WorldWideScience

Sample records for neutron-induced cross sections

  1. Neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Weigmann, H.

    1991-01-01

    In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs

  2. 238U subthreshold neutron induced fission cross section

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.; De Saussure, G.; Olsen, D.K.; Ingle, R.W.

    1976-01-01

    High resolution measurements of the 238 U neutron induced fission cross section are reported for neutron energies between 600 eV and 2 MeV. The average subthreshold fission cross section between 10 and 100 keV was found to be 44 +- 6 μb

  3. Actinide neutron-induced fission cross section measurements at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik K [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  4. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  5. Neutron-induced cross-sections via the surrogate method

    International Nuclear Information System (INIS)

    Boutoux, G.

    2011-11-01

    The surrogate reaction method is an indirect way of determining neutron-induced cross sections through transfer or inelastic scattering reactions. This method presents the advantage that in some cases the target material is stable or less radioactive than the material required for a neutron-induced measurement. The method is based on the hypothesis that the excited nucleus is a compound nucleus whose decay depends essentially on its excitation energy and on the spin and parity state of the populated compound state. Nevertheless, the spin and parity population differences between the compound-nuclei produced in the neutron and transfer-induced reactions may be different. This work reviews the surrogate method and its validity. Neutron-induced fission cross sections obtained with the surrogate method are in general good agreement. However, it is not yet clear to what extent the surrogate method can be applied to infer radiative capture cross sections. We performed an experiment to determine the gamma decay probabilities for 176 Lu and 173 Yb by using the surrogate reactions 174 Yb( 3 He,pγ) 176 Lu * and 174 Yb( 3 He,αγ) 173 Yb * , respectively, and compare them with the well-known corresponding probabilities obtained in the 175 Lu(n,γ) and 172 Yb(n,γ) reactions. This experiment provides answers to understand why, in the case of gamma-decay, the surrogate method gives significant deviations compared to the corresponding neutron-induced reaction. In this work, we have also assessed whether the surrogate method can be applied to extract capture probabilities in the actinide region. Previous experiments on fission have also been reinterpreted. Thus, this work provides new insights into the surrogate method. This work is organised in the following way: in chapter 1, the theoretical aspects related to the surrogate method will be introduced. The validity of the surrogate method will be investigated by means of statistical model calculations. In chapter 2, a review on

  6. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  7. Neutron-induced capture cross sections via the surrogate reaction method

    International Nuclear Information System (INIS)

    Boutoux, G.; Jurado, B.; Aiche, M.; Barreau, G.; Capellan, N.; Companis, I.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Meot, V.; Bail, A.; Bauge, E.; Daugas, J. M.; Faul, T.; Gaudefroy, L.; Morel, P.; Pillet, N.; Roig, O.; Romain, P.; Taieb, J.; Theroine, C.; Burke, J.T.; Companis, I.; Derkx, X.; Gunsing, F.; Matea, I.; Tassan-Got, L.; Porquet, M.G.; Serot, O.

    2011-01-01

    The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This technique enables neutron-induced cross sections to be extracted for nuclear reactions on short-lived unstable nuclei that otherwise can not be measured. This technique has been successfully applied to determine the neutron-induced fission cross sections of several short-lived nuclei. In this work, we investigate whether this powerful technique can also be used to determine of neutron-induced capture cross sections. For this purpose we use the surrogate reaction 174 Yb( 3 He, pγ) 176 Lu to infer the well known 175 Lu(n, γ) cross section and compare the results with the directly measured neutron-induced data. This surrogate experiment has been performed in March 2010. The experimental technique used and the first preliminary results will be presented. (authors)

  8. Neutron-induced cross sections of short-lived nuclei via the surrogate reaction method

    Directory of Open Access Journals (Sweden)

    Morel P.

    2011-10-01

    Full Text Available The measurement of neutron-induced cross sections of short-lived nuclei is extremely difficult due to the radioactivity of the samples. The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This method presents the advantage that the target material can be stable or less radioactive than the material required for a neutron-induced measurement. We have successfully used the surrogate reaction method to extract neutron-induced fission cross sections of various short-lived actinides. In this work, we investigate whether this technique can be used to determine neutron-induced capture cross sections in the rare-earth region.

  9. Neutron-induced cross sections of short-lived nuclei via the surrogate reaction method

    Directory of Open Access Journals (Sweden)

    Tassan-Got L.

    2012-02-01

    Full Text Available The measurement of neutron-induced cross sections of short-lived nuclei is extremely difficult due to the radioactivity of the samples. The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This method presents the advantage that the target material can be stable or less radioactive than the material required for a neutron-induced measurement. We have successfully used the surrogate reaction method to extract neutron-induced fission cross sections of various short-lived actinides. In this work, we investigate whether this technique can be used to determine neutron-induced capture cross sections in the rare-earth region.

  10. High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209

    CERN Document Server

    Tarrio, D; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Koehler, P; Vannini, G; Oshima, M; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Cortes, G; Cox, J; Cano-Ott, D; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Reifarth, R; Kadi, Y; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Lazano, M; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Voss, F; Ferrant, L; Patronis, N; Chiaveri, E; Guerrero, C; Perrot, L; Vicente, M C; Lindote, A; Praena, J; Baumann, P; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Gunsig, F; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Pavlik, A; Goncalves, I; Duran, I; Alvarez, H; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C

    2011-01-01

    The CERN Neutron Time-Of-Flight (n\\_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.

  11. Measurement of the neutron-induced fission cross-section of 240,242Pu

    International Nuclear Information System (INIS)

    Salvador-Castineira, P.; Hambsch, F.J.; Brys, T.; Oberstedt, S.; Vidali, M.; Pretel, C.

    2014-01-01

    Fast spectrum neutron-induced fission cross-section data for transuranic isotopes are in high demand in the nuclear data community. In particular, highly accurate data are needed for the new Generation-IV nuclear applications. The aim is to obtain precise neutron-induced fission cross-sections for 240 Pu and 242 Pu. In this context accurate data on spontaneous fission half-lives have also been measured. To minimise the total uncertainty on the fission cross-sections the detector efficiency has been studied in detail. Both isotopes have been measured using a twin Frisch-grid ionisation chamber (TFGIC) due to its superiority compared to other detector systems in view of radiation hardness, 2 x 2π solid angle coverage and very good energy resolution. (authors)

  12. 7Li neutron-induced elastic scattering cross section measurement using a slowing-down spectrometer

    Directory of Open Access Journals (Sweden)

    Heusch M.

    2010-10-01

    Full Text Available A new integral measurement of the 7Li neutron induced elastic scattering cross section was determined in a wide neutron energy range. The measurement was performed on the LPSC-PEREN experimental facility using a heterogeneous graphite-LiF slowing-down time spectrometer coupled with an intense pulsed neutron generator (GENEPI-2. This method allows the measurement of the integral elastic scattering cross section in a slowing-down neutron spectrum. A Bayesian approach coupled to Monte Carlo calculations was applied to extract naturalC, 19F and 7Li elastic scattering cross sections.

  13. Neutron-induced cross sections of actinides via the surrogate-reaction method

    Directory of Open Access Journals (Sweden)

    Ducasse Q.

    2013-12-01

    Full Text Available The surrogate-reaction method is an indirect way of determining cross sections for reactions that proceed through a compound nucleus. This technique may enable neutron-induced cross sections to be extracted for short-lived nuclei that otherwise cannot be measured. However, the validity of the surrogate method has to be investigated. In particular, the absence of a compound nucleus formation and the Jπ dependence of the decay probabilities may question the method. In this work we study the reactions 238U(d,p239U, 238U(3He,t238Np, 238U(3He,4He237U as surrogates for neutron-induced reactions on 238U, 237Np and 236U, respectively, for which good quality data exist. The experimental set-up enabled the measurement of fission and gamma-decay probabilities. The first results are hereby presented.

  14. Above-threshold structure in {sup 244}Cm neutron-induced fission cross section

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    The quasi-resonance structure appearing above the fission threshold in neutron-induced fission cross section of {sup 244}Cm(n,f) is interpreted. It is shown to be due to excitation of few-quasiparticle states in fissioning {sup 245}Cm and residual {sup 244}Cm nuclides. The estimate of quasiparticle excitation thresholds in fissioning nuclide {sup 245}Cm is consistent with pairing gap and fission barrier parameters. (author)

  15. Calculation of neutron-induced single-event upset cross sections for semiconductor memory devices

    International Nuclear Information System (INIS)

    Ikeuchi, Taketo; Watanabe, Yukinobu; Nakashima, Hideki; Sun, Weili

    2001-01-01

    Neutron-induced single-event upset (SEU) cross sections for semiconductor memory devices are calculated by the Burst Generation Rate (BGR) method using LA150 data and QMD calculation in the neutron energy range between 20 MeV and 10 GeV. The calculated results are compared with the measured SEU cross sections for energies up to 160 MeV, and the validity of the calculation method and the nuclear data used is verified. The kind of reaction products and the neutron energy range that have the most effect on SEU are discussed. (author)

  16. Measurements of neutron-induced fission cross sections of Pb and Bi at intermediate energies

    International Nuclear Information System (INIS)

    Ryzhov, Igor; Tutin, Gennady; Eismont, Vilen; Mitryukhin, Andrey; Oplavin, Valery; Soloviev, Sergey; Conde, Henri; Olsson, Nils; Renberg, Per-Ulf

    2002-01-01

    Neutron-induced fission cross sections of nat Pb and 209 Bi have been measured relative to the 238 U(n.f) cross section at energies 96 MeV for lead and 133 MeV for bismuth. The measurements were performed at the quasi-mono-energetic neutron beam facility of The Svedberg Laboratory in Uppsala using Frisch-gridded ionization chamber. The results obtained are compared with other experimental data. The present state of the Bi standard recommended by IAEA is discussed. (author)

  17. Evaluated neutron-induced cross sections for 40Ca from 20 to 40 MeV

    International Nuclear Information System (INIS)

    Hetrick, D.M.; Fu, C.Y.; Larson, D.C.

    1982-09-01

    Nuclear model codes were used to compute cross sections for neutron-induced reactions on 40 Ca for incident energies from 20 to 40 MeV. The input parameters for the model codes were determined through analysis of experimental data in this energy region. Computed cross sections along with emission spectra for each product were combined into an Evaluated Nuclear Data File (ENDF) using the proposed format for charged-particle reactions. Discussion of the models used, the resulting calculations, and the final evaluated data file are presented

  18. Evaluation of cross sections for neutron-induced reactions in sodium

    International Nuclear Information System (INIS)

    Larson, D.C.

    1980-09-01

    An evaluation of the neutron-induced cross sections of 23 Na has been done for the energy range from 10 -5 eV to 20 MeV. All significant cross sections are given, including differential cross sections for production of gamma rays. The recommended values are based on experimental data where available, and use results of a consistent model code analysis of available data to predict cross sections where there are no experimental data. This report describes the evaluation that was submitted to the Cross Section Evaluation Working Group (CSEWG) for consideration as a part of the Evaluated Nuclear Data File, Version V, and subsequently issued as MAT 1311. 126 references, 130 figures, 14 tables

  19. Determination of the neutron-induced fission cross section of 242Pu

    International Nuclear Information System (INIS)

    Koegler, Toni Joerg

    2016-01-01

    Neutron induced fission cross sections of actinides like the Pu-isotopes are of relevance for the development of nuclear transmutation technologies. For 242 Pu, current uncertainties are of around 21%. Sensitivity studies show that the total uncertainty has to be reduced to below 5% to allow for reliable neutron physics simulations. This challenging task was performed at the neutron time-of-flight facility of the new German National Center for High Power Radiation Sources at HZDR, Dresden. Within the TRAKULA project, thin, large and homogeneous deposits of 235 U and 242 Pu have been produced successfully. Using two consecutively placed fission chambers allowed the determination of the neutron induced fission cross section of 242 Pu relative to 235 U. The areal density of the Plutonium targets was calculated using the measured spontaneous fission rate. Experimental results of the fast neutron induced fission of 242 Pu acquired at nELBE will be presented and compared to recent experiments and evaluated data. Corrections addressing the neutron scattering are discussed by using results of different neutron transport simulations (Geant 4, MCNP 6 and FLUKA).

  20. Evaluation of 28,29,30Si neutron induced cross sections for ENDF/B-VI

    International Nuclear Information System (INIS)

    Hetrick, D.M.; Larson, D.C.; Larson, N.M.; Leal, L.C.; Epperson, S.J.

    1997-04-01

    Separate evaluations have been done for the three stable isotopes of silicon for ENDF/B-VI. The evaluations are based on analysis of experimental data, supplemented by results of nuclear model calculations. The computational methods and the parameters required as input to the nuclear model codes are reviewed. Discussion of the evaluated data given for resonance parameters, neutron induced reaction cross sections, associated angular and energy distributions, and gamma-ray production cross sections is included. Extensive comparisons of the evaluated cross sections to measured data are shown in this report. The evaluations include all necessary data to allow KERMA (Kinetic Energy Released in MAterials) and displacement cross sections to be calculated directly. These quantities are fundamental to studies of neutron heating and radiation damage

  1. Neutron-induced cross sections of actinides via the surrogate-reaction method

    Directory of Open Access Journals (Sweden)

    Tveten G. M.

    2013-03-01

    Full Text Available The surrogate-reaction method is an indirect way of determining cross sections for reactions that proceed through a compound nucleus. This technique may enable neutron-induced cross sections to be extracted for short-lived nuclei that otherwise cannot be measured. However, the validity of the surrogate method for extracting capture cross sections has to be investigated. In this work we study the reactions 238U(d,p239U, 238U(3He,t238Np, 238U(3He,4He237U as surrogates for neutroninduced reactions on 238U, 237Np and 236U, respectively, for which good quality data exist. The experimental set-up enabled the measurement of fission and gamma-decay probabilities. First results are presented and discussed.

  2. Measurement of fast neutron induced fission cross section of minor-actinide

    International Nuclear Information System (INIS)

    Hirakawa, Naohiro

    2000-06-01

    In fuel cycles with recycled actinide, core characteristics are largely influenced by minor actinide (MA: Np, Am, Cm). Accurate nuclear data of MA such as fission cross section are required to estimate the effect of MA with high accuracy. In this study, fast neutron induced fission cross section of MA is measured using Dynamitron accelerator in Tohoku University. The followings were performed in this fiscal year; (1) Research of nuclear data of MA, (2) Sample preparation and sample mass assay, (3) Investigation of neutron sources with the energy of several 10 keV, (4) Preliminary measurement of fission cross section using Dynamitron accelerator. As the result, four 237 Np samples were prepared and the sample mass were measured using alpha-spectrometry with the accuracy of 1.2%. Then, it was confirmed that a neutron source via 7 Li(p,n) 7 Be reaction using a Li-thick target is suitable for measuring fission cross section of MA in the energy region of several 10 keV. Furthermore, it was verified by the preliminary measurement that the measurement of fission cross section of MA is available using a fission chamber and electronics developed in this study. (author)

  3. Methods and procedures for evaluation of neutron-induced activation cross sections

    International Nuclear Information System (INIS)

    Gardner, M.A.

    1981-09-01

    One cannot expect measurements alone to supply all of the neutron-induced activation cross-section data required by the fission reactor, fusion reactor, and nuclear weapons development communities, given the wide ranges of incident neutron energies, the great variety of possible reaction types leading to activation, and targets both stable and unstable. Therefore, the evaluator must look to nuclear model calculations and systematics to aid in fulfilling these cross-section data needs. This review presents some of the recent developments and improvements in the prediction of neutron activation cross sections, with specific emphasis on the use of empirical and semiempirical methods. Since such systematics require much less nuclear informaion as input and much less computational time than do the multistep Hauser-Feshbach codes, they can often provide certain cross-section data at a sufficient level of accuracy within a minimum amount of time. The cross-section information that these systematics can and cannot provide and those cases in which they can be used most reliably are discussed

  4. Measurement of fast neutron induced fission cross section of minor-actinide

    International Nuclear Information System (INIS)

    Hirakawa, Naohiro

    1997-03-01

    In fuel cycles with recycled actinide, core characteristics are largely influenced by minor actinide (MA: Np, Am, Cm). Accurate nuclear data of MA such as fission cross section are required to estimate the effect of MA with high accuracy. In this study, fast neutron induced fission cross section of MA is measured using Dynamitron Accelerator in Tohoku University. The experimental method and the samples, which were developed or introduced during the last year, were improved in this fiscal year: (1) Development of a sealed fission chamber, (2) Intensification of Li neutron target, (3) Improvement of time-resolution of Time-of-Flight (TOF) electronic circuit, (4) Introduction of Np237 samples with large sample mass and (5) Introduction of a U235 sample with high purity. Using these improved tools and samples, the fission cross section ratio of Np237 relative to U235 was measured between 5 to 100 keV, and the fission cross section of Np237 was deduced. On the other hand, samples of Am241 and Am243 were obtained from Japan Atomic Energy Research Institute (JAERI) after investigating fission cross section of two americium isotopes (Am241 and Am 243) which are important for core physics calculation of fast reactors. (author)

  5. Methods and procedures for evaluation of neutron-induced activation cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, M.A.

    1981-09-01

    One cannot expect measurements alone to supply all of the neutron-induced activation cross-section data required by the fission reactor, fusion reactor, and nuclear weapons development communities, given the wide ranges of incident neutron energies, the great variety of possible reaction types leading to activation, and targets both stable and unstable. Therefore, the evaluator must look to nuclear model calculations and systematics to aid in fulfilling these cross-section data needs. This review presents some of the recent developments and improvements in the prediction of neutron activation cross sections, with specific emphasis on the use of empirical and semiempirical methods. Since such systematics require much less nuclear informaion as input and much less computational time than do the multistep Hauser-Feshbach codes, they can often provide certain cross-section data at a sufficient level of accuracy within a minimum amount of time. The cross-section information that these systematics can and cannot provide and those cases in which they can be used most reliably are discussed.

  6. Study of the surrogate-reaction method applied to neutron-induced capture cross sections

    International Nuclear Information System (INIS)

    Boutoux, G.; Jurado, B.; Méot, V.; Roig, O.; Mathieu, L.; Aïche, M.; Barreau, G.; Capellan, N.; Companis, I.; Czajkowski, S.; Schmidt, K.-H.; Burke, J.T.; Bail, A.; Daugas, J.M.; Faul, T.; Morel, P.; Pillet, N.; Théroine, C.; Derkx, X.; Sérot, O.

    2012-01-01

    Gamma-decay probabilities of 173 Yb and 176 Lu have been measured using the surrogate reactions 174 Yb( 3 He,αγ) 173 Yb* and 174 Yb( 3 He,pγ) 176 Lu*, respectively. For the first time, the gamma-decay probabilities have been obtained with two independent experimental methods based on the use of C 6 D 6 scintillators and Germanium detectors. Our results for the radiative-capture cross sections are several times higher than the corresponding neutron-induced data. To explain these differences, we have used our gamma-decay probabilities to extract rather direct information on the spin distributions populated in the transfer reactions used. They are about two times wider and the mean values are 3 to 4 ℏ higher than the ones populated in the neutron-induced reactions. As a consequence, in the transfer reactions neutron emission to the ground and first excited states of the residual nucleus is strongly suppressed and gamma-decay is considerably enhanced.

  7. Measurement of activation cross sections for quasi-monoenergetic neutron induced reactions of {sup 89}Y

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo; Nadeem, Muhammad [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Naik, Haladhara [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Lee, Manwoo [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of)

    2017-09-15

    The neutron induced cross sections of the {sup 89}Y(n, 2n){sup 88}Y, {sup 89}Y(n, 3n){sup 87}Y and {sup 89}Y(n, 4n){sup 86}Y reactions were measured in the neutron energy range of 15.2 to 37.2 MeV by using an activation and off-line γ-ray spectrometric technique. The quasi-monoenergetic neutrons used for the above reactions are based on a {sup 9}Be(p, n) reaction. Simulations of the neutron spectra from the Be target were done using the MCNPX 2.6.0 program. Theoretical calculations were performed for the {sup 89}Y(n, 2n){sup 88}Y, {sup 89}Y(n, 3n){sup 87}Y and {sup 89}Y(n, 4n){sup 86}Y reaction cross sections using nuclear model code Talys 1.8. The measured and calculated cross sections were compared with the literature data given in EXFOR and the TENDL-2015 data libraries. The present data of the {sup 89}Y(n, xn) reaction were also compared with the similar data of the {sup 89}Y(γ, xn) reaction to examine the effect of the entrance channel parameters as well as the role of projectiles and ejectiles. (orig.)

  8. Measurement of fast neutron induced fission cross sections of 232Th, 238U, 237Np and 243Am

    International Nuclear Information System (INIS)

    Kanda, Kazutaka; Sato, Osamu; Yoshida, Kazuo; Imaruoka, Hiromitsu; Terayama, Hiromichi; Yoshida, Masashi; Hirakawa, Naohiro

    1984-01-01

    Neutron induced fission cross sections of 232 Th, 238 U, 237 Np and 243 Am relative to 235 U were measured in the energy range from 1.5 to 6.6 MeV. The present results are compared with experimental results of others and evaluated data in JENDL-2 and ENDF/B-IV. (author)

  9. ZZ RRDF-98, Cross-sections and covariance matrices for 22 neutron induced dosimetry reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.; Ignatyuk, A.V.; Mahokhin, V.N.; Pashchenko, A.B.

    2005-01-01

    1 - Description of program or function: Format: ENDF-6 format; Number of groups: Continuous energy; Dosimetry reactions: 6-C-12(n,2n), 8-O-16(n,2n), 9-F-19(n,2n), 12-Mg-24(n,p), 22-Ti-46(n,2n), 22-Ti-46(n,p), 22-Ti-47(n,x), 22-Ti-48(n,p), 22-Ti-48(n,x), 22-Ti-49(n,x), 23-V-51(n,alpha), 26-Fe-54(n,2n), 26-Fe-54(n,alpha), 26-Fe-56(n,p), 27-Co-59(n,alpha), 29-Cu-63(n,alpha), 33-As-75(n,2n), 41-Nb-93(n,2n), 41-Nb-93(n,n'), 45-Rh-103(n,n'), 49-In-115(n,n'), 59-Pr-141(n,2n); Origin: Russian Federation; Weighting spectrum: None. RRDF-98 contains original evaluations of cross section data performed at the Institute of Physics and Power Engineering, Obninsk, for 22 neutron induced dosimetry reactions. The dataset also contains the corresponding covariance matrices. 2 - Methods: The evaluation of excitation functions was performed on the basis of statistical analysis of corrected experimental data in the framework of generalized least squares method and taking into account the results of optical-statistical STAPRE and GNASH calculations. The experimental cross section data including the most recent results were critically reviewed and processed in this study. If necessary, the data were normalized in order to make adjustments in relevant cross sections and decay schemes. The covariance matrices were prepared and the evaluated cross section data are presented in ENDF-6 format (Files 3, 33). For estimation of correlations between experimental data the total uncertainties of measured cross sections have been separated into statistical and systematic parts and correlation coefficients between components of systematic parts were assigned according to information given in the original publications and EXFOR library. Then the correlation matrix of cross sections measured within one experiment was calculated and approximated by matrix with a constant (average) correlation coefficient. The overall correlation matrix was composed of such sub-matrices in the assumption that the cross

  10. Neutron-induced Fission Cross Sections of Am and Cm isotopes (Final Report of Research Contract 14485). Resonance and Fast Neutron Induced Fission Cross Sections of Americium and Curium Nuclides (Third-year Progress Report of Research Contract 14485)

    International Nuclear Information System (INIS)

    Alekseev, A.A.; Bergman, A.A.; Berlev, A.I.; Koptelov, E.A.; Egorov, A.S.; Samylin, B.F.; Trufanov, A.M.; Fursov, B.I.; Shorin, V.S.

    2012-01-01

    The neutron induced fission cross sections of Am and Cm isotopes were measured relative to 239 Pu in the neutron energy range from 1 eV to 20 keV at the INR RAS lead slowing down spectrometer LSDS-100. The fission resonance integrals were also estimated using the measured cross section data. The results have been compared with the available experimental and evaluated data. This analysis has shown the present status of the measured fission cross sections and the necessity to revise the evaluated cross sections libraries for the minor actinides. (author)

  11. Determination of the fast-neutron-induced fission cross-section of 242Pu at nELBE

    Science.gov (United States)

    Kögler, Toni; Beyer, Roland; Junghans, Arnd R.; Schwengner, Ronald; Wagner, Andreas

    2018-03-01

    The fast-neutron-induced fission cross section of 242Pu was determined in the energy range of 0.5 MeV to 10MeV at the neutron time-of-flight facility nELBE. Using a parallel-plate fission ionization chamber this quantity was measured relative to 235U(n,f). The number of target nuclei was thereby calculated by means of measuring the spontaneous fission rate of 242Pu. An MCNP 6 neutron transport simulation was used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  12. Determination of the fast-neutron-induced fission cross-section of 242Pu at nELBE

    Directory of Open Access Journals (Sweden)

    Kögler Toni

    2018-01-01

    Full Text Available The fast-neutron-induced fission cross section of 242Pu was determined in the energy range of 0.5 MeV to 10MeV at the neutron time-of-flight facility nELBE. Using a parallel-plate fission ionization chamber this quantity was measured relative to 235U(n,f. The number of target nuclei was thereby calculated by means of measuring the spontaneous fission rate of 242Pu. An MCNP 6 neutron transport simulation was used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  13. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Lesher, S R; Scielzo, N D; Thompson, I J; Younes, W

    2009-10-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,{gamma}) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  14. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    International Nuclear Information System (INIS)

    Escher, J.E.; Burke, J.T.; Dietrich, F.S.; Lesher, S.R.; Scielzo, N.D.; Thompson, I.J.; Younes, W.

    2009-01-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,γ) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  15. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    International Nuclear Information System (INIS)

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-01-01

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233 U in the energy range from 0.36 eV to 700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27 Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV

  16. Analysis of reaction cross-section production in neutron induced fission reactions on uranium isotope using computer code COMPLET.

    Science.gov (United States)

    Asres, Yihunie Hibstie; Mathuthu, Manny; Birhane, Marelgn Derso

    2018-04-22

    This study provides current evidence about cross-section production processes in the theoretical and experimental results of neutron induced reaction of uranium isotope on projectile energy range of 1-100 MeV in order to improve the reliability of nuclear stimulation. In such fission reactions of 235 U within nuclear reactors, much amount of energy would be released as a product that able to satisfy the needs of energy to the world wide without polluting processes as compared to other sources. The main objective of this work is to transform a related knowledge in the neutron-induced fission reactions on 235 U through describing, analyzing and interpreting the theoretical results of the cross sections obtained from computer code COMPLET by comparing with the experimental data obtained from EXFOR. The cross section value of 235 U(n,2n) 234 U, 235 U(n,3n) 233 U, 235 U(n,γ) 236 U, 235 U(n,f) are obtained using computer code COMPLET and the corresponding experimental values were browsed by EXFOR, IAEA. The theoretical results are compared with the experimental data taken from EXFOR Data Bank. Computer code COMPLET has been used for the analysis with the same set of input parameters and the graphs were plotted by the help of spreadsheet & Origin-8 software. The quantification of uncertainties stemming from both experimental data and computer code calculation plays a significant role in the final evaluated results. The calculated results for total cross sections were compared with the experimental data taken from EXFOR in the literature, and good agreement was found between the experimental and theoretical data. This comparison of the calculated data was analyzed and interpreted with tabulation and graphical descriptions, and the results were briefly discussed within the text of this research work. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Using a Time Projection Chamber to Measure High Precision Neutron-Induced Fission Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Brett [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-06

    2014 LANSCE run cycle data will provide a preliminary 239Pu(n,f) cross section and will quantify uncertainties: PID and Target/beam non-uniformities. Continued running during the 2015 LANSCE run cycle: Thin targets to see both fission fragments and 239Pu(n,f) cross section and fully quantified uncertainties

  18. Resonance analysis and evaluation of the 235U neutron induced cross sections

    International Nuclear Information System (INIS)

    Leal, L.C.

    1990-06-01

    Neutron cross sections of fissile nuclei are of considerable interest for the understanding of parameters such as resonance absorption, resonance escape probability, resonance self-shielding,and the dependence of the reactivity on temperature. In the present study, new techniques for the evaluation of the 235 U neutron cross sections are described. The Reich-Moore formalism of the Bayesian computer code SAMMY was used to perform consistent R-matrix multilevel analyses of the selected neutron cross-section data. The Δ 3 -statistics of Dyson and Mehta, along with high-resolution data and the spin-separated fission cross-section data, have provided the possibility of developing a new methodology for the analysis and evaluation of neutron-nucleus cross sections. The results of the analysis consists of a set of resonance parameters which describe the 235 U neutron cross sections up to 500 eV. The set of resonance parameters obtained through a R-matrix analysis are expected to satisfy statistical properties which lead to information on the nuclear structure. The resonance parameters were tested and showed good agreement with the theory. It is expected that the parametrization of the 235 U neutron cross sections obtained in this dissertation represents the current state of art in data as well as in theory and, therefore, can be of direct use in reactor calculations. 44 refs., 21 figs., 8 tabs

  19. Neutron induced fission cross sections for 232Th, 235,238U, 237Np, and 239Pu

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Hill, N.W.; Carlson, A.D.; Wasson, O.A.

    1989-01-01

    Neutron-induced fission cross section ratios for samples of 232 Th, 235,238 U, 237 Np and 239 Pu have been measured from 1 to 400 MeV. The fission reaction rate was determined for all samples simultaneously using a fast parallel plate ionization chamber at a 20-m flight path. A well characterized annular proton recoil telescope was used to measure the neutron fluence from 3 to 30 MeV. Those data provided the shape of the 235 U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n,f) at 14.178 MeV. From 30 to 400 MeV cross section values were determined using the neutron fluence measured with a plastic scintillator. Cross section values of 232 Th, 235,238 U, 237 Np and 239 Pu were computed from the ratio data using the authors' values for 235 U(n,f). In addition to providing new results at high neutron energies, these data highlight several areas of deficiency in the evaluated nuclear data files and provide new information for the 235 U(n,f) standard

  20. Binary and tertiary neutron induced reaction cross sections of chromium and iron

    International Nuclear Information System (INIS)

    Garg, S.B.

    1989-01-01

    Investigation has been carried out for the following binary and tertiary reaction cross-sections of Cr-52 and Fe-56: (n,p), (n,pn), (n,np), (n,α), (n, nα), (n, 2n) and (n, 3n), energy spectra of the emitted neutron, proton, α-particle and γ-rays, angle-energy correlated double differential cross-sections for the secondary emitted neutrons and total production cross-sections for neutron, hydrogen, helium and gamma-rays. 12 refs, 20 figs, 1 tab

  1. Cross-section calculations for neutron-induced reactions up to 50 MeV

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro.

    1996-01-01

    In the field of accelerator development, medium-energy reaction cross-section data for structural materials of accelerator and shielding components are required, especially for radiation protection purposes. For a d + Li stripping reaction neutron source used in materials research, neutron reaction cross sections up to 50 MeV are necessary for the design study of neutron irradiation facilities. The current version of SINCROS-II is able to calculate neutron and proton-induced reaction cross sections up to ∼ 50 MeV with some modifications and extensions of the cross-section calculation code. The production of isotopes when structural materials and other materials are bombarded with neutrons or protons is calculated using a revised code in the SINCROS-II system. The parameters used in the cross-section calculations are mainly examined with proton-induced reactions because the experimental data for neutrons above 20 MeV are rare. The status of medium mass nuclide evaluations for aluminum, silicon, chromium, manganese, and copper is presented. These data are useful to estimate the radiation and transmutation of nuclei in the materials

  2. Measurement of the neutron-induced deuteron breakup reaction cross-section between 5 and 25 MeV

    International Nuclear Information System (INIS)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.

    2012-01-01

    This article presents a full program devoted to the calculation and the measurement of the neutron-induced deuteron break-up reaction cross-section between 5 and 10 MeV, and between 20 and 25 MeV. Measurements are compared with theoretical calculations based on the solution of the Faddeev equations for a realistic nuclear Hamiltonian. The experiments were performed at the Tandem 7 MV accelerator at CEA, DAM, DIF, France. The measurements were carried out with a C 6 D 6 detector as active deuterium target located at the center of a 4π neutron counter (see C. Varignon et al., Nucl. Instrum. Methods B 248, 329 (2006)) which allows to count the two neutrons emitted in the 2 H(n, 2n)p reaction. Comparisons of the new data and calculations are made with the existing data as well as the CENDL2, JENDL3.3 and ENDF/B-VII evaluations. (orig.)

  3. Neutron induced reaction cross-sections on 115In at around 14 MeV

    International Nuclear Information System (INIS)

    Csikai, J.; Lantos, Z.; Buczko, C.M.; Sudar, S.

    1990-01-01

    A systematic investigation was carried out on 115 In isotope to determine the contribution of different reactions to the total non-elastic cross-section in the 13.43 and 14.84 MeV range. All the major component cross-sections of σ NE were measured with exception of the σ g (n,n'). In the knowledge of σ NE , the energy dependence of σ g (n,n') could be deduced. The isomeric cross section ratios both for (n,2n) and (n,n') processes were also determined in the given energy range. The present experiment proves the dependence of σ m /(σ g +σ m ) ratio on the spin value (I m ) of the isomeric state in (n,2n) reaction. Excitation functions of (n,2n), (n,n') and (n,ch) reactions were compared with results calculated by STAPRE code. (author). 37 refs, 5 figs, 4 tabs

  4. Talys calculations for evaluation of neutron-induced single-event upset cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Bourselier, Jean-Christophe

    2005-08-15

    The computer code TALYS has been used to calculate interactions between cosmic-ray neutrons and silicon nuclei with the goal to describe single-event upset (SEU) cross sections in microelectronics devices. Calculations for the Si(n,X) reaction extend over an energy range of 2 to 200 MeV. The obtained energy spectra of the resulting residuals and light-ions have been integrated using several different critical charges as SEU threshold. It is found that the SEU cross section seems largely to be dominated by {sup 28}Si recoils from elastic scattering. Furthermore, the shape of the SEU cross section as a function of the energy of the incoming neutron changes drastically with decreasing critical charge. The results presented in this report stress the importance of performing studies at mono-energetic neutron beams to advance the understanding of the underlying mechanisms causing SEUs.

  5. Talys calculations for evaluation of neutron-induced single-event upset cross sections

    International Nuclear Information System (INIS)

    Bourselier, Jean-Christophe

    2005-08-01

    The computer code TALYS has been used to calculate interactions between cosmic-ray neutrons and silicon nuclei with the goal to describe single-event upset (SEU) cross sections in microelectronics devices. Calculations for the Si(n,X) reaction extend over an energy range of 2 to 200 MeV. The obtained energy spectra of the resulting residuals and light-ions have been integrated using several different critical charges as SEU threshold. It is found that the SEU cross section seems largely to be dominated by 28 Si recoils from elastic scattering. Furthermore, the shape of the SEU cross section as a function of the energy of the incoming neutron changes drastically with decreasing critical charge. The results presented in this report stress the importance of performing studies at mono-energetic neutron beams to advance the understanding of the underlying mechanisms causing SEUs

  6. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemsitry in the region of Thulium, Lutetium, and Tantalum I. Results of Built in Spherical Symmetry in a Deformed Region

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-06

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from Terbium (Z = 65) to Rhenium (Z = 75). Of particular interest are the cross sections on Tm, Lu, and Ta including reactions on isomeric targets.

  7. 14.2 MeV neutron induced U-235 fission cross section measurement

    International Nuclear Information System (INIS)

    Li Jingwen; Shen Guanren; Ye Zongyuan; Li Anli; Zhou Shuhua; Sun Zhongfan; Wu Jingxia; Huang Tanzi

    1986-01-01

    The cross section of U-235 fission induced by 14.2 MeV neutrons was measured by the time correlated associated particle method. The result obtained is (2.078+-0.040) barn. Comparison with other author's is also given. (author)

  8. Measurement and analysis of 14 MeV neutron-induced double-differential neutron emission cross sections needed for fission and fusion reactor technology

    International Nuclear Information System (INIS)

    Wang Dahai.

    1990-10-01

    The main objectives of this IAEA Co-ordinated Research Programme are to improve the data on 14 MeV neutron-induced double-differential neutron emission cross sections for materials needed for fission and fusion reactor technology. This report summarizes the conclusions and recommendations which were agreed by all participants during the Second Research Co-ordination Meeting

  9. Neutron-induced fission cross sections of uraniums up to 40 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus); Hasegawa, A.

    1998-11-01

    Statistical theory of nuclear reactions, well-proved below 20 MeV, is applied for {sup 235}U and {sup 238}U fission data analysis up to {approx}40 MeV. It is shown that measured data could be reproduced. Chance structure of measured fission cross section is provided, it`s validity is supported by description of data for competing (n,xn)-reactions. Role of fissility of target nucleus is addressed. It seems that gap in incident neutron energy interval of 20 MeV - 50 MeV, below which evaluation approaches are well-developed, and above which simplified statistical approaches are valid, could be covered. (author)

  10. Evidence of pair correlations in actinide neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Maslov, V.M.

    2000-01-01

    It is shown that irregularities in fission cross sections in MeV incident neutron energy region could be attributed to the interplay of few-quasiparticle excitations in the level density of the fissioning and residual nuclei. It is suggested the intrinsic quasiparticle state density modelling approach both at stable and saddle-point deformations. The experimental manifestation of few-quasiparticle irregularities in the level density depends on the fission barrier structure and internal excitation energy at the saddle point, corresponding to the higher barrier hump. The explicit evidence is observed in case of fissile and non-fissile target nuclides [ru

  11. Isomeric cross sections of neutron induced reactions on Ge and Ir isotopes

    International Nuclear Information System (INIS)

    Vlastou, R.; Papadopoulos, C.T.; Kokkoris, M.; Perdikakis, G.; Galanopoulos, S.; Patronis, N.; Serris, M.; Perdikakis, G.; Harissopulos, S.; Demetriou, P.

    2008-01-01

    The 72 Ge(n,α) 69m Zn, 74 Ge(n,α) 71m Zn, 76 Ge(n,2n) 75g+m Ge and 191 Ir(n,2n) 190 Ir g+m1 and 191 Ir(n,2n) 190 Ir m2 reaction cross sections were measured from 9.6 to 11.4 MeV relative to the 27 Al(n,α) 24 Na reference reaction via the activation method. The quasi-monoenergetic neutron beams were produced via the 2 H(d,n) 3 He reaction at the 5 MV VdG Tandem T11/25 accelerator of NCSR 'Demokritos'. Statistical model calculations using the codes STAPRE-F and EMPIRE (version 2.19) and taking into account pre-equilibrium emission were performed on the data measured in this work as well as on data reported in literature. (authors)

  12. Actinide neutron induced cross section measurements using the oscillation technique in the Minerve reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, B.; Leconte, P.; Gruel, A.; Antony, M.; Di-Salvo, J.; Hudelot, J.P.; Pepino, A.; Lecluze, A. [CEA Cadarache, DEN/CAD/DER/SPRC/LEPh, 13 - Saint-Paul-lez-Durance (France)

    2009-07-01

    CEA is deeply involved research programs concerning nuclear fuel advanced studies (actinides, plutonium), waste management, the scientific and technical support of French PWR reactors and EPR reactor, and innovative systems. In this framework, specific neutron integral experiments have been carried out in the critical ZPR (zero power reactor) facilities of the CEA at Cadarache such as MINERVE, EOLE and MASURCA. This paper deals with MINERVE Pool Reactor experiments. MINERVE is mainly devoted to neutronics studies of different reactor core types. The aim is to improve the knowledge of the integral absorption cross sections of actinides (OSMOSE program), of new absorbers (OCEAN program) and also for fission Products (CBU program) in thermal, epithermal and fast neutron spectra. (authors)

  13. Evaluation of Neutron-induced Cross Sections and their Related Covariances with Physical Constraints

    Science.gov (United States)

    De Saint Jean, C.; Archier, P.; Privas, E.; Noguère, G.; Habert, B.; Tamagno, P.

