 5 cm sup - sup 2. Heavily irradiated silicon diodes have been studied by means of Photon-Induced Current Transient Spectroscopy (PICTS) technique using a variable filling time. A dominant broad and structured peak has been found in the temperature range 200-300 K. The behavior of this broad peak upon changing the filling time has been analyzed, and it is observed that spectral line-shape broadens toward lower temperature as the filling time is increased. The observed spectra shape modification cannot be explained in terms of isolated point defects being consistent with quasi-continuous distributions of deep levels inside the band gap. We suggest that the investigated broad peak is at least in part, generated by emission from defect clusters.

  7. Circular patterns of calcium oxalate monohydrate induced by defective Langmuir-Blodgett film on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    He Jieyu [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Ouyang Jianming [Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China); Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632 (China)], E-mail: toyjm@jnu.edu.cn

    2009-01-01

    The defective Langmuir-Blodgett (LB) film of dipalmitoylphosphatidylcholine (DPPC) on quartz injured by potassium oxalate (K{sub 2}C{sub 2}O{sub 4}) was used as a model system to induce growth of calcium oxalate crystals. Atomic force microscopy (AFM) indicated that circular defective domains with a diameter of 1-200 {mu}m existed in the LB film. Scanning electron microscopy (SEM) showed circular patterns of aggregated calcium oxalate monohydrate (COM) crystallites were induced by these defective domains. It was ascribed to that the interaction between the negatively-charged oxalate ions and the phosphatidyl groups in DPPC headgroups makes the phospholipid molecules rearranged and exist in an out-of-order state in the LB film, especially at the boundaries of liquid-condensed (LC)/liquid-expanded (LE) phases, which provide much more nucleating sites for COM crystals.

  8. Microstructural changes of Y-doped V-4Cr-4Ti alloys after ion and neutron irradiation

    Directory of Open Access Journals (Sweden)

    H. Watanabe

    2016-12-01

    Full Text Available High-purity Y-doped V-4Cr-4Ti alloys (0.1–0.2wt. % Y, manufactured by the National Institute for Fusion Science (NIFS, were used for this study. Heavy-ion and fission-neutron irradiation was carried out at temperatures 673–873K. During the ion irradiation at 873K, the microstructure was controlled by the formation of Ti(C,O,N precipitates lying on the (100 plane. Y addition effectively suppressed the growth of Ti(C,O,N precipitates, especially at lower dose irradiation to up to 4 dpa. However, at higher dose levels (12.0 dpa, the number density was almost at the same levels irrespective of the presence of Y. After neutron irradiation at 873K, fine titanium oxides were also observed in all V alloys. However, smaller oxide sizes were observed in the Y-doped samples under the same irradiation conditions. The detailed analysis of EDS showed that the center of the Ti(C,O,N precipitates was mainly enriched by nitrogen. The results showed that the contribution of not only oxygen atoms picked up from the irradiation environment but also nitrogen atoms is essential to understand the microstructural evolution of V-4Cr-4Ti-Y alloys.

  9. Effects of neutron irradiation on optical and chemical properties of CR-39: Potential application in neutron dosimetry.

    Science.gov (United States)

    Sahoo, G S; Paul, S; Tripathy, S P; Sharma, S C; Jena, S; Rout, S; Joshi, D S; Bandyopadhyay, T

    2014-12-01

    Effects of high-dose neutron irradiation on chemical and optical properties of CR-39 were studied using FTIR (Fourier Transform Infrared) and UV-vis (Ultraviolet-Visible) spectroscopy. The primary goal was to find a correlation between the neutron dose and the corresponding changes in the optical and chemical properties of CR-39 resulted from the neutron irradiation. The neutrons were produced by bombarding a thick Be target with 22-MeV protons. In the FTIR spectra, prominent absorbance peaks were observed at 1735cm(-1) (C=O stretching), 1230cm(-1)(C-O-C stretching), and 783cm(-1)(=C-H bending), the intensities of which decreased with increasing neutron dose. The optical absorbance in the visible range increased linearly with the neutron dose. Empirical relations were established to estimate neutron doses from these optical properties. This technique is particularly useful in measuring high doses, where track analysis with an optical microscope is difficult because of track overlapping. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The effect of prior cold-work on the deformation behaviour of neutron irradiated AISI 304 austenitic stainless steel

    Science.gov (United States)

    Karlsen, Wade; Van Dyck, Steven

    2010-11-01

    Cold-work is intentionally employed to increase the yield strength of austenitic stainless steels and also occurs during fabrication processes, but it has also been associated with greater incidence of stress corrosion cracking. This study examined the effect of up to 3.85 dpa neutron irradiation on the deformation behaviour and microstructures of 30% cold-worked AISI 304 material tensile tested at 300 °C. While the deformation behaviour of 0.07 dpa material was similar to non-irradiated material tested at the same temperature, its stress-strain curve was shifted upwards by about 200 MPa. Materials irradiated to over 2 dpa hardened some 400-500 MPa, but showed limited strain hardening capacity, exhibiting precipitous softening with further straining beyond the yield point. The observed behaviour is most likely a consequence of planar deformation products serving as strengtheners to the unirradiated bulk on the one hand, while promoting strain localization on the other, behaviour exacerbated by the subsequent neutron irradiation.

  11. Characterization of neutron-irradiated HT-UPS steel by high-energy X-ray diffraction microscopy

    International Nuclear Information System (INIS)

    Zhang, Xuan; Park, Jun-Sang; Almer, Jonathan; Li, Meimei

    2016-01-01

    This paper presents the first measurement of neutron-irradiated microstructure using far-field high-energy X-ray diffraction microscopy (FF-HEDM) in a high-temperature ultrafine-precipitate-strengthened (HT-UPS) austenitic stainless steel. Grain center of mass, grain size distribution, crystallographic orientation (texture), diffraction spot broadening and lattice constant distributions of individual grains were obtained for samples in three different conditions: non-irradiated, neutron-irradiated (3dpa/500 °C), and irradiated + annealed (3dpa/500 °C + 600 °C/1 h). It was found that irradiation caused significant increase in grain-level diffraction spot broadening, modified the texture, reduced the grain-averaged lattice constant, but had nearly no effect on the average grain size and grain size distribution, as well as the grain size-dependent lattice constant variations. Post-irradiation annealing largely reversed the irradiation effects on texture and average lattice constant, but inadequately restored the microstrain.

  12. Increase of the electrical resistance of thin copper film due to 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    Agrawal, S.K.; Kumar, U.; Nigam, A.K.; Singh, S.P.

    1981-01-01

    The variation in the electrical resistance of thin copper film (500 A 0 thick), grown on the glass slide has been measured with increasing 14 MeV neutron irradiation time. The electrical resistance vs irradiation time curve shows an interesting behaviour after an irradiation of 40 minutes. However, there is a net increase in the electrical resistance with increasing neutron dose. The maximum increase in the observed electrical resistance after an irradiation of 115 mins, is 4.45%. The microstructural studies of irradiated film were made using TEM and TED techniques. The TEM patterns up to an irradiation time of 1.00 hr do not show any appreciable change in the microstructure. The TED patterns also do not show any appreciable change in the diffraction pattern up to an irradiation time of 1.0 hr. But after an irradiation time of 1.5 hrs, two extra rings appear in the TED pattern which disappear with increasing neutron irradiation time

  13. Atom Probe Tomography Characterization of the Solute Distributions in a Neutron-Irradiated and Annealed Pressure Vessel Steel Weld

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K.