    2018-02-01

    Nuclear data, along with numerical methods and the associated calculation schemes, continue to play a key role in reactor design, reactor core operating parameters calculations, fuel cycle management and criticality safety calculations. Due to the intensive use of Monte-Carlo calculations reducing numerical biases, the final accuracy of neutronic calculations increasingly depends on the quality of nuclear data used. This paper gives a broad picture of all ingredients treated by nuclear data evaluators during their analyses. After giving an introduction to nuclear data evaluation, we present implications of using the Bayesian inference to obtain evaluated cross sections and related uncertainties. In particular, a focus is made on systematic uncertainties appearing in the analysis of differential measurements as well as advantages and drawbacks one may encounter by analyzing integral experiments. The evaluation work is in general done independently in the resonance and in the continuum energy ranges giving rise to inconsistencies in evaluated files. For future evaluations on the whole energy range, we call attention to two innovative methods used to analyze several nuclear reaction models and impose constraints. Finally, we discuss suggestions for possible improvements in the evaluation process to master the quantification of uncertainties. These are associated with experiments (microscopic and integral), nuclear reaction theories and the Bayesian inference.

  14. Measurement of the neutron-induced deuteron breakup reaction cross-section between 5 and 25 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G. [CEA, DAM, DIF, Arpajon (France)

    2012-06-15

    This article presents a full program devoted to the calculation and the measurement of the neutron-induced deuteron break-up reaction cross-section between 5 and 10 MeV, and between 20 and 25 MeV. Measurements are compared with theoretical calculations based on the solution of the Faddeev equations for a realistic nuclear Hamiltonian. The experiments were performed at the Tandem 7 MV accelerator at CEA, DAM, DIF, France. The measurements were carried out with a C{sub 6}D{sub 6} detector as active deuterium target located at the center of a 4{pi} neutron counter (see C. Varignon et al., Nucl. Instrum. Methods B 248, 329 (2006)) which allows to count the two neutrons emitted in the {sup 2}H(n, 2n)p reaction. Comparisons of the new data and calculations are made with the existing data as well as the CENDL2, JENDL3.3 and ENDF/B-VII evaluations. (orig.)

  15. Systematics of neutron-induced fission cross sections over the energy range 0.1 through 15 MeV, and at 0.0253 eV

    International Nuclear Information System (INIS)

    Behrens, J.W.

    1977-01-01

    Recent studies have shown straightforward systematic behavior as a function of constant proton and neutron number for neutron-induced fission cross sections of the actinide elements in the incident-neutron energy range 3 to 5 MeV. In this report, the second in a series, fission cross-section values are studied over the MeV incident-neutron energy range, and at 0.0253 eV. Fission-barrier heights and neutron-binding energies are correlated by constant proton and neutron number; however, these systematic behaviors alone do not explain the trends observed in the fission cross-section values

  16. Neutron induced fission cross section ratios for 232Th, 235,238U, 237Np and 239Pu from 1 to 400 MeV

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1988-01-01

    Time-of-flight measurements of neutron induced fission cross section ratios for 232 Th, 235,238 U, 237 Np, and 239 Pu, were performed using the WNR high intensity spallation neutron source located at Los Alamos National Laboratory. A multiple-plate gas ionization chamber located at a 20-m flight path was used to simultaneously measure the fission rate for all samples over the energy range from 1 to 400 MeV. Because the measurements were made with nearly identical neutron fluxes, we were able to cancel many systematic uncertainties present in previous measurements. This allows us to resolve discrepancies among different data sets. In addition, these are the first neutron-induced fission cross section values for most of the nuclei at energies above 30 MeV. (author)

  17. Neutron induced fission cross section ratios for 232Th, /sup 235,238/U, 237Np, and 239Pu from 1 to 400 MeV

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1988-01-01

    Time-of-flight measurements of neutron induced fission cross section ratios for 232 Th, /sup 235,238/U, 237 Np, and 239 Pu, were performed using the WNR high intensity spallation neutron source located at Los Alamos National Laboratory. A multiple-plate gas ionization chamber located at a 20-m flight path was used to simultaneously measure the fission rate for all samples over the energy range from 1 to 400 MeV. Because the measurements were made with nearly identical neutron fluxes, we were able to cancel many systematic uncertainties present in previous measurements. This allows us to resolve discrepancies among different data sets. In addition, these are the first neutron-induced fission cross section values for most of the nuclei at energies above 30 MeV. 8 refs., 3 figs

  18. Determination of the neutron-induced fission cross section of {sup 242}Pu; Bestimmung des neutroneninduzierten Spaltquerschnitts von {sup 242}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Koegler, Toni Joerg

    2016-04-26

    Neutron induced fission cross sections of actinides like the Pu-isotopes are of relevance for the development of nuclear transmutation technologies. For {sup 242}Pu, current uncertainties are of around 21%. Sensitivity studies show that the total uncertainty has to be reduced to below 5% to allow for reliable neutron physics simulations. This challenging task was performed at the neutron time-of-flight facility of the new German National Center for High Power Radiation Sources at HZDR, Dresden. Within the TRAKULA project, thin, large and homogeneous deposits of {sup 235}U and {sup 242}Pu have been produced successfully. Using two consecutively placed fission chambers allowed the determination of the neutron induced fission cross section of {sup 242}Pu relative to {sup 235}U. The areal density of the Plutonium targets was calculated using the measured spontaneous fission rate. Experimental results of the fast neutron induced fission of {sup 242}Pu acquired at nELBE will be presented and compared to recent experiments and evaluated data. Corrections addressing the neutron scattering are discussed by using results of different neutron transport simulations (Geant 4, MCNP 6 and FLUKA).

  19. Improvement of measurements, theoretical computations and evaluations of neutron induced helium production cross sections. Summary report on the third and final research co-ordination meeting

    International Nuclear Information System (INIS)

    Pashchenko, A.B.

    1996-09-01

    The present report contains the Summary of the Third and Final IAEA Research Co-ordination Meeting (RCM) on ''Improvement of Measurements, Theoretical Computations and Evaluations of Neutron Induced Helium Production Cross Sections'' which was hosted by the Tohoku University and held in Sendai, Japan, from 25 to 29 September 1995. This RCM was organized by the IAEA Nuclear Data Section (NDS), with the co-operation and assistance of local organizers from Tohoku University. Summarized are the proceedings and results of the meeting. The List of Participants and meeting Agenda are included. (author)

  20. Calculated neutron-induced cross sections for /sup 58,60/Ni from 1 to 20 MeV and comparisons with experiments

    International Nuclear Information System (INIS)

    Hetrick, D.M.; Fu, C.Y.; Larson, D.C.

    1987-06-01

    Nuclear model codes were used to compute cross sections for neutron-induced reactions on both 58 Ni and 60 Ni for incident energies from 1 to 20 MeV. The input parameters for the model codes were determined through analysis of experimental data in this energy region. Discussion of the models used, the input data, the resulting calculations, extensive comparisons to measured data, and comparisons to the Evaluated Nuclear Data File (ENDF/B-V) for Ni (MAT 1328) are included in this report. 118 refs., 101 figs., 19 tabs

  1. Measurement and analysis of 14 MeV neutron-induced double-differential neutron emission cross sections needed for fission and fusion reactor technology

    International Nuclear Information System (INIS)

    Wang Dahai; Mehta, M.K.

    1988-07-01

    The main objectives of this IAEA Co-ordinated Research Programme are to improve the current status of data for 14 MeV neutron-induced double-differential neutron emission cross sections for V, Cr, Fe, Nb, Ta and 238 U. The principal objectives of this first meeting were to report on the status of participants' work, to exchange experience in experimental work and to establish the future work. Considering the unsatisfactory status of the data for 6 Li, 7 Li, 9 Be, Mo, W and Bi and their importance in fusion reactor technology participants agreed to include these isotopes in the programme

  2. Calculated neutron-induced cross sections for /sup 63/ /sup 65/Cu from 1 to 20 MeV and comparisons with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hetrick, D.M.; Fu, C.Y.; Larson, D.C.

    1984-08-01

    Nuclear model codes were used to compute cross sections for neutron-induced reactions on both /sup 63/Cu and /sup 65/Cu for incident energies from 1 to 20 MeV. The input parameters for the model codes were determined through analysis of experimental data in this energy region. Discussion of the models used, the input data, the resulting calculations, extensive comparisons to measured data, and comparisons to the Evaluated Nuclear Data File (ENDF/B-V) for Cu (MAT 1329) are included in this report.

  3. 238U neutron-induced fission cross section for incident neutron energies between 5 eV and 3.5 MeV

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.; de Saussure, G.; Olsen, D.K.; Ingle, R.W.

    1979-01-01

    A measurement of the 238 U neutron-induced fission cross section was performed at the ORELA Linac facility in the neutron energy range between 5 eV and 3.5 MeV. The favorable signal-to-background ratio and high resolution of this experiment resulted in the identificaion of 85 subthreshold fission resonances or clusters of resonances in the neutron energy region between 5 eV and 200 keV. The fission data below 100 keV are characteristic of a weak coupling situation between Class I and Class II levels. The structure of the fission levels at the 720 eV and 1210 eV fission clusters is discussed. There is an apparent enhancement of the fission cross section at the opening of the 2 + neutron inelastic channel in 238 U at 45 keV. An enhancement of the subthreshold fission cross section between 100 keV and 200 keV is tentatively interpreted in terms of the presence of a Class II, partially damped vibrational level. There is a marked structure in the fission cross section above 200 keV up to and including the plateau between 2 and 3.5 MeV. 11 figures and 6 tables

  4. Neutron induced fission cross sections for /sup 232/Th, /sup 235,238/U, /sup 237/Np and /sup 239/Pu from 1 to 400 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1988-01-01

    Neutron-induced fission cross section ratios for samples of /sup 232/Th, /sup 235,238/U, /sup 237/Np and /sup 239/Pu have been measured from 1 to 400 MeV. The fission reaction rate was determined for all samples simultaneously using a fast parallel plate ionization chamber at a 20-m flight path. A well characterized annular proton recoil telescope was used to measure the neutron fluence up to 30 MeV. These data provided the shape of the /sup 235/U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known values were determined using the neutron fluence measured with a second proton recoil telescope. Cross section values for /sup 232/Th, /sup 238/U, /sup 237/Np, and /sup 239/Pu were computed from the ratio data using our values for /sup 235/U(n,f). In addition to providing new results at high neutron energies, these data resolve long standing discrepancies among different data sets. 1 ref., 1 fig.

  5. Measurements of neutron-induced capture and fission reactions on $^{235}$ U: cross sections and ${\\alpha}$ ratios, photon strength functions and prompt ${\\gamma}$-ray from fission

    CERN Multimedia

    We propose to measure the neutron-induced capture cross section of the fissile isotope $^{235}$U using a fission tagging set-up. This new set-up has been tested successfully in 2010 and combines the n_TOF 4${\\pi}$ Total Absorption Calorimeter (TAC) with MicroMegas (MGAS) fission detectors. It has been proven that such a combination of detectors allows distinguishing with very good reliability the electromagnetic cascades from the capture reactions from dominant ${\\gamma}$-ray background coming from the fission reactions. The accurate discrimination of the fission background is the main challenge in the neutron capture cross section measurements of fissile isotopes. The main results from the measurement will be the associated capture cross section and ${\\alpha}$ ratio in the resolved (0.3-2250 eV) and unresolved (2.25-30 keV) resonance regions. According to the international benchmarks and as it is mentioned in the NEA High Priority Request List (HPRL), the 235U(n,${\\gamma}$) cross section is of utmost impo...

  6. Neutron-Induced Fission Cross Section of Uranium, Americium and Curium Isotopes. Progress report - Research Contract 14485, Coordinated Research Project on Minor Actinide Neutron Reaction Data (MANREAD)

    International Nuclear Information System (INIS)

    Alekseev, A.A.; Bergman, A.A.; Berlev, A.I.; Koptelov, E.A.; Samylin, B.F.; Trufanov, A.M.; Fursov, B.I.; Shorin, V.S.

    2009-12-01

    This report contains brief description of the Lead Slowing Down Spectrometer and results of measurements of neutron-induced fission cross sections for 236 U, 242m Am, 243 Cm, 244 Cm, 245 Cm and 246 Cm done at this spectrometer. The work was partially supported through the IAEA research contract RC-14485-RD in the framework of the IAEA Coordinated Research Project 'Minor Actinide Neutron Reaction Data (MANREAD)'. The detailed description of the experimental set up, measurements procedure and data treatment can be found in the JIA-1182 (2007) and JIA-1212 (2009) reports from the Institute of Nuclear Research of the Russian Academy of Science published in Russian. Part 1 contains the first year report of the research contract and part 2 the second year report. (author)

  7. A new empirical formula for 14-15 MeV neutron-induced (n, p) reaction cross sections

    International Nuclear Information System (INIS)

    Tel, E; Sarer, B; Okuducu, S; Aydin, A; Tanir, G

    2003-01-01

    In this study, we have suggested a new empirical formula to reproduce the cross sections of the (n, p) reactions at 14-15 MeV for the neutron incident energy. This formula obtained using the asymmetry parameters represents a modification to the original formula of Levkovskii. The resulting modified formulae yielded cross sections, representing smaller χ 2 deviations from experimental values, and values much closer to unity as compared with those calculated using Levkovskii's original formula. The results obtained have been discussed and compared with the existing formulae, and found to be well in agreement, when used to correlate the available experimental σ(n, p) data of different nuclei

  8. Measurements of the neutron-induced fission cross sections of 240Pu and 242Pu relative to 235U

    International Nuclear Information System (INIS)

    Behrens, J.W.; Browne, J.C.; Carlson, G.W.

    1976-01-01

    A continuation is given of the fission-cross-section ratio measurements in progress at the Lawrence Livermore Laboratory. Preliminary results are provided for the 240 Pu/ 235 U and 242 Pu/ 235 U ratios from 0.02 to 30 MeV and 0.1 to 30 MeV, respectively. Using the threshold-cross-section method, the ratios were normalized to the values 1.368 +- 0.030 and 1.116 +- 0.025, respectively, from 1.75 to 4.00 MeV

  9. The needs for program and cross-section library improvement in calculation of neutron-induced activity inventories

    International Nuclear Information System (INIS)

    Yavshitz, S.G.; Rubchenya, V.A.; Rimski-Korsakov, A.A.

    1993-01-01

    The authors demonstrate the possibility of an approach to evaluate the radioactive inventory - induced activity of structural materials and surface contamination of reactor components, that will fit well into ORIGEN code structure and could be used on a modest PC directly on the decommissioning site. This approach would also require only one well tested set of pre-calculated and adjusted by experiment cross-section libraries (averaged by typical neutron spectra outside the reactor core). 15 refs, 1 fig

  10. The Determination of Neutron-Induced Reaction Cross Section Data on Even-Even, Magic- Number Nuclide Chromium 52 Using EXIFON Code

    International Nuclear Information System (INIS)

    Jonah, S.A.

    2013-01-01

    The EXIFON code version 2.0 is a calculational tool, which is based on both many-body theory and random matrix physics. In this work, it has been used to calculate neutron induced reaction cross section data from 0 to 20 MeV on an even-even, magic number nuclide 52 Cr with neutron number, N=28. Specifically, the (n,p), (n,α) and (n,2n) reaction cross section data were calculated as functions of incident energy of neutrons. Data obtained from the experimental data in the IAEA, EXFOR data Library and recommended data libraries around the globe, JENDL, ENDF and JEFF were used to validate the calculated data. The data indicate that the calculated data without shell corrections are in good agreement with experimental data as well as the recommended data from the evaluated data libraries. The calculated results could provide useful insight into the choice of some input parameters near closed shells using the EXIFON code.

  11. Measurements of D-T neutron induced radioactivity in plasma-facing materials and their role in qualification of activation cross-section libraries and codes

    International Nuclear Information System (INIS)

    Kumar, A.; Abdou, M.A.; Kosako, K.; Oyama, Y.; Nakamura, T.; Maekawa, H.

    1995-01-01

    The D-T neutron-induced radioactivity constitutes one of the foremost issues in fusion reactor design. The validation of activation cross-sections and decay data libraries is one of the important requirements for validating ITER design from safety and waste disposal viewpoints. An elaborate, experimental program was initiated in 1988, under USDOE-JAERI collaborative program, to validate the radioactivity codes/libraries. The measurements of decay-γ spectra from irradiated, high purity samples of Al, Si, Ti, V, Cr, Mn-Cu alloy, Fe, Co, Ni, Cu, stainless steel 316 (AISI 316), Zn, Zr, Nb, Mo, In, Sn, Ta, W, and Pb, among others, were conducted under D-T neutron fluences varying from 1.6 x 10 10 ncm -2 to 6.1 x 10 13 ncm -2 . As many as 14 neutron energy spectra were covered for a number of materials. The analysis of isotopic activities of the irradiated materials using activation cross-section libraries of four leading radioactivity codes, i.e. ACT4/THIDA-2, REAC-3, DKR-ICF, and RACC, has shown large discrepancies among the calculations, on the one hand, and between the calculations and the measurements, on the other. A discussion is also presented on definition and obtention of safety cum quality factors for various activation libraries. (orig.)

  12. Simultaneous measurement of neutron-induced fission and capture cross sections for {sup 241}Am at neutron energies below fission threshold

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, K., E-mail: hirose.kentaro@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Nishio, K.; Makii, H.; Nishinaka, I.; Ota, S. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Nagayama, T. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Mito 310-0056 (Japan); Tamura, N. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Goto, S. [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Andreyev, A.N. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Vermeulen, M.J. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Gillespie, S.; Barton, C. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Kimura, A.; Harada, H. [Nuclear Science and Engineering Center, JAEA, Tokai, Ibaraki 319-1195 (Japan); Meigo, S. [J-PARC Center, JAEA, Tokai, Ibaraki 319-1195 (Japan); Chiba, S. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Ohtsuki, T. [Research Reactor Institute, Kyoto University, Kumatori-cho S' ennangun,Osaka 590-0494 (Japan)

    2017-06-01

    Fission and capture reactions were simultaneously measured in the neutron-induced reactions of {sup 241}Am at the spallation neutron facility of the Japan Proton Accelerator Research Complex (J-PARC). Data for the neutron energy range of E{sub n}=0.1–20 eV were taken with the TOF method. The fission events were observed by detecting prompt neutrons accompanied by fission using liquid organic scintillators. The capture reaction was measured by detecting γ rays emitted in the deexcitation of the compound nuclei using the same detectors, where the prompt fission neutrons and capture γ rays were separated by a pulse shape analysis. The cross sections were obtained by normalizing the relative yields at the first resonance to evaluations or other experimental data. The ratio of the fission to capture cross sections at each resonance is compared with those from an evaluated nuclear data library and other experimental data. Some differences were found between the present values and the library/literature values at several resonances.

  13. Actinide neutron induced cross-sections; analysis of the OSMOSE LWR-UO{sub 2} experiment in MINERVE

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, D.; Litaize, O.; Santamarina, A.; Antony, M.; Hudelot, J. P. [Commissariat a l' Energie Atomique, Cadarache, DEN/DER, 13108 Saint-Paul-Lez-Durance (France)

    2006-07-01

    This paper describes the interpretation of the first phase of the OSMOSE experimental program. The OSMOSE experiment began in 2005 in the MINERVE French facility and will continue until 2008. It consists in reactivity worth measurements of separated actinides by an oscillation technique. First results are obtained in a standard LWR neutron spectrum (UO{sub 2} lattice). The present study focuses on the following isotopes: {sup 234,236}U, {sup 237}Np, {sup 239,242}Pu. The comparison between APOLLO2 accurate deterministic calculations and experiments shows the reliability of the latest JEFF-3.1 European nuclear data library for all oscillated isotopes, except {sup 237}Np. The obtained (C/E-1){+-}({delta}E/E) values are the following: {sup 234}U: -5%{+-}2% {sup 237}Np: -11%{+-}2% {sup 239}Pu: +1%{+-}2% {sup 242}Pu: +2%{+-}2% An energetic decomposition of the reactivity worth is carried out using Standard Perturbation Theory that underlines the underestimation of the {sup 237}Np(n, {gamma}) thermal and resonant capture cross-section. (authors)

  14. Neutron induced fission cross section ratios for /sup 232/Th, /sup 235,238/U, /sup 237/Np, and /sup 239/Pu from 1 to 400 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1988-01-01

    Time-of-flight measurements of neutron induced fission cross section ratios for /sup 232/Th, /sup 235,238/U, /sup 237/Np, and /sup 239/Pu, were performed using the WNR high intensity spallation neutron source located at Los Alamos National Laboratory. A multiple-plate gas ionization chamber located at a 20-m flight path was used to simultaneously measure the fission rate for all samples over the energy range from 1 to 400 MeV. Because the measurements were made with nearly identical neutron fluxes, we were able to cancel many systematic uncertainties present in previous measurements. This allows us to resolve discrepancies among different data sets. In addition, these are the first neutron-induced fission cross section values for most of the nuclei at energies above 30 MeV. 8 refs., 3 figs.

  15. The IAEA co-ordinated research programme on improvement of measurements, theoretical computations and evaluations of neutron induced helium production cross sections. Status report. Prepared at the final CRP meeting in Sendai, Japan 25-29 September 1995

    International Nuclear Information System (INIS)

    Pashchenko, A.B.

    1996-12-01

    The present report describes the results of the IAEA Co-ordinated Research Programme (CRP) on ''Improvements of Measurements, Theoretical Computation and Evaluations of Neutron Induced Helium Production Cross Sections''. Summarized is the progress achieved under the CRP in the following areas: measurements of α-production cross sections for structural materials, theoretical computations at (nα) cross sections; measurements of activation cross sections; and improvement of experimental methods for (n,α) investigations. The status report gives also short summaries on the work of each laboratory which contributed to the results of the CRP. Attached is the list of program members and participants of CRP meetings. (author). Refs, 2 figs, 1 tab

  16. Measurement of neutron-induced fission cross-sections of Th232, U238, U233 and Np237 relative to U235 from 1 MeV to 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, O.A.; Laptev, A.B.; Petrov, G.A. [Petersburg Nuclear Physics Inst., Gatchina, Leningrad district (Russian Federation); Fomichev, A.V.; Donets, A.Y.; Osetrov, O.I.

    1998-11-01

    The measurements of neutron-induced cross-section ratios for Th232, U238, U233 and Np237 relative to U235 have been carried out in the energy range from 1 MeV up to 200 MeV using the neutron time-of-flight spectrometer GNEIS based on 1 GeV proton synchrocyclotron. Below 20 MeV, the results of present measurements are roughly in agreement with evaluated data though there are some discrepances to be resolved. (author)

  17. Measurement of the neutron-induced fission cross section of 237Np relative to 235U from 0.02 to 30 MeV

    International Nuclear Information System (INIS)

    Behrens, J.W.; Magana, J.W.; Browne, J.C.

    1977-01-01

    The 237 Np/ 235 U fission cross section ratio has been measured from 0.02 to 30 MeV. Using the threshold method, a value of 1.294 +- 0.019 is obtained for the average cross section ratio in the interval from 1.75 to 4.00 MeV

  18. Measurement of the neutron-induced fission cross section of 232Th relative to 235U from 0.7 to 30 MeV

    International Nuclear Information System (INIS)

    Behzens, T.W.; Ables, E.; Browne, T.C.

    1982-01-01

    The authors have measured the fission cross-section ratio 232 Th: 235 U as a function of neutron energy from 0.7 to 30 MeV using ionization fission chambers, the threshold cross-section method, and the time-of-flight technique at the Lawrence Livermore National Laboratory 100-MeV electron linear accelerator. The measured cross-section ratio, averaged over the neutron energy interval from 1.75 to 4.00 MeV, was 0.1086 + 0.0024

  19. Integral cross-section measurements for investigating the emission of complex particles in 14 MeV neutron-induced nuclear reactions

    International Nuclear Information System (INIS)

    Qaim, S.M.

    1981-01-01

    Some of the off-line techniques used for the determination of integral cross-section data are reviewed and, as a critical check, some typical data sets are compared. The systematic trends reported in the cross-section data for (n,d), (n,t), (n, 3 He) and (n,α) reactions are discussed. A brief discussion of the possible reaction mechanisms is given. Some of the applications of the data are outlined. (author)

  20. Neutron-induced fission cross-section of 233U, 241Am and 243Am in the energy range 0.5 MeV ≤ En ≤ 20 MeV

    International Nuclear Information System (INIS)

    Belloni, F.; Milazzo, P.M.; Calviani, M.

    2011-01-01

    Neutron-induced fission cross-sections of 233 U, 241 Am and 243 Am relative to 235 U have been measured in a wide energy range at the neutron time of flight facility n-TOF in Geneva to address the present discrepancies in evaluated and experimental databases for reactions and isotopes relevant for transmutation and new generation fast reactors. A dedicated fast ionization chamber was used. Each isotope was mounted in a different cell of the modular detector. The measurements took advantage of the characteristics of the n-TOF installation. Its intrinsically low background, coupled to its high instantaneous neutron flux, results in high accuracy data. Its wide energy neutron spectrum helps to reduce systematic uncertainties due to energy-domain matching problems while the 185 m flight path and a 6 ns pulse width assure an excellent energy resolution. This paper presents results obtained between 500 keV and 20 MeV neutron energy. (authors)

  1. Neutron induced 238U subthreshold fission cross section for neutron energies between 5 eV and 3.5 MeV

    International Nuclear Information System (INIS)

    Perez, R.B.; Difilippo, F.C.; Saussure, G. de; Ingle, R.W.

    1978-01-01

    A measurement of the 238 U fission cross section between 5 eV and 3.5 MeV was performed. Included is the identification of 85 resonances or clusters of resonances below 200 keV. Also the fission widths for the 27 resolved class I levels were computed from their fission areas, and a neutron width of 0.005 MeV was estimated for the quasi-class II level in the 721 eV fission cluster. The fission level spacing and cross sections are discussed. 9 references

  2. Statistical Verification and Validation of the EXFOR database: (n,n'), (n,2n), (n,p), (n,α) and other neutron-induced threshold reaction cross-sections

    International Nuclear Information System (INIS)

    Koning, Arjan

    2014-01-01

    The NEA Data Bank operates as an international centre of reference for its member countries with respect to basic nuclear tools, such as computer codes and nuclear data, used for the analysis and prediction of phenomena in the nuclear field. It provides a direct service to its users by acquiring, developing, improving and validating these tools and making them available as requested. In the continuity of WPEC Subgroup 30 work on improving the accessibility and quality of the EXFOR database, the NEA Data Bank initiated a number of activities to further improve and validate its nuclear databases. In particular, it was proposed to perform a comprehensive review of cross-section data in the EXFOR database. This report describes the development of an efficient review system and its application to more than 10,000 cross-section data sets of neutron-induced threshold and activation reactions. The current report is set up as follows. In Section 2 it is outlined how the original EXFOR data collection is transformed into a database that can be subjected to a statistical analysis. In Section 3, a classification for scoring of EXFOR data sets is proposed. Next, in Section 4 the goodness-of-fit estimators that lead to the scoring are defined. Finally a graphical comparison is presented of all experimental data, together with the available major nuclear data libraries, covered in this paper. (author)

  3. Recent cross-section measurements of neutron-induced reactions of importance for background estimates in 0νββ searches

    Science.gov (United States)

    Tornow, W.; Bhike, M.; Finch, S. W.; Krishichayan

    2017-09-01

    We report on cross-section measurements for the reactions 76Ge(n,2n)75Ge, 76Ge(n,n'γ)76Ge, 126,127,128Te(n,γ)127,129,131Te, and 136Xe(n,n'γ)136Xe in the neutron energy range between 0.5 MeV and 15 MeV.

  4. Recent cross-section measurements of neutron-induced reactions of importance for background estimates in 0νββ searches

    Directory of Open Access Journals (Sweden)

    Tornow W.

    2017-01-01

    Full Text Available We report on cross-section measurements for the reactions 76Ge(n,2n75Ge, 76Ge(n,n′γ76Ge, 126,127,128Te(n,γ127,129,131Te, and 136Xe(n,n′γ136Xe in the neutron energy range between 0.5 MeV and 15 MeV.

  5. New calculation for the neutron-induced fission cross section of 233Pa between 1.0 and 3.0 MeV

    International Nuclear Information System (INIS)

    Mesa, J.; Deppman, A.; Likhachev, V.P.; Arruda-Neto, J.D.T.; Manso, M.V.; Garcia, C.E.; Rodriguez, O.; Guzman, F.; Garcia, F.

    2003-01-01

    The 233 Pa(n,f) cross section, a key ingredient for fast reactors and accelerators driven systems, was measured recently with relatively good accuracy [F. Tovesson et al., Phys. Rev. Lett. 88, 062502 (2002)]. The results are at strong variance with accepted evaluations and an existing indirect experiment. This circumstance led us to perform a quite detailed and complete evaluation of the 233 Pa(n,f) cross section between 1.0 and 3.0 MeV, where use of our newly developed routines for the parametrization of the nuclear surface and the calculation of deformation parameters and level densities (including low-energy discrete levels) were made. The results show good quantitative and excellent qualitative agreement with the experimental direct data obtained by Tovesson et al. [F. Tovesson et al., Phys. Rev. Lett. 88, 062502 (2002)]. Additionally, our methodology opens new possibilities for the analysis of subthreshold fission and above threshold second-chance fission for both 233 Pa and its decay product 233 U, as well as other strategically important fissionable nuclides

  6. Reaction Cross Section Calculations in Neutron Induced Reactions and GEANT4 Simulation of Hadronic Interactions for the Reactor Moderator Material BeO

    Directory of Open Access Journals (Sweden)

    Veli ÇAPALI

    2016-05-01

    Full Text Available BeO is one of the most common moderator material for neutron moderation; due to its high density, neutron capture cross section and physical-chemical properties that provides usage at elevated temperatures. As it’s known, for various applications in the field of reactor design and neutron capture, reaction cross–section data are required. The cross–sections of (n,α, (n,2n, (n,t, (n,EL and (n,TOT reactions for 9Be and 16O nuclei have been calculated by using TALYS 1.6 Two Component Exciton model and EMPIRE 3.2 Exciton model in this study. Hadronic interactions of low energetic neutrons and generated isotopes–particles have been investigated for a situation in which BeO was used as a neutron moderator by using GEANT4, which is a powerful simulation software. In addition, energy deposition along BeO material has been obtained. Results from performed calculations were compared with the experimental nuclear reaction data exist in EXFOR.

  7. Neutron-induced fission cross-section measurement of 234U with quasi-monoenergetic beams in the keV and MeV range using micromegas detectors

    Science.gov (United States)

    Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.

    2017-09-01

    Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.

  8. Measurement of double differential cross sections for light charged particles production in neutron induced reaction at 62.7 MeV on lead target; Mesures des sections efficaces doublement differentielles de production de particules chargees legeres lors de reactions induites par neutrons de 62.7 MeV sur cible de plomb

    Energy Technology Data Exchange (ETDEWEB)

    Kerveno, M

    2000-09-27

    In order to develop new options for nuclear waste management, studies are carrying out on the perfecting of hybrid systems (sub-critical reactor driven by accelerator). This thesis work takes place more precisely in the framework of nuclear data linked to hybrid systems development. Increasing the upper limit energy value (from 20 to 150 MeV) of data bases supposes that theoretical codes could have sufficient predictive power in this energy range. Thus it's necessary to measure new cross sections to constrain these codes. The experiment, performed at Louvain-la-Neuve Cyclotron, aims to determine the double differential cross sections for light charged particles production in neutron induced reactions at 62.7 MeV on natural lead target. The detection device consists of 6 NE102-CsI telescopes. Time of flight measurements are used to reconstruct the neutron energy spectra. The general framework (hybrid systems and associated nuclear data problematic) in which this work takes place is presented in a first part. The experimental set up used for our measurements is described in a second part. The three following parts are dedicated to the data analysis and double differential cross sections extraction. The particle discrimination, the energy calibration of detectors as the different corrections applied to the experimental spectra are related in details. And finally a comparative study between our experimental results and some theoretical predictions is presented. (author)

  9. Measurement of double differential cross sections for light charged particles production in neutron induced reaction at 62.7 MeV on lead target; Mesures des sections efficaces doublement differentielles de production de particules chargees legeres lors de reactions induites par neutrons de 62.7 MeV sur cible de plomb

    Energy Technology Data Exchange (ETDEWEB)

    Kerveno, M

    2000-09-27

    In order to develop new options for nuclear waste management, studies are carrying out on the perfecting of hybrid systems (sub-critical reactor driven by accelerator). This thesis work takes place more precisely in the framework of nuclear data linked to hybrid systems development. Increasing the upper limit energy value (from 20 to 150 MeV) of data bases supposes that theoretical codes could have sufficient predictive power in this energy range. Thus it's necessary to measure new cross sections to constrain these codes. The experiment, performed at Louvain-la-Neuve Cyclotron, aims to determine the double differential cross sections for light charged particles production in neutron induced reactions at 62.7 MeV on natural lead target. The detection device consists of 6 NE102-CsI telescopes. Time of flight measurements are used to reconstruct the neutron energy spectra. The general framework (hybrid systems and associated nuclear data problematic) in which this work takes place is presented in a first part. The experimental set up used for our measurements is described in a second part. The three following parts are dedicated to the data analysis and double differential cross sections extraction. The particle discrimination, the energy calibration of detectors as the different corrections applied to the experimental spectra are related in details. And finally a comparative study between our experimental results and some theoretical predictions is presented. (author)

  10. Interference analysis of fission cross section

    International Nuclear Information System (INIS)

    Toshkov, S.A.; Yaneva, N.B.

    1976-01-01

    The formula for the reaction cross-section based on the R-matrix formalism considering the interference between the two neighbouring resonances, referred to the same value of total momentum was used for the analysis of the cross-section of resonance neutron induced fission of 230Pu. The experimental resolution and thermal motion of the target nuclei were accounted for numerical integration

  11. Partial Cross Sections of Neutron-Induced Reactions on nCu at En = 6, 8, 10, 12, 14, and 16 MeV for 0νββ Background Studies

    Science.gov (United States)

    Gooden, M. E.; Fallin, B. A.; Finch, S. W.; Kelley, J. H.; Howell, C. R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Stanislav, V.

    2014-05-01

    Partial cross-section measurements of (n,n'γ) reactions on natCu were carried out at TUNL using monoenergetic neutrons at six energies of En = 6, 8, 10, 12, 14, 16 MeV. These studies were performed to provide accurate cross-section data on materials abundant in experimental setups involving HPGe detectors used to search for rare events, like the neutrino-less double-beta decay of 76Ge. Spallation and (α,n) neutrons are expected to cause the largest source of external background in the energy region of interest. At TUNL pulsed neutron beams were produced via the 2H(d,n)3He reaction and the deexcitation γ rays from the reaction natCu(n,xγ) were detected with clover HPGe detectors. Cross-section results for the strongest transtions in 63Cu and 65Cu will be reported, and will compared to model calculations and to data recently obtained at LANL with a white neutron beam.

  12. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  13. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  14. Nuclear structure effects on calculated fast neutron reaction cross sections

    International Nuclear Information System (INIS)

    Avrigeanu, V.

    1992-01-01

    The importance of accurate low-lying level schemes for reaction cross section calculation and need for microscopically calculated levels are proved with reference to fast neutron induced reactions in the A = 50 atomic mass range. The uses of the discrete levels both for normalization of phenomenological level density approaches and within Hauser-Feshbach calculations are discussed in this respect. (Author)

  15. Neutron-induced photon production in MCNP

    International Nuclear Information System (INIS)

    Little, R.C.; Seamon, R.E.

    1983-01-01

    An improved method of neutron-induced photon production has been incorporated into the Monte Carlo transport code MCNP. The new method makes use of all partial photon-production reaction data provided by ENDF/B evaluators including photon-production cross sections as well as energy and angular distributions of secondary photons. This faithful utilization of sophisticated ENDF/B evaluations allows more precise MCNP calculations for several classes of coupled neutron-photon problems

  16. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  17. Determination of minor actinides fission cross sections by means of transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, B.; Aiche, M.; Barreau, G.; Boyer, S.; Czajkowski, S.; Dassie, D.; Grosjean, C.; Guiral, A.; Haas, B.; Osmanov, B.; Petit, M. [CENBG - UMR 5795 CNRS/IN2P3-Univ. Bordeaux 1- Le Haut Vigneau, 33175 Gradignan (France); Berthoumieux, E.; Gunsing, F.; Perrot, L.; Theisen, Ch. [CEN Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette cedex (France); Bauge, E. [CEA, SPhN, BP12 91680 Bruyeres-le-Chatel (France); Michel-Sendis, F. [IPN, 15 rue G. Clemenceau, 91406 Orsay cedex (France); Billebaud, A. [LPSC, 53 Avenue des Martyrs, 38026 Grenoble cedex (France); Wilson, J. N. [IPN, 15 rue G. Clemenceau, 91406 Orsay cedex (France); LPSC, 53 Avenue des Martyrs, 38026 Grenoble cedex (France); Ahmad, I.; Greene, J.P.; Janssens, R. V. F. [ANL, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2005-07-01

    We present an original method that allows to determine neutron-induced cross sections of very short-lived minor actinides. This indirect method, based on the use of transfer reactions, has already been applied with success for the determination of the neutron-induced fission and capture cross section of {sup 233}Pa, a key nucleus in the {sup 232}Th - {sup 233}U fuel cycle. A recent experiment using this technique has been performed to determine the neutron-induced fission cross sections of {sup 242,243,244}Cm and {sup 241}Am which are present in the nuclear waste of the current U-Pu fuel cycle. These cross sections are highly relevant for the design of reactors capable to incinerate minor actinides. The first results will be illustrated. (authors)

  18. FEMA DFIRM Cross Sections

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...

  19. The shell structure effects in neutron cross section calculation by a ...

    African Journals Online (AJOL)

    The role of the shell structure properties of the nucleus in the calculation of neutron-induced reaction cross-section data based on nuclear reaction theory has been investigated. In this investigation, measured, evaluated and calculated (n.p) reaction cross-section data on la spherical nucleus (i.e. 112Sn) and a deformed ...

  20. Integrated system for production of neutronics and photonics calculational constants. Neutron-induced interactions: index of experimental data

    International Nuclear Information System (INIS)

    MacGregor, M.H.; Cullen, D.E.; Howerton, R.J.; Perkins, S.T.

    1976-01-01

    Indexes to the neutron-induced interaction data in the Experimental Cross Section Information Library (ECSIL) as of July 4, 1976 are tabulated. The tabulation has two arrangements: isotope (ZA) order and reaction-number order

  1. Integrated system for production of neutronics and photonics calculational constants. Neutron-induced interactions: index of experimental data

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, M.H.; Cullen, D.E.; Howerton, R.J.; Perkins, S.T.

    1976-07-04

    Indexes to the neutron-induced interaction data in the Experimental Cross Section Information Library (ECSIL) as of July 4, 1976 are tabulated. The tabulation has two arrangements: isotope (ZA) order and reaction-number order.

  2. Test of RIPL-2 cross section calculations

    International Nuclear Information System (INIS)

    Herman, M.

    2002-01-01

    The new levels and optical segments and microscopic HF-BCS level densities (part of the density segment) were tested in practical calculations of cross sections for neutron induced reactions on 22 targets (40-Ca, 47-Ti, 52-Cr, 55-Mn, 58-Ni, 63-Cu, 71-Ga, 80-Se, 92-Mo, 93-Nb, 100-Mo, 109-Ag, 114-Cd, 124-Sn, 127-I, 133-Cs, 140-Ce, 153-Eu, 169-Tm, 186-W, 197-Au, 208-Pb). For each target all reactions involving up to 3 neutron, 1 proton and 1 α-particle emissions (subject to actual reaction thresholds) were considered in the incident energy range from 1 keV up to 20 MeV (in some cases up to 27 MeV). In addition, total, elastic, and neutron capture cross sections were calculated

  3. Fission cross sections in the intermediate energy region

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for 235 U and 238 U compared to intranuclear cascade and statistical model predictions

  4. Fission cross sections in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  5. Accurate measurements of neutron activation cross sections

    International Nuclear Information System (INIS)

    Semkova, V.

    1999-01-01

    The applications of some recent achievements of neutron activation method on high intensity neutron sources are considered from the view point of associated errors of cross sections data for neutron induced reaction. The important corrections in -y-spectrometry insuring precise determination of the induced radioactivity, methods for accurate determination of the energy and flux density of neutrons, produced by different sources, and investigations of deuterium beam composition are considered as factors determining the precision of the experimental data. The influence of the ion beam composition on the mean energy of neutrons has been investigated by measurement of the energy of neutrons induced by different magnetically analysed deuterium ion groups. Zr/Nb method for experimental determination of the neutron energy in the 13-15 MeV energy range allows to measure energy of neutrons from D-T reaction with uncertainty of 50 keV. Flux density spectra from D(d,n) E d = 9.53 MeV and Be(d,n) E d = 9.72 MeV are measured by PHRS and foil activation method. Future applications of the activation method on NG-12 are discussed. (author)

  6. Evaluated cross section libraries

    International Nuclear Information System (INIS)

    Maqurno, B.A.

    1976-01-01

    The dosimetry tape (ENDF/B-IV tape 412) was issued in a general CSEWG distribution, August 1974. The pointwise cross section data file was tested with specified reference spectra. A group averaged cross section data file (620 groups based on tape 412) was tested with the above spectra and the results are presented in this report

  7. Jet inclusive cross sections

    International Nuclear Information System (INIS)

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons

  8. Calculation of the intermediate energy activation cross section

    Energy Technology Data Exchange (ETDEWEB)

    Furihata, Shiori; Yoshizawa, Nobuaki [Mitsubishi Research Inst., Inc., Tokyo (Japan)

    1997-03-01

    We discussed the activation cross section in order to predict accurately the activation of soil around an accelerator with high energy and strong intensity beam. For the assessment of the accuracy of activation cross sections estimated by a numerical model, we compared the calculated cross section with various experimental data, for Si(p,x){sup 22}Na, Al(p,x){sup 22}Na, Fe(p,x){sup 22}Na, Si(p,x){sup 7}Be, O(p,x){sup 3}H, Al(p,x){sup 3}H and Si(p,x){sup 3}H reactions. We used three computational codes, i.e., quantum molecular dynamics (QMD) plus statistical decay model (SDM), HETC-3STEP and the semiempirical method developed by Silberberg et.al. It is observed that the codes are accurate above 1GeV, except for {sup 7}Be production. We also discussed the difference between the activation cross sections of proton- and neutron-induced reaction. For the incident energy at 40MeV, it is found that {sup 3}H production cross sections of neutron-induced reaction are ten times as large as those of proton-induced reaction. It is also observed that the choice of the activation cross sections seriously affects to the estimate of saturated radioactivity, if the maximum energy of neutron flux is below 100MeV. (author)

  9. Modelisation of the fission cross section

    International Nuclear Information System (INIS)

    Morariu, Claudia

    2013-03-01

    The neutron cross sections of four nuclear systems (n+ 235 U, n+ 233 U, n+ 241 Am and n+ 237 Np) are studied in the present document. The target nuclei of the first case, like 235 U and 239 Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237 Np and 241 Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author) [fr

  10. Fission cross section measurements of actinides at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  11. Floodplain Cross Section Lines

    Data.gov (United States)

    Department of Homeland Security — This table is required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally any FIRM...

  12. Multitrajectory eikonal cross sections

    International Nuclear Information System (INIS)

    Turner, R.E.

    1983-01-01

    With the use of reference and distorted transition operators, a time-correlation-function representation of the inelastic differential cross section has recently been used to obtain distorted eikonal cross sections. These cross sections involve straight-line and reference classical translational trajectories that are unaffected by any internal-state changes which have occurred during the collision. This distorted eikonal theory is now extended to include effects of internal-state changes on the translational motion. In particular, a different classical trajectory is associated with each pair of internal states. Expressions for these inelastic cross sections are obtained in terms of time-ordered cosine and sine memory functions using the Zwanzig-Feshbach projection-operator method. Explicit formulas are obtained in the time-disordered perturbation approximation

  13. Cross-Sections for Low-Energy Neutron-Induced Fission; Sections Efficaces de Fission pour des Neutrons de Faible Energie; 0421 0415 0427 0415 041d 0418 042f 0414 0415 041b 0415 041d 0418 042f , 0412 042b 0417 0412 0410 041d 041d 041e 0413 041e 041d 0415 0419 0422 0420 041e 041d 0410 041c 0418 041d 0418 0417 K 041e 0419 042d 041d 0415 0420 0413 0418 0418 ; Secciones Eficaces en la Fision Inducida por Neutrones de Baja Energia

    Energy Technology Data Exchange (ETDEWEB)

    Rae, E. R. [Atomic Energy Research Establishment, Harwell, Didcot, Berks. (United Kingdom)

    1965-07-15

    The cross-sections of the heavy nuclei for neutron-induced fission are of fundamental importance to the technology of nuclear energy production. The manner in which these cross-sections vary with the neutron energy and with the mass and charge of the target nuclei also provides much information on the structure of heavy nuclei. In the case of a thermally fissile target nucleus, as the neutron energy is increased from thermal the cross-section first exhibits an inverse velocity dependence, followed by a region in which sharp resonance peaks appear, and finally a continuum region where the cross-section exhibits relatively smooth steps and breaks. All these phenomena can be explained in principle, but certain features of the data have proved very difficult to explain quantitatively. Recent cross-section measurements, stimulated by the needs of reactor technology, have concentrated on improving the energy resolution and accuracy of the data on fuel materials, and this has led to a more detailed study of the resonance region, which is of considerable interest for reactor Doppler effect calculations. More accurate measurements at rather higher energies have established the existence of appreciable fission cross-sections below the so-called fission threshold in certain cases. Careful measurements of this nature have in turn stimulated interest in the interpretation of the cross-sections in terms of nuclear models on a firm quantitative basis. This paper outlines the main features of neutron-induced-fission cross-sections and their interpretation. Some emphasis is placed on recent improvements in the quality of the measurements and in attempts at quantitative interpretation of certain aspects of the data. (author) [French] Les sections efficaces de fission des noyaux lourds ont une importance essentielle pour la technologie de la production d'energie d'origine nucleaire. La maniere dont ces sections efficaces varient Selon l'energie des neutrons et Selon la masse et la

  14. Hydrogen isotope double differential production cross sections induced by 62.7 MeV neutrons on a lead target

    International Nuclear Information System (INIS)

    Kerveno, M.; Haddad, F.; Eudes, Ph.; Kirchner, T.; Lebrun, C.; Slypen, I.; Meulders, J.P.; Le Brun, C.; Lecolley, F.R.; Lecolley, J.F.; Louvel, M.; Lefebvres, F.; Hilaire, S.; Koning, A.J.

    2002-01-01

    Double differential hydrogen isotope production cross sections have been extracted in 62.7 MeV neutron induced reactions on a lead target. The angular distribution was measured at eight angles from 20 deg. to 160 deg. allowing the extraction of angle-differential, energy differential, and total production cross sections. A first set of comparisons with several theoretical calculations is also presented

  15. (n,2n) reaction cross-sections at 14 MeV

    Indian Academy of Sciences (India)

    The need for fast neutron-induced reaction cross-section data has been increasing in several applied fields; for example, biomedical applications such as production of radioisotopes and cancer therapy, accelerator-driven transmutation of long-lived radioactive nuclear wastes to short-lived or stable isotopes by secondary ...

  16. Resonant neutron-induced atomic displacements

    Energy Technology Data Exchange (ETDEWEB)

    Elmaghraby, Elsayed K., E-mail: e.m.k.elmaghraby@gmail.com

    2017-05-01

    Highlights: • Neutron induced atomic displacements was investigated based on scattering of energy of neutron. • Model for cascade function (multiplication of displacements with increasing energy transfer) was proposed and justified. • Parameterizations for the dpa induced in all elements were performed. • Table containing all necessary parameters to calculate the displacement density induced by neutron is given. • Contribution of non resonance displacement and resonant-neutron induced displacements are distinguished. - Abstract: A model for displacement cascade function was modified to account for the continuous variation of displacement density in the material in response to neutron exposure. The model is based on the Gaussian distribution of displacement energies of atoms in a material. Analytical treatment for moderated epithermal neutron field was given in which the displacement density was divided into two terms, discrete-resonance term and continuum term. Calculation are done for all isotopes using ENDF/B VII.1 data files and temperature dependent cross section library. Weighted elemental values were reported a fitting was performed to obtain energy-dependent formula of displacement density and reduce the number of parameters. Results relevant the present specification of the cascade function are tabulated for each element to enable calculation of displacement density at any value of displacement energy in the between 5 eV and 55 eV.

  17. Fission cross section of 235U from 1 to 6 MeV

    International Nuclear Information System (INIS)

    Barton, D.M.; Diven, B.C.; Hansen, G.E.; Jarvis, G.A.; Koontz, P.G.; Smith, R.K.

    1976-01-01

    The ratio of the neutron-induced fission cross section of 235 U to the neutron-proton scattering cross section was measured in the neutron energy region from 1 to 6 MeV. The neutron source was the T(p,n) reaction produced by a pulsed Van de Graaff proton beam on a thin tritium gas target. The use of monoenergetic neutrons allowed time-of-flight methods to be used to study carefully backgrounds and source characteristics

  18. Summary Report from the Consultants' Meeting on International Neutron Cross-Sections Standards: Extending and Updating

    International Nuclear Information System (INIS)

    Pronyaev, V.; Carlson, A.D.; Capote Noy, R.; Wallner, A.

    2011-03-01

    The meeting participants have considered the progress in the measurement and evaluation of neutron cross sections and spectra which can be used as standard or reference data. This includes extension of the 197 Au(n,γ) standard to the energy range below 200 keV, 235 U(n th ,f) prompt fission neutron spectrum and neutron induced gamma-production cross sections. The work on this data development project for next two years has been agreed. (author)

  19. Neutron-Induced Charged Particle Studies at LANSCE

    Science.gov (United States)

    Lee, Hye Young; Haight, Robert C.

    2014-09-01

    Direct measurements on neutron-induced charged particle reactions are of interest for nuclear astrophysics and applied nuclear energy. LANSCE (Los Alamos Neutron Science Center) produces neutrons in energy of thermal to several hundreds MeV. There has been an effort at LANSCE to upgrade neutron-induced charged particle detection technique, which follows on (n,z) measurements made previously here and will have improved capabilities including larger solid angles, higher efficiency, and better signal to background ratios. For studying cross sections of low-energy neutron induced alpha reactions, Frisch-gridded ionization chamber is designed with segmented anodes for improving signal-to-noise ratio near reaction thresholds. Since double-differential cross sections on (n,p) and (n,a) reactions up to tens of MeV provide important information on deducing nuclear level density, the ionization chamber will be coupled with silicon strip detectors (DSSD) in order to stop energetic charged particles. In this paper, we will present the status of this development including the progress on detector design, calibrations and Monte Carlo simulations. This work is funded by the US Department of Energy - Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.

  20. Absolute measurements of neutron cross sections. Progress report

    International Nuclear Information System (INIS)

    1984-11-01

    In the photoneutron laboratory, we have completed a major refurbishing of experimental facilities and begun work on measurements of the capture cross section in thorium and U-238. In the 14 MeV neutron experimental bay, work continues on the measurement of 14 MeV neutron induced reactions of interest as standards or because of their technological importance. First results have been obtained over the past year, and we are extending these measurements along the lines outlined in our proposal of a year ago

  1. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  2. Determination of neutron-induced fission cross-sections of unstable ...

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... powerful tool for a wide range of applications that involve compound nuclear reactions. In Bohr's hypothesis, formation and decay of a compound nucleus are considered to be independent of each other. This independence is exploited in the surrogate reaction. Pramana – J. Phys., Vol. 83, No. 5, November ...

  3. Actinide neutron-induced fission up to 20 MeV

    International Nuclear Information System (INIS)

    Maslov, V.M.

    2001-01-01

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of ∼ 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by 238 U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  4. Actinide neutron-induced fission up to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V M [Radiation Physics and Chemistry Problems Institute, Minsk-Sosny (Belarus)

    2001-12-15

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of {approx} 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by {sup 238}U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  5. Neutron induced alpha production from carbon between 18 and 22 MeV

    International Nuclear Information System (INIS)

    Stevens, A.P.

    1976-10-01

    Cross sections for neutron induced alpha production in carbon were measured at seventeen energies between 18 and 22 MeV, using a deuterated anthracene crystal as both target and detector. Pulse shape discrimination was employed to separate the alphas and elastically scattered deuterons from the other reaction products. Published (n,d) elastic scattering data were used as a standard to obtain the alpha production cross sections. Comparison with available measurements shows good agreement

  6. Standard cross-section data

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1984-01-01

    The accuracy of neutron cross-section measurement is limited by the uncertainty in the standard cross-section and the errors associated with using it. Any improvement in the standard immediately improves all cross-section measurements which have been made relative to that standard. Light element, capture and fission standards are discussed. (U.K.)

  7. Measurements of fission cross-sections and of neutron production rates

    International Nuclear Information System (INIS)

    Billaud, P.; Clair, C.; Gaudin, M.; Genin, R.; Joly, R.; Leroy, J.L.; Michaudon, A.; Ouvry, J.; Signarbieux, C.; Vendryes, G.

    1958-01-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin 10 B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of 235 U. We intend to measure the variation of the neutron induced fission cross section of 235 U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of 235 U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF 3 proportional counters. c) Mean number ν of neutrons emitted in neutron induced fission. We measured the value of ν for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) α reaction by means of a 300 kV Cockcroft Walton generator. (author) [fr

  8. Cross sections for atmospheric corrections

    International Nuclear Information System (INIS)

    Meyer, J.P.; Casse, M.; Westergaard, N.

    1975-01-01

    A set of cross sections for spallation of relativistic nuclei is proposed based on (i) the best available proton cross sections, (ii) an extrapolation to heavier nuclei of the dependence on the number of nucleons lost of the 'target factor' observed for C 12 and O 16 by Lindstrom et al. (1975), in analogy with Rudstam's formalism, and (iii) on a normalization of all cross sections to the total cross sections for production of fragments with Asub(f) >= 6. The obtained cross sections for peripheral interactions are not inconsistent with simple geometrical considerations. (orig.) [de

  9. distributions for the thermal neutron induced fission of 234U

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2016-01-01

    In addition, the analysis of thermal neutron induced fission of 234U(n,f will be discussed. Currently analysis of data is ongoing, originally taken at the ILL reactor. The experiment is of particular interest since no measurement exist of the mass and energy distributions for this system at thermal energies. One main problem encountered during analysis was the huge background of 235U(nth,f. Despite the negligible isotopic traces in the sample, the cross section difference is enormous. Solution to this parasitic background will be highlighted.

  10. Comparison of Neutron Cross-Sections Using IAEA Nuclear Codes ''ABAREX'' and ''SCAT2''

    International Nuclear Information System (INIS)

    Myint Myint Moe; Win Sin; Sein Htoon

    2004-05-01

    Moel calculations can be used to provide nuclear data for applications in science and technology. The energy averaged neutron induced nuclear reaction cross-sections particular for Al-27, Mg-24, Cr-52, Mn-55, Zn-64 and U-238 with neutrons of energy (0.005 to 10 MeV) are calculated using IAEA nuclear codes ''ABAREX'' and ''SCAT2''. The results are compared with those given in ENDF- 3 nuclear data

  11. (237)Np(n,f) Cross Section: New Data and Present Status

    CERN Document Server

    Paradela, C; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Vannini, G; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Duran, I; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Kaeppeler, F; Cortes, G; Cox, J; Voss, F; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Gunsing, F; Reifarth, R; Perrot, L; Lindote, A; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Koehler, P; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Ferrant, L; Lozano, M; Patronis, N; Chiaveri, E; Guerrero, C; Kadi, Y; Vicente, M C; Praena, J; Baumann, P; Oshima, M; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Cano-Ott, D; Pavlix, A; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Tarrio, D; Alvarez, H

    2011-01-01

    In this document, we present the final result obtained at the n_TOF experiment; for the neutron-induced fission cross section of the (237)Np, from the fission threshold up to 1 GeV. The method applied to get tins result is briefly discussed. n_TOF data are compared to the last experimental measurements using other TOF facilities or the surrogate method, reported experiments performed with monoenergetic sources and the FISCAL systematic, including a discussion about the existing discrepancies.

  12. NDS multigroup cross section libraries

    International Nuclear Information System (INIS)

    DayDay, N.

    1981-12-01

    A summary description and documentation of the multigroup cross section libraries which exist at the IAEA Nuclear Data Section are given in this report. The libraries listed are available either on tape or in printed form. (author)

  13. XCOM: Photon Cross Sections Database

    Science.gov (United States)

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  14. Doppler broadening of cross sections

    International Nuclear Information System (INIS)

    Buckler, P.A.C.; Pull, I.C.

    1962-12-01

    Expressions for temperature dependent cross-sections in terms of resonance parameters are obtained, involving generalisations of the conventional Doppler functions, ψ and φ. Descriptions of Fortran sub-routines, which calculate broadened cross-sections in accordance with the derived formulae, are included. (author)

  15. Photon-splitting cross sections

    International Nuclear Information System (INIS)

    Johannessen, A.M.; Mork, K.J.; Overbo, I.

    1980-01-01

    The differential cross section for photon splitting (scattering of one photon into two photons) in a Coulomb field, obtained earlier by Shima, has been integrated numerically to yield various differential cross sections. Energy spectra differential with respect to the energy of one of the outgoing photons are presented for several values of the primary photon energy. Selected examples of recoil momentum distributions and some interesting doubly or multiply differential cross sections are also given. Values for the total cross section are obtained essentially for all energies. The screening effect caused by atomic electrons is also taken into account, and is found to be important for high energies, as in e + e - pair production. Comparisons with various approximate results obtained by previous authors mostly show fair agreement. We also discuss the possibilities for experimental detection and find the most promising candidate to be a measurement of both photons, and their energies, at a moderately high energy

  16. Neutron Cross Sections for Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Leif

    1963-08-15

    Total, elastic, inelastic, (n, 2n), (n, {alpha}), (n, p), and (n, {gamma}) cross sections for aluminium have been compiled from thermal to 100 MeV based upon literature search and theoretical interpolations and estimates. Differential elastic cross sections in the centre of mass system are represented by the Legendre coefficients. This method was chosen in order to obtain the best description of the energy dependence of the anisotropy.

  17. Accurate Cross Sections for Microanalysis

    OpenAIRE

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a...

  18. Neutron induced electron radiography

    International Nuclear Information System (INIS)

    Andrade, Marcos Leandro Garcia

    2008-01-01

    In the present paper a new radiography technique, the 'Neutron Induced Electron Radiography' - NIER, to inspect low thickness samples on the order of micra, has been developed. This technique makes use of low energy electrons as penetrating radiation generated from metallic gadolinium screens when irradiated by thermal neutrons. The conditions to obtain the best image for the conventional X-ray film Kodak-AA were determined by using a digital system to quantify the darkening level of the film. The irradiations have been performed at a radiography equipment installed at the beam-hole no. 8 of the 5 MW IEA-R1 nuclear research reactor of IPEN-CNEN/SP. The irradiation time to obtain the best radiography was 100 seconds and for such condition the technique was able to discern 1 μm in 24 μm of aluminum at a resolution of 32 μm. By visual comparison the images obtained by the NIER shown a higher quality when compared with the ones from other usual techniques the make use of electrons a penetrating radiation and films for image registration. Furthermore the use of the digital system has provided a smaller time for data acquisition and data analysis as well as an improvement in the image visualization. (author)

  19. Group constant preparation for the estimate of neutron induced damage in structural materials

    International Nuclear Information System (INIS)

    Panini, G.C.

    1996-01-01

    Neutron heating (kerma), displacement per atom cross sections (DPA), gas and γ-ray production are important parameters for the estimate of the damage produced by neutron induced nuclear reactions in the structural materials. The NJOY System for Nuclear Data Processing has been extensively used in order to compute the above quantities; here the theory, the algorithms and the connected problems are described. (author). 6 refs, 3 tabs

  20. Evaluation of neutron-induced reactions in 48Ti and 238U

    International Nuclear Information System (INIS)

    Carlson, B.V.; Fiorentino, J.; Frederico, T.; Isidro Filho, M.P.; Mastroleo, R.C.; Rego, R.A.

    1984-05-01

    Preliminary results of the evaluation of neutron-induced reactions in 48 Ti and 238 U are presented. Calculated cross sections for the reactions (n,γ), (n,n'), (n, 2n) and (n,p) as well as for (n,f) in 238 U are given. Comparisons with available experimental data are made and possible changes in the parameters are discussed. (Author) [pt

  1. SCALP: Scintillating ionization chamber for ALPha particle production in neutron induced reactions

    Science.gov (United States)

    Galhaut, B.; Durand, D.; Lecolley, F. R.; Ledoux, X.; Lehaut, G.; Manduci, L.; Mary, P.

    2017-09-01

    The SCALP collaboration has the ambition to build a scintillating ionization chamber in order to study and measure the cross section of the α-particle production in neutron induced reactions. More specifically on 16O and 19F targets. Using the deposited energy (ionization) and the time of flight measurement (scintillation) with a great accuracy, all the nuclear reaction taking part on this project will be identify.

  2. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  3. Angular distribution and cross section measurements of 64Zn(n,α)61Ni reaction for neutron energy 5 MeV

    International Nuclear Information System (INIS)

    Chen Yingtang; Chen Zemin; Qi Huiquan; Li Mingtao

    1995-01-01

    A twin gridded ionization chamber with dual parameter data acquisition system is used to study neutron induced charged particle emission reaction. The angular distribution and cross section of α-particles from the 64 Zn(n,α) 61 Ni reaction are measured at neutron energy 5 MeV

  4. Light charged particle production in fast neutron-induced reactions on carbon (En=40 to 75 MeV) (II). Tritons and alpha particles

    International Nuclear Information System (INIS)

    Dufauquez, C.; Slypen, I.; Benck, S.; Meulders, J.P.; Corcalciuc, V.

    2000-01-01

    Double-differential cross sections for fast neutron-induced triton and alpha-particle production on carbon are reported at six incident neutron energies between 40 and 75 MeV. Angular distributions were measured at laboratory angles between 20 deg. and 160 deg. . Energy-differential, angle-differential and total cross sections are also reported. Experimental cross sections are compared to existing experimental data and to theoretical model calculations

  5. Prediction of (n, 3He) cross sections around 14 MeV

    International Nuclear Information System (INIS)

    Atasoy, H.; Doekmen, S.

    1995-01-01

    A comprehensive review of the neutron-induced cross-reactions for (n, 3 He) reactions has been made for the interval of 14 ≤ Z ≤ 84 around 14 MeV neutron energy. For practical purposes, an empirical expression has been found by using the experimental (n, 3 He) cross section values as a function of (N - Z) and (E n - E th ) where (N - Z) is the neutron excess of the target nucleus, E n and E th are the incident neutron energy and the (n, 3 He) threshold energy, respectively. The derived empirical relation gives a good fit with the experimental values

  6. PEGASUS: a preequilibrium and multi-step evaporation code for neutron cross section calculation

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo; Sugi, Teruo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iijima, Shungo; Nishigori, Takeo

    1999-06-01

    The computer code PEGASUS was developed to calculate neutron-induced reaction cross sections on the basis of the closed form exciton model preequilibrium theory and the multi-step evaporation theory. The cross sections and emitted particle spectra are calculated for the compound elastic scattering, (n,{gamma}), (n,n`), (n,p), (n,{alpha}), (n,d), (n,t), (n,{sup 3}He), (n,2n), (n,n`p), (n,n`{alpha}), (n,n`d), (n,n`t), (n,2p) and (n,3n) reactions. The double differential cross sections of emitted particles are also calculated. The calculated results are written on a magnetic disk in the ENDF format. Parameter files and/or systematics formulas are provided for level densities, mass excess, radiation widths and inverse cross sections so that the input data to the code are made minimum. (author)

  7. Estimation of (n,f) Cross-Sections by Measuring Reaction Probability Ratios

    Energy Technology Data Exchange (ETDEWEB)

    Plettner, C; Ai, H; Beausang, C W; Bernstein, L A; Ahle, L; Amro, H; Babilon, M; Burke, J T; Caggiano, J A; Casten, R F; Church, J A; Cooper, J R; Crider, B; Gurdal, G; Heinz, A; McCutchan, E A; Moody, K; Punyon, J A; Qian, J; Ressler, J J; Schiller, A; Williams, E; Younes, W

    2005-04-21

    Neutron-induced reaction cross-sections on unstable nuclei are inherently difficult to measure due to target activity and the low intensity of neutron beams. In an alternative approach, named the 'surrogate' technique, one measures the decay probability of the same compound nucleus produced using a stable beam on a stable target to estimate the neutron-induced reaction cross-section. As an extension of the surrogate method, in this paper they introduce a new technique of measuring the fission probabilities of two different compound nuclei as a ratio, which has the advantage of removing most of the systematic uncertainties. This method was benchmarked in this report by measuring the probability of deuteron-induced fission events in coincidence with protons, and forming the ratio P({sup 236}U(d,pf))/P({sup 238}U(d,pf)), which serves as a surrogate for the known cross-section ratio of {sup 236}U(n,f)/{sup 238}U(n,f). IN addition, the P({sup 238}U(d,d{prime}f))/P({sup 236}U(d,d{prime}f)) ratio as a surrogate for the {sup 237}U(n,f)/{sup 235}U(n,f) cross-section ratio was measured for the first time in an unprecedented range of excitation energies.

  8. Model calculations as one means of satisfying the neutron cross-section requirements of the CTR program

    International Nuclear Information System (INIS)

    Gardner, D.G.

    1975-01-01

    A large amount of cross section and spectral information for neutron-induced reactions will be required for the CTR design program. To undertake to provide the required data through a purely experimental measurement program alone may not be the most efficient way of attacking the problem. It is suggested that a preliminary theoretical calculation be made of all relevant reactions on the dozen or so elements that now seem to comprise the inventory of possible construction materials to find out which are actually important, and over what energy ranges they are important. A number of computer codes for calculating cross sections for neutron induced reactions have been evaluated and extended. These will be described and examples will be given of various types of calculations of interest to the CTR program. (U.S.)

  9. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  10. Pion-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.

    1990-01-01

    The tables of inelastic and total cross sections of π ± mesons interactions with nuclei 4 He- 238 U are presented. The tables are obtained by theoretical analysis of known experimental data for energies higher some tens of MeV. 1 ref.; 1 tab

  11. Fast-neutron-induced fission of 242Pu at nELBE

    Directory of Open Access Journals (Sweden)

    Kögler Toni

    2017-01-01

    Full Text Available The fast neutron-induced fission cross section of 242Pu was determined in the range of 0.5 MeV to 10 MeV relative to 235U(n,f at the neutron time-of-flight facility nELBE. The number of target nuclei was calculated by means of measuring the spontaneous fission rate of 242Pu. Neutron transport simulations with Geant4 and MCNP6 are used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  12. Model calculations of excitation functions of neutron-induced reactions on Rh

    International Nuclear Information System (INIS)

    Strohmaier, Brigitte

    1995-01-01

    Cross sections of neutron-induced reactions on 103 Rh have been calculated by means of the statistical model and the coupled-channels optical model for incident-neutron energies up to 30 MeV. The incentive for this study was a new measurement of the 103 Rh(n, n') 103m Rh cross section which will - together with the present calculations -enter into a dosimetry-reaction evaluation. The validation of the model parameters relied on nuclear-structure data as far as possible. (author)

  13. Triple-humped fission barrier model for a new {sup 238}U neutron cross-section evaluation and first validations

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimenez, M.J. [CEA/DIF/DPTA/Service de Physique Nucleaire, B.P. 12, F-91680 Bruyeres-le-Chatel (France); Morillon, B. [CEA/DIF/DPTA/Service de Physique Nucleaire, B.P. 12, F-91680 Bruyeres-le-Chatel (France); Romain, P. [CEA/DIF/DPTA/Service de Physique Nucleaire, B.P. 12, F-91680 Bruyeres-le-Chatel (France)]. E-mail: pascal.romain@cea.fr

    2005-01-15

    A new neutron-induced cross-section evaluation of {sup 238}U from 1 keV up to 200 MeV has been performed using only nuclear reactions models. A new fission penetrability model taking into account a triple humped barrier has been developed. A clear improvement has been observed for K-effective validation tests (up to 30 MeV) with this new evaluation. This improvement is mainly due to a better treatment of the inelastic exit channel.

  14. Fission cross section of 245Cm from 10-3 eV to 104 eV

    International Nuclear Information System (INIS)

    White, R.M.; Browne, J.C.; Howe, R.E.; Landrum, J.H.; Becker, J.A.

    1979-01-01

    The neutron-induced fission cross section of 245 Cm measured from .001 eV to 10 keV using the LLL 100-MeV Linac. The resonance data are analyzed with a multilevel-multichannel R-matrix code. The statistical distribution of R-matrix parameters extracted from the analysis are investigated and comparisons are made with previous work. 4 reference

  15. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    Leong, Lou Sai

    2013-01-01

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238 U and 232 Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides ( 232 Th, 235 U, 238 U, 234 U, 237 Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232 Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232 Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237 Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237 Np. This

  16. Neutron induced fission of 237Np – status, challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Ruskov Ivan

    2018-01-01

    Full Text Available Nowadays, there is an increased interest in a complete study of the neutron-induced fission of 237Np. This is due to the need of accurate and reliable nuclear data for nuclear science and technology. 237Np is generated (and accumulated in the nuclear reactor core during reactor operation. As one of the most abundant long-lived isotopes in spent fuel (“waste”, the incineration of 237Np becomes an important issue. One scenario for burning of 237Np and other radio-toxic minor actinides suggests they are to be mixed into the fuel of future fast-neutron reactors, employing the so-called transmutation and partitioning technology. For testing present fission models, which are at the basis of new generation nuclear reactor developments, highly accurate and detailed neutron-induced nuclear reaction data is needed. However, the EXFOR nuclear database for 237Np on neutron-induced capture cross-section, σγ, and fission cross-section, σf, as well as on the characteristics of capture and fission resonance parameters (Γγ, Γf, σoΓf, fragments mass-energy yield distributions, multiplicities of neutrons vn and γ-rays vγ, has not been updated for decades.

  17. Low-energy neutron-induced single-event upsets in static random access memory

    International Nuclear Information System (INIS)

    Guo Xiaoqiang; Guo Hongxia; Wang Guizhen; Ling Dongsheng; Chen Wei; Bai Xiaoyan; Yang Shanchao; Liu Yan

    2009-01-01

    The visual analysis method of data process was provided for neutron-induced single-event upset(SEU) in static random access memory(SRAM). The SEU effects of six CMOS SRAMs with different feature size(from 0.13 μm to 1.50 μm) were studied. The SEU experiments were performed using the neutron radiation environment at Xi'an pulsed reactor. And the dependence of low-energy neutron-induced SEU cross section on SRAM's feature size was given. The results indicate that the decreased critical charge is the dominant factor for the increase of single event effect sensitivity of SRAM devices with decreased feature size. Small-sized SRAM devices are more sensitive than large-sized ones to single event effect induced by low-energy neutrons. (authors)

  18. Neutron cross sections for fusion

    International Nuclear Information System (INIS)

    Haight, R.C.

    1979-10-01

    First generation fusion reactors will most likely be based on the 3 H(d,n) 4 He reaction, which produces 14-MeV neutrons. In these reactors, both the number of neutrons and the average neutron energy will be significantly higher than for fission reactors of the same power. Accurate neutron cross section data are therefore of great importance. They are needed in present conceptual designs to calculate neutron transport, energy deposition, nuclear transmutation including tritium breeding and activation, and radiation damage. They are also needed for the interpretation of radiation damage experiments, some of which use neutrons up to 40 MeV. In addition, certain diagnostic measurements of plasma experiments require nuclear cross sections. The quality of currently available data for these applications will be reviewed and current experimental programs will be outlined. The utility of nuclear models to provide these data also will be discussed. 65 references

  19. Negative ion detachment cross sections

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1992-10-01

    The authors have measured absolute cross sections for electron detachment and charge exchange for collision of O and S with atomic hydrogen, have investigated the sputtering and photodesorption of negative ions from gas covered surfaces, and have begun an investigation of photon-induced field emission of electrons from exotic structures. Brief descriptions of these activities as well as future plans for these projects are given below

  20. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  1. Microscopic cross sections: An utopia?

    International Nuclear Information System (INIS)

    Hilaire, S.; Koning, A.J.; Goriely, S.

    2010-01-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  2. Calculation of the Reaction Cross Section for Several Actinides

    International Nuclear Information System (INIS)

    Hambsch, Franz-Josef; Oberstedt, Stephan; Vladuca, Gheorghita; Tudora, Anabella; Filipescu, Dan

    2005-01-01

    New, self-consistent, neutron-induced reaction cross-section calculations for 235,238U, 237Np, and 231,232,233Pa have been performed. The statistical model code STATIS was extended to take into account the multi-modality of the fission process. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes, and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for these modes in 235,238U(n,f) and 237Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235U(n,f) and 233Pa(n,f), the calculations being made up to 50 MeV and 20 MeV incident neutron energy, respectively, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes.As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged

  3. Intermediate structure studies of 234U cross sections

    International Nuclear Information System (INIS)

    James, G.D.; Schindler, R.H.

    1976-01-01

    Neutron induced fission and total cross sections of 234 U have been measured over the neutron energy range from a few eV to several MeV. Neutron and fission widths for 118 cross section resonances below 1500 eV have been determined and give a class I level spacing of 10.64 + -0.46 eV and a neutron strength function of (0.857 +- 0.108)x10 -4 . These fine structure resonances comprise a narrow intermediate structure resonance in the sub-threshold fission cross section of 234 U. Parameters for the Lorentzian energy dependence of the mean fission width are deduced on the assumption that, relative to this mean, the observed fission widths have a Porter-Thomas distribution. Two large fission widths measured for resonances at 1092.5 eV and 1134 eV may indicate the presence of a second narrow intermediate structure resonance at about this energy. The class II level spacing derived from the observation of 7 resonances below 13 keV is 2.1 +-0.3 keV. Pronounced breaks in the fission cross section at 310 keV, 550 keV and 720 keV are assumed to be due to β-vibrational levels in the second minimum of the Strutinsky potential. Fluctuations due to the presence of class II resonances are strongly evident for each of these vibrational levels. It is shown that the fluctuations near 310 keV are consistent with parameters deduced from the low energy data and this enables parameters for the double humped fission barrier potential to be obtained

  4. Analysis and reevaluation of the neutron cross sections for 23Na

    International Nuclear Information System (INIS)

    Trykov, E.L.; Svinin, I.R.

    2000-05-01

    The reaction model calculations of the cross sections of neutron-induced reactions on 23 Na have been carried out for incident energies up to 20 MeV. The results of the calculations are compared to all available experimental data, including the most recent ones, and also to the previous evaluations. The discrepancies between the data and the present evaluation and also between evaluations themselves were analyzed. The probable reasons of these discrepancies were considered. On the whole, the calculation results agree well enough with the experimental data. (author)

  5. Evaluation of neutron cross sections to 40 MeV for 5456Fe

    International Nuclear Information System (INIS)

    Arthur, E.D.; Young, P.G.

    1980-01-01

    Cross sections for neutron-induced reactions on 54 56 Fe were calculated by employing several nuclear models: optical, Hauser-Feshbach, preequilibrium and DWBA - in the energy range between 3 and 40 MeV. As a prelude to the calculations, the necessary input parameters were determined or verified through analysis of a large body of experimental data for both neutron- and proton-induced reactions in this mass and energy region. This technique also led to cross sections in which the simultaneous influence of available data types added to their consistency and reliability. Calculated cross sections as well as neutron and gamma-ray emission spectra were incorporated into an ENDF evaluation suitable for use to 40 MeV. 12 figures, 1 table

  6. Surrogate measurement of the 238Pu(n,f) cross section

    International Nuclear Information System (INIS)

    Ressler, J. J.; Burke, J. T.; Escher, J. E.; Bernstein, L. A.; Bleuel, D. L.; Casperson, R. J.; Gostic, J.; Henderson, R.; Scielzo, N. D.; Thompson, I. J.; Wiedeking, M.; Angell, C. T.; Goldblum, B. L.; Munson, J.; Basunia, M. S.; Phair, L. W.; Beausang, C. W.; Hughes, R. O.; Hatarik, R.; Ross, T. J.

    2011-01-01

    The neutron-induced fission cross section of 238 Pu was determined using the surrogate ratio method. The (n,f) cross section over an equivalent neutron energy range 5-20 MeV was deduced from inelastic α-induced fission reactions on 239 Pu, with 235 U(α,α ' f) and 236 U(α,α ' f) used as references. These reference reactions reflect 234 U(n,f) and 235 U(n,f) yields, respectively. The deduced 238 Pu(n,f) cross section agrees well with standard data libraries up to ∼10 MeV, although larger values are seen at higher energies. The difference at higher energies is less than 20%.

  7. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  8. Statistical Model Analysis of (n, α Cross Sections for 4.0-6.5 MeV Neutrons

    Directory of Open Access Journals (Sweden)

    Khuukhenkhuu G.

    2016-01-01

    Full Text Available The statistical model based on the Weisskopf-Ewing theory and constant nuclear temperature approximation is used for systematical analysis of the 4.0-6.5 MeV neutron induced (n, α reaction cross sections. The α-clusterization effect was considered in the (n, α cross sections. A certain dependence of the (n, α cross sections on the relative neutron excess parameter of the target nuclei was observed. The systematic regularity of the (n, α cross sections behaviour is useful to estimate the same reaction cross sections for unstable isotopes. The results of our analysis can be used for nuclear astrophysical calculations such as helium burning and possible branching in the s-process.

  9. [Fast neutron cross section measurements

    International Nuclear Information System (INIS)

    1991-01-01

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months

  10. K+ nucleus total cross sections

    International Nuclear Information System (INIS)

    Sawafta, R.

    1990-01-01

    The scattering of K + mesons from nuclei has attracted considerable interest in the last few years. The K + holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K + is capable of probing the entire volume of the nucleus. Single scattering of the K + with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K + is used to compare the nucleon in the nucleus with a free nucleon

  11. Terahertz radar cross section measurements.

    Science.gov (United States)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  12. Fission neutron spectrum averaged cross sections for threshold reactions on arsenic

    International Nuclear Information System (INIS)

    Dorval, E.L.; Arribere, M.A.; Kestelman, A.J.; Comision Nacional de Energia Atomica, Cuyo Nacional Univ., Bariloche; Ribeiro Guevara, S.; Cohen, I.M.; Ohaco, R.A.; Segovia, M.S.; Yunes, A.N.; Arrondo, M.; Comision Nacional de Energia Atomica, Buenos Aires

    2006-01-01

    We have measured the cross sections, averaged over a 235 U fission neutron spectrum, for the two high threshold reactions: 75 As(n,p) 75 mGe and 75 As(n,2n) 74 As. The measured averaged cross sections are 0.292±0.022 mb, referred to the 3.95±0.20 mb standard for the 27 Al(n,p) 27 Mg averaged cross section, and 0.371±0.032 mb referred to the 111±3 mb standard for the 58 Ni(n,p) 58m+g Co averaged cross section, respectively. The measured averaged cross sections were also evaluated semi-empirically by numerically integrating experimental differential cross section data extracted for both reactions from the current literature. The calculations were performed for four different representations of the thermal-neutron-induced 235 U fission neutron spectrum. The calculated cross sections, though depending on analytical representation of the flux, agree with the measured values within the estimated uncertainties. (author)

  13. Measurement of gamma-ray production cross sections in neutron-induced reactions for Al and Pb

    International Nuclear Information System (INIS)

    Pavlik, A.; Vonach, H.; Hitzenberger, H.

    1995-01-01

    The prompt gamma-radiation from the interaction of fast neutrons with aluminum and lead was measured using the white neutron beam of the WNR facility at the Los Alamos National Laboratory. The samples (Al and isotopically enriched 207 Pb and 208 Pb) were positioned at about 20 m or 41 m distance from the neutron production target. The spectra of the emitted gamma-rays were measured with a high-resolution HPGe detector. The incident neutron energy was determined by the time-of-flight method and the neutron fluence was measured with a U fission chamber. From the aluminum gamma-ray spectra excitation functions for prominent gamma-transitions in various residual nuclei (in the range from O to Al) were derived for neutron energies from 3 MeV to 400 MeV. For lead (n,xnγ) reactions were studied for neutron energies up to 200 MeV by analyzing prominent gamma-transitions in the residual nuclei 200,202,204,206,207,208 Pb. The experimental results were compared with nuclear model calculations using the code GNASH. A good overall agreement was obtained without special parameter adjustments

  14. Neutron cross sections: Book of curves

    International Nuclear Information System (INIS)

    McLane, V.; Dunford, C.L.; Rose, P.F.

    1988-01-01

    Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs

  15. Nuclear Forensics and Radiochemistry: Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-08

    The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.