    2001-01-30

    A combined atom probe tomography and atom probe field ion microscopy study has been performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical stress relief treatment of 40 h at 607 C, after neutron irradiation to a fluence of 2 x 10{sup 23} n m{sup {minus}2} (E > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454 C. This report describes the matrix composition and the size, composition, and number density of the ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in these parameters with post-irradiation annealing treatments.

  14. Characterization of neutron-irradiated HT-UPS steel by high-energy X-ray diffraction microscopy

    Science.gov (United States)

    Zhang, Xuan; Park, Jun-Sang; Almer, Jonathan; Li, Meimei

    2016-04-01

    This paper presents the first measurement of neutron-irradiated microstructure using far-field high-energy X-ray diffraction microscopy (FF-HEDM) in a high-temperature ultrafine-precipitate-strengthened (HT-UPS) austenitic stainless steel. Grain center of mass, grain size distribution, crystallographic orientation (texture), diffraction spot broadening and lattice constant distributions of individual grains were obtained for samples in three different conditions: non-irradiated, neutron-irradiated (3dpa/500 °C), and irradiated + annealed (3dpa/500 °C + 600 °C/1 h). It was found that irradiation caused significant increase in grain-level diffraction spot broadening, modified the texture, reduced the grain-averaged lattice constant, but had nearly no effect on the average grain size and grain size distribution, as well as the grain size-dependent lattice constant variations. Post-irradiation annealing largely reversed the irradiation effects on texture and average lattice constant, but inadequately restored the microstrain.

  15. Effect of germanium doping on the formation kinetics of vacancy-dioxygen complexes in high dose neutron irradiated crystalline silicon

    Science.gov (United States)

    Dong, Peng; Yu, Xuegong; Chen, Lin; Ma, Xiangyang; Yang, Deren

    2017-09-01

    The effect of germanium (Ge) doping on the formation kinetics of vacancy-dioxygen (VO2) complexes in high dose neutron irradiated crystalline silicon (c-Si) has been quantitatively investigated using infrared spectroscopy at 10 K. It is observed that Ge doping of 1019 cm-3 enhances the formation of vacancy-oxygen (VO) complexes by ˜15% during neutron irradiation and slightly suppresses the conversion of VO into VO2 complexes. By studying the generation kinetics of VO2 complexes in the temperature range of 300-345 °C, it is found that the activation energies of VO2 generation are determined to be 1.52 and 1.71 eV in the reference and Ge-doped c-Si, respectively. According to the theory for diffusion limited reactions, it is suggested that Ge doping can retard the VO diffusion in c-Si and therefore reduce the capture probability of Oi for VO complexes. This may be attributed to the temporary trapping of vacancies by Ge atoms. Hence, the formation of VO2 complexes in c-Si is slightly suppressed by Ge doping.

  16. Study of concrete activation with IFMIF-like neutron irradiation: Status of EAF and TENDL neutron activation cross-sections

    Science.gov (United States)

    García, Mauricio; Sauvan, Patrick; García, Raquel; Ogando, Francisco; Sanz, Javier

    2017-09-01

    The aim of this paper is to check the performance of last versions of EAF and TENDL libraries (EAF2007, EAF2010, and TENDL2014) in the prediction of concrete activation under the neutron irradiation environment expected in IFMIF, an accelerator-based neutron source conceived for fusion materials testing. For this purpose Activity and dose rate responses of three types of concrete (ITER-Bioshield kind, barite and magnetite concretes) have been studied. For these quantities, dominant nuclides and production pathways have been determined and, then, a qualitative analysis of the relevant activation cross-sections involved has been performed by comparing data from mentioned libraries with experimental data from EXFOR database. Concrete activation studies have been carried out with IFMIF-like neutron irradiation conditions using the ACAB code and EAF and TENDL libraries. The cooling times assessed are related to safety and maintenance operations, specifically 1 hour, 1 day and 12 days. Final conclusions are focused on the recommendations for the activation library to be used among those analyzed and cross-section data to be improved.

  17. Effect of neutron irradiation at low temperature on the embrittlement of the reduced-activation ferritic steels

    Science.gov (United States)

    Rybin, V. V.; Kursevich, I. P.; Lapin, A. N.

    1998-10-01

    Effects of neutron irradiation to fluence of 2.0 × 10 24 n/m 2 ( E > 0.5 MeV) in temperature range 70-300°C on mechanical properties and structure of the experimental reduced-activation ferritic 0.1%C-(2.5-12)%Cr-(1-2)%W-(0.2-0.7)%V alloys were investigated. The steels were studied in different initial structural conditions obtained by changing the modes of heat treatments. Effect of neutron irradiation estimated by a shift in ductile-brittle transition temperature (ΔDBTT) and reduction of upper shelf energy (ΔUSE) highly depends on both irradiation condition and steel chemical composition and structure. For the steel with optimum chemical composition (9Cr-1.5WV) after irradiation to 2 × 10 24 n/m 2 ( E ⩾ 0.5 MeV) at 280°C the ΔDBTT does not exceed 25°C. The shift in DBTT increased from 35°C to 110°C for the 8Cr-1.5WV steel at a decrease in irradiation temperature from 300°C to 70°C. The CCT diagrams are presented for several reduced-activated steels.

  18. Effect of neutron irradiation at low temperature on the embrittlement of the reduced-activation ferritic steels

    International Nuclear Information System (INIS)

    Rybin, V.V.; Kursevich, I.P.; Lapin, A.N.

    1998-01-01

    Effects of neutron irradiation to fluence of 2.0 x 10 24 n/m 2 (E > 0.5 MeV) in temperature range 70-300 C on mechanical properties and structure of the experimental reduced-activation ferritic 0.1% C-(2.5-12)%Cr-(1-2)%W-(0.2-0.7)%V alloys were investigated. The steels were studied in different initial structural conditions obtained by changing the modes of heat treatments. Effect of neutron irradiation estimated by a shift in ductile-brittle transition temperature (ΔDBTT) and reduction of upper shelf energy (ΔUSE) highly depends on both irradiation condition and steel chemical composition and structure. For the steel with optimum chemical composition (9Cr-1.5WV) after irradiation to 2 x 10 24 n/m 2 (E ≥ 0.5 MeV) at 280 C the ΔDBTT does not exceed 25 C. The shift in DBTT increased from 35 C to 110 C for the 8Cr-1.5 WV steel at a decrease in irradiation temperature from 300 C to 70 C. The CCT diagrams are presented for several reduced-activated steels. (orig.)

  19. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures

  20. Electron paramagnetic resonance study on the ionizing radiation induced defects of the tooth enamel hydroxyapatite

    International Nuclear Information System (INIS)

    Oliveira, Liana Macedo de

    1995-01-01

    Hydroxyapatite is the main constituent of calcified tissues. Defects induced by ionizing radiations in this biomineral can present high stability and then, these are used as biological markers in radiological accidents, irradiated food identifying and geological and archaeological dating. In this work, paramagnetic centers induced on the enamel of the teeth by environmental ionizing radiation, are investigated by electron paramagnetic resonance (EPR). Decay thermal kinetic presents high complexity and shows the formation of different electron ligation energy centers and structures

  1. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells.