  16. ZZ ENDL82, Evaluated Charged Particle, Neutron, Photon Cross-Section Library

    International Nuclear Information System (INIS)

    2001-01-01

    Description of program or function: - Format: Described in the manual; - Number of groups: (energies between 100 eV and 100 MeV); - Nuclides: 94 (Z 1 to 99); - Origin: LLNL Evaluated Nuclear Data Library. ENDL82 is a collection of evaluated data for neutron-induced reactions, photon interactions with matter, and charged-particle-induced reactions. It is maintained in a computer-oriented system. All interpolable quantities for neutron-induced reactions are presented so that linear interpolation between successive entries yields values that are consistent with stated experimental errors, where experiments exist, or that adhere to an assumed law, such as 1/v energy dependence, within a small fraction (typically 1%). In the case of an assumed energy-dependence law for cross sections, this is accomplished by creating a large number of (energy, cross section) pairs by computer and subsequently thinning the points to a specified accuracy, using the subroutine THINER. All angular distributions are differential probabilities normalized to an integral of unity over the cosine of the scattering angle. All energy distributions of secondary particles are presented as normalized Legendre polynomial representations. The linear interpolation will construct an acceptable angular distribution at an intermediate energy

  17. JENDL gas-production cross section file

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Narita, Tsutomu

    1992-05-01

    The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)

  18. Integral nucleus-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Kumawat, H.

    2003-01-01

    Expressions approximating the experimental integral cross sections for elastic and inelastic interactions of light and heavy nuclei at the energies up to several GeV/nucleon are presented. The calculated cross sections are inside the corridor of experimental errors or very close to it. Described in detail FORTRAN code and a numerical example of the cross section approximation are also presented

  19. Proton and deuteron production in neutron-induced reactions on carbon at En=42.5, 62.7, and 72.8 MeV

    International Nuclear Information System (INIS)

    Slypen, I.; Corcalciuc, V.; Meulders, J.P.

    1995-01-01

    Double-differential cross sections for proton and deuteron production in fast neutron induced reactions on carbon are reported for three incident neutron energies: 42.5, 62.7, and 72.8 MeV. Angular distributions were measured at laboratory angles between 20 degree and 160 degree. Procedures for data taking and data reduction are presented. Energy-differential cross sections and total cross sections are also reported. Experimental cross sections are compared with existing data and with theoretical calculations in the frame of the intranuclear cascade model

  20. [Fast neutron cross section measurements

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1992-01-01

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ''clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ''data production'' phase

  1. Neutron cross section measurements at n-TOF for ADS related studies

    Science.gov (United States)

    Mastinu, P. F.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Bustreo, N.; aumann, P.; vá, F. Be; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; itzpatrick, L.; Frais-Kölbl, H.; Fujii, K.; Furman, W.; Guerrero, C.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krti ka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescherand, M.; Wisshak, K.

    2006-05-01

    A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.

  2. Neutron cross section measurements at n-TOF for ADS related studies

    International Nuclear Information System (INIS)

    Mastinu, P F; Abbondanno, U; Aerts, G

    2006-01-01

    A neutron Time-of-Flight facility (n T OF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n T OF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed

  3. Neutron cross section measurements at n-TOF for ADS related studies

    CERN Document Server

    Mastinu, P F; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Assimakopoulos, P A; Audouin, L; Badurek, G; Bustreo, N; Aumann, P; Beva, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carillo de Albornoz, A; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Durán, I; Eleftheriadis, C; Segura, M E; Ferrant, L; Ferrari, A; Ferreira-Marques, R; itzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Guerrero, C; Gonçalves, I; Gallino, R; González-Romero, E M; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Karamanis, D; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Massimi, C; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescherand, M; Wisshak, K

    2006-01-01

    A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.

  4. Relativistic photon-Maxwellian electron cross sections

    International Nuclear Information System (INIS)

    Wienke, B.R.; Lathrop, B.L.; Devaney, J.J.

    1986-01-01

    Temperature corrected cross sections, complementing the Klein-Nishina set, are developed for astrophysical, plasma, and transport applications. The set is obtained from a nonlinear least squares fit to the exact photon-Maxwellian electron cross sections, using the static formula as the asymptotic basis. Two parameters are sufficient (two decimal places) to fit the exact cross sections over a range of 0-100 keV in electron temperature, and 0-1 MeV in incident photon energy. The fit is made to the total cross sections, yet the parameters predict both total and differential scattering cross sections well. Corresponding differential energy cross sections are less accurate. An extended fit to (just) the total cross sections, over the temperature and energy range 0-5 MeV, is also described. (author)

  5. Differential α-production cross sections of iron and nickel for 4.3 to 14.1 MeV Neutrons

    International Nuclear Information System (INIS)

    Baba, Mamoru; Ito, Nobuo; Matsuyama, Isamu

    1994-01-01

    The cross section data for neutron-induced α-production are of prime importance in the evaluation of the radiation damage and nuclear heating in fusion and fast reactors. For the evaluation, energy and angular doubly differential cross sections are also required to calculate primary knock-on atom spectra. However, the experimental (n, xα) data are few and discrepant, therefore, the new experimental data are required urgently to improve the accuracy of the (n, xα) cross section data. The authors have measured the double differential (n, xα) cross sections of Fe and Ni in the neutron energy range of 4.3-14.1 MeV using a specially developed gridded ionization chamber. The present work was undertaken as a part of IAEA Coordinated Research Program for neutron-induced He production cross sections. The gridded ionization chamber and the experimental method were reported previously. Three-signals from the common cathode and two anodes were accumulated as two sets of two-dimensional data. The experimental two-dimensional data for the anode and cathode signals were transformed into the double differential cross sections. The results of the double differential cross sections, angular distributions, angle-integrated spectra in the center of mass system and total α-production cross sections are shown. (K.I.)

  6. Status update on the NIFFTE high precision fission cross section measurement program

    International Nuclear Information System (INIS)

    Laptev, Alexander B.; Tovesson, Fredrik; Burgett, Eric; Greife, Uwe; Grimes, Steven; Heffner, Michael D.; Hertel, Nolan E.; Hill, Tony; Isenhower, Donald; Klay, Jennifer L.; Kornilov, Nickolay; Kudo, Ryuho; Loveland, Walter; Massey, Thomas; McGrath, Chris; Pickle, Nathan; Qu, Hai; Sharma, Sarvagya; Snyder, Lucas; Thornton, Tyler; Towell, Rusty S.; Watson, Shon

    2010-01-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials ( 235 U, 239 Pu, 238 U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of 235 U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in 235 U.

  7. Neutron capture cross sections of $^{70,72,73,74,76}$ Ge at n_TOF EAR-1

    CERN Multimedia

    We propose to measure the (n;$\\gamma$ ) cross sections of the isotopes $^{70;72;73;74;76}$Ge. Neutron induced reactions on Ge are of importance for the astrophysical slow neutron capture process, which is responsible for forming about half of the overall elemental abundances heavier than Fe. The neutron capture cross section on Ge affects the abundances produced in this process for a number of heavier isotopes up to a mass number of A = 90. Additionally, neutron capture on Ge is of interest for low background experiments involving Ge detectors. Experimental cross section data presently available for Ge (n;$\\gamma$ ) are scarce and cover only a fraction of the neutron energy range of interest. (n;$\\gamma$ ) cross sections will be measured in the full energy range from 25 meV to about 200 keV at n TOF EAR-1.

  8. Background-cross-section-dependent subgroup parameters

    International Nuclear Information System (INIS)

    Yamamoto, Toshihisa

    2003-01-01

    A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)

  9. Scattering cross section for various potential systems

    Directory of Open Access Journals (Sweden)

    Myagmarjav Odsuren

    2017-08-01

    Full Text Available We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  10. Scattering cross section for various potential systems

    Energy Technology Data Exchange (ETDEWEB)

    Odsuren, Myagmarjav; Khuukhenkhuu, Gonchigdorj; Davaa, Suren [Nuclear Research Center, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar (Mongolia); Kato, Kiyoshi [Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo (Japan)

    2017-08-15

    We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  11. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1975-11-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  12. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1976-05-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  13. High ET jet cross sections at CDF

    International Nuclear Information System (INIS)

    Flaugher, B.

    1996-08-01

    The inclusive jet cross section for p anti p collisions at √s = 1.8 TeV as measured by the CDF collaboration will be presented. Preliminary CDF measurements of the Σ E T cross section at √s = 1.8 TeV and the central inclusive jet cross section at √s = 0.630 TeV will also be shown

  14. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1984-01-01

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  15. Recommended activation detector cross sections (RNDL-82)

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Lapenas, A.A.

    1984-01-01

    The results of the comparison between measured and calculated average cross sections in 5 benchmark experiments are presented. Calculations have been based on the data from 10 libraries of evaluated cross sections. The recommended library (RNDL-82) of the activation detector cross sections has been created on the basis of the comparison. RNDL-82, including 26 reactions, and the basic characteristics of the detectors are presented. (author)

  16. Total neutron cross section of lead

    International Nuclear Information System (INIS)

    Kanda, K.; Aizawa, O.

    1976-01-01

    The total thermal-neutron cross section of natural lead under various physical conditions was measured by the transmission method. It became clear that the total cross section at room temperature previously reported is lower than the present data. The total cross section at 400, 500, and 600 0 C, above the melting point of lead, 327 0 C, was also measured, and the changes in the cross section as a function of temperature were examined, especially near and below the melting point. The data obtained for the randomly oriented polycrystalline state at room temperature were in reasonable agreement with the theoretical values calculated by the THRUSH and UNCLE-TOM codes

  17. Curves and tables of neutron cross sections

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Asami, Tetsuo; Yoshida, Tadashi

    1990-07-01

    Neutron cross-section curves from the Japanese Evaluated Nuclear Data Library version 3, JENDL-3, are presented in both graphical and tabular form for users in a wide range of application areas in the nuclear energy field. The contents cover cross sections for all the main reactions induced by neutrons with an energy below 20 MeV including; total, elastic scattering, capture, and fission, (n,n'), (n,2n), (n,3n), (n,α), (n,p) reactions. The 2200 m/s cross-section values, resonance integrals, and Maxwellian- and fission-spectrum averaged cross sections are also tabulated. (author)

  18. Validation of Cross Sections with Criticality Experiment and Reaction Rates: the Neptunium Case

    CERN Document Server

    Leong, L S; Audouin, L; Berthier, B; Le Naour, C; Stéphan, C; Paradela, C; Tarrío, D; Duran, I

    2014-01-01

    The Np-237 neutron-induced fission cross section has been recently measured in a large energy range (from eV to GeV) at the n\\_TOF facility at CERN. When compared to previous measurements the n\\_TOF fission cross section appears to be higher by 5-7\\% beyond the fission threshold. To check the relevance of the n\\_TOF data, we considered a criticality experiment performed at Los Alamos with a 6 kg sphere of Np-237, surrounded by uranium highly enriched in U-235 so as to approach criticality with fast neutrons. The multiplication factor k(eff) of the calculation is in better agreement with the experiment when we replace the ENDF/B-VII. 0 evaluation of the Np-237 fission cross section by the n\\_TOF data. We also explored the hypothesis of deficiencies of the inelastic cross section in U-235 which has been invoked by some authors to explain the deviation of 750 pcm. The large modification needed to reduce the deviation seems to be incompatible with existing inelastic cross section measurements. Also we show that t...

  19. Electron collision cross sections of mercury

    International Nuclear Information System (INIS)

    Suzuki, Susumu; Kuzuma, Kiyotaka; Itoh, Haruo

    2006-01-01

    In this paper, we propose a new collision cross section set for mercury which revises the original set summarized by Hayashi in 1989. Hanne reported three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) determined from an electron beam experiment in 1988. As a matter for regret, no attentive consideration was given to combining these three excitation cross sections with the cross section set of Hayashi. Therefore we propose a new set where these three excitation cross sections are included. In this study, other two excitation cross sections (6 1 P 1 , 6 3 D 3 ) except for the three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) are taken from the original set of Hayashi. The momentum transfer cross section and the ionization collision cross section are also taken from Hayashi. A Monte Carlo Simulation (MCS) technique is applied for evaluating our new cross section set. The present results of the electron drift velocity and the ionization coefficient are compared to experimental values. Agreement is secured in relation to the electron drift velocity for 1.5 Td 2 ) is the reduced electric field, E (V/cm) is the electric field, N (1/cm 3 ) is the number density of mercury atoms at 0degC, 1 Torr, E/N is also equal to 2.828 x 10 -17 E/p 0 from the relation of the ideal gas equation, p 0 (Torr) is gas pressure at 0degC, 1 Torr=1.33322 x 10 -2 N/cm -2 and 10 -17 V/cm 2 is called 1 Td. Thus it is ensured that our new cross section set is reasonable enough to be used up to 100 eV when considering with the electron drift velocity and the ionization coefficient. (author)

  20. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  1. Total cross section of highly excited strings

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-01-01

    The unpolarized total cross section for the joining of two highly excited strings is calculated. The calculation is performed by taking the average overall states in the given excitation levels of the initial strings. We find that the total cross section grows with the energy and momentum of the initial states. (author). 8 refs, 1 fig

  2. Compilation of cross-sections. Pt. 1

    International Nuclear Information System (INIS)

    Flaminio, V.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1983-01-01

    A compilation of integral cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  3. Total cross section results for deuterium electrodisintegration

    International Nuclear Information System (INIS)

    Skopik, D.M.; Murphy, J.J. II; Shin, Y.M.

    1976-01-01

    Theoretical total cross sections for deuterium electrodisintegration are presented as a function of incident electron energy. The cross section has been calculated using virtual photon theory with Partovi's photodisintegration calculation for E/subx/ > 10 MeV and effective range theory for E/subx/ 2 H(e, n) reaction in Tokamak reactors

  4. Model cross section calculations using LAHET

    International Nuclear Information System (INIS)

    Prael, R.E.

    1992-01-01

    The current status of LAHET is discussed. The effect of a multistage preequilibrium exciton model following the INC is examined for neutron emission benchmark calculations, as is the use of a Fermi breakup model for light nuclei rather than an evaporation model. Comparisons are made also for recent fission cross section experiments, and a discussion of helium production cross sections is presented

  5. Vibrational enhancement of total breakup cross sections

    International Nuclear Information System (INIS)

    Haftel, M.I.; Lim, T.K.

    1984-01-01

    This paper considers the role of multi-two-body bound states, namely vibrational excitations, on total three-body breakup cross-sections. Total cross-sections are usually easy to measure, and they play a fundamental role in chemical kinetics. (orig.)

  6. Compilation of cross-sections. Pt. 4

    International Nuclear Information System (INIS)

    Alekhin, S.I.; Ezhela, V.V.; Lugovsky, S.B.; Tolstenkov, A.N.; Yushchenko, O.P.; Baldini, A.; Cobal, M.; Flaminio, V.; Capiluppi, P.; Giacomelli, G.; Mandrioli, G.; Rossi, A.M.; Serra, P.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1987-01-01

    This is the fourth volume in our series of data compilations on integrated cross-sections for weak, electromagnetic, and strong interaction processes. This volume covers data on reactions induced by photons, neutrinos, hyperons, and K L 0 . It contains all data published up to June 1986. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  7. Experimental techniques and theoretical models for the study of integral 14 MeV neutron cross sections

    International Nuclear Information System (INIS)

    Csikai, J.

    1981-01-01

    Owing to technical reasons, most of the data for fast neutron-induced reactions were measured at 14 MeV and the free parameters in nuclear reaction models have been determined at this energy. The discrepancies between experiment and theory are often due to the unmeasured or unreliable experimental data; therefore, it is important to survey the present techniques used for the measurement of total, elastic, nonelastic and partial nonelastic [(n,xn); (n,x charged); (n,f); (n,γ)] cross sections for 14 MeV neutrons. Systematics in the data as well as theoretical and semi-empirical models are also outlined. (author)

  8. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheson, A. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States)]. E-mail: hutch@tunl.duke.edu; Angell, C.T. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Becker, J.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Boswell, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Crowell, A.S. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Dashdorj, D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Fallin, B. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Fotiades, N. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Howell, C.R.; Karwowski, H.J.; Kelley, J.H.; Kiser, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Macri, R.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Nelson, R.O. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pedroni, R.S. [NC A and T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); Tonchev, A.P.; Tornow, W. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Vieira, D.J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Weisel, G.J. [Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601 (United States); Wilhelmy, J.B. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2007-08-15

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on {sup 235,238}U and {sup 241}Am using pulsed and monoenergetic neutron beams with E {sub n} = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt {gamma} rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  9. Recommended evaluation procedure for photonuclear cross section

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)

  10. Comparative analysis among several cross section sets

    International Nuclear Information System (INIS)

    Caldeira, A.D.

    1983-01-01

    Critical parameters were calculated using the one dimensional multigroup transport theory for several cross section sets. Calculations have been performed for water mixtures of uranium metal, plutonium metal and uranium-thorium oxide, and for metallics systems, to determine the critical dimensions of geometries (sphere and cylinder). For this aim, the following cross section sets were employed: 1) multigroup cross section sets obtained from the GAMTEC-II code; 2) the HANSEN-ROACH cross section sets; 3) cross section sets from the ENDF/B-IV, processed by the NJOY code. Finally, we have also calculated the corresponding critical radius using the one dimensional multigroup transport DTF-IV code. The numerical results agree within a few percent with the critical values obtained in the literature (where the greatest discrepancy occured in the critical dimensions of water mixtures calculated with the values generated by the NJOY code), a very good results in comparison with similar works. (Author) [pt

  11. Activation cross section data file, (1)

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro; Iijima, Shungo.

    1989-09-01

    To evaluate the radioisotope productions due to the neutron irradiation in fission of fusion reactors, the data for the activation cross sections ought to be provided. It is planning to file more than 2000 activation cross sections at final. In the current year, the neutron cross sections for 14 elements from Ni to W have been calculated and evaluated in the energy range 10 -5 to 20 MeV. The calculations with a simplified-input nuclear cross section calculation system SINCROS were described, and another method of evaluation which is consistent with the JENDL-3 were also mentioned. The results of cross section calculation are in good agreement with experimental data and they were stored in the file 8, 9 and 10 of ENDF/B format. (author)

  12. Cross-sectional anatomy for computed tomography

    International Nuclear Information System (INIS)

    Farkas, M.L.

    1988-01-01

    This self-study guide recognizes that evaluation and interpretation of CT-images demands a firm understanding of both cross-sectional anatomy and the principles of computed tomography. The objectives of this book are: to discuss the basic principles of CT, to stress the importance of cross-sectional anatomy to CT through study of selected cardinal transverse sections of head, neck, and trunk, to explain orientation and interpretation of CT-images with the aid of corresponding cross-sectional preparations

  13. Measurement of the $^{242}$Pu(n,f) reaction cross-section at the CERN n_TOF facility

    CERN Document Server

    AUTHOR|(CDS)2080481; Kokkoris, Michael; Vlachoudis, Vasilis

    The accurate knowledge of relevant nuclear data, such as the neutron-induced fission cross sections of various plutonium isotopes and other minor actinides, is crucial for the design of advanced nuclear systems as well as the development of comprehensive theoretical models of the fission process. The $^{242}$Pu(n,f) cross section was measured at the CERN n_TOF facility taking advantage of the wide energy range and the high instantaneous flux of the neutron beam. In this work, results for the $^{242}$Pu(n,f) measurement are presented along with a detailed description of the experimental setup, Monte-Carlo simulations and the analysis procedure, and a theoretical cross section calculation performed with the EMPIRE code.

  14. Is the quasielastic pion cross section really bigger than the pion-nucleus reaction cross section

    International Nuclear Information System (INIS)

    Silbar, R.R.

    1979-01-01

    It is shown that soft pion charge exchanges may increase the inclusive (π + ,π 0 ') cross section, relative to the total quasielastic (π + ,π + ') cross section, by as much as a factor of two. 4 references

  15. Fission cross section ratios for sup 233,234,236 U relative to sup 235 U from 0. 5 to 400 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Neutron-induced fission cross section ratios from 0.5 to 400 MeV for samples of {sup 233, 234, 236}U relative to {sup 235}U have been measured at the WNR neutron Source at Los Alamos. The fission reaction rate was determined using a fast parallel plate ionization chamber at a 20-m flight path. Cross sections over most the energy range were also extracted using the neutron fluence determined with three different proton telescope arrangements. Those data provided the shape of the {sup 235}U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for {sup 235}U(n,f) at 14.1 MeV to allow us to obtain cross section section values from the ratio data and our values for {sup 235}U(n,f). 6 refs., 1 fig.

  16. Fission cross section ratios for 233,234,236U relative to 235U from 0.5 to 400 MeV

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Neutron-induced fission cross section ratios from 0.5 to 400 MeV for samples of 233, 234, 236 U relative to 235 U have been measured at the WNR neutron Source at Los Alamos. The fission reaction rate was determined using a fast parallel plate ionization chamber at a 20-m flight path. Cross sections over most the energy range were also extracted using the neutron fluence determined with three different proton telescope arrangements. Those data provided the shape of the 235 U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n,f) at 14.1 MeV to allow us to obtain cross section section values from the ratio data and our values for 235 U(n,f). 6 refs., 1 fig

  17. Use of shell model calculations in R-matrix studies of neutron-induced reactions

    International Nuclear Information System (INIS)

    Knox, H.D.

    1986-01-01

    R-matrix analyses of neutron-induced reactions for many of the lightest p-shell nuclei are difficult due to a lack of distinct resonance structure in the reaction cross sections. Initial values for the required R-matrix parameters, E,sub(lambda) and γsub(lambdac) for states in the compound system, can be obtained from shell model calculations. In the present work, the results of recent shell model calculations for the lithium isotopes have been used in R-matrix analyses of 6 Li+n and 7 Li+n reactions for E sub(n) 7 Li and 8 Li on the 6 Li+n and 7 Li+n reaction mechanisms and cross sections are discussed. (author)

  18. Measurements of fast neutron-induced fission data of Np-237

    Energy Technology Data Exchange (ETDEWEB)

    Win, Than; Saito, Keiichiro; Baba, Mamoru; Iwasaki, Tomohiko; Ibaraki, Masanobu; Miura, Takako; Sanami, Toshiya; Nauchi, Yasushi; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1998-03-01

    We have performed the following measurements for {sup 237}Np using the 4.5 MV Dynamitron accelerator of Tohoku University as the pulsed neutron source: (1) Prompt fission neutron spectrum for 0.62 MeV incident neutrons, and (2) Neutron-Induced fission cross-section between 10 and 100 keV. The prompt fission neutron spectrum was measured using TOF method with a heavily shielded NE213 scintillation detector. The Maxwellian temperature T{sub m} derived is 1.28 MeV, which is lower than that of 1.38 MeV in JENDL-3.2. The fission cross sections were measured between 10 - 100 keV. The results are between JENDL-3.2 and ENDF/B-VI. (author)

  19. Partial cross sections near the higher resonances

    International Nuclear Information System (INIS)

    Falk-Vairant, P.; Valladas, G.

    1961-07-01

    As a continuation of the report given at the 10. Rochester Conference, recent measurements of charge-exchange cross section and π 0 production in π - -p interactions are presented here. Section 1 gives a summary of the known results for the elastic, inelastic, and charge-exchange cross sections. Section 2 presents the behavior of the cross sections in the T=1/2 state, in order to discuss the resonances at 600 and 890 MeV. Section 3 discusses the charge-exchange scattering and the interference term between the T=1/2 and T=3/2 states. Section 4 presents some comments on inelastic processes. This report is reprinted from 'Reviews of Modern Physics', Vol. 33, No. 3, 362-367, July, 1961

  20. Neutron-induced activation measurements and EXFOR compilations in the energy range up to 20 MeV

    International Nuclear Information System (INIS)

    Semkova, V.; Otuka, N.

    2015-01-01

    Accurate neutron-induced activation cross-section data are of interest in many fields of science and applications. Such data are needed for calculations and analysis of neutron transport, activation of materials, gas production and radiation damage, dose rates etc. Experimental data provide bases for the parameterization of reaction cross section calculations, and for the assessment of nuclear models and evaluated data libraries. Activation technique in combination with gamma spectrometry is well known and widely used method for neutron-induced reaction cross-section measurements. However, in some cases considerable differences exist between the results from different experiments. A careful consideration of the all factors that may affect each particular measurement is needed in order to obtain reliable data. Measured data are of little value until they are made conveniently available for users and evaluators. The International Network of Nuclear Reaction Data Centres (NRDC) collaborates in collection, compilation and dissemination of experimental nuclear reaction data in the EXFOR data library. In the present work some aspects of the 58 Ni(n,p) 58 Co activation cross-section measurements at two different experimental facilities and EXFOR compilation files will be presented

  1. Electron-impact cross sections of Ne

    International Nuclear Information System (INIS)

    Tsurubuchi, S.; Arakawa, K.; Kinokuni, S.; Motohashi, K.

    2000-01-01

    Electron-impact absolute emission cross sections were measured for the 3p→3s transitions of Ne. Excitation functions of the 3s→2p first resonance lines were measured in the energy range from the threshold to 1000 eV by a polarization-free optical method and relative cross sections were normalized to the absolute values, (41.0±5.4)x10 -19 cm 2 for the 73.6 nm line and (7.1±1.0)x10 -19 cm 2 for the 74.4 nm line, which were determined at 500 eV. The integrated level-excitation cross sections of Suzuki et al for the 1s 2 and 1s 4 levels were combined with the corresponding 3p→3s cascade cross sections obtained in this paper to give absolute emission cross sections for the resonance lines. The level-excitation cross sections of the 1s 2 and 1s 4 states in Paschen notation were determined from the threshold to 1000 eV by subtracting 3p→3s cascade cross sections from the corresponding 3s→2p emission cross sections of the resonance lines. A large cascade contribution is found in the emission cross section of the resonance lines. It is 28.5% for the 73.6 nm line and 49.6% for the 74.4 nm line at 40 eV, and 17.0 and 61.8%, respectively, at 300 eV. (author)

  2. The European activation file EAF-3 with neutron activation and transmutation cross-sections

    International Nuclear Information System (INIS)

    Kopecky, J.; Kamp, H.A.J. van der; Gruppelaar, H.; Nierop, D.

    1992-09-01

    The work performed to obtain the 3rd version of European Activation File (EAF-3) is described, containing cross-sections for neutron induced reactions (0-20 MeV energy range), mainly for use in fusion reactor technology. The starter file was version EAF-2. The present version contains cross-section data for all target nuclides which have half-lives longer than 0.5 days including up to curium (60 targets). Cross-sections to isomeric states are listed separately and if the isomers have a half-life longer than 0.5 days they are also includes as targets. The EAF-3 contains 729 target nuclides with 12,899 reactions with non-zero cross-sections (>10 -7 b) below 20 MeV. A provisional uncertainty file has been generated for all reactions in a one-energy group structure for threshold reactions and in a two-groups structure for (n, γ) reactions. The error estimates for this file were adopted either from experimental information or from systematics. (author). 42 refs., 1 fig., 8 tabs

  3. NNLO jet cross sections by subtraction

    International Nuclear Information System (INIS)

    Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.

    2010-06-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)

  4. Differential Top Cross-section Measurements

    CERN Document Server

    Fenton, Michael James; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. The measurement of the differential top-quark pair production cross-section provides a stringent test of advanced perturbative QCD calculations. The ATLAS collaboration has performed detailed measurements of those differential cross sections at a centre-of-mass energy of 13 TeV. This talk focuses on differential cross-section measurements in the lepton+jets final state, including using boosted top quarks to probe our understanding of top quark production in the TeV regime.

  5. Hardon cross sections at ultra high energies

    International Nuclear Information System (INIS)

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  6. NNLO jet cross sections by subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Bolzoni, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Trocsanyi, Z. [CERN, Geneva (Switzerland)

    2010-06-15

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)

  7. NNLO jet cross sections by subtraction

    CERN Document Server

    Somogyi, Gabor; Trocsanyi, Zoltan

    2010-01-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of [1-4], over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  8. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-01-01

    This paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: the spontaneous californium-252 fission neutron spectrum standard field; the thermal-neutron induced uranium-235 fission neutron spectrum standard field; the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN-ΣΣ facilities; the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility; the reference neutron field at the center of the 10% enriched uranium metal, cylindrical, fast critical; the (primary) Intermediate-Energy Standard Neutron Field

  9. Neutron cross-section measurements at the nTOF facility at CERN

    CERN Document Server

    Colonna, N

    2004-01-01

    A neutron Time-of-Flight facility (n_TOF) has recently become operative at CERN. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron-induced reactions relevant to the field of emerging nuclear technologies, as well as to Nuclear Astrophysics and fundamental Nuclear Physics. The n_TOF facility is here described, together with the main features of the experimental apparata used for cross-section measurements. The results of the first measurement campaign, which have confirmed the innovative aspects of the facility, are presented. The measurement plan of the n_TOF collaboration, in particular with regard to implications to ADS, is briefly discussed.

  10. Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2014-01-01

    Full Text Available The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.

  11. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-10-01

    The paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: (1) the spontaneous californium-252 fission neutron spectrum standard field; (2) the thermal-neutron induced uranium-235 fission neutron spectrum standard field; (3) the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN--ΣΣ facilities; (4) the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility (CFRMF); (5) the reference neutron field at the center of the 10 percent enriched uranium metal, cylindrical, fast critical; and (6) the (primary) Intermediate-Energy Standard Neutron Field

  12. Fission cross section ratios for 233,234,236U relative to 235U from 0.5 to 400 MeV

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1992-01-01

    Neutron-induced fission cross section ratios from 0.5 to 400 MeV for samples of 233,234,236 U relative to 235 U have been measured at the WNR neutron Source at Los Alamos. The fission reaction rate was determined using a fast parallel plate ionization chamber at a 20-m flight path. Cross sections over most of the energy range were also extracted using the neutron fluence determined with three different proton telescope arrangements. Those data provided the shape of the 235 U(n, f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n, f) at 14.1 MeV which will allow us to obtain cross section values from the ratio data and our values for 235 U(n, f). (orig.)

  13. Calculation of the resonance cross section functions

    International Nuclear Information System (INIS)

    Slipicevic, K.F.

    1967-11-01

    This paper includes the procedure for calculating the Doppler broadened line shape functions ψ and χ which are needed for calculation of resonance cross section functions. The obtained values are given in tables

  14. Measurement of multinucleon transfer cross-sections

    Indian Academy of Sciences (India)

    Keywords. Ni(C, ), Fe(C, ), =C, C, B, B, Be, Be, Be, Be, Li, Li; = 60 MeV; measured reaction cross-section; elastic scattering angular distribution; deduced transfer probabilities and enhancement factors.

  15. Capture cross sections on unstable nuclei

    Science.gov (United States)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  16. Calculation of the resonance cross section functions

    Energy Technology Data Exchange (ETDEWEB)

    Slipicevic, K F [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1967-11-15

    This paper includes the procedure for calculating the Doppler broadened line shape functions {psi} and {chi} which are needed for calculation of resonance cross section functions. The obtained values are given in tables.

  17. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  18. Status of neutron dosimetry cross sections

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.

    1992-01-01

    Several new cross section libraries, such as ENDF/B-VI(release 2), IRDF-90,JEF-2.2, and JENDL-3 Dosimetry, have recently been made available to the dosimetry community. the Sandia National Laboratories (SNL) Radiation Metrology Laboratory (RML) has worked with these libraries since pre-release versions were available. this paper summarizes the results of the intercomparison and testing of dosimetry cross sections. As a result of this analysis, a compendium of the best dosimetry cross sections was assembled from the available libraries for use within the SNL RML. this library, referred to as the SNLRML Library, contains 66 general dosimetry sensors and 3 special dosimeters unique to the RML sensor inventory. The SNLRML cross sections have been put into a format compatible with commonly used spectrum determination codes

  19. Tachyonic ionization cross sections of hydrogenic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)

    2005-03-11

    Transition rates for induced and spontaneous tachyon radiation in hydrogenic systems as well as the transversal and longitudinal ionization cross sections are derived. We investigate the interaction of the superluminal radiation field with matter in atomic bound-bound and bound-free transitions. Estimates are given for Ly-{alpha} transitions effected by superluminal quanta in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, in the Born approximation and at the ionization threshold. The angular maxima occur at different scattering angles in the transversal and longitudinal cross sections, which can be used to sift out longitudinal tachyonic quanta in a photon flux. We calculate the tachyonic ionization and recombination cross sections for Rydberg states and study their asymptotic scaling with respect to the principal quantum number. At the ionization threshold of highly excited states of order n {approx} 10{sup 4}, the longitudinal cross section starts to compete with photoionization, in recombination even at lower levels.

  20. a cross-sectional analytic study 2014

    African Journals Online (AJOL)

    Assessment of HIV/AIDS comprehensive correct knowledge among Sudanese university: a cross-sectional analytic study 2014. ... There are limited studies on this topic in Sudan. In this study we investigated the Comprehensive correct ...

  1. Capture cross sections on unstable nuclei

    Directory of Open Access Journals (Sweden)

    Tonchev A.P.

    2017-01-01

    Full Text Available Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  2. Methods for calculating anisotropic transfer cross sections

    International Nuclear Information System (INIS)

    Cai, Shaohui; Zhang, Yixin.

    1985-01-01

    The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)

  3. Heisenberg rise of total cross sections

    International Nuclear Information System (INIS)

    Ezhela, V.V.; Yushchenko, O.P.

    1988-01-01

    It is shown that on the basis of the original idea of Heisenberg on the quasiclassical picture of extended particle interactions one can construct a satisfactory description of the total cross sections, elastic cross sections, elastic diffractive slopes and mean charged multiplicities in the cm energy range from 5 to 900 GeV, and produce reasonable extrapolations up to several tens of TeV. 14 refs.; 7 figs.; 2 tabs

  4. Evaluation methods for neutron cross section standards

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1980-01-01

    Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables

  5. Integrated system for production of neutronics and photonics calculational constants. Supplemental neutron-induced interactions (Z less than or equal to 35): graphical, experimental data

    International Nuclear Information System (INIS)

    Cullen, D.E.; Howerton, R.J.; MacGregor, M.H.; Perkins, S.T.

    1976-01-01

    This report (Vol. 8) presents graphs of supplemental neutron-induced cross sections in the Experimental Cross Section Information Library (ECSIL) as of July 4, 1976. It consists of interactions where more than one data set is needed to show cross-section behavior. In contrast, Vol. 7 of this UCRL-50400 series consists primarily of interactions where a single data set contains enough points to show cross-section behavior. In Vol. 7 can be found the total, elastic, capture, and fission cross sections (along with the parameters anti ν, α, and eta). Volume 8 contains all other reactions. Data are plotted with associated cross-section error bars (when given) and compared with the Evaluated Nuclear Data Library (ENDL) as of July 4, 1976. The plots are arranged in ascending order of atomic number (Z) and atomic weight (A). Part A contains the plots for Z = 1 to 35; Part B contains the plots for Z greater than 35

  6. Integrated system for production of neutronics and photonics calculational constants. Major neutron-induced interactions (Z less than or equal to 55): graphical, experimental data

    International Nuclear Information System (INIS)

    Cullen, D.E.; Howerton, R.J.; MacGregor, M.H.; Perkins, S.T.

    1976-01-01

    This report (vol. 7) presents graphs of major neutron-induced interaction cross sections in the Experimental Cross Section Information Library (ECSIL) as of July 4, 1976. It consists primarily of interactions where a single data set contains enough points to show cross-section behavior. In contrast, vol. 8 of this UCRL-50400 series consists of interactions where more than one data set is needed to show cross section behavior. Thus, you can find the total, elastic, capture, and fission cross sections (along with the parameters anti ν, α, and eta) in vol. 7 and all other reactions in vol. 8. Data are plotted with associated cross section error bars (when given) and compared with the Evaluated Nuclear Data Library (ENDL) as of July 4, 1976. The plots are arranged in ascending order of atomic number (Z) and atomic weight (A). Part A contains the plots for Z = 1 to 55; Part B contains the plots for Z greater than 55

  7. Integrated system for production of neutronics and photonics calculational constants. Major neutron-induced interactions (Z less than or equal to 55): graphical, experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D.E.; Howerton, R.J.; MacGregor, M.H.; Perkins, S.T.

    1976-07-04

    This report (vol. 7) presents graphs of major neutron-induced interaction cross sections in the Experimental Cross Section Information Library (ECSIL) as of July 4, 1976. It consists primarily of interactions where a single data set contains enough points to show cross-section behavior. In contrast, vol. 8 of this UCRL-50400 series consists of interactions where more than one data set is needed to show cross section behavior. Thus, you can find the total, elastic, capture, and fission cross sections (along with the parameters anti ..nu.., ..cap alpha.., and eta) in vol. 7 and all other reactions in vol. 8. Data are plotted with associated cross section error bars (when given) and compared with the Evaluated Nuclear Data Library (ENDL) as of July 4, 1976. The plots are arranged in ascending order of atomic number (Z) and atomic weight (A). Part A contains the plots for Z = 1 to 55; Part B contains the plots for Z greater than 55.

  8. Evaluation of cross-section uncertainties using physical constraints for 238U, 239Pu

    International Nuclear Information System (INIS)

    De Saint Jean, Cyrille; Privas, Edwin; Archier, Pascal; Noguere, Gilles; Litaize, Olivier; Leconte, Pierre; Bernard, David

    2014-01-01

    Neutron-induced reactions between 0 eV and 20 MeV are based on various physical properties such as nuclear reaction models, microscopic and integral measurements. Most of the time, the evaluation work is done independently between the resolved resonance range and the continuum, giving rise to mismatches for the cross-sections, larger uncertainties on boundary and no cross-correlation between high-energy domain and resonance range. In addition the use of integral experiment is sometimes only related to central values (evaluation is 'working fine' on a dedicated set of benchmarks) and reductions of uncertainties are not straightforward on cross-sections themselves: working fine could be mathematically reflected by a reduced uncertainty. As the CIELO initiative is to bring experts in each field to propose/discuss these matters, after having presented the status of 238 U and 239 Pu cross-sections covariances evaluation (for JEFF-3.2 as well as the WPEC SG34 subgroup), this paper will present several methodologies that may be used to avoid such effects on covariances. A first idea based on the use of experiments overlapping two energy domains appeared in the near past. It was reviewed and extended to the use of systematic uncertainties (normalisation for example) and for integral experiments as well. In addition, we propose a methodology taking into account physical constraints on an overlapping energy domain where both nuclear reaction models are used (continuity of both cross-sections and derivatives for example). The use of Lagrange multiplier (related to these constraints) in a classical generalised least square procedure will be exposed. Some academic examples will then be presented for both point-wise and multi-group cross-sections to present the methodologies. In addition, new results for 239 Pu will be presented on resonance range and higher energies to reduce capture and fission cross-section uncertainties by using integral experiments (JEZEBEL experiment as

  9. A Pebble Bed Reactor cross section methodology

    International Nuclear Information System (INIS)

    Hudson, Nathanael H.; Ougouag, Abderrafi M.; Rahnema, Farzad; Gougar, Hans

    2009-01-01

    A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.

  10. Neutron-induced fission of uranium isotopes up to 100 MeV

    International Nuclear Information System (INIS)

    Lestone, J.P.; Gavron, A.

    1994-01-01

    The statistical-model description of the neutron-induced fission of U isotopes has been developed using densities of intrinsic states and spin cutoff parameters obtained directly from appropriate Nilsson model single-particle levels. The first-chance fission cross sections are reproduced well when the rotational contributions to the nuclear level densities are taken into account. In order to fit the U(n,f) cross sections above the threshold of second-chance fission, we must: (1) assume that the triaxial level-density enhancement is washed out at an excitation energy of approximately 7 MeV above the triaxial barriers with a width of approximately 1 MeV, implying a γ deformation for the first barriers where 10<γ<20 degree, and (2) include preequilibrium particle emission in the calculations. Above an incoming-neutron kinetic energy of approximately 17 MeV, our statistical model U(n,f) of cross sections increasingly overestimates the experimental data. This is not surprising since, at these high energies, little data exist on the scattering of neutrons to help guide the choice of optical-model parameters. A satisfactory reproduction of all of the available U(n,f) cross sections above 17 MeV is obtained by scaling our calculated compound-nucleus formation cross sections. This scaling factor falls from 1.0 at 17 MeV to 0.82 at 100 MeV

  11. Angular distribution of fragments from neutron-induced fission of 238U in the intermediate energy region

    International Nuclear Information System (INIS)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of 238 U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of 238 U

  12. Top quark production cross-section measurements

    CERN Document Server

    Chen, Ye; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...

  13. Detection of boron in metal alloys with solid state nuclear track detector by neutron induced autoradiography

    International Nuclear Information System (INIS)

    Ali Nabipour; Hosseini, A.; Afarideh, H.

    2002-01-01

    Neutron induced autoradiography is very useful technique for detection as well as measurement of Boron densities in metal alloys. The method is relatively simple and quite sensitive in comparison with other techniques with resolution in the range of PPM. Using this technique with it is also possible to investigate microscopic scattering of Boron in metal alloys. In comparison with most techniques neutron induced autoradiography has its own difficulties and limitations. In this research measurement of Boron densities and investigation of that diffusion in metal alloys has been carried out. A flat nicely polished Boron doped metal samples is covered with a track detecting plastic (CR-39 solid state nuclear track detector) and exposed to thermal neutron dose. After irradiation the plastic detector have been removed and put in an etching solution. Since the diffusion rate of corrosive solution in those area, which heavy ions have been, produces as the result of nuclear reaction with thermal neutron are more than the other areas, some cavities are formed. The diameter of cavities or tracks cross section are increased with increasing the etching time, to some extent that it is possible to observe the cavities with optical microscopes. The density of tracks on the detector surface is directly related to the Boron concentration in the sample and thermal neutron dose. So by measuring the number of tracks on surface of the detector it would possible to calculate the concentration of Boron in metal samples. (Author)

  14. Calculation of 235U(n,n') cross sections for ENDF/B-VI

    International Nuclear Information System (INIS)

    Young, P.G.; Arthur, E.D.

    1988-01-01

    Cross sections for neutron-induced reactions on 235 U between 0.01 and 20 MeV have been calculated in a preliminary analysis for the ENDF/B-VI evaluation with particular emphasis on neutron inelastic scattering. A deformed optical model potential that fits total, elastic, inelastic, and low-energy average resonance data is used to calculate direct (n,n') cross sections and transmission coefficients for a Hauser-Feshbach statistical theory analysis using a multiple fission barrier representation. Direct cross sections for higher-lying vibrational states are provided from DWBA calculations, normalized using B(E/ital l/) values determined from (d,d') and Coulomb excitation data. Initial fission barrier parameters and transition state density enhancements appropriate to the compound systems involved were obtained from previous analyses, especially fits to charged-particle fission probability data. Further modifications to fit 235 U(n,f) data were small, and the final fission parameters are generally consistent with published values. The results from this preliminary analysis are compared with the ENDF/B-V evaluation as well as with experimental data. 26 refs., 5 figs., 3 tabs

  15. A CVD Diamond Detector for (n,a) Cross-Section Measurements

    CERN Document Server

    Weiss, Christina; Griesmayer, Erich; Guerrero, Carlos

    A novel detector based on the chemical vapor deposition (CVD) diamond technology has been developed in the framework of this PhD, for the experimental determination of (n,a) cross-sections at the neutron time-of-flight facility n_TOF at CERN. The 59Ni(n,a)56Fe cross-section, which is relevant for astrophysical questions as well as for risk-assessment studies in nuclear technology, has been measured in order to validate the applicability of the detector for such experiments. The thesis is divided in four parts. In the introductory part the motivation for measuring (n,a) cross-sections, the experimental challenges for such measurements and the reasons for choosing the CVD diamond technology for the detector are given. This is followed by the presentation of the n_TOF facility, an introduction to neutron-induced nuclear reactions and a brief summary of the interaction of particles with matter. The CVD diamond technology and the relevant matters related to electronics are given as well in this first part of the t...

  16. Homogenized group cross sections by Monte Carlo

    International Nuclear Information System (INIS)

    Van Der Marck, S. C.; Kuijper, J. C.; Oppe, J.

    2006-01-01

    Homogenized group cross sections play a large role in making reactor calculations efficient. Because of this significance, many codes exist that can calculate these cross sections based on certain assumptions. However, the application to the High Flux Reactor (HFR) in Petten, the Netherlands, the limitations of such codes imply that the core calculations would become less accurate when using homogenized group cross sections (HGCS). Therefore we developed a method to calculate HGCS based on a Monte Carlo program, for which we chose MCNP. The implementation involves an addition to MCNP, and a set of small executables to perform suitable averaging after the MCNP run(s) have completed. Here we briefly describe the details of the method, and we report on two tests we performed to show the accuracy of the method and its implementation. By now, this method is routinely used in preparation of the cycle to cycle core calculations for HFR. (authors)

  17. Photoproton cross section for /sup 19/F

    Energy Technology Data Exchange (ETDEWEB)

    Tsubota, H [Tohoku Univ., Sendai (Japan). Coll. of General Education; Kawamura, N; Oikawa, S; Uegaki, J I

    1975-02-01

    Proton energy spectra have been measured at 90/sup 0/ for the /sup 19/F(e,e'p)/sup 18/O reaction in the giant resonance region. The (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) differential cross sections are extracted from the proton energy spectra by using virtual-photon spectra. The integrated differential cross section of the (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) reactions are 1.80+-0.27 and 0.50+-0.45 MeV-mb/sr, respectively. The results are discussed with the shell model theory by comparing with the (..gamma..,p/sub 0/) cross section of the neighboring 4n-nucleus /sup 20/Ne. A significant increase of the proton yield leaving the non-ground states is found at 25 MeV of the incident electron energy. This is discussed in terms of the core excitation effect.

  18. Prospects for Precision Neutrino Cross Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A. [Fermilab

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  19. NNLO jet cross sections by subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Bolzoni, P. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Trocsanyi, Z. [CERN PH-TH, on leave from University of Debrecen and Institute of Nuclear Research of HAS, H-4001 P.O.Box 51 (Hungary)

    2010-08-15

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  20. NNLO jet cross sections by subtraction

    International Nuclear Information System (INIS)

    Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.

    2010-01-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  1. Fission cross-section measurements on 233U and minor actinides at the CERN n-TOF facility

    International Nuclear Information System (INIS)

    Calviani, M.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Colonna, N.; Terlizzi, R.; Abbondanno, U.; Marrone, S.; Belloni, F.; Fujii, K.; Moreau, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.; Alvarez, H.; Duran, I.; Paradela, C.; Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Sesura, M.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Vincente, M. C.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; David, S.; Ferrant, L.; Stephan, C.; Tassan-Got, L.; Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.; Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.; Becvar, F.; Calvino, F.; Capote, R.; Carrapico, C.; Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.; Cortes, G.; Poch, A.; Pretel, C.; Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.; Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Walter, S.; Wisshak, K.; Domingo-Pardo, C.; Eleftheriadis, C.; Furman, W.; Goverdovski, A.; Gramegna, F.; Mastinu, P.; Praena, J.; Haas, B.; Haight, R.; Igashira, M.; Karadimos, D.; Karamanis, D.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Lozano, M.; Marganiec, J.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Plompen, A.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rullhusen, P.; Salgado, J.; Santos, C.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vlastou, R.; Voss, F.

    2010-01-01

    Neutron-induced fission cross-sections of minor actinides have been measured at the white neutron source n-TOF at CERN, Geneva. The studied isotopes include 233 U, interesting for Th/U based nuclear fuel cycles, 241, 243 Am and 245 Cm, relevant for transmutation and waste reduction studies in new generation fast reactors (Gen-IV) or Accelerator Driven Systems. The measurements take advantage of the unique features of the n-TOF facility, namely the wide energy range, the high instantaneous neutron flux and the low background. Results for the involved isotopes are reported from ∼30 meV to around 1 MeV neutron energy. The measurements have been performed with a dedicated Fission Ionization Chamber (FIC), relative to the standard cross-section of the 235 U fission reaction, measured simultaneously with the same detector. Results are here reported. (authors)

  2. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    Science.gov (United States)

    Pritychenko, B.; Mughabghab, S. F.

    2012-12-01

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  3. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  4. Cross sections for charm production by neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ushida, N [Aichi Univ. of Education, Kariya (Japan). Dept. of Physics; Kondo, T [Fermi National Accelerator Lab., Batavia, IL (USA); Fujioka, G; Fukushima, J; Takahashi, Y; Tatsumi, S; Yokoyama, C [Kobe Univ. (Japan). Dept. of Physics; Homma, Y; Tsuzuki, Y [Kobe Univ. (Japan). Coll. of Liberal Arts; Bahk, S

    1983-02-03

    The production of charmed particles has been measured using a hybrid emulsion spectrometer in the Fermilab wide-band neutrino beam. The relative cross section for charged current charmed particle production is sigma(v -> ..mu../sup -/c)/sigma(v -> ..mu../sup -/) = 6.5 +- 1.9/1.8%, and the energy dependence of the cross section is presented. One event with charm pair production was observed. A limit of sigma(v -> ..mu..canti c)/sigma(v -> ..mu..c) < 6% (90% CL) is found for the ratio of charged current pair and single charm production.

  5. Covariance Evaluation Methodology for Neutron Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  6. Energy-differential cross section measurement for the 51V(n,α)48Sc reaction

    International Nuclear Information System (INIS)

    Kanno, I.; Meadows, J.W.; Smith, D.L.

    1984-07-01

    The activation method was used to measure cross sections for the 51 V(n,α) 48 Sc reaction in the threshold region, from 5.515 MeV up to 9.567 MeV. Twenty approximately-monoenergetic cross section values were obtained in this experiment. These data points span the energy region at roughly equal intervals. The experimental resolutions were in the range 0.153 to 0.233 MeV (FWHM). The present differential data cover approx. 50% of the total integral response of this reaction for the standard 235 U thermal-neutron-induced-fission neutron spectrum, and approx. 44% of the corresponding response for the standard 252 Cf spontaneous-fission neutron spectrum. Over the range 7.6 to 9.5 MeV the present experimental cross sections are noticeably larger (e.g., by approx. 50% at approx. 8.6 MeV) than the corresponding values from the ENDF/B-V evaluation. From approx. 6.7 to 7.5 MeV, the present values are somewhat below those of ENDF/B-V. At still lower energies the agreement is reasonably good considering the uncertainties introduced by energy scale definition very near the effective threshold where the cross section varies rapidly with neutron energy. Calculated integral cross sections based in part on the present work agree reasonably well within errors with reported integral results, provided that the reported data are renormalized to conform with recently-accepted values for appropriate standard reactions. 70 references

  7. Total and (n, 2n) neutron cross section measurements on 241Am

    International Nuclear Information System (INIS)

    Sage, C.

    2009-01-01

    Neutron induced reaction cross sections on 241 Am have been measured at the IRMM in Geel, Belgium, in the frame of a collaboration between the EC Joint Research Centres IRMM and ITU and French laboratories from CNRS and CEA. Raw material coming from the Atalante facility of CEA Marcoule has been transformed into suitable AmO 2 samples embedded in Al 2 O 3 and Y 2 O 3 matrices. The irradiations for the 241 Am(n, 2n) 240 Am reaction cross section measurement were carried out at the 7 MV Van de Graaff accelerator using the activation technique with quasi mono-energetic neutrons from 8 to 21 MeV produced via the D(d, n) 3 He and the T(d, n) 4 He reactions. The cross section was determined relative to the 27 Al(n, α) 24 Na standard cross section and was investigated for the first time above 15 MeV. The induced activity was measured off-line by standard γ-ray spectrometry using a high purity Ge detector. A special effort was made for the estimation of the uncertainties and the correlations between our experimental points. A different sample of the same isotope 241 Am has been measured in transmission and capture experiments in the resolved resonance region at the neutron ToF facility GELINA. The transmission measurement was performed in two campaigns, with an upgrade of the whole data acquisition system in between, followed by an investigation of its new performances. A preliminary analysis of the resonance parameters tends to confirm the recent evaluation to a higher value for the cross section at the bottom of the first resonances. A new design of C 6 D 6 detectors for capture measurements has been studied, but the data reduction and analysis of the measurement are not part of this work. (author) [fr

  8. Ecological Panel Inference from Repeated Cross Sections

    NARCIS (Netherlands)

    Pelzer, Ben; Eisinga, Rob; Franses, Philip Hans

    2004-01-01

    This chapter presents a Markov chain model for the estimation of individual-level binary transitions from a time series of independent repeated cross-sectional (RCS) samples. Although RCS samples lack direct information on individual turnover, it is demonstrated here that it is possible with these

  9. Validation of evaluated neutron standard cross sections

    International Nuclear Information System (INIS)

    Badikov, S.; Golashvili, T.

    2008-01-01

    Some steps of the validation and verification of the new version of the evaluated neutron standard cross sections were carried out. In particular: -) the evaluated covariance data was checked for physical consistency, -) energy-dependent evaluated cross-sections were tested in most important neutron benchmark field - 252 Cf spontaneous fission neutron field, -) a procedure of folding differential standard neutron data in group representation for preparation of specialized libraries of the neutron standards was verified. The results of the validation and verification of the neutron standards can be summarized as follows: a) the covariance data of the evaluated neutron standards is physically consistent since all the covariance matrices of the evaluated cross sections are positive definite, b) the 252 Cf spectrum averaged standard cross-sections are in agreement with the evaluated integral data (except for 197 Au(n,γ) reaction), c) a procedure of folding differential standard neutron data in group representation was tested, as a result a specialized library of neutron standards in the ABBN 28-group structure was prepared for use in reactor applications. (authors)

  10. Stability of tokamaks with elongated cross section

    International Nuclear Information System (INIS)

    An, C.H.; Bateman, G.

    1978-08-01

    Fixed boundary n = 1 MHD instabilities are studied computationally as a function of diamagnetism (β/sub pol/) and current profile in elongated toroidal equilibria (1 2) or a diamagnetic plasma (β/sub pol/ > 1) with only a mildly elongated cross section

  11. Photoelectric absorption cross sections with variable abundances

    Science.gov (United States)

    Balucinska-Church, Monika; Mccammon, Dan

    1992-01-01

    Polynomial fit coefficients have been obtained for the energy dependences of the photoelectric absorption cross sections of 17 astrophysically important elements. These results allow the calculation of X-ray absorption in the energy range 0.03-10 keV in material with noncosmic abundances.

  12. (, 3) Differential cross section of He

    Indian Academy of Sciences (India)

    The angular distribution of the five-fold differential cross section for the electron impact double ionization of He (21 ) and He (23 ) has been studied. The kinematical conditions for maxima/minima in the angular distribution for the two cases have been compared. The two-step process for the double ionization is found to ...

  13. Precise relative cross sections for np scattering

    International Nuclear Information System (INIS)

    Goetz, J.; Brogli-Gysin, C.; Hammans, M.; Haffter, P.; Henneck, R.; Jourdan, J.; Masson, G.; Qin, L.M.; Robinson, S.; Sick, I.; Tuccillo, M.

    1994-01-01

    We present data on the differential cross section for neutron-proton scattering for an incident neutron energy of 67 MeV. These data allow a precise determination of the 1 P 1 phase which, in phase-shift analyses, is strongly correlated with the S-D amplitude which we are measuring via different observables. ((orig.))

  14. Symmetric charge transfer cross section of uranium

    International Nuclear Information System (INIS)

    Shibata, Takemasa; Ogura, Koichi

    1995-03-01

    Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d 3/2 electron in the U atom transfers into the d-electron site of U + ( 4 I 9/2 ) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10 -15 cm 2 ) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U + ion. Charge transfer cross section between U + in the first excited state (289 cm -1 ) and U in the ground state was also obtained. (author)

  15. LAMBDA p total cross-section measurement

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    A view of the apparatus used for the LAMBDA p total cross-section measurement at the time of its installation. The hyperons decaying into a proton and a pion in the conical tank in front were detected in the magnet spectrometer in the upper half of the picture. A novel detection technique using exclusively multiwire proportional chambers was employed.

  16. Measurement cross sections for radioisotopes production

    International Nuclear Information System (INIS)

    Garrido, E.

    2011-01-01

    New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β - - 47 Sc, 67 Cu - β + - 44 Sc, 64 Cu, 82 Sr/ 82 Rb, 68 Ge/ 68 Ga - and α emitters - 211 At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - nat Cu or nat Ni - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the nat Ti(p,X) 47 Sc and 68 Zn(p,2p) 67 Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68 Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)

  17. Consistent interpretation of neutron-induced charged-particle emission in silicon

    International Nuclear Information System (INIS)

    Hermsdorf, D.

    1982-06-01

    Users requesting gas production cross sections for Silicon will be confronted with serious discrepancies taking evaluated data as well as experimental ones. To clarify the accuracies achieved at present in experiments and evaluations in this paper an intercomparison of different evaluated nuclear data files has been carried out resulting in recommendations for improvements of these files. The analysis of the experimental data base also shows contradictory measurements or in most cases a lack of data. So an interpretation of reliable measured data in terms of nuclear reaction theories has been done using statistical and direct reaction mechanism models. This study results in a consistent and comprehensive evaluated data set for neutron-induced charged-particle production in Silicon which will be incorporated in file 2015 of the SOKRATOR library. (author)

  18. Charged-particle magnetic-quadrupole spectrometer for neutron induced reactions

    International Nuclear Information System (INIS)

    Haight, R.C.; Grimes, S.M.; Tuckey, B.J.; Anderson, J.D.

    1975-01-01

    A spectrometer has been developed for measuring the charged particle production cross sections and spectra in neutron-induced reactions. The spectrometer consists of a magnetic quadrupole doublet which focuses the charged particles onto a silicon surface barrier detector telescope which is 2 meters or more from the irradiated sample. Collimators, shielding, and the large source-to-detector distance reduce the background enough to use the spectrometer with a 14-MeV neutron source producing 4 . 10 12 n/s. The spectrometer has been used in investigations of proton, deuteron, and alpha particle production by 14-MeV neutrons incident on various materials. Protons with energies as low as 1.1 MeV have been measured. The good resolution of the detectors has also made possible an improved measurement of the neutron- neutron scattering length from the 0 0 proton spectrum from deuteron breakup by 14-MeV neutrons

  19. Parity violation in neutron induced reactions

    International Nuclear Information System (INIS)

    Gudkov, V.P.

    1991-06-01

    The theory of parity violation in neutron induced reactions is discussed. Special attention is paid to the energy dependence and enhancement factors for the various types of nuclear reactions and the information which might be obtained from P-violating effects in nuclei. (author)

  20. Neutron induced current pulses in fission chambers

    International Nuclear Information System (INIS)

    Taboas, A.L.; Buck, W.L.

    1978-01-01

    The mechanism of neutron induced current pulse generation in fission chambers is discussed. By application of the calculated detector transfer function to proposed detector current pulse shapes, and by comparison with actually observed detector output voltage pulses, a credible, semi-empirical, trapezoidal pulse shape of chamber current is obtained

  1. Study of fission cross sections induced by nucleons and pions using the cascade-exciton model CEM95

    International Nuclear Information System (INIS)

    Yasin, Z.; Shahzad, M. I.

    2007-01-01

    Nucleon and pion-induced fission cross sections at intermediate and at higher energies are important in current nuclear applications, such as accelerator driven-systems (ADS), in medicine, for effects on electronics etc. In the present work, microscopic fission cross sections induced by nucleons and pions are calculated using the cascade-exciton model code CEM95 for different projectile-target combinations; at various energies and the computed cross sections are compared with the experimental data found in literature. A new approach is used to compute the fission cross sections in which a change of the ratio of the level density parameter in fission to neutron emission channels was taken into account with the change in the incident energy of the projectile. We are unable to describe well the fission cross sections without using this new approach. Proton induced fission cross sections are calculated for targets 1 97Au, 2 08Pb, 2 09Bi, 2 38U and 2 39Pu in the energy range from 20 MeV to 2000 MeV. Neutron induced fission cross sections are computed for 2 38U and 2 39Pu in the energy range from 20 MeV to 200 MeV. Negative pion induced cross sections for fission are calculated for targets 1 97Au and 2 08Pb from 50 MeV to 2500 MeV energy range. The calculated cross sections are essential to build a data library file for accelerator driven systems just like was built for conventional nuclear reactors. The computed values exhibited reasonable agreement with the experimental values found in the literature across a wide range of beam energies

  2. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  3. Rotational averaging of multiphoton absorption cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Daniel H., E-mail: daniel.h.friese@uit.no; Beerepoot, Maarten T. P.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø — The Arctic University of Norway, N-9037 Tromsø (Norway)

    2014-11-28

    Rotational averaging of tensors is a crucial step in the calculation of molecular properties in isotropic media. We present a scheme for the rotational averaging of multiphoton absorption cross sections. We extend existing literature on rotational averaging to even-rank tensors of arbitrary order and derive equations that require only the number of photons as input. In particular, we derive the first explicit expressions for the rotational average of five-, six-, and seven-photon absorption cross sections. This work is one of the required steps in making the calculation of these higher-order absorption properties possible. The results can be applied to any even-rank tensor provided linearly polarized light is used.

  4. Measurements of neutron spallation cross section. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.

    1997-03-01

    Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)

  5. Structured ion impact: Doubly differential cross sections

    International Nuclear Information System (INIS)

    DuBois, R.D.

    1987-01-01

    The electron emission in coincidence with a projectile that has been ionized has been measured, thus making it possible to separate and identify electrons resulting from these various mechanisms. In 1985, coincidence doubly differential cross sections were measured for 400 to 750 keV/atomic mass unit (amu) He + impact on He, Ne, Ar, Kr, and H 2 O. Cross sections were measured for selected angles and for electron energies ranging from 10 to 1000 eV. Because of the coincidence mode of measurement, the total electron emission was subdivided into its target emission and its projectile emission components. The most interesting findings were that target ionization does not account for the electron emission spectrum at lower electron energies. A sizable percentage of these low-energy electrons were shown to originate as a result of simultaneous projectile/target ionizations. Similar features were observed for all targets and impact energies that were studied

  6. Electron-collision cross sections for iodine

    International Nuclear Information System (INIS)

    Zatsarinny, O.; Bartschat, K.; Garcia, G.; Blanco, F.; Hargreaves, L.R.; Jones, D.B.; Murrie, R.; Brunton, J.R.; Brunger, M.J.; Hoshino, M.; Buckman, S.J.

    2011-01-01

    We present results from a joint experimental and theoretical study of elastic electron scattering from atomic iodine. The experimental results were obtained by subtracting known cross sections from the measured data obtained with a pyrolyzed mixed beam containing a variety of atomic and molecular species. The calculations were performed using both a fully relativistic Dirac B-spline R-matrix (close-coupling) method and an optical model potential approach. Given the difficulty of the problem, the agreement between the two sets of theoretical predictions and the experimental data for the angle-differential and the angle-integrated elastic cross sections at 40 eV and 50 eV is satisfactory.

  7. Absolute partial photoionization cross sections of ethylene

    Science.gov (United States)

    Grimm, F. A.; Whitley, T. A.; Keller, P. R.; Taylor, J. W.

    1991-07-01

    Absolute partial photoionization cross sections for ionization out of the first four valence orbitals to the X 2B 3u, A 2B 3g, B 2A g and C 2B 2u states of the C 2H 4+ ion are presented as a function of photon energy over the energy range from 12 to 26 eV. The experimental results have been compared to previously published relative partial cross sections for the first two bands at 18, 21 and 24 eV. Comparison of the experimental data with continuum multiple scattering Xα calculations provides evidence for extensive autoionization to the X 2B 3u state and confirms the predicted shape resonances in ionization to the A 2B 3g and B 2A g states. Identification of possible transitions for the autoionizing resonances have been made using multiple scattering transition state calculations on Rydberg excited states.

  8. Radar cross section measurements using terahertz waves

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...... in order to measure realistic radar cross sections. RCS polar and azimuthal angle plots of F-16 and F-35 are presented....... in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...

  9. Electron Capture Cross Sections for Stellar Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    P. G. Giannaka

    2015-01-01

    Full Text Available In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasiparticle random-phase approximation (pn-QRPA and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the abovementioned e--capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the 66Zn isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  10. Double differential cross sections of ethane molecule

    Science.gov (United States)

    Kumar, Rajeev

    2018-05-01

    Partial and total double differential cross sections corresponding to various cations C2H6+, C2H4+, C2H5+, C2H3+, C2H2+, CH3+, H+, CH2+, C2H+, H2+, CH+, H3+, C2+ and C+ produced during the direct and dissociative electron ionization of Ethane (C2H6) molecule have been calculated at fixed impinging electron energies 200 and 500eV by using modified Jain-Khare semi empirical approach. The calculation for double differential cross sections is made as a function of energy loss suffered by primary electron and angle of incident. To the best of my knowledge no other data is available for the comparison.

  11. Cross sections required for FMIT dosimetry

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-01-01

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies

  12. Elliptical cross section fuel rod study II

    International Nuclear Information System (INIS)

    Taboada, H.; Marajofsky, A.

    1996-01-01

    In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab

  13. Electron collision cross sections and radiation chemistry

    International Nuclear Information System (INIS)

    Hatano, Y.

    1983-01-01

    A survey is given of the cross section data needs in radiation chemistry, and of the recent progress in electron impact studies on dissociative excitation of molecules. In the former some of the important target species, processes, and collision energies are presented, while in the latter it is demonstrated that radiation chemistry is a source of new ideas and information in atomic collision research. 37 references, 4 figures

  14. Absolute photoionization cross sections of atomic oxygen

    Science.gov (United States)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  15. Total dissociation cross section of halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Formanek, J. [Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni; Lombard, R.J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1996-10-01

    Calculations of the total dissociation cross section is performed in the impact parameter representation. The case of {sup 11}Be and {sup 11}Li loosing one and two neutron(s), respectively, by collision on a {sup 12}C target, which remains in its ground state are discussed. The results are found to depend essentially on the rms radius of the halo wave function. (author). 12 refs.

  16. Cross section of the CMS solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2005-01-01

    The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.

  17. Cross sections for multistep direct reactions

    International Nuclear Information System (INIS)

    Demetriou, Paraskevi; Marcinkowski, Andrzej; Marianski, Bohdan

    2002-01-01

    Inelastic scattering and charge-exchange reactions have been analysed at energies ranging from 14 to 27 MeV using the modified multistep direct reaction theory (MSD) of Feshbach, Kerman and Koonin. The modified theory considers the non-DWBA matrix elements in the MSD cross section formulae and includes both incoherent particle-hole excitations and coherent collective excitations in the continuum, according to the prescriptions. The results show important contributions from multistep processes at all energies considered. (author)

  18. Capture cross sections for very heavy systems

    International Nuclear Information System (INIS)

    Rowley, N.; Grar, N.; Ntshangase, S.S.

    2006-01-01

    In intermediate-mass systems, collective excitations of the target and projectile can greatly enhance the sub-barrier capture cross section σ cap by giving rise to a distribution of Coulomb barriers. For such systems, capture essentially leads directly to fusion (formation of a compound nucleus (CN)), which then decays through the emission of light particles (neutrons, protons, and alpha particles). Thus the evaporation-residue (ER) cross section is essentially equal to σ cap . For heavier systems the experimental situation is significantly more complicated due to the presence of quasifission (QF) (rapid separation into two fragments before the CN is formed) and by fusion-fission (FF) of the CN itself. Thus three cross sections need to be measured in order to evaluate σ cap . Although the ER essentially recoil along the beam direction. QF and FF fragments are scattered to all angles and require the measurement of angular distribution in order to obtain the excitation function and barrier distribution for capture. Two other approaches to this problem exist. If QF is not important, one can still measure just the ER cross section and try to reconstruct the corresponding σ cap through use of an evaporation-model code that takes account of the FF degree of freedom. Some earlier results on σ cap obtained in this way will be re-analyzed with detail coupled-channels calculations, and the extra-push phenomenon discussed. One may also try to obtain σ cap by exploiting unitarity, that is, by measuring instead the flux of particles corresponding to quasielastic (QE) scattering from the Coulomb barrier. Some new QE results obtained for the 86 Kr + 208 Pb system at iThemba LABS in South Africa will be presented [ru

  19. Inclusive jet cross section at D0

    International Nuclear Information System (INIS)

    Bhattacharjee, M.

    1996-09-01

    Preliminary measurement of the central (|η| ≤ 0.5) inclusive jet cross sections for jet cone sizes of 1.0, 0.7, and 0.5 at D null based on the 1992-1993 (13.7 pb -1 ) and 1994-1995 (90 pb -1 ) data samples are presented. Comparisons to Next-to-Leading Order (NLO) Quantum Chromodynamics (QCD) calculations are made

  20. Fully double-logarithm-resummed cross sections

    International Nuclear Information System (INIS)

    Albino, S.; Bolzoni, P.; Kniehl, B.A.; Kotikov, A.

    2011-01-01

    We calculate the complete double logarithmic contribution to cross sections for semi-inclusive hadron production in the modified minimal-subtraction (MS-bar) scheme by applying dimensional regularization to the double logarithm approximation. The full double logarithmic contribution to the coefficient functions for inclusive hadron production in e + e - annihilation is obtained in this scheme for the first time. Our result agrees with all fixed order results in the literature, which extend to next-to-next-to-leading order.

  1. Atomic-process cross section data, 1

    International Nuclear Information System (INIS)

    1974-12-01

    Compiled by the Data Study Group, the data are intended for fusion plasma physics research. Cross sections of the latest experimental and theoretic studies cover the processes involving H,D,T as principal plasma materials as well as photons and electrons: emission and absorption of electromagnetic wave, electron collision, ion collision, recombination, neutral atom mutual collision, etc. Edition is so made to enable the future renewal by users. (J.P.N.)

  2. Neutron capture cross section of ^243Am

    Science.gov (United States)

    Jandel, M.

    2009-10-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^243Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following neutron capture. DANCE is located on the 20.26 m neutron flight path 14 (FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The methods and techniques established in [1] were used for the determination of the ^243Am neutron capture cross section. The cross sections were obtained in the range of neutron energies from 0.02 eV to 400 keV. The resonance region was analyzed using SAMMY7 and resonance parameters were extracted. The results will be compared to existing evaluations and calculations. Work was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory by the Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. [4pt] [1] M. Jandel et al., Phys. Rev. C78, 034609 (2008)

  3. MXS cross-section preprocessor user's manual

    International Nuclear Information System (INIS)

    Parker, F.; Ishikawa, M.; Luck, L.

    1987-03-01

    The MXS preprocessor has been designed to reduce the execution time of programs using isotopic cross-section data and to both reduce the execution time and improve the accuracy of shielding-factor interpolation in the SIMMER-II accident analysis program. MXS is a dual-purpose preprocessing code to: (1) mix isotopes into materials and (2) fit analytic functions to the shelf-shielding data. The program uses the isotope microscopic neutron cross-section data from the CCCC standard interface file ISOTXS and the isotope Bondarenko self-shielding data from the CCCC standard interface file BRKOXS to generate cross-section and self-shielding data for materials. The materials may be a mixture of several isotopes. The self-shielding data for the materials may be the actual shielding factors or a set of coefficients for functions representing the background dependence of the shielding factors. A set of additional data is given to describe the functions necessary to interpolate the shielding factors over temperature

  4. Neutron capture cross sections of Kr

    Directory of Open Access Journals (Sweden)

    Fiebiger Stefan

    2017-01-01

    Full Text Available Neutron capture and β− -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL using the Detector for Advanced Neutron Capture Experiments (DANCE. 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  5. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  6. Quality Quantification of Evaluated Cross Section Covariances

    International Nuclear Information System (INIS)

    Varet, S.; Dossantos-Uzarralde, P.; Vayatis, N.

    2015-01-01

    Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the 85 Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations

  7. Total neutron cross section for 181Ta

    Directory of Open Access Journals (Sweden)

    Schilling K.-D.

    2010-10-01

    Full Text Available The neutron time of flight facility nELBE, produces fast neutrons in the energy range from 0.1 MeV to 10 MeV by impinging a pulsed relativistic electron beam on a liquid lead circuit [1]. The short beam pulses (∼10 ps and a small radiator volume give an energy resolution better than 1% at 1 MeV using a short flight path of about 6 m, for neutron TOF measurements. The present neutron source provides 2 ⋅ 104  n/cm2s at the target position using an electron charge of 77 pC and 100 kHz pulse repetition rate. This neutron intensity enables to measure neutron total cross section with a 2%–5% statistical uncertainty within a few days. In February 2008, neutron radiator, plastic detector [2] and data acquisition system were tested by measurements of the neutron total cross section for 181Ta and 27Al. Measurement of 181Ta was chosen because lack of high quality data in an anergy region below 700 keV. The total neutron crosssection for 27Al was measured as a control target, since there exists data for 27Al with high resolution and low statistical error [3].

  8. NNLO jet cross sections by subtraction

    Science.gov (United States)

    Somogyi, G.; Bolzoni, P.; Trócsányi, Z.

    2010-08-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 06, 024 (2005), arXiv:hep-ph/0502226; G. Somogyi and Z. Trócsányi, (2006), arXiv:hep-ph/0609041; G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 01, 070 (2007), arXiv:hep-ph/0609042; G. Somogyi and Z. Trócsányi, JHEP 01, 052 (2007), arXiv:hep-ph/0609043] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  9. Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors

    CERN Document Server

    Calviani, Marco; Montagnoli, G; Mastinu, P

    2009-01-01

    The subject of this thesis is the determination of high accuracy neutron-induced fission cross-sections of various isotopes - all of which radioactive - of interest for emerging nuclear technologies. The measurements had been performed at the CERN neutron time-of-flight facility n TOF. In particular, in this work, fission cross-sections on 233U, the main fissile isotope of the Th/U fuel cycle, and on the minor actinides 241Am, 243Am and 245Cm have been analyzed. Data on these isotopes are requested for the feasibility study of innovative nuclear systems (ADS and Generation IV reactors) currently being considered for energy production and radioactive waste transmutation. The measurements have been performed with a high performance Fast Ionization Chamber (FIC), in conjunction with an innovative data acquisition system based on Flash-ADCs. The first step in the analysis has been the reconstruction of the digitized signals, in order to extract the information required for the discrimination between fission fragm...

  10. Nuclear level density effects on the evaluated cross-sections of nickel isotopes

    International Nuclear Information System (INIS)

    Garg, S.B.

    1995-01-01

    A detailed investigation has been made to estimate the effect of various level density options on the computed neutron induced reaction cross-sections of Ni-58 and Ni-60 covering the energy range 5-25 MeV in the framework of the multistep Hauser-Feshbach statistical model scheme which accounts for the pre-equilibrium decay according to the Kalbach exciton model and gamma-ray competition according to the giant dipole radiation model of Brink and Axel. Various level density options considered in this paper are based on the Original Gilbert-Cameron, Improved Gilbert-Cameron, Back-Shifted Fermi gas and the Ingatyuk-Smirenkin-Tishin approaches. The effect of these different level density prescriptions is brought out with special reference to (n,p) (n,2n) (n,α) and total production cross-sections for neutron, hydrogen, helium and gamma-rays which are of technological importance for fission and fusion based reactor systems. (author). 18 refs, 2 figs

  11. Fission cross-section calculations and the multi-modal fission model

    International Nuclear Information System (INIS)

    Hambsch, F.J.

    2004-01-01

    New, self consistent, neutron-induced reaction cross section calculations for 235,238 U, 237 Np have been performed. The statistical model code STATIS was improved to take into account the multimodality of the fission process. The three most dominant fission modes, the two asymmetric standards I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for those modes for 235,238 U(n,f) and 237 Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235 U(n,f), the calculations being made up to 28 MeV incident neutron energy, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes. As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged

  12. Progress report on the 14-MeV fission cross section measurements

    International Nuclear Information System (INIS)

    1979-01-01

    The development of a recoil proton monitor was completed. It will be used to measure the neutron flux in the 14-MeV fisson cross section measurements. Extensive calculations of the efficiency of this monitor were made and compared with the calculations of other authors. It is clear that a major source of uncertainty in the efficiency is the lack of precise knowledge of the angular distribution of the n-p elastic scattering cross section. This leads to a change in efficiency of 3% depending on the form of the angular distribution that is used. A 4πβ-γ coincidence system was assembled to investigate the K-correction in determining the absolute activity of foil sources. Iron foils will be used as secondary flux standards in comparing the 14-MeV neutron flux with the fluxes in other laboratories, so this is an important correction to measure. The target and target holders that will be used in the 14-MeV measurements were designed and constructed. Preparations were completed to measure the angular distribution of the fission fragments produced in neutron-induced fission at 14 MeV. 2 figures

  13. Theoretical and experimental cross sections for neutron reactions on 64Zinc

    International Nuclear Information System (INIS)

    Rutherford, D.A.

    1987-01-01

    Accurate measurements of the 64 Zn (n,2n) 64 Cu and 64 Zn (n,p) 63 Zn cross sections at 14.8 MeV have been made using a Texas Nuclear Neutron Generator and the activation technique. A NaI(T1) spectrometer (using two 6'' x 6'' NaI detectors/crystals) was used to measure the gamma radiation emitted in coincidence from the positron-emitting decay products. The measurements were made relative to 65 Cu (n,2n) /64/Cu and 63 Cu (n,2n) 62 Cu cross sections, which have similar half-lives, radiation emission, and were previously measured to high accuracy (2 percent). The value obtained for the (n,2n) measurement was 199 /+-/ 6 millibarns, and a value of 176 /+-/ 4.5 millibarns was obtained for the (n,p) measurement. In concert, a theoretical analysis of neutron induced reactions on /64/Zn was performed at Los Alamos National Laboratory using the Hauser-Feshbach statistical theory in the GNASH code over an energy range of 100 keV to 20 MeV. Calculations included width fluctuation corrections, direct reaction contributions, and preequilibrium corrections above 6 MeV. Neutron optical model potentials were determined for zinc. The theoretical values agree with the new 14.8 MeV measurements approximately within experimental error, with calculations of 201 millibarns for the (n,2n) cross section and 170 millibarns for the (n,p) cross section. Results from the analysis will be made available in National Evaluated Nuclear Data Format (ENDF/B) for fusion energy applications. 50 refs., 34 figs., 10 tabs

  14. Neutron induced fission of U isotopes up to 100 MeV

    International Nuclear Information System (INIS)

    Lestone, J.P.; Gavron, A.

    1993-01-01

    We have developed a statistical model description of the neutron induced fission of U isotopes using densities of intrinsic states and spin cut off parameters obtained directly from appropriate Nilsson model single particle levels. The first chance fission cross sections are well reproduced when the rotational contributions to the nuclear level densities are taken into account. In order to fit the U(n,f) cross sections above the threshold of second chance fission, we need to: (1) assume that the triaxial level density enhancement is washed out at an excitation energy of ∼7 MeV above the triaxial barriers with a width of ∼1 MeV, implying a γ deformation for the first barriers of 10 degree < γ < 20 degree; and (2) include pre-equilibrium particle emission in the calculations. Above an incoming neutron kinetic energy of ∼17 MeV our statistical model U(n,f) cross sections increasingly overestimate the experimental data when so called ''good'' optical model potentials are used to calculate the compound nucleus formation cross sections. This is not surprising since at these high energies little data exists on the scattering of neutrons to help guide the choice of optical model parameters. A satisfactory reproduction of all the available U(n,f) cross sections above 17 MeV is obtained by a simple scaling of our calculated compound nucleus formation cross sections. This scaling factor falls from 1.0 at 17 MeV to 0.82 at 100 MeV

  15. Development of a Nuclear Reaction Database on Silicon for Simulation of Neutron-Induced Single-Event Upsets in Microelectronics and its Application

    International Nuclear Information System (INIS)

    Watanabe, Yukinobu; Kodama, Akihiro; Tukamoto, Yasuyuki; Nakashima, Hideki

    2005-01-01

    We have developed a cross-section database for neutron-induced reactions on 28Si in the energy range between 2 MeV and 3 GeV in order to analyze single-event upsets (SEUs) phenomena induced by cosmic-ray neutrons in microelectronic devices. A simplified spherical device model is proposed for simulation of the initial processes of SEUs. The model is applied to SEU cross-section calculations for semiconductor memory devices. The calculated results are compared with measured SEU cross sections and the other simulation result. The dependence of SEU cross sections on incident neutron energy and secondary ions having the most important effects on SEUs are discussed

  16. Calculations and Evaluations of Cross Sections for n + 204,206,207,208,natPb Reactions in the En ≤ 250 MeV Energy Range

    International Nuclear Information System (INIS)

    Han Yinlu; Shen Qingbiao; Zhang Zhengjun; Cai Chonghai

    2005-01-01

    The quality and reliability of the computational simulation of a macroscopic nuclear device are directly related to the quality of the underlying basic nuclear data. To meet these needs, according to advanced nuclear models that account for details of nuclear structure and the quantum nature of nuclear reaction and the experimental data of total, nonelastic, and elastic scattering cross sections, and elastic scattering angular distributions of Pb and its isotopes, all cross sections of neutron-induced reaction, angular distributions, energy spectra, especially the double-differential cross sections for neutron, proton, deuteron, triton, helium, and alpha emissions are calculated and analyzed for n + 204,206,207,208,nat Pb at incident neutron energies below 20 MeV by using the UNF nuclear model code. At neutron incident energies 20 n ≤ 250 MeV, MEND codes are used. Theoretical calculations are compared with existing experimental data and other evaluated data from ENDF/B-VI and JENDL-3

  17. Fission Cross-section Measurements of (233)U, (245)Cm and (241,243)Am at CERN n_TOF Facility

    CERN Document Server

    Calviani, M; Andriamonje, S; Chiaveri, E; Vlachoudis, V; Colonna, N; Meaze, M H; Marrone, S; Tagliente, G; Terlizzi, R; Belloni, F; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C; Aerts, G; Berthoumieux, E; Dridi, W; Gunsing, F; Pancin, J; Perrot, L; Plukis, A; Alvarez, H; Duran, I; Paradela, C; Alvarez-Velarde, F; Cano-Ott, D; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Villamarin, D; Vicente, M C; Andrzejewski, J; Marganiec, J; Assimakopoulos, P; Karadimos, D; Karamanis, D; Papachristodoulou, C; Patronis, N; Audouin, L; David, S; Ferrant, L; Isaev, S; Stephan, C; Tassan-Got, L; Badurek, G; Jericha, E; Leeb, H; Oberhummer, H; Pigni, M T; Baumann, P; Kerveno, M; Lukic, S; Rudolf, G; Becvar, F; Krticka, M; Calvino, F; Capote, R; Carrillo De Albornoz, A; Marques, L; Salgado, J; Tavora, L; Vaz, P; Cennini, P; Dahlfors, M; Ferrari, A; Gramegna, F; Herrera-Martinez, A; Kadi, Y; Mastinu, P; Praena, J; Sarchiapone, L; Wendler, H; Chepel, V; Ferreira-Marques, R; Goncalves, I; Lindote, A; Lopes, I; Neves, F; Cortes, G; Poch, A; Pretel, C; Couture, A; Cox, J; O'brien, S; Wiescher, M; Dillman, I; Heil, M; Kappeler, F; Mosconi, M; Plag, R; Voss, F; Walter, S; Wisshak, K; Dolfini, R; Rubbia, C; Domingo-Pardo, C; Tain, J L; Eleftheriadis, C; Savvidis, I; Frais-Koelbl, H; Griesmayer, E; Furman, W; Konovalov, V; Goverdovski, A; Ketlerov, V; Haas, B; Haight, R; Reifarth, R; Igashira, M; Koehler, P; Kossionides, E; Lampoudis, C; Lozano, M; Quesada, J; Massimi, C; Vannini, G; Mengoni, A; Oshima, M; Papadopoulos, C; Vlastou, R; Pavlik, A; Pavlopoulos, P; Plompen, A; Rullhusen, P; Rauscher, T; Rosetti, M; Ventura, A

    2011-01-01

    Neutron-induced fission cross-sections of minor actinides have been measured using the n_TOF white neutron source at CERN, Geneva, as part of a large experimental program aiming at collecting new data relevant for nuclear astrophysics and for the design of advanced reactor systems. The measurements at n_TOF take advantage of the innovative features of the n_TOF facility, namely the wide energy range, high instantaneous neutron flux and good energy resolution. Final results on the fission cross-section of 233U, 245Cm and 243Am from thermal to 20 MeV are here reported, together with preliminary results for 241Am. The measurement have been performed with a dedicated Fast Ionization Chamber (FIC), a fission fragment detector with a very high efficiency, relative to the very well known cross-section of 235U, measured simultaneously with the same detector.