    Science.gov (United States)

    Ko, Ji-Yun; Kim, Kyung-Il; Park, Siyeon; Im, Gun-Il

    2014-04-01

    The purpose of this study was to investigate the chondrogenic features of human induced pluripotent stem cells (hiPSCs) and examine the differences in the chondrogenesis between hiPSCs and human bone marrow-derived MSCs (hBMMSCs). Embryoid bodies (EBs) were formed from undifferentiated hiPSCs. After EBs were dissociated into single cells, chondrogenic culture was performed in pellets and alginate hydrogel. Chondro-induced hiPSCs were implanted in osteochondral defects created on the patellar groove of immunosuppressed rats and evaluated after 12 weeks. The ESC markers NANOG, SSEA4 and OCT3/4 disappeared while the mesodermal marker BMP-4 appeared in chondro-induced hiPSCs. After 21 days of culture, greater glycosaminoglycan contents and better chondrocytic features including lacuna and abundant matrix formation were observed from chondro-induced hiPSCs compared to chondro-induced hBMMSCs. The expression of chondrogenic markers including SOX-9, type II collagen, and aggrecan in chondro-induced hiPSCs was comparable to or greater than chondro-induced hBMMSCs. A remarkably low level of hypertrophic and osteogenic markers including type X collagen, type I collagen and Runx-2 was noted in chondro-induced hiPSCs compared to chondro-induced hBMMSCs. hiPSCs had significantly greater methylation of several CpG sites in COL10A1 promoter than hBMMSCs in either undifferentiated or chondro-induced state, suggesting an epigenetic cause of the difference in hypertrophy. The defects implanted with chondro-induced hiPSCs showed a significantly better quality of cartilage repair than the control defects, and the majority of cells in the regenerated cartilage consisted of implanted hiPSCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells.

    Science.gov (United States)

    Hung, Sandy S C; Van Bergen, Nicole J; Jackson, Stacey; Liang, Helena; Mackey, David A; Hernández, Damián; Lim, Shiang Y; Hewitt, Alex W; Trounce, Ian; Pébay, Alice; Wong, Raymond C B

    2016-05-01

    Reprogramming of somatic cells into a pluripotent state is known to be accompanied by extensive restructuring of mitochondria and switch in metabolic requirements. Here we utilized Leber's hereditary optic neuropathy (LHON) as a mitochondrial disease model to study the effects of homoplasmic mtDNA mutations and subsequent oxidative phosphorylation (OXPHOS) defects in reprogramming. We obtained fibroblasts from a total of 6 LHON patients and control subjects, and showed a significant defect in complex I respiration in LHON fibroblasts by high-resolution respiratory analysis. Using episomal vector reprogramming, our results indicated that human induced pluripotent stem cell (hiPSC) generation is feasible in LHON fibroblasts. In particular, LHON-specific OXPHOS defects in fibroblasts only caused a mild reduction and did not significantly affect reprogramming efficiency, suggesting that hiPSC reprogramming can tolerate a certain degree of OXPHOS defects. Our results highlighted the induction of genes involved in mitochondrial biogenesis (TFAM, NRF1), mitochondrial fusion (MFN1, MFN2) and glycine production (GCAT) during reprogramming. However, LHON-associated OXPHOS defects did not alter the kinetics or expression levels of these genes during reprogramming. Together, our study provides new insights into the effects of mtDNA mutation and OXPHOS defects in reprogramming and genes associated with various aspects of mitochondrial biology.

  3. In-Situ Photoexcitation-Induced Suppression of Point Defect Generation in Ion Implanted Silicon

    International Nuclear Information System (INIS)

    Cho, C.R.; Rozgonyi, G.A.; Yarykin, N.; Zuhr, R.A.

    1999-01-01

    The formation of vacancy-related defects in n-type silicon has been studied immediately after implantation of He, Si, or Ge ions at 85 K using in-situ DLTS. A-center concentrations in He-implanted samples reach a maximum immediately after implantation, whereas, with Si or Ge ion implanted samples they continuously increase during subsequent anneals. It is proposed that defect clusters, which emit vacancies during anneals, are generated in the collision cascades of Si or Ge ions. An illumination-induced suppression of A-center formation is seen immediately after implantation of He ions at 85 K. This effect is also observed with Si or Ge ions, but only after annealing. The suppression of vacancy complex formation via photoexcitation is believed to occur due to an enhanced recombination of defects during ion implantation, and results in reduced number of vacancies remaining in the defect clusters. In p-type silicon, a reduction in K-center formation and an enhanced migration of defects are concurrently observed in the illuminated sample implanted with Si ions. These observations are consistent with a model where the injection of excess carriers modifies the defect charge state and impacts their diffusion

  4. Polymers under ionizing radiation: the study of energy transfers to radiation induced defects

    International Nuclear Information System (INIS)

    Ventura, A.

    2013-01-01

    Radiation-induced defects created in polymers submitted to ionizing radiations, under inert atmosphere, present the same trend as a function of the dose. When the absorbed dose increases, their concentrations increase then level off. This behavior can be assigned to energy transfers from the polymer to the previously created macromolecular defects; the latter acting as energy sinks. During this thesis, we aimed to specify the influence of a given defect, namely the trans-vinylene, in the behavior of polyethylene under ionizing radiations. For this purpose, we proposed a new methodology based on the specific insertion, at various concentrations, of trans-vinylene groups in the polyethylene backbone through chemical synthesis. This enables to get rid of the variety of created defects on one hand and on the simultaneity of their creation on the other hand. Modified polyethylenes, containing solely trans-vinylene as odd groups, were irradiated under inert atmosphere, using either low LET beams (gamma, beta) or high LET beams (swift heavy ions). During irradiations, both macromolecular defects and H 2 emission were quantified. According to experimental results, among all defects, the influence of the trans-vinylene on the behavior of polyethylene is predominant. (author) [fr

  5. Process induced disorder in crystalline materials: differentiating defective crystals from the amorphous form of griseofulvin.

    Science.gov (United States)

    Feng, Tao; Pinal, Rodolfo; Carvajal, M Teresa

    2008-08-01

    This research investigates milling induced disorder in crystalline griseofulvin. Griseofulvin was subjected to cryogenic milling for various lengths of time. For comparison, the amorphous form of griseofulvin was also prepared by the quench melt method. Different analytical techniques were used to study the differences between the cryomilled, amorphous and crystalline forms of the drug. Cryogenic milling of griseofulvin progressively reduces the crystallinity of the drug by inducing crystal defects, rather than amorphous materials. Raman analysis provides evidence of structural differences between the two. The differences between the defective crystals produced by milling and the amorphous form are significant enough as to be measurable in their bulk thermal properties. Defective crystals show significant decrease in the heat of fusion as a function of milling time but do not exhibit a glass transition nor recrystallization from the amorphous form. Crystal defects undergo recrystallization upon heating at temperatures well below the glass transition temperature (T(g)) in a process that is separate and completely independent from the crystallization of the amorphous griseofulvin, observed above T(g). Physical mixtures of defective crystals and amorphous drug demonstrate that the thermal events associated with each form persist in the mixtures, unaffected by the presence of the other form.