  18. European Collaboration for High-Resolution Measurements of Neutron Cross Sections between 1 MeV and 250 MeV

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Yuasa nakagawa, K; Koehler, P E; Quaranta, A

    2002-01-01

    The experimental determination of neutron cross section data has always been of primary importance in Nuclear Physics. Many of the salient features of nuclear levels and densities can be determined from the resonant structure of such cross sections and of their decay scheme. An associated importance of precise neutron induced reaction cross sections has resulted from the worldwide interest in Accelerator Driven Systems (ADS) that has emerged at CERN and elsewhere. Many applications, such as accelerator-based transmutation of nuclear waste, energy amplification medical research, astrophysical applications and also fusion research require nuclear data that quantitatively and qualitatively go beyond the presently available traditional evaluation.\\\\ \\\\We consider a spallation driven TOF facility at the CERN-PS with an unprecedented neutron flux (1000 times the existing ones) in the broad energy range between 1 eV and 250 MeV and with very high energy resolution. The present concept for an intense neutron source m...

  19. Mechanized evaluation of neutron cross-sections

    International Nuclear Information System (INIS)

    Horsley, A.; Parker, J.B.

    1967-01-01

    The evaluation work to provide accurate and consistent neutron cross-section data for multigroup neutronics calculations is not fully exploiting the available theoretical and experimental results; this has been so particularly since the introduction of on-line data handling techniques enabled experimenters to turn out vast quantities of numbers. This situation can be radically improved only by mechanizing the evaluation processes. Systems such as the SC1SRS tape will not only largely overcome the task of collecting data but will provide speedy access to it; by using computers and graph-plotting machines to tabulate and display this data, the labour of evaluation can be very greatly reduced. With some types of cross-section there is hope that by using modern curve-fitting techniques the actual evaluation and statistical accounting of the data can be performed automatically. Some areas where automatic evaluation would seem likely to succeed are specified and a discussion of the mathematical difficulties incurred, such as the elimination of anomalous data, is given. Particularly promising is the use of splines in the mechanized evaluation of data. Splines are the mathematical analogues of the draughtsman's spline used in drawing smooth curves. Their principal properties are the excellent approximations they give to the derivatives of a function; in contrast to conventional polynomial fitting, this feature ensures good interpolation and, when required, stable extrapolation. Various methods of using splines in data graduation and the problem of marrying these methods to standard statistical procedures are examined. The results of work done at AWRE with cubic splines on the mechanized evaluation of neutron scattering total cross-section and angular distribution data are presented. (author)

  20. Neutron induced permanent damage in Josephson junctions

    International Nuclear Information System (INIS)

    Mueller, G.P.; Rosen, M.

    1982-01-01

    14 MeV neutron induced permanent changes in the critical current density of Josephson junctions due to displacement damage in the junction barrier are estimated using a worst case model and the binary collision simulation code MARLOWE. No likelihood of single event hard upsets is found in this model. It is estimated that a fluence of 10 18 -10 19 neutrons/cm 2 are required to change the critical current density by 5%

  1. LEP vacuum chamber, cross-section

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.

  2. How to extract cross sections from TDHF

    International Nuclear Information System (INIS)

    Le Tourneux, Jean

    1979-01-01

    In spite of all the recent progress in solving numerically TDHF (Time Dependent Hartree-Fock) equations for heavy-ion collisions, this method is still far from lending itself readily to the computation of cross sections, except in the case of fusion. The theory presented here is purely formal so far and would lead to fairly heavy calculations in practice. It solves the problem of channel identification in the outgoing asymptotic region of TDHF solutions. It throws a bridge between TDHF and more traditional theories of nuclear reactions, which are time-independent

  3. Hyperon magnetic moments and total cross sections

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1982-06-01

    The new data on both total cross sections and magnetic moments are simply described by beginning with the additive quark model in an SU(3) limit where all quarks behave like strange quarks and breaking both additivity and SU(3) simultaneously with an additional non-additive mechanism which affects only nonstrange quark contributions. The suggestion that strange quarks behave more simply than nonstrange may provide clues to underlying structure or dynamics. Small discrepancies in the moments are analyzed and shown to provide serious difficulties for most models if they are statistically significant. (author)

  4. Neutron capture cross section of $^{93}$Zr

    CERN Document Server

    We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.

  5. Charge changing cross sections of relativistic uranium

    International Nuclear Information System (INIS)

    Gould, H.; Greiner, D.; Lindstrom, P.; Symons, T.J.M.; Crawford, H.; Thieberger, P.; Wegner, H.

    1984-11-01

    We report equilibrium charge state distributions of uranium at energies of 962 MeV/nucleon, 437 MeV/nucleon and 200 MeV/nucleon in low Z and high Z targets and the cross sections for U 92+ reversible U 91+ and U 91+ reversible U 90+ at 962 MeV/nucleon and 437 MeV/nucleon. Equilibrium thickness Cu targets produce approx. = 5% bare U 92+ at 200 MeV/nucleon and 85% U 92+ at 962 MeV/nucleon. 7 references, 5 figures

  6. Charge changing cross sections of relativistic uranium

    Energy Technology Data Exchange (ETDEWEB)

    Gould, H; Greiner, D; Lindstrom, P; Symons, T J.M.; Crawford, H; Thieberger, P; Wegner, H

    1985-05-15

    We report equilibrium charge state distributions of uranium at energies of 962 MeV/nucleon, 437 MeV/nucleon and 200 MeV/nucleon in low Z and high Z targets and the cross sections for U/sup 92 +/reversibleU/sup 91 +/ and U/sup 91 +/reversibleU/sup 90 +/ at 962 MeV/nucleon and 437 MeV/nucleon. Equilibrium thickness Cu targets produce approx.=5% bare U/sup 92 +/ at 200 MeV/nucleon and 85% U/sup 92 +/ at 962 MeV/nucleon.

  7. Measurement of thermal neutron capture cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong; Han Xiaogang; Yu Weixiang; Lu Hanlin; Zhao Wenrong

    2001-01-01

    The thermal neutron capture cross sections of 71 Ga(n, γ) 72 Ga, 94 Zr(n, γ) 95 Zr and 191 Ir(n, γ) 192 Ir m1+g,m2 reactions were measured by using activation method and compared with other measured data. Meanwhile the half-life of 72 Ga was also measured. The samples were irradiated with the neutron in the thermal column of heavy water reactor of China Institute of Atomic Energy. The activities of the reaction products were measured by well-calibrated Ge(Li) detector

  8. Empirical continuation of the differential cross section

    International Nuclear Information System (INIS)

    Borbely, I.

    1978-12-01

    The theoretical basis as well as the practical methods of empirical continuation of the differential cross section into the nonphysical region of the cos theta variable are discussed. The equivalence of the different methods is proved. A physical applicability condition is given and the published applications are reviewed. In many cases the correctly applied procedure turns out to provide nonsignificant or even incorrect structure information which points to the necessity for careful and statistically complete analysis of the experimental data with a physical understanding of the analysed process. (author)

  9. L-shell photoelectric cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Arora, S K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1981-05-14

    L-shell photoelectric cross sections in Ta, W, Au, Pb, Th and U at 59.5 keV have been determined using three different versions of Sood's method of measuring the absolute yield of fluorescent x-rays when a target is irradiated with a known flux of photons. The results obtained by all the methods agree with one another showing that no hidden systematic errors are involved in the measurements. The present results are found to compare well with the theoretical calculations of Scofield (Lawrence Livermore Laboratory Report No 51326).

  10. Neutron induced bystander effect among zebrafish embryos

    Science.gov (United States)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  11. Uncertainties and correlations for the 56Fe damage cross sections and spectra averaged quantities based on TENDL-TMC

    International Nuclear Information System (INIS)

    Simakov, S.P.; Konobeyev, A.Yu.; Koning, A.

    2016-01-01

    The goal of this work is a calculation of the covariance matrices for the physical quantities used to characterize the neutron induced radiation damage in the materials. Such quantities usually encompass: the charged particles kinetic energy deposition KERMA (locally deposited nuclear heating), damage energy (to calculate then the number of displaced atoms) and gas production cross sections [(n,xα), (n,xt), (n,xp) … to calculate then transmuting of target nuclei to gases]. The uncertainties and energy-energy or reaction-reaction correlations for such quantities were not assessed so far, whereas the covariances for many underlying cross sections are often presented in the evaluated data libraries. Due to the dependence of damage quantities on many reactions channels, on both total and differential cross sections, and in particular on the energy distribution of reaction recoils, the evaluation of uncertainty is not straightforward. To reach a goal, we used the method based on idea of Total Monte Carlo application to the Nuclear Data. This report summarises the current results for evaluation, validation and representation in the ENDF-6 format of the radiation damage covariances for n + 56 Fe from thermal energy up to 20 MeV. This study was motivated by the IAEA Coordinated Research Project ''Primary Radiation Damage Cross Sections'' and by present dedicated Technical Meeting “Nuclear Reaction Data and Uncertainties for Radiation Damage”

  12. Neutron capture cross-section measurements for 238U between 0.4 and 1.4 MeV

    Science.gov (United States)

    Krishichayan, Fnu; Finch, S. W.; Howell, C. R.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Neutron-induced radiative-capture cross-section data of 238U are crucial for fundamental nuclear physics as well as for Stewardship Science, for advanced-fuel-cycle calculations, and for nuclear astrophysics. Based on different techniques, there are a large number of 238U(n, γ) 239U cross-section data available in the literature. However, there is a lack of systematic and consistent measurements in the 0.1 to 3.0 MeV energy range. The goal of the neutron-capture project at TUNL is to provide accurate 238U(n, γ) 239U cross-section data in this energy range. The 238U samples, sandwiched between gold foils of the same size, were irradiated for 8-14 hours with monoenergetic neutrons. To avoid any contribution from thermal neutrons, the 238U and 197Au targets were placed inside of a thin-walled pill-box made of 238U. Finally, the whole pill-box was wrapped in a gold foil as well. After irradiation, the samples were gamma-counted at the TUNL's low-background counting facility using high-efficient HPGe detectors. The 197Au monitor foils were used to calculate the neutron flux. The experimental technique and 238U(n, γ) 239U cross-section results at 6 energies will be discussed during the meeting.

  13. Development of Indian cross section data files for Th-232 and U-233 and integral validation studies

    International Nuclear Information System (INIS)

    Ganesan, S.

    1988-01-01

    This paper presents an overview of the tasks performed towards the development of Indian cross section data files for Th-232 and U-233. Discrepancies in various neutron induced reaction cross sections in various available evaluated data files have been obtained by processing the basic data into multigroup form and intercomparison of the latter. Interesting results of integral validation studies for capture, fission and (n,2n) cross sections for Th-232 by analyses of selected integral measurements are presented. In the resonance range, energy regions where significant differences in the calculated self-shielding factors for Th-232 occur have been identified by a comparison of self-shielded multigroup cross sections derived from two recent evaluated data files, viz., ENDF/B-V (Rev.2) and JENDL-2, for several dilutions and temperatures. For U-233, the three different basic data files ENDF/B-IV, JENDL-2 and ENDL-84 were intercompared. Interesting observations on the predictional capability of these files for the criticality of the spherical metal U-233 system are given. The current status of Indian data file is presented. (author) 62 ref

  14. Atlas of photoneutron cross sections obtained with monoenergetic photons

    International Nuclear Information System (INIS)

    Dietrich, S.S.; Berman, B.L.

    1988-01-01

    Photoneutron cross-section and integrated cross-section data obtained with monoenergetic photons are presented in a uniform format. All of the measured partial photoneutron cross sections, the total photoneutron cross section, and the photoneutron yield cross section are plotted as functions of the incident photon energy, as are the integrated photoneutron cross sections and their first and second moments. The values of the integrated cross sections and the moments of the integrated total cross section up to the highest photon energy for which they were measured are tabulated, as are the parameters of Lorentz curves fitted to the total photoneutron cross-section data for medium and heavy nuclei (A>50). This compilation is current as of June 1987. copyright 1988 Academic Press, Inc

  15. ZZ SNLRML, Dosimetry Cross-Section Recommendations

    International Nuclear Information System (INIS)

    1996-01-01

    Description of program or function: Format: SAND-II; Number of groups: 640 group SAND-II group structure. Nuclides: Cd, B, Au, S, Ni, Li, F, Na, Mg, Al, Si, P, Sc, Ti, Mn, Fe, Co, Cu, Zn, Zr, Nb, Mo, Rh, Ag, In, I, Th, U, Np, Pu, Am. Origin: ENDF/B-VI, ENDF/B-V, IRDF-90, JENDL-3, JEF 2.2 and GLUCS data with special modifications from private communications. Weighting spectrum: flat. SNLRML is a reactor dosimetry library that draws upon all available evaluated cross section libraries and selects the best evaluation for application to research reactor spectrum determinations. Many of the components of the SNLRML come from the ENDF/B-VI and IRDF-90 (DLC-0161) libraries. The library format was selected for easy interface with spectrum determination codes such as SAND-II (CCC-0112 and LSL-M2 (PSR-233) and the new PSR-0345/SNL/SAND-II has been enhanced to interface with SNLRML. The data is recommended for spectrum determination applications and for the prediction of neutron activation of typical radiation sensor materials. The library has been tested for consistency of the cross section in wide variety of neutron environments. The results and cautions from this testing have been documented. The data has been interfaced with radiation transport codes, such as TWODANT-SYS (CCC-0547) and MCNP (CCC-0200), in order to compare calculated and measured activities for benchmark reactor experiments

  16. Pion production cross sections and associated parameters

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1985-01-01

    Negative pions have been used for radiotherapy at the meson factories LAMPF (USA), SIN (Switzerland), and TRIUMF (Canada) and have been planned for use at new meson facilities under construction (USSR) and at proposed dedicated medical facilities. Providing therapeutically useful dose rates of pions requires a knowledge of the pion production cross sections as a function of primary proton energy (500 to 1000 MeV), pion energy (less than or equal to100 MeV), production angle, and target material. The current status of the data base in this area is presented including theoretical guidelines for extrapolation purposes. The target material and geometry, as well as the proton and pion beam parameters, will affect the electron (and muon) contamination in the beam which may have an important effect on both the LET characteristics of the dose and the dose distribution. In addition to cross-section data, channel characteristics such as length of pion trajectory, solid-angle acceptance, and momentum analysis will affect dose rate, distribution, and quality. Such considerations are briefly addressed in terms of existing facilities and proposed systems. 16 refs., 6 figs

  17. Graphical representation of transmutation and decay chain data, transmutation cross section and delayed gamma ray emission data

    International Nuclear Information System (INIS)

    Seki, Yasushi; Iida, Hiromasa; Kawasaki, Hiromitsu.

    1982-09-01

    In a D-T burning fusion reactor, the neutron induced activity severely limits personnel access to the reactor. Accurate evaluation of the induced activity and dose rate is necessary to conduct effective biological shield design. In order to evaluate the dose rate accurately, considerable amount of activation data is required. This report gives graphical representation of transmutation and decay chain data, transmutation cross section data and delayed gamma ray emission data for 116 nuclides of interest in terms of fusion reactor design. This graphical representation was made with hope of producing a reference for examining activation problems. It has already been shown to be effective in correcting inappropriate data. A computer code AMOEBA developed for the checking and plotting of the activation data is also described in this report. (author)

  18. Measurement of the D(n,2n)p reaction cross section up to 30 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.; Arnal, N. [CEA Bruyeres-le-Chatel (DPTA/SPN), 91 (France). Dept. de Physique Theorique et Appliquee; Dore, D. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee (DAPNIA/SPhN), 91- Gif sur Yvette (France)

    2008-07-01

    This article presents a running experimental program to measure the neutron-induced deuteron break-up reaction between 5 and 10 MeV, and between 20 and 30 MeV. The measurements are performed with a C{sub 6}D{sub 6} detector as deuteron target placed in a beam line of the Tandem 7 MV accelerator in Cea facilities, dedicated to the use of a 4{pi} neutron detector which allows us to measure the two emitted neutrons. The total uncertainty is evaluated from 8.5 to 11 per cent. This experimental work is done in parallel with an ab-initio calculation of the reaction which is sum up in the text. Comparisons to the measured cross section are done together with CENDL2 and Endf/B-VII evaluations. (authors)

  19. Measurement of the D(n,2n)p reaction cross section up to 30 MeV

    International Nuclear Information System (INIS)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.; Arnal, N.

    2008-01-01

    This article presents a running experimental program to measure the neutron-induced deuteron break-up reaction between 5 and 10 MeV, and between 20 and 30 MeV. The measurements are performed with a C 6 D 6 detector as deuteron target placed in a beam line of the Tandem 7 MV accelerator in Cea facilities, dedicated to the use of a 4π neutron detector which allows us to measure the two emitted neutrons. The total uncertainty is evaluated from 8.5 to 11 per cent. This experimental work is done in parallel with an ab-initio calculation of the reaction which is sum up in the text. Comparisons to the measured cross section are done together with CENDL2 and Endf/B-VII evaluations. (authors)

  20. Differences between LASL- and ANL-processed cross sections

    International Nuclear Information System (INIS)

    Kidman, R.B.; MacFarlane, R.E.; Becker, M.

    1978-03-01

    As part of the Los Alamos Scientific Laboratory (LASL) cross-section processing development, LASL cross sections and results from MINX/1DX system are compared to the Argonne National Laboratory cross sections and results from the ETOE-2/MC 2 -2 system for a simple reactor problem. Exact perturbation theory is used to establish the eigenvalue effect of every isotope group cross-section difference. Cross sections, cross-section differences, and their eigenvalue effects are clearly and conveniently displayed and compared on a group-by-group basis

  1. Cross section homogenization analysis for a simplified Candu reactor

    International Nuclear Information System (INIS)

    Pounders, Justin; Rahnema, Farzad; Mosher, Scott; Serghiuta, Dumitru; Turinsky, Paul; Sarsour, Hisham

    2008-01-01

    The effect of using zero current (infinite medium) boundary conditions to generate bundle homogenized cross sections for a stylized half-core Candu reactor problem is examined. Homogenized cross section from infinite medium lattice calculations are compared with cross sections homogenized using the exact flux from the reference core environment. The impact of these cross section differences is quantified by generating nodal diffusion theory solutions with both sets of cross sections. It is shown that the infinite medium spatial approximation is not negligible, and that ignoring the impact of the heterogeneous core environment on cross section homogenization leads to increased errors, particularly near control elements and the core periphery. (authors)

  2. Measurements of fission cross-sections and of neutron production rates; Mesures de sections efficaces de fission et du nombre de neutrons prompts emis par fission

    Energy Technology Data Exchange (ETDEWEB)

    Billaud, P; Clair, C; Gaudin, M; Genin, R; Joly, R; Leroy, J L; Michaudon, A; Ouvry, J; Signarbieux, C; Vendryes, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin {sup 10}B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of {sup 235}U. We intend to measure the variation of the neutron induced fission cross section of {sup 235}U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of {sup 235}U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF{sub 3} proportional counters. c) Mean number {nu} of neutrons emitted in neutron induced fission. We measured the value of {nu} for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) {alpha} reaction by means of a 300 kV Cockcroft Walton generator. (author)Fren. [French] a) Mesures de sectionficaces de fission a basse energie. Nous avons mesure et analyse la variation de la section efficace de fission de divers isotopes fissiles pour des neutrons d'energie inferieure a 0,025 eV. Le monochromateur est constitue par un spectrometre a cristal auquel est associe un selecteur mecanique destine a eliminer les diffractions de Bragg d'ordre superieur au premier. Le materiau fissile est contenu dans une chambre a fission sous forme de depots realises par peinture; une chambre d'ionisation a depots minces de B{sub 10

  3. K sup + nucleus total cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sawafta, R.

    1990-01-01

    The scattering of K{sup +} mesons from nuclei has attracted considerable interest in the last few years. The K{sup +} holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K{sup +} is capable of probing the entire volume of the nucleus. Single scattering of the K{sup +} with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K{sup +} is used to compare the nucleon in the nucleus with a free nucleon.

  4. Differential cross section of atomic hydrogen photoionization

    International Nuclear Information System (INIS)

    Kondratovich, V.D.; Ostrovskij, V.N.

    1986-01-01

    Differential cross-section of atomic hydrogen photoeffect in external electric field was investigated in semiclassical approximation. Interference was described. It occurred due to the fact that infinite number of photoelectron trajectories leads to any point of classically accessible motion region. Interference picture can reach macroscopic sizes. The picture is determined by location of function nodes, describing finite electron motion along one of parabolic coordinates. The squares of external picture rings are determined only by electric field intensity in the general case at rather high energies. Quantum expression for photocurrent density was obtained using Green function in superposition of Coulomb and uniform field as well as semiclassical approximation. Possible applications of macroscopic interference picture to specification of atom ionization potentials, selective detection of atoms or particular molecules, as well as weak magnetic field and observation of Aaronov-Bom effect are discussed

  5. Angle-averaged Compton cross sections

    International Nuclear Information System (INIS)

    Nickel, G.H.

    1983-01-01

    The scattering of a photon by an individual free electron is characterized by six quantities: α = initial photon energy in units of m 0 c 2 ; α/sub s/ = scattered photon energy in units of m 0 c 2 ; β = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV

  6. Plasma-based radar cross section reduction

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...

  7. ISSUES IN NEUTRON CROSS SECTION COVARIANCES

    Energy Technology Data Exchange (ETDEWEB)

    Mattoon, C.M.; Oblozinsky,P.

    2010-04-30

    We review neutron cross section covariances in both the resonance and fast neutron regions with the goal to identify existing issues in evaluation methods and their impact on covariances. We also outline ideas for suitable covariance quality assurance procedures.We show that the topic of covariance data remains controversial, the evaluation methodologies are not fully established and covariances produced by different approaches have unacceptable spread. The main controversy is in very low uncertainties generated by rigorous evaluation methods and much larger uncertainties based on simple estimates from experimental data. Since the evaluators tend to trust the former, while the users tend to trust the latter, this controversy has considerable practical implications. Dedicated effort is needed to arrive at covariance evaluation methods that would resolve this issue and produce results accepted internationally both by evaluators and users.

  8. Partial cross sections in H- photodetachment

    International Nuclear Information System (INIS)

    Halka, M.

    1993-04-01

    This dissertation reports experimental measurements of partial decay cross sections in the H - photodetachment spectrum. Observed decays of the 1 P 0 H -** (n) doubly-excitedresonances to the H(N=2) continuum are reported for n=2,3, and 4 from 1990 runs in which the author participated. A recent analysis of 1989 data revealing effects of static electric fields on the partial decay spectrum above 13.5 eV is also presented. The experiments were performed at the High Resolution Atomic Beam Facility. the Los Alamos Meson Physics Facility, with a relativistic H - beam (β=0.842)intersecting a ND:YAG laser. Variation of the intersection angle amounts to Doppler-shifting the photon energy, allowing continuous tuning of the laser energy as viewed from the moving ions' frame

  9. Angle-averaged Compton cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, G.H.

    1983-01-01

    The scattering of a photon by an individual free electron is characterized by six quantities: ..cap alpha.. = initial photon energy in units of m/sub 0/c/sup 2/; ..cap alpha../sub s/ = scattered photon energy in units of m/sub 0/c/sup 2/; ..beta.. = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV.

  10. Sudakov resummation of multiparton QCD cross sections

    CERN Document Server

    Bonciani, R; Mangano, Michelangelo L; Nason, P

    2003-01-01

    We present the general expressions for the resummation, up to next-to-leading logarithmic accuracy, of Sudakov-type logarithms in processes with an arbirtrary number of hard-scattering partons. These results document the formulae used by the authors in several previous phenomenological studies. The resummation formulae presented here, which are valid for phase-space factorizable observables, determine the resummation correction in a process-independent fashion. All process dependence is encoded in the colour and flavour structure of the leading order and virtual one-loop amplitudes, and in Sudakov weights associated to the cross section kinematics. We explicitly illustrate the application to the case of Drell--Yan and prompt-photon production.

  11. Sudakov resummation of multiparton QCD cross sections

    International Nuclear Information System (INIS)

    Bonciani, Roberto; Catani, Stefano; Mangano, Michelangelo L.; Nason, Paolo

    2003-01-01

    We present the general expressions for the resummation, up to next-to-leading logarithmic accuracy, of Sudakov-type logarithms in processes with an arbitrary number of hard-scattering partons. These results document the formulae used by the authors in several previous phenomenological studies. The resummation formulae presented here, which are valid for phase-space factorizable observables, determine the resummation correction in a process-independent fashion. All process dependence is encoded in the colour and flavour structure of the leading order and virtual one-loop amplitudes, and in Sudakov weights associated to the cross section kinematics. We explicitly illustrate the application to the case of Drell-Yan and prompt-photon production

  12. Electroweak Boson Cross-Section Measurements

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    This report summarises the ATLAS prospects for the measurement of W and Z pro- duction cross-section at the LHC. The electron and muon decay channels are considered. Focusing on the early data taking phase, strategies are presented that allow a fast and robust extraction of the signals. An overall uncertainty of about 5% can be achieved with 50 pb−1 in the W channels, where the background uncertainty dominates (the luminosity measurement uncertainty is not discussed here). In the Z channels, the expected preci- sion is 3%, the main contribution coming from the lepton selection efficiency uncertainty. Extrapolating to 1 fb−1 , the uncertainties shrink to incompressible values of 1-2%, de- pending on the final state. This irreducible uncertainty is essentially driven by strong interaction effects, notably parton distribution uncertainties and non-perturbative effects, affecting the W and Z rapidity and transverse momentum distributions. These effects can be constrained by measuring these distributions. Al...

  13. Reaction cross section for Ne isotopes

    International Nuclear Information System (INIS)

    Panda, R.N.; Sahu, B.K.; Patra, S.K.

    2012-01-01

    In the present contribution, first the bulk properties are calculated, such as binding energy (BE), root mean square charge radius r ch , matter radius r m and quadrupole deformation parameter β 2 for 18-32 Ne isotopes in the Relativistic mean field (RMF) and effective field theory motivated RMF (E-RMF) formalisms . Then the total nuclear reaction cross section σR is analyzes for the scattering of 20 Ne and 28-32 Ne from a 12 C target at 240 MeV/nucleon by using the RMF model. Thus the objective of the present study is to calculate the bulk properties as well as a systematic analysis of σR over a range of neutron rich nuclei in the frame work of Glauber model

  14. Topological supersymmetric structure of hadron cross sections

    International Nuclear Information System (INIS)

    Gauron, P.; Nicolescu, B.; Ouvry, S.

    1980-12-01

    Recently a way of fully implementing unitarity in the framework of a Dual Topological Unitarization theory, including not only mesons but also baryons, was found. This theory consists in the topological description of hadron interactions involving confined quarks in terms of two 2-dimensional surfaces (a closed 'quantum' surface and a bounded 'classical' surface). We show that this description directly leads, at the zeroth order of the topological expansion, to certain relations between hadron cross-sections, in nice agreement with experimental data. A new topological suppression mechanism is shown to play an important dynamical role. We also point out a new topological supersymmetry property, which leads to realistic experimental consequences. A possible topological origin of the rho and ω universality relations emerges as a by-product of our study

  15. Neutron scattering cross sections of uranium-238

    International Nuclear Information System (INIS)

    Beghian, L.E.; Kegel, G.H.R.; Marcella, T.V.; Barnes, B.K.; Couchell, G.P.; Egan, J.J.; Mittler, A.; Pullen, D.J.; Schier, W.A.

    1979-01-01

    The University of Lowell high-resolution time-of-flight spectrometer was used to measure angular distributions and 90-deg excitation functions for neutrons scattered from 238 U in the energy range from 0.9 to 3.1 MeV. This study was limited to the elastic and the first two inelastic groups, corresponding to states of 238 U at 45 keV (2 + ) and 148 keV (4 + ). Angular distributions were measured at primary neutron energies of 1.1, 1.9, 2.5, and 3.1 MeV for the same three neutron groups. Whereas the elastic data are in fair agreement with the evaluation in the ENDF/B-IV file, there is substantial disagreement between the inelastic measurements and the evaluated cross sections. 12 figures

  16. Fission cross-section normalization problems

    International Nuclear Information System (INIS)

    Wagemans, C.; Ghent Rijksuniversiteit; Deruytter, A.J.

    1983-01-01

    The present measurements yield σsub(f)-data in the neutron energy from 20 MeV to 30 keV directly normalized in the thermal region. In the keV-region these data are consistent with the absolute σsub(f)-measurements of Szabo and Marquette. For the secondary normalization integral I 2 values have been obtained in agreement with those of Gwin et al. and Czirr et al. which were also directly normalized in the thermal region. For the I 1 integral, however, puzzling low values have been obtained. This was also the case for σsub(f)-bar in neutron energy intervals containing strong resonances. Three additional measurements are planned to further investigate these observations: (i) maintaining the actual approx.2π-geometry but using a 10 B-foil for the neutron flux detection (ii) using a low detection geometry with a 10 B- as well as a 6 Li-flux monitor. Only after these measurements definite conclusions on the I 1 and I 2 integrals can be formulated and final σsub(f)-bar-values can be released. The present study also gives some evidence for a correlation between the integral I 2 and the neutron flux monitor used. The influence of a normalization via I 1 or I 2 on the final cross-section has been shown. The magnitude of possible normalization errors is illustrated. Finally, since 235 U is expected to be an ''easy'' nucleus (low α-activity high σsub(f)-values), there are some indications that the important discrepancies still present in 235 U(n,f) cross-section measurements might partially be due to errors in the neutron flux determination

  17. Electron capture cross sections by O+ from atomic He

    International Nuclear Information System (INIS)

    Joseph, Dwayne C; Saha, Bidhan C

    2009-01-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  18. Electron capture cross sections by O+ from atomic He

    Science.gov (United States)

    Joseph, Dwayne C.; Saha, Bidhan C.

    2009-11-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  19. Single-level resonance parameters fit nuclear cross-sections

    Science.gov (United States)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  20. Total and ionization cross sections of electron scattering by fluorocarbons

    International Nuclear Information System (INIS)

    Antony, B K; Joshipura, K N; Mason, N J

    2005-01-01

    Electron impact total cross sections (50-2000 eV) and total ionization cross sections (threshold to 2000 eV) are calculated for typical plasma etching molecules CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 and CF 3 I and the CF x (x 1-3) radicals. The total elastic and inelastic cross sections are determined in the spherical complex potential formalism. The sum of the two gives the total cross section and the total inelastic cross section is used to calculate the total ionization cross sections. The present total and ionization cross sections are found to be consistent with other theories and experimental measurements, where they exist. Our total cross section results for CF x (x = 1-3) radicals presented here are first estimates on these species

  1. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-01-01

    -known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform

  2. Systematics of neutron-induced fission yields

    International Nuclear Information System (INIS)

    Blachot, J.; Brissot, R.

    1983-10-01

    The main characteristics of the mass and charge distributions for thermal neutron induced fission of actinides are reviewed. We show that these distributions can be reasonably reproduced with only 24 data as input. We use a representation where the element yields together with the most probable mass Ap(Z) play the dominant role. The ability of this model to calculate mass yields for the fission of not yet measured actinides is also shown. The influence of the excitation energy of the fissile system on charge and mass distribution is also discussed

  3. Photoionization cross section of atomic and molecular oxygen

    International Nuclear Information System (INIS)

    Pareek, P.N.

    1983-01-01

    Photoionization cross sections of atomic oxygen and dissociative photoionization cross sections of molecular oxygen were measured from their respective thresholds to 120 angstrom by use of a photoionization mass spectrometer in conjunction with a spark light source. The photoionization cross sections O 2 + parent ion and O + fragment ion from neutral O 2 were obtained by a technique that eliminated the serious problem of identifying the true abundances of O + ions. These ions are generally formed with considerable kinetic energy and, because most mass spectrometers discriminate against energetic ions, true O + abundances are difficult to obtain. In the present work the relative cross sections for producing O + ions are obtained and normalized against the total cross sections in a spectral region where dissociative ionization is not possible. The fragmentation cross sections for O + were then obtained by subtraction of O 2 + cross sections from the known total photoionization cross sections. The results are compared with the previously published measurements. The absolute photoionization cross section of atomic oxygen sigma 8 /sub +/ was measured at 304 A. The actual number density of oxygen atoms within the ionization region was obtained by measuring the fraction of 0 2 molecules dissociated. This sigma/sub +/ at 304 angstrom was used to convert the relative photoinization cross sections, measured as a function of wavelength using a calibrated photodiode, to absolute cross sections. The results are compared with previous measurements and calculated cross sections. angstrom Rydberg series converging to the OII 4 P state was observed

  4. Multilevel parametrization of fissile nuclei resonance cross sections

    International Nuclear Information System (INIS)

    Lukyanov, A.A.; Kolesov, V.V.; Janeva, N.

    1987-01-01

    Because the resonance interference has an important influence on the resonance structure of neutron cross sections energy dependence at lowest energies, multilevel scheme of the cross section parametrization which take into account the resonance interference is used for the description with the same provisions in the regions of the interferential maximum and minimum of the resonance cross sections of the fissile nuclei

  5. Cross Section Measurements of the 76Ge (n ,n' γ) Reaction

    Science.gov (United States)

    Crider, B. P.; Peters, E. E.; Prados-Estévez, F. M.; Ross, T. J.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.

    2013-10-01

    Neutrinoless double-beta decay (0 νββ) is a topic of great current interest and, as such, is the focus of several experiments and international collaborations. Two of these experiments, Majorana and GERDA, are seeking evidence of 0 νββ in the decay of 76Ge, where the signal would appear as a sharp peak in the energy spectrum at the Q-value of the reaction plus a small amount of recoil energy, or 2039 keV. Due to the high sensitivity of such a measurement, knowledge of background lines is critical. A study of 76Ga β- decay into 76Ge revealed a 2040.70(25)-keV transition from the 3951.70(14)-keV level, which, if populated, could potentially be a background line of concern. In addition to β- decay from 76Ga, a potential population mechanism could be cosmic-ray-induced inelastic neutron scattering. Measurements of the neutron-induced cross section of the 3951.70-keV level have been performed utilizing the 76 Ge (n ,n' γ) reaction at the University of Kentucky at neutron energies ranging from 4.3 to 4.9 MeV. This material is based upon work is supported by the U.S. National Science Foundation under grant no. PHY-0956310.

  6. Review of the research and application of KERMA factor and DPA cross section

    International Nuclear Information System (INIS)

    1991-03-01

    The data for recoil atom spectra, KERMA factor and displacement cross sections from neutron-induced reactions are calling increasing interest for applications to the study of radiation damage, calculation of heat generation in reactor, neutron therapy and biological research. PKA spectra sub-working group was recently established in Japanese Nuclear Data Committee as a part of developing JENDL Special Purpose Data Files. Current status of the data and various features of application of the KERMA-related problems were reviewed and discussed at the first meeting of the sub-working group. Present report is a compilation of the items presented at the meeting, covering a brief review of the existing research and the data, method of calculation, the KERMA factor data in neutron therapy, the deduction of KERMA factor of C-12 from neutron reaction measurement and analysis, the data base for radiation damage, the damage simulation calculation, and the method of storaging the evaluated data in ENDF/B-VI format. (author)

  7. 232Th and 238U neutron emission cross section calculations and analysis of experimental data

    International Nuclear Information System (INIS)

    Tel, E.

    2004-01-01

    In this study, pre-equilibrium neutron-emission spectra produced by (n,xn) reactions on nuclei 2 32Th and 2 38U have been calculated. Angle-integrated cross sections in neutron induced reactions on targets 2 32Th and 2 38U have been calculated at the bombarding energies up to 18 MeV. We have investigated multiple pre-equilibrium matrix element constant from internal transition for 2 32Th (n,xn) neutron emission spectra. In the calculations, the geometry dependent hybrid model and the cascade exciton model including the effects of pre-equilibrium have been used. In addition, we have described how multiple pre-equilibrium emissions can be included in the Feshbach-Kerman-Koonin (FKK) fully quantum-mechanical theory. By analyzing (n,xn) reaction on 232 T h and 2 38U, with the incident energy from 2 Me V to 18 Me V, the importance of multiple pre-equilibrium emission can be seen cleady. All calculated results have been compared with experimental data. The obtained results have been discussed and compared with the available experimental data and found agreement with each other

  8. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1978-01-01

    A comparison of some integral cross section values for several cross section libraries in the SAND-II format is presented. The integral cross section values are calculated with aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross section libraries used have all the SAND-II format. (author)

  9. Precise 238U(n,2n)237U reaction cross-section measurements using the activation facility at TUNL

    Science.gov (United States)

    Krishichayan, Fnu; Bhike, M.; Tornow, W.

    2014-09-01

    Accurate neutron-induced 238U(n,2n)237U reaction data are required for many practical applications, especially in the field of nuclear energy, including advanced heavy water reactors, where 238U is used as the breeding material to regenerate the fissile material 239Pu. Precise (n,2n) cross-section measurements of 238U are underway at TUNL with mono-energetic neutrons in the 8.0 to 14.0 MeV energy range in steps of 0.25 MeV using the activation technique. After activation of the 0.5 inch diameter and 442 mg 238U foil, the activity of the 208 keV characteristic γ-line is tracked for 6 weeks with a high efficient HPGe clover detector to determine the initial activity needed for the cross-section determination. Results of the cross-section measurements, determined relative to 27Al and 197Au neutron activation monitor foils, and the comparison with theoretical models will be presented during the meeting.

  10. Level Densities in the actinide region and indirect n,y cross section measurements using the surrogate method

    Directory of Open Access Journals (Sweden)

    Wiedeking M.