  6. Simulation of space protons influence on silicon semiconductor devices using gamma-neutron irradiation

    International Nuclear Information System (INIS)

    Zhukov, Y.N.; Zinchenko, V.F.; Ulimov, V.N.

    1999-01-01

    In this study the authors focus on the problems of simulating the space proton energy spectra under laboratory gamma-neutron radiation tests of semiconductor devices (SD). A correct simulation of radiation effects implies to take into account and evaluate substantial differences in the processes of formation of primary defects in SD in space environment and under laboratory testing. These differences concern: 1) displacement defects, 2) ionization defects and 3) intensity of radiation. The study shows that: - the energy dependence of nonionizing energy loss (NIEL) is quite universal to predict the degradation of SD parameters associated to displacement defects, and - MOS devices that are sensitive to ionization defects indicated the same variation of parameters under conditions of equality of ionization density generated by protons and gamma radiations. (A.C.)

  7. Effect of radiation-induced emission of Schottky defects on the formation of colloids in alkali halides

    NARCIS (Netherlands)

    Dubinko, [No Value; Vainshtein, DI; Den Hartog, HW

    2003-01-01

    Formation of vacancy clusters in irradiated crystals is considered taking into account radiation-induced Schottky defect emission (RSDE) from extended defects. RSDE acts in the opposite direction compared with Frenkel pair production, and it results in the radiation-induced recovery processes. In

  8. Damage development and hardening in 14 MeV neutron irradiation of copper alloys at 250C

    International Nuclear Information System (INIS)

    Brager, H.R.; Garner, F.A.; Panayotou, N.F.

    1981-07-01

    Copper and copper alloyed with five atom percent of either aluminum, nickel or manganese were irradiated at 25 0 with 14 MeV neutrons to fluences up to 7.5 x 10 17 n/cm 2 (0.003 dpa). The radiation-induced microstructure of these materials was characterized by the coupled use of electron microscopy and microhardness. The irradiation-induced microhardness changes were found to be independent of alloy identity and the magnitude of the solute-induced hardening. It appears that at least 70% of the defect clusters are smaller than resolvable by microscopy (approx. 1 nm). The point defects at 25 0 C which survive recombination and aggregate in either visible or invisible clusters constitute at least 8% of those produced in the cascades

  9. Contribution To Degradation Study, Behavior Of Unsaturated Polyester Resin Under Neutron Irradiation

    Science.gov (United States)

    Abellache, D.; Lounis, A.; Taïbi, K.

    2010-01-01

    Applications of unsaturated polyester thermosetting resins are numerous in construction sector, in transport, electric spare parts manufactures, consumer goods, and anticorrosive materials. This survey reports the effect of thermosetting polymer degradation (unsaturated polyester): degradation by neutrons irradiation. In order to evaluate the deterioration of our material, some comparative characterizations have been done between standard samples and damaged ones. Scanning electron microscopy (SEM), ultrasonic scanning, hardness test (Shore D) are the techniques which have been used. The exposure to a neutrons flux is carried out in the column of the nuclear research reactor of Draria (Algiers-Algeria). The energetic profile of the incidental fluxes is constituted of fast neutrons (ΦR = 3.1012n.cm-2.s-1, E = 2 Mev) of thermal neutrons (ΦTH = 1013n.cm-2.s-1; E = 0.025 ev) and epithermal neutrons (Φepi = 7.1011 n.cm-2.s-1; E>4,9 ev). The received dose flow is 0,4 Kgy. We notice only a few scientific investigations can be found in this field. In comparison with the standard sample (no exposed) it is shown that the damage degree is an increasing process with the exposure. Concerning the description of irradiation effects on polymers, we can advance that several reactions are in competition : reticulation, chain break, and oxidation by radical mechanism. In our case the incidental particle of high energy fast neutrons whose energy is greater or equal to 2 Mev, is braked by the target with a nuclear shock during which the incidental particle transmits a part of its energy to an atom. If the energy transfer is sufficient, the nuclear shock permits to drive out an atom of its site the latter will return positioning interstitially, the energy that we used oversteps probably the energy threshold (displacement energy). This fast neutrons collision with target cores proceeds to an indirect ionization by the preliminary creation of excited secondary species that will

  10. The swelling, microstructure, and hardening of wrought LCAC, TZM, and ODS molybdenum following neutron irradiation

    Science.gov (United States)

    Cockeram, B. V.; Smith, R. W.; Hashimoto, N.; Snead, L. L.

    2011-11-01

    TEM examinations and swelling measurements were performed on commercially available wrought Low Carbon Arc Cast (LCAC), La-oxide Oxide Dispersion Strengthened (ODS), and TZM molybdenum alloys following irradiation in the High Flux Isotope Reactor (HFIR) at 300 °C, 600 °C, and 900 °C to neutron fluences between 1.05 and 24.7 × 10 25 n/m 2 ( E > 0.1 MeV), or 0.6-13.1 dpa. The defect structure, hardening, and swelling were shown to be strongly dependent on irradiation temperature and starting microstructure. Irradiation at 300 °C results in the formation of a high number density of fine loops and voids (˜1 nm) that produce significant hardening and low swelling that is comparable for all alloys. Irradiation at 600 °C-784 °C produces a high number density of larger voids (5-6 nm) that results in significant hardening with the highest swelling. A low number density of the largest void sizes (8-30 nm) are formed for the 900 °C irradiation that result in low hardening and less swelling than observed for the 600 °C irradiation. The fine grain size of ODS Mo results in a higher concentration of denuded zones along grain boundaries and improved ductile-laminate toughening that results in improved resistance to irradiation embrittlement for the 600 °C irradiations. Irradiation-induced formation of precipitates rich in transmutation products is observed at the highest dose, and it is likely that these features exert an influence on subsequent void growth.

  11. Electron-spin-resonance study of radiation-induced paramagnetic defects in oxides grown on (100) silicon substrates

    International Nuclear Information System (INIS)

    Kim, Y.Y.; Lenahan, P.M.

    1988-01-01

    We have used electron-spin resonance to investigate radiation-induced point defects in Si/SiO 2 structures with (100) silicon substrates. We find that the radiation-induced point defects are quite similar to defects generated in Si/SiO 2 structures grown on (111) silicon substrates. In both cases, an oxygen-deficient silicon center, the E' defect, appears to be responsible for trapped positive charge. In both cases trivalent silicon (P/sub b/ centers) defects are primarily responsible for radiation-induced interface states. In earlier electron-spin-resonance studies of unirradiated (100) substrate capacitors two types of P/sub b/ centers were observed; in oxides prepared in three different ways only one of these centers, the P/sub b/ 0 defect, is generated in large numbers by ionizing radiation

  12. Contribution of Metal Defects in the Assembly Induced Emission of Cu Nanoclusters

    KAUST Repository

    Wu, Zhennan

    2017-03-20

    Aggregation/assembly induced emission (AIE) has been observed for metal nanoclusters (NCs), but the origin of the enhanced emission is not fully understood, yet. In this work, the significant contribution of metal defects on AIE is revealed by engineering the self-assembly process of Cu NCs using ethanol. The presence of ethanol leads to a rapid assembly of NCs into ultrathin nanosheets, promoting the formation of metal defects-rich surface. Detailed studies and computer simulation confirm that the metal defects-rich nanosheets possess increased Cu(I)-to-Cu(0) ratio, which greatly influences ligand-to-metal-metal charge transfer and therewith facilitates the radiative relaxation of excitons. Consequently, the Cu NCs self-assembly nanosheets exhibit obvious emission enhancement.

  13. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Manuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the source was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential

  14. STEM-EDS analysis of fission products in neutron-irradiated TRISO fuel particles from AGR-1 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Leng, B. [University of Wisconsin-Madison, Madison, WI 53706 (United States); Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Shanghai, 201800 (China); Rooyen, I.J. van, E-mail: Isabella.vanrooyen@inl.gov [Fuel Design and Development Department, Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Wu, Y.Q. [Department of Materials Science and Engineering, Boise State University, Boise, ID 83725-2090 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Szlufarska, I.; Sridharan, K. [University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-07-15

    Historic and recent post-irradiation-examination from the German AVR and Advanced Gas Reactor Fuel Development and Qualification Project have shown that 110 m Ag is released from intact tristructural isotropic (TRISO) fuel. Although TRISO fuel particle research has been performed over the last few decades, little is known about how metallic fission products are transported through the SiC layer, and it was not until March 2013 that Ag was first identified in the SiC layer of a neutron-irradiated TRISO fuel particle. The existence of Pd- and Ag-rich grain boundary precipitates, triple junction precipitates, and Pd nano-sized intragranular precipitates in neutron-irradiated TRISO particle coatings was investigated using Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy analysis to obtain more information on the chemical composition of the fission product precipitates. A U-rich fission product honeycomb shape precipitate network was found near a micron-sized precipitate in a SiC grain about ∼5 μm from the SiC-inner pyrolytic carbon interlayer, indicating a possible intragranular transport path for uranium. A single Ag-Pd nano-sized precipitate was found inside a SiC grain, and this is the first research showing such finding in irradiated SiC. This finding may possibly suggest a possible Pd-assisted intragranular transport mechanism for Ag and may be related to void or dislocation networks inside SiC grains. Preliminary semi-quantitative analysis indicated the micron-sized precipitates to be Pd{sub 2}Si{sub 2}U with carbon existing inside these precipitates. However, the results of such analysis for nano-sized precipitates may be influenced by the SiC matrix. The results reported in this paper confirm the co-existence of Cd with Ag in triple points reported previously. - Highlights: • First research data in neutron irradiated TRISO coated particles showing a Ag-Pd nano-sized precipitate inside a SiC grain. • Intragranular Ag Pd

  15. [Effect of simvastatin on inducing endothelial progenitor cells homing and promoting bone defect repair].

    Science.gov (United States)

    Song, Quansheng; Wang, Lingying; Zhu, Jinglin; Han, Xiaoguang; Li, Xu; Yang, Yanlin; Sun, Yan; Song, Chunli

    2010-09-01

    To investigate the effect of simvastatin on inducing endothelial progenitor cells (EPCs) homing and promoting bone defect repair, and to explore the mechanism of local implanting simvastatin in promoting bone formation. Simvastatin (50 mg) compounded with polylactic acid (PLA, 200 mg) or only PLA (200 mg) was dissolved in acetone (1 mL) to prepare implanted materials (Simvastatin-PLA material, PLA material). EPCs were harvested from bone marrow of 2 male rabbits and cultured with M199; after identified by immunohistochemistry, the cell suspension of EPCs at the 3rd generation (2 x 10(6) cells/mL) was prepared and transplanted into 12 female rabbits through auricular veins (2 mL). After 3 days, the models of cranial defect with 15 cm diameter were made in the 12 female rabbits. And the defects were repaired with Simvastatin-PLA materials (experimental group, n=6) and PLA materials (control group, n=6), respectively. The bone repair was observed after 8 weeks of operation by gross appearance, X-ray film, and histology; gelatin-ink perfusion and HE staining were used to show the new vessels formation in the defect. Fluorescence in situ hybridization (FISH) was performed to show the EPCs homing at the defect site. All experimental animals of 2 groups survived to the end of the experiment. After 8 weeks in experimental group, new bone formation was observed in the bone defect by gross and histology, and an irregular, hyperdense shadow by X-ray film; no similar changes were observed in control group. FISH showed that the male EPC containing Y chromosome was found in the wall of new vessels in the defect of experimental group, while no male EPC containing Y chromosome was found in control group. The percentage of new bone formation in defect area was 91.63% +/- 4.07% in experimental group and 59.45% +/- 5.43% in control group, showing significant difference (P < 0.05). Simvastatin can promote bone defect repair, and its mechanism is probably associated with inducing EPCs

  16. Defects in metal crystals. Progress report, May 1, 1980-April 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, D.N.

    1981-01-01

    During the past year a strong endeavor was made to redirect the efforts of the research group to determine atomic mechanisms for the formation of metal silicides, among other problems, produced as a result of: (a) ion or electron irradiation of metal-silicon sandwiches; and (b) the ion irradiation of subsaturated binary alloys containing silicon. In addition, an appreciable component of the research is aimed at understanding the atomic mechanisms responsible for radiation-induced segregation and RIP in a wide range of fast-neutron irradiated refractory metals and alloys. In these same neutron irradiated specimens a search is being made for the species that are responsible for the nucleation of voids. In particular, the voids are being examined, by the atom-probe field-ion microscope technique, for the interstitial impurities helium, carbon, nitrogen and oxygen. Evidence was obtained for the presence of carbon in a void of a fast neutron-irradiated molybdenum (titanium) alloy.

  17. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    International Nuclear Information System (INIS)

    Luo, Dian; Tang, Guangze; Ma, Xinxin; Gu, Le; Sun, Mingren; Wang, Liqin

    2015-01-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm 2 . Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm 2 ) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation

  18. A molecular dynamics simulation study of irradiation induced defects in gold nanowire

    Science.gov (United States)

    Liu, Wenqiang; Chen, Piheng; Qiu, Ruizhi; Khan, Maaz; Liu, Jie; Hou, Mingdong; Duan, Jinglai

    2017-08-01

    Displacement cascade in gold nanowires was studied using molecular dynamics computer simulations. Primary knock-on atoms (PKAs) with different kinetic energies were initiated either at the surface or at the center of the nanowires. We found three kinds of defects that were induced by the cascade, including point defects, stacking faults and crater at the surface. The starting points of PKAs influence the number of residual point defects, and this consequently affect the boundary of anti-radiation window which was proposed by calculation of diffusion of point defects to the free surface of nanowires. Formation of stacking faults that expanded the whole cross-section of gold nanowires was observed when the PKA's kinetic energy was higher than 5 keV. Increasing the PKA's kinetic energy up to more than 10 keV may lead to the formation of crater at the surface of nanowires due to microexplosion of hot atoms. At this energy, PKAs started from the center of nanowires can also result in the creation of crater because length of cascade region is comparable to diameter of nanowires. Both the two factors, namely initial positions of PKAs as well as the craters induced by higher energy irradiation, would influence the ability of radiation resistance of metal nanowires.

  19. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces.