    2012-02-01

    Full Text Available Results from a program of measurements of level densities and gamma ray strength functions in the actinide region are presented. Experiments at the Oslo cyclotron involving the Cactus/Siri detectors and 232Th(d,x and 232Th(3He,x reactions were carried out to help answer the question of which level density model is the most appropriate for actinide nuclei, since it will have an impact on cross section calculations important for reactor physics simulations. A new technique for extracting level densities and gamma ray strength functions from particle-gamma coincidence data is proposed and results from the development of this technique are presented. In addition, simultaneous measurements of compound nuclear gamma decay probabilities have been performed for the key thorium cycle nuclei 233Th, 231Th and 232Pa up to around 1MeV above the neutron binding energy and have enabled extraction of indirect neutron induced capture cross sections for the 232Th, 231Pa and 230Th nuclei using the surrogate reaction method. Since the neutron capture cross section for 232Th is already well known from direct measurements a comparison provides a stringent test of the applicability of the surrogate technique in the actinide region.

  11. Graphs of the cross sections in the recommended Monte Carlo cross-section library at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Soran, P.D.; Seamon, R.E.

    1980-05-01

    Graphs of all neutron cross sections and photon production cross sections on the Recommended Monte Carlo Cross Section (RMCCS) library have been plotted along with local neutron heating numbers. Values for anti ν, the average number of neutrons per fission, are also given

  12. Graphs of the cross sections in the Alternate Monte Carlo Cross Section library at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Seamon, R.E.; Soran, P.D.

    1980-06-01

    Graphs of all neutron cross sections and photon production cross sections on the Alternate Monte Carlo Cross Section (AMCCS) library have been plotted along with local neutron heating numbers. The values of ν-bar, the average number of neutrons per fission, are also plotted for appropriate isotopes

  13. [Fast neutron cross section measurements]: Progress report

    International Nuclear Information System (INIS)

    1988-01-01

    As projected in our previous proposal, the past year on the cross section project at the University of Michigan has been one primarily of construction and assembly of our 14 MeV pulsed Neutron Facility. All the components of the system have now been either purchased or fabricated in our shop facilities and have been assembled in their final configuration. We are now in the process of testing the rf components that have been designed to deliver voltage to both the pulser and buncher stages. We expect that the system will be operational by the end of the current contract year. We have also accomplished the design and construction of several other major pieces of equipment that are needed to begin fast neutron time-of-flight measurements. These include the primary proton recoil detector, and a californium fission chamber needed in the efficiency calibration of the primary detector. We have also added considerable concrete shielding designed to lower the neutron background in the experimental area. 10 figs., 5 tabs

  14. Neutron cross section measurements at ORELA

    International Nuclear Information System (INIS)

    Dabbs, J.W.T.

    1979-01-01

    ORELA (Oak Ridge Electron Linear Accelerator) has been for the last decade the most powerful and useful pulsed neutron time-of-flight facility in the world, particularly in the broad midrange of neutron energies (10 eV to 1 MeV). This position will be enhanced with the addition of a pulse narrowing prebuncher, recently installed and now under test. Neutron capture, fission, scattering, and total cross sections are measured by members of the Physics and Engineering Physics Divisions of ORNL, and by numerous guests and visitors. Several fundamental and applied measurements are described, with some emphasis on instrumentation used. The facility comprises the accelerator and its target(s), 10 evacuated neutron flight paths having 18 measurement stations at flight path distances 8.9 to 200 meters, and a complex 4-computer data acquisition system capable of handling some 17,000 32-bit events/s from a total of 12 data input ports. The system provides a total of 2.08 x 10 6 words of data storage on 3 fast disk units. In addition, a dedicated PDP-10 timesharing system with a 250-megabyte disk system and 4 PDP-15 graphic display satellites permits on-site data reduction and analysis. More than 10 man-years of application software development supports the system, which is used directly by individual experiments. 12 figures, 1 table

  15. Resonance capture cross section of 207Pb

    CERN Document Server

    Domingo-Pardo, C.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Bisterzo, S.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2006-01-01

    The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.

  16. Josephson cross-sectional model experiment

    International Nuclear Information System (INIS)

    Ketchen, M.B.; Herrell, D.J.; Anderson, C.J.

    1985-01-01

    This paper describes the electrical design and evaluation of the Josephson cross-sectional model (CSM) experiment. The experiment served as a test vehicle to verify the operation at liquid-helium temperatures of Josephson circuits integrated in a package environment suitable for high-performance digital applications. The CSM consisted of four circuit chips assembled on two cards in a three-dimensional card-on-board package. The chips (package) were fabricated in a 2.5-μm (5-μm) minimum linewidth Pb-alloy technology. A hierarchy of solder and pluggable connectors was used to attach the parts together and to provide electrical interconnections between parts. A data path which simulated a jump control sequence and a cache access in each machine cycle was successfully operated with cycle times down to 3.7 ns. The CSM incorporated the key components of the logic, power, and package of a prototype Josephson signal processor and demonstrated the feasibility of making such a processor with a sub-4-ns cycle time

  17. Female medical leadership: cross sectional study.

    Science.gov (United States)

    Kvaerner, K J; Aasland, O G; Botten, G S

    1999-01-09

    To assess the relation between male and female medical leadership. Cross sectional study on predictive factors for female medical leadership with data on sex, age, specialty, and occupational status of Norwegian physicians. Oslo, Norway. 13 844 non-retired Norwegian physicians. Medical leaders, defined as physicians holding a leading position in hospital medicine, public health, academic medicine, or private health care. 14.6% (95% confidence interval 14.0% to 15.4%) of the men were leaders compared with 5.1% (4.4% to 5.9%) of the women. Adjusted for age men had a higher estimated probability of leadership in all categories of age and job, the highest being in academic medicine with 0.57 (0.42 to 0.72) for men aged over 54 years compared with 0.39 (0.21 to 0.63) for women in the same category. Among female hospital physicians there was a positive relation between the proportion of women in their specialty and the probability of leadership. Women do not reach senior positions as easily as men. Medical specialties with high proportions of women have more female leaders.

  18. New resonance cross section calculational algorithms

    International Nuclear Information System (INIS)

    Mathews, D.R.

    1978-01-01

    Improved resonance cross section calculational algorithms were developed and tested for inclusion in a fast reactor version of the MICROX code. The resonance energy portion of the MICROX code solves the neutron slowing-down equations for a two-region lattice cell on a very detailed energy grid (about 14,500 energies). In the MICROX algorithms, the exact P 0 elastic scattering kernels are replaced by synthetic (approximate) elastic scattering kernels which permit the use of an efficient and numerically stable recursion relation solution of the slowing-down equation. In the work described here, the MICROX algorithms were modified as follows: an additional delta function term was included in the P 0 synthetic scattering kernel. The additional delta function term allows one more moments of the exact elastic scattering kernel to be preserved without much extra computational effort. With the improved synthetic scattering kernel, the flux returns more closely to the exact flux below a resonance than with the original MICROX kernel. The slowing-down calculation was extended to a true B 1 hyperfine energy grid calculatn in each region by using P 1 synthetic scattering kernels and tranport-corrected P 0 collision probabilities to couple the two regions. 1 figure, 6 tables

  19. Measurement of the 238U subthreshold fission cross section for incident neutron energies between 0.6 and 100 keV

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.; de Saussure, G.; Olsen, D.K.; Ingle, R.W.

    1977-01-01

    The neutron-induced 238 U subthreshold fission cross section has been measured in the neutron energy range between 0.6 and 100 keV. A total of 28 fission clusters were identified. The well-known clusters at 721 and 1210 eV appeared resolved into their Class I components. Average 238 U subthreshold fission cross sections were determined and compared with available results in the literature. The measurement is interpreted in terms of fission doorway (Class II levels) arising from the assumption of the existence of a double-humped fission barrier for the ( 238 U + n) compound nucleus at large deformations. On the basis of this model, several fission barrier parameters were determined

  20. Measurement of the neutron-capture cross section on 63,65Cu between 0.4 and 7.5 MeV

    Science.gov (United States)

    Bray, Isabel; Bhike, Megha; Krishichayan, (None); Tornow, W.

    2015-10-01

    Copper is currently being used as a cooling and shielding material in most experimental searches for 0 ν β β decay. In order to accurately interpret background events in these experiments, the cross section of neutron-induced reactions on copper must be known. The purpose of this work was to measure the cross section of the 63,65Cu(n, γ)64,66Cu reactions. Data were collected through the activation method at a range of energies from approximately 0.4 MeV to 7.5 MeV, employing the neutron production reactions 3H(p,n)3Heand2H(d,n)3He. Previous data were limited to energies below approximately 3 MeV. The results are compared to predictions from the nuclear data libraries ENDF/B-VII.1 and TENDL-2014.

  1. Experimental cross sections for light-charged particle production induced by neutrons with energies between 25 and 65 MeV incident on aluminum

    International Nuclear Information System (INIS)

    Benck, S.; Slypen, I.; Meulders, J.P.; Corcalciuc, V.

    2001-01-01

    Experimental double-differential cross sections (d 2 σ/dΩdE) for fast neutron-induced proton, deuteron, triton, and alpha-particle production on aluminum are reported, at several incident neutron energies between 25 and 65 MeV, for outgoing particle energies above the experimental energy thresholds. Angular distributions were measured at laboratory angles between 20 deg. and 160 deg. . Reliable extrapolated spectra are derived for very forward (2.5 deg. and 10 deg. ) and very backward angles (170 deg. and 177.5 deg. ). Based on these experimental data, energy-differential (dσ/dE), angle-differential (dσ/dΩ), and total production cross sections (σ T ) are reported for each outgoing particle

  2. Neutron cross section libraries for analysis of fusion neutronics experiments

    International Nuclear Information System (INIS)

    Kosako, Kazuaki; Oyama, Yukio; Maekawa, Hiroshi; Nakamura, Tomoo

    1988-03-01

    We have prepared two computer code systems producing neutron cross section libraries to analyse fusion neutronics experiments. First system produces the neutron cross section library in ANISN format, i.e., the multi-group constants in group independent format. This library can be obtained by using the multi-group constant processing code system MACS-N and the ANISN format cross section compiling code CROKAS. Second system is for the continuous energy cross section library for the MCNP code. This library can be obtained by the nuclear data processing system NJOY which generates pointwise energy cross sections and the cross section compiling code MACROS for the MCNP library. In this report, we describe the production procedures for both types of the cross section libraries, and show six libraries with different conditions in ANISN format and a library for the MCNP code. (author)

  3. Preparation of next generation set of group cross sections. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2002-03-01

    This fiscal year, based on the examination result about the evaluation energy range of heavy element unresolved resonance cross sections, the upper energy limit of the energy range, where ultra-fine group cross sections are produced, was raised to 50 keV, and an improvement of the group cross section processing system was promoted. At the same time, reflecting the result of studies carried out till now, a function producing delayed neutron data was added to the general-purpose group cross section processing system , thus the preparation of general purpose group cross section processing system has been completed. On the other hand, the energy structure, data constitution and data contents of next generation group cross section set were determined, and the specification of a 151 groups next generation group cross section set was defined. Based on the above specification, a concrete library format of the next generation cross section set has been determined. After having carried out the above-described work, using the general-purpose group cross section processing system , which was complete in this study, with use of the JENDL-3. 2 evaluated nuclear data, the 151 groups next generation group cross section of 92 nuclides and the ultra fine group resonance cross section library for 29 nuclides have been prepared. Utilizing the 151 groups next generation group cross section set and the ultra-fine group resonance cross-section library, a bench mark test calculation of fast reactors has been performed by using an advanced lattice calculation code. It was confirmed, by comparing the calculation result with a calculation result of continuous energy Monte Carlo code, that the 151 groups next generation cross section set has sufficient accuracy. (author)

  4. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1976-09-01

    A comparison of some integral cross-section values for several cross-section libraries in the SAND-II format is presented. The integral cross-section values are calculated with the aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross-section libraries used have all the SAND-II format. Discrepancies between cross-sections in the different libraries are indicated but not discussed

  5. Neutron-induced Single Event Upset on the RPC front-end chips for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Guida, R.; Merlo, M.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P. E-mail: paolo.vitulo@pv.infn.it; De Bari, A.; Manera, S

    2002-05-21

    Neutrons from a reactor and from a cyclotron have been used to characterise the CMS Resistive Plate Chambers (RPCs) front-end chip to neutron-induced damaging events. Single Event Upset (SEU) cross-sections have been measured up to 60 MeV for different chip thresholds. Tests at a reactor were done with an integrated fast (E{sub n}>3 MeV) neutron fluence of 1.7x10{sup 10} cm{sup -2} and a thermal neutron fluence of 9.5x10{sup 11} cm{sup -2}. High-energy neutrons from a cyclotron were used up to a fluence of 10{sup 12} cm{sup -2}. Data indicate the existence of a chip SEU sensitivity already at thermal energy and a saturated SEU cross-section from 3 to 60 MeV. Values of the SEU cross-sections from the thermal run well agree with those obtained by another CMS group that uses the same technology (0.8 {mu}m BiCMOS) though with different architecture. Cross-sections obtained with fast neutrons (from 3 MeV to about 10 MeV) are consistently higher by one order of magnitude compared to the thermal one. The average time between consecutive SEU events in each chip of the CMS barrel RPCs can be estimated to be 1 h.

  6. Angular distribution of fragments from neutron-induced fission of {sup 238}U in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of {sup 238}U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of {sup 238}U.

  7. Neutron induced activity in fuel element components

    International Nuclear Information System (INIS)

    Kjellbert, N.

    1978-03-01

    A thorough investigation of the importance of various nuclides in neutron-induced radioactivity from fuel element construction materials has been carried out for both BWR and PWR fuel assemblies. The calculations were performed with the ORIGEN computer code. The investigation was directed towards the final storage of the assembly components and special emphasis was put to the examination of the sources of carbon-14, cobalt-60, nickel-59, nickel-63 and zirconium-93/niobium-93m. It is demonstrated that the nuclides nickel-59, in Inconel and stainless steel, and zirconium-93/niobium-93m, in Zircaloy, are the ones which constitute the very long term radiotoxic hazard of the irradiated materials. (author)

  8. Tritium production in neutron induced reactions

    International Nuclear Information System (INIS)

    Krasa, A.; Andreotti, E.; Hult, M.; Marissens, G.; Plompen, A.; Angelone, M.; Pillon, M.

    2011-01-01

    We present an overview of the present knowledge of (n,t) reaction excitation functions in the 14-21 MeV energy range for Cd, Cr, Fe, Mg, Mo, Ni, Pb, Pd, Ru, Sn, Ti, Zr. Experimental data are compared with evaluated data libraries, cross-section systematics, and TALYS calculations. The new values for the "5"0Cr(n,t)"4"8V cross-section measured using γ-spectrometry at 15, 16, 17.3 MeV are presented. The trend of the results confirms that while early experimental data at 14.6 MeV are strongly overestimated, the calculations performed with the default version of TALYS strongly underestimate the excitation curve in the measured energy region

  9. EMPIRE-II 2.18, Comprehensive Nuclear Model Code, Nucleons, Ions Induced Cross-Sections

    International Nuclear Information System (INIS)

    Herman, Michal Wladyslaw; Panini, Gian Carlo

    2003-01-01

    1 - Description of program or function: EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined optical, Multi-step Direct (TUL), Multi-step Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus(Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha-particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions and extends up to several hundreds of MeV for the Heavy Ion induced reactions. IAEA1169/06: This version corrects an error in the Absoft compile procedure. 2 - Method of solution: For projectiles with A<5 EMPIRE calculates fusion cross section using spherical optical model transmission coefficients. In the case of Heavy Ion induced reactions the fusion cross section can be determined using various approaches including simplified coupled channels method (code CCFUS). Pre-equilibrium emission is treated in terms of quantum-mechanical theories (TUL-MSD and NVWY-MSC). MSC contribution to the gamma emission is taken into account. These calculations are followed by statistical decay with arbitrary number of subsequent particle emissions. Gamma-ray competition is considered in detail for every decaying compound nucleus. Different options for level densities are available including dynamical approach with collective effects taken into account. EMPIRE contains following third party codes converted into subroutines: - SCAT2 by O. Bersillon, - ORION and TRISTAN by H. Lenske and H. Wolter, - CCFUS by C.H. Dasso and S. Landowne, - BARMOM by A. Sierk. 3 - Restrictions on the complexity of the problem: The code can be easily adjusted to the problem by changing dimensions in the dimensions.h file. The actual limits are set by the available memory. In the current formulation up to 4 ejectiles plus gamma are allowed. This limit can be relaxed

  10. Polynomial parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, Joao Claudio B.

    2015-01-01

    The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 U 92 enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K inf , generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)

  11. Average cross sections for the 252Cf neutron spectrum

    International Nuclear Information System (INIS)

    Dezso, Z.; Csikai, J.

    1977-01-01

    A number of average cross sections have been measured for 252 Cf neutrons in (n, γ), (n,p), (n,2n), (n,α) reactions by the activation method and for fission by fission chamber. Cross sections have been determined for 19 elements and 45 reactions. The (n,γ) cross section values lie in the interval from 0.3 to 200 mb. The data as a function of target neutron number increases up to about N=60 with minimum near to dosed shells. The values lie between 0.3 mb and 113 mb. These cross sections decrease significantly with increasing the threshold energy. The values are below 20 mb. The data do not exceed 10 mb. Average (n,p) cross sections as a function of the threshold energy and average fission cross sections as a function of Zsup(4/3)/A are shown. The results obtained are summarized in tables

  12. Criticality benchmark comparisons leading to cross-section upgrades

    International Nuclear Information System (INIS)

    Alesso, H.P.; Annese, C.E.; Heinrichs, D.P.; Lloyd, W.R.; Lent, E.M.

    1993-01-01

    For several years criticality benchmark calculations with COG. COG is a point-wise Monte Carlo code developed at Lawrence Livermore National Laboratory (LLNL). It solves the Boltzmann equation for the transport of neutrons and photons. The principle consideration in developing COG was that the resulting calculation would be as accurate as the point-wise cross-sectional data, since no physics computational approximations were used. The objective of this paper is to report on COG results for criticality benchmark experiments in concert with MCNP comparisons which are resulting in corrections an upgrades to the point-wise ENDL cross-section data libraries. Benchmarking discrepancies reported here indicated difficulties in the Evaluated Nuclear Data Livermore (ENDL) cross-sections for U-238 at thermal neutron energy levels. This led to a re-evaluation and selection of the appropriate cross-section values from several cross-section sets available (ENDL, ENDF/B-V). Further cross-section upgrades anticipated

  13. Calculation of atom displacement cross section for structure material

    International Nuclear Information System (INIS)

    Liu Ping; Xu Yiping

    2015-01-01

    The neutron radiation damage in material is an important consideration of the reactor design. The radiation damage of materials mainly comes from atom displacements of crystal structure materials. The reaction cross sections of charged particles, cross sections of displacements per atom (DPA) and KERMA are the basis of radiation damage calculation. In order to study the differences of DPA cross sections with different codes and different evaluated nuclear data libraries, the DPA cross sections for structure materials were calculated with UNF and NJOY codes, and the comparisons of results were given. The DPA cross sections from different evaluated nuclear data libraries were compared. And the comparison of DPA cross sections between NJOY and Monte Carlo codes was also done. The results show that the differences among these evaluated nuclear data libraries exist. (authors)

  14. Damage energy and displacement cross sections: survey and sensitivity. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended.

  15. Total cross sections for heavy flavour production at HERA

    CERN Document Server

    Frixione, Stefano; Nason, P; Ridolfi, G; Frixione, S; Mangano, M L; Nason, P; Ridolfi, G

    1995-01-01

    We compute total cross sections for charm and bottom photoproduction at HERA energies, and discuss the relevant theoretical uncertainties. In particular we discuss the problems arising from the small-x region, the uncertainties in the gluon parton density, and the uncertainties in the hadronic component of the cross section. Total electroproduction cross sections, calculated in the Weizs\\"acker-Williams approximation, are also given.

  16. Compact fitting formulas for electron-impact cross sections

    International Nuclear Information System (INIS)

    Kim, Y.K.

    1992-01-01

    Compact fitting formulas, which contain four fitting constants, are presented for electron-impact excitation and ionization cross sections of atoms and ions. These formulas can fit experimental and theoretical cross sections remarkably well, when resonant structures are smoothed out, from threshold to high incident electron energies (<10 keV), beyond which relativistic formulas are more appropriate. Examples of fitted cross sections for some atoms and ions are presented. The basic form of the formula is valid for both atoms and molecules

  17. Microscopic cross-section measurements by thermal neutron activation

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-08-01

    Microscopic cross sections measured by thermal neutron activation using RP-0 reactor at the Peruvian Nuclear Energy Institute. The method consists in measuring microscopic cross section ratios through activated samples, requiring being corrected in thermal and epithermal energetic range by Westcott formalism. Furthermore, the comptage ratios measured for each photopeak to its decay fraction should be normalized from interrelation between both processes above, activation microscopic cross sections are obtained

  18. Precise measurements of neutron capture cross sections for FP

    International Nuclear Information System (INIS)

    Nakamura, Shoji; Harada, Hideo; Katoh, Toshio

    2000-01-01

    The thermal neutron capture cross sections (σ 0 ) and the resonance integrals (I 0 ) of some fission products (FP), such as 137 Cs, 90 Sr, 99 Tc, 129 I and 135 Cs, were measured by the activation and γ-ray spectroscopic methods. Moreover, the cross section measurements were done for other FP elements, such as 127 I, 133 Cs and 134 Cs. This paper provides the summary of the FP cross section measurements, which have been performed by authors. (author)

  19. Distorted eikonal cross sections: A time-dependent view

    International Nuclear Information System (INIS)

    Turner, R.E.

    1982-01-01

    For Hamiltonians with two potentials, differential cross sections are written as time-correlation functions of reference and distorted transition operators. Distorted eikonal differential cross sections are defined in terms of straight-line and reference classical trajectories. Both elastic and inelastic results are obtained. Expressions for the inelastic cross sections are presented in terms of time-ordered cosine and sine memory functions through the use of the Zwanzig-Feshbach projection-operator method

  20. Damage energy and displacement cross sections: survey and sensitivity

    International Nuclear Information System (INIS)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended

  1. A method for measuring light ion reaction cross sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.

    2005-03-01

    An experimental procedure for measuring reaction cross sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross sections for five different sizes of the solid angles in steps from 99.1 to 99.8% of the total solid angle. The final reaction cross section values are obtained by extrapolation to the full solid angle

  2. Discussion of electron cross sections for transport calculations

    International Nuclear Information System (INIS)

    Berger, M.J.

    1983-01-01

    This paper deals with selected aspects of the cross sections needed as input for transport calculations and for the modeling of radiation effects in biological materials. Attention is centered mainly on the cross sections for inelastic interactions between electrons and water molecules and the use of these cross sections for the calculation of energy degradation spectra and of ionization and excitation yields. 40 references, 3 figures, 1 table

  3. Systematics of fission cross sections at the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)

  4. Fragmentation cross sections outside the limiting-fragmentation regime

    CERN Document Server

    Sümmerer, K

    2003-01-01

    The empirical parametrization of fragmentation cross sections, EPAX, has been successfully applied to estimate fragment production cross sections in reactions of heavy ions at high incident energies. It is checked whether a similar parametrization can be found for proton-induced spallation around 1 GeV, the range of interest for ISOL-type RIB facilities. The validity of EPAX for medium-energy heavy-ion induced reactions is also checked. Only a few datasets are available, but in general EPAX predicts the cross sections rather well, except for fragments close to the projectile, where the experimental cross sections are found to be larger.

  5. Neutron-capture cross sections from indirect measurements

    Directory of Open Access Journals (Sweden)

    Scielzo N.D.

    2012-02-01

    Full Text Available Cross sections for compound-nuclear reactions reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f reactions, but need to be improved upon for applications to capture reactions.

  6. Positive Scattering Cross Sections using Constrained Least Squares

    International Nuclear Information System (INIS)

    Dahl, J.A.; Ganapol, B.D.; Morel, J.E.

    1999-01-01

    A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented

  7. Neutron-capture Cross Sections from Indirect Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  8. Adjustement of multigroup cross sections using fast reactor integral data

    International Nuclear Information System (INIS)

    Renke, C.A.C.

    1982-01-01

    A methodology for the adjustment of multigroup cross section is presented, structured with aiming to compatibility the limitated number of measured values of integral parameters known and disponible, and the great number of cross sections to be adjusted the group of cross section used is that obtained from the Carnaval II calculation system, understanding as formular the sets of calculation methods and data bases. The adjustment is realized, using the INCOAJ computer code, developed in function of one statistical formulation, structural from the bayer considerations, taking in account the measurement processes of cross section and integral parameters defined on statistical bases. (E.G.) [pt

  9. Neutron cross section measurements for the Fast Breeder Program

    International Nuclear Information System (INIS)

    Block, R.C.

    1979-06-01

    This research was concerned with the measurement of neutron cross sections of importance to the Fast Breeder Reactor. The capture and total cross sections of fission products ( 101 102 104 Ru, 143 145 Nd, 149 Sm, 95 97 Mo, Cs, Pr, Pd, 107 Pd, 99 Tc) and tag gases (Kr, 78 80 Kr) were measured up to 100 keV. Filtered neutron beams were used to measure the capture cross section of 238 U (with an Fe filter) and the total cross section of Na (with a Na filter). A radioactive neutron capture detector was developed. A list of publications is included

  10. A CVD diamond detector for (n,α) cross-section measurements

    International Nuclear Information System (INIS)

    Weiss, C.

    2014-01-01

    A novel detector based on the chemical vapor deposition (CVD) diamond technology has been developed in the framework of this PhD, for the experimental determination of (n,α) cross-sections at the neutron time-of-flight facility n⎽TOF at CERN. The 59 Ni(n,α) 56 Fe cross-section, which is relevant for astrophysical questions as well as for risk-assessment studies in nuclear technology, has been measured in order to validate the applicability of the detector for such experiments. The thesis is divided in four parts. In the introductory part the motivation for measuring (n,α) cross-sections, the experimental challenges for such measurements and the reasons for choosing the CVD diamond technology for the detector are given. This is followed by the presentation of the n⎽TOF facility, an introduction to neutron-induced nuclear reactions and a brief summary of the interaction of particles with matter. The CVD diamond technology and the relevant matters related to electronics are given as well in this first part of the thesis. The second part is dedicated to the design and production of the Diamond Mosaic-Detector (DM-D) and its characterization. The 59 Ni(n,α) 56 Fe cross-section measurement at n⎽TOF and the data analysis are discussed in detail in the third part of the thesis, before the summary of the thesis and an outlook to possible future developments and applications conclude the thesis in the forth part. In this work, the Diamond Mosaic-Detector, which consist of eight single-crystal (sCVD) diamond sensors and one 'Diamond on Iridium' (DOI) sensor has proven to be well suited for (n,α) cross-section measurements for 1 MeV < E α < 22 MeV. The upper limit is given by the thickness of the sensors, d = 150 μm, while the lower limit is dictated by background induced by neutron capture reactions in in-beam materials. The cross-section measurement was focussed on the resonance integral of 59 Ni(n,α) 56 Fe at E n = 203 eV, with the aim of clarifying

  11. Cross Sections for Inner-Shell Ionization by Electron Impact

    Energy Technology Data Exchange (ETDEWEB)

    Llovet, Xavier, E-mail: xavier@ccit.ub.edu [Centres Científics i Tecnològics, Universitat de Barcelona, Lluís Solé i Sabarís 1-3, 08028 Barcelona (Spain); Powell, Cedric J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8370 (United States); Salvat, Francesc [Facultat de Física (ECM and ICC), Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Jablonski, Aleksander [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2014-03-15

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements.

  12. Terrestrial neutron-induced soft errors in advanced memory devices

    CERN Document Server

    Nakamura, Takashi; Ibe, Eishi; Yahagi, Yasuo; Kameyama, Hideaki

    2008-01-01

    Terrestrial neutron-induced soft errors in semiconductor memory devices are currently a major concern in reliability issues. Understanding the mechanism and quantifying soft-error rates are primarily crucial for the design and quality assurance of semiconductor memory devices. This book covers the relevant up-to-date topics in terrestrial neutron-induced soft errors, and aims to provide succinct knowledge on neutron-induced soft errors to the readers by presenting several valuable and unique features. Sample Chapter(s). Chapter 1: Introduction (238 KB). Table A.30 mentioned in Appendix A.6 on

  13. Corporate Social Responsibility: A Cross Sectional Examination of Incentivization.

    Science.gov (United States)

    1995-09-01

    which address organizational behavior: Corporate Social Responsibility ( CSR ), Expense Preference Approach (EPA), Resource Dependency Theory (RDT...i V *>V CORPORATE SOCIAL RESPONSIBILITY : A CROSS SECTIONAL EXAMINATION OF INCENTIVIZATION THESIS Jennifer A. Block, B.S. First Lieutenant, USAF...Distribution/ Availability Codes Dist m Avail and/or Special \\&\\W 0\\1 CORPORATE SOCIAL RESPONSIBILITY : A CROSS SECTIONAL EXAMINATION OF

  14. Learning of Cross-Sectional Anatomy Using Clay Models

    Science.gov (United States)

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  15. Photoionization cross sections: present status and future needs

    International Nuclear Information System (INIS)

    Manson, S.T.

    1988-01-01

    The existing experimental data situation for photoionization cross section of ground-state atoms, excited states and positive ions is reviewed. The ability of theory to predict these cross sections is also discussed. The likely progress for the near future is presented [pt

  16. Parametric equations for calculation of macroscopic cross sections

    International Nuclear Information System (INIS)

    Botelho, Mario Hugo; Carvalho, Fernando

    2015-01-01

    Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)

  17. Tearing mode stability of tokamak plasmas with elliptical cross section

    International Nuclear Information System (INIS)

    Carreras, B.A.; Holmes, J.A.; Hicks, H.R.; Lynch, V.E.

    1981-02-01

    The effect of the ellipticity of the plasma cross section on tearing mode stability is investigated. The induced coupling between modes is shown to be destabilizing; however, the modification of the equilibrium tends to stabilize the tearing modes. The net effect depends on the manner in which the equilibrium is modified as the plasma cross-section shape is changed

  18. Simplified polynomial representation of cross sections for reactor calculation

    International Nuclear Information System (INIS)

    Dias, A.M.; Sakai, M.

    1985-01-01

    It is shown a simplified representation of a cross section library generated by transport theory using the cell model of Wigner-Seitz for typical PWR fuel elements. The effect of burnup evolution through tables of reference cross sections and the effect of the variation of the reactor operation parameters considered by adjusted polynomials are presented. (M.C.K.) [pt

  19. Graphs of neutron cross section data for fusion reactor development

    International Nuclear Information System (INIS)

    Asami, Tetsuo; Tanaka, Shigeya

    1979-03-01

    Graphs of neutron cross section data relevant to fusion reactor development are presented. Nuclides and reaction types in the present compilation are based on a WRENDA request list from Japan for fusion reactor development. The compilation contains various partial cross sections for 55 nuclides from 6 Li to 237 Np in the energy range up to 20 MeV. (author)

  20. Evaluated activation cross-sections and intercomparison of the ...

    Indian Academy of Sciences (India)

    mental data cross-section with the theoretical codes, to study the quality of the theoretical ... the cross-section, angular distribution, double differential data, gamma ..... TALYS. TENDL. Figure 6. Excitation function of the 87Sr(p, 2n)86Y reaction.

  1. Differential bremsstrahlung and pair production cross sections at high energies

    International Nuclear Information System (INIS)

    Olsen, Haakon A.

    2003-01-01

    Detailed differential cross sections for high energy bremsstrahlung and pair production are derived with specific attention to the differences between the two processes, which are considerable. For the integrated cross sections, which are the only cross sections specifically known until now, the final state integration theorem guarantees that the exact cross section formulas can be exchanged between bremsstrahlung and pair production by the same substitution rules as for the Born-approximation Bethe-Heitler cross sections, for any amount of atomic screening. In fact the theorem states that the Coulomb corrections to the integrated bremsstrahlung and pair production cross sections are identical for any amount of screening. The analysis of the basic differential cross sections leads to fundamental physical differences between bremsstrahlung and pair production. Coulomb corrections occur for pair production in the strong electric field of the atom for 'large' momentum transfer of the order of mc. For bremsstrahlung, on the other hand, the Coulomb corrections take place at a 'large' distance from the atom of the order of ((ℎ/2π)/mc)ε, with a 'small' momentum transfer mc/ε, where ε is the initial electron energy in units of mc 2 . And the Coulomb corrections can be large, of the order of larger than (Z/137) 2 , which is considerably larger than the integrated cross section corrections

  2. Total Cross Sections at High Energies An update

    CERN Document Server

    Fazal-e-Aleem, M; Alam, Saeed; Qadee-Afzal, M

    2002-01-01

    Current and Future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX and TOTEM have been analyzed using various models. In the light of this study an attempt has been made to focus on the behavior of total cross section at very high energies.

  3. pp production cross sections and the constraint method

    International Nuclear Information System (INIS)

    Anjos, J.C.; Santoro, A.F.S.; Souza, M.H.G.

    1983-01-01

    A method of constructing production cross sections that satisfy the constraints represented by the first few moments is shown to give an excellent account of the data when applied to the high energy pp production cross section ν sub(n) (s) plotted as functions of n. (Author) [pt

  4. The 10B(n,α)7Li cross section

    International Nuclear Information System (INIS)

    1997-01-01

    The data base relevant to an evaluation of the 10 B(n,α) standard cross sections have been improved through interlaboratory collaboration. Changes in the evaluated 10 B(n,α) cross sections resulted form the measurements made since the ENDF/B-VI evaluation have been estimated. 12 refs, 4 figs

  5. Systematics of new isotopic production cross sections from neon projectiles

    International Nuclear Information System (INIS)

    Chen, C.X.; Guzik, T.G.; McMahon, M.; Wefel, J.P.; Flores, I.; Lindstrom, P.J.; Tull, C.E.; Mitchell, J.W.; Cronqvist, M.; Crawford, H.J.

    1996-02-01

    New isotopic production cross sections from 22 Ne projectiles at 377,581 and 891 MeV/nucleon in a liquid hydrogen target have been measured. These data allow to investigate the projectile energy and nuclear composition dependence of the cross sections. The comparisons between data and predictions can have important consequences in source abundance investigations. (K.A.)

  6. Systematics of new isotopic production cross sections from neon projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C X; Guzik, T G; McMahon, M; Wefel, J P [Louisiana State Univ., Baton Rouge, LA (United States); Flores, I; Lindstrom, P J; Tull, C E [Lawrence Berkeley Lab., CA (United States); Mitchell, J W [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Cronqvist, M; Crawford, H J [California Univ., Berkeley, CA (United States). Space Sciences Lab.; and others

    1996-02-01

    New isotopic production cross sections from {sup 22}Ne projectiles at 377,581 and 891 MeV/nucleon in a liquid hydrogen target have been measured. These data allow to investigate the projectile energy and nuclear composition dependence of the cross sections. The comparisons between data and predictions can have important consequences in source abundance investigations. (K.A.). 9 refs.

  7. Fusion cross sections from measurements of delayed X-rays

    International Nuclear Information System (INIS)

    Pacheco, A.J.; Gregorio, D.E. di; Fernandez Niello, J.O; Elgue, M.

    1988-01-01

    The program XRAY is a FORTRAN 77 computer code for the extraction of fusion cross sections from delayed X-ray measurements. This is accomplished by calculating the theoretical expressions of the time dependence of the evaporation-residue cross sections and taking them as adjustable parameters in a χ 2 minimization procedure. (orig.)

  8. The effect of the decay data on activation cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong

    2002-01-01

    The effect of the decay data on evaluation of activation cross section is investigated. Present work shows that these effects must be considered carefully when activation cross section is evaluated. Sometime they are main reason for causing the discrepancies among the experimental data

  9. Tables of RCN-2 fission-product cross section evaluation

    International Nuclear Information System (INIS)

    Gruppelaar, H.

    1979-05-01

    This report (continuation of ECN-13 and ECN-33) describes the third part of the RCN-2 evaluation of neutron cross sections for fission product nuclides in KEDAK format. It contains evaluated data for nine nuclides, i.e. 142 Nd, 143 Nd, 144 Nd, 145 Nd, 146 Nd, 147 Nd, 148 Nd, 150 Nd and 147 Pm. Most emphasis has been given to the evaluation of the radiative capture cross section, in order to provide a data base for adjustment calculations using results of integral measurements. Short evaluation reports are given for this cross section. The evaluated capture cross sections are compared with recent experimental differential and integral data. Graphs are given of the capture cross sections at neutron energies above 1 keV, in which also adjusted point cross sections, based upon integral STEK and CFRMF data have been plotted. Moreover, the results are compared with those of the well-known ENDF/B-IV evaluation for fission product nucleides. Finally, evaluation summaries are given, which include tables of other important neutron cross sections, such as the total, elastic scattering and inelastic scattering cross sections

  10. Nuclear characteristics of Pu fueled LWR and cross section sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Toshikazu [Osaka Univ., Suita (Japan). Faculty of Engineering

    1998-03-01

    The present status of Pu utilization to thermal reactors in Japan, nuclear characteristics and topics and cross section sensitivities for analysis of Pu fueled thermal reactors are described. As topics we will discuss the spatial self-shielding effect on the Doppler reactivity effect and the cross section sensitivities with the JENDL-3.1 and 3.2 libraries. (author)

  11. Evaluation of covariance for 238U cross sections

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Nakamura, Masahiro; Matsuda, Nobuyuki; Kanda, Yukinori

    1995-01-01

    Covariances of 238 U are generated using analytic functions for representation of the cross sections. The covariances of the (n,2n) and (n,3n) reactions are derived with a spline function, while the covariances of the total and the inelastic scattering cross section are estimated with a linearized nuclear model calculation. (author)

  12. Q.C.D. estimates of hadronic cross sections

    International Nuclear Information System (INIS)

    Navelet, H.; Peschanski, R.

    1983-03-01

    Estimates for hadron-hadron cross-sections are made using the leading log approximation of Q.C.D. The rise of the total inelastic pp cross-sections at high energy is reproduced, thanks to the competition between the small parton-parton interaction and the large multiplicity of gluons predicted by Q.C.D

  13. Second order effects in adjustment processes of cross sections

    International Nuclear Information System (INIS)

    Silva, F.C. da; D'Angelo, A.; Gandini, A.; Rado, V.

    1982-01-01

    An iterative processe, that take in account the non linear effects of some integral quantities in relation to cross sections, is used to execute an adjustment of cross sections of some elements that constitute the fast reactors shielding. (E.G.) [pt

  14. Technique of neutron-induced (fission-track) autoradiography with histological detail

    International Nuclear Information System (INIS)

    Smith, J.M.; Taylor, G.N.; Jee, W.S.S.

    1980-01-01

    The primary advantage of neutron-induced or fission-track autoradiography compared with conventional autoradiography is that for low concentrations of fissile nuclides prohibitively long exposure times may be avoided. However, it is difficult to produce imaging of biological structures on the neutron-induced autoradiograph which would allow localization of the nuclide histologically. The technique presented circumvents this difficulty using a thin polycarbonate film applied to the histologically stained tissue section mounted on a quartz substrate. After irradiation of the tissue section with an appropriate thermal neutron flux, the fission fragment tracks are revealed by etching the film with KOH. The tracks, superimposed on the stained tissue, may be observed under the light microscope in the same manner as for conventional nuclear emulsion autoradiography

  15. Applications of the BEam Cross section Analysis Software (BECAS)

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Bitsche, Robert; Fedorov, Vladimir

    2013-01-01

    A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used for the gener......A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used...... for the generation of beam finite element models which correctly account for effects stemming from material anisotropy and inhomogeneity in cross sections of arbitrary geometry. These type of modelling approach allows for an accurate yet computationally inexpensive representation of a general class of three...

  16. ENDF/B-5 fission product cross section evaluations

    International Nuclear Information System (INIS)

    Schenter, R.E.; England, T.R.

    1979-12-01

    Cross section evaluations were made for the 196 fission product nuclides on the ENDF/B-5 data files. Most of the evaluations involve updating the capture cross sections of the important absorbers for fast and thermal reactor systems. This included updating thermal values, resonance integrals, resonance parameter sets, and fast capture cross sections. For the fast capture results generalized least-squares calculations were made with the computer code FERRET. Input for these cross section adjustments included nuclear models calculations and both integral and differential experimental data results. The differential cross sections and their uncertainties were obtained from the CSIRS library. Integral measurement results came from CFRMF and STEK Assemblies 500, 1000, 2000, 3000, 4000. Comparisons of these evaluations with recent capture measurements are shown. 15 figures, 10 tables

  17. Electron collision cross section sets of TMS and TEOS vapours

    Science.gov (United States)

    Kawaguchi, S.; Takahashi, K.; Satoh, K.; Itoh, H.