    Science.gov (United States)

    Yu, Liping; Zunger, Alex

    2014-10-13

    The discovery of conductivity and magnetism at the polar-nonpolar interfaces of insulating nonmagnetic oxides such as LaAlO3 and SrTiO3 has raised prospects for attaining interfacial functionalities absent in the component materials. Yet, the microscopic origin of such emergent phenomena remains unclear, posing obstacles to design of improved functionalities. Here we present first principles calculations of electronic and defect properties of LaAlO3/SrTiO3 interfaces and reveal a unifying mechanism for the origins of both conductivity and magnetism. We demonstrate that the polar discontinuity across the interface triggers thermodynamically the spontaneous formation of certain defects that in turn cancel the polar field induced by the polar discontinuity. The ionization of the spontaneously formed surface oxygen vacancy defects leads to interface conductivity, whereas the unionized Ti-on-Al antisite defects lead to interface magnetism. The proposed mechanism suggests practical design principles for inducing and controlling both conductivity and magnetism at general polar-nonpolar interfaces.

  20. A new method for improving the reliability of fracture toughness surveillance of nuclear pressure vessel by neutron irradiated embrittlement

    International Nuclear Information System (INIS)

    Zhang Xinping; Shi Yaowu

    1992-01-01

    In order to obtain more information from neutron irradiated sample specimens and raise the reliability of fracture toughness surveillance test, it has more important significance to repeatedly exploit the broken Charpy-size specimen which had been tested in surveillance test. In this work, on the renewing design and utilization for Charpy-size specimens, 9 data of fracture toughness can be gained from one pre-cracked side-grooved Charpy-size specimen while at the preset usually only 1 to 3 data of fracture toughness can be obtained from one Chharpy-size specimen. Thus, it is found that the new method would obviously improve the reliability of fracture toughness surveillance test and evaluation. Some factors which affect the reasonable design of pre-cracked deep side-groove Charpy-size compound specimen have been discussed

  1. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Science.gov (United States)

    Andreani, C.; Senesi, R.; Paccagnella, A.; Bagatin, M.; Gerardin, S.; Cazzaniga, C.; Frost, C. D.; Picozza, P.; Gorini, G.; Mancini, R.; Sarno, M.

    2018-02-01

    This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  2. Slip-band formation and dislocation kinetics in the stage I deformation of neutron-irradiated copper single crystals

    International Nuclear Information System (INIS)

    Kitajima, Sadakichi; Shinohara, Kazutoshi; Kutsuwada, Masanori

    1995-01-01

    The velocity of edge and screw dislocations moving in primary slip bands and the formation rate of primary slip bands were measured in stage I deformation of neutron-irradiated copper single crystals at different strain rates at room temperature using micro-cinematography and optical micrography. The average velocity of edge dislocations was larger at least by one order than that of screw ones, and that of screw dislocations did not depend so strongly on strain rate. The formation rate of primary slip bands was proportional to strain rate. From these results, it is concluded that (1) jogs produced on moving dislocations by cutting dislocation loops result in the difference in velocity between edge and screw dislocations and (2) the change in the density of mobile dislocations as well as velocity of dislocations is responsible for the change of plastic strain rate of a crystal. (author)

  3. Fission reactor based epithermal neutron irradiation facilities for routine clinical application in BNCT-Hatanaka memorial lecture

    International Nuclear Information System (INIS)

    Harling, Otto K.

    2009-01-01

    Based on experience gained in the recent clinical studies at MIT/Harvard, the desirable characteristics of epithermal neutron irradiation facilities for eventual routine clinical BNCT are suggested. A discussion of two approaches to using fission reactors for epithermal neutron BNCT is provided. This is followed by specific suggestions for the performance and features needed for high throughput clinical BNCT. An example of a current state-of-the-art, reactor based facility, suited for routine clinical use is discussed. Some comments are provided on the current status of reactor versus accelerator based epithermal neutron sources for BNCT. This paper concludes with a summary and a few personal observations on BNCT by the author.

  4. Fast neutron irradiation tests of flash memories used in space environment at the ISIS spallation neutron source

    Directory of Open Access Journals (Sweden)

    C. Andreani

    2018-02-01

    Full Text Available This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.

  5. Effects of neutron irradiation on microstructure and deformation behaviour of mono- and polycrystalline molybdenum and its alloys

    DEFF Research Database (Denmark)

    Singh, B.N.; Evans, J.H.; Horsewell, A.

    1998-01-01

    The influence of neutron irradiation on microstructural evolution and mechanical properties of mono- and polycrystalline molybdenum and its alloys has been investigated. Tensile specimens and 3 mm diameter discs of monocrystals of pure molybdenum and Mo-5%Re were irradiated with fission neutrons...... specimens were tensile tested at 295 K. Post-irradiation microstructures were quantitatively characterized using a transmission electron microscope (TEM). Fracture surfaces were examined in a scanning electron microscope (SEM). The results of tensile testing as well as of transmission and scanning...... microscopy are presented and discussed in terms of intracascade clustering of self-interstitial atoms and the role of one-dimensional glide of these clusters in controlling microstructural evolution and the resulting mechanical properties....

  6. Tritium and helium release from beryllium pebbles neutron-irradiated up to 230appm tritium and 3000appm helium

    Directory of Open Access Journals (Sweden)

    Vladimir Chakin

    2016-12-01

    Full Text Available Study of tritium and helium release from beryllium pebbles with diameters of 0.5 and 1mm after high-dose neutron irradiation at temperatures of 686–968K was performed. The release rate always has a single peak, and the peak temperatures at heating rates of 0.017K/s and 0.117K/s lie in the range of 1100–1350K for both tritium and helium release. The total tritium release from 1mm pebbles decreases considerably by increasing the irradiation temperature. The total tritium release from 0.5mm pebbles is less than that from 1mm pebbles and remains constant regardless of the irradiation temperature. At high irradiation temperatures, open channels are formed which contribute to the enhanced tritium release.

  7. New interatomic potentials of W, Re and W-Re alloy for radiation defects

    Science.gov (United States)

    Chen, Yangchun; Li, Yu-Hao; Gao, Ning; Zhou, Hong-Bo; Hu, Wangyu; Lu, Guang-Hong; Gao, Fei; Deng, Huiqiu

    2018-04-01

    Tungsten (W) and W-based alloys have been considered as promising candidates for plasma-facing materials (PFMs) in future fusion reactors. The formation of rhenium (Re)-rich clusters and intermetallic phases due to high energy neutron irradiation and transmutations significantly induces the hardening and embrittlement of W. In order to better understand these phenomena, in the present work, new interatomic potentials of W-W, Re-Re and W-Re, suitable for description of radiation defects in such alloys, have been developed. The fitted potentials not only reproduce the results of the formation energy, binding energy and migration energy of various radiation defects and the physical properties from the extended database obtained from DFT calculations, but also predict well the relative stability of different interstitial dislocation loops in W, as reported in experiments. These potentials are applicable for describing the evolution of defects in W and W-Re alloys, thus providing a possibility for the detailed understanding of the precipitation mechanism of Re in W under irradiation.

  8. The use of a laser-assisted Local Electrode Atom Probe and TEM to examine the microstructure of Zircaloy and precipitate structure following low dose neutron irradiation at nominally 358 °C

    Science.gov (United States)

    Cockeram, B. V.; Leonard, K. J.; Snead, L. L.; Miller, M. K.

    2013-02-01

    Previous research has shown that the irradiation of Zircaloy at very low fluences (⩽7 × 1022 n/m2 (E > 1 MeV)) results in measurable irradiation hardening, but the defects or solute clusters responsible for such hardening are generally below the resolution limit of electron microscopy. Efforts to analyze Zr-based alloys using conventional atom probe have been largely unsuccessful due to the poor electrical conductivity of Zirconium at cryogenic temperatures. Laser-assisted atom probe methods were introduced in the 1980s as a means for enabling low electrical conductivity specimens to be analyzed. Some recent examples have been reported in the literature where a Local Electrode Atom Probe (LEAP)® was used to successfully analyze non-irradiated Zirconium based alloys, such as Zircaloy-4 and ZIRLO. In this work, the use of a LEAP to examine the microstructure of non-irradiated Zircaloy alloys is evaluated. Optimum conditions for applying the LEAP to non-irradiated Zircaloy-2 and Zircaloy-4 are investigated. Changes in the local composition of precipitates and grain boundaries following neutron irradiation at nominally 358 °C to a fluence of 2.9 × 1025 n/m2 in the High Flux Isotope Reactor (HFIR) are determined using Transmission Electron Microscopy. These results are provided as an example of the local changes in microstructure that can influence the evolution of the defect structure.

  9. STEM-EDS analysis of fission products in neutron-irradiated TRISO fuel particles from AGR-1 experiment

    Science.gov (United States)

    Leng, B.; van Rooyen, I. J.; Wu, Y. Q.; Szlufarska, I.; Sridharan, K.

    2016-07-01

    Historic and recent post-irradiation-examination from the German AVR and Advanced Gas Reactor Fuel Development and Qualification Project have shown that 110 m Ag is released from intact tristructural isotropic (TRISO) fuel. Although TRISO fuel particle research has been performed over the last few decades, little is known about how metallic fission products are transported through the SiC layer, and it was not until March 2013 that Ag was first identified in the SiC layer of a neutron-irradiated TRISO fuel particle. The existence of Pd- and Ag-rich grain boundary precipitates, triple junction precipitates, and Pd nano-sized intragranular precipitates in neutron-irradiated TRISO particle coatings was investigated using Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy analysis to obtain more information on the chemical composition of the fission product precipitates. A U-rich fission product honeycomb shape precipitate network was found near a micron-sized precipitate in a SiC grain about ∼5 μm from the SiC-inner pyrolytic carbon interlayer, indicating a possible intragranular transport path for uranium. A single Ag-Pd nano-sized precipitate was found inside a SiC grain, and this is the first research showing such finding in irradiated SiC. This finding may possibly suggest a possible Pd-assisted intragranular transport mechanism for Ag and may be related to void or dislocation networks inside SiC grains. Preliminary semi-quantitative analysis indicated the micron-sized precipitates to be Pd2Si2U with carbon existing inside these precipitates. However, the results of such analysis for nano-sized precipitates may be influenced by the SiC matrix. The results reported in this paper confirm the co-existence of Cd with Ag in triple points reported previously.

  10. Evaluation of neutron irradiation embrittlement in the Korean reactor pressure vessel steels(I) (1st progress report)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Lee, Bong Sang; Park, Duck Gun; Byun, Tak Sang; Kim, Joo Hag; Oh, Yong Jun; Yoon, Ji Hyun; Chi, Sei Hwan; Kuk, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    The SA508-3 reactor pressure vessel materials degrade due to the application at high temperature, high pressure, and neutron irradiation. In the present study it is planned to examine the effects of neutron irradiation on the properties for assessing the integrity of domestic reactors. The key tests are the Charpy impact test, tensile test, static and dynamic fracture toughness test, J-R test. The additional tests for obtaining basic material properties, such as micro-hardness, microstructural properties, small punch energy etc., are also performed. The irradiation tests are being performed at HANARO of KAERI through the instrumented capsules designed by KAERI and the post-irradiation tests are being performed at IMEF(Irradiated Material Evaluation Facility) of material (UCN-4), Si+Al (YGN-5), UCN-4 weld metal, and UCN-4 HAZ. In the irradiation test the temperature should be controlled in the range of 290 {+-} 10 deg C and the test materials would be irradiated to 2 to 3 neutron fluence levels including the end-of-life fluence. The status of performing this project is that (1) the key data on mechanical properties, mainly related to the fracture toughness, of the unirradiated materials have been obtained, (2) the irradiation of the 1st instrumented capsule, a preliminary test capsule containing miniature specimens, has been completed and is being stored for testing in IMEF, and (3) the 2nd instrumented capsule is being manufactured and will be irradiated in the beginning or 1999. This report includes mainly the experimental methods and results. The status of the design and manufacturing of the instrumented capsules and specimens was also briefly described. (author). 13 refs., 15 figs., 10 tabs.

  11. Recombination of charge carriers on radiation-induced defects in silicon doped by transition metals impurities

    CERN Document Server

    Kazakevich, L A

    2003-01-01

    It has been studied the peculiarities of recombination of nonequilibrium charge carriers on radiation-induced defects in received according to Czochralski method p-silicon (p approx 3 - 20 Ohm centre dot cm), doped by one of the impurities of transition metals of the IV-th group of periodic table (titanium, zirconium, hafnium). Experimental results are obtained out of the analysis of temperature and injection dependence of the life time of charge carriers. The results are explained taking into consideration the influences of elastic stress fields created by the aggregates of transition metals atoms on space distribution over the crystal of oxygen and carbon background impurities as well as on the migration of movable radiation-induced defects during irradiation. (authors).

  12. Defect production and subsequent effects induced by electronic energy loss of swift heavy ion

    International Nuclear Information System (INIS)

    Hou Mingdong; Liu Jie; Sun Youmei; Yin Jingmin; Yao Huijun; Duan Jinglai; Mo Dan; Zhang Ling; Chen Yanfeng; Chinese Academy of Sciences, Beijing

    2008-01-01

    Swift heavy ion in matter is one of forfront fields of nuclear physics in the world. A series of new phenomena were discovered in recent years. The history and sta- tus on the development of this field were reviewed. Electronic energy loss effects induced by swift heavy ion irradiation, such as defect production and evolution, ion latent track formation, phase transformation and anisotropy plastic deformation were introduced emphatically. A trend of future investigation was explored. (authors)

  13. Optical manipulation of photonic defect-modes in cholesteric liquid crystals induced by direct laser-lithography

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Miura, Yusuke; Fujii, Akihiko; Ozaki, Masanori

    2008-01-01

    Manipulation of photonic defect-modes in cholesteric liquid crystals (ChLCs), which are one-dimensional pseudo photonic band-gap materials have been demonstrated by an external optical field. A structural defect in which the pitch length of the ChLC in the bulk and the defect are different was introduced by inducing local polymerization in a photo-polymerizable ChLC material by a direct laser-lithography process, and infiltrating a different ChLC material as the defect medium. When an azobenzene dye-doped ChLC was infiltrated in the defect, the trans-cis isomerization of the dye upon ultraviolet (UV) exposure caused the pitch to shorten, changing the contrast in the pitch lengths at the bulk and the defect, leading to a consequent shifting of the defect-mode. The all-optical manipulation was reversible and had high reproducibility