    2017-05-01

    Reliable and detailed sets of electron collision cross sections for tetramethylsilane [TMS, Si(CH3)4] and tetraethoxysilane [TEOS, Si(OC2H5)4] vapours are proposed. The cross section sets of TMS and TEOS vapours include 16 and 20 kinds of partial ionization cross sections, respectively. Electron transport coefficients, such as electron drift velocity, ionization coefficient, and longitudinal diffusion coefficient, in those vapours are calculated by Monte Carlo simulations using the proposed cross section sets, and the validity of the sets is confirmed by comparing the calculated values of those transport coefficients with measured data. Furthermore, the calculated values of the ionization coefficient in TEOS/O2 mixtures are compared with measured data to confirm the validity of the proposed cross section set.

  18. Cross sections for hadron and lepton production processes

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    1976-01-01

    Charged heavy lepton production in proton-proton collisions is studied. Motivated by recent experimental results from the Stanford Linear Accelerator Center a parton model analysis is given of the reaction p + p → L + + L - + x → μ +- + e/ -+ / + neutrinos + x. Results are presented for the total cross section and the differential cross sections with respect to the invariant mass squared of the final charged leptons and the transverse momenta of each one of them. The two-photon mechanism for pair production in colliding beam exeriments is considered. Through the use of mapped invariant integration variables, a reliable exact numerical calculation of the cross section for the production of muon and pion pairs by the two-photon mechanism is provided. Results are given for the exact total cross sections and also the differential cross sections with respect to the invariant mass squared of the pair. These are compared to the results obtained from the equivalent photon approximation method

  19. Classical scattering cross section in sputtering transport theory

    International Nuclear Information System (INIS)

    Zhang Zhulin

    2002-01-01

    For Lindhard scaling interaction potential scattering commonly used in sputtering theory, the authors analyzed the great difference between Sigmund's single power and the double power cross sections calculated. The double power cross sections can give a much better approximation to the Born-Mayer scattering in the low energy region (m∼0.1). In particular, to solve the transport equations by K r -C potential interaction given by Urbassek few years ago, only the double power cross sections (m∼0.1) can yield better approximate results for the number of recoils. Therefore, the Sigmund's single power cross section might be replaced by the double power cross sections in low energy collision cascade theory

  20. Dielectronic recombination cross sections for H-like ions

    International Nuclear Information System (INIS)

    Pindzola, M.S.; Badnell, N.R.; Griffin, D.C.

    1990-01-01

    Dielectronic recombination cross sections for several H-like atomic ions are calculated in an isolated-resonance, distorted-wave approximation. Fine-structure and configuration-interaction effects are examined in detail for the O 7+ cross section. Hartree-Fock, intermediate-coupled, multiconfiguration dielectronic recombination cross sections for O 7+ are then compared with the recent experimental measurements obtained with the Test Storage Ring in Heidelberg. The cross-section spectra line up well in energy and the shape of the main resonance structures are comparable. The experimental integrated cross sections differ by up to 20% from theory, but this may be due in part to uncertainties in the electron distribution function

  1. Target dependence of K+-nucleus total cross sections

    International Nuclear Information System (INIS)

    Jiang, M.F.; Ernst, D.J.; Chen, C.M.

    1995-01-01

    We investigate the total cross section and its target dependence for K + -nucleus scattering using a relativistic momentum-space optical potential model which incorporates relativistically normalized wave functions, invariant two-body amplitudes, covariant kinematics, and an exact full-Fermi averaging integral. The definition of the total cross section in the presence of a Coulomb interaction is reviewed and the total cross section is calculated in a way that is consistent with what is extracted from experiment. In addition, the total cross sections for a nucleus and for the deuteron are calculated utilizing the same theory. This minimizes the dependence of the ratio of these cross sections on the details of the theory. The model dependence of the first-order optical potential calculations is investigated. The theoretical results are found to be systematically below all existing data

  2. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  3. The fission cross sections of 230Th, 232Th, 233U, 234U, 236U, 238U, 237Np, 239Pu and 242Pu relative 235U at 14.74 MeV neutron energy

    International Nuclear Information System (INIS)

    Meadows, J.W.

    1986-12-01

    The measurement of the fission cross section ratios of nine isotopes relative to 235 U at an average neutron energy of 14.74 MeV is described with particular attention to the determination of corrections and to sources of error. The results are compared to ENDF/B-V and to other measurements of the past decade. The ratio of the neutron induced fission cross section for these isotopes to the fission cross section for 235 U are: 230 Th - 0.290 +- 1.9%; 232 Th - 0.191 +- 1.9%; 233 U - 1.132 +- 0.7%; 234 U - 0.998 +- 1.0%; 236 U - 0.791 +- 1.1%; 238 U - 0.587 +- 1.1%; 237 Np - 1.060 +- 1.4%; 239 Pu - 1.152 +- 1.1%; 242 Pu - 0.967 +- 1.0%. 40 refs., 11 tabs., 9 figs

  4. Meeting cross-section requirements for nuclear-energy design

    Energy Technology Data Exchange (ETDEWEB)

    Weisbin, C.R.; de Saussure, G.; Santoro, R.T. (Oak Ridge National Lab., TN (USA)); Gilai, T. (Ben-Gurion Univ. of the Negev, Beersheba (Israel))

    1982-01-01

    Current requirements in cross-section data that are essential to nuclear-energy programmes are summarized and explained and some insight into how these data might be obtained is provided. The six sections of the paper describe: design parameters and target accuracies; data collection, evaluation and analysis; determination of high-accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; identification of important cross sections and inferred needs.

  5. Measurement of 14 MeV neutron cross section of {sup 129}I with foil activation method

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Isao; Nakano, Daisuke; Takahashi, Akito [Osaka Univ., Suita (Japan). Faculty of Engineering

    1997-03-01

    The {sup 129}I, which is one of the most famous fission products (FPs), is of very important concern from the standpoint of waste transmutation due to its extremely long half life. The accurate reaction cross section data of {sup 129}I induced by 14 MeV neutrons are indispensable when evaluating the performance to transmute it in a fusion reactor. However, there was no available experimental data reported until now. We measured 14 MeV neutron induced reaction cross sections of {sup 129}I to give the reference cross section data for evaluation of transmutation performance and nuclear data, using OKTAVIAN facility of Osaka university, Japan. Since the available amount of {sup 129}I as a sample is quite small, probably less than 1 mg, the foil activation method was adopted in the measurement. The sample was a sealed source of {sup 129}I and the {gamma}-rays from the irradiated sample were measured with a Hp-Ge detector. Several {gamma}-rays peaks which could be expected to be caused by two nuclear reactions of {sup 129}I(n,2n) and {sup 129}I(n,{gamma}) were observed. We confirmed that these peaks corresponded to those of {sup 128}I and {sup 130}I through ascertaining each energy and half life. From the measurement, the cross section of {sup 129}I(n,2n) and the effective production cross section of {sup 130}I produced by the {sup 129}I(n,{gamma}){sup 130}I reaction including the contribution of {sup 129}I(n,{gamma}){sup 130m}I reaction, that were estimated to be 1.1{+-}0.1 b and 0.032{+-}0.003 b, respectively at 14.8 MeV, were obtained with an acceptable accuracy of about 10 %, though the errors caused by the uncertainty of {gamma} decay scheme data still existed. The measured cross sections were compared with the evaluated nuclear data of JENDL-3.2 and ENDF/B-VI. For the {sup 129}I(n,2n) reaction, the evaluations overestimate the cross section by 30-40 %, while for the {sup 129}I(n,{gamma}) reaction, the evaluations underestimate by at least one order of magnitude

  6. Cross section data for ionization of important cyanides

    International Nuclear Information System (INIS)

    Kaur, Jaspreet; Antony, Bobby

    2015-01-01

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  7. Evaluation of kerma in carbon and the carbon cross sections

    International Nuclear Information System (INIS)

    Axton, E.J.

    1992-02-01

    A preliminary simultaneous least squares fit to measurements of kerma in carbon, and carbon cross sections taken from the ENDF/B-V file was carried out. In the calculation the shapes of the total cross section and the various partial cross sections were rigid but their absolute values were allowed to float in the fit within the constraints of the ENDF/B-V uncertainties. The construction of the ENDF/B-V file imposed improbable shapes, particularly in the case of the (12)C(n,n'3(alpha)) reaction, which were incompatible with direct measurements of kerma and of the reaction cross sections. Consequently a new evaluation of the cross section data became necessary. Since the available time was limited the new evaluation concentrated particularly on those aspects of the ENDF/B-V carbon file which would have most impact on kerma calculations. Following the new evaluation of cross sections new tables of kerma factors were produced. Finally, the simultaneous least squares fit to measurements of kerma and the new cross section file was repeated

  8. Neutron standard cross sections in reactor physics - Need and status

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1990-01-01

    The design and improvement of nuclear reactors require detailed neutronics calculations. These calculations depend on comprehensive libraries of evaluated nuclear cross sections. Most of the cross sections that form the data base for these evaluations have been measured relative to neutron cross-section standards. The use of these standards can often simplify the measurement process by eliminating the need for a direct measurement of the neutron fluence. The standards are not known perfectly, however; thus the accuracy of a cross-section measurement is limited by the uncertainty in the standard cross section relative to which it is measured. Improvements in a standard cause all cross sections measured relative to that standard to be improved. This is the reason for the emphasis on improving the neutron cross-section standards. The continual process of measurement and evaluation has led to improvements in the accuracy and range of applicability of the standards. Though these improvements have been substantial, this process must continue in order to obtain the high-quality standards needed by the user community

  9. Density-dependent expressions for photoionization cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-06-07

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function.

  10. Parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, João Cláudio Batista; Carvalho da Silva, Fernando; Senra Martinez, Aquilino; Leal, Luiz C.

    2015-01-01

    Highlights: • This work describes a parameterized representation of the homogenized macroscopic cross section for PWR reactor. • Parameterization enables a quick determination of problem-dependent cross-sections to be used in few group calculations. • This work allows generating group cross-section data to perform PWR core calculations without computer code calculations. - Abstract: The purpose of this work is to describe, by means of Chebyshev polynomials, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 92 U enrichment. The cross-section data analyzed are fission, scattering, total, transport, absorption and capture. The parameterization enables a quick and easy determination of problem-dependent cross-sections to be used in few group calculations. The methodology presented in this paper will allow generation of group cross-section data from stored polynomials to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by the proposed methodology when compared with results from the SCALE code calculations show very good agreement

  11. Density-dependent expressions for photoionization cross-sections

    International Nuclear Information System (INIS)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-01-01

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function

  12. Cross section data for ionization of important cyanides

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jaspreet; Antony, Bobby, E-mail: bka.ism@gmail.com

    2015-11-15

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  13. Positron induced scattering cross sections for hydrocarbons relevant to plasma

    Science.gov (United States)

    Singh, Suvam; Antony, Bobby

    2018-05-01

    This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.

  14. The total collision cross section in the glory region

    International Nuclear Information System (INIS)

    Biesen, J.J.H. van den.

    1982-01-01

    Chapter 1 presents a calculation of approximate total cross sections in the glory region from noble gas potentials. The relations between the main features of the total cross section and the properties of the potential to which these are sensitive are extensively investigated in chapter II. A beam apparatus has been developed, which allows for accurate measurements on the total cross section. All effects due to the finite angular and velocity resolution of the apparatus can be eliminated from the data to yield actual total cross sections as a function of the relative velocity. This facilitates a comparison to total cross sections predicted by potentials available in the literature. A brief description of the apparatus and of the data reduction is given in chapter III. The total cross section data obtained for various noble gas combinations are presented and analysed in chapter IV, where also a large number of potentials proposed in the literature is tested. In chapter V the quenching of the glories in the case of a non-spherical interaction is analysed. Subsequently, total cross section data for some atom-molecule systems are discussed. (Auth.)

  15. Poster - 18: New features in EGSnrc for photon cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Elsayed; Mainegra-Hing, Ernesto; Rogers, David W.O. [The Ottawa Hospital Cancer Centre, National Research Council Canada, Carleton University (Canada)

    2016-08-15

    Purpose: To implement two new features in the EGSnrc Monte Carlo system. The first is an option to account for photonuclear attenuation, which can contribute a few percent to the total cross section at the higher end of the energy range of interest to medical physics. The second is an option to use exact NIST XCOM photon cross sections. Methods: For the first feature, the photonuclear total cross sections are generated from the IAEA evaluated data. In the current, first-order implementation, after a photonuclear event, there is no energy deposition or secondary particle generation. The implementation is validated against deterministic calculations and experimental measurements of transmission signals. For the second feature, before this work, if the user explicitly requested XCOM photon cross sections, EGSnrc still used its own internal incoherent scattering cross sections. These differ by up to 2% from XCOM data between 30 keV and 40 MeV. After this work, exact XCOM incoherent scattering cross sections are an available option. Minor interpolation artifacts in pair and triplet XCOM cross sections are also addressed. The default for photon cross section in EGSnrc is XCOM except for the new incoherent scattering cross sections, which have to be explicitly requested. The photonuclear, incoherent, pair and triplet data from this work are available for elements and compounds for photon energies from 1 keV to 100 GeV. Results: Both features are implemented and validated in EGSnrc.Conclusions: The two features are part of the standard EGSnrc distribution as of version 4.2.3.2.

  16. Neutron total scattering cross sections of elemental antimony

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V.

  17. Measurements of fission cross-sections. Chapter 4

    International Nuclear Information System (INIS)

    James, G.D.

    1981-01-01

    The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)

  18. Total cross section for relativistic positronium interaction with atom

    International Nuclear Information System (INIS)

    Pak, A.S.; Tarasov, A.V.

    1985-01-01

    Total cross sections of interaction of positronium relativistic atoms with atoms are calculated. Calculations are conducted within the framework of potential theory in Born approximaton. Contributions in total cross section of coherent (σsub(coh)) and incoherent (σsub(inc)) parts are analyzed. It is shown that for light elements σsub(inc) value is comparable with σsub(coh), and for heavy ones the ratio σsub(inc)/σsub(coh) sufficiently exceeds Zsup(-1) (Z-charge of the atomic nucleus. Numerical calculation results are presented. A conclusion is made on importance of the coherent part account during the calculation of total cross sections

  19. Drell-Yan cross section in the jet calculus scheme

    International Nuclear Information System (INIS)

    Tanaka, Hidekazu; Kobayashi, Hirokazu

    2009-01-01

    We calculate factorized cross sections for lepton pair production mediated by a virtual photon in hadron-hadron collisions using the jet calculus scheme, in which a kinematical constraint due to parton radiation is taken into account. This method guarantees a proper phase space boundary for subtraction terms. Some properties of the calculated cross sections are examined. We also discuss matching between the hard scattering cross sections and parton showers at the next-to-leading logarithmic (NLL) order of quantum chromodynamics (QCD). (author)

  20. Habit, Production, and the Cross-Section of Stock Returns

    OpenAIRE

    Chen, Andrew Y.

    2014-01-01

    Solutions to the equity premium puzzle should inform us about the cross-section of stock returns. An external habit model with heterogeneous firms reproduces numerous stylized facts about both the equity premium and the value premium. The equity premium is large, time-varying, and linked with consumption volatility. The cross-section of expected returns is log-linear in B/M, and the slope matches the data. The explanation for the value premium lies in the interaction between the cross-section...

  1. Use of nuclear reaction models in cross section calculations

    International Nuclear Information System (INIS)

    Grimes, S.M.

    1975-03-01

    The design of fusion reactors will require information about a large number of neutron cross sections in the MeV region. Because of the obvious experimental difficulties, it is probable that not all of the cross sections of interest will be measured. Current direct and pre-equilibrium models can be used to calculate non-statistical contributions to neutron cross sections from information available from charged particle reaction studies; these are added to the calculated statistical contribution. Estimates of the reliability of such calculations can be derived from comparisons with the available data. (3 tables, 12 figures) (U.S.)

  2. Comparison of fission and capture cross sections of minor actinides

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Iwamoto, Osamu

    2003-01-01

    The fission and capture cross sections of minor actinides given in JENDL-3.3 are compared with other evaluated data and experimental data. The comparison was made for 32 nuclides of Th-227, 228, 229, 230, 233, 234, Pa-231, 232, 233, U-232, 234, 236, 237, Np-236, 237, 238, Pu-236, 237, 238, 242, 244, Am-241, 242, 242m, 243, Cm-242, 243, 244, 245, 246, 247 and 248. Given in the present report are figures of these cross sections and tables of cross sections at 0.0253 eV and resonance integrals. (author)

  3. LHCb cross-section measurements with heavy flavour jets

    CERN Multimedia

    Michielin, Emanuele

    2017-01-01

    Cross-section measurements of jets originating from the hadronization of beauty ($b$) and charm ($c$) quarks at LHCb give the unique opportunity to probe Parton Distribution Functions (PDFs) at low and large momentum fraction and to test the Standard Model in the forward region. In this poster the production of $t\\bar{t}$ pairs in the forward region, the measurement of the $W+b\\bar{b}$ and $W+c\\bar{c}$ cross-section and the measurement of the $Z\\rightarrow b\\bar{b}$ cross-section are presented.

  4. Cross sections and transport properties for Na+ in (DXE gas

    Directory of Open Access Journals (Sweden)

    Nikitović Željka D.

    2016-01-01

    Full Text Available In this work we select most probable reactions of alkali metal ion Na+ with dimethoxyethane (DXE molecule. Appropriate gas phase enthalpies of formation for the products were used to calculate scattering cross section as a function of kinetic energy with Denpoh-Nanbu theory. Calculated cross sections were compared with existing experimental results obtained by guided ion beam tandem mass spectrometry. Three body association reactions of ions with DXE is studied and compared to experimental results. Calculated cross sections were used to obtain transport parameters for alkali metal ion in DXE gas. [Projekat Ministarstva nauke Republike Srbije, br. ON 171037 i br. III 410011

  5. Neutron total scattering cross sections of elemental antimony

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V

  6. A method for measuring light ion reaction cross-sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.; Arendse, G.J.; Auce, A.; Cox, A.J.; Foertsch, S.V.; Jacobs, N.M.; Johansson, R.; Nyberg, J.; Peavy, J.; Renberg, P.-U.; Sundberg, O.; Stander, J.A.; Steyn, G.F.; Tibell, G.; Zorro, R.

    2005-01-01

    An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle

  7. Testing of cross section libraries for TRIGA criticality benchmark

    International Nuclear Information System (INIS)

    Snoj, L.; Trkov, A.; Ravnik, M.

    2007-01-01

    Influence of various up-to-date cross section libraries on the multiplication factor of TRIGA benchmark as well as the influence of fuel composition on the multiplication factor of the system composed of various types of TRIGA fuel elements was investigated. It was observed that keff calculated by using the ENDF/B VII cross section library is systematically higher than using the ENDF/B-VI cross section library. The main contributions (∼ 2 20 pcm) are from 235 U and Zr. (author)

  8. Evaluation of fusion-evaporation cross-section calculations

    Science.gov (United States)

    Blank, B.; Canchel, G.; Seis, F.; Delahaye, P.

    2018-02-01

    Calculated fusion-evaporation cross sections from five different codes are compared to experimental data. The present comparison extents over a large range of nuclei and isotopic chains to investigate the evolution of experimental and calculated cross sections. All models more or less overestimate the experimental cross sections. We found reasonable agreement by using the geometrical average of the five model calculations and dividing the average by a factor of 11.2. More refined analyses are made for example for the 100Sn region.

  9. Cross-Sectional Analysis of Longitudinal Mediation Processes.

    Science.gov (United States)

    O'Laughlin, Kristine D; Martin, Monica J; Ferrer, Emilio

    2018-01-01

    Statistical mediation analysis can help to identify and explain the mechanisms behind psychological processes. Examining a set of variables for mediation effects is a ubiquitous process in the social sciences literature; however, despite evidence suggesting that cross-sectional data can misrepresent the mediation of longitudinal processes, cross-sectional analyses continue to be used in this manner. Alternative longitudinal mediation models, including those rooted in a structural equation modeling framework (cross-lagged panel, latent growth curve, and latent difference score models) are currently available and may provide a better representation of mediation processes for longitudinal data. The purpose of this paper is twofold: first, we provide a comparison of cross-sectional and longitudinal mediation models; second, we advocate using models to evaluate mediation effects that capture the temporal sequence of the process under study. Two separate empirical examples are presented to illustrate differences in the conclusions drawn from cross-sectional and longitudinal mediation analyses. Findings from these examples yielded substantial differences in interpretations between the cross-sectional and longitudinal mediation models considered here. Based on these observations, researchers should use caution when attempting to use cross-sectional data in place of longitudinal data for mediation analyses.

  10. Calculation and Evaluation of Fission Yields and Capture Cross Sections Leading to the Production of Therapeutic Radionuclide by Means of Nuclear Reactors

    International Nuclear Information System (INIS)

    Sublet, J.C.

    2009-01-01

    Much progress has been made in nuclear medicine that involves the use of radionuclides for both diagnosis and therapy. Because of this qualitative and quantitative growth, the adoption of a set of established radionuclides for various applications, the methods of nuclide production need to be addressed and consideration given to other, emerging radionuclides that are judged to be developing in importance. The methods involved are characterized by the transmutation of isotopes by neutron-induced reactions and decays. Therefore, newly evaluated cross sections, fission yields and decay characteristics of relevance to the reactor production of those therapeutic radionuclides have been reviewed. Considerations of the decay schemes of all the nuclides involved are also included. (author)

  11. Total cross-section measurements progress in nuclear physics

    CERN Document Server

    Giacomelli, G; Mulvey, J H

    2013-01-01

    Total Cross-Section Measurements discusses the cross-sectional dimensions of elementary hadron collisions. The main coverage of the book is the resonance and high energy area of the given collision. A section of the book explains in detail the characteristic of a resonance region. Another section is focused on the location of the high energy region of collision. Parts of the book define the meaning of resonance in nuclear physics. Also explained are the measurement of resonance and the identification of the area where the resonance originates. Different experimental methods to measure the tota

  12. Total cross sections for positron and electron scattering from pyrimidine

    International Nuclear Information System (INIS)

    Zecca, A; Chiari, L; Trainotti, E; GarcIa, G; Blanco, F; Brunger, M J

    2010-01-01

    In this paper we report original measurements of total cross sections for positron scattering from the important biomolecule pyrimidine. The energy range of these measurements was 0.3-45 eV, while the energy resolution was ∼260 meV. In addition, we report theoretical results, calculated within the independent atom-screened additivity rule (IAM-SCAR) formalism, for the corresponding electron impact total cross sections. In that case the energy range is 1-10 000 eV. Total cross sections are very important input data for codes that seek to simulate charged-particle tracks in matter, as they define the mean-free path between collisions. As the present data and computations are to the best of our knowledge the first total cross sections to be reported for either positron or electron scattering from pyrimidine, they fill an important void in our available knowledge in the literature.

  13. Handbook of LHC Higgs Cross Sections: 2. Differential Distributions

    CERN Document Server

    Dittmaier, S; Passarino, G; Tanaka, R; Alekhin, S; Alwall, J; Bagnaschi, E A; Banfi, A; Blumlein, J; Bolognesi, S; Chanon, N; Cheng, T; Cieri, L; Cooper-Sarkar, A M; Cutajar, M; Dawson, S; Davies, G; De Filippis, N; Degrassi, G; Denner, A; D'Enterria, D; Diglio, S; Di Micco, B; Di Nardo, R; Ellis, R K; Farilla, A; Farrington, S; Felcini, M; Ferrera, G; Flechl, M; de Florian, D; Forte, S; Ganjour, S; Garzelli, M V; Gascon-Shotkin, S; Glazov, S; Goria, S; Grazzini, M; Guillet, J -Ph; Hackstein, C; Hamilton, K; Harlander, R; Hauru, M; Heinemeyer, S; Hoche, S; Huston, J; Jackson, C; Jimenez-Delgado, P; Jorgensen, M D; Kado, M; Kallweit, S; Kardos, A; Kauer, N; Kim, H; Kovac, M; Kramer, M; Krauss, F; Kuo, C -M; Lehti, S; Li, Q; Lorenzo, N; Maltoni, F; Mellado, B; Moch, S O; Muck, A; Muhlleitner, M; Nadolsky, P; Nason, P; Neu, C; Nikitenko, A; Oleari, C; Olsen, J; Palmer, S; Paganis, S; Papadopoulos, C G; Petersen, T C; Petriello, F; Petrucci, F; Piacquadio, G; Pilon, E; Potter, C T; Price, J; Puljak, I; Quayle, W; Radescu, V; Rebuzzi, D; Reina, L; Rojo, J; Rosco, D; Salam, G P; Sapronov, A; Schaarschmidt, J; Schonherr, M; Schumacher, M; Siegert, F; Slavich, P; Spira, M; Stewart, I W; Stirling, W J; Stockli, F; Sturm, C; Tackmann, F J; Thorne, R S; Tommasini, D; Torrielli, P; Tramontano, F; Trocsanyi, Z; Ubiali, M; Uccirati, S; Acosta, M Vazquez; Vickey, T; Vicini, A; Waalewijn, W J; Wackeroth, D; Warsinsky, M; Weber, M; Wiesemann, M; Weiglein, G; Yu, J; Zanderighi, G

    2012-01-01

    This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) focuses on predictions (central values and errors) for total Higgs production cross sections and Higgs branching ratios in the Standard Model and its minimal supersymmetric extension, covering also related issues such as Monte Carlo generators, parton distribution functions, and pseudo-observables. This second Report represents the next natural step towards realistic predictions upon providing results on cross sections with benchmark cuts, differential distributions, details of specific decay channels, and further recent developments.

  14. Fully differential cross sections for heavy particle impact ionization

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: mmcgovern06@qub.ac.u [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)

    2009-11-15

    We describe a procedure for extracting fully differential ionization cross sections from an impact parameter coupled pseudostate treatment of the collision. Some examples from antiproton impact ionization of atomic Hydrogen are given.

  15. Theoretical Studies on Photoionization Cross Sections of Solid Gold

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Sun Weiguo; Cheng Yansong

    2005-01-01

    Accurate expression for photoabsorption (photoionization) cross sections of high density system proposed recently is used to study the photoionization of solid gold. The results show that the present theoretical photoionization cross sections have good agreement both in structure and in magnitude with the experimental results of gold crystal. The studies also indicate that both the real part ε' and the imaginary part ε'' of the complex dielectric constant ε, and the dielectric influence function of a nonideal system have rich structures in low energy side with a range about 50 eV, and suggest that the influence of particle interactions of surrounding particles with the photoionized particle on the photoionization cross sections can be easily investigated using the dielectric influence function. The electron overlap effects are suggested to be implemented in the future studies to improve the accuracy of theoretical photoionization cross sections of a solid system.

  16. Models for Photon-photon Total Cross-sections

    OpenAIRE

    Godbole, RM; Grau, A; Pancheri, G

    1999-01-01

    We present here a brief overview of recent models describing the photon-photon cross-section into hadrons. We shall show in detail results from the eikonal minijet model, with and without soft gluon summation.

  17. Highlights of top quark cross-section measurements at ATLAS

    Directory of Open Access Journals (Sweden)

    Berta Peter

    2017-01-01

    Full Text Available The highlights of the measurements of top quark production in proton-proton collisions at the Large Hadron Collider with the ATLAS detector are presented. The inclusive measurements of the top-pair production cross section have reached high precision and are compared to the best available theoretical calculations. The differential cross section measurements, including results using boosted top quarks, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers. Measurements of the single top quark production cross section are presented in the t-channel and s-channel, and with associated production with a W boson. For the t-channel production, results on the ratio between top quark and antitop quark production cross sections and differential measurements are also included.

  18. Total and partial recombination cross sections for F6+

    International Nuclear Information System (INIS)

    Mitnik, D.M.; Pindzola, M.S.; Badnell, N.R.

    1999-01-01

    Total and partial recombination cross sections for F 6+ are calculated using close-coupling and distorted-wave theory. For total cross sections, close-coupling and distorted-wave results, which include interference between the radiative and dielectronic pathways, are found to be in good agreement with distorted-wave results based on a sum of independent processes. Total cross sections near zero energy are dominated by contributions from low-energy dielectronic recombination resonances. For partial cross sections, the close-coupling and distorted-wave theories predict strong interference for recombination into the final recombined ground state 1s 2 2s 21 S 0 of F 5+ , but only weak interference for recombination into the levels of the 1s 2 2s2p configuration. copyright 1999 The American Physical Society

  19. New neutron cross sections for fusion materials studies

    International Nuclear Information System (INIS)

    Greenwood, L.R.; Smither, R.K.

    1985-01-01

    Neutron cross sections are being developed for a variety of fusion-related applications including neutron dosimetry, fusion plasma diagnostics, the activation of very long-lived isotopes, and high-energy accelerator neutron sources

  20. Density dependence of stopping cross sections measured in liquid ethane

    International Nuclear Information System (INIS)

    Both, G.; Krotz, R.; Lohmer, K.; Neuwirth, W.

    1983-01-01

    Electronic stopping cross sections for 7 Li projectiles (840--175 keV) have been measured with the inverted Doppler-shift attenuation method in liquid ethane (C 2 H 6 ) at two different densities. The density of the target has been varied by changing the temperature, and measurements have been performed at 0.525 g/cm 3 (199 K) and 0.362 g/cm 3 (287 K). At the higher density the stopping cross section is about 2% smaller. This result agrees with a calculation of the stopping cross section of liquid ethane, applying Lindhard's theory in the local-density approximation using a simple model of the liquid. It is also in agreement with various observations of the so-called physical-state effect, which show that the stopping cross section of the same substance is smaller in a condensed phase than in the gaseous one

  1. Some sources of the underestimation of evaluated cross section uncertainties

    International Nuclear Information System (INIS)

    Badikov, S.A.; Gai, E.V.

    2003-01-01

    The problem of the underestimation of evaluated cross-section uncertainties is addressed. Two basic sources of the underestimation of evaluated cross-section uncertainties - a) inconsistency between declared and observable experimental uncertainties and b) inadequacy between applied statistical models and processed experimental data - are considered. Both the sources of the underestimation are mainly a consequence of existence of the uncertainties unrecognized by experimenters. A model of a 'constant shift' is proposed for taking unrecognised experimental uncertainties into account. The model is applied for statistical analysis of the 238 U(n,f)/ 235 U(n,f) reaction cross-section ratio measurements. It is demonstrated that multiplication by sqrt(χ 2 ) as instrument for correction of underestimated evaluated cross-section uncertainties fails in case of correlated measurements. It is shown that arbitrary assignment of uncertainties and correlation in a simple least squares fit of two correlated measurements of unknown mean leads to physically incorrect evaluated results. (author)

  2. Nonelastic-scattering cross sections of elemental nickel

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1980-06-01

    Neutron total cross sections of elemental nickel were measured from 1.3 to 4.5 MeV, at intervals of approx. 50 keV, with resolutions of 30 to 50 keV and to accuracies of 1 to 2.5%. Neutron differential-elastic-scattering cross sections were measured from 1.45 to 3.8 MeV, at intervals and with resolutions comparable to those of the total cross sections, and to accuracies of 3 to 5%. The nonelastic-scattering cross section is derived from the measured values to accuracies of greater than or equal to 6%. The experimental results are compared with previously reported values as represented by ENDF/B-V, and areas of consistency and discrepancy, noted. The measured results are shown to be in good agreement with the predictions of a model previously reported by the authors. 4 figures, 1 table

  3. Charge exchange cross-sections for multiply charged ions

    International Nuclear Information System (INIS)

    Midha, J.M.; Gupta, S.C.

    1990-01-01

    A new empirical relation for charge exchange cross-section has been proposed for different charge states of C, N and O colliding with neutral hydrogen. Results are compared with the experimental data. (Author)

  4. Advantages and disadvantages : longitudinal vs. repeated cross-section surveys

    Science.gov (United States)

    1996-06-20

    The benefits of a longitudinal analysis over a repeated cross-sectional study include increased statistical power and the capability to estimate a greater range of conditional probabilities. With the Puget Sound Transportation Panel (PSTP), and any s...

  5. Some problem areas in capture cross-section measurements

    International Nuclear Information System (INIS)

    Moxon, M.C.; Gayther, D.B.; Sowerby, M.G.

    1975-01-01

    This paper outlines some of the problems that have been encountered and are envisaged in the measurement and evaluation of capture cross-sections. Particular emphasis is placed on the cross-sections of the structural materials (Fe, Ni, Cr) used in fast reactors. The topics considered are the influence of scattered neutrons in capture detectors, the determination of background, sample thickness corrections, and the theoretical representation of resonance parameters. (author)

  6. 100 group displacement cross sections from RECOIL data base

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.

    1995-01-01

    Displacement cross sections in 100 neutron energy groups were calculated from the RECOIL data base using the RECOIL program, for use in DPA (Displacement Per Atom) calculations for FBTR and PFBR materials. 100 group displacement cross sections were calculated using RECOIL-Data Base and RECOIL Program. Modifications were made in the data base to reduce space requirement, and in the program for easy handling on a PC. 2 refs

  7. Scattering cross-section of an inhomogeneous plasma cylinder

    International Nuclear Information System (INIS)

    Jiaming Shi; Lijian Qiu; Ling, Y.

    1995-01-01

    Scattering of em waves by the plasma cylinder is of significance in radar target detection, plasma diagnosis, etc. This paper discusses the general method to calculate the scattering cross-section of em waves from a plasma cylinder which is radially inhomogeneous and infinitely long. Numerical results are also provided for several plasma density profiles. The effect of the electron density distribution on the scattering cross-section is investigated

  8. Photoneutron cross sections for D2O and beryllium

    International Nuclear Information System (INIS)

    Bowsher, H.F.; Woods, F.J.; Baumann, N.P.

    1975-01-01

    The photodissociation cross section by 24 Na gamma rays was measured for deuterium in order to resolve a discrepancy between earlier measurements (1.43 to 1.59 millibarns) and a more recently reported one (1.34 mb). The measurement of the beryllium (γ,n) cross section for 24 Na gamma rays was also included as a check. Results for deuterium (1.54 mb) are in agreement with the earlier values

  9. Neutron capture cross section standards for BNL 325, Fourth Edition

    International Nuclear Information System (INIS)

    Holden, N.E.

    1981-01-01

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: 55 Mn(n,γ), 59 Co(n,γ) and 197 Au(n,γ). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed

  10. Electromagnetic-gravitational conversion cross sections in external electromagnetic fields

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Dang Van Soa; Tuan Tran, A.

    1994-09-01

    The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condenser and the magnetic field of the solenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario. (author). 11 refs

  11. The γ total cross section and the photon structure functions

    International Nuclear Information System (INIS)

    Alexander, G.

    1986-01-01

    A review on the current experimental status of the photon-photon total hadronic cross section as a function of energy and Q 2 is given in addition to the results obtained for the leptonic and hadronic photon structure functions. The results are discussed in terms of the point-like part of the photon and non-perturbative VDM part. It is shown that the cross section at Q 2 = 0 is well described by VDM derived models

  12. Determination of molecular ionization cross sections in an ICR spectrometer

    International Nuclear Information System (INIS)

    Takashima, K.; Riveros, J.M.

    1976-01-01

    Ionization cross sections have been determined for simple gases at 75eV in an ICR spectrometer. Results obtained using a calibrated ion gauge as a pressure indicator yield values which are consistently higher than accepted values by as much as 15%. These results suggest that a more convenient way to measure pressure in ICR experiments might be to record the total ion current and to use the tabulated ionization cross sections where available [pt

  13. Cross section recondensation method via generalized energy condensation theory

    International Nuclear Information System (INIS)

    Douglass, Steven; Rahnema, Farzad

    2011-01-01

    Highlights: → A new method is presented which corrects for core environment error from specular boundaries at the lattice cell level. → Solution obtained with generalized energy condensation provides improved approximation to the core level fine-group flux. → Iterative recondensation of the cross sections and unfolding of the flux provides on-the-fly updating of the core cross sections. → Precomputation of energy integrals and fine-group cross sections allows for easy implementation and efficient solution. → Method has been implemented in 1D and shown to correct the environment error, particularly in strongly heterogeneous cores. - Abstract: The standard multigroup method used in whole-core reactor analysis relies on energy condensed (coarse-group) cross sections generated from single lattice cell calculations, typically with specular reflective boundary conditions. Because these boundary conditions are an approximation and not representative of the core environment for that lattice, an error is introduced in the core solution (both eigenvalue and flux). As current and next generation reactors trend toward increasing assembly and core heterogeneity, this error becomes more significant. The method presented here corrects for this error by generating updated coarse-group cross sections on-the-fly within whole-core reactor calculations without resorting to additional cell calculations. In this paper, the fine-group core flux is unfolded by making use of the recently published Generalized Condensation Theory and the cross sections are recondensed at the whole-core level. By iteratively performing this recondensation, an improved core solution is found in which the core-environment has been fully taken into account. This recondensation method is both easy to implement and computationally very efficient because it requires precomputation and storage of only the energy integrals and fine-group cross sections. In this work, the theoretical basis and development

  14. Triply differential cross sections for ionization of helium by electrons

    International Nuclear Information System (INIS)

    Brauner, M.; Briggs, J.S.; Broad, J.T.

    1991-01-01

    A correlated three-body continuum wavefunction, already successfully employed to describe hydrogen atom impact ionization, is used to calculate the triply-differential cross section for electron impact ionization of helium. A good description is obtained of all the major structure in the differential cross sections in both symmetric and asymmetric geometries. It is demonstrated how interference between the various projectile-target interactions is necessary to reproduce the experimentally observed structure. (author)

  15. Cross section and linear polarization of tagged photons

    International Nuclear Information System (INIS)

    Asai, J.; Caplan, H.S.; Skopik, D.M.; DelBianco, W.; Maximon, L.C.

    1988-01-01

    Formulae for bremsstrahlung cross sections and polarizations are usually presented in coordinate systems not very suitable for application by experimental physicists to devices such as photon-tagging monochromators. In this paper the transformations between the different coordinate systems are presented, along with examples of the calculated cross sections and polarizations in a form convenient from the experimental standpoint. These examples also give the predicted characteristics of the photon tagger currently under construction at the Saskatchewan Accelerator Laboratory. (16 refs., 19 figs., tab.)

  16. Differential cross sections for neutrino scattering on 12C

    International Nuclear Information System (INIS)

    Kolbe, E.

    1996-01-01

    Differential cross sections for neutrino scattering on 12 C are calculated within the (continuum) random phase approximation model. The charged current (ν e ,e - ) and (ν μ ,μ - ) capture reactions on 12 C are measured by the LSND Collaboration at LAMPF. We investigate and discuss the merits of such studies, especially the information that can be extracted from data for differential neutrino scattering cross sections. copyright 1996 The American Physical Society

  17. Low energy total cross section of 36Ar

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Magurno, B.A.

    1975-01-01

    To compare the predictions of the valence model with measured partial radiative widths of 36 Ar an accurate knowledge of the bound-level parameters is required. This is achieved by carrying out a Breit-Wigner parameter fit to the total cross section of 36 Ar measured by Chrien et al and renormalized to the recommended values of the thermal capture and scattering cross sections. (1 figure, 1 table) (U.S.)

  18. Measurements of the electron and muon inclusive cross-sections

    Indian Academy of Sciences (India)

    We present the measurements of the differential cross-sections for inclusive electron and muon production in proton–proton collisions at a centre-of-mass energy of s = 7 TeV, using ∼ 1.4 pb-1 of data collected by the ATLAS detector at the Large Hadron Collider. The muon cross-section is measured as a function of muon ...

  19. Inelastic neutron spectra and cross sections for 238 U

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Kagalenko, A.V.

    1994-01-01

    The report discusses the experimental facilities of IPPE, results of spectra and cross sections investigations. The problems of existing data libraries were highlighted. Some of these problems for example, inelastic spectra at high energy may be solved by correct theoretical calculation. Others like level cross sections at E > 2 MeV and the possible structure of excitation function for group levels between 0.5 to 0.85 MeV demand new experimental efforts. 21 refs., 11 figs., 5 tabs

  20. MINERvA - neutrino nucleus cross section experiment

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Recent results from MINERvA, a neutrino cross section experiment at Fermilab, are presented. MINERVA has the goal of providing precision results which will have important impact on oscillation experiments.  Initial data runs for muon neutrino and antineutrino beams of ~3.5 GeV have produced a large number of new results. This seminar will introduce the experiment and describe results for quasielastic, pion production, and inclusive cross sections.