  14. Evolution of Radiation Induced Defects in SiC: A Multiscale Simulation Approach

    Science.gov (United States)

    Jiang, Hao

    temperatures beyond that. Even though clusters cannot diffuse by thermal vibrations, we found they can migrate at room temperature under the influence of electron radiation. This is the first direct observation of radiation-induced diffusion of defect clusters in bulk materials. We show that the underlying mechanism of this athermal diffusion is elastic collision between incoming electrons and cluster atoms. Our findings suggest that defect clusters may be mobile under certain irradiation conditions, changing current understanding of cluster annealing process in irradiated SiC. With the knowledge of cluster diffusion in SiC demonstrated in this thesis, we now become able to predict cluster evolution in SiC with good agreement with experimental measurements. This ability can enable us to estimate changes in many properties of irradiated SiC relevant for its applications in reactors. Internal interfaces such as grain boundaries can behave as sinks to radiation induced defects. The ability of GBs to absorb, transport, and annihilate radiation-induced defects (sink strength) is important to understand radiation response of polycrystalline materials and to better design interfaces for improved resistance to radiation damage. Nowadays, it is established GBs' sink strength is not a static property but rather evolves with many factors, including radiation environments, grain size, and GB microstructure. In this thesis, I investigated the response of small-angle tilt and twist GBs to point defects fluxes in SiC. First of all, I found the pipe diffusion of interstitials in tilt GBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, I show that both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the

  15. Surface-defect induced modifications in the optical properties of α-MnO2 nanorods

    International Nuclear Information System (INIS)

    John, Reenu Elizabeth; Chandran, Anoop; Thomas, Marykutty; Jose, Joshy; George, K.C.

    2016-01-01

    Graphical abstract: - Highlights: • Alpha-MnO 2 nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO 2 nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO 6 octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn 3+ ) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO 2 . These studies suggest that

  16. Defects in cellular sorting and retroviral assembly induced by GGA overexpression

    Directory of Open Access Journals (Sweden)

    Nagashima Kunio

    2009-09-01

    Full Text Available Abstract Background We previously demonstrated that overexpression of Golgi-localized, γ-ear containing, Arf-binding (GGA proteins inhibits retrovirus assembly and release by disrupting the function of endogenous ADP ribosylation factors (Arfs. GGA overexpression led to the formation of large, swollen vacuolar compartments, which in the case of GGA1 sequestered HIV-1 Gag. Results In the current study, we extend our previous findings to characterize in depth the GGA-induced compartments and the determinants for retroviral Gag sequestration in these structures. We find that GGA-induced structures are derived from the Golgi and contain aggresome markers. GGA overexpression leads to defects in trafficking of transferrin receptor and recycling of cation-dependent mannose 6-phosphate receptor. Additionally, we find that compartments induced by GGA overexpression sequester Tsg101, poly-ubiquitin, and, in the case of GGA3, Hrs. Interestingly, brefeldin A treatment, which leads to the dissociation of endogenous GGAs from membranes, does not dissociate the GGA-induced compartments. GGA mutants that are defective in Arf binding and hence association with membranes also induce the formation of GGA-induced structures. Overexpression of ubiquitin reverses the formation of GGA-induced structures and partially rescues HIV-1 particle production. We found that in addition to HIV-1 Gag, equine infectious anemia virus Gag is also sequestered in GGA1-induced structures. The determinants in Gag responsible for sequestration map to the matrix domain, and recruitment to these structures is dependent on Gag membrane binding. Conclusion These data provide insights into the composition of structures induced by GGA overexpression and their ability to disrupt endosomal sorting and retroviral particle production.

  17. Positron annihilation in disordered regions in neutron-irradiated Ge and Si

    International Nuclear Information System (INIS)

    Pustovoit, A.K.; Konopleva, R.F.; Kupchishin, A.I.; Mukashev, K.M.

    1989-01-01

    The method of angular distribution of annihilation photons was used to investigate the formation and annealing of radiation defects in Ge and Si irradiated with reactor neutrons. These effects were studied as a function of the type of conduction of the dopant concentration. The nature of annealing demonstrated positron annihilation at multivacancy complexes located within disordered regions

  18. Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis

    CERN Document Server

    Selim, F A; Harmon, J F; Kwofie, J; Spaulding, R; Erickson, G; Roney, T

    2002-01-01

    Nondestructive assay and defect analysis probes based on bremsstrahlung-induced processes have been developed to identify elements and probe defects in large volume samples. Bremsstrahlung beams from (electron accelerators) with end-point energies both above and below neutron emission threshold have been used. Below neutron emission threshold these beams (from 6 MeV small pulsed linacs), which exhibit high penetration, create positrons via pair production inside the material and produce X-ray fluorescence (XRF) radiation. Chemical assays of heavy elements in thick samples up to 10 g/cm sup 2 thick are provided by energy dispersive XRF measurements. The pair-produced positrons annihilate within the material, thereby emitting 511 keV gamma radiation. Doppler broadening spectroscopy of the 511 keV radiation can be performed to characterize the material and measure defects in samples of any desired thickness. This technique has successfully measured induced strain due to tensile stress in steel samples of 0.64 cm...

  19. Maternal diabetes induces congenital heart defects in mice by altering the expression of genes involved in cardiovascular development.

    Science.gov (United States)

    Kumar, Srinivasan Dinesh; Dheen, S Thameem; Tay, Samuel Sam Wah

    2007-10-30

    Congenital heart defects are frequently observed in infants of diabetic mothers, but the molecular basis of the defects remains obscure. Thus, the present study was performed to gain some insights into the molecular pathogenesis of maternal diabetes-induced congenital heart defects in mice. We analyzed the morphological changes, the expression pattern of some genes, the proliferation index and apoptosis in developing heart of embryos at E13.5 from streptozotocin-induced diabetic mice. Morphological analysis has shown the persistent truncus arteriosus combined with a ventricular septal defect in embryos of diabetic mice. Several other defects including defective endocardial cushion (EC) and aberrant myofibrillogenesis have also been found. Cardiac neural crest defects in experimental embryos were analyzed and validated by the protein expression of NCAM and PGP 9.5. In addition, the protein expression of Bmp4, Msx1 and Pax3 involved in the development of cardiac neural crest was found to be reduced in the defective hearts. The mRNA expression of Bmp4, Msx1 and Pax3 was significantly down-regulated (p hearts of experimental embryos. Further, the proliferation index was significantly decreased (p cells were significantly increased (p heart defects.

  20. Xe irradiation-induced defects in CuInSe2 by phase resolved photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Satour, F.Z.; Zegadi, A.

    2012-01-01

    Highlights: ► Analysis of Xe + implanted CuInSe 2 by phase resolved photoacoustic spectroscopy. ► Xenon implants damage effects on the near surface of CuInSe 2 . ► Analysis of the induced defect states following Xe + implantation into CuInSe 2 . - Abstract: We report a study on the optical properties of 40 keV Xe + implants with a dose of 5 × 10 16 ions/cm 2 into p-type conducting CuInSe 2 single crystals using the phase resolved method of the photoacoustic spectroscopy (PAS) technique. Photoacoustic spectra have been measured in the photon energy range 0.7 + on the defect structure of CuInSe 2 is presented. The results obtained here are discussed in the light of current reported literature.